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ABSTRACT

The goal of medical research is to develop interventions that are in some sense superior,

with respect to patient outcome, to interventions currently in use. Similarly, the goal

of research in methodological computational statistics is to develop data analysis tools

that are themselves superior to the existing tools. The methodology of the evaluation of

medical interventions continues to be discussed extensively in the literature and it is now

well accepted that medicine should be at least partly “evidence based”. Although we

statisticians are convinced of the importance of unbiased, well-thought-out study designs

and evidence-based approaches in the context of clinical research, we tend to ignore these

principles when designing our own studies for evaluating statistical methods in the context

of our methodological research. In this paper, we draw an analogy between clinical tri-

als and real-data-based benchmarking experiments in methodological statistical science,

with datasets playing the role of patients and methods playing the role of medical inter-

ventions. Through this analogy, we suggest directions for improvement in the design and

interpretation of studies which use real-data to evaluate statistical methods, in particular

with respect to dataset inclusion criteria and the reduction of various forms of bias. More

generally, we discuss the concept of “evidence-based” statistical research, its limitations

and its impact on the design and interpretation of real-data-based benchmark experiments.
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1. INTRODUCTION

The role of a medical practitioner is to perform interventions on patients that are as benefi-

cial as possible in a broad sense, taking into account both the short term and the long term,

health outcomes, quality of life and often other aspects, such as ease of use or extended

application to a wider set of indications. On the other hand, it is the goal of medical re-

searchers to develop new interventions that are superior—or non-inferior with fewer side

effects—to those already in existence. Importantly, the unbiased systematic evaluation

of the developed and existing interventions is considered crucial by the medical commu-

nity and is a focal point of medical literature. The concept of “evidence-based medicine”

(EBM) has been receiving growing attention and credibility for decades.

We can draw a parallel between medicine and applied statistics, with the statistical

consultant analagous to the medical practitioner and the applied statistical researcher to

the medical researcher. The role of a statistical consultant is to analyze the client’s data

such that the results help to answer a research question as completely as possible, un-

covering and approximating a truth that is assumed to exist behind this question. Once

more, there may be other considerations, such as cost and computation time. The goal

of applied statistical researchers is to develop data analysis methods and tools that are,

again, in some sense superior to those already in existence. However, here the parallel

ends, as the unbiased evaluation of these new methods and tools in real-data settings,

including their comparison to existing methods, is given usually only poor attention in

the literature. In this paper, we explore the disparity between evidence-based medicine

and “evidence-based computational statistics” by examining the state of methodological

aspects of benchmark studies, the systematic comparison of statistical methods using real

datasets.

Greenhalgh et al. (2014) state: “It is more than 20 years since the evidence based

medicine working group announced a “new paradigm” for teaching and practicing clinical

medicine. Tradition, anecdote, and theoretical reasoning from basic sciences would be

replaced by evidence from high quality randomized controlled trials and observational
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studies, in combination with clinical expertise and the needs and wishes of patients.”

Our aim is to start a discussion on “evidence-based” data analysis in which “tradition,

anecdote, and theoretical reasoning from basic sciences [including simulations] would be

[complemented] by evidence from high-quality [benchmark studies], in combination with

[statistical] expertise and the needs and wishes of the [substantive scientists]”.

In computational statistics, “evidence" can be generated through theoretical consider-

ations (e.g., the proof that an algorithm converges or the asymptotic relative efficiency of

a test), by simulations (i.e., with artificial datasets randomly drawn from a particular dis-

tribution) or through real-data examples. However, theory is often of little help in highly

complex real-world situations, since it usually requires unrealistic simplifying assump-

tions regarding the data structure. In this paper we focus on the role of real-data analysis

(as opposed to simulations) and the design of such studies. These types of evidence can

be seen as “empirical evidence".

In a specific example of the greater incorporation of evidence in evaluating and pre-

senting statistical methodology, the recently established STRATOS (STRengthening An-

alytical Thinking for Observational Studies) cooperation (Sauerbrei et al., 2014) aims at

providing guidance regarding the choice of statistical method based on empirical evidence

and experts’ experience in the context of observational studies in medical research. How-

ever, such groundbreaking projects are still in their infancy and the concept of evidence

and the role of real-data in this context are not yet well-defined.

In machine learning ideas relating to evidence from real-data are becoming common-

place. Benchmark studies based on real-data are a core of the literature, their realizations

made substantially easier through the use of databases of datasets available for bench-

marking, such as the UC Irvine (UCI) machine learning repository (Lichman, 2013) and

the OpenML platform (Vanschoren et al., 2013). Machine learning challenges (Guyon

et al., 2011), which can be seen as collective benchmarking studies, are also receiving

substantial attention from the community. Machine learning scientists work to obtain em-

pirical evidence on the performance of algorithms on real datasets, in analogy to medical
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doctors obtaining empirical evidence on the performance of therapies on human patients.

Machine learning scientists are further aware of the no-free-lunch theorem (i.e., that no

algorithm works best in all situations) and again address this problem through evidence-

based research, by evaluating which algorithm performs best in which situations and even

automatizing this process—a task known as meta-learning.

We statisticians are in general reluctant to adopt the concept of evidence-based

decision-making: that the choice of statistical method to use in a given situation should

be guided primarily by “evidence” in general and empirical evidence more specifically.

Some feel a more evidence-based approach implies the jettisoning of the experience of the

statistical consultant in favor of a suspect set of guidelines inspired by oversimplification.

The idea that the choice of a method may be reached in a more or less automatic manner

makes us feel unwell. Statisticians often argue that no ruleset or guideline can replace

the judgement of an expert statistician, nor can a ruleset take into account all aspects of

a problem, such as the substantive context. Interestingly, these are exactly the types of

arguments invoked by EBM-sceptics. Medical doctors questioning EBM argue that an

evidence-based approach based on systematic rules cannot cope with the complexity of

individual cases—e.g., with respect to multi-morbidity—and, again, ignores important

considerations, such as the wishes and social backgrounds of patients.

The existence of specific datasets (in statistics) or patients (in medicine) with com-

plexity that cannot be accommodated by simple evidence-based rules may be seen as

an argument in favor of the need for more evidence, i.e. evidence tailored to particular

dataset or patient profiles. This need has long been acknowledged in medical research

and is being addressed in the emergence of personalized/individualized medicine, with

subgroup and interaction effect analyses in clinical trials being simple steps in this direc-

tion. Similarly, in computational sciences, the development and use of meta-learning are

steps towards tailored algorithms.

Medical doctors or statisticians may still maintain that even the best and most indi-

vidualized evidence cannot replace expert intuition. This is a controversial issue. One
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may argue that an expert’s intuition is simply the result of the unconscious collection

of evidence from personal experience during a career, and that such evidence could also

be formalized as systematic rules. If so, the question becomes whether one can trust

machines to derive rules as reliably as the brain of an expert, and whether this can be

achieved in practice considering the current state-of-the-art of computational sciences. In

a given situation, the amount of information (e.g., number of cases) and the source of the

information (e.g., type and quality of studies and data) play further crucial roles in this

appraisal.

Statisticians may also contend that the need for empirical evidence in statistics is not

as strong as in medicine, as theoretically one can subject a dataset to as many statisti-

cal methods as one desires, while the same cannot be said for patients and interventions.

Clearly, it does not harm a dataset to undergo different statistical analyses, but it may

harm patients to undergo different interventions before identifying the most appropriate.

While the sense of this argument is evident, it is well known that the approach of per-

forming a large number of statistical methods on a dataset and deciding which one is the

“right one" based on the results may yield substantial problems relating to the idea of

“fishing for significance” (see e.g., Boulesteix et al., 2016, and references therein). An

illustration is provided by Silberzahn and Uhlmann (2015) in an experiment in which they

asked 29 statisticians to analyze a dataset with the goal of assessing the potential correla-

tion between skin color of football players and red cards. Perhaps surprisingly to some,

but likely not to many statisticians, the researchers obtained very different—and partly

contradictory—answers! Which result should be reported as definitive? Researchers are

obviously tempted to report that which is most fitting to their goals. Due to multiple com-

parison effects, this strategy is likely to yield false research findings that are simply the

result of optimization and data dredging and would fail to be validated using independent

data (Ioannidis, 2005; Boulesteix et al., 2016).

When considering types of evidence, statisticians are usually keener to evaluate their

methods using data simulated from known distributions as opposed to conducting bench-
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mark studies consisting of a large number of real datasets. The use of simulations as

opposed to real-data analysis can be considered analagous to using in vitro studies or an-

imal trials as opposed to patient-based experiments: one can control important factors—

genotypes, age, diet, etc. in medicine; the dataset size, the signal strength, etc. in compu-

tational science—and thus obtain homogeneous groups and “know the truth”. Moreover,

one can simulate as much data as computationally feasible, allowing reliable systematic

evaluation of the methods in the considered simulation settings. In many situations, sim-

ulations are indispensable. However, even with the best simulations, one would often

remain uncertain as to the performance of the examined methods in the much more com-

plex real world.

In this context, we would like to start and fuel a discussion on the potential need

for better designed real-data studies yielding evidence in statistical research, always with

careful consideration of a dataset’s specificities/substantive context and without discard-

ing expert intuition and simulations. In analogy to EBM and the choice of therapies,

large-scale benchmarking research in statistics may yield tentative rulesets and guidelines

to facilitate the choice of data analysis methods without dictating them. We would like

to discuss the question—without claiming to have the ultimate answers—of the role of

EBM-inspired concepts in real-data benchmark analysis in computational applied statis-

tics.

In this paper, we assume that the performance of a statistical method on a real dataset

can be objectively assessed using some criterion. This is the case, for example, for predic-

tion methods: natural criteria are error measures such as the error rate (in the case of bi-

nary classification) or the Brier score (in the case of survival prediction). Methods whose

performance on real datasets cannot be quantified are not considered here. Moreover, un-

less stated otherwise we assume that a method is well-defined and runs automatically on a

dataset without human intervention such as parameter initialization or preprocessing. The

issue of human intervention is discussed further in Section 3.3.3.

While one cannot incorporate all aspects of EBM into the context of the evaluation
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of statistical methods using benchmarking, we claim that some precepts commonly ac-

cepted in EBM may be helpful in defining a concept of “evidence-based computational

science”. A simple example is that of sample size, an extensively researched question on

the number of patients required in a clinical trial in order to make valid statistical claims

on any result. Analagously, in benchmarking, in order to draw conclusions from real-data

analysis beyond illustrative anecdotic statements, it is important to have considered an

adequate number of datasets; see Boulesteix et al. (2015a) for a discussion on the precise

meaning of “an adequate number”. In the remainder of this paper, we discuss further con-

cepts essential to formulating evidence-based statements in computational research using

real datasets. The significant question of the definition of selection criteria for datasets

is addressed in Section , while other concepts from medical sciences such as analysis

protocols, placebos, evidence levels, and bias are discussed in Section .

2. SELECTING DATASETS: A MAJOR CHALLENGE

The difficulty in sampling datasets

In the context of a clinical trial the population of interest is the population of patients

with (or at risk for) a particular health condition who may benefit from the considered

therapies. Diseased patients usually seek medical help, making it possible to draw from

this population. For non-diseased patients (who may benefit from interventions such as

prevention programs), representative sampling methods exist. On the whole, even if sam-

pling is often a challenge and there remains the risk of bias, it is normally feasible to

obtain reasonably representative samples from the population of interest.

In the context of benchmarking, the “population of interest” is the population of

datasets in the focused research field whose structure and properties would allow them

to be the target of the considered data analysis methods. In practice there are no simple

sampling procedures for this population for a variety of reasons. Firstly, datasets are not

typically systematically registered, except perhaps in specific fields. Secondly, the dif-
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ferent approaches to access datasets (repositories, software packages, additional files or

companion websites of published papers, personal contact with data owner) are all se-

lective: they do not allow the drawing of independent datasets from the population of

datasets. Thirdly, a “dataset” is not as well-defined as a “patient” because it may be split,

merged, preprocessed, etc. These problems must be kept in mind when statistically inter-

preting the results of benchmarking, results which should be seen as conditional—given

the data source (e.g., a particular data repository)—rather than as proper inference for a

population.

Which patients to analyze in clinical trials, which datasets to analyze

in benchmarking studies: a short overview of the common handling of

inclusion/exclusion criteria

For clinical trials, strict criteria are applied when selecting patients to include in the study,

with all patients fulfilling these criteria enrolled until a predefined sample size is reached.

In contrast, for benchmarking studies in computational literature the criteria used for se-

lecting datasets are most often non-transparent; see Hornung et al. (2016) and Fernández-

Delgado et al. (2014) for exceptions in the fields of statistics and machine learning, re-

spectively. The consent of the data owner to make a dataset available is necessary but is

often given informally. The minimum number of datasets to be included is usually not

determined. Though conscious attempts to misrepresent the results (“cheating”) are prob-

ably rare, questionable elimination of datasets may be performed by honest researchers

based on a posteriori, i.e. after seeing the results, plausible explanations such as, “the

method did not work well on this dataset because it has property X, so it is justified to

exclude it”, although this property—now presented as important—was not identified as

an exclusion criterion beforehand. Such a posteriori elimination may lead to substantially

biased results (Yousefi et al., 2010).

A related concern in the clinical field is the potential for the subsequent elimination
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from the study or change in treatment of a once-enrolled patient, a topic taken very seri-

ously from a quality and analysis point of view and one highly studied in the literature.

The handling of patients enrolled but failing to comply to treatment and the analagous

situation of datasets producing non-nonsensical or missing results in real-data benchmark

studies is discussed in Section .

Adopting principles from clinical research into benchmarking

We claim that strictly defined inclusion criteria could be applied when selecting datasets

for inclusion in a benchmark study and that reasons for post-hoc exclusion should be

reported thoroughly, for example, using flow-charts in the spirit of the CONSORT state-

ment (Rennie, 2001), a guide on the transparent reporting of trials. Inclusion criteria for

datasets may be, for example, “the number of observations lies within a given range”,

“the number of covariates lies within a given range”, “the scales of the covariates are

of a certain kind”, “the outcome is applicable to the analysis of interest”—regression,

classification, time-to-event, etc.—or requirements on the number of missing values.

There are three primary motivations for defining inclusion criteria, i.e. excluding

datasets. Firstly, one typically excludes datasets which would render the assessment

of performance of the statistical method difficult: for example, one may exclude small

datasets because error estimation (e.g., with cross-validation) would be highly variable,

or large datasets because the analysis would be too computationally demanding. This is

similar to, for example, the exclusion of incontinent patients from a clinical trial if the

outcome of interest is the result of a 24h urine test. Secondly, a dataset may be excluded

due to low data quality, for example, if the number of evident input data errors and the

number of missing values are too great to yield proper analysis. Thirdly, one excludes

datasets to focus on a particular setting and reduce heterogeneity for easier interpretation

of the results. These reasons for the exclusion of datasets contribute to the conditional

character of results emerging from a benchmark study, as exclusion criteria do to the re-

sults of clinical trials. In both settings, there is a strong need for the precise reporting of
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inclusion criteria to enable fair appraisal of the corresponding findings.

A fourth reason—tightly related to the third—particularly affects benchmark stud-

ies undertaken in articles which are introducing a new statistical method: authors may

exclude datasets because they have characteristics that are expected to lead to the demon-

stration of the inferiority of the new method. This exclusion of datasets may be a result of

fear of publication bias, a topic of abundant literature in medical sciences, and also of con-

cern in computational sciences as described in Boulesteix et al. (2015b). The reseachers

may rightly worry that studies suggesting better performance of a new method are more

likely to get published than studies suggesting equal or worse performance. However, in

some cases there are legitimate reasons to exclude datasets that would be troublesome for

the new method. If so, it should be clearly stated—understandable even to non-experts—

that the inclusion criteria are defined so that the new method will achieve better perfor-

mance and that the conclusions drawn from the benchmark study are then only valid for

datasets satisfying these criteria. As with clinical trials, the inclusion criteria should not

be tuned a posteriori to improve apparent performance of any given method. Finally, we

point out that a conscious selection of promising datasets is not always sensible: it may

indeed be interesting to also assess performance on datasets for which the new method

does not perform as well in order to better delimit its appropriate field of application.

3. FURTHER EBM-RELATED CONCEPTS

Registration and protocols

In clinical trials, study protocols are written before the start of the trial to ensure the qual-

ity of the study and to fix decisions on some of the aforementioned issues, such as sample

size, inclusion and exclusion criteria, study design, analysis methods, definitions of sub-

groups, the handling of missing values, methods to protect against bias and presentation

and judgement of results. Deviations from the protocol decided at a later time or proce-

dures that are followed but were not described in the protocol damage the quality of a
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study, even if not left unexplained. For example, a change of the primary endpoint, i.e.

of the main research question focused on in a trial, draws the validity of the finding into

question.

Registration of a trial in a registry for public availability (De Angelis et al., 2004)

is another option to improve quality control of the clinical trial. Although information

provided in this way is not as detailed as in a study protocol it is at least informative on

the initial study goals.

Registration of a study and adherence to a protocol are concepts that may be partly

transferable to benchmark studies and might help prevent or decrease both the fishing for

significance problems discussed in Jelizarow et al. (2010) and publication bias (Boulesteix

et al., 2015b). The OpenML platform (Vanschoren et al., 2013) provides these possibil-

ities in the field of machine learning. Study registration or use of a protocol in com-

putational sciences would, among other benefits, help to avoid the unjustified exclusion

of methods or datasets from a benchmark study or the a posteriori fine-tuning of model

parameters performed for presentation of favorable but biased results.

Placebos

A benchmark study conducted to compare the performances of two or more prediction

models can be equated to a multi-arm clinical trial. When no standard therapy exists to

which the new experimental treatment can be contrasted in a clinical trial, the trial is of-

ten placebo-controlled. In the same manner, a benchmark study on the performance of

competing prediction models could be “placebo-controlled” by including in the compar-

ison a method that, by design, performs no better than chance. For example, in a dataset

where the outcome is a rare event with a prevalence of 5%, a reference method could be

a naive classifier that always votes for the majority class, thus achieving a misclassifica-

tion rate of only 5%. A useful prediction model would have to be able to outperform this

reference method. In this specific example the necessary level of the performance of the

reference method is obvious, but in more complex cases the control method would have

12



to be designed carefully.

Bias

Neutrality and blinding

Blinding is effective in helping to avoid several sources of bias in clinical trials. For

example, to ensure unbiased assessment of a patient’s primary endpoint, a trial may be

observer-blind, i.e. endpoint assessment is performed by a person who does not know how

the patients were treated. Medical staff can also be blinded to ensure no differential care

of the patients.

Biases similar to those avoided through blinding in the clinical context may also be

at work in the context of benchmarking. Even in a study not devoted to a new method,

researchers may expect or hope for good results for a particular method—for example

because they are those who developed it in previous research—thus perhaps consciously

or unconsciously favoring it in a variety of possible ways. In analogy to the biased assess-

ment in the clinical context, researchers conducting benchmarking may select datasets

or performance measures that are likely to yield good results for a “preferred” method.

Similarly to differential patient care, researchers may perform parameter tuning more

carefully, or fix bugs more eagerly, for a preferred method. And although it is well known

that a new intervention must compete against the current standard of care in clinical tri-

als, such a practice is not widespread in the context of comparison of statistical methods.

Though it does not introduce bias in the strict sense, the selection of weak competitors in

a benchmarking study might lead to an exaggeration of the superiority or advantages of,

again, a preferred method.

Biases may also be a hazard even when a study is intended as neutral, i.e. does not aim

to demonstrate the superiority of a particular method. Ideally the authors of a neutral com-

parison study do not have a preference for any particular method and, further, that they are

(at least as a collective) approximately equally experienced with each of the considered
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methods. However, these requirements are almost impossible to fulfill in practice.

To avoid the biases outlined in the previous paragraphs, strategies inspired from blind-

ing for clinical trials might be imagined. Their feasibility in the context of statistical

research obviously depends on the characteristics of a specific study. In the rest of this

section, we give first suggestions on improving neutrality in benchmarking studies.

We use the concept of bugs as an example. By bug, we mean the failure of a method

to yield meaningful results for a particular dataset, for example because certain dataset

features render the method inappropriate or because of user errors during application.

The handling of bugs might initially be conducted blindly, i.e. without knowing which

method yielded the problems, in analogy to the blinding of medical staff. This principle

could consist of labeling the methods with non-informative names such as A, B, C, etc.

withholding method-specific error messages from the debuggers and not unmasking the

methods until the end of the study. Similarly, researchers could be blinded to the data

through forbidding inspection of datasets that yield “unexpected results”, thus reducing

the ability to exclude datasets—or fine-tune a method—in order to achieve better results a

posteriori. Although one might perform the data inspection at a later point, the suggested

blinding procedure would imply that this later inspection would not affect the reporting

of the main benchmarking results.

More generally and beyond the strict concept of blinding, some decisions on study

design, such as the selection of competing methods or performance measures, may be

(partly) delegated to neutral persons if the principal investigators are not neutral them-

selves. The definition of strict inclusion criteria and the use of collaborative platforms

such as OpenML (Vanschoren et al., 2013) to systematically extract datasets satisfying

these criteria, thus automatizing the benchmarking process, are also measures to counter-

act the effect of non-neutrality with regard to selection of datasets.
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Non-compliance and missing values

Iin clinical trials, all enrolled patients are included in the statistical analysis: no patients

are eliminated due to their outcome and the handling of patients who fail to comply to the

treatment of the study arm in which they were included is delicate. More generally, the

handling of missing values is considered crucial, and is given a great deal of attention in

the literature. In contrast to medical sciences, the issue of missing values has been given

poor attention in the computational literature, missing values occurring, for example, if a

method fails to produce an output. See Bischl et al. (2013) for one of the few papers we

are aware of explicitly stating how the missing values are handled.

The intention-to-treat analysis strategy stipulates that all patients randomized in a clin-

ical trial should be analyzed according to the initial randomization. Arbitrary exclusion

from analysis or systematic drop-out can lead to severe bias. In an equivalent strategy, all

datasets included in a benchmark study would ideally remain for analysis, where appro-

priate treatment of missing values has to be defined depending on context. For example,

if a method does not output a meaningful result for a considered dataset, one may set the

performance of this method to the performance of the reference or to the performance of

the worst method. Post-hoc exclusion needs to be avoided and might only be acceptable if

exclusion strategies are established beforehand and if based on decisions from a blinded

review of results.

Role of the user

An important aspect we have not yet discussed is the role of the user in a benchmark

experiment. In this paper, we have assumed that a method is well-defined and runs au-

tomatically on the datasets without human intervention such as parameter initialization

or preprocessing. This may hold true for some methods, such as a classification method

without parameters or with parameters that can be efficiently tuned by cross-validation,

but not for all. Similar issues may affect clinical trials. The counterpart of a method

running without human intervention would be, for example, a drug that is produced and
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administered to the patients in a standardized way, so that the medical staff caring for

the patient have no influence on the process. Obviously in the case of interventions in

the form of, e.g., surgery, physiotherapy or psychotherapy, human factors can affect the

quality of the intervention.

In the context of benchmarking for the evaluation of classification methods, Duin

(1996) distinguishes between studies comparing classifiers running without user inter-

vention and studies comparing classifiers necessitating human intervention. In the latter

case, Duin (1996) again differentiates between benchmark experiments evaluating meth-

ods as used by a handful of expert users—experiments meant to yield the most reliable

information on the method’s performance in optimal conditions, the only way to obtain

a picture of the maximal potential of the method—and those involving “arbitrary users”

(whereby the results of a method could be averaged over the users). In practice, however,

this differentiation is rarely addressed in benchmarking literature. Complexities involv-

ing users could be seen as an argument against benchmarking in general, or in favor of

extended benchmarking with the user considered as a factor. In the following we briefly

sketch different scenarios regarding the expertise of the user in cases where methods re-

quire human intervention.

In the clinical context, it is obvious that the levels of expertise of the staffs conduct-

ing the compared interventions should be as equal as possible. For instance, if one in-

tervention is conducted by experienced leading experts only and another intervention is

conducted by young resident physicians only, the direct comparison will be biased. Sim-

ilarly, in benchmarking, if an expert of method A uses both method A and a method B

he/she is not familiar with, the comparison between methods A and B would be flawed.

If there are no scientists with expertise in both methods A and B, a solution could be

to involve several experts, each running only the method in which he/she is an expert.

However, it is then impossible to distinguish between the effect of the method and the in-

dividual effect of the expert. To allow this distinction, the experts would have to also run

the methods with which they are less familiar—an ethically controversial idea in clinical
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settings but possible in the context of benchmarking. In any case, the results of this type

of benchmarking study should be seen as conditional on the involved experts. To elim-

inate this conditional character, one would have to draw a sample of experts, a difficult

task in practice.

It may however also be interesting to get a picture of the performance of methods in

standard settings, i.e. those involving arbitrary users without expertise in the considered

methods. Although the results of the benchmarking study would be again conditional

on the users, considering a sample of arbitrary users would address this issue. Finally,

note that the performance difference between the methods that is estimated in this setting

would not necessily be equal to the performance difference when experts are involved, as

methods do not necessarily suffer equally from the lack of experience of their users.

These ideas are certainly difficult to implement in practice, but potential precedence

exists. In the machine learning field initiatives such as the aforementioned collabora-

tive platform OpenML (Vanschoren et al., 2013), which collects and stores the results of

benchmarking experiments performed by a large number of researchers featuring users

of various levels of expertise, may provide a technical framework to address user-related

issues.

Levels of evidence

Suggestions on “levels of evidence” have been made in the literature to aid in the as-

sessment of the quality of information derived from clinical studies; see the report of the

Canadian Task Force on the Periodic Health Examination (1979) for an early seminal

work. These suggestions present a rough rating scale in which systematic reviews and

meta-analyses provide the highest level of evidence, followed by high quality randomized

controlled trials, cohort studies, case-control studies and finally, expert opinions. The

quality of benchmark studies could be, in principle, rated in a similar way. Figure 1

suggests ideas for a possible classification system. Much of the system is shaped by the

concept of neutrality, whether a paper is introducing a new statistical method or there is
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otherwise a “preferred” method, whether consciously or subconsciously.

As stated earlier, when a comparison study is presented in a paper that introduces a

new method, results tend to be biased in favor of the new proposal (Boulesteix, 2013);

moreover, the competing methods often show comparatively bad performance, as they

have consciously or unconsciously been put in an inferior position (e.g., through subopti-

mal parameter settings or failure to fix bugs). As such, results related to the introduction

of new methods rank consistently lower on the hierarchy. Similarly, when neutrality is

affected through differential expertise in the examined methods, the quality of the results

again suffers. In general, bias in non-neutral studies can advantage preferred methods and

disadvantage non-preferred methods, or both.

Starting at the highest level, like on the EBM scale, meta-analyses and systematic re-

views occupy the highest position, although in the context of computational science these

studies are still in their infancy and not straightforward methodologically; see Jamain and

Hand (2008) and Sargent (2001). Specifically, to achieve the highest level of evidence,

these meta-analyses and systematic reviews must be the based on high quality neutral

comparison studies as defined by Boulesteix et al. (2013). The neutral comparison stud-

ies themselves are considered the second highest level of evidence on the scale, followed

by systematic reviews and meta-analyses of non-neutral comparison studies, but only

those that exclude the results of the individual newly introduced methods or the otherwise

preferred method. Finally, results on the non-preferred methods from these individual

non-neutral studies are of the second lowest level of evidence, followed by expert opinion

and results from non-neutral studies on preferred methods.

4. CONCLUSION

The appropriate design of clinical trials has been the subject of decades of research, the

goal of which has been to improve the quality and reliability of research findings. We

have described an analogy to this evidence-based medicine in the field of methodological
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Level 1: Results of systematic reviews and meta-analyses
of neutral studies.

Level 2: Results of individual neutral studies.

Level 3: Results on non-preferred methods from system-
atic reviews and meta-analyses of non-neutral studies.

Level 4: Results on non-preferred methods from individ-
ual non-neutral studies.

Level 5: Results on preferred methods from non-neutral
studies; expert opinions.

1

Figure 1: Suggested levels of evidence for results of benchmark studies designed for the
comparison of statistical methods using real-data. A neutral study is conducted by re-
searchers that do not have a preference for any particular method and are (at least as a
collective) approximately equally experienced with each of the considered methods. A
non-neutral study is one in which the researchers have a potential conscious or subcon-
scious interest in the demonstration of the superiority of a given method (the "preferred
method") or have greater experience in one or more of the methods (again, the "preferred
method") to the extent that it may bias the results. A non-preferred method is a sta-
tistical method from a non-neutral study but not that or those method(s) thought to be
preferred. Bias in non-neutral studies can advantage preferred methods and disadvantage
non-preferred methods, or both.
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computational statistics. We suggest that benchmark studies—a method of assessment of

statistical methods using real-world datasets—may benefit from adopting concepts from

EBM towards the goal of more evidence-based statistical research. In particular, we have

discussed the application of inclusion and exclusion criteria to the selection of datasets,

and the use of placebos, study protocols and methods of protecting against bias as com-

mon concepts in the clinical world which would be beneficial in the design and interpre-

tation of high-quality benchmark studies.

The questions of whether the choice of statistical methods for real-data analysis should

be based on evidence that is itself based on real-data and how this could be achieved can

obviously not be answered by single authors. Our manuscript is meant to fuel discus-

sion on the paradigms and challenges faced in computational statistics and suggests first

potential steps towards more “evidence-based” statistical research.
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