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Abstract: In survival analysis, the estimation of patient-specific survivor functions that are conditional on a
set of patient characteristics is of special interest. In general, knowledge of the conditional survival
probabilities of a patient at all relevant time points allows better assessment of the patient’s risk than
summary statistics, such as median survival time. Nevertheless, standard methods for analysing survival
data seldom estimate the survivor function directly. Therefore, we propose the application of conditional
transformation models (CTMs) for the estimation of the conditional distribution function of survival times
given a set of patient characteristics. We used the inverse probability of censoring weighting approach to
account for right-censored observations. Our proposed modelling approach allows the prediction of patient-
specific survivor functions. In addition, CTMs constitute a flexible model class that is able to deal with
proportional as well as non-proportional hazards. The well-known Cox model is included in the class of
CTMs as a special case. We investigated the performance of CTMs in survival data analysis in a simulation
that included proportional and non-proportional hazard settings and different scenarios of explanatory
variables. Furthermore, we re-analysed the survival times of patients suffering from chronic myelogenous
leukaemia and studied the impact of the proportional hazards assumption on previously published results.
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1 Introduction

The estimation of a patient’s individual survival probabilities over time is a key aspect of survival analysis.
Technically, we are interested in estimating the conditional survivor function, i.e. the probability of
surviving up to a specific time point ¢, conditional on a set of patient-specific explanatory variables.
However, common regression models for censored data seldom focus on the direct estimation of the
conditional survivor function. Instead, the models concentrate either on the estimation of hazard functions
or on summary statistics. In the omnipresent Cox proportional hazards model [1], the conditional hazard
function is estimated by cleverly treating the baseline hazard function as a nuisance parameter. Only in a
second step can the corresponding conditional survivor functions be derived from this model, for example,
by using the Breslow estimator (e.g. [2]). Hence, if one is interested in the conditional survival probabilities,
methods for the direct estimation of the conditional survivor function are required.

Moreover, assumptions associated with common modelling strategies for survival data are restrictive.
For example, the Cox model is based on the assumption of proportional hazards, the proportional odds
model assumes constant odds ratios over time and in the parametric accelerated failure time model, log-
transformed responses imply survival times that are, e.g. log-normal-distributed or log-logistic distributed.
Although remedies are available, such as stratified Cox models or time-varying effects [3-6], and although
model diagnostics (e.g. based on Schoenfeld residuals or formal misspecification tests [7, 8]) and
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particularly tests for the proportional hazards assumption (e.g. based on cumulative sums of martingale-
based residuals or weighted residuals [9, 10]) help to detect unrealistic assumptions, models making less
strong assumptions would be widely welcomed.

We suggest estimating the conditional distribution function of the survival times T given a set of patient
characteristics x directly in terms of conditional transformation models (CTMs). CTMs have been presented
recently in Hothorn et al. [11] and allow the direct and semiparametric estimation of the conditional
distribution function P(T < ¢|X = x) under rather weak assumptions. The general model class includes
both the proportional odds model and the proportional hazards model as special cases. Nevertheless, the
strict assumptions of proportional hazards or proportional odds are relaxed in CTMs. This is achieved by
including interaction terms between the survival time and the explanatory variables. For example, the CTM
framework allows for varying explanatory variable effects on the hazard function and hence is able to
estimate non-proportional hazards as well. However, this advantage comes at the price of a more complex
model, which is not easily communicated by simple parameter estimates or even p-values. Graphic
approaches are needed to interpret the model, but we can always fall back on the classical approach
when the more flexible model suggests that it is safe to assume proportional hazards. P-values or
confidence intervals cannot be obtained based on large sample theory, but can be simulated using boot-
strap approaches instead.

Transformation models play an important role in survival analysis. The one-to-one correspondences
between the proportional hazards and proportional odds model to linear transformation models have already
been established in Doksum and Gasko [12] and Cheng et al. [13]. Cheng et al. [14] extended the model class to
semiparametric transformation models for failure times. Chen et al. [15] introduced a unified estimation
procedure for the analysis of censored data using linear transformation models, and Zeng and Lin [16]
proposed a class of semiparametric transformation models to characterize the effects of possibly time-varying
covariates on the intensity functions of counting processes. For the estimation of the crude failure probabil-
ities of a competing risk, conditional on explanatory variables, Fine [17] proposed a semiparametric transfor-
mation model. These approaches are based on generalized estimation equations. Our approach uses
component-wise gradient boosting methodology for model fitting. This approach has the advantage that it
incorporates variable selection and shrinkage of coefficient estimates into the model fitting process. These
regularization techniques for regression models are necessary for the estimation of survival probabilities
because patient characteristics are often highly correlated. Hence, prediction accuracy for the survival
probabilities can usually be improved if only a subset of the available patient characteristics is incorporated
into the prediction formula. Owing to the component-wise fitting procedure, the algorithm can deal with high-
dimensional data. Variable selection in high-dimensional survival data has also been brought up by Lee et al.
[18] and Van der Vaart and van der Laan [19]. Lu and Li [20] previously derived a component-wise boosting
algorithm for the analysis of survival data in terms of nonlinear transformation models.

Fully nonparametric estimation of the conditional survivor function has also been considered in the
past. Making no assumptions about the form of the survivor function can be advantageous over parametric
or semiparametric approaches as the underlying assumptions may be violated. Furthermore, nonparametric
approaches can be used to check whether one of the more restrictive parametric or semiparametric
submodels provides a good fit to the data. The well-known product limit estimator introduced by Kaplan
and Meier [21] enables nonparametric estimation of the unconditional survivor function. Dabrowska [22],
Dabrowska [23], Gonzalez Manteiga and Cadarso-Suarez [24] and Iglesias Pérez and Gonzalez Manteiga [25]
present generalizations of the product limit estimator by introducing kernel-based weights to estimate the
conditional survivor function nonparametrically. In the light of counting process theory, McKeague and
Utikal [26] propose a general counting process regression model for estimating conditional survivor func-
tions, and Li and Doss [27] propose a class of estimators for the conditional survivor function based on a
fully nonparametric model. The usage of local linear estimators for the conditional survivor function is
suggested by Spierdijk [28].

In contrast to kernel-based methods, tree-based approaches and especially random forests can be used
to estimate conditional distribution functions precisely without relying on strict model assumptions. For
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right-censored data, Hothorn et al. [29] introduced a forest aggregation scheme that produces estimates of the
conditional survivor function. The same scheme was used later by Meinshausen [30] for uncensored observa-
tions; an alternative forest variant (random survival forests) was introduced by Ishwaran et al. [31]. Conditional
inference forests [32], based on an aggregation of conditional inference trees [33], use the aggregation scheme
introduced by Hothorn et al. [29] and have been shown to perform akin to other forest variants for right-
censored data [34] and were used as a completely nonparametric competitor for CTMs in our study here.

Another useful alternative to the Cox model or to linear transformation models is censored quantile
regression (e.g. [35-41]). With this approach, the conditional quantiles of the survival times are modelled in
terms of regression models. In contrast to our proposed CTM approach, not all conditional quantiles of the
survival times are modelled simultaneously but are instead modelled separately. Hence, quantile crossing
[42] is a potential problem of this procedure.

In order to illustrate CTMs for survival data, we checked the validity of the proportional hazards
assumption in a re-analysis of a randomized clinical trial comparing busulfan (BUS), hydroxyurea (HU)
and interferon-a (IFN-a) treatment of chronic myelogenous leukaemia. This trial has been analysed earlier
using a Cox model [43-46]. Since the proportional hazards assumption is questionable for the different
treatment groups, we re-analysed the data set using the CTM approach and allowed for non-proportional
effects of the patient characteristics over time.

2 Conditional transformation models for survival data

In the following, T denotes a positive random variable describing the time from a well-defined starting
point to an event of interest, e.g. death or recurrence of a disease. We consider N patients with survival
times T;, i = 1,...,N, and a vector of patient characteristics x; = (X, ..., Xijp). As we do not assume that all
patients experience the event of interest by the end of the study period and as some patients quit the study
early, the event times sometimes are not actual event times but rather right-censored. The observed right-
censored event times T; are defined by T, = min(T;, C;), i=1,...,N, where C; denotes the time under
observation or censoring time. Furthermore, the event indicator §; = I(T; < C;) is 1 for observed event times
and O for right-censored event times. A common assumption is that the survival time T and the vector of
explanatory variables X are independent of the censoring time C.

The conditional survivor function S is defined as the conditional probability of being event free up to
some time point t in terms of the conditional distribution function of the survival times given the
explanatory variables x:

S{tIX =x) =P(T>t|X =x) =1-P(T < t|{X = x). (1)
When using CTMs, we aim at estimating the conditional distribution function of the survival times via
P(T < t)X = x) = F(h(t}x)), )

and the conditional survivor function can be calculated by the relationship given in eq. (1). Thereby, the
conditional distribution function is modelled in terms of the monotone transformation function h : R — R,
which depends on the patient characteristics x. F denotes an absolute continuous distribution function
F:R — [0,1] with corresponding quantile function Q = F~1. In CTMs, only the monotone transformation
function h is estimated, whereas the link function F is chosen a priori.

To embed the well-known class of linear transformation models [12, 13] into CTMs exemplarily, we
reconsider the formulation of the proportional hazards model in terms of a linear transformation model
given in Doksum and Gasko [12]. The conditional distribution function of the survival times resulting from
the Cox model can be written as

P(T < t1X = x) = F(hr(6)+X"B), 3)

Bereitgestellt von | Ludwig-Maximilians-Universitat Miinchen Universitatsbibliothek (LMU)
Angemeldet
Heruntergeladen am | 12.12.18 15:52



26 —— L. Mést and T. Hothorn: CTMs for Survivor Function Estimation DE GRUYTER

where F denotes the distribution function of the minimum-extreme value distribution, and the transforma-
tion of the survival times hr(t) equals the logarithm of the cumulative baseline hazard. In linear transfor-
mation models, the influence of the explanatory variables is restricted to linear functions and, most
importantly, the transformation function h is decomposed into a part depending only on the survival
times hr(t) and a part depending only on the explanatory variables x"B. This strict decomposition results
in the proportional hazards assumption.

In CTMs, the proportional hazards assumption is relaxed by allowing for interactions between the
survival times and the explanatory variables in terms of the conditional transformation function h(t|x).
Furthermore, we assume additivity on the scale of the transformation function and decompose the
monotone transformation function h into J partial transformation functions, in which each h; : R — R is
conditional on x:

P(T < t|X = x) = F(h(t|x)) = F (Z]: h,~(t|x)) . (4)
j=1

In analogy to the representation of the Cox model in eq. (3), we choose F to be the minimum-extreme value
distribution function. In this way, we operate on the same scale of distribution functions in the CTM and the
Cox model, and hence estimations from the two approaches are comparable. The CTM given in eq. (4) can
be understood as a generalization of the proportional hazards model to more flexible non-proportional
hazard functions, if F is the minimum-extreme value distribution function.

Since all interaction terms between the survival time and the explanatory variables are avoided in the
Cox model (eq. (3)), the effects of the explanatory variables are estimated to be constant and are not
allowed to vary over time. This assumption is relaxed in the more flexible model class of CTMs. Interaction
terms between the survival time and the explanatory variables are established in terms of the partial
transformation functions h; that depend on the survival time and on the explanatory variables simulta-
neously (eq. (4)). Hence, the effects of the explanatory variables are allowed to vary over time, which
usually results in non-proportional hazards. We not only estimate one single parameter for each explana-
tory variable as is done in the Cox model. Instead, separate partial transformation functions are defined for
each explanatory variable, whereby a smooth parameter function over time is estimated for each group of a
categorical explanatory variable. For continuous explanatory variables, a smooth parameter surface is
estimated that depends on the survival time and on the continuous explanatory variable.

In comparison to alternative nonparametric approaches, the estimation of the conditional survivor
function is not a black box procedure in CTMs. Although the model assumptions are weak in CTMs, a
certain model structure is imposed by introducing additive partial transformation functions. The result-
ing effects of the explanatory variable over time can be interpreted and can be illustrated graphically.
Hence, concerning model complexity, semiparametric CTMs can be placed in between the less flexible
semiparametric linear transformation models (e.g. the Cox model) and more flexible nonparametric
approaches.

If one is interested in better interpretable versions of CTMs, the model class of conditionally linear
transformation models (CLTMs) introduced in Most et al. [47] can be considered. In CLTMs, the conditional
transformation function h is restricted to transformation functions that are linear in the response transfor-
mation. Due to this restriction, the explanatory variables are only allowed to influence the conditional mean
and the conditional variance of the response transformation, whereas higher moments remain unaffected.
The effects of the explanatory variables on the conditional mean and the conditional variance are non-
linear but can be interpreted in CLTMs. Further restrictions of the transformation function are conceivable.
For example, if all interaction terms between the survival time and the explanatory variables are omitted
and the effects of the explanatory variables have to be linear, the conditional transformation function of the
Cox model (eq. (3)) results as a special case. The Cox model can even be further restricted by choosing
special forms of the monotone response transformation hr(t). For example, the specification of
hr(t) =log(4) + v - log(t) results in the Weibull model.
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2.1 Estimating conditional transformation models for survival data

Hothorn et al. [11] explain thoroughly how CTMs are estimated by the minimization of the continuous
ranked probability score (CRPS) (see [48]) using a component-wise boosting algorithm. The CRPS was
chosen because it constitutes a proper scoring rule for distributional and probabilistic forecasts [11]. When
we estimated CTMs for survival data, we also used a component-wise boosting algorithm to minimize an
appropriate integrated loss function. First, we formulated the integrated loss function for uncensored
observations, and then we extended the loss function to right-censored observations.

2.1.1 Integrated loss function for uncensored observations

In an uncensored survival data set-up, we observed the survival or event times T;, i=1,...,N, for N
patients under consideration. Furthermore, we considered a grid of time points {¢, : : =1,...,n} ranging
from the study’s starting point ¢, = O to the study’s end point t,. Typical choices for the grid points
{t.: +=1,...,n} are equally spaced grid points or a grid composed of all distinct survival and event
times. Hence, we were able to observe the binary survival status I(T; < t,) for each patient at each grid
point; the status is 1 if the patient experienced the event by ¢, and is otherwise 0.

We aimed at estimating the conditional distribution function of the event times P(T <t¢,|X =
x) = F(h(t,|x)) (see eq. (2)) in terms of the conditional transformation function h, where ¢, denotes some
arbitrary time point in the study period. This estimation problem can be reformulated as estimating the
probability F(h(t,|x)) for the binary event T < ¢, and is solved by minimizing an appropriate loss function.
We chose the logarithmic score (or negative binomial log-likelihood) for measuring the loss between the
binary event status T; < t, and the corresponding probability F(h(t,|x;)) for N patients at a specific time
point ¢,:

N
LS(t,) = —% Z{I(Ti < t,)log(F(h(t.[x;))) (5)
i=1

+ I(T;>t,) log(1 — F(h(t,x:)))}.

Alternatively, the Brier score or the absolute error loss can be chosen as an appropriate loss function [11, 48, 49].

Based on the logarithmic score for one specific time point ¢, (see eq. (5)), we defined the integrated
logarithmic score over all time points, which allows estimation of the whole conditional distribution
function P(T < t|X = x) in one step:

1N th
ns_—NZ;A{HESObﬁHMWM)

+ I(T> 1) log(1 — F(h(tx))} dW(¢),

(6)

where W(t) denotes a weight function for the time points. By choosing the same weight % for all time points
t, t=1,...,n, we get the empirical version of eq. (6):

R @)
+ I(Ti>t,)log(1 — F(h(t,|x:)))},

which is used as the empirical loss function in the boosting algorithm. Of course, other weight functions
W(t) for the time points are conceivable.

When the conditional distribution function is estimated, the ultimate goal is to estimate the conditional
transformation function h such that the empirical risk in eq. (7) is minimized. The minimization of the
empirical risk is equivalent to the minimization of the loss between the true survival status at time point ¢,,

Bereitgestellt von | Ludwig-Maximilians-Universitat Miinchen Universitatsbibliothek (LMU)
Angemeldet
Heruntergeladen am | 12.12.18 15:52



28 = L. Mést and T. Hothorn: CTMs for Survivor Function Estimation DE GRUYTER

I(T; <t,), and the corresponding estimated survival probability F(h(t,|x;)) for all time points and all
patients. In other words, the survivor function for a specific patient S(¢,|x;) = 1 — F(h(t,|x;)), ¢t =1,...,n,
is estimated such that the survival probabilities fit the patient’s true survival status best.

2.1.2 Integrated loss function for right-censored observations

In survival analysis, we often face right-censored survival times. We do not observe the true survival time T;
for the right-censored patients, and only the observed survival times T; = min(T;, C;), i=1,...,N, are
available. One way to account for right-censored observations in model estimation is the inverse probability
of censoring weighting (IPCW) approach suggested by van der Laan and Robins [50] and used often in the
past (e.g. see [51, 52]). For example, Robins and Finkelstein [53] present an IPCW version of the Kaplan—
Meier estimator and the log-rank test to account for noncompliance and dependent censoring. Van der Laan
and Robins [50] give an IPCW example for right-censored data with time-independent explanatory variables
and censoring at random and suggest that the full data loss function (i.e. the integrated logarithmic score in
our case) be weighted by the IPCWs:

A(t.)

'~ Remin(r, 1)) ?

wj

where A(t,) = I(C;> min(T;, t,)). K denotes the marginal Kaplan-Meier estimator of the censoring distribu-
tion, K(t) = P(T>t), based on (T;,1—4;), i=1,...,N, hence on the observed survival times and the
reverse censoring indicator, which is 1 for right-censored observations and O otherwise. Furthermore, the
censoring time C; is set to oo for uncensored observations.

To calculate the IPCWs for the integrated logarithmic score in eq. (7) based on eq. (8), we have to
distinguish four different situations:
1. Uncensored observations (5; = 1) that experience the event up to t, (T; < t,):

—A(t)=1
~ —
I(Tigtt,éi:1)~I(Ci>Ti) 1 1
wj, = — = — EL
l K(Ty) K(T)  K(T:)

2. Uncensored observations (J; = 1) that do not experience the event up to t, (T; > t,):

—A(t)=1
~ —_——
I(Ti>t“5i =1) -I(Ci>t[,)
Wi, = _ -
i K(t,,) K(tL)

3. Right-censored observations (J; = 0) that experience the censoring up to ¢, (T,- <t):
=A(t,)=0
~ —_—
I(T; <t,6;=0)-1(C;>Ty)

a)iL = =

K(NA)

4. Right-censored observations (5; = 0) that do not experience the censoring up to t, (T;>t,):
:A(t/>:l
- ——
I(Ti>t,,6; = 0) - I(C;i>t,) 1

Wi, — =

k() TRt

The resulting weighting scheme corresponds exactly to the weighting scheme given in Graf et al. [54], which
results in a consistent estimator (see [51]). In short, the observations are weighted by the inverse probability
of not being censored up to the event time (situation 1) or up to the specific time point under consideration
(situations 2 and 4). The current survival status is unknown in situation 3; consequently, these observations
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get zero weights. Thus, censored observations contribute to the model estimation process up to their
censoring time point and those observations that have already been censored are accounted for in
the IPCWs.

We extended the empirical logarithmic score for uncensored observations given in eq. (7) to right-
censored observations by including the weighting scheme presented above. Hence, the empirical version of
the integrated censored logarithmic score results in

IES\C _ 7Ni.n ZXH:{I(TI <t,0; =1)1og(F(h(t,|x:))) f((lf)

i=1 =1

—_

+ I(T;>t,)log(1 — F(h(t,|x;))) -

s

K(t)

which is used as empirical risk function in the boosting algorithm.

2.2 Boosting conditional transformation models for survival data

In CTMs, the conditional distribution function of uncensored responses is estimated using component-wise
boosting with penalization (for a detailed description, see [11]). This algorithm has to be slightly modified
for the estimation of right-censored survival data. Thereby, the empirical risk given in eq. (9) is minimized
with respect to the transformation function h. Furthermore, the parametrization of the partial transforma-
tion functions h;, j=1,...,J, (eq. (4)) has to be slightly adapted for survival data. In component-wise
boosting algorithms, regularization is achieved by the application of penalized base learners. The overall
model complexity is regulated by the number of boosting iterations M. For a thorough introduction to
component-wise boosting with smooth base learners, see Biihlmann and Hothorn [55] and Schmid and
Hothorn [56].

2.2.1 Parametrization of the partial transformation functions

Considering the parametrization of the partial transformation functions in Hothorn et al. [11], we defined for
the jth partial transformation function:

hit.|x) = (bj(x) ' ® br(t)")y;, j=1,....], (10)

where by : R — RX" denotes the basis along the grid of time points ¢,, « = 1,...,n, and bj:y— RS is a
basis for (a subset of) the explanatory variables x. Both sets of basis functions are connected via a
Kronecker product, whereby an interaction surface between the survival times and the explanatory vari-
ables is established. The vector y; € RYXT contains the basis coefficients for the established interaction
surface. The basis br defines the functional form of the transformation of the survival times, and the
functional form of b; defines how the survival time transformation is influenced by the explanatory
variables [11]. Hence, one usually chooses B-spline basis functions for by, and depending on the desired
flexibility or the measurement level of the explanatory variables, one chooses linear basis functions or B-
spline basis functions for b;. In more detail, linear basis functions are chosen for b; if x is univariate and
categorical or if x is univariate and continuous, and a linear influence is assumed. B-spline basis functions
are chosen for b; if x is univariate and continuous, and the influence might be more flexible. Additionally,
b; might depend on more than one explanatory variable, and appropriate multivariate basis functions have
to be considered. The partial transformation functions h; are typically expected to be smooth in the first
argument f and in the conditioning variable x because continuous distribution functions have to be smooth
in the response variable. Moreover, we expect similar distribution functions for similar values of the
explanatory variables. Therefore, appropriate penalty matrices Py € RXT*K and P e RX*K are imposed
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on the basis functions defined in eq. (10). The penalty matrix for the Kronecker product of the basis
functions is defined via Prj = (ArP; ® 1k, + 41g, ® Pr), where Air > 0 and 4; > O denote smoothing para-
meters and 1 denotes the identity matrix.

As an example, we give the partial transformation function for the explanatory variable sex influencing
the survival time transformation:

hoex(t,Isex) = (bi(sex)” ® br(t)" ) Vsex

Since the explanatory variable sex is binary, we chose linear basis functions for bgé‘x(sex), and furthermore,

we chose B-spline basis functions for br. No penalty term Pse, is specified for the linear basis bl;‘;( and a
smoothness penalty term based on second-order differences Pr is defined for the B-spline basis br. The
resulting interaction surface for the explanatory variable sex and the survival time can also be understood
as the separate estimation of a smooth survival time transformation for males and females. Hence, the
difference in the survival probabilities of males and females is allowed to vary flexibly over time and is
therefore able to display non-proportional hazards for the explanatory variable sex. For further details on

parametrization and penalty specification, see Hothorn et al. [11].

2.2.2 Component-wise boosting algorithm for conditional transformation models for survival data

The component-wise boosting algorithm for right-censored survival data is only a slight modification of the
algorithm presented in Hothorn et al. [11]:

(Init) Initialize the parameters yl[o] =0 for j=1,...,], the step-size v € (0,1) and the smoothing
parameters /;, j =1,...,]J. Define the grid t; < T;y < ... <T(y) < t,. Calculate the IPCWs «w;, for
each grid point . and each observation i.
Set m = 0.

(Gradient) Compute the negative gradient of the censored log score:

U, = _ai‘hp(@ <txm|
— {1<T,~<tuél~=1>F<<(t7t||:f>))' (T3)
-y F(htx)
— I(T; t/')l— F(h(t,|x;)) . }hhm]

where F (-) denotes the density of the link function F, K(-) denotes the marginal Kaplan-Meier
estimator of the censoring distribution and

I

(6 x) = 3 (bix0) " ® br(t) )7

j=1 j=1

M\

Fit the base-learners forj=1,...,]J:

N n
B; = argmin Z Z i {Uy — (bj(x;) " ® br(t, )[3} +pB'P;B
BeRS*T T =
with penalty matrix Py;.
Select the base-learner

n

N
j*=argmin > wu{Uu_ j(xi)" @ br(t) )ﬁi}z'

=L S =
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m+1] _, [m] A : o g mH m
(Update)  the parameters Y =7 +v-B; andKkeep all other parameters fixed, i.e. y; =y, J#".

Iterate (Gradlent) and (Update).
(Stop) if m = M. Output the model

~

B(T < 6% = x) = FR"™ (tx)) (Z M) t|x>

J ]:M
—F(Z(bj(X)T ® br() )"
j=1

as a function of arbitrary t € R" and arbitrary explanatory variables x.

3 Simulation

3.1 Simulation study set-up

In the following simulations, we investigated the performance of CTMs in comparison to alternative
semiparametric (ordinary Cox model and stratified Cox model) or nonparametric (Kaplan—Meier estimator;
conditional random forests) modelling strategies in four different simulation settings with Weibull distrib-
uted survival times. We considered different scenarios of explanatory variables and proportional as well as
non-proportional hazard settings. Since the handling of censored observations is an important issue, we
considered different amounts of right-censored survival times. The censoring times were drawn indepen-
dently from uniform distributions such that 5%, 10%, 25% and 50% right-censored observations resulted in
each simulation setting.

The true hazard function and the corresponding true survivor function for Weibull distributed survival
times are

A(t) :%tc—l and  S(t) = exp(—b~<t°), (11)

where b and ¢ denote the scale and shape parameter of the Weibull distribution, respectively. The choice of
parameters b and ¢ determines whether proportional hazards or non-proportional hazards result. The
proportional hazards assumption is fulfilled if the explanatory variables influence only the scale parameter
b and the shape parameter c is fixed. If the explanatory variables additionally influence the shape
parameter c, the proportional hazards assumption is violated, which, e.g. results in crossing survivor
functions.

3.1.1 Simulation 1

In the first simulation setting, we considered the simple data setting of two treatment groups G; and G,
which differed with respect to their survival probabilities. The survival times were Weibull distributed with
b, =1 and ¢; = 3 for treatment group G; and b, = 1.5 and ¢, = 3 for treatment group G,. Moreover, we
included a non-informative continuous covariate x. Since the shape parameters were identical, the corre-
sponding survivor functions followed the proportional hazards assumption (Figure 1). This could also be
recognized by rewriting the conditional Weibull distribution in terms of the Cox linear transformation
model (eq. (3)). The conditional Weibull distribution resulted from eq. (11) by inserting the scale parameter
b = s + by - x, where f; =1 for G; and f; = 1.5 for G,, and the shape parameter ¢ = y; + y, - x with y; =3
for both treatment groups. Since x was non-influential, g, =y, = O:
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Figure 1: Simulation: True survivor and hazard functions for treatment groups G; and G, based on Weibull distributed survival
times. Proportional hazards setting (simulation 1): b; = 1, ¢; = 3 (for Gy) and b, = 1.5, ¢; = 3 (for G); non-proportional hazards
setting (simulation 2): by =15, ¢;=3and b, =1, ¢; = 1.

1= S(t16, ) = 1 — exp(— (B + B, - x) 7o - i)

= 1—exp(—exp(-3-log(fs) + 3 -log(t)))
yx:ﬂxzo‘yGZB

= F(hr(t) + Bo),

where F denotes the minimum-extreme value distribution, hr(t) = 3 - log(t) and Sz = —3 - log(f3;). This setting
could be perfectly fitted using a Cox model as there was no interaction term between the treatment group G
and the survival time ¢ (i.e. the proportional hazards assumption was fulfilled), and G had a linear influence.
We sampled Nz = 200 survival times T from the respective Weibull distribution for each treatment group and
identical Nz = 200 independent x-values were chosen on an equidistant grid on [0, 1] for the treatment groups.

3.1.2 Simulation 2

In analogy to simulation 1, the survival probabilities differed for treatment groups G; and G,, and the
continuous explanatory variable x was non-informative. The parameters of the Weibull distributed survival
times were b; = 1.5 and c¢; = 3 for treatment group G1 and b, = 1 and ¢, = 1 for treatment group G,. Since the
scale and the shape parameters were treatment specific, the proportional hazards assumption was violated
(Figure 1). Again, this could be clarified by writing the conditional Weibull distribution in terms of eq. (3):
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1—S(t|G,x) =1 — exp(—(Bg + By - X) 10 ™ . pratieX)

, :72:01 — exp(—exp(—y; - 1og(B;) + 76 - log(t))),

where f; = 1.5 for G; and f; =1 for G, and y; = 3 for G; and y; = 1 for G,. Since there is an interaction
term between G and t, the proportional hazards assumption was violated. We sampled Nz = 200 survival
times for each treatment group from the respective Weibull distributions. The independent and identical
Ng = 200 x-values were chosen on an equidistant grid on [0, 1] for the treatment groups.

3.1.3 Simulation 3

The survival times differed with respect to the treatment group G and with respect to the continuous
explanatory variable x in simulation setting 3. The survival times were Weibull distributed with scale
parameters b; = exp(1/4 + x) for treatment group G, and b, = exp(1 + x) for treatment group G,. The shape
parameters ¢; = ¢, = 3 were identical, which resulted in the proportional hazards assumption. Again, the
connection to the Cox model could be established in terms of eq. 3. We inserted b = exp (f; + f - x) for the
scale parameter, where f; = 0.25 for G, and ; =1 for G,, f, =1, and c = 3:

1—S(¢|G,x) =1 — exp(—exp(—3- (B; +x) + 3 - log(t)))
= F(hr(t) + X'B),

where F denotes the minimum-extreme value distribution, 8 = (8¢ )" and X = (G x). More precisely, the
parameters of the linear transformation model were BG = —0.75 for G; and BG = —3 for G,, BX = -3 and
hr(t) = 3 -log(t). Hence, the simulation setting could be perfectly analysed using a Cox model as there were
no interactions between the explanatory variables and the survival time, and G and x had a linear
influence. First, we chose N; =300 x-values by defining an equidistant grid on [0,1] for the treatment
groups. Afterwards, we sampled 300 survival times from the Weibull distributions with parameters b; and ¢
for treatment group G; and 300 survival times from the Weibull distributions with parameters b, and c for
treatment group G,.

3.1.4 Simulation 4

In analogy to simulation 3, the survival probabilities were influenced by G and x. But this time, we chose a
non-proportional hazards setting by keeping the scale parameter b = exp(0.5) fixed and letting the shape
parameter to depend on the explanatory variables: ¢; = 2 + x? for treatment group G, and ¢, = 2.5 + x? for
treatment group G,. More general, the shape parameter c is ¢ = y; + 7, (x) with y; = 2 for G, and y; = 2.5 for
G, and a non-linear function in x, y,(x) = x2. Hence, the shape parameters differed only slightly for the
treatment groups and were mainly influenced non-linearly by x. Again, the conditional Weibull distribution
of the survival times could be displayed as a CTM:

1= S(t[G,x) =1— exp(— exp (—;y(; —%xz + 76 - log(t) + 22 - log(t))).
As there were interactions between the explanatory variables and the survival time, the proportional
hazards assumption was violated. We first chose N; = 300 x-values by defining an equidistant grid on
[0, 2]. In this simulation setting, the x-values varied on [0, 2] instead of [0, 1], which resulted in a wider range
of shape values c. Afterwards, 300 survival times were sampled from the Weibull distributions with
parameters b and c; for treatment group G; and 300 survival times were sampled from the Weibull
distributions with parameters b and c, for treatment group G..
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3.2 Model estimation

We estimated the conditional survival curves for the treatment groups G; and G, and the continuous
covariate x, S(t|G,x), using a CTM, an ordinary Cox model and conditional random forests in all four
simulations. In the Cox model, the hazard function was modelled via A(t|G,x) = Ao(t) exp(B; - G + B, - X),
where Jo(t) denotes the baseline hazard. In the CTM, a partial transformation function for each explanatory
variable was defined, h(t|G,x) = hg(t|G) + hy(t|x), in which the influence of the explanatory variables was
allowed to vary over time.

Separate Kaplan—Meier estimators can only be obtained for categorical explanatory variables. As x was
non-influential in simulations 1 and 2, treatment-specific Kaplan—Meier estimates were additionally
provided.

A non-proportional hazards setting was considered in simulations 2 and 4. Therefore, we additionally
estimated a stratified Cox model with treatment-specific baseline hazard functions: A(¢|G,x) = As(f)-
exp(fy - X).

The flexibility of CTMs can be restricted to the flexibility of a Cox model by considering a CLTM [47]. We
avoided all interactions between the explanatory variables and the survival time and assumed linear
influences for G and x in the corresponding conditional transformation function: h(t|G,x) = hs(1|G)+
he(1|x) + hr(t|1) = B; - G+ B, - x + hr(t). Hence, the CLTM and the Cox model could be considered as
semiparametric alternatives, in which both models assumed proportional hazards.

3.2.1 Simulation 1

The conditional survivor functions were estimated using a CTM, a CLTM, an ordinary Cox model, the
Kaplan—Meier estimator and conditional random forests. Thereby, the treatment-specific Kaplan—-Meier
estimator could be understood as a nonparametric alternative to conditional random forests, in which
the Kaplan—Meier estimator was expected to perform better as the non-informative explanatory variable x
was ignored.

3.2.2 Simulation 2

In this non-proportional hazards setting, the conditional survivor functions were additionally estimated
using a stratified Cox model. As x was non-informative, treatment-specific Kaplan-Meier estimators were
obtained as both a nonparametric and a predominant alternative to conditional random forests.

3.2.3 Simulation 3

We estimated the conditional survivor functions S(¢|G,x) using a CTM, a CLTM, a Cox model and condi-
tional random forests. In general, the identification of the linear influence of x is difficult for conditional
random forests, as the linear function has to be approximated by a step function.

3.2.4 Simulation 4

The conditional survivor functions were estimated using a CTM, a CLTM, an ordinary Cox model and a
stratified Cox model and conditional random forests. Similar to simulation 3, conditional random forests
had difficulties in identifying the non-linear influence of x, which had to be approximated by a step
function.
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3.3 Model evaluation

We aimed at evaluating the goodness of the CTM, the CLTM, the Cox model (both ordinary and stratified),
the Kaplan—-Meier estimator and conditional random forests for estimating the survivor functions of
treatment groups G; and G, in all four simulation settings. Therefore, we used the out-of-sample uncensored
log score (eq. (7)) and the mean absolute deviation (MAD) between the true and the estimated survivor
functions as quality criteria.

For the evaluation, we drew 1,000 new observations for each treatment group. In simulations 1 and 2,
we simply drew 1,000 new observations from the Weibull distributions with parameters b, and c;, and b,
and ¢, respectively. In simulations 3 and 4, we defined 1,000 x-values by determining an equidistant grid
on [0,1] and [0, 2], respectively. Afterwards, we drew a new Weibull distributed survival time depending on
the shape and scale parameter induced by each x-value.

Based on these new observations, we calculated separate uncensored log scores for the two treatment
groups. As an example, we describe the calculation of the uncensored log score for treatment group G;: We
compared the true survivor status I(T; <t,) for each new survival time and corresponding x-value,
(T1,x), 1=1,...,1,000, for treatment group G; along a grid of time points ¢, with the corresponding
estimated survival probabilities z(t,|Gy,X;). Thereby, the estimated conditional survival probabilities
x(t,|G1, x;) resulted from the CTM, the CLTM, the Cox model (ordinary or stratified), or conditional random
forests. The survival probabilities z(¢,|G;) were only treatment specific for the Kaplan-Meier estimator in
simulations 1 and 2. The grid of time points ¢, consisted of all new survival times T;, | =1,...,1,000. The
uncensored log score for treatment group G, was calculated analogously.

In addition, we calculated the MAD of the estimated survival curves and the true Weibull distribution
functions for each treatment group separately. Thereby, we also considered the grid of 1,000 x-values
x;, 1=1,...,1,000, and the grid consisting of the 1,000 new survival times for each treatment group,
t,, t=1,...,1,000:

1 1,000 1,000
MAD(Gy) = 1,000 1,000 ; ; | p(t.|Gr, x1) — (8| G, xa)] (12)
where p denotes the true survival probabilities and 7 denotes the estimated survival probabilities.
Furthermore, k € {1,2} denotes the index for the two treatment groups and [ =1,...,1,000 is the index
for the new observations for each treatment group. In the simulation settings 1 and 2, the true survival
probabilities p(t,|Gx, x;) reduced to p(t,|Gx) as x was non-informative. For reasons of interpretability, the
MAD values and the uncensored log scores were multiplied by 100.
This procedure was repeated for B = 100 simulated data sets. We calculated mean values of the
resulting 100 MADs or uncensored log scores for the different treatment groups and the different estimation
techniques.

3.3.1 Simulation 1

All estimation approaches yielded similar results. The calculated mean MADs (Table 1; Figure 2) were small
for all model approaches and indicated that the estimated survivor functions were in good accordance with
the true Weibull survivor functions. Only for 50% censored observations did the MADs grow larger through-
out. The Cox model, the CLTM and the Kaplan—Meier estimator performed slightly better because the Cox
model and the CLTM profited from the proportional hazards assumption and the Kaplan-Meier estimator
ignored the non-informative explanatory variable x. Nevertheless, the uncensored log score was the more
interesting quality criterion, as it evaluates how well the estimation techniques are able to predict the survivor
status of new observations. Again, all four estimation approaches yielded similar results (Table 2; Figure 3).
All uncensored log scores grew larger with an increasing amount of censored observations.
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Table 1: Simulation 1: Mean absolute deviations between true and estimated survival curves for each treatment group. The
reported values are mean values over B = 100 simulations.

Treatment group Model Censoring
5% 10% 25% 50%

CT™M 2.87 2.96 3.45 6.18

CLT™M 2.43 2.51 3.02 5.97

G, Cox 2.41 2.54 3.23 6.64
Kaplan—Meier 2.41 2.51 3.21 6.63

Cforest 2.59 2.67 3.34 6.74

™M 2.71 2.80 3.58 6.98

CLTM 2.37 2.48 3.30 6.84

G, Cox 2.30 2.42 3.29 6.88
Kaplan—Meier 2.28 2.38 3.24 6.71

Cforest 2.50 2.57 3.33 6.64

Treatment group G,
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Figure 2: Simulation 1: Boxplot of the treatment-specific mean MAD values based on B = 100 simulations for the conditional
transformation model (CTM), the conditionally linear transformation model (CLTM), the Cox model (Cox), the Kaplan—Meier
estimator (KM) and conditional random forests (Cforest): 5%, 10%, 25% and 50% of right-censored observations were observed.

3.3.2 Simulation 2

The MADs of the CTM, the stratified Cox model, the Kaplan—Meier estimator and conditional random forests
were similar throughout, whereas the ordinary Cox model and the CLTM clearly yielded higher MADs
(Table 3; Figure 4). The only exception was the MADs for 50% censored observations, where all models had
higher MADs. Moreover, the MADs for conditional random forests were most variable and the Kaplan-Meier
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Table 2: Simulation 1: Out-of-sample uncensored log score based on 1,000 new observations for each treatment group. The
reported values are mean values over B = 100 simulations.

Treatment group Model Censoring
5% 10% 25% 50%
CcT™ 50.52 50.58 50.82 52.27
CLTM 50.39 50.45 50.68 52.02
Gy Cox 50.40 50.47 50.78 52.41
Kaplan—Meier 50.42 50.50 50.89 52.66
Cforest 50.46 50.54 50.93 52.75
CT™M 50.54 50.63 50.97 52.79
CLTM 50.47 50.58 50.89 52.70
G, Cox 50.39 50.48 50.79 52.52
Kaplan—Meier 50.45 50.55 50.92 52.75
Cforest 50.49 50.60 50.95 52.74
Treatment group G;
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Figure 3: Simulation 1: Boxplot of the out-of-sample mean uncensored log scores based on 1,000 new observations for each
treatment group and B = 100 simulations for the conditional transformation model (CTM), the conditionally linear transforma-
tion model (CLTM), the Cox model (Cox), the Kaplan—-Meier estimator (KM) and conditional random forests (Cforest): 5%, 10%,
25% and 50% of right-censored observations were observed.

estimator performed better, as it profited from ignoring x. The uncensored log scores gave similar results
(Table 4; Figure 5). Again, the log scores for the CTM, the stratified Cox model, the Kaplan—Meier estimator
and conditional random forests were similar, whereas the ordinary Cox model and the CLTM clearly yielded
higher values. One exception was the throughout larger uncensored log scores for 50% censored
observations.
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Table 3: Simulation 2: Mean absolute deviations between true and estimated survival curves for each treatment group.
The reported values are mean values over B = 100 simulations.

Treatment group Model Censoring
5% 10% 25% 50%

CT™Mm 2.60 2.74 3.31 6.34

CLT™M 8.14 8.08 8.27 10.26

G, Cox 9.02 8.56 7.45 7.31
Kaplan—Meier 2.58 2.74 3.43 6.84

Cforest 2.39 2.50 3.19 6.64

Stratified Cox 4.16 4.07 4.19 5.85

CTM 3.15 3.41 5.03 10.99

CLT™M 7.60 8.20 9.80 14.30

G, Cox 9.58 10.25 12.00 16.51
Kaplan—-Meier 2.55 2.88 4.83 11.15

Cforest 2.34 2.64 4.63 10.96

Stratified Cox 4.85 5.51 8.15 14.58
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Figure 4: Simulation 2: Boxplot of the treatment-specific mean MAD values based on B =100 simulations for the conditional
transformation model (CTM), the conditionally linear transformation model (CLTM), the Cox model (Cox), the Kaplan—-Meier
estimator (KM), conditional random forests (Cforest), and the stratified Cox model (Cox.Strata): 5%, 10%, 25% and 50% of right-
censored observations were observed.

3.3.3 Simulation 3

The Cox model and the CLTM approach performed almost equally well in the proportional hazards setting.
The mean MADs (Table 5; Figure 6) and the out-of-sample uncensored log scores (Table 6; Figure 7) were
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Table 4: Simulation 2: Out-of-sample uncensored log score based on 1,000 new observations for each treatment group. The
reported values are mean values over B = 100 simulations.

Treatment group Model Censoring
5% 10% 25% 50%

CTM 50.43 50.51 50.79 52.30

CLT™M 53.12 53.14 53.41 55.06

G, Cox 53.07 52.87 52.46 52.87
Kaplan—Meier 50.46 50.54 50.91 52.66

Cforest 50.42 50.50 50.89 52.67

Stratified Cox 50.89 50.90 51.06 52.03

CTmM 50.75 50.92 51.65 55.46

CLT™M 53.47 53.85 55.13 60.09

G, Cox 54.63 55.21 57.04 63.12
Kaplan—-Meier 50.52 50.70 51.53 55.45

Cforest 50.48 50.66 51.47 55.37

Stratified Cox 51.63 52.08 53.84 59.87
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Figure 5: Simulation 2: Boxplot of the out-of-sample mean uncensored log scores based on 1,000 new observations for each
treatment group and B = 100 simulations for the conditional transformation model (CTM), the conditionally linear transforma-
tion model (CLTM), the Cox model (Cox), the Kaplan-Meier estimator (KM), conditional random forests (Cforest), and the
stratified Cox model (Cox.Strata): 5%, 10%, 25% and 50% of right-censored observations were observed.

similar for the Cox model and the CLTM, whereas the CTM was associated with slightly higher MADs and
uncensored log scores. Conditional random forests performed worst because conditional random forests
and the CTM were not able to profit from the proportional hazards assumption. Additionally, conditional
random forests had difficulties in identifying the linear influence of x.
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Table 5: Simulation 3: Mean absolute deviations between true and estimated survival curves for each treatment group. The
reported values are mean values over B =100 simulations.

Treatment group Model Censoring
5% 10% 25% 50%

CT™M 1.88 1.90 2.46 4.42

Gy CLT™M 1.67 1.69 2.28 4.37
Cox 1.60 1.67 2.44 5.17

Cforest 4.04 4.42 5.52 8.51

CT™Mm 1.97 2.06 2.71 5.07

G, CLT™M 1.74 1.78 2.43 4.81
Cox 1.67 1.75 2.50 5.10

Cforest 3.93 4.01 4.45 6.43

Treatment group Gy
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Figure 6: Simulation 3: Boxplot of the treatment-specific mean MAD values based on B =100 simulations for the conditional
transformation model (CTM), the conditionally linear transformation model (CLTM), the Cox model (Cox), and conditional
random forests (Cforest): 5%, 10%, 25% and 50% of right-censored observations were observed.

3.3.4 Simulation 4

The CTM performed better than all alternative modelling approaches, as it showed lower MADs for all
amounts of censoring than the CLTM, the Cox model, the stratified Cox model and conditional random
forests (Table 7; Figure 8). Additionally, the CTM approach was associated with the smallest mean
uncensored log scores (Table 8; Figure 9) because the CTM approach is the only approach that was able
to account for the non-linear influence of x on the shape parameter of the Weibull distribution
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Table 6: Simulation 3: Out-of-sample uncensored log score based on 1,000 new observations for each treatment group.

The reported values are mean values over B = 100 simulations.

Treatment group Model Censoring
5% 10% 25% 50%
CT™Mm 38.96 38.99 39.21 40.08
Gy CLTM 38.90 38.92 39.13 39.98
Cox 38.93 38.97 39.25 40.44
Cforest 40.03 40.31 41.20 44,22
CT™M 40.99 41.05 41.34 42.60
G, CLTM 40.95 40.99 41.30 42.54
Cox 40.86 40.91 41.20 42.40
Cforest 41.74 41.82 42.17 44.00
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Figure 7: Simulation 3: Boxplot of the out-of-sample mean uncensored log scores based on 1,000 new observations for each
treatment group and B = 100 simulations for the conditional transformation model (CTM), the conditionally linear transforma-
tion model (CLTM), the Cox model (Cox), and conditional random forests (Cforest): 5%, 10%, 25% and 50% of right-censored

observations were observed.

adequately. The Cox model and the CLTM performed worse owing to the proportional hazards assump-
tion. Since the non-proportionality of hazards was mainly induced by x, the stratified Cox model
performed only slightly better than the ordinary Cox model in terms of the mean uncensored log
score. Conditional random forests performed better than both Cox models and the CLTM as the
approach can account for non-proportionality in G and x, but performed worse than the CTM owing
to the non-linear influence of x on the shape parameter. Again, conditional random forests had

difficulties in identifying the non-linear influence of x.
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Table 7: Simulation 4: Mean absolute deviations between true and estimated survival curves for each treatment group.
The reported values are mean values over B = 100 simulations.

Treatment group Model Censoring
5% 10% 25% 50%

CT™Mm 2.48 2.55 3.36 6.67

CLT™M 5.09 5.12 5.60 7.79

G, Cox 5.75 5.82 6.43 8.71
Cforest 4.34 4.42 4.92 7.14

Stratified Cox 5.67 5.72 6.24 8.44

CTM 2.38 2.46 3.26 5.78

CLT™M 4.47 4.51 4.96 6.83

G, Cox 5.27 5.30 5.67 7.29
Cforest 3.82 3.85 4.29 6.26

Stratified Cox 5.32 5.39 5.90 7.66
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Figure 8: Simulation 4: Boxplot of the treatment-specific mean MAD values based on B = 100 simulations for the conditional
transformation model (CTM), the conditionally linear transformation model (CLTM), the Cox model (Cox), conditional random
forests (Cforest), and the stratified Cox model (Cox.Strata): 5%, 10%, 25% and 50% of right-censored observations were
observed.

4 Chronic myelogenous leukaemia data

Curative bone marrow transplantation is feasible for only a minority of patients with chronic myelogenous
leukaemia. Therefore, drug-based chemotherapy remains a treatment of central interest. The standard
chemotherapy has long been with the cytostatic drugs BUS or HU. In a multicentre, randomized study,
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Table 8: Simulation 4: Out-of-sample uncensored log score based on 1,000 new observations for each treatment group.
The reported values are mean values over B =100 simulations.

Treatment group Model Censoring
5% 10% 25% 50%

CT™Mm 49.23 49.28 49.64 51.29

CLT™M 50.59 50.64 51.03 52.66

G, Cox 50.95 51.04 51.57 53.45
Cforest 50.71 50.78 51.20 52.97

Stratified Cox 50.01 50.10 50.47 52.02

CT™ 49.23 49.28 49.55 50.66

CLT™M 50.21 50.25 50.46 51.46

G, Cox 50.44 50.46 50.67 51.68
Cforest 50.56 50.62 50.96 52.19

Stratified Cox 49.78 49.81 50.01 51.04
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Figure 9: Simulation 4: Boxplot of the out-of-sample mean uncensored log scores based on 1,000 new observations for each
treatment group and B = 100 simulations for the conditional transformation model (CTM), the conditionally linear transforma-
tion model (CLTM), the Cox model (Cox), conditional random forests (Cforest), and the stratified Cox model (Cox.Strata): 5%,
10%, 25% and 50% of right-censored observations were observed.

Hehlmann et al. [57] have shown that treatment with the drug IFN-o significantly prolongs survival
compared to treatment with BUS, and survival times after treatment with IFN-a or HU were not significantly
different. Within the scope of the study, 516 eligible patients were recruited in 57 study centres from 1983 to
1991. For 507 of the 516 patients, complete data on sex, age and a prognostic score distinguishing between
low-, intermediate- and high-risk groups [58] are available. Of the 507 patients, 132 random patients were
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treated with IFN-a, 182 were treated with BUS and 193 were treated with HU. Ninety patients were right-
censored mainly due to bone marrow transplantation during the first chronic phase, and 417 patients died
during the study period [59].

4.1 Model estimation

Herberich and Hothorn [59] analysed the treatment effects using a frailty Cox model [60] with Gaussian
frailties for the 57 study centres. Furthermore, age, sex, treatment and risk group were included as linear
predictors. In our re-analysis of the CML data set, the main goals were to check the validity of the
proportional hazards assumption in Cox models, which have been used for analyses in the past (e.g.
[59]). Moreover, we were interested in possible interactions between the explanatory variables treatment,
risk group, sex and age. More precisely, we were interested in whether the superiority of the IFN-o treatment
found in former studies (e.g. [57]) is present in all risk groups. Additionally, treatment effectiveness might
differ between men and women and patients of different age in the different risk groups. Therefore, we
fitted five models to the CML data, in which the proportional hazards assumption and the considered
interaction terms differed. The random effect for the study centres was excluded in all models for the
purpose of model comparison, as we found its variance to be negligibly small.

First, we estimated an ordinary Cox model with linear influences for the explanatory variables treat-
ment, risk group, sex and age:

At.|x) = Ao(t,) - exP(By + Xtr + Prisk - Xaisk + Boex * Xsex + Bage Xage),

where Jo(-) denotes the baseline hazard function and proportional hazards were assumed.

To account for possible interactions between the categorical explanatory variables treatment, risk group
and sex, we estimated an additional Cox model that included all two-time interactions between treatment,
risk group and sex, and their three-time interaction. Again, all influences were assumed to be linear:

A(t,]x) = Zo(t.) - €Xp(Byy - Xtr + Prisi * Xrisk + Bsex * Xsex + Page * Xage
+ Brerisk * Xterisk T Prrsex * Xtr:sex + Briskisex * Xrisk:sex
+ Brrriskisex * Xtrrisk:sex)-

Since the Cox model assumed proportional hazards for all patient characteristics, we alternatively used a
CTM for data analysis. In the CTM, the proportional hazards assumption was relaxed by allowing for
flexible influences of each explanatory variable over time:

h(t,|x) = hy(t,|tr) + hyisk (¢, |1iSK) + hsex (t,|5€X) + hage (t,|age).

We defined separate partial transformation functions for treatment, risk group, sex and age that were
specified in terms of basis functions:

hu(t,Jtr) = () @ br(t)" )7

sk (t,Irisk) = (B (risk)" @ br(t,)") 7y
Boex(t]5e%) = (b5 (seX)" @ br(t)")7sex and
hoge(tage) = (Bage(age)” @ br(t)")age-

In other words, we fitted a separate function over time for each treatment, for each risk group and for each
sex. For the age effect, we estimated a bivariate interaction surface depending on age and the survival time.

In analogy to the Cox model, the CTM was extended to include interaction terms. Nevertheless, we
always consider interactions between the survival time and the explanatory variables in CTMs. Therefore,
the three-time interaction term between treatment, risk group and sex cannot currently be considered in
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CTMs. Furthermore, the number of two-time interactions should be restricted, which is why we chose to
consider only the most interesting interaction between treatment and risk group:

h(t,1x) = hrisk (t,]tr = 1isK) + hsex (t,|5€X) + hage (t,|age).

In contrast to the previous CTM, where three separate functions over time were estimated for each treatment
and for each risk group, we estimated nine separate functions over time for all treatment-risk group
combinations. By including the treatment-risk group interaction, we investigated whether different treat-
ments should be considered depending on the specific risk group.

As a further comparative method, we analysed the CML data using conditional random forests. This
nonparametric method is also able to relax the proportional hazards assumption and is able to consider
interactions between the explanatory variables. More precisely, the method grew a survival tree by searching
for significant split points in the explanatory variables treatment, risk group, sex and age. The estimated survival
probabilities for the patients were obtained afterwards based on conditional Kaplan—Meier estimators for the
observations in the final leaves. The bootstrap aggregation of conditional survival trees, which is performed
when using conditional random forests as well, results in stable predictions of survival probabilities [29].

4.2 Model evaluation

In the previous section, we described the estimation of a Cox model, a Cox model with interactions, a CTM,
a CTM with interactions and conditional random forests. The evaluation of the five different models served
two main goals. First, we were interested in the validity of the proportional hazards assumption. The
proportional hazards assumption could be checked by comparing the performance of the Cox models to the
performance of CTMs and conditional random forests, as the proportional hazards assumption was relaxed
in the latter two approaches. Moreover, we were interested in possible interactions between the explanatory
variables treatment, risk group, sex and age. Thereby, all possible interactions could be considered in
conditional random forests. All interactions between the categorical explanatory variables treatment, risk
group and sex were considered in the Cox model with interactions. Owing to the higher flexibility, we only
considered the treatment — risk group interaction in the CTM with interactions. Hence, the importance of
interactions could be investigated by comparing the models with interactions to their counterparts without
interactions, and by comparing the models with interactions among each other.
The model performance was quantified by calculating the out-of-sample censored log score given in
eq. (9). For the evaluation we used the following procedure:
1. Generate B =100 bootstrap samples by randomly sampling n = 507 observations with replacement
from the patients in the CML data set. The resulting data sets are estimation data sets.
2. The corresponding evaluation data sets consist of all observations that have not been selected for the
estimation data set.
3. For each bootstrap sample b =1,...,100:

(a) Estimate the five different models based on the estimation data set.

(b) Predict the survival probabilities for the patients in the evaluation data set over a grid of time
points.

(c) Calculate the out-of-sample censored log score (eq. (9)) based on the predicted survival probabil-
ities, the grid points over time and the IPCWs. Separate out-of-sample censored log scores result
for the five model approaches.

4. Compare the B = 100 out-of-sample censored log scores for the five model approaches.

Two important characteristics of the above procedure have to be noted. The IPCWs and a grid of time points
were needed when calculating the censored log score. Thereby, the grid of time points was fixed for all
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bootstrap data sets and consisted of all event and censoring times of the CML patients. The IPCWs were
calculated beforehand for all patients in the CML data set over the grid of time points defined above. When we
selected the patients for the estimation and the evaluation data set, we also selected their respective IPCWs.

The boxplots of the out-of-sample censored log scores for the five different models revealed that the
proportional hazards assumption is problematic for the CML data when only the main effects treatment, risk
group, sex and age are considered (Figure 10). The CTM, the CTM with interactions and conditional random
forests (i.e. the models that relax the proportional hazards assumption) showed lower out-of-sample
censored log scores than the Cox model. Nevertheless, the non-proportional hazards of the main effects
seem to be induced by disregarding interaction terms, as the Cox model with interaction terms performed as
well as the CTM, which ignored all interaction terms but assumed non-proportional hazards. Nevertheless,
the out-of-sample censored log scores for the CTM, the CTM with interactions and conditional random
forests were similar. Hence, the inclusion of the treatment-risk group interaction in the CTM did not lead to
model improvement. All interactions between explanatory variables could be considered in conditional
random forests, but the model’s predictive performance was not superior. Hence, the inclusion of interac-
tion terms is unimportant for models that allow for non-proportional hazards.

[¢)]
[&]
L

o
o
1

Censored log score (out-of-sample)
N
6]

Cox Cox (Int) CT™M CTM (Int) Cforest
Model

Figure 10: Out-of-sample censored log scores for the Cox model (Cox), the Cox model with interactions (Cox (Int)) the CTM (CTM),
the CTM with interactions (CTM (Int)) and conditional random forests (Cforest) for 100 bootstrap evaluation data sets.

Through comparisons of models including CTMs, we found that the proportional hazards assumption is not
violated for a Cox model with interactions. Hence, the best model to analyse the CML data is a Cox model
that includes interaction terms between the categorical main effects.

5 Discussion

The direct estimation of the survivor function in survival data analysis is of special interest, as the reliable
prediction of patient-specific survivor functions allows a better prognosis of the course of disease [61]. We
propose the use of CTMs to directly estimate the conditional survivor function of the survival times given a
set of patient characteristics.

The well-known Cox model is the regression model most commonly used in survival analysis [1]. One
important restriction of the Cox model is the proportional hazards assumption. Of course, several strategies
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deal with or identify non-proportional hazards for some of the explanatory variables. For example, if non-
proportional hazards for a categorical variable are identified, the estimation of a stratified Cox model with
separate baseline hazard functions for the subgroups is frequently used. Speculation about the validity of
the proportional hazards assumption in the Cox model becomes superfluous when the CTM approach is
used, because the proportional hazards assumption is relaxed and can be checked easily by graphic
comparisons.

In our simulation, we investigated the performance of the CTM in cases of proportional hazards and
non-proportional hazards and compared the performance to that of the CLTM, the (ordinary or stratified)
Cox model, the Kaplan—-Meier estimator and conditional random forests. We measured the performance in
terms of the correspondence of true and estimated survival probabilities for new observations. In the
simulation settings with informative binary treatment group and non-informative continuous explanatory
variable, the CTM was able to keep up with the alternative methods in the case of proportional hazards. In
the case of non-proportional hazards, the CTM clearly outperformed the ordinary Cox model and the CLTM
and delivered results equally as good as those of the stratified Cox model, the Kaplan—Meier estimator and
conditional random forests. In the simulation settings with informative binary treatment group and
informative continuous explanatory variable, the CTM performed almost as well as the ordinary Cox
model and the CLTM in the proportional hazards setting. In the non-proportional hazards setting, the
CTM outperformed all alternative models, as it is the only method that was able to consider non-propor-
tionality induced non-linearly by a continuous explanatory variable. One further advantage of the CTM was
that owing to the imposed smoothness penalty, smooth estimated survival curves resulted, which is more
realistic than the step functions resulting from the Cox model, the Kaplan—Meier estimator and conditional
random forests. Moreover, the results of the simulation study showed that the CTM can handle up to 50% of
right-censored observations without heavier losses in the quality of the resulting estimates compared to the
alternative approaches.

Furthermore, we used the CTM approach to analyse survival times of patients suffering from chronic
myelogenous leukaemia to check the proportional hazards assumption that has been implied when using
Cox models in the past. Furthermore, we were interested in the importance of interactions between the
considered explanatory variables. Therefore, the out-of-sample performances of a Cox model, a Cox model
with interactions, a CTM, a CTM with interactions and conditional random forests were compared. Our
analysis revealed that the violated proportional hazards assumption for the main effects treatment, risk
group, sex and age was mainly induced by ignoring important interactions between the main effects.
Furthermore, we would like to stress that models were checked without an extensive analysis of residuals.

The handling of right-censored observations is a main topic in survival analysis. In CTMs, the IPCW
approach has been used to account for right-censored observations. The integrated Brier score or log score
for right-censored observations are well-established scoring rules for model assessment and comparison,
but, to the best of our knowledge, they have not yet been used as risk functions for model estimation. In the
IPCW approach, the observations are reweighted by the inverse probability of remaining uncensored up to a
specific time point. In CTMs, this probability is calculated in terms of the marginal Kaplan—Meier estimator
of the censoring distribution. Hence, the weights are calculated based on observed data and, more
importantly, it is assumed that the censoring mechanism does not depend on any explanatory variables.
Especially the dependency of the censoring distribution on (some of) the explanatory variables would be a
worthwhile extension and needs further investigation [51]. Nevertheless, Hothorn et al. [11] showed the
consistency of the conditional transformation function h in CTMs, which transfers to CTMs for survival data
as we only adapted the weighting scheme to account for right censoring. Mackenzie [62] previously
estimated survival curves with dependent left-truncated data using Cox’s model and inverse probability
weighting. Thus, it would be interesting whether and how the suggested approach extends to left-truncated
or interval-censored data.

Basically, three main assumptions are made when estimating CTMs for survival data. First, by assuming
that the transformation function h exists, we assume that there is a monotone transformation from the
unknown survival time distribution to the link function F. Second, h is decomposed additively into partial
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transformation functions, whereby additivity on the scale of the transformation function is assumed. Third,
the event times and the right-censoring times are assumed to be independent, which is a strong but
common assumption in survival data analysis. The data analyst should be aware of these model assump-
tions as they might be violated.

6 Software

All analyses were carried out in the R system of statistical computing [63]. CTMs were estimated using the R
add-on package ctmDevel [64]. To compare the proposed CTMs for survival data with established models,
we estimated Cox models using the R add-on package survival [65], calculated Kaplan—Meier estimators
using the R add-on package prodlim [66] and estimated conditional random forests using the R add-on
package party [52]. R code for reproducing the results of Section 3 (in ctmDevel/inst/empeval) and Section 4
(in ctmDevel/inst/applications) is publicly available in the ctm package from the R-forge repository (https://
r-forge.r-project.org/projects/ctm).
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