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Abstract

The development of molecular signatures for the prediction of time-to-event outcomes is a methodologically challenging
task in bioinformatics and biostatistics. Although there are numerous approaches for the derivation of marker combinations
and their evaluation, the underlying methodology often suffers from the problem that different optimization criteria are
mixed during the feature selection, estimation and evaluation steps. This might result in marker combinations that are
suboptimal regarding the evaluation criterion of interest. To address this issue, we propose a unified framework to derive
and evaluate biomarker combinations. Our approach is based on the concordance index for time-to-event data, which is a
non-parametric measure to quantify the discriminatory power of a prediction rule. Specifically, we propose a gradient
boosting algorithm that results in linear biomarker combinations that are optimal with respect to a smoothed version of the
concordance index. We investigate the performance of our algorithm in a large-scale simulation study and in two molecular
data sets for the prediction of survival in breast cancer patients. Our numerical results show that the new approach is not
only methodologically sound but can also lead to a higher discriminatory power than traditional approaches for the
derivation of gene signatures.
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Introduction

Recent technological developments in the fields of genomics

and biomedical research have led to the discovery of large

numbers of gene signatures for the prediction of clinical survival

outcomes. In cancer research, for example, gene expression

signatures are nowadays used to predict the time to occurrence of

metastases [1,2] as well as the time to progression [3] and overall

patient survival [4,5]. While the importance of molecular data in

clinical and epidemiological research is expected to grow

considerably in the next years [6–8], the detection of clinically

useful gene signatures remains a challenging problem for

bioinformaticians and biostatisticians, especially when the out-

come is a survival time.

After normalization and data pre-processing, the development

of a new gene signature usually comprises three methodological

tasks:

Task 1: Select a subset of genes that is associated with the

clinical outcome.

Task 2: Derive a marker signature by finding the ‘‘optimal’’

combination of the selected genes.

Task 3: Evaluate the prediction accuracy of the optimal

combination using future or external data.

Task 1, the selection of a clinically relevant subset of genes, is

often addressed by calculating scores to rank the univariate

association between the survival outcome and each of the genes

[8,9]. In a subsequent step, the genes with the strongest

associations are selected to be included in the gene signature.

Task 2, the derivation of an optimal combination of the selected

genes, is usually fulfilled by forming linear combinations of gene

expression levels based on Cox regression. Due to multicollinearity

problems and the high dimensionality of molecular data, a direct

optimization of the Cox partial likelihood is often unfeasible [8].

Consequently, marker combinations are often derived by

combining coefficients of univariate Cox regression models [10],

or by applying regularized Cox regression techniques (such as the

Lasso [11,12] or ridge-penalized regression [13,14]).

Task 3, the evaluation of prediction accuracy, is considered to

be a challenging problem in survival analysis. This is because

traditional performance measures for continuous outcomes (such

as the mean squared error) are no longer applicable in the

presence of censoring. In the literature, several approaches to

address this problem exist (see, e.g., [15] for an overview). In this

article, we focus on the concordance index for time-to-event data (C-index

[16–18]), which has become a widely used measure of the

performance of biomarkers in survival studies [19–22]. Briefly

spoken, the C-index can be interpreted as the probability that a

patient with a small survival time is associated with a high value of
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a biomarker combination (and vice versa). Consequently, it

measures the concordance between the rankings of the survival

times and the biomarker values and therefore the ability of a

biomarker to discriminate between patients with small survival

times and patients with large survival times. This strategy is

especially helpful if the aim is to subdivide patients into groups

with good or poor prognosis (as applied in many articles in the

medical literature, e.g., [10]). By definition, the C-index has the

same scale as the classical area under the curve (AUC) in binary

classification: While prediction rules based on random guessing

yield C~0:5, a perfectly discriminating biomarker combination

leads to C~1.

Interestingly, the derivation of new gene signatures for survival

outcomes via Tasks 1–3 is often addressed by combining

completely different methodological approaches and estimation

techniques. For example, the estimation of biomarker combina-

tions is usually based on Cox regression and is hence carried out

via the optimization of a partial likelihood criterion. On the other

hand, the resulting combinations are often evaluated by using the

C-index [21,22] which has its roots in the receiver operating

characteristics (ROC) methodology. This methodological incon-

sistency is also problematic from a practical point of view, as the

marker combination that optimizes the partial log likelihood

criterion is not necessarily the one that optimizes the C-index. In

other words, if the C-index and therefore the discriminatory

power is the evaluation criterion of interest, it may be suboptimal

to use a likelihood-based criterion to optimize the marker

combination. This issue is, of course, not only problematic in

survival analysis but also in regression and classification. A

theoretical discussion on the differences between performance

measures for binary classification can, e.g., be found in [23].

To overcome the aforementioned inconsistencies, we propose a

unified framework for survival analysis that is based on the same

statistical methodology for gene selection (Task 1), derivation of an

optimal biomarker combination (Task 2) and the evaluation of a

new gene signature (Task 3). As will be demonstrated, all three

tasks can be addressed by using the concordance index for time-to-

event data as performance criterion. While the C-index has

already been proposed for gene selection (Task 1) and the

evaluation of prediction accuracy (Task 3) [9,15], the main

contribution of this article is a new estimation technique that

addresses the development of optimal combinations of genes (Task

2). To achieve this goal, we propose a method for finding gene

combinations that is based on the gradient boosting framework

[24]. As will be shown, it is possible to use boosting to derive

prediction-optimized gene combinations via direct optimization of

the C-index. Because this new approach allows for using the C-

index to address all three tasks, the proposed method leads to a

consistent framework for the derivation of gene signatures in

biomarker studies where the C-index is the main performance

criterion.

Methods

Notation
We first introduce some basic notation that will be used

throughout the article. Let T [ Rz be the survival time of interest

and X~(x1,:::,xp) [ Rp a vector of predictor variables. In

addition to the gene expression levels, X may contain the

measurements of some clinical predictor variables. Denote the

conditional survival function of T given X by

S(tjx)~P(TwtjX~x). The probability density and survival

functions of T are denoted by f (t) and S(t), respectively. Further

let Tcens [ Rz be a random censoring time and denote the

observed survival time by ~TT : ~ min (T ,Tcens). The random

variable D : ~I(TƒTcens) indicates whether ~TT is right-censored

(D~0) or not (D~1).

A prediction rule for T will be formed as a linear combination

g : ~b0z
Xp

l~1

bl
:xl~X Tb , ð1Þ

where b is an unknown vector of coefficients. We generally assume

that the estimation of b̂b is based on an i.i.d. learning sample

f(~TTL
i ,DL

i ,X L
i ), i~1, . . . ,ng. In case of the Cox regression model,

for example, g is related to T by the equation

S(tjx)~ exp ({L0(t): exp (g)) , ð2Þ

where L0(t) is the cumulative baseline hazard function. Because

there is a one-to-one relationship between g and the expected

survival time E(T jX ), the linear combination g can be used as a

biomarker to predict the survival of individual patients.

Concordance index
Our proposed framework to derive and evaluate biomarker

combinations is based on the concordance index (‘‘C-index’’) which is

a general discrimination measure for the evaluation of prediction

models [16,17]. It can be applied to continuous, ordinal and

dichotomous outcomes [25]. For time-to-event outcomes, the C-

index is defined as

C : ~P(gj1
wgj2

jTj1
vTj2

) , ð3Þ

where Tj1
, Tj2

and gj1
, gj2

are the event times and the predicted

marker values, respectively, of two observations in an i.i.d. test

sample f( ~TTj ,Dj ,Xj),j~1, . . . ,Ng. By definition, the C-index for

survival data measures whether large values of g are associated

with short survival times T and vice versa. Moreover, it can be

shown that the C-index is equivalent to the area under the time-

dependent ROC curve, which is a measure of the discriminative

ability of g at each time point under consideration (see [26], p. 95

for a formal proof).

During the last decades, the C-index has gained enormous

popularity in biomedical research; for example, searching for the

terms ‘‘concordance index’’ and ‘‘c-index’’ in PubMed [27]

resulted in 1156 articles by the time of writing this article.

Generally, a value of C close to 1 indicates that the marker g is

close to a perfect discriminatory power, while a marker that does

not perform better than chance results in a value of 0.5. For

example, the famous Gail model [28] for the prediction of breast

cancer is estimated to yield a value of C~0:67 [29].

Being a flexible discrimination measure, the C-index is

especially useful for selecting and ranking genes from a pre-

processed set of high-dimensional gene expression data (Task 1

described in the Introduction). In other words, Task 1 can be

addressed by computing the C-index (and hence the marginal

discriminatory power) for each individual gene or biomarker,

where only those genes with the highest C-index are incorporated

into the yet-to-derive optimal combination (Task 2). Although

there exist various other ways to rank genes and select the most

influential ones, the C-index has been demonstrated to be

especially advantageous for this task [9].

Boosting the Concordance Index for Survival Data
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An estimator of the C-index for survival data is given by

ĈCsurv : ~P
jvk I ~TTjv

~TTk

� �
I ĝgjwĝgk

� �
DjzI ~TTkv

~TTj

� �
I ĝgkwĝgj

� �
DkP

jvk I ~TTjv
~TTk

� �
DjzI ~TTkv

~TTj

� �
Dk

ð4Þ

with j,k [ f1, . . . ,ng (‘‘Harrell’s C for survival data’’, [30]).

Generally, ĈCsurv is a consistent estimator of the C-index in

situations where no censoring is present. However, because pairs

of observations where the smaller observed survival time is

censored are ignored in formula (4), ĈCsurv is known to show a

notable upward bias in the presence of censoring. This bias tends

to be correlated with the censoring rate [15,30].

To overcome the censoring bias of ĈCsurv, Uno et al. [18]

proposed a modified version of ĈCsurv, which is defined as

ĈCUno : ~

P
j,k (ĜGL

n (~TTj))
{2 I ~TTjv

~TTk

� �
I ĝgjwĝgk

� �
DjP

j,k (ĜGL
n (~TTj))

{2 I ~TTjv
~TTk

� �
Dj

, ð5Þ

where ĜGL
n (t) denotes the Kaplan-Meier estimator of the

unconditional survival function of Tcens (estimated from the

learning data). In the following, we will assume that the censoring

times are independent of X . Under this assumption, ĈCUno is a

consistent and asymptotically normal estimator of C (see [18], pp.

1113–1115). Consistency is ensured by applying inverse probabil-

ity weighting (using the weights Dj=(ĜGL
n (~TTj)

2), which account for

the inverse probability that an observation in the test data is

censored [31]). Numerical studies suggest that ĈCUno is remarkably

robust against violations of the random censoring assumption [32].

Apart from the estimators ĈCsurv and ĈCUno, there exist various

other approaches to estimate the probability in (3) (see, e.g., [15]

for an overview). Most of these approaches are based on the

assumptions of a Cox proportional hazards model, so that they are

not valid in case these assumptions are violated. Because ĈCUno is

model-free and because the consistency of ĈCUno is guaranteed

even in situations where censoring rates are high (in contrast to the

estimator ĈCsurv), we will base our boosting method on ĈCUno.

Boosting the concordance index
The core of our proposed framework to address Tasks 1 – 3 is

the derivation of a prediction-optimized linear combination of

genes that is optimal w.r.t. to the C-index for time-to-event data.

Our approach will be based on a component-wise gradient

boosting algorithm [24] that uses the C-index as optimization

criterion.

Gradient boosting algorithms [33] are generally based on a loss

function r(T ,g) that is assumed to be differentiable with respect to

the predictor g:g(X ). The aim is then to estimate the ‘‘optimal’’

prediction function

g� : ~arg
g

min T ,X r(T ,g(X ))½ � ð6Þ

by using gradient descent techniques. As the theoretical mean in

(6) is usually unknown in practice, gradient boosting algorithms

minimize the empirical risk R : ~
Xn

i~1
r(ti,g(xi)) over g

instead.

When considering the C-index for survival data, the aim is to

determine the optimal predictor g� that maximizes the concor-

dance measure C~P(g�i wg�k jTivTk) – which is essentially the

solution to Task 2. Hence a natural choice for the empirical risk

function R would be the negative concordance index estimator

{ĈCUno(T ,g) ~{

P
i,k Di (ĜGL

n ( ~TTi))
{2 I ~TTiv

~TTk

� �
I giwgkð ÞP

i,k Di (ĜGL
n ( ~TTi))

{2 I ~TTiv
~TTk

� � : ð7Þ

Setting R~{ĈCUno(T ,g), however, is unfeasible because

ĈCUno(T ,g) is not differentiable with respect to gi and can

therefore not be used in a gradient boosting algorithm. To solve

this problem, we follow the approach of Ma and Huang [34] and

approximate the indicator function in (7) by the sigmoid function

K(u)~1=(1z exp ({u=s)). Here, s is a tuning parameter that

controls the smoothness of the approximation (details on the

choice of s will be given in the Numerical Results section).

Replacing the indicator function in (7) by its smoothed version

results in the smoothed empirical risk function

{ĈCsmooth(T ,g) ~ {
X
i,k

wik
: 1

1 z exp
ĝgk{ĝgi

s

� � ð8Þ

with weights

wik : ~
Di (ĜGL

n (~TTi))
{2 I ~TTiv

~TTk

� �
P

i,k Di (ĜGL
n (~TTi))

{2 I ~TTiv
~TTk

� � : ð9Þ

By definition, the smoothed empirical risk {ĈCsmooth(T ,g) is

differentiable with respect to the predictor gi. Its derivative is given

by

{
LĈCsmooth(T ,g)

Lgi

~{
X

k

wik

{ exp
ĝgk{ĝgi

s

� �

s 1 z exp
ĝgk{ĝgi

s

� �� � : ð10Þ

In the proposed gradient boosting algorithm, the derivative in

(10) is iteratively fitted to a set of base-learners. Typically, an

individual base-learner (simple regression tool, e.g., a tree or a

simple linear model) is specified for each marker. To ensure that

the estimate of the optimal predictor g� is a linear combination of

the components of X , we will apply simple linear models as base-

learners (cf. [35]). In other words, each base-learner is a simple

linear model with one component of X as input variable.

Consequently, there are p base-learners, which will be denoted

by bl , l~1, . . . ,p. Each base-learner refers to one component of X

and therefore to one marker (or gene).

The component-wise gradient boosting algorithm for the

optimization of the smoothed C-index is then given as follows:

1. Initialize the estimate of the marker combination ĝg½0� with

offset values. For example, set ĝg½0�~0, leading to b̂b
½0�
l ~0 for all

components l~1, . . . ,p. Choose a sufficiently large maximum

number of iterations mstop and set the iteration counter m to 1.

Boosting the Concordance Index for Survival Data
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2. Compute the negative gradient vector by using formula (10)

and evaluate it at the marker combination ĝg½m{1� of the

previous iteration:

U ½m�~ U
½m�
i

� �
i~1,...,n

: ~
LĈCsmooth(T ,ĝg½m{1�)

Lgi

 !
i~1,...,n

:

3. Fit the negative gradient vector U ½m� separately to each of the

components of X via the base-learners bl(:):

U ½m� �?fitted by
b̂b
½m�
l (xl) for l~1,:::,p:

4. Select the component l� that best fits the negative gradient

vector according to the least squares criterion, i.e., select the

base-learner bl� defined by

l�~ argmin
1ƒlƒp

Xn

i~1

U
½m�
i {b̂b

½m�
l (xl)

� �2

:

5. Update the marker combination ĝg for this component:

ĝg½m�/ĝg½m{1�zsl:b̂b
½m�
l� (xl� ) ,

where sl is a small step length (0vsl%1). For example, if

sl~0:1, only 10% of the fit of the base-learner is added to the

current marker. This procedure shrinks the effect estimates

towards zero, effectively increasing the numerical stability of

the update step [23,25].

As only the base learner b̂bl� was selected, only the effect of

component l� is updated (b̂b
½m�
l� ~b̂b

½m{1�
l� zsl:b̂b

½m�
l� (xl� )) while all

other effects stay constant (b̂b
½m�
l ~b̂b

½m{1�
l for l=l�).

6. Stop if m~mstop. Else increase m by one and go back to step

(2).

By construction, the proposed boosting algorithm automatically

estimates the optimal linear biomarker combination that maxi-

mizes the smoothed C-index. The principle behind the proposed

algorithm is to minimize the empirical risk R~{ĈCsmooth(T ,g) by

using gradient descent in function space, where the function space

is spanned by the base-learners bl , l~1,:::,p. In other words, the

algorithm iteratively descents the empirical risk by updating ĝg½m�

via the best fitting base-learner. Because the base-learners are

simple linear models (each containing only one possible biomarker

as predictor variable) and because the update in step (5) of the

algorithm is additive, the final solution ĝg½mstop� effectively becomes a

linear combination of these markers.

The two main tuning parameters of gradient boosting

algorithms are the stopping iteration mstop and the step length

sl. In the literature it has been argued that the choice of the step

length is of minor importance for the performance of boosting

algorithms [36]. Generally, a larger step length leads to faster

convergence of the algorithm. However, it also increases the risk of

overshooting near the minimum of R. In the following sections we

will use a fixed step-length of sl~0:1, which is a common

recommendation in the literature on gradient boosting and which

is also the default value in the R package mboost [37].

The stopping iteration mstop is considered to be the most

important tuning parameter of boosting algorithms [38]. The

optimal value of mstop is usually determined by using cross-

validation techniques [24]. Small values of mstop reduce the

complexity of the resulting linear combination ĝg½mstop� and avoid

overfitting via shrinking the effect estimates. In case of boosting the

C-index, however, overfitting is less problematic as the predictive

performance of g is not related to the actual size of the coefficients

but to the concordance of the rankings between marker values and

the observed survival times. As a result, the stopping iteration

mstop in this specific case is less relevant and can be also specified

by a fixed large value (e.g., mstop~50000).

Regarding the boosting algorithm for the smoothed C-index, an

additional tuning parameter is given by the smoothing parameter

s. While too large values of s will lead to a poor approximation of

the indicator functions in (7), too small values of s might overfit the

data (and might therefore result in a decreased prediction

accuracy). Details on how to best choose the value of s will be

given in the Numerical Results section.

The boosting algorithm presented above is implemented in the

add-on software package mboost of the open source statistical

programming environment R [39]. The specification of the new

Cindex() family and a short description of how to apply the

algorithm in practice are given in Text S1.

Evaluation
After having applied the C-index to select the most influential

genes (Task 1), and after having used the proposed boosting

algorithm to combine the selected genes (Task 2), a final challenge

is to evaluate the prediction accuracy of the resulting gene

combination (Task 3). Since the C-index was used for Tasks 1 and

2, it is also a natural criterion to evaluate the derived marker

combination in Task 3. As argued before, it is advantageous from

both a methodological perspective as well as from a practical one

to use the same criterion for estimation and evaluation of a

biomarker combination.

To avoid over-optimistic estimates of prediction accuracy, it is

crucial to use different observations for the optimization and

evaluation of the marker signature [25,40]. This can be achieved

either by using two completely different data sets (external evaluation)

or by splitting one data-set into a learning sample f(~TTL
i ,DL

i ,X L
i ),

i~1, . . . ,ng and a test sample f( ~TTj ,Dj ,Xj), j~1, . . . ,Ng. The

learning sample is used to optimize the marker combination while

the ‘‘external’’ test sample serves only for evaluation purposes. A

more elaborate strategy is subsampling (such as five-fold or ten-fold

cross-validation), which is based on multiple random splits of the

data. In our numerical analysis, we will use subsampling

techniques in combination with stratification to divide the

underlying data sets into learning and test samples (for details,

see the next section).

When it comes to the C-index, two additional points have to be

taken into consideration: First, as the task is to obtain the most

precise estimation for the discriminatory power, it is no longer

necessary to use the smoothed version ĈCsmooth (which was

included for numerical reasons in the boosting algorithm) for

evaluation. Consequently, we propose to apply the original

estimator ĈCUno for evaluating biomarker combinations in Task

3. Second, when applying the estimator ĈCUno to the observations

in a test sample, a natural question is how to calculate the Kaplan-

Meier estimator ĜGL
n (t) of the unconditional survival function of

Tcens. In principle, there are three possibilities for the calculation

of ĜGL
n (t): The Kaplan-Meier estimator can be computed from

Boosting the Concordance Index for Survival Data
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either the test or from the training data, or, alternatively, from the

combined data set containing all observations in the learning and

test samples. Following the principle that all estimation steps

should be carried out prior to Task 3, we will base computation of

the Kaplan-Meier estimator on the learning data.

Numerical results
Simulation study. We first investigated the performance of

our approach based on simulated data. The aim of our simulation

study was:

(i) To analyze if the proposed framework is able to select a

small amount of informative markers from a much larger set

of candidate variables.

(ii) To check if gradient boosting is able to derive the optimal

combination g of the selected markers, and to compare its

performance to competing Cox-based estimation schemes.

(iii) To investigate the effect of the smoothing parameter s that

controls the smoothness inside the sigmoid function, as well

as potential effects of the sample size and the censoring rate

on the performance of our approach.

The simulated survival times are generated via a log-logistic

distribution for accelerated failure time (AFT) models [41]. They

are based on the model equation log (T)~mzwW , where T is

the survival time, m and w are location and scale parameters, and

W is a noise variable, following a standard logistic distribution. As

a result, the density function for realizations ti can be written as

fdens(tijmi,wi)~
exp (ti{mi)=wið Þ

wi 1z exp (ti{mi)=wið Þð Þ2
ð11Þ

with (T)~m and Var(T)~
p2

3w2
. The p~1000 possible

markers X1,::::,X1000 were drawn from a multivariate normal

distribution with pairwise correlation (r~0:5). The true underlying

combinations of the predictors were given by

mi~gm~1:5z1:5x1zx2{x3{1:5x4 ,

log (wi)~gw~{1z2x1{2x2zx3{x4 :

Note that only four out of 1000 possible markers have an actual

effect on the survival time. Furthermore, those four markers do not

only contribute to the location parameter m but also to the scale

parameter w (cf. [42]) – a setting where standard survival analysis

clearly becomes problematic. Additionally to the survival times T ,

we generated an independent sample of censoring times Tcens and

defined the observed survival time by ~TT : ~ min (T ,Tcens) leading

to independent censoring of 50% of the observations.

In order to answer the above questions, we investigated the

performance of our framework in all three tasks that are necessary

to develop new gene signatures in practice (Tasks 1–3 described in

the Introduction). To avoid over-optimism and biased results, we

simulated separate data sets for the different tasks. In B~100
simulation runs, we first simulated a data set

f( ~TTi,Di,Xi), i~1, . . . ,1000g with 1000 observations to pre-select

the most influential predictors based on the C-index (Task 1). The

optimal combination g of those predictors was later estimated

(Task 2) by our boosting algorithm based on smaller training

samples f(~TTL
i ,DL

i ,X L
i ), i~1, . . . ,ng of size n. For the final external

evaluation of the prediction accuracy (Task 3) we simulated a

separate test data set f( ~TTj ,Dj ,Xj), j~1, . . . ,Ng with N~1000.

For Task 1, we first pre-selected a subset of p� predictors from

the p~1000 available markers. We ranked the predictors based on

their individual values of ĈCUno and included only the

p�~f5,10,30g best-performing markers in the boosting algorithm.

The results suggest that the C-index is clearly able to identify

markers that are truly related to the outcome: Although all

predictors had a relatively high pairwise correlation (r~0:5), the

four informative markers had a selection probability of 98.5% for

p�~5 (99% for p�~10 and 99.5% for p�~30).

To find the optimal combination g of the pre-selected markers

(Task 2), we applied the proposed boosting approach on training

samples with size n~100. The resulting coefficients for p�~5 and

smoothing parameter s~0:1 are presented in Figure 1. The

boosting algorithm seems to be able to derive the optimal

combination of the pre-selected markers, as the structure displayed

by the coefficients is essentially the same as the one of the

underlying true combination gm. The discriminatory power of the

resulting biomarker does not depend on the absolute size of the

coefficients: As the C-index is based solely on the concordance

between biomarker and survival time, what matters in practice is

the relative size of the coefficients. As can be seen from Figure 1, the

estimated positive effect for x1 is larger than the one for x2. On the

other hand, the negative effect of x4 is correctly estimated to be

more pronounced than the the one of x3. The coefficient of the

falsely selected marker is on average close to zero.

In a third step, we evaluated the performance of the resulting

optimized marker combinations (Task 3) on separate test samples.

The resulting estimates ĈCUno for different simulation settings are

presented in Table 1. The highest discriminatory power (median

ĈCUno~0:763, range = 0.559–0.819) can be observed for p�~5,

which is closest to the true number of informative markers. We

compared the performance of our proposed algorithm to

penalized Cox regression approaches such as Cox-Lasso [11,12]

and Cox regression with ridge-penalization [13,14] – see Figure 2.

The proposed boosting approach clearly outperforms the com-

peting estimation schemes, supporting our view that applying

traditional Cox regression might be suboptimal if the discrimina-

tory power is the performance criterion of interest. We addition-

ally computed the optimal C-index resulting from the true marker

combination gm with known coefficients. The values of the true C-

index on the test samples are on average only slightly better than

the ones of boosting the concordance index (median ĈCUno~0:778
– see Table 1).

To evaluate the possible effects of different sample sizes and

censoring rates we modified the mean censoring time leading to

approximate censoring rates of 30% and 70% and generated

training samples of size n~f50,200,500g. Results are included in

Table 1. As expected, the C-index resulting from our framework

increases as censoring rates become small (median ĈCUno~0:820,

range = 0.736–0.858) and decreases in settings with a large

proportion of censored observations (median ĈCUno~0:668, range

= 0.421–0.776). However, the same effect can be observed for the

true C-index resulting from the true marker combination gm (30%

censoring ĈCUno~0:830, 70% censoring ĈCUno~0:690). For larger

training samples, the variance of the coefficient estimates decreases

(see Figure 1). As a result, the discriminatory power resulting from

our boosting algorithm improves (for n~500, median

ĈCUno~0:778, range = 0.614–0.818) and gets nearly as good as
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the true C-index (ĈCUno~0:781). This finding further confirms the

ability of our approach to find the most optimal marker

combination possible – see Figure 2. Note that also the true C-

index differs slightly between the different sample sizes, as the

training sample enters in ĈCUno via the Kaplan-Meier estimator

ĜGL
n (t).

To investigate the effect of the smoothing parameter inside the

sigmoid function, we additionally applied our boosting procedure

for every simulation setting with different values of s. The

resulting estimates ĈCUno are presented in Table 2. Compared to

the effects of the sample size or the number of pre-selected markers

p�, the smoothing parameter s only seems to have a minor effect

on the performance of our algorithm. In light of these empirical

results, we recommend to apply a fixed small value (e.g., s~0:1,

which is also the default value in the Cindex() family for the

mboost package [37] – see Text S1).

For both approaches to fit penalized Cox regression (Cox lasso,

Cox ridge), we applied the R add-on package penalized [43]. In

order to evaluate ĈCUno, we used the UnoC() function implemented

in the survAUC package [44].

Applications to predict the time to distant metastases
In the next step, we further analyzed the performance of our

gradient boosting algorithm in two applications to estimate and

evaluate the optimal combination of pre-selected biomarkers. All

markers are used to predict the time to distant metastases in breast

cancer patients. As in the simulation study, we compared the

results of our proposed algorithm to Cox regression with lasso and

ridge penalization. Additionally, we considered four competing

Figure 1. Coefficient estimates for p�~5 pre-selected markers obtained from 100 simulation runs. The marker combinations were
optimized via gradient boosting based on training samples of size n~100 (left) and n~500 (right). Boxplots represent the empirical distribution of
the resulting coefficients. Only markers X1 to X4 had an actual effect on the survival time.
doi:10.1371/journal.pone.0084483.g001

Table 1. Results of the simulation study.

setting method

n p� cens: C-index boosting Cox lasso Cox ridge true C-index

100 5 50% 0.764 (0.04) 0.731 (0.06) 0.739 (0.04) 0.779

100 10 50% 0.746 (0.06) 0.709 (0.08) 0.707 (0.06) 0.779

100 30 50% 0.689 (0.07) 0.673 (0.11) 0.637 (0.07) 0.779

100 5 30% 0.820 (0.02) 0.774 (0.04) 0.724 (0.04) 0.830

100 5 70% 0.668 (0.10) 0.628 (0.10) 0.593 (0.11) 0.690

50 5 50% 0.741 (0.07) 0.662 (0.18) 0.722 (0.09) 0.772

200 5 50% 0.774 (0.02) 0.748 (0.04) 0.752 (0.04) 0.782

500 5 50% 0.778 (0.03) 0.759 (0.03) 0.760 (0.02) 0.781

Comparison of the discriminatory power resulting from boosting the C-index and competing approaches. Numbers refer to the median value and interquartile range (in

parentheses) of the final ĈCUno on 100 simulation runs. The true C-index refers to the discriminatory power resulting from the true combination of predictors with known
coefficients. The amount of pre-selected genes is denoted as p� , n is the size of the training samples and cens. refers to the censoring rate.
doi:10.1371/journal.pone.0084483.t001
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boosting approaches for survival analysis, which do not directly

optimize the C-index. The first is classical Cox regression,

estimated via gradient boosting, while the other three are

parametric accelerated failure-time (AFT) models assuming a

Weibull, log-normal or log-logistic distribution [45,46]. For all

boosting approaches (Weibull AFT boosting, loglog-AFT boosting

and Cox boosting) we used the corresponding pre-implemented

functions of the mboost package. To ensure comparability, we

used the same linear base-learners as described above for all

boosting approaches.

To ensure that the combined predictor did not only work on the

data it was derived from but also on ‘‘external’’ validation data, we

carried out a subsampling procedure for both data sets to generate

B~100 different learning samples f(~TTL
i ,DL

i ,X L
i ), i~1, . . . ,ng and

test samples f( ~TTj ,Dj ,Xj),j~1, . . . ,Ng, respectively. Consequently,

we randomly split the corresponding data sets to use 2=3 of the

observations as learning sample in order to optimize the biomarker

combination ĝg. To ensure an equal distribution of patients with

and without an observed development of distant metastases we

applied stratified sampling. Correspondingly, the 1=3 of the

observations not included in the learning sample were used to

evaluate the resulting predictions via the C-index. As a result, for

every data set and every method we computed 100 different

combinations g and 100 corresponding values of ĈCUno.

Breast cancer data by Desmedt et al.
Desmedt et al. [1] collected a data set of 196 node-negative

breast cancer patients to validate a 76-gene expression signature

developed by Wang et al. [10]. The signature, which is based on

Affymetrix microarrays, was developed separately for estrogen-

receptor (ER) positive patients (60 genes) and ER-negative patients

(16 genes). In addition to the expression levels of the 76 genes, four

clinical predictor variables were considered (tumor size, estrogen

receptor (ER) status, grade of the tumor and patient age). The data

are publicly available on GEO (http://www.ncbi.nlm.nih.gov/

geo, accession number GSE 7390).

Similar to Wang et al. [10], we used the time from diagnosis to

distant metastases as primary outcome and considered the 76

genes together with the four clinical predictors. Observed

metastasis-free survival ranged from 125 days to 3652 days, with

79.08% of the survival times being censored.

The main results of our analysis are presented in Figure 3. As

expected, the unified framework to estimate and evaluate the

optimal marker signature based on the C-index is not only

methodologically more consistent than the Cox and AFT

approaches, but also leads to to marker signatures that show a

higher discriminatory power on external or future data (median

ĈCUno~0:736, range = 0.467–0.854). As discussed in the

methodological section, it is crucial to evaluate the discriminatory

power on external data: the estimated C-index on the training

sample was more than 35% higher (median ĈCUno~0:986) and

hence extremely over-optimistic [25,40].

Considering the interpretation of the resulting coefficient

estimates for the clinical predictors, it is crucial to note that

boosting methods for the C-index and the AFT models yield

biomarker combinations g� where larger values indicate longer

predicted survival times. On the other hand, classical Cox

regression models rely on the hazard; higher values are hence

associated with smaller survival times. If this is taken into account,

results from the different approaches were in fact very similar.

Both age of the patients and size of the tumor had a negative effect

on the time to recurrence for all seven approaches. The same

holds true for the tumor grade poor differentiation which resulted in a

negative effect compared to good differentiation and intermediate

differentiation. A positive ER status, on the other hand, was

associated with a larger metastasis-free survival in all approaches.

Regarding the coefficients of the 76 genes, results from our

approach to boost the C-index were highly correlated to the ones

Figure 2. Simulation results for the discriminatory power obtained via the proposed C-index boosting approach and competing
Cox-based estimation schemes. The marker combinations were optimized via the different approaches based on training samples of size n~100

(left) and n~500 (right). Boxplots represent the empirical distribution of the resulting ĈCUno on corresponding test samples. The dotted line
corresponds to the discriminatory power resulting from the true combination of predictors with known coefficients.
doi:10.1371/journal.pone.0084483.g002
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of the other four boosting approaches (which rely on the same

base-learners) – absolute correlation coefficients computed from

the 100 subsamples ranged from 0.77 to 0.99. Also coefficients

resulting from the popular ridge-penalized Cox regression were

highly correlated with the ones from our approach – absolute

correlation coefficients ranged from 0.47 to 0.84.

Breast cancer data by van de Vijver et al.
The second data set consists of 144 lymph node positive breast

cancer patients that was collected by the Netherlands Cancer

Institute [2]. The data set, which is publicly available as part of the

R add-on package penalized [43], was used by van de Vijver et al.

[2] to validate a 70-gene signature for metastasis-free survival after

surgery developed by van’t Veer et al. [47]. In addition to the

expression levels of the 70 genes, the data set contains five clinical

predictor variables (tumor diameter, number of affected lymph

nodes, ER status, grade of the tumor and patient age). Observed

metastasis-free survival times ranged from 0:055 months to 17:660
months, with 67% of the survival times being censored.

Resulting values of the C-index of the new approach and the six

considered competitors are presented in Figure 3. The improve-

ment from applying the proposed unified framework compared to

boosting the Cox proportional hazard model or applying ridge-

penalized Cox regression was much less pronounced than in the

previous data set. However, on average, boosting the C-index still

led to the best combination of markers regarding the discrimina-

tory power (median ĈCUno~0:662, range = 0.257–0.836).

Interestingly, as in the previous data set, the lasso penalized Cox

regression was clearly outperformed by the ridge-penalized

competitor (which has been suggested for this specific data set

Table 2. Simulation results for different values of the smoothing parameter.

setting smoothing parameter

n p� cens: s~0:5 s~0:25 s~0:1 s~0:075 s~0:05

100 5 50% 0.738 (0.06) 0.757 (0.05) 0.764 (0.04) 0.763 (0.04) 0.762 (0.04)

100 10 50% 0.728 (0.06) 0.744 (0.06) 0.746 (0.06) 0.746 (0.06) 0.741 (0.05)

100 30 50% 0.700 (0.06) 0.702 (0.07) 0.689 (0.07) 0.683 (0.07) 0.666 (0.07)

100 5 30% 0.802 (0.03) 0.815 (0.02) 0.820 (0.02) 0.821 (0.02) 0.822 (0.02)

100 5 70% 0.665 (0.10) 0.667 (0.10) 0.668 (0.10) 0.665 (0.10) 0.661 (0.10)

50 5 50% 0.719 (0.07) 0.737 (0.07) 0.741 (0.07) 0.740 (0.06) 0.725 (0.06)

200 5 50% 0.743 (0.05) 0.768 (0.03) 0.774 (0.02) 0.775 (0.02) 0.778 (0.02)

500 5 50% 0.723 (0.05) 0.769 (0.02) 0.778 (0.03) 0.779 (0.03) 0.781 (0.03)

Comparison of the discriminatory power resulting from the gradient boosting approach when applying different values of the smoothing parameter s. Numbers refer

to to the median value and interquartile range (in parentheses) of the final ĈCUno on 100 simulation runs. The amount of pre-selected genes is denoted as p� , n is the size
of the training samples and cens. refers to the censoring rate. We recommend to use the value s~0:1, which is also the default value of the new Cindex family for the R
add-on package mboost.
doi:10.1371/journal.pone.0084483.t002

Figure 3. Comparing the discriminatory power of biomarker combinations to predict the time to distant metastases resulting from
the proposed C-index boosting approach with competing estimation schemes. The plot on the left refers to the Desmedt et al. data,
whereas the plot on the right presents results from the van de Vijver et al. data. All biomarker combinations were optimized via the corresponding

algorithms based on the same 100 learning samples. Boxplots represent the empirical distribution of the resulting ĈCUno on corresponding test
samples. The dotted line corresponds to the median C-index resulting from the new approach.
doi:10.1371/journal.pone.0084483.g003
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by van Houwelingen et al. [48]). Furthermore, the ridge-penalized

approach performed at least as good as the considered boosting

approaches (except the new approach to boost the C-index). As in

the previous data set, we again additionally evaluated the C-index

on the training sample in order to assess the resulting over-

optimism. As expected, the estimated C-index on the training

sample was extremely biased (median ĈCUno~0:973).

The resulting coefficients for the clinical predictors were again

comparable for the seven different approaches. A positive ER

status was associated with a larger metastasis-free survival for all

seven approaches, the same also holds true for the age of the

patient. On the other hand, the size of the tumor, the number of

affected lymph nodes and a poor tumor grade resulted for all

approaches in a negative effect on the survival time. Regarding the

coefficients of the 79 genes, the highest correlation could again be

observed for the boosting algorithms: Absolute correlation

coefficients obtained from the 100 subsamples ranged from 0.64

to 0.95. Correlation between coefficients resulting from our

approach to boost the C-index and the ones from ridge-penalized

Cox regression was slightly lower, it ranged from 0.30 to 0.82.

Discussion

In this article we have proposed a framework for the

development of survival prediction rules that is based on the

concordance index for time-to-event data (C-index). As the C-

index is an easy-to-interpret measure of the accuracy of survival

predictions (based on clinical or molecular data), it has become an

important tool in medical decision making. Generally, the focus of

the C-index is on measuring the ‘‘discriminatory power’’ of a

prediction rule: It quantifies how well the rankings of the survival

times and the values of a biomarker (or marker combinations) in a

sample agree. In particular, the C-index is methodologically

different from measures that evaluate how well a prediction rule is

‘‘calibrated’’ (i.e., from measures that quantify ‘‘how closely the

predicted probabilities agree numerically with the actual out-

comes’’ [49]). Specifically, prediction rules that are well calibrated

do not necessarily have a high discriminatory power (and vice

versa).

While several authors have proposed the use of the C-index for

feature selection [9] and the evaluation of molecular signatures

[21,22], the main contribution of this paper is a new approach for

the derivation of marker combinations that is based directly on the C-

index. Consequently, when using the proposed method, it is no

longer necessary to rely on traditional methods such as Cox

regression – which focus on the derivation of well-calibrated

prediction rules instead of well-disciminating prediction rules and

may therefore be suboptimal when the optimization of the

discriminatory power is of main interest.

Conceptually, our approach is in direct line with recent articles

by Ma and Huang [34], Wang and Chang [50] and Schmid et al.

[51] who developed a set of algorithms for the optimization of

discrimination measures for binary outcomes (such as the area

under the curve (AUC) and the partial area under the curve and

(PAUC)). Because the C-index is in fact a summary measure of a

correspondingly defined AUC measure for time-to-event data

[26], our optimization technique relies on similar methodological

concepts, such as the application of boosting methods and the use

of smoothed indicator functions.

A possible future extension of our approach might be to include

the task of selecting the most influential genes in the proposed

boosting algorithm. While our simulation study and the breast-

cancer examples were based on the pre-selection of genes, the

proposed boosting method could also be applied directly to high-

dimensional molecular data, so that Tasks 1 and 2 are effectively

combined. This can be accomplished by optimizing the stopping

iteration so that only a (low-dimensional) subset of the candidate

genes is incorporated in the resulting marker combination (‘‘early

stopping’’, cf. [38]). Further research is warranted on the issues of

early stopping and automated feature selection in the case of

boosting the concordance index for survival data.

The results of our empirical analysis suggest that the new

approach is competitive with state-of-the-art methods for the

derivation of marker combinations. As demonstrated in the

Numerical Results section, the resulting marker combinations

are not only easy to compute and have a meaningful interpretation

but can also lead to a higher discriminatory power of the resulting

gene signatures.

Supporting Information

Text S1 This document provides technical details on
boosting the concordance index. It contains the implemen-

tation of the new Cindex() family and a short description of the

necessary R Code to apply the algorithm in practice.
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