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Abstract

In this master thesis, we examine structural breaks in financial data. For that purpose,

the Chow test, the t-test, the OLS-CUSUM test, the K&L test and the I&T test will be

analyzed. In various simulations, the influence of different GARCH parameters on the

test decision will be checked. A structural break in data can either happen in the first

moment or in the second moment. Several simulations show that structural breaks in

different GARCH parameters can be detected by structural break tests. By using data of

the DAX and the Dow Jones, we create various trading strategies and compare them to a

buy-and-hold strategy. These strategies are based on structural break tests. The trading

strategies will apply the K&L test, the t-test and the OLS-CUSUM test as these tests have

the best results in the accomplished simulations.
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1. Introduction

”
You need to divorce your mind from the crowd. The herd mentality causes all these IQ’s

to become paralyzed. I don’t think investors are now acting more intelligently, despite the

intelligence. Smart doesn’t always equal rational. To be a successful investor you must

divorce yourself from the fears and greed of the people around you, although it is almost

impossible.“[17, Warren Buffett]

Warren Buffett is one of the most famous investors in the world. He tries to invest ratio-

nally and many traders see in him a great role model. Traders all over the world try to

create profit by predicting the future trend of financial data better than the market. War-

ren Buffett has been able to do this for a long time. But how can one beat the market?

One rational approach is to use the assumption that financial data, like stocks, follow a

trend where structural breaks with changing trends can occur. These structural breaks can

either be in the returns or in the dynamics of the volatility. In theory one can recognize

these structural breaks by using structural break tests to get information about the future

trend. The next step would be to create a trading strategy which uses this information

to make profit. This can either happen by using breaks in the returns, which leads to a

signal for buying or selling the stock, or by using breaks in the volatility. In the second

case, we have two options to create a trading strategy: Firstly, we can invest directly in

the volatility by buying financial products, like options. For example, a straddle strategy,

which includes an ATM (
”
ATM“ stands for

”
at the money“) put and an ATM call, can be

accomplished; secondly, we can invest in the stock by assuming a negative or a positive

impact of the break on the volatility of the returns. Figure 1.1 shows a simulated price

process of a random walk model with drift, and two structural breaks in the returns. This

simulation is simplified and just used to show what structural breaks in returns and in

prices look like.

The random walk model with drift assumes that the price changes are independent of each

other. Therefore, a stochastic process can be created where the actual price depends on

the previous price added by a drift component and a random error.

1



1. INTRODUCTION 2

Figure 1.1.: A random walk with drift model for stock prices Si with two structural breaks in the

drift:

Si = αt + Si−1 + εi with α1 = 0.02, α2 = −0.02, α3 = 0.04 and εi
iid∼ N(0,0.1) for all i ∈ R. The

red lines describe the drift of the process.

This leads to the formula of a random walk model:

Xi = α +Xi−1 + εi, (1.0.1)

εi
iid∼ (0,σ2), ∀i ∈ R. (1.0.2)

[5, Dupernex, 2007, p. 168]

Figure 1.1 shows breaks in the drift α at day 100 and day 300. This drift component can

be seen as returns, while the standard error εi determines the volatility.

Henceforth, log returns, which are calculated by

ri = [ln(Si)− ln(Si−1)] ·100%, (1.0.3)

are meant if we talk about returns.

The second kind of structural breaks can be in the volatility of the returns. Therefore, fig-

ure 1.2 shows simplified returns with two structural breaks in the volatility by simulating

them from a normal distribution. The assumption that returns can be simulated from a

normal distribution violates many of the stylized facts [3, Cont, 2001]. For example that

the volatility of returns occurs in clusters or that daily returns are not normally distributed.

The figure shall just show what breaks in the volatility can look like. As we see, there

are two breaks in the simulated returns. Between day 1 and 100 and day 301 and 350 σ2

of the normal distribution equals 0.4, while between day 101 and 300 σ2 of the normal

distribution equals 0.1. Since the normal distribution has a mean of zero, there is no drift
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Figure 1.2.: Simulated normal distributed log returns,

ri = [ln(Si)− ln(Si−1)] · 100%, with two structural breaks in the volatility: ri
iid∼ N(0,σ2

t ) with

σ2
1 = σ2

3 = 0.4 and σ2
2 = 0.1. The green lines show the time where σ2

1 = σ2
3 = 0.4. The red line

shows the phase where σ2
2 = 0.1.

in the prices, and the returns vary around zero. It would also be possible to change the

mean of the standard errors and to create a structural break in the drift.

In the following, in chapter 2 we will discuss some tests for detecting structural breaks.

The Chow test [2, Chow, 1960], the two-sample t-test [6, Fahrmeier, Künstler, Pigeot,

Tutz 2011, p. 454 – 459] and an OLS-CUSUM test [20, Zeileis, Leisch, Hornik, Kleiber,

2002] will be introduced. Moreover, a CUSUM-based test considered by Kokoszka and

Leipus [1, Andreou and Ghysels, 2001], henceforth K&L test, and a CUSUM-based test

considered by Inclán and Tiao [1, Andreou and Ghysels, 2001], henceforth I&T test, will

be presented. In chapter 3 the GARCH(1,1) model will be introduced and the structural

break tests will be examined in various simulations. Firstly, the results of the K&L test and

the I&T test from Andreou and Ghysels [1, Andreou and Ghysels, 2001] shall be repro-

duced. Secondly, the impact of various parameters on the test decision will be analyzed.

After describing the used data in chapter 4, we will implement some trading strategies

based on structural break tests and apply them to real data in chapter 5. In chapter 6 a

short conclusion will be made and an outlook will be given.



2. Tests for Structural Breaks

In this chapter, some tests for detecting structural breaks will be presented. The used

tests are the Chow test [2, Chow, 1960], the two-sample t-test [6, Fahrmeier, Künstler,

Pigeot, Tutz 2011, p. 454 – 459] and the generalized OLS-based CUSUM test [20, Zeileis,

Leisch, Hornik, Kleiber, 2002]. All of them can be applied to ri, |ri| and r2. By using ri,

the test shall recognize a break in the mean of the returns, while by using |ri| and r2, the

test shall detect a break in the dynamics of the volatility of the returns. Additionally, a

CUSUM-based test considered by Kokoszka and Leipus [1, Andreou and Ghysels, 2001]

and a CUSUM-based test considered by Inclán and Tiao [1, Andreou and Ghysels, 2001]

will be introduced for testing for structural breaks in the volatility of returns. Here, the

K&L test will be applied to |ri| and r2, while the I&T test will be just applied to r2.

2.1. Chow Test

The Chow test is a structural break test which was introduced by Gregory Chow [2, Chow,

1960]. A short explanation is also given by Lee [11, Lee, 2008]. The Chow test is

constructed in a way that assumes a linear model, given in formula 2.1.1, of the examined

data and also assumes that the breakpoint is known. The next step is to divide the dataset

in a model with z observations preceding the break, given in formula 2.1.2, and a model

with m observations following the break, given in formula 2.1.3.

Y = Xβ +u, with u
iid∼(0,σ2), (2.1.1)

Yz = Xzβz +uz, with uz
iid∼(0,σ2

z ,) (2.1.2)

Ym = Xmβm +um, with um
iid∼(0,σ2

m). (2.1.3)

After fitting the full model and both submodels by using the method of least squares,

given in formula 2.1.4,

β̂ = (X ′X)−1X ′y, (2.1.4)

the residuals u, uz and um can be computed.

4



2.2. T-TEST 5

The test statistic is then given by

F =
(u′u−u′zuz −u′mum)/p)

(u′zuz +u′mum)/(z+m−2p)
∼ F(p,z+m−2p) (2.1.5)

where p is the number of regression parameters.

Rejection area of H0:

H0 : βz = βm, H1 : βz 6= βm :

F > F(p,z+m−2p).

If we look at the test statistic in formula 2.1.5, we can see that the numerator becomes zero

if the squared residuals of the full model have the same value as the sum of the squared

residuals of the submodels. This happens when the submodels have the same parameters

as the full model and it indicates that there is no structural break.

In the following simulations, the random errors in the linear models are assumed to be

normally distributed.

2.2. t-Test

The two-sample t-test, a parametric test, compares the mean of two independent popula-

tions. It has some conditions which are violated by the volatility of returns. The stylized

facts state that r2
i and |ri| have a slow decay of autocorrelation [3, Cont, 2001]. Thus, the

conditions 2.2.1 and 2.2.2 are violated by using quadratic or absolute returns. Neverthe-

less, the two-sample t-test for quadratic and absolute returns shall be checked in various

simulations. A short explanation of the two-sample t-test can be found in [6, Fahrmeier,

Künstler, Pigeot, Tutz, 2011, pp. 454 – 459].

Conditions:

X1, ...,Xz independent iterations of X, (2.2.1)

Y1, ...,Ym independent iterations of Y, (2.2.2)

X1, ...,Xz, Y1, ...,Ym independent of each other, (2.2.3)

X ∼ N(µX ,σ
2
X), Y ∼ N(µY ,σ

2
Y ), (2.2.4)

or X, Y arbitrarily distributed for z,m ≥ 30, (2.2.5)

σ2
X = σ2

Y unknown. (2.2.6)
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Test statistic:

T =
X̄ − Ȳ −δ0

√

(

1
z
+ 1

m

) (z−1)S2
X+(m−1)S2

Y

z+m−2

∼ t(z+m−2), (2.2.7)

where

S2
X =

1

z−1

z

∑
i=1

(Xi − X̄)2, (2.2.8)

S2
Y =

1

m−1

m

∑
i=1

(Yi − Ȳ )2 (2.2.9)

and

X̄ =
1

z

z

∑
i=1

Xi, (2.2.10)

Ȳ =
1

m

m

∑
i=1

Yi. (2.2.11)

Rejection area of H0:

(a) H0 : µX −µY = δ0, H1 : µX −µY 6= δ0 :

|T |> t1−α/2(z+m−2),

(b) H0 : µX −µY ≥ δ0, H1 : µX −µY < δ0 :

T <−t1−α((z+m−2),

(c) H0 : µX −µY ≤ δ0, H1 : µX −µY > δ0 :

T > t1−α(z+m−2).

Since we test for structural breaks, the t-test will be applied with δ0 = 0. While the Chow

test and the t-test assume that the breakpoint is known, the OLS-CUSUM test, the K&L

test and the I&T test check where a structural break is most likely.

2.3. OLS-CUSUM Test

The next test that will be introduced is the OLS-CUSUM test, which is explained in [20,

Zeileis, Leisch, Hornik, Kleiber, 2002]. Lets assume again a linear model with formula

2.3.1.

Yi = Xiβi +ui, with i = 1, · · · ,n and ui
iid∼(0,σ2). (2.3.1)
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The variance of the residuals can be computed by formula 2.3.2 and 2.3.3 where p is the

number of regression parameters and β̂
(n)
i is the estimator by using the method of least

squares, given in formula 2.1.4.

ûi = yi −Xiβ̂
(n)
i , (2.3.2)

σ̂2 =
1

n− p

n

∑
i=1

û2
i . (2.3.3)

The OLS-CUSUM test then has the following formula for the process:

W 0
n (t) =

1

σ̂
√

n

|nt|
∑
i=1

ûi, with 0 ≤ t ≤ 1. (2.3.4)

The standard Brownian Bridge W 0(t) = W (t)− tW (1) where W (t) is a Wiener process

[6, Hull, 2009, p. 282 – 286] then is the limiting process for W 0
n (t). [20, Zeileis, Leisch,

Hornik, Kleiber, 2002]

Thus, the boundaries can be calculated by a Kolmogorov-Smirnov type asymptotic distri-

bution because the supremum of a Brownian bridge converges against the Kolmogorov-

Smirnov distribution. [1, Andreou and Ghysels, 2001]

If W 0(t) violates this boundary up or down, the null hypothesis that there is no struc-

tural break must be rejected. For better programming performance, an approximation for

the Kolmogorov-Smirnov distribution will be used in the analysis. In formula 2.3.5 the

approximation for n > 35 is given, while in formula 2.3.6 an adjusted approximation is

shown. [7, Hedderich and Sachs, 2015, pp. 462-463]

The adjusted formula will be used because the test statistic of the OLS-CUSUM test 2.3.4,

the K&L test 2.4.1 and the I&T test 2.5.1 are adjusted, too.

Q1−α =

√

−0.5ln(α
2
)

√
n

, (2.3.5)

Q1−α =

√

−0.5ln(
α

2
). (2.3.6)

As we can see in figure 2.1, the boundaries for small α are almost equal to the values

of the Kolmogorov-Smirnov distribution but for a value of α ≥ 0.5 both lines diverge.

Since we will use α ≤ 0.2 in the following chapters, the approximation can be applied.

For calculating p-values, the approximation cannot be used as the inverse of the adjusted

approximation can have values between [0,2].
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Figure 2.1.: Quantiles of the Kolmogorv-Smirnov distribution adjusted by
√

n and the quantiles

of the adjusted approximation Q1−α =
√

−0.5ln(α
2
). The range of α is from 0.0001 to 1.

2.4. K&L Test

A similar structural break test to the OLS-CUSUM test is the K&L test. While the previ-

ous tests will be used with ri, |ri| and r2
i in the simulations, the K&L test will be used with

|ri| and r2
i and the I&T test will be used wit r2

i . The K&L test is described in [1, Andreou

and Ghysels, 2001] and is a CUSUM based test. It is not necessary to know the point of

the structural break. The considered process of the test is given by

UN(k) =

(

1√
N

k

∑
j=1

X j −
k

N
√

N

N

∑
j=1

X j

)

(2.4.1)

where 0 < k < N is true and N is the number of observations.

To find the point k̂ where the probability of a breakpoint is the highest, we take the maxi-

mum of the process in formula 2.4.1, and get:

k̂ = min{k : |UN(k)|= max
0≤ j≤N

|UN( j)|}. (2.4.2)

Under the null hypothesis, no structural break exists, the process in formula 2.4.1 follows

a Brownian bridge with σ2 = ∑
∞
j=−∞Cov(X j,X0):

UN(k)→D[0,1] σB(k). (2.4.3)
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Thus, with rearranging the formula, we get

sup{|UN(k)|}/σ̂ →D[0,1] sup{B(k) : k ∈ [0,1]} (2.4.4)

which follows a Kolmogorov-Smirnov type asymptotic distribution. [1, Andreou and

Ghysels, 2001]

H0 can be rejected if the test statistic 2.4.4 is greater than the boundary.

The critical value is calculated in the same way as for the OLS-CUSUM test. As estimator

for σ2 an approach of Newey and West [12, Newey and West, 1994] will be applied:

σ̂2 = Ω̂0 +
m

∑
j=1

(1− j

m+1
)(Ω̂ j + Ω̂′

j), (2.4.5)

Ω̂ j = ˆCov(Xt ,Xt− j), (2.4.6)

m = N
1
3 . (2.4.7)

2.5. I&T Test

The I&T test is constructed to find a single and unknown structural break. It is described

in [1, Andreou and Ghysels, 2001] and is similar to the OLS-CUSUM test and the K&L

test. Usually, this test is applied to i.i.d. data but in the following simulations it is applied

to r2
i , which are not i.i.d. distributed. This could lead to problems in the specificity or the

power of the test decision. The test statistic is given by

IT =
√

N/2max
k

|Dk|, (2.5.1)

Dk =
∑

k
j=1 X j

∑
N
j=1 X j

− k

N
. (2.5.2)

Again, the supremum of the test statistic in 2.5.1 converges against the Kolmogorov-

Smirnov distribution and the boundaries can be computed in the same way as for the

OLS-CUSUM test and the K&L test.



3. Simulation Studies

To check which test gives us the best results for detecting structural breaks in ri, r2
i and

|ri|, we will simulate returns by using a GARCH(1,1) model and apply the various tests

to these returns. The simulations have implemented structural breaks in various GARCH

parameters. All simulations were made in a Monte-Carlo design with 2000 iterations and

a burn-in of 100.

3.1. GARCH(1,1)

The GARCH model (
”
GARCH“ stands for

”
generalized autoregressive conditional het-

eroscedasticity“) is a suitable model for simulating returns and volatility. It is described

in [10, Kreiß and Neuhaus, 2006, pp. 298-323]. Since we just use a GARCH(1,1) model

in the following simulations, in this section only the GARCH(1,1) model will be ex-

plained. If iεZ, ri the returns from formula 1.0.3, σi the volatility and ui
iid∼(0,1) is true,

the GARCH(1,1) model can be represented in the following formula:

ri = µ +σi ·ui, (3.1.1)

σ2
i = ω +αr2

i−1 +βσ2
i−1 (3.1.2)

where ω , α1 and β1 are nonnegative and real parameters and ω,α1,β1 6= 0 is true. µ

indicates the mean of the returns and can be seen as a drift component.

Since we want to simulate returns and volatility with possible structural breaks, the model

is divided in two submodels. The model before the structural break happens is described

in formulas 3.1.3, 3.1.4 and 3.1.5, the model after the structural break happens is described

in formulas 3.1.6, 3.1.7 and 3.1.8. The breakpoint is determined as k with k = n1n where

n is the number of observations and n1 ∈ [0,1] is the relative breakpoint.

Model preceding the structural break:

ri = µ1 +σi ·ui, with ui
iid∼N(0,ε1), (3.1.3)

σ2
i = ω1 +α1r2

i−1 +β1σ2
i−1, (3.1.4)

1 ≤ i ≤ k. (3.1.5)

10
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Model following the structural break:

ri = µ2 +σi ·ui, with ui
iid∼N(0,ε2), (3.1.6)

σ2
i = ω2 +α2r2

i−1 +β2σ2
i−1, (3.1.7)

k+1 ≤ i ≤ n. (3.1.8)

3.2. ACF in Simulated GARCH(1,1) Model

Before we start with the comparison of the various tests, a brief look at the ACF (
”
ACF“

stands for
”
autocorrelation function“) will be given. [14, Ruppert, 2010, p. 206]

By estimating the sample autocovariance function

γ̂(h) =
1

n

n−h

∑
j=1

(Yj+h − Ȳ )(Yj − Ȳ ), (3.2.1)

with Ȳ calculated through formula 2.2.11, we get the sample ACF which is defined as

ρ̂(h) =
γ̂(h)

γ̂(0)
. (3.2.2)

Figure 3.1 shows the ACF for simulated returns ri and the corresponding conditional

volatilities σi. The GARCH(1,1) model will be simulated with α = 0.89 and β = 0.1. As

we can see, there is no autocorrelation in the simulated returns. In contrast to the returns,

the simulated conditional volatilities have an autocorrelation with fast decay. In figure

3.2 the ACF for the simulated returns and for the corresponding conditional volatilities

with α = 0.1 and β = 0.89 are given. As in the previous figure, we could not detect any

autocorrelation in the simulated returns. The ACF of the simulated conditional volatilities

shows a slow decay of autocorrelation. To summarize, the simulated returns do not have

any autocorrelation and the GARCH parameter α and β have a positive impact on the

ACF of the volatilities.

3.3. K&L Test and I&T Test

After describing the construction of the simulations, the K&L test and the I&T test will

be examined. To this end, the parameters of the simulation are adapted to the parameters

of the simulation from Andreou and Ghysels. [1, Andreou and Ghysels, 2001, pp. 31-32]

Since a different estimator for σ̂ are used in this simulation, the results for the K&L test

can differ from the results of [1, Andreou and Ghysels, 2001, pp. 31-32]. Moreover,

the values from the following simulations for the I&T test differ from the values of [1,
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Figure 3.1.: Autocorrelation of a GARCH(1,1) Model with α = 0.89 and β = 0.1. On the left is

the ACF of the simulated ri, on the right is the ACF of the simulated σi.

Figure 3.2.: ]

Autocorrelation of a GARCH(1,1) Model with α = 0.1 and β = 0.89. On the left is the

ACF of the simulated ri, on the right is the ACF of the simulated σi.
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r2
i

Q0.90 H0: α = 0.10 Q0.95 H0: α = 0.05 Q0.99 H0: α = 0.01

n=250 1.476 0.229 1.650 0.149 1.986 0.056

n=500 1.495 0.264 1.693 0.174 2.039 0.065

n=750 1.486 0.242 1.662 0.152 2.002 0.056

n=1000 1.494 0.262 1.666 0.162 1.982 0.059

n=1250 1.500 0.278 1.731 0.177 2.089 0.066

n=1500 1.531 0.260 1.709 0.175 2.067 0.071

n=2000 1.528 0.269 1.703 0.170 1.972 0.070

n=3000 1.503 0.283 1.701 0.184 1.985 0.064

n=3500 1.527 0.292 1.696 0.190 2.053 0.062

Table 3.1.: Quantiles and the relative frequencies of H0 by using the I&T test with r2
i under H0:

µ1 = µ2 = 0, ω1 = ω2 = 0.4, α1 = α2 = 0.1, β1 = β2 = 0.5 and ε1 = ε2 = 1.

Andreou and Ghysels, 2001, pp. 31-32]. No reason could be found for this.

First of all, the returns are simulated and the K&L test with r2
i and |ri| will be applied,

while the I&T test just will be applied with r2
i . After repeating this step 2000 times,

the quantiles and the relative frequencies of H0 with given α will be calculated. Both

simulations in this section are made under the null hypothesis that no structural break

exists. The first simulation with following parameters

µ1 = µ2 = 0,

ω1 = ω2 = 0.4,

α1 = α2 = 0.1,

β1 = β2 = 0.5,

ε1 = ε2 = 1

will be accomplished with changing n.

In table 3.1 the results are given for the I&T test. As we can see, the changes in the

quantiles are marginally for various n. For α = 0.1, α = 0.05 and α = 0.01 the critical

values are equal to 1.224, 1.358 and 1.628. The respective quantiles are all higher than the

critical values. Furthermore, the rejection rate of H0 is higher than the α level. For Q0.90,

Q0.95 and Q0.99 we get values between [0.229,0.292], [0.149,0.190] and [0.056,0.071]

which is above the respective α level. An optimal test under H0 would result in a rejection

rate of H0 equal to the α level, which is not the case in this simulation. If we look at the

K&L test with r2
i in table 3.2 and with |ri| in table 3.3, we get another impression. The

quantiles for different n vary around the boundaries which are the same as for the I&T

test and the rejection rates are similar to the α level. It can be said that in this simulation

under H0 the K&L test works well and keeps the α level for r2
i and for |ri|.
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r2
i

Q0.90 H0: α = 0.10 Q0.95 H0: α = 0.05 Q0.99 H0: α = 0.01

n=250 1.214 0.095 1.335 0.043 1.562 0.005

n=500 1.240 0.109 1.375 0.056 1.615 0.008

n=750 1.207 0.089 1.349 0.048 1.603 0.007

n=1000 1.226 0.102 1.354 0.048 1.624 0.010

n=1250 1.221 0.098 1.375 0.057 1.633 0.011

n=1500 1.237 0.105 1.361 0.051 1.652 0.011

n=2000 1.229 0.104 1.361 0.051 1.616 0.010

n=3000 1.234 0.106 1.374 0.058 1.598 0.008

n=3500 1.238 0.107 1.358 0.050 1.617 0.010

Table 3.2.: Quantiles and the relative frequencies of H0 by using the K&L test with r2
i under H0:

µ1 = µ2 = 0, ω1 = ω2 = 0.4, α1 = α2 = 0.1, β1 = β2 = 0.5 and ε1 = ε2 = 1.

|ri| Q0.90 H0: α = 0.10 Q0.95 H0: α = 0.05 Q0.99 H0: α = 0.01

n=250 1.233 0.105 1.354 0.049 1.559 0.002

n=500 1.253 0.117 1.390 0.060 1.611 0.009

n=750 1.223 0.099 1.347 0.044 1.632 0.010

n=1000 1.234 0.105 1.367 0.051 1.625 0.010

n=1250 1.234 0.105 1.390 0.058 1.663 0.012

n=1500 1.230 0.103 1.387 0.054 1.662 0.012

n=2000 1.239 0.110 1.367 0.052 1.631 0.010

n=3000 1.237 0.108 1.375 0.056 1.624 0.010

n=3500 1.235 0.105 1.360 0.051 1.609 0.008

Table 3.3.: Quantiles and the relative frequencies of H0 by using the K&L test with |ri| under H0:

µ1 = µ2 = 0, ω1 = ω2 = 0.4, α1 = α2 = 0.1, β1 = β2 = 0.5 and ε1 = ε2 = 1.

In another simulation under H0 we adjust the parameters to

µ1 = µ2 = 0,

ω1 = ω2 = 0.2,

α1 = α2 = 0.1,

β1 = β2 = 0.7,

ε1 = ε2 = 1

where n changes again. The construction of this simulation is the same as in the previous

simulation. Firstly, we want to take a look at the results of the I&T test in table 3.4 which

differs from the previous simulation. The values of the quantiles as well as the rejection

rates are higher. Due to the fact that only ω1 = ω2 and β1 = β2 have changed, an intuitive

explanation can be given by higher autocorrelation effects. The autocorrelation effect for

σ in the GARCH model increases with rising α or β . Thus, the changed β can explain

this decline of the results. Nevertheless, the impact of various parameters on the I&T test

will be examined in the following simulations. The same effect of higher autocorrelation

can be seen for the K&L test. In table 3.5 and table 3.6 the results for the K&L test with
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r2
i

Q0.90 H0: α = 0.10 Q0.95 H0: α = 0.05 Q0.99 H0: α = 0.01

n=250 1.675 0.347 1.908 0.237 2.360 0.117

n=500 1.770 0.418 1.988 0.307 2.416 0.151

n=750 1.809 0.450 2.011 0.330 2.473 0.164

n=1000 1.785 0.451 1.988 0.326 2.489 0.159

n=1250 1.784 0.463 2.001 0.330 2.361 0.162

n=1500 1.804 0.476 2.029 0.354 2.452 0.181

n=2000 1.787 0.488 1.973 0.362 2.416 0.177

n=3000 1.851 0.492 2.042 0.365 2.369 0.202

n=3500 1.843 0.530 2.043 0.396 2.397 0.201

Table 3.4.: Quantiles and the relative frequencies of H0 by using the I&T test with r2
i under H0:

µ1 = µ2 = 0, ω1 = ω2 = 0.2, α1 = α2 = 0.1, β1 = β2 = 0.7 and ε1 = ε2 = 1.

r2
i

Q0.90 H0: α = 0.10 Q0.95 H0: α = 0.05 Q0.99 H0: α = 0.01

n=250 1.298 0.136 1.419 0.074 1.646 0.012

n=500 1.310 0.155 1.450 0.082 1.698 0.018

n=750 1.325 0.162 1.467 0.086 1.715 0.019

n=1000 1.298 0.139 1.421 0.071 1.659 0.011

n=1250 1.297 0.142 1.422 0.074 1.660 0.011

n=1500 1.314 0.154 1.446 0.078 1.746 0.020

n=2000 1.284 0.133 1.407 0.066 1.687 0.013

n=3000 1.312 0.152 1.438 0.080 1.671 0.016

n=3500 1.318 0.145 1.434 0.082 1.703 0.018

Table 3.5.: Quantiles and the relative frequencies of H0 by using the K&L test with r2
i under H0:

µ1 = µ2 = 0, ω1 = ω2 = 0.2, α1 = α2 = 0.1, β1 = β2 = 0.7 and ε1 = ε2 = 1.

r2
i and |ri| are given. As we can see, the rejection rates are higher than the α level and the

quantiles are higher than the boundaries. For the squared returns Q0.90, Q0.95 and Q0.99,

we have values between [0.133,0.162], [0.071,0.086] and [0.011,0.020] which is above

the respective α level. For absolute returns we have similar values. To conclude, under

H0 with increasing autocorrelation effect the test cannot keep the given α level. A more

accurate examination will be given in the next section.

3.4. Comparison of the Tests

In this section, the influence of changing GARCH parameters will be examined. The

construction of the simulations is equal to the previous simulations. After simulating the

log returns, the Chow test, the t-test, the OLS-CUSUM test, the K&L test and the I&T test

will be applied to the data. Therefore, we compare the tests for the first and the second

moments. If a test is applied with ri, then it should check for a break in the first moment,

the mean of the log returns. If a test is applied with |ri| or r2
i , then it should check for

a break in the second moment, the variance or rather the volatility of the log returns. In
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|ri| Q0.90 H0: α = 0.10 Q0.95 H0: α = 0.05 Q0.99 H0: α = 0.01

n=250 1.315 0.144 1.439 0.080 1.650 0.012

n=500 1.333 0.159 1.470 0.087 1.722 0.020

n=750 1.345 0.161 1.484 0.096 1.717 0.020

n=1000 1.310 0.145 1.428 0.076 1.660 0.014

n=1250 1.305 0.150 1.424 0.072 1.680 0.016

n=1500 1.302 0.152 1.459 0.075 1.713 0.021

n=2000 1.295 0.135 1.406 0.065 1.662 0.014

n=3000 1.315 0.154 1.459 0.080 1.702 0.015

n=3500 1.318 0.158 1.446 0.084 1.694 0.015

Table 3.6.: Quantiles and the relative frequencies of H0 by using the K&L test with |ri| under H0:

µ1 = µ2 = 0, ω1 = ω2 = 0.2, α1 = α2 = 0.1, β1 = β2 = 0.7 and ε1 = ε2 = 1.

this section, the results are shown only graphically for an α = 0.05. All simulation results

of this section are tabled in the appendix. Additionally, the appendix contains the same

simulations with α = 0.10.

3.4.1. Influence of n

Firstly, we want to compare the influence of the sample size n under H0. Therefore, all

five tests will be accomplished for

µ1 = µ2 = 0,

ω1 = ω2 = 0.4,

α1 = α2 = 0.1,

β1 = β2 = 0.5,

ε1 = ε2 = 1

where n changes. In figure 3.3 and figure 3.4 the results of the simulations for the first

moment and the second moment are displayed. The x axis represents the number of

observations n. Since the simulation has no structural break, we do not need to set a

breaking point n1. The y axis represents the relative frequencies of H0. In figure 3.3 the

results for testing for structural breaks in the first moment are shown. This means that

only ri was applied. In figure 3.4 the results for testing for structural breaks in the second

moment are shown. Thus, r2
i and |ri| were applied. The structure of the graphics will be

the same in the remaining chapter. If we look at the results for the first moment, we can

see that for all tests the results are similar and vary around a value of 0.95. This implies

that all tests keep the α level. Only for a small size of observations, the CUSUM test has

a higher rejection rate of H0. It can be said that n has no influence on the test results of

the Chow test, the t-test and the CUSUM test in this simulation.

If we take a look at the second moments in figure 3.4, a different impression can be
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Figure 3.3.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = µ2 = 0,

ω1 = ω2 = 0.4, α1 = α2 = 0.1, β1 = β2 = 0.5, and ε1 = ε2 = 1.

gained. For all tests, the rate of H0 declines for increasing n. The results for squared

returns and absolute returns are similar. While the K&L test has a value near to 0.95, for

a high enough sample size, the t-test and the Chow test have values around 0.90. The

OLS-CUSUM test and the I&T test decline to a value of 0.80. It can be determined that

there is just a marginal influence of n for the K&L test, the Chow test and the t-test if n is

high enough. The K&L test gives the best results for this simulation.
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Figure 3.4.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = µ2 = 0,

ω1 = ω2 = 0.4, α1 = α2 = 0.1, β1 = β2 = 0.5, and ε1 = ε2 = 1.

In a second simulation under H0, the influence of n for a higher autocorrelation effect

should be checked. For this reason, β1 = β2 will be increased and the new parameters are

given by

µ1 = µ2 = 0,

ω1 = ω2 = 0.4,

α1 = α2 = 0.1,

β1 = β2 = 0.85,

ε1 = ε2 = 1.

In figure 3.5 and figure 3.6 the results of the simulation for the first and the second

moments are displayed. The results for ri are similar to the previous simulation. All

three tests vary around 0.95 and keep the α level. A completely different picture as in

the previous simulation gives the second moment. Squared returns and absolute returns

are almost identical. All tests have a decline in H0 with increasing n but between 1000 <

n < 1500 it rises again for the K&L test and the t-test. Nevertheless, no test can keep

the α level. Although the K&L test and the t-test are better than the remaining tests, the

results under H0 get worse with increasing autocorrelation effect. The effect of higher

autocorrelation will be examined in further simulations.
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Figure 3.5.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = µ2 = 0, ω1 =
ω2 = 0.4, α1 = α2 = 0.1, β1 = β2 = 0.85, and ε1 = ε2 = 1.

Figure 3.6.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = µ2 = 0,

ω1 = ω2 = 0.4, α1 = α2 = 0.1, β1 = β2 = 0.85, and ε1 = ε2 = 1.
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Figure 3.7.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0.1,

ω1 = 0.4, ω2 = 0.5, α1 = 0.1, α2 = 0.2, β1 = 0.5, β2 = 0.6, n1 = 0.5 and ε1 = ε2 = 1.

In a last simulation for changing n, we will create a structural break in n1 = 0.5 with

µ1 = 0, µ2 = 0.1,

ω1 = 0.4,ω2 = 0.5,

α1 = 0.1,α2 = 0.2,

β1 = 0.5,β2 = 0.6,

ε1 = ε2 = 1.

We have a break in both the mean and the dynamics of the volatility. Firstly, the mean will

be more closely examined in figure 3.7. Despite there is a structural break in the simula-

tion, the Chow test cannot recognize this. The frequency of H0 varies around [0.91,0.95].

Furthermore, the t-test and the OLS-CUSUM test can not reliably detect the break. Al-

though their power increases with a raising number of observations, the power gets a min-

imum for n = 2000 with a value of 0.62 and 0.69 for the t-test and the OLS-CUSUM test.

If we want to apply these tests for real data to create a trading strategy, it is necessary that

the used test recognizes the structural break as soon as possible. In figure 3.8 the power

for the second moments are displayed. As we can see, the power increases rapidly. While

the t-test and the OLS-CUSUM test are nearly equal, the Chow test delivers the worst

result. The K&L test begins from a higher value than the other tests but needs longer for
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Figure 3.8.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = 0,

µ2 = 0.1, ω1 = 0.4, ω2 = 0.5, α1 = 0.1, α2 = 0.2, β1 = 0.5, β2 = 0.6, n1 = 0.5 and ε1 = ε2 = 1.

decreasing to zero. We can summarize for the three simulations that with increasing n the

power of the tests gets better for the second moments. The specificity, the test decision

keeps H0 if H0 is true, gets worse with increasing n and increasing autocorrelation effect.

The specificity for the first moment neither depend on the autocorrelation effect nor on n

and the power for the first moments gets better with increasing n.

3.4.2. Structural Breaks in µ

Next, we will examine the influence of a changing µ on the test decisions. µ represents

the mean of the returns in the GARCH model in formula 3.1.1. To this end, a simulation

with changing µ will be carried out with following parameters:

µ1 = 0,

ω1 = ω2 = 0.4,

α1 = α2 = 0.1,

β1 = β2 = 0.5,

n = 1000, n1 = 0.5,

ε1 = ε2 = 1.
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Figure 3.9.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, ω1 = 0.4,

ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

In figure 3.9 the results are given for the structural break tests in µ . If µ2 = 0, the test

is accomplished under H0 where the specificity of all three tests is nearly 0.95 and keeps

the α level. Under H1, the rejection rate of H0 proceeds symmetrical. The further the

distance between µ1 and µ2, the better the power of the different tests. The best results

are delivered by the t-test, while the Chow test has the worst results. The changes in µ

also have an impact on the power of testing for structural breaks in the volatility which

is displayed in 3.10 and proceeds similar for squared returns and absolute returns. Under

H0, the K&L test has the best result and keeps the α level, while the other tests reject H0

too often. The bigger the distance between µ1 and µ2, the higher the rejection rate of H0.

Nevertheless, an influence on the K&L test can only be observed for a distance greater

0.2. Thus, a structural break in µ has an impact on the test results for the first moment as

well as on the test results of the second moment.

3.4.3. Structural Breaks in σ

After having checked the influence of n and µ on the test results, we will look at the

impact of changing volatility dynamics on the rejection rates of H0. Remember that the

formulas of the GARCH model are given in 3.1.3, 3.1.4 and 3.1.5 for the model preceding
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Figure 3.10.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

the structural break, and are given in 3.1.6, 3.1.7 and 3.1.8 for the model following the

structural break. Thus, the dynamics of the volatility can change in four different ways.

First of all, we want to examine the impact of a break in ω1 6= ω2. The second and third

option for a changing volatility is a break in α1 6= α2 respectively β1 6= β2. The last

possibility is a break in the random error ε1 6= ε2.

For a start, consider the first option where a simulation will be accomplished with

µ1 = µ2 = 0,

ω1 = 0.4,

α1 = α2 = 0.1,

β1 = β2 = 0.5,

n = 1000, n1 = 0.5,

ε1 = ε2 = 1

and with changing ω2. We can find the results in figure 3.11 for the first moment and in

figure 3.12 for the second moment. A changed ω2 has no impact on the rejection rate of

all three tests by testing for structural breaks in µ . They keep the α level irrespectively

of ω2. In the second moment we have H0 if ω2 = 0.4. At this point, the K&L test has the

best specificity with a given α = 0.05, followed by the t-test. With increasing distance



3.4. COMPARISON OF THE TESTS 24

Figure 3.11.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0,

ω1 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

Figure 3.12.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = 0,

µ2 = 0, ω1 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.
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between ω1 and ω2 the power of all tests becomes better but the Chow test has the worst

results. Moreover, it is interesting that the power does not proceed symmetrically. With

decreasing ω2, the rejection rate decreases steeper as with increasing ω2. All tests can

detect a structural break with falling ω faster than a break with rising ω . Two tests can

be highlighted. Although the K&L test has a worse power than the Chow test, the t-test

and the OLS-CUSUM test, it has a better specificity. The second test is the t-test whose

specificity is better and whose power is marginal better than for the Chow test and the

OLS-CUSUM test.

Two further simulations shall now check the influence of a break in α1 6= α2. To this end,

the first simulation with

µ1 = µ2 = 0,

ω1 = ω2 = 0.4,

α1 = 0.1,

β1 = β2 = 0.5,

n = 1000, n1 = 0.5,

ε1 = ε2 = 1

and with changing α2 will be accomplished. We can find the results in figure 3.13 for the

first moment and in figure 3.14 for the second moment. As in the previous simulation, we

can see that a change in the volatility, in this case by changing α2, has no impact on the

test results for the first moment. The Chow test, the t-test and the OLS-CUSUM test are

keeping the α level. The rejection rate of H0 varies around a value of 0.05 for all three

tests.

For the second moment we can recognize an impact on the test results. Under H0, α2 =

0.1, again the K&L test delivers the best outcome, followed by the t-test. The Chow test

has the worst outcome under H1 and the power of the t-test, the OLS-CUSUM test and

the I&T test proceeding similarly. An interesting fact is the comparison of the K&L test

for squared returns and absolute returns. While the rate of H0 for absolute returns falls to

zero if α2 = 0.4, we can see an increase in the rate of H0 for squared returns.



3.4. COMPARISON OF THE TESTS 26

Figure 3.13.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

Figure 3.14.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = 0,

µ2 = 0, ω1 = 0.4, ω2 = 0.4, α1 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.
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Figure 3.15.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, β1 = 0.8, β2 = 0.8, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

The second simulation for changing α2 shall examine whether the results change with a

higher autocorrelation effect. To this end, the base level of β1 will be increased and the

simulation will be accomplished with

µ1 = µ2 = 0,

ω1 = ω2 = 0.4,

α1 = 0.1,

β1 = β2 = 0.8,

n = 1000, n1 = 0.5,

ε1 = ε2 = 1.

For the first moment, pictured in figure 3.15, we have similar results as in the previous

simulation. A changing α2 has no impact on the rejection rate of H0 and the α level will

be kept. Only for α2 = 0.18, some differences between the tests are found. While the

t-test keeps the same level, the OLS-CUSUM test falls and the Chow test rises. Next,

let us take a look at the second moment in figure 3.16. The only parameter we changed

compared to the previous simulation is the base level of β1 = β2. This leads to a higher

autocorrelation effect. If we compare the two simulations in figure 3.14 and in figure 3.16,

many differences can be seen. In the simulation results it can be detected that under H0,
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Figure 3.16.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = 0,

µ2 = 0, ω1 = 0.4, ω2 = 0.4, α1 = 0.1, β1 = 0.8, β2 = 0.8, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

α2 = 0.1, the specificity gets worse compared to the previous simulation. In contrast to

that, the power gets better and with an α2 = 0.16 the t-test, the OLS-CUSUM test and the

Chow test reject the null hypothesis by nearly 100 percent. The best result for this sim-

ulation delivers the t-test and the K&L test whose specificity is higher and whose power

falls steeper as for the other tests.

Another structural break in the dynamics of the volatility can be created through β1 6= β2.

Firstly, we want to check the influence of such a break with a low base level for β1. To

this end, we adjust our simulation parameters to

µ1 = µ2 = 0,

ω1 = ω2 = 0.4,

α1 = α2 = 0.1,

β1 = 0.5,

n = 1000, n1 = 0.5,

ε1 = ε2 = 1

where β2 changes. The results are very similar to the previous simulations with a change

in α2. In figure 3.17 the outcome for the first moment is pictured. We can not discover
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Figure 3.17.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

Figure 3.18.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = 0,

µ2 = 0, ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.



3.4. COMPARISON OF THE TESTS 30

any effect for the test results with a break in β1 6= β2. On the other hand, an influence on

the test decision of the second moment, given in figure 3.18, can be detected. The K&L

test has again the best specificity, followed by the t-test. The Chow test has the worst

results for the power, as in previous simulations. The t-test is marginally better than the

OLS-CUSUM test and the I&T test.

A second simulation with breaks in β1 6= β2 should examine the effect of autocorrelation.

To this end, the base level of β1 will be increased and a new simulation with

µ1 = µ2 = 0,

ω1 = ω2 = 0.4,

α1 = α2 = 0.1,

β1 = 0.8,

n = 1000, n1 = 0.5,

ε1 = ε2 = 1

and changing β2 will be accomplished. In figure 3.19 the results for the first moment

are displayed. Here, no impact on the test results and the results resemble the previous

simulations can be found. For the second moment, pictured in figure 3.20, it can be seen

the same effect as we did before for a break in α1 6= α2. With increasing autocorrelation

effect, the specificity of all tests becomes worse, while the power gets better. Again, the

Chow test has the worst results, whereas the t-test and the K&L test have steeper fall offs

and can be classified as better tests.

The last option for structural breaks in the volatility is ε1 6= ε2. This means a change in the

variance of the random error. In a last simulation with structural breaks in the volatility,

we use

µ1 = µ2 = 0,

ω1 = ω2 = 0.4,

α1 = α2 = 0.1,

β1 = β2 = 0.5,

n = 1000, n1 = 0.5,

ε1 = 1

where ε2 changes. The results for the first moment, displayed in figure 3.21, show the

same influence on the test decision as in the previous simulation. A break in the dynamics

of the volatility has no impact on the test decision for the first moment. In figure 3.22 the

outcome of the tests for the second moment is pictured. As we can see, the specificity for
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Figure 3.19.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.8, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

Figure 3.20.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = 0,

µ2 = 0, ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.8, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.
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Figure 3.21.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = 1.

the K&L test is once again better than for the remaining tests and keeps the α level. The

Chow test has the worst result for detecting structural breaks in this simulation. The t-test

is slightly better than the OLS-CUSUM test and the I&T test. The results are similar to

previous simulations.

To summarize, it can be concluded that the K&L test has the best specificity regarding the

identification of structural breaks in the dynamics of the volatility. It is followed by the

t-test, which delivers slightly better results than the OLS-CUSUM test and the I&T test.

The Chow test scores worst. Furthermore, it does not matter whether squared returns or

absolute returns are used. Additionally, a negative impact of autocorrelation effects on

the specificity of the tests was detected. For the first moment all tests have similar results

and keep the α level.
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Figure 3.22.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = 0,

µ2 = 0, ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and

ε1 = 1.

3.4.4. Changing Points of Structural Breaks

A last simulation checks if the breaking point has an influence on the test decision. To

this end, we make a new simulation under H1 with

µ1 = 0, µ2 = 0.1,

ω1 = 0.4, ω2 = 0.5,

α1 = 0.1, α2 = 0.2,

β1 = 0.5, β2 = 0.6,

n = 500,

ε1 = ε2 = 1

where n1 changes. Firstly, the first moment in figure 3.23 is considered. As we can see,

the power of the t-test is better than the power of the OLS-CUSUM test and the power

of the Chow test. Nevertheless, none of the tests can really reliably detect the structural

break, although the rejection rate of the null hypothesis gets higher when n1 converges

against 0.5. We can say that the power of all three tests becomes better if the breakpoint

is in the middle of the data. In the second moment, displayed in 3.24, especially the K&L
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Figure 3.23.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0.1,

ω1 = 0.4, ω2 = 0.5, α1 = 0.1, α2 = 0.2, β1 = 0.5, β2 = 0.6, n = 500 and ε1 = ε2 = 1.

test has problems if the breakpoint is not in the middle of the data. The t-test has the best

results and is able to detect the breaks nearly irrespectively of the position of the breaking

point.
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Figure 3.24.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = 0,

µ2 = 0.1, ω1 = 0.4, ω2 = 0.5, α1 = 0.1, α2 = 0.2, β1 = 0.5, β2 = 0.6, n = 500 and ε1 = ε2 = 1.



4. Data

After having tested the influence of the several tests, those tests are the basis for a trading

strategy. To check the reliability of these trading strategies, they shall be applied to some

real financial data. Therefore, all stocks of the DAX and the Dow Jones will be analyzed.

Figure 4.1 depicts the prices and the percentage log returns of the DAX from 1 January,

2000, until 30 September, 2016. As one can see, there are trends in the prices. From

year 2000 until 2003 there was a negative trend, followed by a positive trend until 2008

and again a negative trend until 2009. From this point on, the prices can be categorized

in a positive trend with a short crash in year 2012 and 2015. The idea for the followed

trading strategies is to detect these trends as early as possible and to gain by buying or

selling the stock when the used test detects a breakpoint in the returns. In figure 4.2 the

prices and percentage log returns for the Dow Jones are portrayed. By looking at the

prices, one can see that the prices and the returns of the Dow Jones are very similar to the

prices and the returns of the DAX. It can be recognized that both indices’s have volatility

clusters. By comparing them to the prices, it can be observed that especially in phases

with high volatility there is a negative trend in the prices. This leads to a second approach

for creating a trading strategy. It shall be found a test which can detect a breakpoint in the

dynamics of the volatility, and if that happens, this leads to a trading signal for buying or

selling the underlying stock. Because a small number of shares is too few for checking the

utility of a trading strategy, those trading strategies will be applied to all of the actually

included stocks of the both indices’s. Thereby, the DAX and the Dow Jones have 30

included stocks each. Not every stock has the same timespan as the DAX or the Dow

Jones because not every company had already existed on 1 January, 2000.

36
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Figure 4.1.: Prices and log returns in % of the DAX from 1 January, 2000 until 30 September,

2016.
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Figure 4.2.: Prices and log returns in % of the Dow Jones from 1 January, 2000 until 30 Septem-

ber, 2016.



5. Trading Strategies

In this chapter, we want to create a trading strategy and test it for all stocks of the DAX

and the Dow Jones. After the comparison of the introduced structural break tests, we will

apply the t-test and the OLS-CUSUM test for detecting breaks in µ and the K&L test

and the t-test for detecting breaks in σ . These tests had the best results in the previous

simulations. The way we create a trading strategy will be simplified and is always the

same: Firstly, the length of the tested data and the α will be determined. For the first

moment and day i the tested data are given by

r(i) = r
(i)
1 ,r

(i)
2 , ...,r

(i)
n = ri−n+1,ri−n+2, ...,ri,

and for the second moment and day i by

r(i) = r
(i)
1 ,r

(i)
2 , ...,r

(i)
n = r2

i−n+1,r
2
i−n+2, ...,r

2
i .

Thus, the tests will be accomplished via moving window. If the test detects a structural

break in the data, a signal for buying or selling the stock will be created. Whether we

buy or sell will be described later. There are two options for our investment status: fully

invested or not invested at all. If we are fully invested, we can just sell the stock, and if a

signal for buying the stock will be created, nothing will happen. If we are not invested at

all, we can just buy the stock, and if a signal for selling the stock will be created, nothing

will happen. For better comparison of the various stocks, only the relative returns will be

calculated and trading costs are not taken into account. Because the t-test presumes that

the point of break is known, we will set n1 = 0.5 and assume a break in n1n.

Thus, with our formulas from the t-test, 2.2.1 and 2.2.2, we get for day i

X1, ...,Xn/2 = r
(i)
1 , ...,r

(i)
n/2

,

Y1, ...,Yn/2 = r
(i)
n/2+1

, ...,r
(i)
n .
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Figure 5.1.: Prices of the DAX and the Dow Jones from 1 January, 2000 until 30 September, 2016.

Additionally, the red points signal where the t-test detects a structural break in ri with α = 0.01

and n = 30. After the test has detected a structural break, there cannot be another break for 15

days.
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The OLS-CUSUM test and the K&L test do not need this assumption and it does not

matter where the structural break happens. For the OLS-CUSUM test, with formula 2.3.1,

and day i, we get

X1,X2, ...,Xn = 1,1, ...,1,

Y1,Y2, ...,Yn = r(i).

For the K&L test, with formula 2.4.1, and day i, we get

X1,X2, ...,Xn = r(i).

Due to the fact that the test result of day i depends on the test result of day (i−1), there

will be no trading for 0.5n days after a trade has been made. In figure 5.1 the structural

breaks for the DAX and the Dow Jones are given, detected by the t-test. If the test signals

a structural break, we have two different strategies. We call the first strategy momentum

strategy and the second one contrarian strategy. Firstly, we calculate

r̄
(i)
1 =

1

n/2

n/2

∑
t=1

r
(i)
t ,

r̄
(i)
2 =

1

n/2

n

∑
t=n/2+1

r
(i)
t .

By using the momentum strategy, we buy the stock if r̄
(i)
1 < r̄

(i)
2 and sell the stock if

r̄
(i)
1 > r̄

(i)
2 . By using the contrarian strategy, we buy the stock if r̄

(i)
1 > r̄

(i)
2 and sell the

stock if r̄
(i)
1 < r̄

(i)
2 . The idea of a momentum strategy is to recognize a positive trend

as early as possible and to participate in the positive trend by buying the stock as long

as possible. The approach of the contrarian strategy is, as the name says, contrary. We

assume that the market overreacts and a turnaround in the trend will happen. By testing

for breaks in the second moment, we assume an impact of the volatility on the prices. If

we use the momentum strategy, we suppose that a higher volatility leads to a positive trend

in the prices. If we use the contrarian strategy, we suppose that a higher volatility leads to

a negative trend in the prices. As we could see in figure 4.1 and figure 4.2, the contrarian

strategy is more realistic for the second moment. It would be also possible to create a

trading strategy by trading volatility via options. While all tests are constructed for a two-

sided test, both trading strategies adjust the trading signal to an one-sided application. For

checking if the trading strategy works, the strategy will be compared to a buy-and-hold

strategy. This means that we calculate the returns from day 1 until the last day of the

observed data.
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ri
t-test CUSUM

rmom rmom − rb&h trades rmom > rb&h rmom rmom − rb&h trades rmom > rb&h

α = 0.02 127.43 -123.67 13.67 0.47 151.72 -99.37 2.43 0.43

α = 0.04 120.28 -130.81 30.33 0.50 149.54 -101.56 7.03 0.47

α = 0.06 64.40 -186.70 45.90 0.30 130.37 -120.73 13.47 0.40

α = 0.08 65.40 -185.69 59.13 0.37 117.95 -133.15 19.90 0.47

α = 0.1 86.93 -164.16 70.27 0.33 53.75 -197.34 26.77 0.30

α = 0.12 77.61 -173.49 81.70 0.30 75.24 -175.85 33.00 0.33

α = 0.14 126.44 -124.65 91.60 0.40 100.50 -150.60 39.07 0.33

α = 0.16 154.72 -96.38 100.33 0.37 139.04 -112.05 45.83 0.47

α = 0.18 171.92 -79.17 108.10 0.33 122.78 -128.31 52.87 0.40

α = 0.2 143.12 -107.98 114.67 0.40 156.43 -94.66 59.60 0.40

Table 5.1.: Momentum Trading Strategy with ri for the DAX with n = 30: average discrete returns

of a momentum trading strategy in %, the difference of a momentum trading strategy to a buy-and-

hold strategy in % and the average number of trades for a momentum strategy. Additionally, the

average number of stocks where the momentum strategy is better than the buy-and-hold strategy

is depicted. The applied tests are the t-test and the CUSUM test for the DAX with n = 30.

5.1. Structural Breaks in µ

Our first trading strategies are based on the first moment. Therefore, the t-test and the

OLS-CUSUM test will be applied to the data of the DAX and the Dow Jones. In table 5.1

a momentum strategy for the DAX with changing α is tabled. As we can see, for every

α the buy-and-hold strategy has higher returns than the momentum strategy. Interesting

is the fact that the t-test signals more trades than the OLS-CUSUM test. This is because

the power of the t-test is better than the power of the OLS-CUSUM test, as analyzed in

figure 3.9. The t-test has the best results for α = 0.18, while the OLS-CUSUM test has

the best result for α = 0.2. To verify these results, the same strategy for the stocks of the

Dow Jones should be checked, tabled in 5.2. We can see quickly that the buy-and-hold

strategy is better than the momentum strategy for every α and given n = 30. Next, we

use the approach of a contrarian trading strategy. In table 5.3 and table 5.4 the results

for the DAX and the Dow Jones are given with n = 30. The results are similar to the

momentum trading strategy. For every α our returns are higher by using a buy-and-hold

strategy than by using a contrarian strategy. The approach for using n = 30 was to detect

a break as soon as possible. But as we could see in the simulation studies, breaks in µ

will be detected more likely if the number of tested returns becomes higher. To this end,

we set α = 0.1 and applicate both trading strategies for various n. In table 5.5, 5.6, 5.7

and 5.8 the results are represented. Nevertheless, no trading strategy by using structural

break tests for detecting breaks in the first moment can create higher returns than the

buy-and-hold strategy.
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ri
t-test CUSUM

rmom rmom − rb&h trades rmom > rb&h rmom rmom − rb&h trades rmom > rb&h

α = 0.02 180.20 -220.04 12.43 0.30 105.57 -294.67 1.83 0.30

α = 0.04 145.67 -254.56 27.97 0.10 166.40 -233.83 5.47 0.23

α = 0.06 182.09 -218.15 42.20 0.27 203.86 -196.38 11.67 0.23

α = 0.08 101.46 -298.78 57.30 0.17 111.52 -288.71 17.27 0.20

α = 0.1 96.59 -303.65 69.07 0.10 111.95 -288.29 23.57 0.07

α = 0.12 82.03 -318.21 81.90 0.07 107.75 -292.49 29.60 0.13

α = 0.14 86.21 -314.02 91.30 0.10 109.15 -291.09 36.83 0.13

α = 0.16 130.49 -269.75 100.17 0.20 101.46 -298.78 44.43 0.20

α = 0.18 100.13 -300.11 109.53 0.10 102.51 -297.72 50.80 0.13

α = 0.2 101.31 -298.93 116.27 0.17 116.64 -283.59 55.70 0.13

Table 5.2.: Momentum Trading Strategy with ri for the Dow Jones with n = 30: average discrete

returns of a momentum trading strategy in %, the difference of a momentum trading strategy

to a buy-and-hold strategy in % and the average number of trades for a momentum strategy.

Additionally, the average number of stocks where the momentum strategy is better than the buy-

and-hold strategy is depicted. The applied tests are the t-test and the CUSUM test for the Dow

Jones with n = 30.

ri
t-test CUSUM

rcon rcon − rb&h trades rcon > rb&h rcon rcon − rb&h trades rcon > rb&h

α = 0.02 74.56 -176.53 13.47 0.33 151.26 -99.83 2.47 0.43

α = 0.04 107.42 -143.67 30.33 0.40 101.34 -149.76 7.03 0.37

α = 0.06 164.15 -86.95 45.97 0.30 100.94 -150.16 13.60 0.37

α = 0.08 155.98 -95.12 58.93 0.43 59.13 -191.96 20.10 0.20

α = 0.1 119.25 -131.85 70.40 0.37 106.54 -144.55 26.57 0.30

α = 0.12 116.10 -134.99 81.70 0.33 117.61 -133.49 33.00 0.27

α = 0.14 77.86 -173.23 91.40 0.37 81.26 -169.84 39.20 0.27

α = 0.16 82.69 -168.40 100.07 0.23 85.49 -165.61 45.83 0.23

α = 0.18 112.88 -138.22 107.77 0.33 119.01 -132.09 52.73 0.27

α = 0.2 115.27 -135.83 114.47 0.30 71.72 -179.38 59.27 0.20

Table 5.3.: Contrarian Trading Strategy with ri for the DAX with n = 30: average discrete returns

of a contrarian trading strategy in %, the difference of a contrarian trading strategy to a buy-and-

hold strategy in % and the average number of trades for a contrarian strategy. Additionally, the

average number of stocks where the contrarian strategy is better than the buy-and-hold strategy is

depicted. The applied tests are the t-test and the CUSUM test for the DAX with n = 30.
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ri
t-test CUSUM

rcon rcon − rb&h trades rcon > rb&h rcon rcon − rb&h trades rcon > rb&h

α = 0.02 111.97 -288.27 12.17 0.17 98.42 -301.82 1.87 0.20

α = 0.04 145.46 -254.78 28.03 0.33 220.32 -179.92 5.37 0.20

α = 0.06 109.94 -290.30 42.40 0.13 133.54 -266.70 11.73 0.37

α = 0.08 155.26 -244.98 57.23 0.17 213.37 -186.86 17.33 0.20

α = 0.1 159.32 -240.92 69.13 0.23 148.33 -251.91 23.77 0.17

α = 0.12 181.10 -219.14 81.90 0.20 169.68 -230.55 29.93 0.13

α = 0.14 166.41 -233.83 91.50 0.20 158.58 -241.65 37.10 0.23

α = 0.16 143.95 -256.29 100.30 0.17 167.67 -232.57 44.43 0.20

α = 0.18 177.43 -222.81 109.67 0.30 164.18 -236.05 50.87 0.20

α = 0.2 178.41 -221.82 116.40 0.20 124.62 -275.62 55.63 0.23

Table 5.4.: Contrarian Trading Strategy with ri for the Dow Jones with n = 30: average discrete

returns of a contrarian trading strategy in %, the difference of a contrarian trading strategy to a

buy-and-hold strategy in % and the average number of trades for a contrarian strategy. Addition-

ally, the average number of stocks where the contrarian strategy is better than the buy-and-hold

strategy is depicted. The applied tests are the t-test and the CUSUM test for the Dow Jones with

n = 30.

ri
t-test CUSUM

rmom rmom − rb&h trades rmom > rb&h rmom rmom − rb&h trades rmom > rb&h

n=20 83.70 -167.40 94.83 0.37 156.55 -94.54 26.57 0.40

n=30 86.93 -164.16 70.27 0.33 53.75 -197.34 26.77 0.30

n=50 123.55 -127.55 48.00 0.37 121.36 -129.73 20.60 0.37

n=100 123.73 -127.36 24.80 0.37 183.65 -67.45 11.60 0.40

n=300 242.16 -8.94 7.83 0.53 126.11 -124.98 4.60 0.37

Table 5.5.: Momentum Trading Strategy with ri for the DAX with α = 0.1: average discrete returns

of a momentum trading strategy in %, the difference of a momentum trading strategy to a buy-and-

hold strategy in % and the average number of trades for a momentum strategy. Additionally, the

average number of stocks where the momentum strategy is better than the buy-and-hold strategy

is depicted. The applied tests are the t-test and the CUSUM test for the DAX with α = 0.1.

ri
t-test CUSUM

rmom rmom − rb&h trades rmom > rb&h rmom rmom − rb&h trades rmom > rb&h

n=20 115.14 -285.09 91.57 0.13 117.09 -283.15 22.17 0.10

n=30 96.59 -303.65 69.07 0.10 111.95 -288.29 23.57 0.07

n=50 158.21 -242.03 46.27 0.20 136.65 -263.59 17.80 0.23

n=100 327.81 -72.42 23.07 0.17 313.97 -86.27 10.67 0.10

n=300 210.26 -189.98 7.33 0.20 183.04 -217.20 3.50 0.17

Table 5.6.: Momentum Trading Strategy with ri for the Dow Jones with α = 0.1: average discrete

returns of a momentum trading strategy in %, the difference of a momentum trading strategy

to a buy-and-hold strategy in % and the average number of trades for a momentum strategy.

Additionally, the average number of stocks where the momentum strategy is better than the buy-

and-hold strategy is depicted. The applied tests are the t-test and the CUSUM test for the Dow

Jones with α = 0.1.
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ri
t-test CUSUM

rcon rcon − rb&h trades rcon > rb&h rcon rcon − rb&h trades rcon > rb&h

n=20 105.59 -145.51 95.03 0.33 81.33 -169.77 26.63 0.30

n=30 119.25 -131.85 70.40 0.37 106.54 -144.55 26.57 0.30

n=50 111.76 -139.33 47.93 0.27 96.30 -154.80 20.73 0.33

n=100 122.28 -128.82 24.80 0.40 99.70 -151.40 11.80 0.40

n=300 66.44 -184.65 7.87 0.40 157.83 -93.26 4.57 0.50

Table 5.7.: Contrarian Trading Strategy with ri for the DAX with α = 0.1: average discrete returns

of a contrarian trading strategy in %, the difference of a contrarian trading strategy to a buy-and-

hold strategy in % and the average number of trades for a contrarian strategy. Additionally, the

average number of stocks where the contrarian strategy is better than the buy-and-hold strategy is

depicted. The applied tests are the t-test and the CUSUM test for the DAX with α = 0.1.

ri
t-test CUSUM

rcon rcon − rb&h trades rcon > rb&h rcon rcon − rb&h trades rcon > rb&h

n=20 141.41 -258.83 91.70 0.27 119.71 -280.53 22.30 0.13

n=30 159.32 -240.92 69.13 0.23 148.33 -251.91 23.77 0.17

n=50 101.51 -298.72 45.73 0.10 128.76 -271.47 17.73 0.30

n=100 135.29 -264.95 23.07 0.37 168.67 -231.56 10.60 0.43

n=300 108.17 -292.07 7.27 0.30 123.10 -277.13 3.53 0.23

Table 5.8.: Contrarian Trading Strategy with ri for the Dow Jones with α = 0.1: average discrete

returns of a contrarian trading strategy in %, the difference of a contrarian trading strategy to a

buy-and-hold strategy in % and the average number of trades for a contrarian strategy. Addition-

ally, the average number of stocks where the contrarian strategy is better than the buy-and-hold

strategy is depicted. The applied tests are the t-test and the CUSUM test for the Dow Jones with

α = 0.1.
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r2
i

K&L t-test

rmom rmom − rb&h trades rmom > rb&h rmom rmom − rb&h trades rmom > rb&h

α = 0.02 3.64 -247.45 1.00 0.27 61.93 -189.16 15.27 0.30

α = 0.04 8.27 -242.83 1.03 0.27 127.96 -123.14 31.57 0.23

α = 0.06 50.73 -200.37 2.43 0.33 128.12 -122.98 48.90 0.40

α = 0.08 18.19 -232.90 8.93 0.27 144.88 -106.22 62.80 0.40

α = 0.1 56.26 -194.83 18.00 0.30 165.58 -85.51 75.90 0.40

α = 0.12 159.43 -91.67 26.77 0.40 180.65 -70.45 87.77 0.40

α = 0.14 179.68 -71.42 36.33 0.33 114.61 -136.48 96.90 0.37

α = 0.16 146.22 -104.87 44.50 0.40 106.49 -144.60 104.83 0.30

α = 0.18 138.77 -112.32 53.33 0.37 106.52 -144.58 111.70 0.37

α = 0.2 113.66 -137.43 62.87 0.30 119.25 -131.84 118.30 0.27

Table 5.9.: Momentum Trading Strategy with r2
i for the DAX with n = 30: average discrete returns

of a momentum trading strategy in %, the difference of a momentum trading strategy to a buy-and-

hold strategy in % and the average number of trades for a momentum strategy. Additionally, the

average number of stocks where the momentum strategy is better than the buy-and-hold strategy

is depicted. The applied tests are the K&L test and the t-test for the DAX with n = 30.

5.2. Structural Breaks in σ

The second approach is to detect structural breaks in the volatility. For detecting structural

breaks in the volatility, the K&L test and the t-test with squared returns will be used.

Therefore, we will test both trading strategies for various α and for the DAX and the Dow

Jones. In table 5.9, 5.10, 5.11 and 5.12 the results are given. As we can see, neither the

trading strategy with the K&L test nor the trading strategy with the t-test can beat the

buy-and-hold strategy. This is true for the momentum trading strategy as well as for the

contrarian strategy. Only the contrarian trading strategy for the Dow Jones with the K&L

test and with α = 0.14 or α = 0.18 can beat the buy-and hold-strategy. But this seems

more likely to be a coincidence as the same strategy for the DAX has worse results. Next,

we want to verify these results by varying n. In table 5.13, 5.14, 5.15 and 5.16 the results

for various n and α = 0.1 are given. The outcome is the same as in the previous strategies.

No strategy can beat the buy-and-hold strategy except for the momentum strategy for

the DAX with n = 20. Since the same strategy does not work for the Dow Jones, it is

obviously a coincidence. Summarized we can say that no accomplished trading strategy

for various n or α can beat the buy-and-hold strategy.
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r2
i

K&L t-test

rmom rmom − rb&h trades rmom > rb&h rmom rmom − rb&h trades rmom > rb&h

α = 0.02 0.00 -400.24 1.00 0.03 90.42 -309.82 15.13 0.10

α = 0.04 32.06 -368.18 1.03 0.07 166.64 -233.59 32.37 0.10

α = 0.06 214.72 -185.52 2.87 0.13 109.23 -291.00 47.77 0.17

α = 0.08 80.55 -319.68 8.37 0.17 119.70 -280.54 62.17 0.27

α = 0.1 108.39 -291.85 15.87 0.13 128.22 -272.02 75.30 0.30

α = 0.12 100.15 -300.08 25.17 0.17 132.62 -267.62 87.10 0.27

α = 0.14 89.52 -310.72 33.87 0.10 150.95 -249.29 96.60 0.33

α = 0.16 83.46 -316.77 44.37 0.13 140.19 -260.05 105.33 0.27

α = 0.18 89.84 -310.40 52.70 0.13 132.24 -268.00 112.20 0.30

α = 0.2 106.12 -294.12 62.10 0.17 124.30 -275.93 119.40 0.33

Table 5.10.: Momentum Trading Strategy with r2
i for the Dow Jones with n = 30: average discrete

returns of a momentum trading strategy in %, the difference of a momentum trading strategy

to a buy-and-hold strategy in % and the average number of trades for a momentum strategy.

Additionally, the average number of stocks where the momentum strategy is better than the buy-

and-hold strategy is depicted. The applied tests are the K&L test and the t-test for the Dow Jones

with n = 30.

r2
i

K&L t-test

rcon rcon − rb&h trades rcon > rb&h rcon rcon − rb&h trades rcon > rb&h

α = 0.02 0.00 -251.10 1.00 0.27 111.21 -139.88 14.73 0.43

α = 0.04 45.02 -206.08 1.00 0.30 112.49 -138.60 31.63 0.40

α = 0.06 162.05 -89.05 2.20 0.43 74.46 -176.63 49.23 0.20

α = 0.08 225.82 -25.28 8.67 0.57 98.89 -152.21 63.00 0.27

α = 0.1 149.30 -101.80 17.73 0.43 84.30 -166.80 75.97 0.27

α = 0.12 126.43 -124.67 26.37 0.37 87.99 -163.10 87.70 0.33

α = 0.14 136.24 -114.85 35.87 0.27 138.12 -112.98 96.83 0.27

α = 0.16 78.89 -172.21 44.23 0.17 171.21 -79.89 104.77 0.30

α = 0.18 63.21 -187.88 53.00 0.17 213.09 -38.01 111.57 0.40

α = 0.2 81.58 -169.52 62.67 0.23 187.28 -63.82 118.23 0.40

Table 5.11.: Contrarian Trading Strategy with r2
i for the DAX with n = 30: average discrete re-

turns of a contrarian trading strategy in %, the difference of a contrarian trading strategy to a

buy-and-hold strategy in % and the average number of trades for a contrarian strategy. Addition-

ally, the average number of stocks where the contrarian strategy is better than the buy-and-hold

strategy is depicted. The applied tests are the K&L test and the t-test for the DAX with n = 30 .
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r2
i

K&L t-test

rcon rcon − rb&h trades rcon > rb&h rcon rcon − rb&h trades rcon > rb&h

α = 0.02 0.00 -400.24 1.00 0.03 189.95 -210.29 15.20 0.13

α = 0.04 26.58 -373.65 1.10 0.07 156.71 -243.53 32.63 0.17

α = 0.06 118.56 -281.67 2.67 0.23 140.74 -259.50 47.97 0.10

α = 0.08 136.06 -264.18 8.37 0.17 182.17 -218.06 62.03 0.13

α = 0.1 286.56 -113.68 15.73 0.23 204.79 -195.45 75.17 0.13

α = 0.12 179.57 -220.67 25.03 0.13 240.87 -159.36 86.97 0.13

α = 0.14 445.21 44.97 33.93 0.17 200.42 -199.81 96.53 0.13

α = 0.16 223.16 -177.07 44.37 0.20 151.91 -248.32 105.20 0.13

α = 0.18 513.56 113.32 52.50 0.23 200.48 -199.76 111.93 0.13

α = 0.2 308.64 -91.59 61.97 0.17 204.32 -195.91 119.20 0.13

Table 5.12.: Contrarian Trading Strategy with r2
i for the Dow Jones with n = 30: average discrete

returns of a contrarian trading strategy in %, the difference of a contrarian trading strategy to a

buy-and-hold strategy in % and the average number of trades for a contrarian strategy. Addition-

ally, the average number of stocks where the contrarian strategy is better than the buy-and-hold

strategy is depicted. The applied tests are the K&L test and the t-test for the Dow Jones with

n = 30 .

r2
i

K&L t-test

rmom rmom − rb&h trades rmom > rb&h rmom rmom − rb&h trades rmom > rb&h

n=20 347.21 96.12 5.40 0.43 99.38 -151.72 86.60 0.37

n=30 56.26 -194.83 18.00 0.30 165.58 -85.51 75.90 0.40

n=50 54.69 -196.40 21.27 0.37 81.33 -169.77 53.47 0.30

n=100 55.02 -196.08 17.97 0.20 55.24 -195.86 30.70 0.20

n=300 25.41 -225.69 8.47 0.27 21.31 -229.79 10.70 0.20

Table 5.13.: Momentum Trading Strategy with r2
i for the DAX with α = 0.1: average discrete

returns of a momentum trading strategy in %, the difference of a momentum trading strategy

to a buy-and-hold strategy in % and the average number of trades for a momentum strategy.

Additionally, the average number of stocks where the momentum strategy is better than the buy-

and-hold strategy is depicted. The applied tests are the K&L test and the t-test for the DAX with

α = 0.1.

r2
i

K&L t-test

rmom rmom − rb&h trades rmom > rb&h rmom rmom − rb&h trades rmom > rb&h

n=20 98.03 -302.20 5.50 0.07 130.02 -270.22 82.83 0.23

n=30 108.39 -291.85 15.87 0.13 128.22 -272.02 75.30 0.30

n=50 84.56 -315.68 22.13 0.23 162.11 -238.13 55.63 0.33

n=100 58.46 -341.78 16.20 0.10 66.64 -333.60 29.43 0.17

n=300 37.80 -362.44 9.13 0.10 89.69 -310.54 10.80 0.10

Table 5.14.: Momentum Trading Strategy with r2
i for the Dow Jones with α = 0.1: average discrete

returns of a momentum trading strategy in %, the difference of a momentum trading strategy

to a buy-and-hold strategy in % and the average number of trades for a momentum strategy.

Additionally, the average number of stocks where the momentum strategy is better than the buy-

and-hold strategy is depicted. The applied tests are the K&L test and the t-test for the Dow Jones

with α = 0.1.
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r2
i

K&L t-test

rcon rcon − rb&h trades rcon > rb&h rcon rcon − rb&h trades rcon > rb&h

n=20 99.78 -151.31 5.13 0.47 134.87 -116.23 86.53 0.33

n=30 149.30 -101.80 17.73 0.43 84.30 -166.80 75.97 0.27

n=50 163.33 -87.77 21.27 0.33 140.16 -110.93 53.47 0.33

n=100 169.11 -81.98 18.43 0.47 152.11 -98.98 31.30 0.47

n=300 203.33 -47.77 8.67 0.60 167.86 -83.24 10.97 0.57

Table 5.15.: Contrarian Trading Strategy with r2
i for the DAX with α = 0.1: average discrete

returns of a contrarian trading strategy in %, the difference of a contrarian trading strategy to a

buy-and-hold strategy in % and the average number of trades for a contrarian strategy. Addition-

ally, the average number of stocks where the contrarian strategy is better than the buy-and-hold

strategy is depicted. The applied tests are the K&L test and the t-test for the DAX with α = 0.1 .

r2
i

K&L t-test

rcon rcon − rb&h trades rcon > rb&h rcon rcon − rb&h trades rcon > rb&h

n=20 169.14 -231.10 5.60 0.23 158.23 -242.00 82.57 0.20

n=30 286.56 -113.68 15.73 0.23 204.79 -195.45 75.17 0.13

n=50 246.54 -153.69 22.27 0.20 119.16 -281.07 55.37 0.10

n=100 315.26 -84.98 17.00 0.27 323.66 -76.58 29.97 0.30

n=300 326.31 -73.93 9.73 0.33 212.49 -187.75 11.33 0.30

Table 5.16.: Contrarian Trading Strategy with r2
i for the Dow Jones with α = 0.1: average discrete

returns of a contrarian trading strategy in %, the difference of a contrarian trading strategy to a

buy-and-hold strategy in % and the average number of trades for a contrarian strategy. Addition-

ally, the average number of stocks where the contrarian strategy is better than the buy-and-hold

strategy is depicted. The applied tests are the K&L test and the t-test for the Dow Jones with

α = 0.1 .



6. Conclusion and Outlook

We discussed various tests for detecting structural breaks in µ or in σ . The t-test had the

best result for the first moment, while the K&L test and the t-test had the best results for

the second moment. It was shown in the analysis that various parameters of the GARCH

model have an influence on the test results. Additionally, the autocorrelation effect in the

data worsens the results of the test decisions. Since stocks normally have a slow decay of

autocorrelation, this could be the reason why the various trading strategies do not work.

Moreover, by using daily data, it may takes too long for detecting a structural break.

Further studies can try to use intraday returns for detecting a structural break earlier. This

could lead to a better trading strategy especially with a momentum signal. Thus, a positive

trend of a stock maybe can be detected earlier and a longer participation in the positive

trend is possible. Furthermore, if a structural break occurs and a positive trend changes

into a negative trend, a test which uses intraday data could detect this faster and can

possibly avoid shrinking returns. Another possible improvement for the outcome of the

trading strategies would be a sequential trading. As example, the α level of the test will be

adjusted every day. Moreover, an adjustment of n is imaginable. Since the positive trend

of the prices exists longer than a negative trend but the negative trend is steeper, compare

figure 4.1 and figure 4.2, a sequential trading with changing n could improve the results.

In phases with a negative trend, we could use a larger n to ensure that the negative trend

is over, and in phases with a positive trend, we could use a smaller n to detect the crash

faster. A simultaneously use of tests for detecting breaks in the first moment and in the

second moment is an option too. Due to the fact that volatility is higher in phases with a

crash, we could try to detect crashes by testing for breaks in the second moment. Then

we buy if a test for a break in the first moment signals a break with following positive

trend. Additionally, a change of the signals is possible. In the applied strategies it does

not matter if the break changes from positive to negative or the other way. We could

change the signal in a way that a trade will only be made if the trend changes the sign.

For the trading strategies based on the second moment trading volatility instead of the

stock would also be possible. This could happen for instance by using a straddle strategy.
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A. Appendix

A.1. Tables and Figures

Figure A.1.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = µ2 = 0, ω1 =
ω2 = 0.4, α1 = α2 = 0.1, β1 = β2 = 0.5, and ε1 = ε2 = 1.
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ri
α = 0.05 α = 0.10

Chow test t-test CUSUM Chow test t-test CUSUM

n=20 0.95 0.94 0.99 0.90 0.90 0.95

n=30 0.94 0.95 0.98 0.89 0.90 0.94

n=40 0.95 0.95 0.98 0.89 0.91 0.94

n=60 0.94 0.95 0.97 0.88 0.90 0.94

n=100 0.95 0.95 0.96 0.90 0.90 0.93

n=200 0.95 0.95 0.96 0.91 0.89 0.92

n=400 0.95 0.95 0.95 0.90 0.89 0.91

n=1000 0.94 0.95 0.95 0.90 0.89 0.90

n=2000 0.96 0.95 0.96 0.90 0.91 0.90

Table A.1.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = µ2 = 0, ω1 =
ω2 = 0.4, α1 = α2 = 0.1, β1 = β2 = 0.5, and ε1 = ε2 = 1.

r2
i

α = 0.05 α = 0.10

Chow test t-test CUSUM K&L I&T Chow test t-test CUSUM K&L I&T

n=20 0.92 0.95 0.98 1.00 0.97 0.86 0.89 0.95 0.99 0.95

n=30 0.91 0.94 0.96 1.00 0.95 0.84 0.86 0.91 0.98 0.91

n=40 0.91 0.92 0.95 0.99 0.94 0.84 0.85 0.90 0.96 0.89

n=60 0.90 0.91 0.93 0.99 0.92 0.81 0.84 0.87 0.95 0.86

n=100 0.88 0.90 0.90 0.98 0.89 0.80 0.83 0.83 0.93 0.82

n=200 0.87 0.89 0.88 0.96 0.86 0.81 0.81 0.80 0.91 0.78

n=400 0.87 0.89 0.88 0.96 0.87 0.80 0.83 0.79 0.91 0.78

n=1000 0.86 0.89 0.85 0.95 0.84 0.78 0.82 0.76 0.90 0.74

n=2000 0.87 0.87 0.83 0.94 0.80 0.78 0.80 0.74 0.88 0.72

Table A.2.: Relative frequencies of H0 by using the introduced tests with r2
i : µ1 = µ2 = 0, ω1 =

ω2 = 0.4, α1 = α2 = 0.1, β1 = β2 = 0.5, and ε1 = ε2 = 1.

Figure A.2.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = µ2 = 0,

ω1 = ω2 = 0.4, α1 = α2 = 0.1, β1 = β2 = 0.5, and ε1 = ε2 = 1.
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|ri| α = 0.05 α = 0.10

Chow test t-test CUSUM K&L Chow test t-test CUSUM K&L

n=20 0.92 0.93 0.97 1.00 0.85 0.87 0.94 0.99

n=30 0.91 0.92 0.95 1.00 0.84 0.86 0.90 0.97

n=40 0.91 0.92 0.94 0.99 0.84 0.85 0.89 0.95

n=60 0.90 0.91 0.93 0.99 0.83 0.84 0.87 0.94

n=100 0.88 0.90 0.90 0.98 0.81 0.84 0.83 0.93

n=200 0.88 0.89 0.88 0.96 0.81 0.82 0.79 0.90

n=400 0.88 0.90 0.89 0.96 0.81 0.84 0.81 0.91

n=1000 0.87 0.90 0.87 0.95 0.79 0.84 0.77 0.90

n=2000 0.88 0.88 0.84 0.94 0.79 0.81 0.75 0.88

Table A.3.: Relative frequencies of H0 by using the introduced tests with |ri|: µ1 = µ2 = 0, ω1 =
ω2 = 0.4, α1 = α2 = 0.1, β1 = β2 = 0.5, and ε1 = ε2 = 1.

ri
α = 0.05 α = 0.10

Chow test t-test CUSUM Chow test t-test CUSUM

n=20 0.94 0.95 0.99 0.90 0.90 0.96

n=30 0.95 0.94 0.97 0.89 0.90 0.94

n=40 0.95 0.96 0.98 0.90 0.90 0.94

n=60 0.95 0.95 0.97 0.89 0.89 0.93

n=100 0.95 0.95 0.95 0.90 0.90 0.92

n=200 0.95 0.94 0.95 0.91 0.89 0.90

n=400 0.95 0.95 0.96 0.90 0.91 0.92

n=1000 0.95 0.95 0.95 0.90 0.89 0.89

n=2000 0.95 0.96 0.95 0.90 0.90 0.90

Table A.4.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = µ2 = 0, ω1 =
ω2 = 0.4, α1 = α2 = 0.1, β1 = β2 = 0.85, and ε1 = ε2 = 1.

Figure A.3.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = µ2 = 0, ω1 =
ω2 = 0.4, α1 = α2 = 0.1, β1 = β2 = 0.85, and ε1 = ε2 = 1.
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r2
i

α = 0.05 α = 0.10

Chow test t-test CUSUM K&L I&T Chow test t-test CUSUM K&L I&T

n=20 0.94 0.94 0.98 1.00 0.98 0.89 0.87 0.94 0.99 0.95

n=30 0.92 0.89 0.95 1.00 0.94 0.87 0.81 0.89 0.96 0.90

n=40 0.90 0.84 0.90 0.98 0.89 0.82 0.75 0.82 0.91 0.84

n=60 0.85 0.77 0.82 0.94 0.81 0.76 0.68 0.73 0.84 0.73

n=100 0.75 0.69 0.66 0.86 0.66 0.64 0.60 0.55 0.73 0.56

n=200 0.57 0.62 0.50 0.76 0.46 0.48 0.54 0.39 0.63 0.37

n=400 0.49 0.58 0.36 0.66 0.31 0.40 0.50 0.27 0.55 0.23

n=1000 0.39 0.54 0.20 0.62 0.13 0.31 0.46 0.13 0.49 0.09

n=2000 0.36 0.55 0.15 0.66 0.09 0.30 0.47 0.08 0.54 0.04

Table A.5.: Relative frequencies of H0 by using the introduced tests with r2
i : µ1 = µ2 = 0, ω1 =

ω2 = 0.4, α1 = α2 = 0.1, β1 = β2 = 0.85, and ε1 = ε2 = 1.

|ri| α = 0.05 α = 0.10

Chow test t-test CUSUM K&L Chow test t-test CUSUM K&L

n=20 0.94 0.92 0.97 1.00 0.88 0.85 0.94 0.99

n=30 0.93 0.88 0.94 1.00 0.87 0.80 0.87 0.96

n=40 0.89 0.84 0.88 0.97 0.82 0.75 0.81 0.90

n=60 0.85 0.77 0.80 0.93 0.77 0.69 0.72 0.82

n=100 0.74 0.70 0.67 0.85 0.65 0.62 0.57 0.72

n=200 0.57 0.64 0.49 0.73 0.49 0.56 0.40 0.61

n=400 0.49 0.59 0.38 0.66 0.41 0.52 0.27 0.54

n=1000 0.40 0.55 0.22 0.60 0.33 0.47 0.14 0.48

n=2000 0.39 0.58 0.17 0.67 0.32 0.51 0.10 0.54

Table A.6.: Relative frequencies of H0 by using the introduced tests with |ri|: µ1 = µ2 = 0, ω1 =
ω2 = 0.4, α1 = α2 = 0.1, β1 = β2 = 0.85, and ε1 = ε2 = 1.

Figure A.4.: Relative frequencies of H0 by using the introduced tests withr2
i and |ri|: µ1 = µ2 = 0,

ω1 = ω2 = 0.4, α1 = α2 = 0.1, β1 = β2 = 0.85, and ε1 = ε2 = 1.
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ri
α = 0.05 α = 0.10

Chow test t-test CUSUM Chow test t-test CUSUM

n=20 0.95 0.95 0.98 0.91 0.90 0.95

n=30 0.95 0.94 0.96 0.91 0.88 0.92

n=40 0.95 0.94 0.96 0.91 0.89 0.91

n=60 0.95 0.94 0.96 0.90 0.89 0.92

n=100 0.94 0.92 0.93 0.90 0.87 0.88

n=200 0.95 0.93 0.94 0.90 0.87 0.89

n=400 0.94 0.88 0.90 0.89 0.81 0.84

n=1000 0.91 0.78 0.82 0.86 0.68 0.72

n=2000 0.91 0.62 0.69 0.83 0.50 0.58

Table A.7.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0.1,

ω1 = 0.4, ω2 = 0.5, α1 = 0.1, α2 = 0.2, β1 = 0.5, β2 = 0.6, n1 = 0.5 and ε1 = ε2 = 1.

r2
i

α = 0.05 α = 0.10

Chow test t-test CUSUM K&L I&T Chow test t-test CUSUM K&L I&T

n=20 0.93 0.88 0.93 1.00 0.90 0.86 0.76 0.85 1.00 0.83

n=30 0.90 0.78 0.86 1.00 0.79 0.83 0.66 0.75 0.94 0.70

n=40 0.88 0.70 0.76 0.97 0.68 0.80 0.55 0.64 0.86 0.59

n=60 0.82 0.52 0.59 0.90 0.53 0.72 0.40 0.47 0.75 0.44

n=100 0.74 0.30 0.37 0.74 0.31 0.64 0.22 0.27 0.56 0.24

n=200 0.60 0.07 0.10 0.39 0.08 0.49 0.04 0.06 0.24 0.05

n=400 0.37 0.00 0.01 0.06 0.01 0.26 0.00 0.00 0.03 0.00

n=1000 0.06 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00

n=2000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A.8.: Relative frequencies of H0 by using the introduced tests with r2
i : µ1 = 0, µ2 = 0.1,

ω1 = 0.4, ω2 = 0.5, α1 = 0.1, α2 = 0.2, β1 = 0.5, β2 = 0.6, n1 = 0.5 and ε1 = ε2 = 1.

Figure A.5.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0.1,

ω1 = 0.4, ω2 = 0.5, α1 = 0.1, α2 = 0.2, β1 = 0.5, β2 = 0.6, n1 = 0.5 and ε1 = ε2 = 1.
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|ri| α = 0.05 α = 0.10

Chow test t-test CUSUM K&L Chow test t-test CUSUM K&L

n=20 0.90 0.83 0.91 1.00 0.83 0.74 0.83 0.99

n=30 0.89 0.74 0.83 1.00 0.82 0.65 0.72 0.93

n=40 0.86 0.67 0.72 0.95 0.77 0.56 0.62 0.82

n=60 0.80 0.52 0.57 0.87 0.71 0.42 0.47 0.70

n=100 0.73 0.32 0.37 0.68 0.62 0.24 0.28 0.51

n=200 0.57 0.09 0.12 0.33 0.47 0.05 0.08 0.20

n=400 0.34 0.01 0.01 0.04 0.26 0.00 0.01 0.02

n=1000 0.05 0.00 0.00 0.00 0.03 0.00 0.00 0.00

n=2000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A.9.: Relative frequencies of H0 by using the introduced tests with |ri|: µ1 = 0, µ2 = 0.1,

ω1 = 0.4, ω2 = 0.5, α1 = 0.1, α2 = 0.2, β1 = 0.5, β2 = 0.6, n1 = 0.5 and ε1 = ε2 = 1.

Figure A.6.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = 0,

µ2 = 0.1, ω1 = 0.4, ω2 = 0.5, α1 = 0.1, α2 = 0.2, β1 = 0.5, β2 = 0.6, n1 = 0.5 and ε1 = ε2 = 1.
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ri
α = 0.05 α = 0.10

Chow test t-test CUSUM Chow test t-test CUSUM

µ2 =−0.4 0.19 0.00 0.00 0.12 0.00 0.00

µ2 =−0.3 0.44 0.00 0.01 0.33 0.00 0.00

µ2 =−0.2 0.73 0.12 0.19 0.61 0.07 0.12

µ2 =−0.1 0.89 0.65 0.73 0.83 0.52 0.61

µ2 = 0 0.95 0.95 0.95 0.90 0.91 0.91

µ2 = 0.1 0.90 0.63 0.72 0.82 0.51 0.61

µ2 = 0.2 0.73 0.12 0.20 0.61 0.07 0.12

µ2 = 0.3 0.46 0.00 0.01 0.32 0.00 0.00

µ2 = 0.4 0.18 0.00 0.00 0.11 0.00 0.00

Table A.10.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, ω1 = 0.4,

ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

r2
i

α = 0.05 α = 0.10

Chow test t-test CUSUM K&L I&T Chow test t-test CUSUM K&L I&T

µ2 =−0.4 0.79 0.48 0.51 0.71 0.49 0.68 0.38 0.40 0.58 0.38

µ2 =−0.3 0.83 0.72 0.72 0.87 0.70 0.75 0.63 0.61 0.78 0.60

µ2 =−0.2 0.85 0.84 0.82 0.94 0.80 0.77 0.75 0.72 0.87 0.69

µ2 =−0.1 0.87 0.89 0.84 0.95 0.83 0.79 0.81 0.76 0.90 0.73

µ2 = 0 0.86 0.89 0.86 0.95 0.84 0.78 0.82 0.77 0.91 0.75

µ2 = 0.1 0.87 0.88 0.86 0.95 0.84 0.80 0.82 0.77 0.90 0.75

µ2 = 0.2 0.88 0.85 0.82 0.94 0.79 0.80 0.76 0.72 0.88 0.70

µ2 = 0.3 0.82 0.72 0.71 0.86 0.69 0.74 0.62 0.61 0.78 0.59

µ2 = 0.4 0.77 0.49 0.52 0.70 0.49 0.68 0.38 0.39 0.58 0.38

Table A.11.: Relative frequencies of H0 by using the introduced tests with r2
i : µ1 = 0, ω1 = 0.4,

ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.
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|ri| α = 0.05 α = 0.10

Chow test t-test CUSUM K&L Chow test t-test CUSUM K&L

µ2 =−0.4 0.80 0.51 0.54 0.70 0.70 0.39 0.42 0.59

µ2 =−0.3 0.85 0.75 0.74 0.86 0.76 0.66 0.64 0.79

µ2 =−0.2 0.88 0.85 0.84 0.93 0.79 0.77 0.74 0.87

µ2 =−0.1 0.88 0.90 0.86 0.95 0.80 0.83 0.78 0.90

µ2 = 0 0.88 0.90 0.86 0.95 0.80 0.83 0.78 0.90

µ2 = 0.1 0.88 0.89 0.87 0.95 0.81 0.83 0.78 0.89

µ2 = 0.2 0.88 0.87 0.83 0.93 0.80 0.79 0.74 0.87

µ2 = 0.3 0.84 0.75 0.74 0.87 0.76 0.65 0.63 0.78

µ2 = 0.4 0.79 0.51 0.53 0.69 0.69 0.40 0.42 0.58

Table A.12.: Relative frequencies of H0 by using the introduced tests with |ri|: µ1 = 0, ω1 = 0.4,

ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

Figure A.7.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, ω1 = 0.4,

ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.
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ri
α = 0.05 α = 0.10

Chow test t-test CUSUM Chow test t-test CUSUM

ω2 = 0.1 0.94 0.96 0.94 0.90 0.91 0.88

ω2 = 0.2 0.94 0.96 0.95 0.90 0.92 0.91

ω2 = 0.3 0.95 0.96 0.96 0.90 0.91 0.91

ω2 = 0.4 0.95 0.95 0.95 0.89 0.90 0.91

ω2 = 0.5 0.95 0.95 0.96 0.90 0.90 0.90

ω2 = 0.6 0.95 0.96 0.96 0.90 0.91 0.91

ω2 = 0.7 0.95 0.95 0.95 0.90 0.90 0.89

ω2 = 0.8 0.95 0.95 0.95 0.90 0.90 0.90

Table A.13.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0,

ω1 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

Figure A.8.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.
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r2
i

α = 0.05 α = 0.10

Chow test t-test CUSUM K&L I&T Chow test t-test CUSUM K&L I&T

ω2 = 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ω2 = 0.2 0.13 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00

ω2 = 0.3 0.68 0.17 0.20 0.36 0.18 0.56 0.11 0.14 0.25 0.12

ω2 = 0.4 0.88 0.89 0.84 0.95 0.83 0.79 0.81 0.76 0.90 0.73

ω2 = 0.5 0.76 0.37 0.40 0.59 0.37 0.66 0.28 0.30 0.48 0.28

ω2 = 0.6 0.50 0.03 0.04 0.11 0.04 0.40 0.01 0.02 0.05 0.02

ω2 = 0.7 0.27 0.00 0.00 0.01 0.00 0.19 0.00 0.00 0.00 0.00

ω2 = 0.8 0.13 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00

Table A.14.: Relative frequencies of H0 by using the introduced tests with r2
i : µ1 = 0, µ2 = 0,

ω1 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

|ri| α = 0.05 α = 0.10

Chow test t-test CUSUM K&L Chow test t-test CUSUM K&L

ω2 = 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ω2 = 0.2 0.14 0.00 0.00 0.00 0.09 0.00 0.00 0.00

ω2 = 0.3 0.70 0.19 0.22 0.38 0.59 0.13 0.15 0.26

ω2 = 0.4 0.88 0.90 0.86 0.95 0.81 0.82 0.77 0.90

ω2 = 0.5 0.78 0.40 0.43 0.61 0.69 0.32 0.34 0.49

ω2 = 0.6 0.53 0.04 0.05 0.11 0.41 0.02 0.03 0.06

ω2 = 0.7 0.28 0.00 0.00 0.01 0.20 0.00 0.00 0.00

ω2 = 0.8 0.13 0.00 0.00 0.00 0.08 0.00 0.00 0.00

Table A.15.: Relative frequencies of H0 by using the introduced tests with |ri|: µ1 = 0, µ2 = 0,

ω1 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

Figure A.9.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0,

ω1 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.
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ri
α = 0.05 α = 0.10

Chow test t-test CUSUM Chow test t-test CUSUM

α2 = 0 0.95 0.96 0.95 0.91 0.91 0.91

α2 = 0.05 0.94 0.95 0.96 0.89 0.90 0.91

α2 = 0.1 0.95 0.95 0.95 0.90 0.89 0.90

α2 = 0.15 0.95 0.94 0.95 0.90 0.89 0.90

α2 = 0.2 0.95 0.95 0.95 0.90 0.90 0.90

α2 = 0.25 0.95 0.95 0.96 0.91 0.91 0.91

α2 = 0.3 0.95 0.95 0.96 0.91 0.90 0.90

α2 = 0.35 0.95 0.95 0.95 0.90 0.90 0.90

α2 = 0.4 0.94 0.95 0.92 0.90 0.89 0.87

Table A.16.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

Figure A.10.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = 0,

µ2 = 0, ω1 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.
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r2
i

α = 0.05 α = 0.10

Chow test t-test CUSUM K&L I&T Chow test t-test CUSUM K&L I&T

α2 = 0 0.79 0.34 0.41 0.56 0.40 0.69 0.25 0.31 0.42 0.30

α2 = 0.05 0.86 0.72 0.72 0.86 0.71 0.78 0.63 0.63 0.75 0.60

α2 = 0.1 0.86 0.89 0.86 0.96 0.83 0.79 0.82 0.76 0.91 0.73

α2 = 0.15 0.78 0.66 0.63 0.84 0.58 0.70 0.56 0.52 0.75 0.48

α2 = 0.2 0.64 0.26 0.25 0.56 0.21 0.53 0.19 0.18 0.42 0.15

α2 = 0.25 0.47 0.04 0.05 0.25 0.04 0.36 0.03 0.03 0.14 0.03

α2 = 0.3 0.27 0.00 0.00 0.09 0.00 0.19 0.00 0.00 0.04 0.00

α2 = 0.35 0.18 0.00 0.00 0.08 0.00 0.10 0.00 0.00 0.04 0.00

α2 = 0.4 0.12 0.00 0.00 0.10 0.00 0.07 0.00 0.00 0.06 0.00

Table A.17.: Relative frequencies of H0 by using the introduced tests with r2
i : µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

|ri| α = 0.05 α = 0.10

Chow test t-test CUSUM K&L Chow test t-test CUSUM K&L

α2 = 0 0.81 0.41 0.47 0.60 0.73 0.30 0.36 0.46

α2 = 0.05 0.89 0.76 0.76 0.86 0.80 0.66 0.66 0.78

α2 = 0.1 0.88 0.90 0.87 0.96 0.80 0.84 0.79 0.91

α2 = 0.15 0.80 0.70 0.68 0.85 0.71 0.61 0.56 0.76

α2 = 0.2 0.66 0.32 0.31 0.57 0.56 0.25 0.23 0.44

α2 = 0.25 0.49 0.06 0.07 0.24 0.39 0.04 0.04 0.15

α2 = 0.3 0.28 0.00 0.01 0.06 0.19 0.00 0.00 0.03

α2 = 0.35 0.14 0.00 0.00 0.01 0.09 0.00 0.00 0.00

α2 = 0.4 0.05 0.00 0.00 0.00 0.03 0.00 0.00 0.00

Table A.18.: Relative frequencies of H0 by using the introduced tests with |ri|: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

Figure A.11.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.
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ri
α = 0.05 α = 0.10

Chow test t-test CUSUM Chow test t-test CUSUM

α2 = 0.1 0.95 0.96 0.96 0.90 0.90 0.91

α2 = 0.11 0.95 0.95 0.95 0.89 0.90 0.91

α2 = 0.12 0.95 0.94 0.96 0.91 0.90 0.91

α2 = 0.13 0.95 0.95 0.95 0.91 0.91 0.91

α2 = 0.14 0.95 0.95 0.95 0.91 0.90 0.90

α2 = 0.15 0.95 0.94 0.95 0.90 0.90 0.90

α2 = 0.16 0.95 0.95 0.94 0.90 0.89 0.89

α2 = 0.17 0.95 0.95 0.93 0.90 0.90 0.88

α2 = 0.18 0.96 0.94 0.92 0.92 0.89 0.85

Table A.19.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, β1 = 0.8, β2 = 0.8, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

Figure A.12.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = 0,

µ2 = 0, ω1 = 0.4, ω2 = 0.4, α1 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.
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r2
i

α = 0.05 α = 0.10

Chow test t-test CUSUM K&L I&T Chow test t-test CUSUM K&L I&T

α2 = 0.1 0.60 0.70 0.47 0.83 0.40 0.50 0.61 0.34 0.74 0.29

α2 = 0.11 0.56 0.59 0.37 0.75 0.30 0.48 0.52 0.26 0.64 0.21

α2 = 0.12 0.50 0.45 0.28 0.66 0.22 0.41 0.38 0.19 0.55 0.16

α2 = 0.13 0.42 0.25 0.14 0.43 0.11 0.33 0.21 0.10 0.34 0.07

α2 = 0.14 0.33 0.12 0.06 0.26 0.04 0.26 0.09 0.04 0.18 0.03

α2 = 0.15 0.25 0.05 0.03 0.15 0.02 0.20 0.04 0.02 0.09 0.01

α2 = 0.16 0.16 0.01 0.00 0.06 0.00 0.11 0.01 0.00 0.03 0.00

α2 = 0.17 0.11 0.00 0.00 0.03 0.00 0.07 0.00 0.00 0.01 0.00

α2 = 0.18 0.05 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.01 0.00

Table A.20.: Relative frequencies of H0 by using the introduced tests with r2
i : µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, β1 = 0.8, β2 = 0.8, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

|ri| α = 0.05 α = 0.10

Chow test t-test CUSUM K&L Chow test t-test CUSUM K&L

α2 = 0.1 0.63 0.72 0.50 0.83 0.53 0.64 0.38 0.73

α2 = 0.11 0.58 0.62 0.40 0.75 0.49 0.55 0.29 0.63

α2 = 0.12 0.53 0.48 0.30 0.65 0.44 0.40 0.21 0.55

α2 = 0.13 0.44 0.29 0.16 0.44 0.36 0.24 0.12 0.33

α2 = 0.14 0.34 0.13 0.07 0.25 0.28 0.10 0.04 0.18

α2 = 0.15 0.27 0.06 0.04 0.13 0.21 0.04 0.02 0.09

α2 = 0.16 0.16 0.02 0.01 0.05 0.12 0.01 0.00 0.03

α2 = 0.17 0.11 0.00 0.00 0.02 0.07 0.00 0.00 0.01

α2 = 0.18 0.05 0.00 0.00 0.00 0.03 0.00 0.00 0.00

Table A.21.: Relative frequencies of H0 by using the introduced tests with |ri|: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, β1 = 0.8, β2 = 0.8, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

Figure A.13.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, β1 = 0.8, β2 = 0.8, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.
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ri
α = 0.05 α = 0.10

Chow test t-test CUSUM Chow test t-test CUSUM

β2 = 0.1 0.95 0.95 0.94 0.90 0.90 0.89

β2 = 0.2 0.95 0.94 0.95 0.89 0.89 0.89

β2 = 0.3 0.95 0.95 0.96 0.90 0.90 0.91

β2 = 0.4 0.94 0.95 0.95 0.89 0.90 0.90

β2 = 0.5 0.95 0.95 0.95 0.90 0.89 0.91

β2 = 0.6 0.95 0.96 0.96 0.90 0.91 0.91

β2 = 0.7 0.95 0.95 0.95 0.90 0.90 0.90

β2 = 0.8 0.95 0.94 0.92 0.90 0.90 0.85

Table A.22.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

Figure A.14.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = 0,

µ2 = 0, ω1 = 0.4, ω2 = 0.4, α1 = 0.1, β1 = 0.8, β2 = 0.8, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.
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r2
i

α = 0.05 α = 0.10

Chow test t-test CUSUM K&L I&T Chow test t-test CUSUM K&L I&T

β2 = 0.1 0.12 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00

β2 = 0.2 0.26 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00

β2 = 0.3 0.47 0.02 0.04 0.09 0.03 0.36 0.01 0.02 0.05 0.02

β2 = 0.4 0.76 0.36 0.39 0.59 0.36 0.65 0.27 0.30 0.46 0.28

β2 = 0.5 0.87 0.89 0.85 0.94 0.83 0.79 0.82 0.77 0.90 0.75

β2 = 0.6 0.66 0.18 0.21 0.38 0.19 0.56 0.12 0.14 0.28 0.13

β2 = 0.7 0.16 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00

β2 = 0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A.23.: Relative frequencies of H0 by using the introduced tests with r2
i : µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

|ri| α = 0.05 α = 0.10

Chow test t-test CUSUM K&L Chow test t-test CUSUM K&L

β2 = 0.1 0.13 0.00 0.00 0.00 0.08 0.00 0.00 0.00

β2 = 0.2 0.28 0.00 0.00 0.00 0.19 0.00 0.00 0.00

β2 = 0.3 0.50 0.03 0.05 0.11 0.39 0.02 0.03 0.06

β2 = 0.4 0.77 0.40 0.44 0.61 0.68 0.30 0.34 0.49

β2 = 0.5 0.88 0.90 0.87 0.95 0.81 0.84 0.79 0.89

β2 = 0.6 0.68 0.21 0.24 0.40 0.57 0.14 0.17 0.28

β2 = 0.7 0.17 0.00 0.00 0.00 0.12 0.00 0.00 0.00

β2 = 0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A.24.: Relative frequencies of H0 by using the introduced tests with |ri|: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

Figure A.15.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.
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ri
α = 0.05 α = 0.10

Chow test t-test CUSUM Chow test t-test CUSUM

β2 = 0.8 0.95 0.95 0.95 0.90 0.89 0.91

β2 = 0.81 0.95 0.94 0.95 0.90 0.89 0.91

β2 = 0.82 0.94 0.96 0.95 0.90 0.91 0.91

β2 = 0.83 0.96 0.95 0.96 0.91 0.90 0.91

β2 = 0.84 0.94 0.95 0.95 0.90 0.90 0.90

β2 = 0.85 0.95 0.94 0.95 0.90 0.90 0.89

β2 = 0.86 0.95 0.95 0.94 0.89 0.91 0.89

β2 = 0.87 0.94 0.95 0.93 0.90 0.90 0.88

β2 = 0.88 0.95 0.95 0.93 0.92 0.90 0.87

Table A.25.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.8, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

Figure A.16.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = 0,

µ2 = 0, ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.
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r2
i

α = 0.05 α = 0.10

Chow test t-test CUSUM K&L I&T Chow test t-test CUSUM K&L I&T

β2 = 0.8 0.57 0.71 0.46 0.82 0.40 0.48 0.62 0.35 0.72 0.29

β2 = 0.81 0.56 0.62 0.39 0.78 0.34 0.46 0.53 0.29 0.67 0.24

β2 = 0.82 0.50 0.42 0.27 0.60 0.22 0.42 0.35 0.20 0.49 0.16

β2 = 0.83 0.44 0.20 0.13 0.37 0.10 0.36 0.15 0.09 0.28 0.06

β2 = 0.84 0.32 0.07 0.05 0.18 0.04 0.25 0.05 0.03 0.12 0.02

β2 = 0.85 0.22 0.02 0.01 0.05 0.01 0.16 0.01 0.01 0.03 0.00

β2 = 0.86 0.12 0.00 0.00 0.01 0.00 0.08 0.00 0.00 0.01 0.00

β2 = 0.87 0.05 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00

β2 = 0.88 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

Table A.26.: Relative frequencies of H0 by using the introduced tests with r2
i : µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.8, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

|ri| α = 0.05 α = 0.10

Chow test t-test CUSUM K&L Chow test t-test CUSUM K&L

β2 = 0.8 0.62 0.73 0.49 0.82 0.51 0.65 0.37 0.72

β2 = 0.81 0.60 0.64 0.43 0.78 0.50 0.56 0.32 0.66

β2 = 0.82 0.52 0.43 0.28 0.60 0.43 0.36 0.21 0.48

β2 = 0.83 0.46 0.21 0.15 0.36 0.38 0.16 0.10 0.26

β2 = 0.84 0.33 0.08 0.05 0.17 0.26 0.06 0.03 0.12

β2 = 0.85 0.23 0.01 0.01 0.04 0.17 0.01 0.01 0.03

β2 = 0.86 0.13 0.00 0.00 0.01 0.10 0.00 0.00 0.00

β2 = 0.87 0.05 0.00 0.00 0.00 0.04 0.00 0.00 0.00

β2 = 0.88 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00

Table A.27.: Relative frequencies of H0 by using the introduced tests with |ri|: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.8, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.

Figure A.17.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.8, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.
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ri
α = 0.05 α = 0.10

Chow test t-test CUSUM Chow test t-test CUSUM

ε2 = 1 0.95 0.94 0.95 0.90 0.90 0.91

ε2 = 1.025 0.94 0.95 0.96 0.89 0.90 0.91

ε2 = 1.05 0.96 0.95 0.95 0.91 0.90 0.91

ε2 = 1.075 0.95 0.94 0.95 0.90 0.90 0.90

ε2 = 1.1 0.95 0.96 0.96 0.89 0.90 0.91

ε2 = 1.125 0.94 0.95 0.96 0.89 0.90 0.91

ε2 = 1.15 0.96 0.96 0.96 0.91 0.90 0.90

ε2 = 1.175 0.95 0.95 0.96 0.90 0.89 0.91

ε2 = 1.2 0.96 0.96 0.96 0.91 0.91 0.91

Table A.28.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = 1.

Figure A.18.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = 0,

µ2 = 0, ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.8, n = 1000, n1 = 0.5 and ε1 = ε2 = 1.
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r2
i

α = 0.05 α = 0.10

Chow test t-test CUSUM K&L I&T Chow test t-test CUSUM K&L I&T

ε2 = 1 0.85 0.87 0.84 0.95 0.82 0.78 0.80 0.75 0.89 0.72

ε2 = 1.025 0.86 0.83 0.79 0.93 0.77 0.78 0.75 0.70 0.85 0.68

ε2 = 1.05 0.83 0.69 0.68 0.86 0.65 0.73 0.59 0.58 0.76 0.55

ε2 = 1.075 0.77 0.49 0.50 0.71 0.47 0.67 0.39 0.40 0.58 0.37

ε2 = 1.1 0.71 0.29 0.33 0.55 0.30 0.61 0.21 0.25 0.42 0.23

ε2 = 1.125 0.62 0.15 0.17 0.36 0.16 0.52 0.10 0.12 0.24 0.11

ε2 = 1.15 0.54 0.05 0.07 0.20 0.06 0.43 0.04 0.05 0.12 0.04

ε2 = 1.175 0.47 0.02 0.03 0.10 0.03 0.36 0.01 0.02 0.06 0.01

ε2 = 1.2 0.40 0.00 0.01 0.04 0.01 0.29 0.00 0.00 0.02 0.00

Table A.29.: Relative frequencies of H0 by using the introduced tests with r2
i : µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = 1.

|ri| α = 0.05 α = 0.10

Chow test t-test CUSUM K&L Chow test t-test CUSUM K&L

ε2 = 1 0.88 0.89 0.86 0.94 0.80 0.82 0.77 0.89

ε2 = 1.025 0.87 0.84 0.80 0.91 0.80 0.76 0.72 0.85

ε2 = 1.05 0.83 0.72 0.70 0.85 0.74 0.62 0.59 0.76

ε2 = 1.075 0.79 0.53 0.54 0.71 0.70 0.44 0.43 0.60

ε2 = 1.1 0.74 0.33 0.37 0.55 0.64 0.24 0.28 0.43

ε2 = 1.125 0.65 0.18 0.21 0.37 0.55 0.12 0.15 0.27

ε2 = 1.15 0.56 0.08 0.10 0.23 0.46 0.04 0.06 0.14

ε2 = 1.175 0.49 0.03 0.04 0.12 0.38 0.01 0.02 0.07

ε2 = 1.2 0.41 0.01 0.01 0.05 0.31 0.00 0.01 0.02

Table A.30.: Relative frequencies of H0 by using the introduced tests with |ri|: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = 1.

Figure A.19.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0,

ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = 1.
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ri
α = 0.05 α = 0.10

Chow test t-test CUSUM Chow test t-test CUSUM

n1 = 0.1 0.99 0.90 0.96 0.97 0.83 0.91

n1 = 0.2 0.97 0.88 0.94 0.94 0.81 0.90

n1 = 0.3 0.96 0.86 0.92 0.92 0.78 0.86

n1 = 0.4 0.95 0.86 0.90 0.90 0.78 0.83

n1 = 0.5 0.93 0.87 0.89 0.88 0.79 0.82

Table A.31.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0.1,

ω1 = 0.4, ω2 = 0.5, α1 = 0.1, α2 = 0.2, β1 = 0.5, β2 = 0.6, n = 500 and ε1 = ε2 = 1.

r2
i

α = 0.05 α = 0.10

Chow test t-test CUSUM K&L I&T Chow test t-test CUSUM K&L I&T

n1 = 0.1 0.59 0.03 0.43 0.88 0.28 0.46 0.02 0.29 0.78 0.18

n1 = 0.2 0.44 0.00 0.07 0.62 0.03 0.35 0.00 0.02 0.41 0.01

n1 = 0.3 0.44 0.00 0.01 0.20 0.00 0.36 0.00 0.00 0.09 0.00

n1 = 0.4 0.41 0.00 0.00 0.07 0.00 0.31 0.00 0.00 0.03 0.00

n1 = 0.5 0.29 0.00 0.00 0.03 0.00 0.18 0.00 0.00 0.01 0.00

Table A.32.: Relative frequencies of H0 by using the introduced tests with r2
i : µ1 = 0, µ2 = 0.1,

ω1 = 0.4, ω2 = 0.5, α1 = 0.1, α2 = 0.2, β1 = 0.5, β2 = 0.6, n = 500 and ε1 = ε2 = 1.

Figure A.20.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = 0,

µ2 = 0, ω1 = 0.4, ω2 = 0.4, α1 = 0.1, α2 = 0.1, β1 = 0.5, β2 = 0.5, n = 1000, n1 = 0.5 and ε1 = 1.
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|ri| α = 0.05 α = 0.10

Chow test t-test CUSUM K&L Chow test t-test CUSUM K&L

n1 = 0.1 0.41 0.04 0.35 0.83 0.32 0.03 0.23 0.70

n1 = 0.2 0.33 0.00 0.04 0.40 0.24 0.00 0.02 0.22

n1 = 0.3 0.33 0.00 0.01 0.09 0.25 0.00 0.00 0.04

n1 = 0.4 0.32 0.00 0.00 0.03 0.23 0.00 0.00 0.01

n1 = 0.5 0.26 0.00 0.00 0.02 0.18 0.00 0.00 0.01

Table A.33.: Relative frequencies of H0 by using the introduced tests with |ri|: µ1 = 0, µ2 = 0.1,

ω1 = 0.4, ω2 = 0.5, α1 = 0.1, α2 = 0.2, β1 = 0.5, β2 = 0.6, n = 500 and ε1 = ε2 = 1.

Figure A.21.: Relative frequencies of H0 by using the introduced tests with ri: µ1 = 0, µ2 = 0.1,

ω1 = 0.4, ω2 = 0.5, α1 = 0.1, α2 = 0.2, β1 = 0.5, β2 = 0.6, n = 500 and ε1 = ε2 = 1.
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Figure A.22.: Relative frequencies of H0 by using the introduced tests with r2
i and |ri|: µ1 = 0,

µ2 = 0.1, ω1 = 0.4, ω2 = 0.5, α1 = 0.1, α2 = 0.2, β1 = 0.5, β2 = 0.6, n = 500 and ε1 = ε2 = 1.
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A.2. Contents of the CD

• The folder ‘Grafiken‘ contains all figures of the master thesis.

• The file ‘StructuralBreaks R‘ contains the R code for all simulations.

• The folder ‘Simulationen‘ contains all simulation results.

• The file ‘StructuralBreaks‘ contains this thesis as pdf file.
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