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ABSTRACT

A punctured Riemann surface is a compact Riemann surface with finitely many
points removed. We will discuss an equivalence by [Sim90] between tame harmonic
bundles, regular filtered stable Higgs bundles resp. Zx-modules and regular fil-
tered local systems over these surfaces.

ZUSAMMENFASSUNG

Eine punktierte Riemannsche Fliche ist eine kompakte Riemannsche Fliche ohne
einer endlichen Anzahl ausgezeichneter Punkte. Wir zeigen eine Aquivalenz aus
[Sim90] zwischen zahmen harmonischen Biindeln, regulir gefilterten Higgs Biindeln
bzw. Zx-Modulen und regulére gefilterten lokalen Systemen iiber einer punktierten
Riemannschen Flache.
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INTRODUCTION

The roots of the so called Kobayashi-Hitchin correspondence go back to the 1960’s,
when M.S. Narasimhan and C.S. Seshardi [NS65| proved the correspondence be-
tween irreducible flat unitary bundles and stable vector bundles with degree 0,
on a compact Riemann surfaces. Once the result was well-understood, the nat-
ural question arose how it might be extended beyond complex dimension 1 and
beyond flat unitary bundles. One of the first extensions was done by Mehta and
Ramanathan [MR84|, who proved that flat unitary bundles in general correspond
to stable vector bundles with trivial Chern class.

Then at the beginning of the 1980’s Kobayashi [Kob80| (and independently Liibke
[Liib82]) proved that a holomorphic bundle on a K&hler manifold equipped with a
Hermitian-Einstein metric is stable. This led Kobayashi and independently Hitchin
(according to Donaldson [Don85|) to formulate the inverse problem, i.e. does ev-
ery stable bundle possess a Hermitian-Einstein metric? Donaldson himself found
a proof in the compact Riemann surfaces case in [Don87|,[Don85| and extended
it to algebraic surfaces. The general result over every Kéhler manifold was finally
proved by Uhlenbeck and Yau [UY86].

On the other hand Hitchin introduced in [Hit87] Higgs bundles, labeled like this
because there are similarities to the mathematical description of physical particles
like the "Higgs boson" in mathematical gauge theory. The term of a Higgs bundle
soon proved very useful, since Hitchin was able to find a correspondence between
the existence of a Hermitian-Einstein metric on a Higgs bundle over a compact
Riemann surface and stability of the Higgs bundle.

When Carlos Simpson started his PhD thesis at end of the 1980’s the non-compact
case was still untouched or at least the correspondence could not be established.
After proving the existence of a Hermitian-Einstein metric for every Higgs bundle
on a (in general not-compact) Kahler manifold (satisfying certain conditions) in
his [Sim88| article on "Constructing variations of Hodge structure", he turned to
the complex curve case, i.e. to Riemann surfaces. There he was able to estab-
lish a correspondence between harmonic bundles and stable filtered regular Higgs
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bundles, filtered local systems as well as flat regular bundles (cf. [Sim90]).!
The correspondence established by Simpson in [Sim90| connects various fields of
mathematics:

Algebraic Geometr.y Differential Geometry Topology
stable filtered regular Higgs |+ tame harmonic bundles | stable filtered local
bundles with degree 0 systems eit degree 0

Furthermore there are connections to partial differential equations resp. analysis
as well as physics.?

Therefore it seems worthy to take a closer look at the proof of the correspondence.
As it turns out, the article [Sim90| flawlessly describes all major steps on the way
to the equivalence of categories, but leaves out the calculations and some interme-
diate steps. This is one of the reasons that make it difficult to follow the central
theme of the article. Another one is that the necessary background knowledge is
either assumed or scattered around the various articles [Sim88|, [Sim92].

So in our explanation we try to collect these definitions and results so that the
work becomes self-contained as far as possible. Furthermore we will add the miss-
ing details or rewrite some of the proofs if we were not able to follow the original
argument.

In view of these two tasks we start in the first chapter with some background
knowledge on Algebraic and Differential Geometry as well as a small introduc-
tion to Hodge theory. Of particular importance are some consequences of Serre’s
GAGA and the result of Deligne on regular singularities establishing a relation
between algebraic and holomorphic vector bundles. They enable us to choose one
of the categories as long as we are on a compact surface. Moreover Deligne’s
article tells us about the requirements a holomorphic connection has to obey in
order to be algebraic too - regularity. Consequently we will repeat the Riemann-
Hilbert correspondence connecting flat holomorphic vector bundles, local system
and representations of the fundamental group. The theorem allows us for example
to understand the equivariance of the harmonic metric map or the correspondence
of the flat bundles and local system in the context of filtered objects.

In the main text, we will often have to change between a vector bundle and its
sheaf of sections. We will recall that this construction essentially commutes with
tensor products in the differential, holomorphic resp. algebraic setting.

The Hodge theoretical part will explain the x—adjoint of a connection and we
will have some basic Kdhler identities in the hermitian case, i.e. not necessarily
kihlerian case. These identities will prove very useful later on when we consider
a metric as a map into the positive-definite matrices. Another application is the
proof of the Chern-Weil formula.

IFor the last of these four categories this was done by Corlette [Cor88], too.
2We will see that the boundaries between the different fields become blurred and we may
assign the objects to different fields.
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In the next section we are going to start with the discussion of connections and
metrics. In particular we explain how a metric connection on higher differential
forms has to look like in our notation. The second part of this section will be
devoted to the study of maps into the space IP,, of positive-definite matrices. This
space will be identified with the homogeneous space Gl,,(C)/U(n). After identifica-
tion of the space of hermitian matrices with a real vector space we get a differential
structure on H,, and later, on P, via the exponential map. The main result of this
section is that P, is a complete Riemannian manifold, which is negatively curved.
Thus we are in the position to use some convexity properties of geodesics in neg-
atively curved complete spaces.

In the proof of completeness we introduce a formula for the differential of a bounded
linear operator on the space of hermitian matrices, which we call divided sums as
[Bha0O6] . This concept is used by Simpson in his article [Sim88| to prove the
existence of a harmonic metric.

Before we proceed with the description of our metric map X — P, we need to
define the basis concepts of our thesis, namely Higgs bundles, Zx-modules and
harmonic bundles. A Higgs bundle is a holomorphic vector bundle E with the
additional structure of a Higgs field ¢, that fulfills some compatibility relation
with the holomorphic structure 0p. A Zx—module is in fact a flat bundle in
the sense of a vector bundle equipped with a flat connection. From the structure
of the flat bundle we can construct a Higgs field 6 and from a Higgs bundle we
can construct a connection D. Harmonicity is now the statement that the Higgs
bundle is flat, i.e. that D has vanishing curvature. Hence we get a flat bundle. On
a flat bundle harmonicity means that 6 fulfills the compatibility relation with the
holomorphic structure dg, i.e. is a Higgs bundle. As a result we see that Higgs
bundles and flat bundles are the same if they are harmonic. In order to justify
the term "harmonic" bundle we will show, using the Kahler identities, that our
metric map into P, is harmonic iff the corresponding bundle is.

After defining tameness of a Higgs field and the notion of a local system we will
turn to the regularity of a connection. In order to do so we define the pushforward
sheaf j,(E) corresponding to the inclusion j : X < X. Then the regularity of V
may be described in terms of its connection matrix, i.e. we allow only poles of
order one in some suitable frame.?

In the last section of this first chapter we start with the description of filtered vector
bundles. We recall the original idea of Mehta and Seshadri (cf. [MS80]). A filtered
vector bundle is then a decreasing filtration of j.(FE) by coherent subsheaves, that
fulfill certain relations. A filtered Higgs bundle is a filtered vector bundle with a
Higgs field 6 that respects the filtration. Analogously for a filtered Zxy—module,
V has to respect the filtration. We get a filtered local system if we have a filtration

3V is the (1,0)-part of the flat connection.
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L, of the locally constant sheaf L, such that L, is preserved by the monodromy
1 of the local system.

The main result of the thesis will be a correspondence of categories. So we need
to clarify how the morphisms in the different categories look like. However, the
choice is natural, i.e. a map is a morphism of filtered objects if it preserves the
filtration as well as all additional structure, such as the Higgs field 6. A short
subsection about the concept of residues in our context closes the chapter.

The second chapter describes Simpson’s main estimate. The aim is to reflect
tameness, i.e. the growth of the eigenvalues, in terms of the Frobenius norm of
itself and more important to find a bound of the curvature of the metric connection,
often denoted Rj,. Before we start with the actual proof we will first describe how
we can simplify the matrix representation of our Higgs field # in order to make it
manageable. This can be done using an eigenspace decomposition of £. However
our eigenvalues are unfortunately not single-valued. The problem can be overcome
by transferring to a finite branched cover of X and the corresponding pullback of
our bundle E. One advantage thereof is that we have a Laurent expansion there
with order at most —n, where n is the dimension of our vector bundle. So we add
to our eigenvalue A a function « such that the order of A — a is —n + 1. Going
back to our original bundle A — o will be bounded in terms of |z| 71" e > 1/n.*
Schur decomposition will lead us to an upper triangular form of 6 as well as ¢,
where ¢ comes form the a constructed before. It turns out that this is a block
upper triangular matrix, that can be decomposed further into a block diagonal
part o+ 7% and a strictly block upper triangular part 7+.5 The main estimate will
treat those parts separately.

After introducing some preliminary norm estimates involving 6 and its
h—conjugate 07, we describe the endomorphism bundle in detail. In the rest of
the paper we will often profit from the interaction between the initial bundle E
and the endomorphism bundle End(E). So we think it is worth taking a closer
look. All differential operators on E induce operators on the endomorphism bun-
dle. The induced operators inherit almost all properties of the original ones. In
particular our Higgs field property dpf + 00g = 0 becomes (Op)gua(f) = 0 for
the induced operator (Op)guq on End(E). The metric 2 on E induces a metric
tr(HB*HA) = (A, B) for A, B € End(E), which becomes the Hilbert-Schmidt
inner product if we choose an h—orthonormal frame. Here H is the corresponding
map into P,.

Now we are in the position to use Griffith’s and Harris’ [GH78| statement, that

47 is a local coordinate vanishing at the puncture.

®Blocks with respect to the eigenvalues; o diagonal.
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curvature decreases in subbundles to get to our starting point:

1102 01113

19:1%

where the index z indicates the connection matrix of @ resp. 7. Before we proceed
with the estimate itself we add two examples which will come of importance when
we try to construct a standard metric later on in the paper.

Step 1 of the main estimate is to find a bound of @ itself. The idea behind the
calculation done in this subsection is to first distinct two cases (cf. 1.5.1), where
one case is the desired result [|6,] < and then to show that the other case

—Alog||0.|r < — (1)

€3
z|?
cannot occur. The second case is deﬁneld‘by some inequality: ||0,| r strictly bigger
than some function m. Then we show that if this inequality holds on some non-
empty set S; we get a contradiction. In order to do so prove that 6, — m is
subharmonic on S; (using (1)) and has its maximum 6, = m on the boundary
05:. Inside S; we get 6, —m < 0 < 6, < m contradicting the definition of ;.
At the beginning of step 2, we will first recall an easy estimate of the real logarithm
function, namely that we always find a straight line through 0 that is everywhere
greater than or equal the logarithm function. For a lower bound of the logarithm we
will in general not find such a straight line strictly smaller than log. While Simpson
writes no further details on this lower bound, Mochizuki [Moc07a| claims that it
exists. The difference between those two different conclusions is that Mochizuki
[Moc0O7a| expects a certain constant b to be always positive, while we are not
so sure about that. So we describe a way around this problem in Step 3. The
rest of Step 2 is another application of the idea of Step 1, although slightly more
complicated. As a result we find a bound for 7°.

The second part of the main estimate takes care about the strictly upper triangular
part of 6. Therefore we need a modified version of (1), which we introduced in the
context of the endomorphism bundle already, as well as some calculations involving
the adjoint representation.® In particular we will show the invertibility of ad(¢)
on block upper triangular matrices. With the help of ad and some bounds of the
adjoint representation, we will first show that the upper triangular parts of # and
¢ are mutually bounded and hence get into the position to repeat the argument of
Step 2. This leads us to a bound of 77 in terms of |2|~'™. Using both estimates -
of 7% and 7F - we can bound the norm of the curvature R, of the metric connection
by R;, < \ZIQIfOW' Putting the previous results together will lead us to Simpson’s
theorem 1.

There are a few consequences of the main estimate described afterwards. The first
one is that the norms of the flat sections increase at most polynomially. Our proof
uses Gronwall’s lemma to solve the differential equation mentioned by Simpson.

5We change from the commutator to the adjoint representation ad to simplify notation.
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Using the polynomial bound of the flat sections we are able to describe tameness
in terms of a Yy —module: If the flat sections grow at most polynomially then the
corresponding Higgs field is tame. The proof is somewhat lengthy. If H is our
harmonic metric we construct a second metric K. Then we estimate K in term
of H from above - from below we anyway have a bound by harmonicity. K is
constructed as follows on an annulus A.;: For a small o > 0 let K be constant
on A.y,1 and a geodesic along each ray out of the puncture on A, ..,. Now we
can use the completeness of P, as well as the negative curvature to estimate the
length of the geodesic. Thereafter Simpson uses, we guess, integration by parts
- Jon T 10NE = z/fol e’ dv [y 10]7- Instead of this formula we will use a
weaker estimate still leading to the right conclusion, i.e. we show that if 8 is not
tame the estimates we got by constructing K are contradicted.

The last lemma in this chapter is of particular importance. It helps us to extend
an inequality —Af < —b for 10ng — 0 and b positive, weakly over the puncture.
The proof is more or less an application of the properties of the Green function
37 log 2|
2w :

The third chapter deals with filtered objects. In the first part we construct our
main functor = from the category of tame harmonic bundles to the category of
filtered regular Higgs bundles resp. filtered regular Zx —modules. The functor will
be a priori defined on acceptable bundles. These are, roughly speaking, bundles
with a metric connection that is bounded in the same terms as the connection in
the main estimate. For technical reasons we add a perturbation by a L”—function.
= is in particularly compatible with taking duals, tensor products and determi-
nants. The proofs are not included in Simpson’s work [Sim90|, but can be partly
found in [Sim88|. After adding these compatibility properties, we show that when
restricted to the subcategory of harmonic bundles, = indeed maps E to a filtered
regular Higgs bundle resp. Zx—module: Since = maps already into filtered vector
bundles we only need to show that 6 resp. V respects the filtrations. For 6 this
is clear, for V we get the result by using the weak extension described above. At
the end of the section, we show that = gives rise to a map of the corresponding
morphisms, i.e. is a functor.

The second part of the chapter describes a functor ® from filtered local systems
to Yx—modules. First we will recall the general Riemann-Hilbert correspondence
and construct a meromorphic frame of the Zxy —module V using the flat sections in
the corresponding local system L. In terms of this frame we can define the functor
®. As a first step we show that ® is well-defined. The second step is crucial,
because it simplifies the rest of the proof: ® is compatible with the decomposition
into generalized p—eigenspaces, even more compatible with the decomposition into
p—invariant subspaces (u the monodromy). Thereafter we may restrict to local
systems with only one eigenvalue to show compatibility with tensor products and
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duals.

The functor ® is furthermore essentially surjective: We construct an inverse ®~*
that maps each filtered regular Zx—module on a local system and is the inverse
construction to ®. Simpson constructs ®~! in a different way and concludes then,
that his inverse is the same as ours.

Finally we show that the functor is fully faithful and therewith ® establishes
an equivalence of the categories of filtered local systems and filtered regular
9 x—modules.

The aim of chapter V is to show that two metrics that induce the same filtration
under = are mutually bounded and further that = is fully faithful. The main point
are two Weitzenbock formulas given at the beginning of the section. For the first
part we need a lemma that tells us that if a holomorphic section e is bounded by
|z|7¢ for all € > 0, then it is already bounded, if the curvature is LP. The proof
uses the LP—integrability of the curvature to bound log||e| by a LP—function f.”
Then solve the Poisson equation Au = f and extend it weakly over the puncture.
Subharmonicity will lead to a bound of e.

The lemma applied to the identity element of the endomorphism bundle is enough
to show that two metrics that induce the same filtration are mutually bounded.
In order to show that = is fully faithful we need to show that a Higgs bundle
morphism on the by = induced filtered regular Higgs bundle is a morphism of
harmonic bundles, i.e. it is a morphism of filtered regular Zx—modules. This
is done by our Weitzenbdck formula. The same holds for = into filtered regular
Px—modules.

The chapter titled "Residues and Standard Metrics" continues our two examples
1.4.17 and 1.4.18. Tt turns out that they are the basic building blocks to construct
a "standard" metric on a Higgs bundle. We will describe how a "jump", i.e. a o in
the filtration Z(E),, such that Gr,(E) # 0 transfers to the Z(F) — Zx—module and
further to the local system corresponding under ®. From this observation we see
that by considering tensor products of the bundles defined in the two examples will
lead us to any residue and any residue homomorphism up to isomorphism. Now us-
ing the isomorphism between the residues we can state the main result 4.3.1 of the
chapter, namely that every regular filtered Higgs bundle resp. Zx—module resp.
filtered local system can be equipped with an acceptable metric A that induces the
filtrations under =. This metric is not necessarily harmonic. In particular we show
that it does not matter whether we consider the filtration on a local system directly
induced by h via order of growth or the filtration coming from the Zx—module
=(F) via ®.

The final chapter will lead to our main result. We first give the definition of the
algebraic/parabolic degree of a filtered object and the analytic degree using Chern

"The Weitzenbéck formula relates e and the curvature
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classes. Then we show that both notions are actually the same for £, Z(E). We will
give an extended proof assuming less than necessary in order to treat subbundles,
which will come up later, as well. One of the main topics of the chapter are the
Chern-Weil formulas, that describe how the curvature of a subbundle looks like
in terms of the original curvature. After defining stability for each of our objects
we will be in the position to show that Z(E) (for an irreducible tame harmonic
bundle F) is stable and has degree 0 and that every harmonic bundle decomposes
into irreducible ones.

The main existence theorem of [Sim88|, will provide us with a harmonic metric,
which is bounded with respect to our standard metric, i.e. induces the same
filtrations under =. Showing that every filtered bundle already comes from a tame
harmonic one and showing that ® preserves degree and stability will lead us to
our main result:

Main theorem. The category of tame harmonic bundles is naturally equivalent
via the functors =, to the categories of direct sums of stable filtered regular Higgs
bundles of degree zero, of direct sums of stable filtered regular Zx—modules of
degree zero, and of direct sums of stable filtered local system of degree zero.
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MAIN ESTIMATE
FOR TAME
HARMONIC BUNDLES

This first chapter starts with some definitions and preliminary results. The main
part then contains the actual estimate of our Higgs field 6 close to the punctures.
Finally we add some conclusions as well as technical lemmas needed in the following
chapters.

1.1. HARMONIC BUNDLES

1.1.1. Hices BUNDLES

In this first paragraph we will in short define the notion of a Higgs field and its
basic properties. Most of the upcoming definitions and notational conventions are
explained in the Appendix.

Hitchin introduced in |Hit87| the notion of a Higgs field:

Definition 1.1.1. (E,Jg,0) is a Higgs bundle if £ is a (holomorphic or algebraic)
vector bundle with holomorphic structure 0g and 6 a bundle homomorphism

0:F — E®c Ny
which satisfies g 00 + 60 0 9 = 0. Then 6 is called Higgs field.
If we restrict to holomorphic sections, 0|r, ,(x g, then
0odp(s) =0, VseTlhu(X,E),

i.e. the last property 0z o6+ 0o 0p = 0 simplifies to g 0 § = 0.
Using A.1.24 and A.1.25 we can write for every open U C X

|y € (Homgq)(T(U, E),T(U, E) ®¢, U)o
1,0

~T(U,Home(E, E @c [\ U))
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1,0
~T(U,E* ®c E®c \U)
~ I'(U, Ende(E) @c /\ U)
~ T(U,Endc(E)) ®¢w) )’

To find the equivalent to g 0 @ + 6 0 g = 0 we need the induced holomorphic
structure on the endomorphism bundle, which is described in A.4:

Ipna : 2y (End(E)) — Q' (End(E))
gEnd(W) = Opw+ w5E7
for any (1,0)—form w. Therefore Op 0 + o0 dp = 0 < Ipua(f) = 0.

But we have

o (U, Ende(E) ®¢ /\ {s € T(U,Endc(E)) @ew) 0 |0mnals) = 0}.1

Thus 6 can be understood as a holomorphic section into End¢(F) ®c /\;0
some authors this discription is used as a definition for . However, we will stay
with the definition chosen by Carlos Simpson.

Note that 6 maps holomorphic sections s to holomorphic one-forms, since

0 = (5};9 + (955)(8) = EE(QS)
Thus in a suitable basis 0(s) has holomorphic coefficients.

Remark 1.1.2. For a Riemannian surface 6% = 0:
9(8) = Sp Q wy = 6’2(8) = 9(89 ® wg)
= 0(sp) Nwy
= (59)9 & (wsg N wg).
But wp = fdz,ws, =gdz= fdzAgdz= fg dzAdz=0.

If our Higgs bundle with Higgs field 0 is equipped with a hermitian structure h (see
A.2), then let 01 : T(X, E) — I'(X, B) @ Q%' = Q%' (E)? £x—sheaf homomorphism
be the h—adjoint, i.e.

hE On) = h(0'¢,n), &neTl (X E).

IFor a proof see [Huy05], p. 110 and p. 73 for H°(:) = Tpu(+).
2In [Sim90] 61 is denoted by 6.
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Locally® for a Riemann surface this becomes 0y = 1y ® (1d z2),07¢ = & @ (1d2)
and

h(&me) - (1dZ) = h(&,me @ (1d2)) = h(&er @ (1dZ),n) = h(&r,n) - (1dZ)
< h(&me) = h(&pt,m).

Thus 61 is uniquely determined by # and h. It inherits the homomorphism property
by

hOT(E® f),n) =* hE® [,0(n ))Zh(&@(ﬁ)A?z
= W& f) =h"(€).ne f)
WOTE) A fon), W€ € T(U,E), f € EU).

Hence 07(€ @ f) = 07(&) A f. 01(€) is smooth since h and @ are. Further we have
(07)? =0 (see 1.1.2).

1.2. HARMONICITY OF VECTOR BUNDLES

In the first part of this section we will return to Higgs bundles and define har-
monicity for Higgs bundles. We will see that harmonic Higgs bundles are just the
harmonic Zx—modules. Furthermore we will get relations between the defining
operators. This will be the foundation of all our calculations. Please note that in
comparison with Simpson we change d’' <> D’ and d” <> D".

The second part considers our metric as a map into the space P, of positive definite
matrices. There we will use some perturbations in P, to show that the metric is
harmonic in the bundle case iff it minimizes the energy, i.e. is harmonic as a map
into P,,.

1.2.1. Hices BUNDLES AND FLAT VECTOR BUNDLES
With the definitions of the last section we can introduce a new connection
D=0 +0g+6+6

on our holomorphic Higgs bundle (E, g, 6, h). We can check this is indeed another
connection although it is in general no metric connection.

D: Q% (E) — Q% (E)

36,0 are sheaf homomorphisms and so well-defined on any I'(U, E), U open.
4At this point the ®—notion might be confusing. f is just a C—valued function which acts
by multiplication, i.e. here ® = -. The hermitian structure of h enables us to put f on the side.
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since all component maps go into Q% (E). The Leibniz Rule is satisfied for D =
Op + O since D is a connection. Since 6, 0" are £(U)—module homomorphisms
Leibniz rule holds for D: Vs € T'(U, E), £ € E(U) = QY

D(s®¢) = (Op+0p+0+0N(sx¢)
= D)AE+sRAEFO(RE) +01(s®E)
= D(s)AE+sRAE+O(s) AE+OT(s) A€
= D+O+MN(s)ANEFs@dE
= D(s) NE+s@dE.

Definition 1.2.1. A metric holomorphic Higgs bundle (E, 0, h, 0) is called har-
monic bundle if I is flat, i.e. if Do D = 0.

We will not assume harmonicity for now.

Lemma 1.2.2.
D? = 90k + Opdp + 06T + 670
for Riemann surfaces.

Proof. This is because
a%}v ngv 927 (QT)Qa 95Ea aEey 0T5E7 5EQT7

vanish. Further 9z + 00 = 0 = g0 + 0705 = 0. We could prove the last
equation by using the compatibility with the metric of 0z + 0p to receive from the
Higgs property an equation involving the term 06" + 070z. However, the aim of
this section is to show that a harmonic bundle corresponds to a flat bundle with
a certain property: vanishing Pseudo-curvature. The tools used in this section
will therefore automatically lead to an easy explanation 1.2.6 of F), := D? =

Op0p + 0pdE + 00T + 6016, O
Remark 1.2.3. (i) Note that 9z + 6" is another holomorphic structure of E.

(ii) W.r.t. the holomorphic structure dg + 67 the operator dp + 6 becomes a
holomorphic connection (cf. A.2.12) on a harmonic Higgs bundle, since

(05 +0") (08 + 0) + (0p + 0)(Ir + 07)
= 0p0p + 0p0p + 00" + 010+ 050 + 005 + 0p0' + 0'0g

TV TV
= 0 harmonic = 0 Higgs = 0 Higgs

(8]3 + 0)(515 + 9T)|Fhol(X7E) = 075
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= (EE + HT)(ﬁE + 9) = 0,
i.e. holomorphic sections are mapped to holomorphic sections.

We want to start with a smooth vector bundle V' with flat connection D, and a
hermitian metric hy. Then we can split up the connection into (1,0) and (0,1)
part

D=D+D"

D is not necessarily metric, so we add an operator §” of type (0,1) to D’ and an
operator ¢ of type (1,0) to D” such that D"+ " and ¢’ + D" become each metric

connections. Define 9y = 229"  We want to show that the operator explains

2
a holomorphic structure: Obviously 53/ =0 as (0,2)—form on a Riemann surface;
the Leibniz rule follows from

D// _'_5//

Oy(s®@w) = T(s@w)

1 _

=7 2(D”(s)/\w—|—s®8w+§"()/\w—i—s@@w)
D//+5// _

= — Aw+5® 0w

= (Ovs) ANw+s®0w, seTl(UV), we Qi

Thus 0y determines a holomorphic structure of V.
Similarly we get for Oy := D,;”S/, that 92 = 0 as (2,0)—form and the Leibniz rule
holds:

D/ 5/
Oy(s®@w) = ;_ (s ®@w)
= %(D’(s)Aw+s®5w—|—5’(s)/\w+s®8w)
D'+ ¢
2
= (Oys) Nw+s®0dw, sel(UV), we Q!

s>/\w—|—s®8w

In particular 0y + Oy is a connection. This connection respects the metric since

hy (OvE,m) + hyv (€, 0vn) = % (hy (D" +0")&,m) 4+ hy (&, (D" + "))

SW.r.t. g + 0" a section is holomorphic iff it is killed by 9z + 7.
b¢f. A.2.10 and the following remark.
D" 5" are (0,1) parts of a connection and satisfy therefore the Leibniz rule.
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=° % (hv (8"€,m) + v hy (€,m) — by (€, 0'n)

+hV (57 5/77) + (T)VhV (57 77) - hV(5//€7 77))
= avhv(&??)a 57776 F(Ua V)

Moreover we can define 6 := 2% 97 .= 220 Again 6 = (07)? = 0. Further

the two operators are £(U)—module sheaf homomorphisms

0(s @ w)

01 (s ® w)

0 and 6 are adjoint:

hV(eJ[gv 7])

D -
2

%(D'(s)Aw+s®5w—5'(s)m—s®aw)

D —¢
< 5 s) ANw
(Os) ANw, seT'(UV),we QR
D’ — "

2
1 —
§(D"(s) ANw+sR0dw—05"(s) A\w—s® ow)

<D//_5// )
s Aw
2

(HTS) ANw, sel(UV),we Q.

hV <D//2_ 5//57 n)
(=hv ("€, m) + 0(&,m) — hv(€,6'n))
(hV(ga D/T/) - hV(£7 5/77))

D —
hV <€7 77) - hV(ga 077)7 ga URS F(Ua V)

(s®@w)

(s ®@w)

NSRS ORI

2

Definition 1.2.4. The pseudo-curvature of the metric hy is

G = (d")2 = Db + 03y,

where d’ := 0y + 0,d = 0y + 6.
A flat bundle, D? = 0, is called harmonic if the pseudo-curvature vanishes.

8D’ + 6", D" + § hermitian connections.

95?/ = 0% = 0 for a Riemann Surface.
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Thus if the flat bundle is harmonic 6 is a Higgs field and so we have constructed
a harmonic bundle as defined for Higgs bundles, since the curvature Fj, vanishes

Fy= 0y + 0y +0+06MH2 = (D' + D")*=D*=0.

So starting with a harmonic (Higgs) bundle from which we constructed a flat
connection D, we can get back to the same Higgs bundle by the scheme above, i.e.
the two definitions of harmonicity are essentially the same.

Remark 1.2.5. Note that 0y + 0y + 67 — 6 is another metric connection, since

h((Dv + Ay + 6" = 0)€,n) + h(E, (Dv + Iy + 6" — O)n)
= dh(&,n) + h((0" — 0)&,m) + (<, (67 — O)n)

= dh(&,n) + h((0T — 0)¢,m) — h((6T — 0)¢,7)

= dh(&, ).

In particular this connection respects the holomorphic structure 0y + 6f from
remark 1.2.3.

We want to add the missing part of the proof of D? = 0 < 0p0g+050s+00T+0160 =
0, i.e. to show that

Lemma 1.2.6. 00 + 005 = 0 = 0g0' + GTE@ =0. 10

Proof. Start with a Higgs bundle (not necessarily harmonic). Note that for ¢ =
Op — 0" = D' +6" =05+ 0+ 0g — 0" is metric just as D" + ¢ for &' = O — 0.
Now we are in the same situation as in the flat bundle case. Next note that
(D")? = (D")* = (§")* = (6")* = 0 by degree considerations. Then

0pf +00g = (0p+0)>
1

_ Z(D’+5/+D”—5”)2
— i(D/DN_i_DIID/ . D,5,/ . 6//D/

+DH5/ + 5/D// _ 5/6// o 5//5/)
_ _i (DI—5I+D/I—|—5//)2
— — (61 +0g)°,

what proves the claim. O

0Even <.
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Remark 1.2.7. Note that we didn’t use harmonicity here. However, if D is flat
then D'D" + D" D" = 0. We further get

(" + "), m)

= 2dh((0" 4+ 0")&,n) + h((0" + "¢, (D" + D")n)

= 4d°h(&,m) — 2dh(&, (D" + D")) + 2dh(, (D' + D")n) — h(&, (D' + D")*n)
= 4d*h(&,n) — k(& (D" + D")*n)

= ()7

i.e. 0’0" +6"0 = (8" + 0")*> = 0 and the Higgs field property becomes equivalent
tO D//é/ _"_ 5/D// — D/é// _"_ 5//D/.

The main theorem is an equivalence of categories, so we must clarify the notion of
a morphism.

Definition 1.2.8. Let (E,hg, Dp,dp) be a harmonic vector bundle with flat
connection Dp = 8E—|—8E+6’E—|—02, d%, = Og+0. Analogous define (F, hp, Dp, d7.).
A map

p: = F
is a morphism of harmonic vector bundles/a gauge transformation if
(i) ¢*(Dr) = ¢Dp,
(i) ¢ (df) = @df,
(iii) ||ellp=r < ¢, < 0o (cf. remark A.4.2)

Analogously in the language of sheaves.

1.2.2. METRIC AS A MAP

We proceed by considering metrics as maps into the positive-definite matrices (see
A2).

Let D be as before and Dy, 1ot = Oy + Oy + 0T — 0 the metric connection of the
previous remark 1.2.5. Then D = Dy 4 + 20. Let (s;) be a D—flat frame, i.e.
D(s;) = 0. Let H be the representation of the metric h in this frame. Then we
have by remark 1.2.5

dhij = dh(s;,s;) = d(s;Hs;)
= (D —20)s,)"Hs; + st H(D — 20)s;

HExistence by Kobayashi [Kob87], p. 5.
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= —2(0s;)"Hs; —2s;HOs;

= -2 ((Z 9k15k> HSj -+ S:H (Z ijsk>>
k=1 k=1

= =2 (Orihu; + harb;)
k=1

and therefore dH = —2(0TH + HE). Since every positive-definite matrix is invert-
ible'? and by degree considerations dH = 0 < 6 = 0.
Now use the inner product (-, )y, g from A.2.20. Then we get

IdH ||f, i

= (dH,dH)u, g = 4((0'H + HO),(0"H + HO))w, 11

= 4tr(H(0TH)H 0. H)(dZ A +d Z) + 4tr(H (HO,)H 0. H)(d 2 A xd )
+4tr(H Y (OTHYH " HOD) (A Z A *d 2) + 4te(HH(HO,)H 'HO)(d 2 A *d 2)
= 4tr(H 010, H)(—idZ Ad 2) + 4tr(0,00)id 2 Ad Z

= 4itr(20,0") d 2z A d Z

= 8il|f||3dzAdz

= 16H9H% dx Ady,

where we used dz ANdz = —2idz Ady.
Thus we have the energy of h as

dH |2
E:(h) = / w:@'/ (0,0)psdzNdz
A1 2 Az

_ 4@/ 102z A dz
Az

We want to show that h is harmonic, i.e. minimizes the energy functional.

Recall the construction of the previous subsection. We constructed first an
operator ¢’ resp. §” (dependent on the metric) and defined 6 with the help of
these operators. We will redo the process for a variated metric.

Now consider an arbitrary variation H+cHU, U any matrix-valued function which
is at least twice differentiable on B and vanishes on the boundary of B*. Note that

2gimilar to a diagonal matrix with positive diagonal entries.

13To ensure integrability use Az; = {z € C|0 < g1 < |z] < 1} closed and that we have no
singularities outside the punctures. For simplicity we used that the boundary 0B; C X - possible
after rescaling.
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since det is polynomial (and therewith the invertible matrices are an open subset
of C™™) H + ¢HU is invertible for ¢ small enough, H € Gl,(C). Let 6, denote
the new extension of D’ to a metric connection and §% + O(g?) = 67, — §”. We will
show that §} = ed0"U.

O(H+¢eHU) = (D"Y(H+¢eHU)+ (H+cHU)d,
= c0(HU) = (H+cHU)(5, — of)
= (H +cHU)(5% + O(?)).
In order to calculate OHU change to the endomorphism bundle. In A.4 we see
that we get induced connections on End(£) and that (E;;)i = 005 is Dgna—flat.
The metric is hgna(A, B) = tr(HAH B*). We get
ghEnd(U, Ezy) == gtr(HUHEﬂ)

= 0 Z hsrUrichii 0150

s,k =1
= 5 Z hirUrkhkj
rk=1
and therefore
O(HUH);; = Ohpaa(U, Eyj)

= hgnd(0gnqU, Bij) + hend(DingU, Eij)
= hEnd((S”U — U(S”, Eij)

=M Z hsrégkUklhlm(Smjési - hsrUrkéllg/lhlm(Smjési

s,rk,l,m=1

= Z hir O Uihij — iy Up0 b

rk,l=1

= (HO"UH);; — (HUS"H);;.

Since H is invertible as a positive-definite hermitian matrix and 0 and 6” contribute
each one differential on each side of the equation, we get O(HU) = §"U — U¢§" =

16" = 84 C, 6!}, = 0+ Cry. Here 9 is the usual C—operator, which can be informally written

as diag(0,...,0).
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5],£nd(U)
Thus for 0% = edp,q(U) + O(£?)

e0(HU) = Hépy(U) = (H+cHU)(5% + O(e?))
=0 = HO() + He(6% + O(?)),

and since e HU is of order 2 in € we can construct a term in O(g?) to shorten
eHU§\ producing a possibly higher order deviation, i.e. always O(¢?). Thus
X+ O(e?) = of, — 0"

Analogous 0, — &' = 0 + O(e?) = edp,4(U) + O(£?).

Recall § = 258 g = D28 = gy, = D000 = D0ia0C) g 250 + O(e?)

and 0, = 0T — 55U + O(?). Then proceed as in the unperturbed case to get'®
Eg(H + EU)
-4 ( |00+ 0.0 20, 0 20, 20 0<52>)
Az

=4 (/ (01,07 +(0,0) — (07,0 (U)) — (0,5"(U)) + 0(52)> 16

Since the integrand is e—differentiable and the differential is integrable on Az; we
may interchange the e—differentiation and integration

TR o) = ( / 10 G0} 080} + 0<e>)

0
—E:(H
= e :(H+¢€U)

- 4 (/A (0", Ona (U)) — <9’5]/£nd<U)>> :

e=0

Therefore we have a critical point iff the integral does vanish for all U, i.e. if the
integrand vanishes.
Now we use Hodge theory (cf. A.1.34) to apply the x—adjoin

(07, 05na(U)) + (0, 0500 (U)) = {(0")inal", U) + ((0")ina (0), V)
((6")fsnal" + (0)ina, U).-

Note that 0g,4(U) = 0"U — Ud" on a O—form U and 67, 4(0) = 6”0 — 06" on the
1—forms 0.

t:17

»The inner product, i.e. the trace is defined since as mentioned above for e small enough
H + ¢HU invertible.

16 Again integrability by differentiability of U, 6, § outside the punctures.

1"Note that the requirement Ulopa., = 0 is satisfied.
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In order to show (0”)*0" + (0")*6 we apply the Kéhler identities from A.1.36 and
receive —iA((D'0T+0TD")+iA(D"0+60D"). Recall that D' = 0y +60, D" = Oy +07.
Therefore

iAD}y, 40" — iAD}, 40
= iA (Ov0" + 00" + 610 + 670y — Oy — 670 — 66" — 60y)
=i\ ((Ov)Enad" — (v )Enat) -

Since we saw in the previous subsection that (Ov)Enald’ = 0 if (Oy)gnad = 0, the
map h is harmonic if (Oy )gna = 0, i.e. if the flat bundle is harmonic on Az, for all
e >0.

1.3. TAMENESS

In this short section we will given the definition of tameness as well as some basic
properties of multivalued eigenvalues.

Definition 1.3.1. Let £ 5 X be a holomorphic vector bundle. s : U —
P(E), U € X'® is a multivalued section iff 35 : X — E holomorphic s.t. s(z) =
som 1({z}) and w71 ({z}) = {2} for all z € U.??

Note that on a (small enough) open set U C X, 7! decomposes into a disjoint
union of sets U;, each diffeomorphic to U. So we can identify (via U; ~ U) § with

a collection of sections s; on U. Define 6(5) as the unique holomorphic function
on X which is identified with 6(s;) for all ;.2

Remark 1.3.2. In literature (and in the following) one usually writes s as a map
s:U— E.

Definition 1.3.3. An eigenvalue of 6 is a possibly multivalued holomorphic one-
form A such that

fs =s® A,

for a multivalued section s.
Locally we can write Ad z and then A is a multivalued holomorphic function.

Remark 1.3.4. Locally (on a small enough contractible set U) 6 can be written
as a matrix © dz w.r.t. the local frame field s; and a local coordinate z. Then A
(in the eigenvalue Ad z) is a solution of

det(©(x) — A(z)E) = 0.

BP(E)=U,ex P(E:), By = 7' ({x}), Z(E,) power set of E,.
19X the universal cover of X and 7 : X — X the corresponding projection.
20As 6 is a sheaf morphism, the 6(s;) (as functions on U;) glue together.
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Since C is algebraically closed there are n (not necessarily disjoint) solutions on
every fiber. But the entries of © are holomorphic and so is det as a polynomial, i.e.
locally the solutions \; are meromorphic functions of order at least % at the sin-
gularity.?! Now if necessary minimize U such that there is at most one singularity
s;.?% Then the ); are holomorphic on U\ {s} (resp. U if there is no singularity) and
they are eigenvalues. They can be multivalued but there are at most n branches
since det(©(z) — A(x)E) = 0 has at most n solutions on each fiber.

Note that around a puncture s; € X \ X there are still eigenvalues, but their order
at the puncture (considered as a meromorphic extension) is no longer bounded by
% since @ resp. sections can in general not be extended holomorphically over the
puncture.

As usual if two eigenvalues resp. sections on different open sets coincide on a con-

nected open intersection of the sets, then they extend each other holomorphically.

Definition 1.3.5. A harmonic bundle is tame if for all eigenvalues \; of 6 and
all punctures s;:

(Al < C/lz1,

for a local coordinate z; of a small enough neighbourhood of s;, where C' is any
constant and z;(s;) = 0.
The absolute value (w.r.t. some local coordinate z) of a local one-form \; = p; d z
is defined as |\;| := |-

1.4. DECOMPOSITION OF THE HiGGS FIELD

In the first subsection we will see how we may use finite branched covers to
construct an operator ¢ such that the eigenvalues of # and 1 have the same
residue. Then using Schur decomposition we will get the upper triangular ma-
trices 0 = 0 + 7, ¢ = a + ¢, which we may further decompose into block upper
triangular and block diagonal parts. The second part of this section will provide
us with some basic estimates of these operators.

For the proof of the main estimate we will apply the fact that curvature decreases
in subbundles to a section of the endomorphism bundle, namely 0. It will lead us
to a first inequality, widely used in the following two sections on the actual main
estimate.

Further we will add two examples that might help to illustrate the concept of a
Higgs bundle. They will prove important in the following chapters.

2lef. the Main Estimate below.
22Possible since the subset of singularities has no accumulation point for a meromorphic func-
tion.
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Please note that from now on we will usually work on a punctured disc. Since all
our punctures are isolated this is certainly justified.

1.4.1. EIGENVALUES, EIGENSPACES AND FINITE BRANCHED COVERS

As a model to describe the behaviour around a puncture we choose the unit disc
B* = B\{0}, B := {z € C||z| < 1} with the euclidean metric |zd z|* = 2z d 2Ad Z;
z the standard coordinate. The distance from the puncture is sometimes denoted
r = |z|. Assume that there are no further punctures on the boundary r = 1; if
necessary we rescale.

Further choose a frame (s;)1<;<, for our bundle £ on B* and denote © the ma-
trix representation of 6 w.r.t. this frame. If we apply O(z) to a vector e, =
Yo a;s;(x) in E, this can be understood as the evaluation of ©(s),s = > " | w;s;
at x.

For a tame harmonic bundle (E, 0, 0z, h) the eigenvalues of 6 are bounded by defi-
nition: |\;| < C/r. They are holomorphic on B* resp. on some smaller punctured
disc around the puncture 0. If necessary we rescale the whole process to use B*.

Lemma 1.4.1. dJe > 0 such that 3C > 0 and VA, eigenvalue da; € C

C

C

, d
)\Z» — (Zi—z

; a; € C pairwise disjoint. (1.4.1.1)

z

This holds independent of the branch of A;, i.e. for all values. In particular € can
be chosen greater or equal 1/n.

In order to understand the claim we need to find a suitable description of mul-
tivalued functions. Omne way to look at multivalued eigenvalues is to use a
branched cover. The open punctured unit disc B* is covered by itself via the map
g+ 1 B* — B*, 2z + z* for some positive integer k. The map is obviously surjective
and proper. Hence we have on B a finite branched cover 7g : B — B,z + 2V. To
clarify notation write 7p : B — B = D,z — 2. 0 extends to an endomorphism
Op« on D by Op-mp = 0. Denote by u the local coordinate of D with z = u®.
The eigenvalue equation det(© — A\E) = 0 written as > pi(2)\'(z) = 0 becomes
S o pi(uMN (W) = S0 ppei(u)Np. (u) where we used that the p; are sums of
products of entries of © and therefore transform as p«mp = 6. Having a solution
Aon B* = B*\ (B*NR_)? there is a corresponding solution A\p+ on a component
By C mp(B*).2* We can extend \p- to the next component of By C wp(B*) along
some path in D. After at most n such extension we find a component B; such that
Ap«Tp|Bo = Ap=mp|B; = A, 0 <1 <n. So if we choose N to be n! we get for each

23Respectively any other branch cut.
24Choosing a component corresponds to choosing a branch of the Nth root.
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Figure 1.1: A multivalued section - possibly an eigensection of 6. It can be closed
by gluing along the arrows.
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solution A on B* a meromorphic function Ap- on D such that Ap-7p = A.
Over D* we have the pullback bundle Ep- = mHE = {(z,e) € D* x E|np(z) =
m(e)} C D x B

proof of 1.4.1. Note that for the Laurent series expansion A\p- = > o gu”,
for tame bundles with m = N, we have ¢, = 0, for all —N < k < % This is
because Ap«7mp shall be a solution of a degree n algebraic equation with holomor-
phic coefficients?®, i.e. the nth-power of Ap-7p has to be an integer, in particular
nk > —N = k > —%. Of course this extends to ¢, = 0V — 1 < [Vk with
IN <k <1+ %, Still there could be a function with k branches ged(k,n) < k, i.e.
a solution which has no single-valued holomorphic counterpart in D for N = n.
To see this consider the algebraic equation 2\ + A3 = 0 with solutions A\; = 0 and
Aa/3 = £4/x (each 2 branches) and ged(2,3) = 1 < 2. However, for our purpose
N = n! is sufficient.

We can write Aps = Zzoz_mqkuk as Laurent series and get A =

> ek exp(kln(z)TJrzm), with exp(EREE2TE) the Ith branch of A for 1 <1 < n

N
(or less than n in the case of less branches).?” This shows in particular that
27V =u™N = exp(—In(z) + 27l) = exp(—In(z)) independent of I, and therefore a;

(here g_n) constant on all branches of a multivalued solution. O

By the lemma we may uniquely define a function m : {1,...,n} — {1,..., l%}, 0<
k < n for which

dz
Aj— (i)~

C

— ’zllfs'

m becomes monotonically increasing after reordering the A;.
Remark 1.4.2. If in lemma 1.4.1 already |A;| < M% then a,,;) = 0.
Let

E,, == span{v|(© — \;E)"v = 0 for some k € N and m(j) = a;}

the union of the generalized eigenspaces which correspond to a;. By the meromor-
phy of the eigenvalues we know that distinct eigenvalues don’t coincide on a dense

Z5This is a holomorphic vector bundle on D with projection 7. [z,e] = x and equipped
with the subspace topology. Local trivializations and transition functions (U;, ¢y, , gi;) become
(WBl(Ui), idp- xpry(py, opry), 5 gi; = gijomy,). Furthermore any section s € I'(B*, E) induces a
section mhs € T'(D*, E) by n},s(x) := (z,somp(x)) and a metric h becomes hp-((z,e), (z, f)) =
h(e, f); dim Ep- = dim E. See for example Munteanu [Mun04], p. 22ff.

26holomorphic on the punctured disc, meromorphic on the whole disc.

j4+1<l<nforj+#0 modn will lead to another eigenvalue. For [ > n branches will
repeat.
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subset of an open connected neighbourhood of 0 by the identity theorem. Hence
we may assume, after possible rescaling, that distinct eigenvalues do not inter-
sect on our punctured neighbourhood, i.e. their algebraic multiplicity is constant.
Therefore rank(© — \;E)* is constant for k big enough and thus we know that
the generalized eigenspaces of \; span a holomorphic subbundle of £E.® Construct
a basis of generalized eigenvectors as usual, i.e. start with some (multivalued)
eigenvector vy to the eigenvalue ), add all linear independent eigenvectors to the
same eigenvalue, say vy, ..., v, than solve (O — AE)v,,; = v; to find a generalized
eigenvector and so on until we have all generalized eigenvectors to A\. Then start
over with the next eigenvalue. This construction ensures that

Ov 41 = vy + Avg C span{v;|1 < j <r+1},

i.e. ©(span{v;|1 <1}) C span{v;|1 < j <l}. Denote V; := span{v;} and

l

the corresponding complete flag , i.e. a filtration with Gr;(F) = F; \ F_; of
dimension 1. The Gr;(F) = span{v;} = V; are not necessarily subbundles since the
v; are in general multivalued. However, E,, = ®j,m(j):i span{v; } = @?:1 Vibm(j)i
is a subbundle as an union of generalized eigenbundles. In particular the classical
direct sum decomposition into generalized eigenspaces ensures E,, N £, = () for

a; # a;.

Definition 1.4.3. An endomorphism f : V' — V is called semi-simple iff VIW C V
f—invariant subspace, i.e. f(W) C W, 3W' C V f—invariant subspace such that
W@W’' = V. A sheaf homomorphism I'(U, E) — T'(U, E) @ Q' (F) is semi-simple
if the restriction to each fiber resp. stalk is.

Remark 1.4.4. Every diagonalizable endomorphism of a finite-dimensional vector
space is semi-simple.

Define a semi-simple endomorphism ¢ : I'(B*, E) — I'(B*, E) @ Q% (E) in the
basis (v;) by

(1) 0 R 0
(i) _ 0 am(z) %
0 0 Am(n)

28Here we consider @ as a bundle homomorphism.
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Like ©, ® respects the filtration since it is diagonal (hence semi-simple) and ¢ has
eigenspaces V; and eigenvalues a,,(;. Transform ® to ® in the initial frame (s;).
Of course this does not change the eigenspaces of ® resp. ®. Later on we make
some norm estimates and so we only want unitary transformations. So we stick
with (s;) for now.

Remark 1.4.5. In general for matrices A, B with the same generalized eigenspaces
E; and B with geometric equals algebraic multiplicity, i.e. B diagonalizable, we
have A and B commuting. Since the vector space decomposes into the F; and
both A and B respect this decomposition we can restrict to one of the generalized
eigenspaces. Choose v; € E; then ABv; = A)\f}vi = )\fAvi and BAv; = )\fAvi,
since Av; C E; eigenvalue to B. Thus AB = BA.

By definition # and ® commute and naturally a base transformation does not
influence that, T'ATT BT = T-'ABT = T"'BAT = T 'BTT'AT.

Recall the Gram-Schmidt process to produce via e; = ”z})ﬁv € = Up —
i ZEZ?ZQGJ,
struction and the smooth inner product. We know that F; = span{e;|1 < j <i}.
This frame is still multivalued in general. In fact as long as we require a contin-
uous frame any non-subbundle V; will lead to a multivalued basis element. Note
that E; := span{e;} # V; in general.??. Moreover every generalized eigenbundle is
spanned by some e;, in particular E,, = span{e;|m(j) =1i}.

Now let us apply Schur decomposition. Since ® and © commute we can construct
the normal form simultaneously for both matrices. The e;(z) are eigenvectors
(resp. generalized eigenvectors) so © and ¢ have (Schur) normal forms in this
frame, i.e. are upper triangular with eigenvalues on the diagonal. We write

ej = ﬁ an orthonormal frame. This frame is smooth by con-
J

0=0,dz=0dz+7dz, ¢=¢.,dz=adz+qdz,
where 0., 0,7, ¢., a, g are the matrix representations:
odz=diag(\i,..., \,), a=diag(as,...,az),
are the diagonal parts, while 7 and ¢ are strictly upper triangular.®°

Remark 1.4.6. Note that ® has eigenspaces V;. Since P acts like am)L2 on the
generalized eigenspace of \;, ® is single-valued and so ¢ is. The eigenspaces of «
are just the F; and « acts also like a,,;) £ on the generalized eigenbundle of \;,
i.e. « single-valued.?’ This is because the projections of two distinct v; resp. e;

2%Tn Simpson E; and V; are interchanged.

30We will often drop "strictly", but we will always mean it.

31Gingle-valued as functions on B*. On the cover this corresponds to periodicity. More precisely
qr = 0z kqr for the Laurent coefficients.
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may differ but will still lie in the same generalized eigenspace by the subbundle
property. Hence ¢, a are invariant under the projection, i.e. single-valued.
Define § := 0 — «, than

0—a=0c—a+17=0+7, and ¢—a=gq,
are single-valued as differences of single-valued functions.

Definition 1.4.7. Decompose further

Mt = @ Hom(E,,E,)C End(E)
0<j<i<n

M° = (P End(E,,) C End(E)
0<i<n

M~ = & Hom(E,,E,)C End(E)
0<i<j<n

Do<jcicy Hom(Ey,, E,)) is the set of endomorphisms £ — E which restrict to
homomorphisms E,; to @ i<i B . Since the E,; are subbundles, the bundle resp.
sheaf homomorphlsms are deﬁned as usual, in particular single-valued.

M are the block upper triangular matrices, M~ the block lower triangular ma-
trices, and M° the block diagonal matrices.

Remark 1.4.8. As described in remark 1.4.6 « has eigenspaces FE; and ¢
eigenspaces V;. In particular both preserve the filtration F; = @;:1 V= @;:1 E;.
Let w € F; \ Fj, m(i) = m(j) + 1. Then Jw,, w. € F; and c¢,,, c., constants such
that w = w, + ZZ:O CopUkOm(k)i = We + D p_o Cer€hOmkyi With Fj 3 we — w, =
S Bt — Coper) and

Q(w) - ¢(w> - Oé(U)) wv + Z Cvkkas k:)z we + Z Cekek(s

k=0

= o(wy) — a(we) + Z (i) Cop VkOm (k)i — Qm (i) Cep ChkOmi(k)i
=0

¢(wv) - Oé(we) + Qi) Z 5m(k)i (Cvkvk - Cek€k> € ]:j>
—/_/ %,—/

€F; k=0

€F;
ie. q(F) = Fj or q(Ea;) CUjmiyej Ba; = q € M7

Definition 1.4.9. Decompose 7 = 7° 4 77 with 7° block diagonal and 7+ € M ™.
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Lemma 1.4.10. 77 is single-valued or equivalently the decomposition 7 = 7% +7+
exists; the decomposition into block diagonal and block upper diagonal part is
obvious, but we claim further that 7+ € M™, i.e. single-valued.

Proof. B+ is single-valued by 1.4.6, whereas 3 and 7 could be multivalued. More
precisely (3 is multivalued if and only if there is a multivalued eigenvalue A;. If there
was no multivalued eigenvalue, everything would be single-valued and the lemma
would follow trivially. Therefore assume [ multivalued. Since § and « preserve the
generalized eigenbundles so does . Then for every w € F; \ F;,m(i) = m(j) + 1
resp. Js € E,, single-valued, e.g. a combination of the (s;)*?, 3s € E,, multivalued.
But 7°s € E,, and 7ts € F; leads to (8 + 7)s single-valued = (8 +1")s®7"s

—_— =

G]'—i\]:j €%
single-valued, i.e. 3+ 7° single-valued, 77 single-valued on each E,, and hence on
E. O

1.4.2. NORM ESTIMATES

Remark 1.4.11. All estimates in the rest of the chapter are meant pointwise
and branchwise, i.e. the calculation works if we compare corresponding branches,
e.g. of o and 7°. Especially later on, when we differentiate w.r.t. z it might seem
more comfortable to have no discontinuity at branch cuts, i.e. consider the whole
process over D*. Naturally we will use the norm du A dw on D* as well. By the
transformation formula we have d z = 7},(d u) or informally

N
dz= aLdu: (N)uN_ldu:NEdu
ou u

resp. dzAdz = Nz%du A du. We will see in the subsection after the next,
1.4.16, that for Simpson’s main estimate we consider only the matrix part and
the form part shortens out. There is one more slightly different behaviour in
the branched cover case, which we will mention at the point where is becomes
important. Everywhere else we may just replace z by u, B by D and F by Ep-.

In the following proof we will use the Frobenius norm || - ||, which is equivalent
to all other norms on C™*" in particular || - |2 < || - ||z < +/n] - ||. This choice
might need some explanation. On the one hand side after the transition to the
h—orthonormal frame (e;), h = FE in this frame, the adjoint of an operator in
matrix form is just the adjoint matrix and the norm is just the euclidean norm. So
it seems somehow natural to choose the induced euclidean norm. But this choice
makes life rather difficult. The reason for our choice of the Frobenius norm will

32F,, subbundle guarantees the existence of a single-valued frame.
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be given in the next subsection. The advantage of the Frobenius norm is that it
is entry-wise and so we are able to split up our matrix 6:

n n
1617 = llo+7l7= D165 =D loidi + 76l
ij=1 ij=1
n n
= Y oyl + > Il = lloli + I3
ij=1 ij=1

Lemma 1.4.12. Q) 116, 01lF > cill[r, 71|

@) Nr. e = ellrlz.

Proof. The purely diagonal part of the commutator [#,67] vanishes as diagonal
matrices are commutative - [0,7] = 0. [0, 71] is lower triangular and [7, 7] upper
triangular and therewith both do not contribute to the diagonal Then

(007 — 676);; = ZTZJ Tji ZT i Tji
- Z Tij?ij - Z ?ﬁTﬂ Z |T’LJ |2 |T]7,
Jj=1 Jj=1

n n
(7'7'Jr — TTT)ik = E Tiijj — E ?jﬂ'jk.
Jj=1 Jj=1

Obviously [|[6,07]1% > 377y I7s® — 75> > 22 17 = 22,0 [l V1 < i <
For i = 1 this is just >, |[7,[* — >, [70]* = D07, [,/ since 71 = 0. But
then we have |7;|> < ||[0, 0]||% for all 1 < j < n. Inductively we get from |7;|* <
(DO, 07F, V1 < j < n, 1 <k < just |70 < @+ DG, 0TIF, V1 < j <n
by

116, 6113

Y

Z |T(z‘+1)j\2— Z \Tj(i+1)|2

(i+1)<y J<(i+1)

<d(i)[|[0,61])| >3

= (16,6115 + i@ 077 = D IrarnilP = D ImasnlP+ <i@)6,67]le
(i+1)<j J<(i+1)
>0
> > el

(i+1)<y



22 | 1. MAIN ESTIMATE FOR TAME HARMONIC BUNDLES

= D860 > S freny
(i+1)<y

Thus |7;[> < n!|[0,07]||r = [|[6,01[|% > || 7|2 shows (i) although this estimate

is generous.

For (ii) the argument is similar. Consider the two cases ||7]|r < 1 and a = 1

as well as ||7]|z > 1 and a = 2. Assume that |(777 — 717)4|? < oz ||T]|% =
(n!)2a.n F

(n!)2+nza ZZ |7-ij’2- Then

(77t = 7t)] —Zm Tl

= |my)? < |HWG V1<j<n.

()

Again by induction from |7;]? < -E ITI2V1 < j <n 1 <k <ito|ruen|? <
STl YL < <n

nln?

1 2/a

STl !

> |(7-7-T_7_7->(i+1)(i+1)|

= Z |Trny;l° — Z [Ty

(i+1)<y j<(i+1)

n!l-

<273

and further we have

2/a () 2/a ' 2/a
JH/ SIrlE = 30 el = Y0 e+ s il

(i+1)<j 7<(i4+1)
>0
> Y Il
(i+1)<j
> CEDle > g, vi<i<n
This leads to the contradiction
2 n
a= Ll = 3l < 3 e < e =

3,j=1 7]1

B sy i41) = 0-
4We can drop the absolute value, because if the first term is smaller than the second, we are
done.
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n n
n! 9 n?
a=2: el = < Y el < el < el
i,j=1 ij=1 "
Thus 31 < i < n s (71— 1)l 2 el = 7l 2 7t — i)l >
WHTH%Q > WHTH% This estimate is another quite generous one, but
for us sufficient. O

Lemma 1.4.13. (i) [|o% < i

(ii) For 8 =0 — a we have ||]|r < cglz| 1.

Ca

(i) a2 = <.

Proof. By construction. O

1.4.3. SECTIONS OF THE ENDOMORPHISM BUNDLE

It is natural to consider End(E) with the induced holomorphic structure [Jg, -].
Drgnq denotes the unique metric connection compatible with this holomorphic
structure (see A.4).

Next we want to use that the curvature decreases in subbundles [Huy05| 4.3.18
or [GHT8|:** Let End(E),. denote the subbundle of End(F) spanned by ¢, (cf.
Def. 1.3.1). Here ¢ = p.dz, i.e. ¢, is the endomorphism part of ¢.*% ¢, is
a holomorphic section w.r.t. the holomorphic structure on End(F) and therefore
spans indeed a subbundle. We have seen that the induced connection on End(E),
is again hermitian and compatible with the holomorphic structure. Since such a
connection is unique (cf. theorem A.2.10.), it is just the canonical connection on a
hermitian line bundle with curvature Dg, 4 (x) = 0010g hena(X, X), X € End(E),
non-vanishing. In particularly for the natural frame which extends ¢, we get

D]%nd,ap(gpz) = 58 lOg hEnd(SDz, SOZ).S? But

hena(z,0:) = Y ol = lle:ll%-

ij=1

Then we have D, (¢.) = 001og [lp-1%-

35We will more or less prove this theorem when we prove the Chern-Weil formula later on.

36y, e I'(X,End(E)).

3700 10g hind (0, ©) = 0(hna(p, ) " 0hEna (@, @), i-e. the curvature is invariant under mul-
tiplication by a scalar (here a smooth non-vanishing function) and therefore independent of the
chosen frame.
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The result of Griffith (cf. [GHT78|, p. 79.) applied to line subbundles reads (cf.
[Huy05], rmk. 4.3.16 on p. 189):

hEnd(Dipna o (2)8,8)(0,7) < hgna((Dipalenae),. )8, s)(v,0), Vs € End(E),..*
If we apply this inequality to ¢, itself we get

hina((0010g [|@:[17)¢2: 92) (v,0) < hena([D?, ¢:], 02) (v, D)
But D? = 0g0g + 0pdp + 007 + 010 = D? + 00" + 0160 = 0 the curvature for a
harmonic bundle, i.e. D? = —00T — 070 = (0.6] — 010.)dz A d 2. Hence
0 0
— 2 2 = =
(525 e 1ouI) (0= A d2)(w,0)
< ~hpna([[6:, 01], 2. 02)(d 2 A dZ) (v, D)

Now evaluate for v = %,E = a%' Then we have

hEnd(HSOzv QDL], 902]7 902)
o213

= 2 gl < -
0z 0z 8 1¥=llF =

Remark 1.4.14. Simpson rewrites both sides in terms of real differential forms
via dz AdZ = —2idz Ady and 22 =1 (aa_; + g—;) = }LA. Then note that

9%z 9z 4
for the Lefschetz operator A on the vector space T, X with (almost) holomorphic
structure I, 1 (a%) = 6%, 1 ((%) = —6%, and a differential 2—form w we have Aw =

w (8%, a%) 39 This applied to a holomorphic tangent vector v = £ = 1 (ﬁ - i@>

leads to dz A dz(v,0) = =2idz Ady(v,0) = —2idi = 1 = da;/\dy(8 ﬁ) =

ErE oy
AdxAndy = %Ad z/AdZ. Now multiplying by the factor 4 from %‘A = a%% implies
2tAd 2z A dz. Still this has value 4 for the chosen v and so the ratio between the

two sides won’t change.

Further for ¢, = 6, we get

hEnd([[0Z7 02]7 02]7 Qz) - hEnd([Qzei - 8192’7 92]7 92)
= hEnd(GZHZOZ — (9192 — 9391 + HZQZHZ, 0,)
- hEnd(glezv Qiez) - hEnd(Qfa 93) - hEnd(Qzeia 929) + hEnd(elezy 91«92)

- hEnd(eiez - QZHT QT‘gz) - hEnd(9T0§7 92) + hEnd(ezeigm Hz)

z) 7z

38A real (1,1)—form w is (semi-)positive, iff for all holomorphic tangent vectors v € T+9(X) :
—iw(v,7) > 0. An imaginary (1, 1)—form w’ is positive if iw is positive as a real form.
39Gee Huybrechts [Huy05], p. 41, Ex. 1.2.10.
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= heaa(010. —0.01,010.) — heaa((0160. — 6.60)6.,6.)
= Ohpa(010, — 0.61,010.) — heaa((010. — 6.61),6.0)

hna([0:, 011, 160, 61]) = 11 [6:, O2)1 %

Another special case occurs if ¢, commutes with 6,:

hna([[0-, 92]’ 0], ©2)
= hpna([0-01 — 010., -], ¢.)
hena (0050, — 0100, — ©.0.01 + ©.010., ¢.)
= hEnd(el%, 91902) — hgna(0:02,0.¢.)
—hena(p:0], 010.) + hina(p:01, 0.0])
= hpaa(0lp. — .00, 000.) — hpna(010.¢., ¢.) + hpna(p.010., ¢.)
= hpaa(0l0 — 0:01,000.) — hpna(070.0., ¢2) + hrna(©:010., ¢2)
= hena(0lp. — @.01,0%0.) — hna(0' 0. — ©.01, ©.07)
= hena([0], 2], (01, ¢2])
= |I[6%, 1l %

Remark 1.4.15. For 6 with constant rank and 6 # 0 we get 6, # 0 = ||6.]|% # 0.
By holomorphy of 6 this still holds on some neighbourhood of 0 even if we have no
constant rank. Still the Frobenius norm squared is just a sum of absolute values
|fI2. If f = 0 this might be not differentiable. But the preimage of 0 under the
smooth function f is closed in B*. So it is the union of closed balls and of countably
many isolated points. On the closed balls (apart from 0—dim) |f|? is differentiable
and the countably many isolated points add nothing in the distributional sense (not

112
measurable) - [ xAlog [|6. |3 < fXII[Gz,Gz]IIF

l16=11%

for all smooth, non-negative .

We have shown the following theorem:
Theorem 1.4.16. For the Higgs field 6

116, O1]11%

~Alog 6. < s
zZ|I|F

and more general

hEnd(Hem 01]7 sz]; 902)

—Alog [l < - [FeA¥:
ZI|F

Y

100f. A4.1.
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for a non-vanishing &€(U)—module homomorphism I'(U, E) — ['(U, E) @ Qy". If
0. and ¢, commute we get

0T7 z 2 2781 2
~Alogllgulfp < Ml _ M=, G2

=11 le:N1%
Example 1.4.17. Let X = B*, X = B, E = X x C with 7 = pr,. Define
H = (|2**),a € R and dge = 0 w.r.t. the frame e(z) = |( 2, (1)) Further

0
Ope =e® (292) ,6(e) =e®a’Z, a € O (X) and 0" = e ® % by

z

5h’(€777) - gh(ﬁ’@fla@@nl) :5(|Z|_2a§1ﬁ1) -
= @z°z2° L am dz + [2**(98)T, + |2]*& (07,)

a|z‘2a

> m

— — dz
= @ + aPlon) + em (25

dz

= h(e®0¢,m) +h(E e@mn (%) +e® o)
= h(9r&,n) + h(E,Ipn);
dz_

dz
hOgm) = hle@&a—,n) = |2*&Ga—7,
dz
for all £, € T'(X, E). Moreover 0 is a Higgs field:

_ d —
= h(Ope ® €1a7z, n) + h(fe ® 91, 1)

= he®B(6a") ) + hle ® G A DG,

=hle® ((gfl)a% + §15a%), n) + he® {m% A 01, )

= h(e® ((0&1) A a% + flga%), n) + h(e® fla% A 01, m)
= h(e® (0&) A a%, n) + he® fla% A 01, )

)

by holomorphy of a and the alternation of differential forms. The bundle is har-
monic:

aEgE(gle) = 8E(€®5§1>
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s (“jz) ATEL + (e  00E,),

adz

5E8E(§1e) = 5 (6@ ( ) A§1+€®a§1)

_ e®a<adz) /\fl—e®< j )/\8§1+e®88§1
adz
= —6®< )/\851-’-6@8851,
where we used 0 ((O‘dz) /\51) = ( ( )) NE — (ajz) A O&;.
Hence 0p0p + 0pdr = 0. Moreover
dzAdz dzAd
(06" + 010)(¢) = gle®ya|2%+gle®|a|2% ~0.

0 has a single eigenvalue A = a9% = \od z. In this trivial case 0 = (X) and 7 = 0,

aﬂ = apdz as well as E,, = (e) = E. Obviously |A\g—ag| < é The curvature D?

for D = Op + O is zero, i.e. the bundle is flat, by the calculation above. Then the
curvature on the endomorphism bundle is flat and the equation —Alog |0]? < 0
holds trivially by the concavity of the logarithm.

The following example has non trivial curvature:

Example 1.4.18. Let X = B*, X = B, E = X x C? with 7 = pr;. Define

— (y ygl) ,y = —log|z|> > 0 and Oge; = Opey = 0dZ w.r.t. the frame

e1(z) = <z, (é)) ,ea(z ( < ) Further dge; = —e; ® Zy,aEeQ =€ ®
00 -

dz - dz gt — dz.

Zydz,@ (1 0) =00 = (O O)Z

gh(f, 77) = 5(51%1/ + 52%?/71)
dz — dz =
= ——=&7 +yo(&m) + —= +y ' 0(ET,)
Z Y4z
dz dz
= YL@ — AT +yY 1 E® = An
zY zY

+(0& AT+ & A O )y + (06 ATl + & A D)y ™!

2
= h()_ei®0&,n)
=1
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h(6€,n)

2
dz dz
Hh(E —er @ — Am+e® — A+ Y e @ n,)
<Y <Y

=1

= h(0p&,n) + h(&, En),

dz dz
= h(e2® — NEn) = y_17 NSUP

y dz _ dz
= Ej Ny =h(€e1 ® 3—3/2772)

= h(&0'),

for £,m € I'(X, E). Hence D = 0p + Op is the unique hermitian connection, which
is compatible with the holomorphic structure dg. Moreover 0 is a Higgs field:

2

(005 +9p0)¢ = 0> e;®0&) + Oplex ® % A1)

i=1
d — - (d
= 62®7Z/\851+62®a(72/\§1)

d — d _
- 62®7Z/\8£1—62®7Z/\8§1

= 0,

where the minus in the last row comes from the usual Leibniz rule for p—forms
(here a 1-form). The curvature of the unique hermitian connection for a metric H

in a dg—holomorphic frame is just G_H_laﬁ, i.e.

D2

Further

00" + 070

(7 0Y_g(vt 0y (0
- o 8(0 yl>_a<0 y)(o 4 )¢
= —L 0 _212 O
= a(éﬂ 1)dz—< v2l2] L |dzAadz
yz y2|z[?

B 1 0\dzAdz
- \0 1) g2z

00 0 1\dzAdz 01 0 0\dzAdz
(1 0) (0 0> 222 *(0 0> (1 0) 22y
({00 1 0\\dzAdz (-1 0)\dzAdz
- (6 D-60) T -G )T

Thus (E, h, g, ) is a harmonic bundle.
The eigenvalues of 6 are \; = Ay = 0. The eigenspaces are spanned by the
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orthogonal vectors ey, e;. Define €] := ey3/y,€5 := e;/y~!. Then 0 is upper

triangular in this new basis,
r_ (0 vy d2
= (O 0 z

- - 0 vy dz
c=0, 7= (0 O) ot
and so on.

In the Frobenius norm we get

ol = (0 °0) (= o)~ (= o) (0 %)

Hence

2

F
—92 2 2
y2/ || ) —4 )14
H( 0 —y 2/|Z|2 B Yy /| ’
Moreover ||6'[|% = y~2/|z|*> and so
0@, 0 % 2y~*/1zt 2
167]/% y2 /Pyl
On the other hand
_ — 2 2
00log ||0/||% = 001og(y2/|2*) = dzAdz= ——dzAdz.
310 = 00108ty /121 = Gog Py R
Hence
9 9 1", 67113
oo |02 < S 27 JNE
and since we have even equality this bound is sharp.
The previous example fulfills as expected that we have
1, 0% _ 1o’ 0"l
~Alog 0|3 < —4 e < - G (1.4.18.1)
F F

with A = 48%%. If we omit the middle term we get the inequality of Simpson
[Sim90], p. 728. By Lemma 1.4.12 we can write

1,613
~Alog(lollE +1I7IE) <~ e
F F
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el IR
lollE + 117117
___ddlrl s
ol + [ 11% o
Remark 1.4.19. As promised we want to mention the differences in the branched
cover case. In fact by the chain rule

0 _ Omp(u) 3} _ou 0
No1 O
= Nu %f(z)v

and hence 4A, f(mp(u)) = N2[u|*N =22 f(2) for every differentiable function f.

1.5. MAIN ESTIMATE, PART I

We subdivide the section again, similar to Simpson in [Sim90], p. 729ff. Note as
well the rewritten version by [Moc07al, chapter 7.

As already described in the introduction we will distinguish two cases, and then
use the maximum principle to show that one of the cases cannot occur. The second
step follows the same principles, although we will need more intermediate steps
until we may use the maximum principle. As mentioned before we will construct
a constant b that is certainly bounded from below, but could be still negative. In
order to find a lower bound for b and consequently for 3 = 0 — a we add a third
step, originally not included in Simpson or [Moc07al. Thus we get a bound for 7°.

1.5.1. StTEP 1

In what follows we will use the special form the Laplacian takes on rotationally
symmetric functions in the two dimensional case, i.e.

A-10,0

o or or

The following estimate should be understood pointwise.
Let B be the unit disc as before. Let Br be the disc of radius 0 < R <1 and Bp
with the same - euclidean - metric.

Lemma 1.5.1. Define

(1) 6:113 < cal=| 2
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(i) —Alog [[6:[17% < —call 2]/
There are constants ¢z, ¢y > 0 such that for all z € By, either (i) or (ii) holds:

Proof. Choose c¢3 = 2¢,. Assume that (i) does not hold, i.e. ||0.[|% > 2¢,|2]72.
Hence

¢ _ c
IT1% = 116:0% = llollE > 116117 — =5 > 2¢0l2| 72 — =5
|| ||
|2[~2
and further
c 16117

Iz = 16:1% - |Z|%2 > 10.11% = 1717 = 17117 > 2 £,

By 1.4.18.2
—AlOg HQ ||§7 o C%C%HTH% _C%CgHHzH%
z -
loll% + 7% 4010.11%
e al
— 4 .

With ¢4 := # the claim follows. O
Lemma 1.5.2. Let

_ Cm . = i 41
Mey e (2) SRR B,e; >0,z € {Z|le1 < Z < R} =: A, g
If

4R?
Cm > —, and ¢, > chQ,
Cy

then

(i) —Alogme, ., (2) > —cyme, ., (2) and
() 120 e (2) > c5l] .
Proof. By direct calculation for |z| = r.

19 9 Cm
ror Or(r—e1)?(r— R)?

—Alogme, . (2) =

41Gince R for "ring" is already taken we choose A for annulus to denote ring areas.
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20 2r—ei—R 20 2 —er—Rr
ror (r—e(r—R)  ror(r—e)(r— R
2(—1?R — 12 +4re1R — €2R — R%ey)
(r—e)*(r — R)*

2—R(r* —2re; +¢e2) —e1(r? — 2rR + R?)

r (r—ep)*(r— R)*
—2e4 —2R

r(r—e1)? i r(r— R)?

- 22 (aleRR | ey

2| E

= |

<

) ey e (2).

Moreover & < 1 on A., g, (|z| = R)? = |2> = 2R|z| + R? < |2|> = 2z||2| + R2 <

||

R? —|z2< R?on A, g and
1,

(l2] — 1)

(I2] — 1)

< S‘Z|—€1§|Z|§R
2| |2l — &
>0
So
IR
2 (|z| — R)? + (2 — 1) R < 2R?
~— <R
<1 <R
implies
-2 - R 2 —R o 2
—Alogme, ., (2) = — (el ) (Il = &) erem (2)
’ Cm 2| 2| ’
-~ - >0
<2R2? B
—2.2R?
> Mgy, (2).
Cm
Now the condition ¢, > & implies (i). The second inequality (ii) is the result of
Cq
Com, c3R? 3
me ,cm<z) == Z 2
' (lz] —e1)?(lz] = R)? ~ (lz] —e1)* - (2] = R)? — ([2] —&1)?
C3
- |Z|27

where we used first B > ¢3R? by assumption, then R? > (|z| — R)? on A., p and
at last (|z| —e1)? < |2]* on A, g -
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Before we come to the next lemma recall the (weak) maximum principle

Theorem 1.5.3. Let U C R? be open and bounded and v € C*(U) N C(U)
subharmonic on U, i.e. —Au < 0. Then max, ;u(x) = max,coy u(x).

Proof. Miiller, [PDE09| p. 16 or any book on the topic. O]

Remark 1.5.4. There is a stronger version of the Maximum principle (for example
in [LiLo00] p. 244, theorem 9.4, or |Gar91| resp. [Dah77|) using upper semi-
continuity requiring only limsup, 5 u(r) =: F < oo*? instead of the continuity
on the boundary. Then subharmonicity implies u(x) < F.

We will mainly use the classical version.

Lemma 1.5.5. The set S; := {z € B}|[|0.]|% > m., ., (2)} is empty.

Proof. Assume that S; is not empty. Then at least for one z € /LMR: 16.]1% >
Me, ¢, (2) = % by the previous lemma. Hence (ii) of 1.5.1 holds: —Alog||6. % <
—calb:(2)|1 %

= —Alog ([|0.117/me, c (2)) = —Alog [|6-]1% + Alog (1625 /me, e, (2))
< a0 ()5 + camey e (2)
< = ([10:(2)F = My 0 (2))
< 0

Then log (|0 ||%/me, ., (2)) is subharmonic and we can use the maximum principle,
if the function is continuous on 0S;. The function is continuous on flehR and
OA., rNBS, = 0 since m., ., () is infinity on OA., r = {]|Z] = &1} U{Z||Z| = R},
i.e. f % me ., (2) there. The maximum principle tells us that the function has its

maximum on the boundary of S;, so the maximum is just obtained for [|0,]|% =
mslacm, (Z) On Sl

]'Og (HQ'ZH%/malycm(z)) S ]'Og (1) = 0 = ||03||%‘ S m€1,cm on Sl'
But this is a contradiction to the definition of S; if S} # (). Hence S; = (). O

Conclusion 1.5.6. For £y — 0 we obtain

C
0,2 < ———
16:F < LR =Ry

*
on B,

42For almost every .
13(1) of 1.5.2.
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Conclusion 1.5.7. For any Ry, with 0 < Ry < Ry < R

2 )
16:117 < BE

on By, . Here c5 = (R;f’"m?

Remark 1.5.8. Remember A.1.18 in the branched cover case. We get instead of
C4 NOW W and so in the proof of lemma 1.5.5 we still have subharmonicity
and so conclusion 1.5.7 still holds.

1.5.2. STEP 2

For this paragraph assume c, # 0.4

Recall, 8 =0 — a, b:= ||o||% — ||a||% . Note that since o and o have non-trivial
entries at the same position the Frobenius norm does not decompose; ||S3||% +
|]|% > ||lo||%. We saw already ||3]| < cslz|~*¢ and further b < cg|z| 2. %

Lemma 1.5.9. Define

k(2) = log <|Z|2(||04|% +b+ HTH%)) |

Ca

Then there is a constant cg such that

2—6 (02> + |I717121?) < k(z), (left inequality)

for blz[* + |[7[[F]2[* = 0

1
k(z) < — (b[z\z + H’TH%|Z’2) ,  (right inequality).
Ca

everywhere.

Proof. Rewrite k

k(z)zlog(IZIQ(llaII%JrH||T||%)> ~ log (1+M>.

Ca Ca

2 2
Note that blcz—|2 < L7 < gy < 1 for 2 small enough, ie. 1+ [Pl (b:”T”F)

0.

44

> E9 >

¢, works analogously, although the case is less complicated.
2
5For \; eigenvalue of 6, \; = % + ; = \? = 2 4+ O(272%°).
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Now the right inequality is obvious, for example by log(1 + ¢) monotonically in-
creasing, log(1 + ¢)|—o = 0 = t|,—o and 2 log(t + 1) = A sl= % for t > 1 and
the other way round for ¢ < 1. (f(¢f) = t is a majorant function). For the left

inequality use Conclusion 1.5.7

2 2 2 _ 2 Cs El s
I7lE < [I7llz + llollE = [16:]F < W T < o
_ BPOHITIR) et es o
Co, T Cy

Choose cg := Cbcj% -log (1 + %), i.e. use a the secant line through the smallest
and the biggest value resp. upper limit of k(z) and the concavity of the logarithm.
O

o1 |

4 + Cb:'% upper bound 3

here <25 ~ 2,513 |

3 i

2 l

t I

1 |

| ‘ ‘CGt,tZO, he‘re 06:1/2.‘ "
—1 —0. 0.5 1 1.5 2 2.5

| |

log(1 +t) -2 3

-3 l

—4 | |

Figure 1.2: Lower and upper bound for a part of the logarithm; ¢ = w

4612120 < cplz| 7222 < 2% < ¢ for |2 < 1.
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Lemma 1.5.10.

Cb 1 -2
2Dl < Zen (=1
LIl < ger (~log [

for a suitable constant c;.

Proof. To simplify calculation write |z| = a,107% > 10~(*V for a unique a € [1, 10]
and [ > 1. Then log(|z|) = log(a,) — l1og(10). By definition loga € [0, 25]:

1

(~Tog 21)™ 2 (1+ 1) 1o8(10) ™ = s

On the other hand
|2F = af107%" < 1071,

The claim follows if we are able to show 5 Zr > (I + 1)2107=(=1);

(I+1)210==t=Y (1 +1)%10°¢
210-<0—2 2 <1

1 1
S14+-<10PP s> —— 47
t7s = 10s/2 — 1

So the right hand side decreases for [ > m. Hence for

2 N
.. _ 20105(10) ( 1 +1) G =)

Cor 10e/2 — 1

we have the desired estimate. O]

Choose cg > 0 with

cicic? 6
g < 08 < —
405 Cr

Similar to step 1 we want to get
Lemma 1.5.11. Either
(i) K(2) < er (log(|2]) " or
(ii) —Ak(z) < —csk(2)?]2]72,
holds.

4"The other branch of the square root leads to no solution within the & > 1.
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Proof. Assume (i) does not hold. Then we get by 1.5.10

1 1 Lo G b|z|?

“k(2) > e (—1 > Ly >

SHE) 2 gor (log ) > 21z > 2L
2 1 1

= k() = L > 4 - Je) = i)

The right inequality in 1.5.9 leads to

1 blz* _ 1 blzl* _ lITlE|=*
FF(2) <k(2) = =— < — (=" + |I7l[7 =) - = CF -
Negate and square the inequality:
272
4 _Cak (Z)
_ < o \7)
HTHF — 4‘Z|4
Recall Equation 1.4.18.2
|2 ddglrlly 2
“akE) = -alog(lo) - alog (28 < -alEle 2
! Ca 1015 127
a0 dallrlelzl? 2 _ _daak (@ 2
- Cs |z|2 — 4)z|*es |2|?
- _08k2(z) 2 - _cst(z).
- e N N -
O
Lemma 1.5.12. Define
Depey(2) = ¢ (=log|2]) "+, (—log|2]),
for ¢, = 6cg'. Then
. P2,
(i) —Apz,e,(2) > —cs ‘;’[2” and
(H) pap,cp(z) > Cr (_ log ’Z|)72'
Proof.
10 0
_Apsp,cp(z) - _;Erapsp,cp(Z)
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1 6 Gey
r(log(r)*r — (log(r))*r?
o 6 125, Gelog(r))
- (log(r))*r2 ~ r2log(r) cpr?
———
<0 >0
N 6pgp,cp(’z) o Cgpgp,cp(z)
N cpr? r2 ’

This shows (i). Recall that cg < % by definition = ¢, = 6¢5"' > ¢7. Thus

Peyey(2) = ¢p(—log |ZD72 +&p (—log |[2])
—_——
>0
> ¢ (—log|z]) ™ > er (—log |2]) 7
the second inequality. O]

We want to use again the maximum principle to show p.,.,(z) > k(z). Therefore
set Sy = {2|k(2) > pe, e, (2)}

Lemma 1.5.13. S, = 0.

Proof. Assume Sy # 0, then k(z) > p., ., (2) > ¢7 (—log |2])7? for at least one z.
1.5.11 applied to the current situation implies

—Ak(z) < —cgk?(2)|2] 72,
and further

152 cgk?(2)  CsPl .,
|22 |22

_A(k - pap,cp)(z) = _A(k) + Apap,cp(z)

kQ(z) - pzp,cp

2/
—_——
>0

= —Cg < 0.

So the function k —p., ., is subharmonic and since k —p,, ., is smooth on Bj, and
it is continuous on 05, (as 9Sy N OB = 0) - pe, ., is infinite on 0B} = {Z]|2] =
0} N{2||Z] = R} = k # p-,c, on OBf - i.e. p., ., continuous on 05, C By. So we
are in the position to use the maximum principle again and we get (k—p., ., )(2) <
(k—=k)(2) =0= k(2) <pepe,(2), V2 € S, i.e. a contradiction to the definition of
Sy. Hence Sy = 0. O
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Conclusion 1.5.14. The previous lemma holds for all ¢, > 0 and yields for
ep— 0
k() < o (~ log ) 2.

Remark 1.5.15. Remember A.1.18 in the branched cover case. We get instead

of cg now W and so in the proof of lemma 1.5.13 we still have subharmonicity

and so conclusion 1.5.14 still holds.

1.5.3. STEP 3

b= ||o]|% — ||a||% is in general not positive. We need to find a connection between

|8]|% and b. First note that both are not equal. For example for A(z) = 1 =

2
a(2),B(z) = ~dat 2 = 3 [la|f = 5 =4, [\F =[5 —4] =0= [|B]3 = 16,0 =
0.

Lemma 1.5.16.
—cp5l2| 7 < b—[1BlF < cplz| T2

Proof. We have

b— 1817 = lollz = llalz - 11817
| 2 jai)? 2
= Z_+Bi —|=| — 18]
|z z
n
Qs 2 Qs 2
= Z = +6 —|= —|ﬁz’|2
-1~ <
- a; 2 a; 2 a; 2 2
< LT +2ssd st =12 -1
1=
< 22 — 118l
-~
< 2ncacplz| TP
and
b= 8l = lolz—llalz —181I%
" a; 2 a;|? 2
= Z—‘i‘ﬁi —|=| =18
—~ 1z z
n
a; 2 Qs 2
= Z = +8| —|= —|5i|2
|z z
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ai
> Z) ] A Y
| a; |2 12
i=1
> —22 —| 184l
i=1
> —2ncacplz| 2T

]

Conclusion 1.5.17. Lemma 1.5.10 tells us that we find another constant, say cg
such that

18117121 < blz]* + copl2l < blz] + ey (= log |2]) ™

We have seen in 1.5.9 that & is bounded from below for b|z|? + ||7]|% > 0. Our
aim is to find a lower bound for all z. Therefore we construct a lower bound
for b|z)*> + ||7]|% < 0 and show that the sum of this bound with the one for
blz|> + ||7]|% > 0 from 1.5.9 bounds k everywhere.

Choose a radius Rs such that 1—2|2|* > 4 > 0 as well as 1 — 2¢0 (— log 12))7% >
g5 > 0 for some constants €4, 5. This is obviously possible as both terms converge
to 1 for z — 0. Then

e N

Ca «~ «

1+

e

blz|? 2 .
and so 1+ w >1—2[z]* > g4 > 0 on By . Now we use 1.5.10 again to

b 2 2
find more constants c;g, ¢c1; such that for w <0,0<|z| < Rs

2 2
1) = 1o (14 SR
Ca

b 2
> log (1 + ‘CZ| > > log (1 - Cc—b|z|€>

—_—

>eq

> log | 1= ~erg (~log|z])

(87
.

~-
=:—t<l—e5

> —cllz—bclo (—log|2]) 2. (1.5.17.1)

«
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The last step is again using the concavity of the logarithm. Since z is bounded
from above the logarithm is bounded from below and so the graph of log(1 — )
is bound from below by log(es), and above by 0. ¢t intersects log(1 — t) at zero
for arbitrary ¢;;. Now choose ¢yt the line through the smallest value of log(1 — )
and the biggest value of log(1 — ), i.e. 0.

Note that — (—log|z|)~” is negative everywhere and adding a negative function

‘ 1.5 %
i e5 lower bound 1+ log(1 +t)
| here e5 &~ 0,980.
| 05 |
| | | | | | I
1 —05 0.5 1 1.5 2 2.5
| —0
| -1
3 —1.5
1 |
| —2.5 1
| cut,t <0, —3 |
: here c11 = 1/2.
| —3.5
_4 s
| —45 |

Figure 1.3: Lower bound for a (negative) part of the logarithm; ¢t =
—g—iclo(—log\zl)_z.

to the left side of the left inequality in 1.5.9 won’t change the inequality. On the
other hand adding b|z|> + ||7]|% < 0 on the right-hand side of equation 1.5.17.1
preserves the inequality as well. In formula

blzl? + IrlFlz® 2 0: 28 (b= + ||7lF|2]?) — cr1gtero (—log =) 72 < £& (blz]? + |I7lIF|212) < k(2),

- Ca

blz|® +|I7lI%l2l” <0 5 (b2 + [I7lI3]2[?) — er1 2210 (—log|z)) 72 < —e11 Pero (—log =) 72 < k().
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Therefore we have by conclusion 1.5.17

Ce Cy Ce -2
= (Bl =P + 17l 217) — (— +cgc—) (~log )

o « «

< k(2). (1.5.17.2)
This shows the first part of the main estimate:

Theorem 1.5.18.
17001% < 17° 4+ BII% < |IT + BII% < cro (—]2|log |2]) 7>

Proof. Use first that the Frobenius norm is entry-wise, than equation 1.5.17.2 and
finally 1.5.14

_ k(z B _

112 <+ 812 < 1812 + 7% < # T encrs (2] log |2]) 2
< c5leac, (—|z|log |2]) 72 + 5 teacts (— log |2]) 2.

Choose c0o = cglca(cp + ¢12). O

Remark 1.5.19. We have seen that the results of Steps 1 and 2 hold for the
branched cover case as well, and since we have no more differentiation in step 3
theorem 1.5.18 holds in the branched cover case as well.

1.6. MAIN ESTIMATE, PART II

We will start this second part of the main estimate by recalling the adjoint repre-
sentation. Then we will add a proof that ad(¢) is invertible on the block upper-
triangular matrices. Using consistency of the Frobenius norm with the original
norm h (in an h—orthonormal frame) we may estimate ad in terms of its entries.
In particular 7" is bounded in terms of ¢. Now we can construct a function k as
in the second step of part I. Fortunately the problems that made us add step 3,
will not occur in this case and the rest of the argument works as in step 2. Now
we get a bound for 77 additionally to our bound for 7° from part I. Together we
get, the desired bound for the curvature of the metric connection.

1.6.1. THE ADJOINT REPRESENTATION

Next we will estimate the block upper triangular part 7+. We start with a general
discussion of the Lie bracket of two block matrices.
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Lemma 1.6.1. Let 1 =1, <l < ... <l <mn, k<nand m : {1,...,n} —
m(i) € {1,...,k} an increasing map. Define li.y =n+1 Let A= (a;) € M,(C)
with a;; = 005, Qi = Qm()0ii, Am € C and m(i) = m(j) & J1 < s < k:l, <
i,J < lsy1. In words the diagonal of the upper triangular A is a,,;) £ on blocks.
Then ad(A) is bijective on the set of block upper triangular matrices.

Proof. Let C' = (¢;;) € M,,(C) be block upper triangular w.r.t. the [;, i.e. ¢;; =0
for aHj < lm(i)-

n n
(AC)y. = E aijCijE 5j2iaijcjk5k21m<j)+1>
j=1

j=1

(CA = Y i =Y Ok>iCijndisi, s
j=1 j=1
(AC = CA)k = D iCin0inkotgym) — CiOkO k>0 s1)

j=1
Assume AC' — CA = D, D = (d;;)1<i j<n strictly block upper triangular. Consider
(AC — CA)ik for l; <i<mn. Then [} = lm(i) < lm(j) < lm(j)+1 = lm(j)+1 > n and
thus {j > i}N{k > L)1} = 0. Similar {5 > i}N{k > l,,j)+1} = 0. So this suits
to ¢;; = 0,d;; = 0,Vl; <i <n. This is our base case for the induction A. Now we
are going to show that stepwise for all [;,1 < 5 < /;:, Vi <i<lep1,V1I<j<mn:g;
is determined by D. Assume this holds for s; s — s — 1:
Note that j > I, — 1= m(j) > s—1. Hence {j > I, — 1} N{ly > L1} ={j =
=1} and {ly > 3} ({5 > by} = (i = L)

Dlsfl,ls - dlsfl,ls = (AC - CA)lsfl,ls

= E azsfl,jcj,ls5{3215—1}m{lszlm<.,->+1} - Czrl,j%’,zs5{1321‘}0{]'21,,”(15_1”1}
j=1
= A1, 1,0, 1C 10— Cla—1,0, 00,0, = Clo—10, (@, —1,0,-1 — Q,0,)

= Cly—1,l, (?m(lsq) - am(ls)/)~

-0
di,—1
= (-1, = ’ )
Am(ls—1) — Am(ls)

uniquely determined. Of course ¢;,_1;, = 0 for D = 0. This is just the base case
for another induction B with induction step ¢;,_1,,Vl, < r < k < n uniquely
determined = ¢;,_1 x4+1, uniquely determined. It follows directly from

Dy 11 =di—1 541 = (AC — CA),_1 k1
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n
= E als—l,jcj,k+15{jzzs—1}ﬂ{k+1zlm<j>+1} —Cls—1,j@j,k+15{k+1zj}ﬂ{jzlm<zrl>+1}
j=1
n
=a ¢ + aj.—1.iCi k101, 48
le—1,0s—1Cl —1,k+1 1s=1,5C5k+10{5 21 30 {k+1 210 ()41 }
Jj=1
—Cly—1,j 0 k10 (k13521 )
= Q1,—1,1,—-1Cl,—1,k+1 — Cla—1,k+1 Qk+1,k+1
N——

am(ls)

n
1,1 k10O 3l 11} — Clam1 k100415751,
=1

= 01371,k+1(am(15—1) - am(ls))

/

>

n

> 1,1 k10O Sl 11} — Clam1 k100415731,
i=1
n
B di,—1 1 5
= Cly—1kt1 = - ALy —1,5Cj k+10 (52130 {k+121,, 5y 1}
Am(ls—1) — Qm(ls) =1 T (ls—1) —%m(ls)

+Cls—l,jaj,k+15{k+1>jzzs}

am(ls—l) — Qm(ls)

where the second term is uniquely determined by D and thus ¢, 441
is: cj,kﬂ6{j213}m{k+12l7n(j)+1} determined by Induction hypothesis A and
Cly—1,j0{k+1>j>1,3 by Hypothesis B. Note that the second term vanishes by hy-
pothesis for D = 0.
This proves the induction B claim and therefore ¢;,_;; uniquely determined by D,
Vl<j<n®

The claim of induction B could be seen as a starting point for another induction
C'. Before we start with this last induction we want to repeat what we are actually
doing: Induction A shows that once we have one block of C' already determined by
D all other blocks are determined. Induction C' induces the determination from
one row up to another and induction B induces the determination from one entry
to the one right of it.
For induction C the hypothesis is ¢, V1 < kK < n,Vig—1>r >1 > [, + 1

1) > I, by assumption implies that {j = I, — 1} C {j > Is — 1} N{k+1 > l;y(j)+1} and of
course for j = I, — 1 there is no further restriction on k since k + 1 > l,,,—1)41 = [5 is anyway
fulfilled.

YFor j < I, ¢i.—15 = 0 by the block upper triangular form. For D = 0 all ¢;,—1; vanish.
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C
—— !

Figure 1.4: The arrows shall illustrate how the inductions A, B and C proceed.

determined by D = ¢;_14, V1 < k <n determined. Again

D 1y, =di1y, =(AC —CA);_qy,

n

= E ai—l,jcj,ls5{j2i71}ﬂ{lszlm<]~>+1} - Cz‘—l,jaj,ls5{lszj}ﬂ{jzlmu71>+1}
j=1
n

= E aifl,jcj,ls(s{ls>j2ifl} — Ci—1,1,Q1,1,
Jj=1

n
= Qj—1,i-1Ci—1,l, — Ci—1,1,Q1 1, + E az‘fl,jcj,ls(s{ls>j2i}
Jj=1

n
= Ci—1,0,(Am@,_ 1) — Gm@y)) + E Ai—1,jC1,0{1,>j>i}
40 =t

n
di1, = D251 Qio1,§C0.001,> 5>}

b

= Ci—11, =

am(lsfl) - am(ls)

uniquely determined by D. The second term is determined by hypothesis C. Then
induction B implies that ¢;_; j uniquely determined for all £. This shows the claim
of induction C', which implies the claim of induction A and our lemma. O
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Conclusion 1.6.2. ad(¢) is invertible on the block upper triangular matrices
M+ for ¢ = a + g. Analogously « invertible on M™.

Use the same notation as in the previous lemma. Define new matrices
A= diag(am(y), - - - » Um(ny), Qm(la)s -+ Om(lp_ ) Bm(ig)s - - - 704m(l,~€))7

the diagonal part of A and A” := A — A’. Finally let A" = (@;j)1<ij<n, Gij =
aijéjzl'm(i)+1 be the block upper triangular part of A.

Lemma 1.6.3. ad(A")(A”) = ad(A")(A"), i.e. the adjoint representation with
a matrix which acts as a dilation on the blocks depends only on the block upper
triangular part.

Proof. By direct calculation

n

(A/A// o A”A/)ik — Zam(i)dijajk5k>j — aij5j>iam(k)(5j

j=1
am(i)aik5k>i - aik5k>z’am(k) = aik<am(i) - am(k))6k>i
ik (@m(s) = (k) Ok>lmiy 11

= Q) QikOk>1 00, — QikOk>1,, 0 +10m(k)

n

= D U 0jkOk1,, ), — G631, 410mk Ok
j=1

— (A/A/// _ A/”A/)ilg-

1.6.2. AN ESTIMATE FOR 7+

Remember that [¢,0,] = 0 by definition. Then

0 = ad(0,)(¢)=[c+T1,a+(q]
= [o,a] +[o,q/+[r.a] +[r.q]
:OEa/g-o/nal
- [0+77q]+[770‘}:[6+@+T7Q]+[T’a]
= [B+7d+[a,q +][rq]

= ad(a)(r) = ad(B8+7)(q) +ad(a)(q)

Lemma 1.6.3 tells us that ad(«)(7) = ad(a)(7"),ad(a)(q) € Mt and thus ad(S +
7)(q) € M, since g € M.
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Remark 1.6.4. (i) We have seen that our inner product h induces the Hilbert-
Schmidt inner product hgyq on the endomorphism bundle. To estimate maps
from M* — M™ we use the induced norm

qg(B
lollars = sup g(B)lr = sup l0BUE 0 pnaar,
1Bl r=1 B0 || BllF

If g is a bounded and invertible operator on a finite-dimensional normed
vector space (hence a Banach space), so is g7'. To estimate the norm of the
inverse, recall the proof of lemma 1.6.1. Then for AC' —CA = D we saw that
the ¢;; depend on D and A naturally. On the diagonal part of A, ie. A,
however, the dependence is clearer: c;; is proportional to the inverse of the
product of differences between distinct entries of A’. But these differences
are just =+ for some constants m;. So the finite product looks like %,mk
constant, 7 € N\ {0}. Thus the inverse is proportional to |z|" < |z|. Hence
ciy < miglz] = [lad(A) (D)l = IC]lr < Cagqay1 |21, VI D]l = 1 and some
constant ¢, ¢ -1

Tn our case A’ = a: |Jad(a) |1+ < Cad(a)—112-

(ii) For the Frobenius norm we have

IAB|% = Z Zaw ik

i,k=1|j=1 i,k=1
2 2
- (z s ) (z rbm)
ij=1 jk=1
= | A|%|Bl%,

by Cauchy-Schwarz. Hence we have submultiplicity for the Frobenius norm.
By the triangle inequality

lad(A)l[ar+ = sup [|AB = BA[|p < sup [|AB[[p+[BA|r
|Blr=1 1Blp=1
< sup 2[Al|g|Bllr = 2[|Allr,
IBlp=1

The remark leads to

ad(a)(t") = ad(8+7)(q) + ad(e)(q)
=77 = (ad(e)) 'ad(a)(r) = (ad(e) ad(5 +7)(q) + ¢

J/

-

=f
= ([ +E)()
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Note that by 1.5.18

I+ B3 < ero (=12l log =)

= || fllae < °0202] Cad(e)-1 * Cr0 (—|2] log 12))7! = 1 .
— | log |||
=:icy

After restricting, if necessary, to a smaller neighbourhood B, we have || f||a+ <
Toa 7Tl locgf|zH < Cy < 1. Then the von Neumann series > .-, (—f)" converges and f + F
is invertible. Moreover Jci3 independent of |z| such that ||(f + E)7!|| < c13 by

IS+ E)Ble o IEZeEHN*Ble sy S I | Blle
1Bl - 1Bl - 1Bl
1
11—
1
1—-C)

IN

= (f +B) M+ <

Remark 1.6.5. Using again 1.5.18 we get

_ 1 C0 C14
< | E)! < T < :
lale < I + B0 e < (1= ) el < T

In particular a bound for ¢ leads to a bound for 7 which differs at most by a
scalar multiplication, and vice versa.

Now
2
Coy c _
o7 = el + llallr < =5 + =5 - (log |2]) 2
2?2 =~
<CJ%<1
Cis
<
EE
Recall 1.4.16 for ¢ = ¢
1161, 1117 -, 01111
—Alog ||| < == = - TR
" 6% -1

As we have seen, the denominator is bounded by 3. For [¢.,0]] we calculate

[90270,1] = [a + %01] = [0491'] + [Q76+ TT] = [O‘?Qi] + [Q>a+g+ TT]

50Use (ii) of the previous remark 1.6.4.
51For the operator norm we know that ||g(A)|r < ||gllar+||AllF (by definition).
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= [0+ [q.a] + [q. B+ 7]

The first term [« 01] is not upper triangular, while the second term [q, @] is. The
third term [q, B + 7] is mixed. Since

1=, O111F = 1=, 0bup | + Nz, Olbdiag siow I

with [¢., 01, the block upper triangular part of [¢.,01] and [¢., 01]pdiag biow, i-€-
the block lower triangular part including the block diagonal part, it will be enough
to estimate one of the terms to find a lower bound. In fact again by lemma
1.6.1 and remark 1.6.4, (i) we know that @ is invertible on M* and bounded by
lad@) ||+ < Caa(@)-1|2|- Furthermore remark 1.6.4, (ii) and 1.5.18 lead to

Sup H<ad<3+f*><8>>bup|!F < sup [(ad(B +7)(B))llr < 2IIB + 7|
B#0 B£0

C+0

—|z[log |z|

Hence on By, for some e small enough radius Ry, f=(ad@)""(ad(B + 7 (B))pup
satisfies || f||a+ < |lo | 7 < Cj < 1for suitable constants as before. Thus E + f
invertible with upper bound ||(E + f)~!|a+ < cu6,

c16llq + (ad (@)~ (ad (B + 71)(0) )bup || 7
c16l|(ad (@) | pllad (@) (q) + (ad (B + 71)(a) )bupl 7
= ci6ll(ad(@)) el 2. 0]pupll -

= llgllr <
<

So we have shown

Lemma 1.6.6. There is a constant ¢;; such that

el = JlE g )2 < e, 61
|22 Clﬁczd(a)—1|z|2 zJbup 2
and hence
s
—Alog ||, |% < lqll% < _ Cizcas |2 llall7 < —cigqlf%

—Ci7 >~
22| - 1% |2[?

Now we are in the position to proceed similarly to part 1. First

2
el = —mog\|¢z|r%=—mog(| g (1+' Ly HF))

a
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|Z2 2
= —Alog ||2 — Alog 1+—HqHF

10 —2c, 1° ’
- -7, - — —Alog (1+uHQHF)

ror ¢, Co
—_——

=—2
= og | 1+ HqHF

J

=:k(z)
= —Ak(2). (1.6.6.1)

Lemma 1.6.7. There is a constant ¢;g such that

e (L pa12 ) < k() < ELjp2.
C - -

« «

Proof. Note that this is the analogon to lemma 1.5.9. Fortunately this case is

easier as %Hq“% > 0. The right inequality holds in general for the logarithm (cf.
proof 1.5.9). On the other hand

|Z|2|| 2 Els PN

=: Cy0.
Ca "= caCiyl2)?| log\zH2 T CaCly *

——
>1
Set ¢i9 = 02_01 -log(1 + o). Then concavity of the logarithm guarantees the
claim. =
Lemma 1.6.8. dHco; such that
k(z)

—Ak( ) 621| ’2

Proof. From equation 1.6.6.1 and the right inequality in lemma 1.6.7

=:c21

C18Cq Czlk'(Z)
—Ak(2) < —aisllallF <~ k(2) = —— 5
2| ||
O
Remark 1.6.9. In particular we have by 1.6.5
’ ? cty
k ——— < Co9,
(2) < o HCIHF a(—log|z|)2 S Co2
>1

for a constant cys.
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Similar to 1.5.12

Lemma 1.6.10. Define
Depcpup(2) = cpl2[*" + &, (—logz]),
for u? < C21, CpRgp > 9. Then
_cocplz["P

(D) —Ape,cpu,(2) > == — > _Czlpspvc'r;—r;p(z)_

(11) p£p70p7up(R6) > Cog > k(RG)

Proof.
10 0 19 e
_Apapvcpvup(z) = _;Ergpapacp,up (Z) = —;57" (upcp’f’ P _ ?>
19 u 1 2 up—1
— —;E (Upcpr P _ 5p) = _; (upCpT’ » )
= —uper T > eyt
c,T"? B
> —Co pTQ — 18 (—logr)r 2/
>0
. Peyscpip(2)
21 FE
This shows (i). For (ii) consider
Pepcyn(B6) = pRe" +5p (Zlog |Rs|) > ¢, Rg” > 22 > k(Ry).
—_—

>0
[l

Next we show the analogon to 1.5.13, i.e. use the maximum principle to show
Depepuy(2) = k(2). Therefore set Ss := {z|k(2) > pe, ey, (2)}-

Lemma 1.6.11. S; = 0.

Proof. Assume Sy # 0, then k(z) > p., ., (z) for at least one z. Use lemma 1.6.8
and lemma 1.6.10 to obtain

k(2 Ep;Cp,Up Z
—AU{?(Z) - pép,cp,up(z)) < —021(—2) — 021]?—2()
C21

= _W(k(’z) _pap,cp,up(z)) < 0.
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Thus k(z) — pe,.cp.u, (2) is subharmonic and is continuous on dS3 since it is contin-
uous of By and 0S5 N 0By, = () by (ii) of the previous lemma 1.6.10 and since
log(z) blows up for z — 0. The requirements of the maximum principle 1.5.3 are
fulfilled and hence k(2) — pe, ¢, u,(2) = 0 is the maximal value of k(2) — pe, ¢, u,(2)
on Sy and so k(z) < p., e, () on S; - a contradiction. Therefore S5 = 0. O

Conclusion 1.6.12. Using the left inequality in lemma 1.6.7

—1 —1
Cig Cq Cig Cq w
lallr < FEERE) < SO (Gl + < (~log <)

we get for e, — 0
=:icq

2 < -1 Up—2 __ 2| |up—2
lqllz < cigcacy|?] _Cq|Z| :

Finally set ¢ = min{u,/2,1/n} and use remark 1.6.5 to receive

Theorem 1.6.13. There is a constant ¢+ such that

Cq +12 Crt
lqllr < = 7% < rE

Remark 1.6.14. Again recall A.1.18 in the branched cover case. We get instead
of co1 now W and so in the proof of lemma 1.6.11 we still have subharmonicity
and so conclusion 1.5.14 still holds.

In Simpson [Sim90|, theorem 1.6.13 and theorem 1.5.18 is called "Theorem 1".
Moreover "Theorem 1" additionally states

Lemma 1.6.15. For D = 0y + Jp and the metric connection D5E+9T = 0 +
Op + 0" —0 (cf. 1.2.5) we have

CD5E+0T

CpD 2
HD5E+9’r,zHF < 22| log | 2[|2”

ID2lF < —5r o

’ 22| log | 2][?
Here the norm of the curvature D shall be understood as the norm of the corre-
sponding matrix representation D, w.r.t. z. In future we will often refer to the
curvature of the unique metric connection by Ry,.

Proof. We have already seen, that for the harmonic bundle D? = O0p0p + 0p0p =
—00" — 0'0. Further

Di .y = (Op+0p+0"—0)(0p+0dp+0" —0)
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= OpOp + 0pdr —010 — 00" + 00" + 010; — R0 — 005
N—————

——6to—0ot
= —2070 — 200",
where all other terms shorten out by the holomorphy of the Higgs field or degree
considerations. In matrices we have D? = —0,01+010., D2 g, = —2(0.01—010.).
Moreover
0,6l = llo+ra+7r=M8+a+78+a+7|r

I8 +7.8+7T+[0, B+ ()] = [@ B+ ]llr
218+ 7llplB +7llr + 2l rlB + ) e+ 20@lells + 7 e

= 2B+ 77 +4lalFI8 + 7
CD
|2[?|log | 2|[?”

IN

IN

where we used in the last step lemma 1.5.10 and 1.6.13 to get

— Cq Cﬂ C+
lellellB+ (T e = lalle(I8lle + I7¥]F) < Tl (’Z|—1+a + |Z|—1+5>
Calcg + Cov) Co3
|2[27= 7 |2[*|log [2]]*
and 1.5.18 for
9 Co4

< s

1l = L plog

with suitable constants co3, Co4.

Before we used (to receive the second line) that o and @ commute as diagonal
matrices and that o resp. @ commute with (77)% resp. 7°: Since a, @, 7%, (77)° are
block diagonal it is enough to consider the multiplication of the blocks. But « acts
on each block as a;FE and E commutes with every matrix. Therefore o commutes
with 70, (77)0 as well as @ commutes with 7%, (71)°.

For CD5 ot — 2c¢p the second inequality holds, too. O

1.7. CONSEQUENCES

As a direct consequence of the main estimate we get the following lemma as well
as its inverse below. It tells us that the flat sections of a tame harmonic Higgs
bundle grow at most polynomially. The inverse tells that polynomially bounded
flat sections lead to tameness. Thus we have two different descriptions of tameness.
At the end of the section we add a technical result that allows us to extend solutions
of the Poisson equation weakly over a puncture.
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Lemma 1.7.1. (i) Let v be a flat section, i.e. Dv = 0 then [[v]|? < cogr™ .52

(ii) Let w be a flat section of the dual of the determinant bundle, i.e. (det E)*
(cf. 5.1.6), then ||w||? > c3or?". Hence these sections decrease at most
polynomially along a ray into 0.

Proof. Ad (i): Dg_ g+ +20 = Op + 5]5 + 60"+ 60 = D is a flat connection by
harmonicity of the bundle and [|0,]|% < 75 by conclusion 1.5.7.
Hence

dh(v,v) = WDz, g1v,v)+ h(v, D5, 4v)
= h((D—-20)v,v) + h(v, (D —20)v)
= —2h(0v,v) — 2h(v,Ov).

Now reduce the equality to the matrix part as in the section on the endomorphism
bundle - A.4. We get

0 0
(& + £) h(v,v) = —=2h(0,v,v) — 2h(v,0,v).
In order to prove the estimate recall that we have

or oz y@y
_ 2tz £+3 +z—2 2_2
B 2 0z 0z 2 0z 0z
00
- 8 oz

and therefore
0 0 0
87’h(v v) = (za +z£> h(v,v)
—2zh(0.v,v) — 2zh(v, 0.v) < 4]2]]|0. || p||v]||}>®
cos|lv
4” HQ\/T_ 25‘7|n Hh

_025||U||h < _H H
h

IN

T
:>”th < cger”

For the last line use Gronwall’s lemma (A.1.35): Substitute ¢(r) = 1—r, 8¢ = —1.

Rescale if necessary to work on the unit disc again. Equally we could choose

®2Simpson’s missing a sign in the first remark to the main estimate in [Sim90]. Compare
Deligne [Del70], p. 55, theorem 1.19.

%For v = (v1,...,v,) in our orthonormal basis, define V := diag(vy,...,v,). Then
|lv]|2 = [|[V]|% and by submultiplicity of the Frobenius norm and Cauchy-Schwarz’s inequality
hisna (0-V, V)] < 10 VIFIV L <= [8:1#IV 2 = 16- e o]
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t(r) = Ry —r on Bj,_. Then

9 2 cas||v]I5
— >
vl = .
0 casl[v(1 —t)|I7
= —— vl —t)||? > —
Sl =1 > -2 —
9 cos[|v(L — 1)
= —|lo(1 =) < =1
Sl =1} < 2=

t
C25
= oLl < Io(1 = o) [ 122 as)

= (DI} exp (=25 In(1 — 1))
= [o()Ili < o).

As we have no punctures apart from 0 the smooth section v is bounded, i.e.
lo()]7 < 2.

Ad (ii): Every section into A7_, E looks like f(z) = a(x)er A... Ae,. h induces
a metric on AJ_, £ by

ha(a(z)er Ao Ney, B(z)er A ... Ney) = ax)B(x) det(H )™,

H w.r.t. the basis (e;). For example for a D—flat frame (e;) we get from (4): |h;;| =
\h(ej,er)| < \/h(ei, ei)h(ej,ej) < cagr™2 by Cauchy-Schwarz. Then |det(H)| <
Coor " for suitable constants cog, c39, since it is a degree n polynomial in the
entries.

In a D—flat frame (e;) a(z)e; A ... Ae, is flat if da(z) = 0 - locally constant.
d is metric hence a(z)(e; A ... Ae,)* is flat if da(z) = 0. For the metric on
the dual bundle we got a formula in the context of A4. If ey A ... Ae, is our
basis of A\_; E' then hp(-,ex A ... Ae,)det(H) ! is the dual basis. In general
afer Ao ANep)* =hp(s,a@er Ao Aey)det(H) ™! and now set

hps(f* det(H) ™ g det(H) ™) = hp.(f",g") det(H)™

= hp(f.g)det(H)™

= o(z)B(x)det(H)™

for f =a(z)es Ao Nep,g=B(x)er Ao Nep and f* =a(x)ey A Aey, gt =
B(xz)er A ... Ae,. Hence a flat section into the dual of the determinant bundle
is bounded from below by det(H)™!, i.e. by ¢y 77 = c3or°. The case cy9 = 0
cannot occur since H is positive-definite, hence invertible. O

% Note that det(H) > 0 by unitary similarity to a diagonal matrix with positive entries.
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Proposition 1.7.2. Suppose V is a Pxy—module with harmonic metric and
suppose that flat sections grow at most polynomially and that the determinant
decreases at most polynomially, i.e. the bounds of the previous lemma 1.7.1 apply.
Then the eigenvalues of 6§ are bounded by % i.e. the harmonic metric is tame.

Proof. We will think of the harmonic metric as a harmonic map H : X —
GL,(C)/U(n) as in the chapter about Harmonic bundles. Let S. denote a cir-
cle of radius ¢ around 0 and S; = 0Bj. In the subsection on harmonic maps we
have seen that our metric H has minimal energy on the annulus A.; under all
metrics with the same boundary values, since H is harmonic. Hence for any other
metric K with the same boundary values, K|pa., = H|sa., we get

|, < [ ek,
A571 As,l

We want to calculate the energy of K in order to estimate the energy of H.
Choose K as follows: Let pg : [0,1] — X,r + re® ¢ € (0,27 and Ky : [¢,1] —
Gl,(C)/U(n) such that K4 = gpg, g : X — Gl,(C)/U(n) with

g’As+a,1 = H|S1 = K¢|[e+a,l} = (H|51ﬁp¢)'
9lpsnac.e = geodesic from Hls.q,, to Hlsnp,

fore+o<1.

Parametrize S. by 7.(¢) = €™ ¢ € [0,1] and S; by 71(¢) = €*™®. Denote
ve(p) = %;(@),vl(qﬁ) = %;(@) the tangent vectors of H on the bound-
ary. Now consider the sector with corners H(v.(¢)) = H.4, H(n(¢)) =
Hy g He s+ 20 (6)5(6) + O(AX(9)), He g+ 11(6)5(0) + O(AX(@)), where A(6) > 0
is a small perturbation in the angle ¢ (Taylor series). Note that v;(¢) is bounded
- Nloi(@) 17, < e31,V¢ € [0,1] - since H is smooth on A.; as is 0, and d H can be
written in terms of H and 6, as we saw in the chapter on harmonic bundles.

In order to estimate the energy of K let us start with the r—integration on the

interval [ + o, 1]:

! 0 0
LG+ ) 5
1 a 2
/s‘-‘ra <@) Kd) Tdr
- [ 252 o)
< ca(|1og(1) — log(< + o)) A(6) + ([ log(1) — log(z + o) )(O(A%()))

2
rdr

2

rdr
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Metric K

Figure 1.5: An example, how the metric K could look like. The metric K is
marked by the green surface, H the outer transparent surface. K is first constant
and increases than geodesically to the inner circle B..
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= cg1|log(e + o)|do.

Later on summing up over all sectors, i.e. integration over the angle ¢ the second
order terms will drop out, so we could as well save some space and omit them
from now on and simply write d ¢ for A(¢). The other equalities follow by the
r—constancy of f on [¢ 4 o, 1] and since K coincides with H on the boundary.

On the interval [e,e + o] the integration is slightly more complicated. Let L =
fEJrU H%KAT)HHH,@(T) be the length of the geodesic. Since a geodesic has by

€
definition constant speed, the speed on the interval is constant £°°. Then the
radial component is
2

eto |l 9 2 sto |,
/ —Ky|| rdr = / —| rdr
. or H, - o
L 2 peto
— d
(0> /5 (e4+o)dr
L*(e+ o)
= T(é +o0—¢)
< Lz(s—f—a).
o
Finally the angular component: Recall that we showed that the space P, is
negatively curved. The field J(r) = 8%“’;51) for a parametrized family of

geodesics g, is called Jacobi field. In non-positively curved spaces recall that

56

|J(r))|? is convex.”® Hence it is maximal on the boundary, i.e. ||%K¢H]?-H <

o1 |2,

max{||v: ||, , b < lvellfy, + 755 Therefore we get

(e+0)? (e+0)?
eto || 9 2 eto c
—K, rdr < vellZ + —2— ) derdr
[zl rer = [ (ot + 525 ) a0
o O Fa—— /m +oded
v — eto r
- T (e v 0)2) ).
= (ol c+0)+ —2-)(c+o-e)dg
" (e +0)
2 C310
= d d ¢.
Jeel, o+ o) do+ 27 o
Adding up the single terms and summing up over the sectors leads us to

1 1L2
Lo< [ enliogerollaos [ D ag
0

0

| lax
Ae,l
55 S0 ll%lldt

7—a— = 17|l if % independent of ¢.
%6Greene and Yau [GY93], p. 182. Use Proposition A.2.27 to guarantee completeness.
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C310

' 2
+ [+ o)+ 2% a0

L*(e+ o) 310
(e +0)

IN

ca1|log(e + o) +

5, do

LQ(E + 0') i C310

(e +0)

1
+0(5+0)/ ||ve

0
= c31|log(e +0)| +

o(e+o0) ! OH (v:(9)) 57
—l-T/O —_— do

0¢ H,,
= cg|log(e + o)+

L*(e+ o) L _Cao
o(e+0)
+7EE9 [ jape,
Se

(e+o0)
where we used that only ||v|% actually depends on the angle and that it is the
derivation of the harmonic metric H along S..

We want to estimate the length L. In A.2.27 we saw that P,, is a complete metric
space and so a geodesic minimizes the length.® For any path v : [g,& + 0] — P

eto
L(y) < / I ()l 0

Define a path ~(t) = exp (log(H(¢))t. + log(H(1))(1 —t.)) with t. = L(t — ).
Then
Ve) = H(Q), ~(e+o0)=H),

b= exp(~log(H(e))te —log(H(1))(1 —te))
vy = HEN I o og(rreyr. + 1og(m(0)(1 - 1)
(V)T =

log(H (¢)) — log(H (1))
g
Then [|(v(£)) ™Y (D)l 5 = 5 N0g(H (&)l i + 7 Mog(H (1)) g, &
We now want to use the polynomial bound (c.f. 1.7.1) of H(e) and H(g)™'.
As in the case of the exponential function we get log(U*DU) = U*log(D)U from
the power series expansion by

(U*DU)" = U*DUU* ... UU*DU = U*DU.

5TWe have an additional factor (¢71)%¢ = ¢! for polar coordinates.
58Geodesically complete follows from complete and path-connected.
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Hence

log(U2 H(#)UL.) = U log D(e)U.,
= log D(e) = diag(log(di(¢€)),...,log(d,(¢))).

Moreover

tr(log(UZ D(e)Ue) log(UZ D(e)U:)*) = tr(UZ log(D(e))U:UZ log(D(e))Ue)
= tr(log(D(e))*).

Analogous for H(2)™" = |[log(H(2) ), 5 = tr(loa(D(=))?) since log(d;") =
— log(d;).

Therefore we have || D(e)||lm, r = [|[UDE)U|m, 2 = |H(E)|n, g < cose™® and
1D(e) M6 = |U*D(e) U l|m,.6 = |1 H () lm,,z > a6 €.

Remark 1.7.3. We only know up to now that sections into the dual of the
determinant bundle satisfy such a bound. However in the next chapter we will
construct a functor = which describes the growth of sections close to the puncture.
We will see that this functor is compatible with taking duals and determinants, i.e.
the growth of a section into the dual of the determinant bundles determines the
growth of its corresponding section into E uniquely. For now it is only important
that such a bound exists.?”

Hence the entries d;(¢),d; '(¢) are bounded by the same bounds and therefore by
monotony of the real logarithm

co5log(e) —log(cas) = log(cygec™) <log(d;(¢)), log(di(e))
< log(cage—c*) = —cg5log(e) + log(cas).

For d; <1 the logarithm will be negative and we may multiply by —1 and then take
the absolute value: —cos log(g)+log(cos) > —log(d; *(g)) = |cos log(e) —log(cag)| >
|log(d;*(¢))|. For d; > 1:

| log(di(e))| < [eas log(e) — log(cas)]-

For € small enough we may collect log(cgg) into c4o log(e) for some ¢49 > neys. Then
square and sum up to receive the trace and take the root again: | log(H(¢))|| <
cao| log(e)]. log(H (1)) is constant in €, so increase ¢4 to c43 to bound the integrand
by 2|log(e)|. Finally integration from € to € + o leads to a bound cy3|log(e)|.®

= L < cq3]log(e)].

59We stick with cag, although = might change the constant.
60 After moving the supremum out of the integral, we integrate over 1 from ¢ to € + o = the
integral has the value e + 0 — e = 0.
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Therefore we get using | log(¢)| < log(g)? for € small enough, ¢ < o +¢& < 1 and
C35 — 2max{031, C43}

(e+0) ole+o0)
5o [log(@)l” + =———— | lldH g,
o g S.

C35

as an upper bound for the energy of K. Further choose 0 = ¢ and the harmonicity
of H leads to

| N4t < clogE)P + 22 [ I, (1.73.1)
As,l SE

Lemma 1.7.4. [, ||dH|[, is e—integrable (from 0 to 1).

Proof. The right-hand side of the last inequality is e—integrable: For |log(¢)|? this
is clear. The second term is slightly more involved. Our map H is harmonic, hence
H :eS' — P, harmonic®! tells us that H(7.) is a closed geodesic:5?

Theorem 1.7.5. Let N be a complete Riemannian manifold of non-negative
sectional curvature, p,q € N. Then in any homotopy class of curves from p to ¢,
there is precisely one geodesic arc from p to ¢, and this arc minimizes length in its
class.

Proof. Jost [Jos05], p. 217, theorem 4.8.1. [

In the section on maps into IP,, we have seen, that our situation satisfies the require-
ments made by the theorem. Moreover H is continuous and for a path 7 : I — X
homotopic to . the induced path H(%) is homotopic to H(+.). Choose an arbi-
trary point xz. € S. as base point, for example 7.(0) = x.. Let 5(¢) be the path
which for 0 <t < i is the geodesic between . and y € Sy/3 N p,. unique. Here p.
is the ray out of the puncture through x. and Sy/3 the circle with radius 2/3. For
L <t <2 5(t) is the circle Sy3, and for 3 <t <1 we require % = (1 —t), i.e.
we go back along the geodesic. In order to have a smooth path, we may smooth
out the "edges" by minor modifications of 5 in A;/55/4.5

The length of the circle part is bounded by 27sup,, | |dH|| = ¢, finite by the
smoothness of H. The geodesic part we have estimated before by cq3]log(e)]?.
Adding up we get

L(H(:)) < L(H(%)) < ¢5]log(e)[*,

for a suitable constant c;. Another lemma:

615, is a degenerate closed annulus and H is harmonic on all annuli.

62Reparametrize if necessary to have constant speed.

63 A possible non-differentiability at z. is of no importance. We may choose piecewise smooth
functions as well.
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Lemma 1.7.6. For each smooth curve v : [a,b] — M (for example M =P,):
L(7)* <2(b—a)E(y)

and equality if and only if v has constant speed. Here F(7) is the energy.

Proof. Jost, [Jos05] p. 27 lemma 1.4.2. O
We assumed constant speed so we may estimate the energy [ [[dH|f <
L(H (7)) < ¢s]log(e)[*. But then [y ||d HIJ, is e~integrable as claimed. O

Remark 1.7.7. (i) Note that by using the estimate for the length of a geodesic
again, we used the polynomial growth of the metric again.

(i) limesoe” [,  NdH|f, < e”[log(e)|* = 0 for any v > 0.

Let v > 0 small. Apply integration by parts (PI) on the g(c) = 2, f(e) =
[y NAHE,
b0 b0 o 0 ’
v fe)de = v L 2V H| rded
femrans = [eg ] (), e
— - [ e,
Ao
PI 1 !
O B e (CTE
S—— 0

g=0 for 5=064,f50 for e=1

1
_ —/ Ve”_l/ |dH]|s, e,
0 Ag71

or fAO,l r||dH ||g, = fol vert an1 |dH||g, de. Proceed with 1.7.3.1

1
|, = et [ anls, a
AEJ ) 0 As,l
1 1
< /1/5”_1035|10g(5)|d6+2y/ 5”/ |dH |3, de
0 0 Se

1
< /Vs”_1035|log(s)|d5+2u/ PldHE,
0 Do 1

67By the previous remark, (ii).
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Now subtract the finite second term:
1
(1— 21/)/ rldH|E, < / ve' less|log(e)| de
Acq 0

In the previous remark we saw that for ¢ small enough we have |log(e)| < ¢,e™*
for any > 0. Hence the right-hand side is still finite for 4 < v. Choose p = %
and v < % in order to make the left-hand side positive.

1
/ rldH|E, < (1- 2y)1/ ve" less| log(e)| de
As,l 0

IN

1

(1 —2I/>1V035/ e"/?1de
0

< ¢,.

We are still on our way to prove that the eigenvalues of 6 have no singularities
of order greater than 1. In fact we are almost done: |[dH|% = 8/|0]|%. Assume
that the eigenvalues of € were not bounded by % for some constant C', then there
is a \; eigenvalue with ||\;|| > r~'7#. After transforming unitarily to the Schur
normal form we see, if it wasn’t obvious, that the Frobenius norm of ¢ is bounded
from below by A;. On the other hand our bound of || d H|| implies that z); is
L?—integrable (v = 1). %

Lemma 1.7.8. Every LP(U)—integrable function f, U some compact neighbour-

hood of the origin, p > 1, holomorphic on U \ {0} has no essential singularities.

Proof. Every f € LP(U)—integrable function is integrable, i.e. in L'(U), for ex-
ample by |f| < max{l,[f[’} < 1+ |f” and 1 in LP(U). By the holomorphy of
f we find a Laurent expansion f = > 2 _ fyz". W.lo.g assume U = B;. By

Cauchy’s integral theorem fj, = = fSr j,fi)l dz,0<r<1

1 1 , _
= |fil = —/ 27Ti7’f(r627”t)r_k_le—%”t(’“-l)dt
0

2

1
< / ‘f(re%rit)r—ke—th(k-‘rl) ‘ dt
0

1
— —k 2mit d )
r /0 |f(7“e )} t

oo>/U|f(z)|dz = /01/01|f(re2”f)}dtrdr

8The choice v < 1 was for convenience of calculation. By the trivial estimate for v/ > v :
TV <l= | fAs,l v ||dH||]1241n < *an,l 7'V||dHHI%]1n-

Hence




64 | 1. MAIN ESTIMATE FOR TAME HARMONIC BUNDLES

1 1
> / \fk]rkﬂd?“:]fk|/ rFldr
0 0

But the last integral is only finite if £ > —2, i.e. f is meromorphic with a pole of
order at most 1 at 0. O

This shows that z\; is meromorphic and hence that \; is meromorphic.

Then ||dH|[*> > r=272* and moreover r”||dH||> > r=2=2" > r=2 for the choice
v < 2u, for example = v. But r~2 is not integrable over a two dimensional
space - a contradiction to ng,l r’||dH |3 < c¢,. Hence all eigenvalues of 6 have no
singularity of order greater than —1. O]

While the previous lemma and proposition provide us with a final result, namely
that we have two equivalent ways of describing tameness (one is by the order of
growth of the eigenvalues, the other one is by order of growth of flat sections), the
following lemma is a technical lemma. We will use it several times to expand an
estimate weakly over our puncture.

Lemma 1.7.9. Suppose f : X — R is a function smooth away from the origin

lggi‘ — 0 for z — 0. Suppose further that —Af < —b away from the origin

for a non-negative function b : X — R,. Then fX b < oo and the estimate holds
weakly over the origin.

Furthermore if b is not non-negative but any L'—function with —Af < —b then
[ b < 0o and the estimate holds weakly over the origin.

and

Proof. We may restrict to some small neighbourhood U C X of the origin, since
—Af < —b holds outside U and b integrable on the complement of U. Let ¥(z) =
—5=log || be Green’s function on U.% If U small enough, i.e. U C By(0): ¥(z) >
0. Note that ¥ is harmonic on X (without 0).”° Further let ¥ = min{¥, N} for
N € N. Hence Uy = N close to 0. Therefore

/ |AUN(2)|d2z < c37, and / VU N(z)|dz < esr,
X X

for a suitable constant c3;. Consider any compactly supported positive smooth
function n on U, supp {%n} NOU = 0,Vk € N. Let by := min{N, b} = —Af <

—by, by integrable and receive by integration by parts

/ bu(2)(z)dz < / (Af(2)n(z)d =
U

U

89Miiller [PDE09], Sheet 3, Ex.8 or Lieb and Loss [LiLo00].
TMiiller [PDE09], Sheet 3, Ex.9. or [LiLo00].
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_ / (V () V(=) d = + / (VF(2) n(z) dz
U ou ~

=0 on OU
_ / f) Anz)dz— [ f(z) Vin(z) dz
u <css ou =0 on OU

< 038/f(z)dz§038/|log|z||dz§039.
U U

So [, bn(z ( )dz < oo and we may interchange integration and the limit N —
00. S0 fU n(z)d z for all n and hence b integrable.
From now on use only that b is L'—integrable and —Af < —b.

With An < c¢33 we conclude
1 N
038/ lHog |2]] <1+%) dz
e N

Uy
L5
2038/ ]log\z|]dz+038/ |log |2||*d 2™
NS S

<oo <00

IN

IN

< Cag.
Then we may interchange integration and the limit in

v U
lim_ Uf(l—WN> (—A)y = /Uf(l—]&E%oWN) (=A)n

_ . log|z|
= /f(l—Nhggo N )(—A)n

Par ial Ine ration
L [ a1y
U

On the other hand integration by parts leads to™

o 08 (1)

. 1 : 1
=g [ onw (1o )n- g [re (1 g )

-~

=0 on 8U73
— Jim [ (—Af) (1—lxpN) +am [ (V) <1—iqu)n
N—oo U N U R N |
—0 on AU

"IFor any branch of the logarithm.
"2The Laplacian acts on 7 as well.
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~im [ (—ap (1 - %w) "

N—o0 U
< i b1 ! \
_NliIloo U N N

1
< lim bn(l+og!z)—l—lim/
N—roo U\Be—QﬂN ¢ N—roo Be—27'rN

<1

< lim 2bn+ lim bn

N—o00 U\B__ann N—o00 B, ann
- g - ~~ g

-~
— [1; 20 —0

S
a{z

< 00,

since b is integrable (Bg ball with radius R). Moving the limit under the integration

leads to
lim/f (1——\I’N>77§/b77.
N—o0 U
Moreover
1 B 1 AUy 1

Therefore
/Ubn—/U(—
z/Ubn—/f(—
>t [ o) (1= ) n- [ (1-5) -am

L AUy f
= f S (T) 2 <NWN) Vil

— 0.

We see that the last term does indeed vanish for f bounded.

llfgil‘ — 0, the last term vanishes by

[ G = L 55
— |{n = lim — |7
U N N—oo supp{AV¥ N} N

Wy, VU is bounded on the boundary and 7, V7 vanish.

In our case, i.e.

lim
N—oo
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< ¢y lim sup i' / AV y
N=20 \ supp{awy} |V supp{A¥ v}
. f
< ¢ypc37 lim sup —
N—oo \ (zev|w(z)<an} | IV
< ¢ypc37 lim lim i
- N—o0 TTN N
U(zy)=2N"*
. . /
< 2cypczy lim  lim =
—500 T—TN
U(zy)=2N
S
< P
< 2040037:%12[1)‘\1/

= 0.

Define c¢49 > 0 such that 1, Vn < c¢40 on U. To move the supremum out of the
integral is justified since the supremum is finite by our assumption. Analogous we

get
A4 WA
[ () - L (2
N—oo U N N—o0 supp{V¥y} N
S C40 lim sup i‘ / V\IIN
N=20 \ supp(vn} | V| ) | Jsuppivuny
< eyoC37 lim sup i‘
N—oo \ fzeU|w(z)<any |V
< li i /
< cacs fim |
U(zy)=2N0
< 2eq0c37 A}im xl_lglN i‘
T Gz )=2N
< 2040%793%‘@
= 0.
Hence we have proved the lemma. O

™ f has no singularities outside 0. For f bounded we know that the claim holds, so assume f
unbounded at 0, i.e. for a big enough N f takes its maximum on d{z € U|¥(z) < 2N}. Call
xy the point where f becomes maximal. In particular xn — 0 for N — oo.



FILTERED OBJECTS

2.1. FILTERED VECTOR BUNDLES

There are two different concepts of a parabolic vector bundle. We will define both
and shortly explain why they are in fact the same. We will usually work with the
second concept (Simpson). However, in the language of Mehta and Seshadri (first
concept) residues are easier to be described. These residues are defined in the last
part of the section. Before we will define morphisms of filtered objects.

Remark 2.1.1. Most of the following definitions make sense if we replace locally
free sheaves with coherent or even with quasi-coherent sheaves.

In 1980 Mehta and Seshadri ([MS80]) established the notation of parabolic struc-
ture on a Riemann surface.

Definition 2.1.2 (Parabolic Structure). Let X be a compact Riemannian surface
and S a finite set of points in X, X = X \ S. Let 7 : £ — X be a holomorphic
vector bundle and E, = 7 '({s}). A parabolic structure on X is given by a
filtration

Es=FEy sD FEays. .. D Eq, s

and weights 0 < oy < an < ... < a, < 1.
Equivalently we can choose E, s with o € [0,1], E,, s D Eg, for a < 8,Vs € S and

G (E) = Eas/ | Ess
B>«
has finite support, i.e. only for finitely many « it is non-zero.

Remark 2.1.3. Note that some authors like Takuro Mochizuki write the filtra-
tion increasing with a;. We will stay with the convention used by Simpson and
originally in [MS80].
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Since all punctures are isolated we will usually work on some neighbourhood
around a puncture s which contains no other punctures. Here the definition of
a filtered regular bundle in this case:

Definition 2.1.4 (Filtered Vector bundle). Let X be a non-compact curve,
X = X \ {s} as above and F an algebraic vector bundle on X. (E, (E,)acr) is a
filtered vector bundle, if

(i) 3 a filtration E, of coherent sheaves, i.e. E, D Eg for a < /5.

(i) Uy,on B = j.E.

(iii) Eo = \g<q Es (left-continuity).

(iv) for o/ = a+ng,ns € Z;a, o € R we have E, = E, ®o, O(—nss).

For the general case of more than one puncture we add a filtration for each punc-
ture.

Remark 2.1.5. (1) Note that in (iii) we used the equivalence between bun-
dles and locally free sheaves. We can define filtered vector bundles or more
accurately filtered sheaves by requiring £ to be a locally free sheaves of
Ox—modules, and the E, to be submodules with the properties mentioned
above.

(2) A filtered bundle induces a parabolic bundle with the filtrations

Fo=|JEBs 0<a<l

B>a

The weights are just the elements of {a € [0, 1[|Gr:(E) # 0}. On the other
hand given a parabolic vector bundle with weights 0 < oy < ..., < 1 set
E.s = E,, ;s for all a €lay, 2;11],0 < i <r,ap =0, a,41 = 1 and extend it
to a filtered vector bundle using (iv).

For example let (e;) be a holomorphic frame of E, then we may assume (by
(iv)) that all e; are in Ey but not in E;. By the left-continuity we even
find a 7; € [0,1] such that e; € E, \ E,;.,Ve > 0. Then the , are our n
weights and the e; Ox—span Ejy. The (E.,), have all different dimension as
vector subspaces - we will often describe them as "jump" since they add a
dimension.

(3) If the original bundle E is equipped with a hermitian structure h, E, ; has
a hermitian structure outside the singularities, i.e. we may identify each
s € F, s with a section of I and then evaluate the inner product.
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Using A.1.11 we can rewrite the definition in the form chosen by Simpson. There-
fore we replace (iii) and (iv) by

(iii’) the filtration is left-continuous in o Je > 0 such that for all « € R: E, s =
Boc.s;

(iv’) for a coordinate neighbourhood U; of s and a coordinate vanishing to order
one E,15 = FEus ®oy O(—s) =: zE, s holds.

Further note that by (iv) resp. (iv’) the filtration is already uniquely determined
by the data between zero and one resp. on any compact interval of length 1.

2.1.1. REGULAR FILTERED H1GGS BUNDLES AND REGULAR FILTERED
9 x—MODULES

We will usually treat only one puncture at a time. Hence we will sometimes drop
the additional index s in E, ;. Recall A.3.9, (iv).

Definition 2.1.6. A filtered regular Higgs bundle (F, E,,0) is a Higgs bundle
(E,0), a corresponding filtered vector bundle (E,) and

0.5, =t 0o : D(X, E,) — I'(X, E,) ® Q2 (log s).

Then 0, |r(x,z) = 0. Here Qly(log s) is the set of logarithmic one-forms, i.e. one
dz

Definition 2.1.7. A filtered regular Zx —bundle is a flat vector bundle (V, V, D{,)!
a corresponding filtered vector bundle (V,,) and

forms which can be locally written as a2, a smooth.

Vailva =t 0o : Thot(X, Va) = That(X, Vo) ® Q1 (log s).
Then vO"Fhol(X,E) = V.

In order to work with categories and functors later, define morphisms of filtered
vector bundles:

Definition 2.1.8. (i) Let ((E,0g), E), ((F,0r), F,) be filtered vector bun-
dles. A family (¢,) : Fo — F, and ¢ : E — F of sheaf morphisms is called
morphism of filtered objects if

(I) @*51: = QOEE.

(ii) Let ((E,0p,0r), Es), ((F,0r,0F), F,) be filtered regular Higgs bundles. A
family (¢o) : Eo — Foand ¢ : E — F of sheaf morphisms is called morphism
of regular filtered Higgs bundles if ¢*0r = ¢0p and

! D{, holomorphic structure, D{, + V flat.



(iii) Let ((V, Vv, D), Vo), (W, Vw, Dj,), W,) be filtered regular Zx—bundles,
in particular Vy + DY, Vi + Dy, flat. A family (¢,) : Vo, = Woand ¢ 1 V —
W of sheaf morphisms is called morphism of regular filtered Zx—modules if
©* Dy, = @Dy, and

(ITb) "V = ©Vy.

2.1.2. FILTERED LOCAL SYSTEMS

Deﬁrition 2.1.9. Let L be a local system (a locally constant sheaf) over X,
X = X\ {s}. A filtered local system (L, L,)qcr is defined by

(i) Lo C Ly if B < a.

(ii) L, C Ly a filtration (by vector spaces) of the stalk at s, Ly = |J
X.

(iii) mﬁ<a Lg = L,.

(iv) L, invariant under monodromy.?

wer La, VT €

Definition 2.1.10. A morphism of filter local systems is a family (¢, ¢,) with
¢ : L1 — Lo sheaf homomorphism and ¢, : (L1)s — (L2)s vector space homomor-
phism.

2.1.3. RESIDUE

Definition 2.1.11. (i) Let (E,FE,,0) be a filtered regular Higgs bundle,
Grg(E) = Eg/Epic,e > 0. Then the residue is defined to be (res(E), res(0))
with

res(d) : T(X, E) 5 T(X, E) ® Q(logs) — (X, E) ® QL

where the second arrow maps e ® w with w = %dz +ndz&n e Ox to
e ® & dz. Further res(E) = @y 4., Gra(E).

(i) Let (V,V,) be a filtered regular Zx—module, Grg(V) = V3/Vsie,e > 0.
Then the residue is defined to be (res(V),res(V)) with

res(V) : T(X, E) % (X, E) © Qk(log s) — I'(X, E) @ QL.

2We will define monodromy when we construct a functor ® from local systems to Zx —modules
in the chapter on filtered objects.
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where the second arrow is the same as in (i). Moreover res(V) =
@O§/5<1 Grg(V).

(ili) Let (L, L,) be a filtered local system, Grg(L) = Lg/Lgyc,e > 0. Then the
residue is defined to be (res(L), ) with p the monodromy around s and
res(L) = @ e Grs(L). When we talk of the residue map of a local system
we mean fi.

2.2. THE FUNCTOR =

The second section of this chapter treats a functor = from the category of accept-
able bundles (below) to the category of filtered vector bundles. We will show that
the functor is compatible with determinants, duals and tensor products. This will
help us when we stepwise reduce the category of acceptable bundles to the cat-
egory of tame harmonic vector bundles as well as reduce the category of filtered
vector bundles to the category of stable filtered regular Higgs bundles with degree
zero resp. stable filtered regular Zx —modules with degree zero.

In this section the first part is done, i.e. we show that = maps tame harmonic
bundles into regular filtered Higgs bundles resp. Zx—modules.

Definition 2.2.1. A bundle (F,h) is called LP—acceptable if the unique metric
connection D which is compatible with the holomorphic structure on F has cur-
vature bounded by f + Wﬁ;ﬁ for some ¢, > 0, f € LP for some p > 1. We
call it acceptable if f = 0.

Remark 2.2.2. In most of the cases f may be chosen 0. In the main estimate
we actually saw that in most of our cases we have acceptability. The exception
will be subbundles. The already used fact that curvature increases in subbundles
will lead us to an estimate of the curvature of the subbundle, that differs from the
original curvature by a L”—term.

Definition 2.2.3. Let (£, h) be a metric holomorphic vector bundle on X =
X\ {s},S := X\ X. Denote £ the category of LP—acceptable vector bundles

and F the category of filtered vector bundles. Define a functor = : & — F by
E(F) = (E,Z(F),) with

[1]

(E)oe ={e €Tha(X,E)Vs€ SIC >0Ve >0:|e||, < Cri~c},

with r, the distance to the puncture s w.r.t. some coordinate vanishing at s.
Equivalently Z(F) is E plus the information of the filtration of the stalk at s given
above.
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Remark 2.2.4. As before we may w.l.o.g. restrict to a punctured open disc with
the euclidean metric. In particular we may treat only one puncture at a time.
That = truly is a functor is justified by the following proposition and 2.2.11 below.

Proposition 2.2.5. If E is LP—acceptable on X, then (E,Z(F), is a filtered
vector bundle, ie. Z(F), is coherent. The construction = on the class of
LP—acceptable bundles is compatible with the operations of taking determinants,
duals, and tensor products.

Proof. For the algebraicity (coherence) of the sheaves =, we may use the proof of
[CGT5], p. 23, theorem I in a modified version following the remark by Simpson
[Sim88], p. 910. While Cornalba and Griffith modify their metric by e'°8(~ 18/ in
order to get negative curvature, we need to add e for o the bounded solution of the
Laplace equation® —Ao = f in order to compensated the additional f. elo&(~loglz)
will than compensate the remaining s (cf. 3.3 on p. 10 of [CG75]).* Then
we may use the proof of theorem I, p. 23. 5 in the same matter as done there.
Note that Cornalba and Griffith give the bound of the curvature in terms of a
Poincaré metric ds = W dzAdz = m dzAdz.

The other properties of a filtered vector bunche are fulfilled:

(i) 2(E)o C E(E)g for a > 8 follows clearly from |2|* < |z|? for z small enough,
i.e. on the unit disc.

(i) j«(£) = Uper E(E)q since in the limit there are no growth restrictions on
the section, i.e. we get any section holomorphic outside the puncture, i.e.
every section of E.°

(iil) Npes Z(E)a = E(E)s because if [le]| < c.[2|*7%,Va < B,Ve > 0 = [le| <
Ce|z|P~ 0= = ¢ |2|P~F Ve’ > 0, & =B —a+e.

(iv) 22(E)o = Z(E)as1 by |2]2]*7¢] = |2|*T1 75, Ve > 0.

The underlying spaces are invariant under =, i.e. compatible with duals, tensor
products and determinants. In the following we will show that this holds for the
filtrations as well.

Behauptung. = is compatible with taking tensor products.

3|LiLo00] or [PDE09).

4We will not go into further details here. The same modification however, will be used in
more detail when we prove the compatibility with taking determinants.

Sproof on p. 35ff in [CG75]; see as well paragraph 9 and p. 29, remark, (ii).

SFrom now on j*(E) denotes the pushforward sheaf of the sheaf of holomorphic sections into
E.
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Proof. Let (E,hg,0g), (F, hr,0r) be two LP—acceptable bundles. We have seen in
the section on endomorphism bundles that the metric on EQ F' is hpgr(e1® f1, €2®

f2) = hg(er, e2)hp(f1, f2). Therefore |le @ fllper = llellellfllr < [2]*7% < [le]|p <
2% 1 fllr < |2|=7#, B € R. Therefore and since I'(X,E ® F) = I'(X,E) ®
(X, F):

EE®@F)oa=)Y E(E)s@Z(F)ap.
BER

Behauptung. = is compatible with taking duals.

Proof. The metric on the dual bundle is hg-(€}||e1]|%, €5]|ea]|%) = hr(er, e2). Then
le* ||z = llellZ2llellz > |z|~2F¢ for e € Z(E),. Further |le]|p < |2|* ¢ < e € E, &
e* € EX = (E*)_o & |le*||p+ < |z]7% ¢, Together we get for e € E, \ Eyyc, Ve >0
that ||e*|| g« ~ |z|7®. Therefore

(EE) )\ EE)sse = (E(E) )\ (EE) )
= {e": X = B lelle ~ 27}
= { X o Bl ~ 1217}
= E(B)5 \ E(E)pye, Ve > 0.
(E(E))A\EE) s and Z(E)0 = Ups, Z(E)NZ(E) s

CY(E( E)*)a, i.e. = compatible with taking duals. O

But (E(E)*), = U

and hence Z(E£*),

|| IV

Behauptung. = is compatible with determinants.

Proof. E induces on the determinant bundle the inner product

h/\(el VANPIAN €n, fl VANPAN fn) = det(hE(ei, f]))

By the alternating and multilinear character of det this really defines a positive-
definite inner product. We get det(Z2(E)). = (AL, E(EF)), € Z(NLE), =
=(det(E))a by

n
les Ao ANey|| = det(h(es,e;)) ZSlgn Hh €j, €o(j)
€Sy j=1
n
< Z H [hej, eop) <7 Z H lejllellesg)ll &
geS, j=1 €Sy j=1

n

< > ﬁ%%oﬂﬂ”“" = > L= [ ] e

€Sy j=1 €Sy j=1
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< c/\\z|2a_2£,V5 > 0,

forey Ao Nep € (AL E(E)), = det(Z(E))qs. The other direction is slightly more
advanced. We use the following lemma by Simpson:

Lemma 2.2.6. Let E be an LP—acceptable vector bundle on X - curvature
bounded by f + it for some coee > 0 - with det(H) = det(h(e;, e;)) < cplz|
for a frame (e;) of E. Further choose (e;) such that |[H||r < 1. Then there is
a section e = Y " a;e; with a; constant such that [lel|p < c.|z|/*"V& for some

constant Ny > 0.

Proof. Define a new metric A’ on E by h'(e, f) = exp(40 + 8¢ueclog(—log|z]) +
elog|z|)h(e, f), for o the bounded solution of the Laplace equation —Ac = f. E
with the metric A is still LP—acceptable since

R = D0log(TT) = D0(log(do + cweonl=lx ED+<losls ) 1 log(TT))
= A0 + 008Cae. log(—log |2|) E + 00¢|z|E + 00 log(H)
= —f 4+ 8¢ue001og(—log |2|)E + 00¢|z|E + Ry,

B _f8caccd2/\dzlgrgl (-1 )+5d3/\dzlgg R
N 4 ror or B\ 08T 4 ror or
10 -1 dzAnd
= —f2cedZANdz—— +€ - z+Rh
r or —logr 4r
) _
= f—2edZzAd2 LedEndz

r2(logr)? 4r

Now let e be any constant section in terms of our basis (e;) and E. the sub-
bundle spanned by e. The unique metric connection compatible with the in-
duced holomorphic structure on E, is calculated as usual by 99 log ||s||s for every
s € B, = s = fe,f € Ox. Use that the curvature decreases in subbundles (cf.
|GH78| p. 79) on E, to get for s =e

A58 log HeHh/ = Ah/(Rhle, 6)
—Alogllelly = —2iAN (Rye,e)
1
= —2iAN (Rpe,e —|—ih’ e,e) — f —4-2cqee—s—5h'(e,e
(Rhese) F ppee) =7 *P(og 7 )

1 1 5
Appe—s t f— f =4 2ppe—a o+ :
< < Cace [ 2(tog a2 0 T T Hoaee L igg Ty T |zr> el

4 LY e
—4coee57—5 + — | llellw
“r2logr)? [z ) M

< 0

"Cauchy-Schwarz inequality.
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since W grows faster than r~'. On the other hand we still have det(H’) < ¢;]z|
since —(log |z])|z|® = exp(elog |z| + log(—log |z|)) — 0 for small ¢ and z. Analo-
gously we ensure that we have |H'||r < 1.

W.l.o.g. we restrict again to a disc around the puncture.

Choose a sequence r; converging to 0. We want to find a section e’ for each r;
such that INg € N : ||e/(2)]| < rjl-/2n,V|z\ < ' and for ¢/ = 3" |
Z?:l a; = 1.9

We know for our frame (e;) that det(H) = det(h(e;, e;)) # 0. Assuming |le;(2)|| >
|2|'/?" then the non-vanishing of the determinant tells us that det(h(e;,e;)) =
> oes, sign(o) [T, h(es, exqy) > |2[*/2" = |z|* since every summand is bounded
by Cauchy-Schwarz by ]2\2”/ 2n _ g contradiction to our assumption on the deter-
minant of K. Hence Vz € X3 i € {1,...,n} such that |le;(2)|n < |2|V/?". Let ¢’
denote the e; that fulfills the bound at z = 0. Since €’ is continuous we find a disc
Bp around 0 where ||e/(2)||, < rjl-/% holds. Further r; < 1 = INgz : r}® < R.

Note that Np only depends on 7. In particular when we replace r; by réVR we

have ||e?(2)||n < rjl-/Q"NR. Since the set where the inequality holds is closed the

bound still holds on 0Bg. The complement in B; however is open and since by
|H'||r <1, ¢ < 1 uniformly we can apply the maximum principle on any open
Annulus Ag, g,,7; < R < Ry < 1 around 0. The maximum on the bound-

a;e; we have

ary is bounded by (RQ);/ "N Gince Ry and R, were chosen arbitrary we get

le? (2)]|n < |z|}/2nNR for all r; < |z] < 1. Now let 7; — 0 to receive the claim. [J

Remark 2.2.7. Simpson proves the lemma for Ny = 3. Still for what follows we
only need that there is any Np > 0.

Remember the discussion of finite branched covers at the beginning of the chapter
on the Main Estimate. Let us consider such a cover u"¥ = z, u local coordi-
nate on the covering space. If m, is the corresponding projection the pullback
bundle 7*(E) = @i]\;l u'E splits. The filtration of the pullback bundle is de-
fined as 7 (E)a = D ngiima ' (Es). The properties of a filtration follow di-
rectly from the definition - only note that ur*(E)e = > yg ot ™' (Ep) =
ZNB+j—12a UjW*(EB) = ZNB+j2a+1 ujﬁ*(EB) =" (E)at1-

Now let e, = Zfi}l uiel be a section in E(m*(E))a then |ley|lrm) =
SV ulile®@)n < culE Ve > 0 e e < NN o e, €
> Npiiza W (Ep) since for f = a/N —i/N = NS +i=a—i+i= a. Therefore
we have Z(7%(F))q = 7 (2(E)q)-

aucny-scnwarz an € consistency o € IMatrix norms || - = 1r : Vh S
8By Cauchy-Sch d th istency of the matri 113 = tr(AHA*H): || Av||p <

LAl &
£ &

elog|z|) drops out.
9This will guarantee that when j — oo, e/ converges to a non-trivial section.

[lv]|n for the unit matrix F and v € E. Hence the scalar factor exp(8cqcc log(—log|z|) +
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Now assume that Z(det(£)), ¢ det(=(FE),) for at least one a. The idea of the
ramified cover is to enlarge this gap so much that we can use the previous estimate.
By left-continuity we find a biggest index v < a for which we have Z(det(E)), D
det(=(F),). Using the ramified cover for sufficiently big N we get

(i) Z(det(E))p D det(=(E)2): Aslong as N is big for example N(a—7) > 3 we
may shift the gap by property (iv) of a filtered bundle such that the claim
holds.

(ii) Further choose N such that all weight are only slightly bigger than various

integers, for example differ not more than m from the next smaller
1

Nz and 1, i.e. E<7T*(E))l/2nNR =

integer'®, then there is no jump between
E(m*(E));.

Now (i) and (ii) guarantee that the conditions of the lemma are satisfied for 7*(E)o,
i.e. we get a non-trivial section in =(7*(E))1/2nn,. But there are no weights
between WRH and 1, in particularly there is no Oy —holomorphic section apart
from the trivial one. This contradiction implies Z(det(E)), C det(Z(F),) =
E(det(E)), = det(Z(E),). O

]

Remark 2.2.8. Recall that our "inner product" on the extension =(F), is the
inner product of the corresponding elements of I'(X \ {s}, F) = I'(X, E). Since not
all sections contribute to the stalk of F, at s this is in general only a monomor-
phism. It is in fact the monomorphism w Deligne uses in [Del70] 2.15.2, p. 66,
where I'(X '\ {s}, E') and Ox are naturally identified (map an h—orthonormal basis
on the standard basis.) If our metric grows at most polynomially, i.e. the flat sec-
tions do, than these flat sections are meromorphic. Hence Ve!! of a holomorphic,
moderate section e is meromorphic, since we may write e in terms of a flat basis
and then V acts just as the usual differential on the coefficient functions, which
are meromorphic by the meromorphy of e and the frame (both moderate).

When we start with a harmonic bundle (F .05, 0, h) as in the previous section we
associate a flat bundle (V, D) with holomorphic connection V := dg+6 - 1.2.3 - and
holomorphic structure dp+67. Further we get a local system by the locally constant
sheaf of Jy-holomorphic sections killed by V —VV := {s € T',o(X, V)|V (s) = 0}

Remark 2.2.9. A V—flat and Oy + 6T —holomorphic section is D—flat and vice
versa'?, but not dy—holomorphic. While we find a D—flat single-valued frame,

10Possible since there are only finitely many weights between two integers.
1V the (1,0) part of the flat connection. See below.
12D(s) = V(s) + dy(s) =0« V(s) = 0 and dv(s) = 0 - by degree considerations.
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elements of VV are in general multivalued. For 6 = 0, i.e. if we find a frame
within V'V, everything becomes trivial.

Theorem 2.2.10. (a) Let (E,h) be a tame harmonic bundle over X with two

(b)

holomorphic structures dg and dg + 67. Then E is acceptable w.r.t. both
holomorphic structures.

The endomorphism-valued one-form @ and the connection D = dg+9g+0+61
satisfy the regularity condition making (2(E,dg),#) into a filtered regular
Higgs bundle, and (2(E,dp + 01),V),V = 0g + 0 into a filtered regular
Px—module. These constructions are compatible with the operations of
taking determinants, duals, and tensor products.

Proof.  (a) The main estimate, namely lemma 1.6.15 bounds the curvature of

(b)

both metric connections by m for some C, i.e. the bundles are both
acceptable.
Again by the main estimate 1.5.7 [|0.[|7 < ¥ and so the picture under ¢

has a pole of order at most 1 and hence the induced map on =(E), maps
into Z(E), ® Q(logs). Obviously Z(E), C Z(E)g,a > § and Z(E), =
Upea E(E)s. Finally Z(E)a1 = Z(E)a ®oy O(—s) directly by splitting up
ro=¢ = potl=¢. 1 Hence (2(E,dg),0) is a filtered regular Higgs bundle.

To receive the properties of a filtered regular Zx —module we need to show
regularity of the holomorphic connection V. Let e be a @ + 67 —holomorphic
section, i.e. (0 +0')e =0and e € E,: |le|ln < ce|z|*5. We need to show
that V(e) is bounded in terms of |2|*=='~! for all ¢ > 0, in order to be in
E(E)a ® Q(logs) (the [2]7! is taken care of by the logarithmic 1—form).
By Leibniz rule V(z%¢) = az~te + 2%e. So it will be enough to show the
bound of V(e) for |le]|, < |z|*, u > 0 small.

Let Dy 4 = Rg,pr dz A dZ denote the curvature of the metric connection
Op — 0+ 0 + 0f compatible with 0 + 6.

= 00h(e,e) = Oh((0p — 0)e,e) + Oh(e, (0 + 0e)
h((0g — @)e, e)

= h((0g + 0N (g — O)e,e) — h((0g — O)e, (Or — 0)e)
= 00h(e,e) = Oh((Og + 0)e,e) + Ohle, (0g — O)e)

= Ohl(e, (0 —0)e)

= —h(e, (O + 0" (05 — 0)e) + h((0r — O)e, (0p — O)e).

0
0

Further note that (9 + 6M)(0p — 0)e = (0 + 01)(0g — 0)e + (95 — 0)(0 +
0Me = D%E Lot€ In order to get rid of the differential forms, evaluate at a
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holomorphic non-zero vector as in A.4

g9 00
(&% 070z
= —h(e, Ry, 4ie)d 2 NdZ + h((0p — O)e, (0p — O)e)

—h(e, Ry, gre)dz ANdZ + h((0p — O)e, (Op — O)e)
= 2|(0r — O)el|; — 2Rh(e, Ry gre) dz A dZ,

) lellzdzAdz

and hence

Allell; = 4ll(0r — ).l — 4Rh(e, Ry 4r¢)
= —Allell, = —41(0p — 0):ell; + 4Rh(e, R gr¢).

Then by Cauchy-Schwarz

Rh(e, Ry, pie)

IN

lellll Baygrell < llellnll Ragrelln

el Ryt lr < cp 22
Wl Basot e < ez g T2

IN

Note that

1o 0
Alog|logr| = ;EralogHogﬂ
10 1
ror rlog(r)
1 1

r2(log(r))*’

and thus

—A(|lell; = 4epy, ¢z log(log |2])) < —4[|(0r — 0).e]j.
By lemma 1.7.9 4||(0g — 0).¢||? is integrable and the inequality holds weakly
over the puncture. The lemma can be applied since log(|log(]z])|) is dom-
inated by log|z| (concave) and |le||, < |z|* holds obviously, too. Moreover
V = 0g + 0 = 0 — 0 + 20 and by the main estimate ||0(e)||n < ||0||r|le|lr <
VCs|z| 71 is L2 —integrable. Hence
(W)l < Al 1(0 — 0+ 20).ell;

< 4|9k — 0):elly + 16|/ [|0-ell;
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is integrable, i.e. V(e) in L?. By 2.2.8 V(e) is meromorphic, i.e. [|[V(e)|n <
|2|%'7%,Ve > 0 for some o/ € R. But V(e) in L? tells us that |V (e)|?
must grow with order less than real dimension: 2. Then o/ = —1 and
IV (e)||Z < |z|717¢, Ve > 0, which is our claim.

[

Lemma 2.2.11. = is a functor, where = of a gauge transformation ¢ is the mor-
phism of filtered bundles, which is induced by the vector bundle homomorphism

@.

Proof. Recall the definitions 1.2.8 and 2.1.8. First note that (iii) of 1.2.8 implies
that for every e € E,, i.e. |le||p < ce|z]*7¢,Ve > 0

lee)llr < [lelle—rllellr < celz|* %, Ve >0
= p(e) € F,.

Hence the filtration is preserved by .
Use (i) and (ii) in 1.2.8.

Op + 05, = Dy — dj,
= 0" (0p +0%) = " (Dg — d}y) = o(Dg — dp) = ¢(0p + 0L)
= 0" (0g) = p(9r), @ (0L) = p(6})

since Jg and 07 have different degree. We already know that ¢*Dp = ¢Dp =
©*Vi = ¢Vg, ¢ (0F + 9}) = p(0F + 9}) as well as o*d}. = od}, = ©*(0F) =
©(0g), ¢*(0r) = ¢(0r) by degree considerations. Moreover note that

= ¢ (0p + 0%) = ©"(Dp — d}) = p(Dp — d) = (0 + 0%)
= 0" () = ©(3g), ©*(0}) = (6h).

But then all operators of any importance to our Higgs resp. Zx—bundle commute
with ¢ as demanded by 2.1.8.
O

2.3. LOCAL SYSTEMS

After constructing a functor between harmonic bundles, regular filtered Higgs bun-
dles and Zx—modules in the last section, which will later on lead to an invertible
functor, i.e. to an equivalence of categories, we now want to bring the filtered local
systems into play.
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In contrast to the functor =, the functor ® that maps filtered local system to
filtered regular Zx—modules, fulfills not only compatibility with tensor products,
determinants and duals, but additionally with the decomposition into monodromy
invariant subsystems. Furthermore we may directly prove fully faithfulness and
essential surjectivity, i.e. at the end of the chapter we will know that filtered local
systems and filtered regular Zx —modules are essentially the same.

Proposition 2.3.1. A local system gives rise to a Zx—module with regular
singularities.

Proof. By Proposition A.3.2 every local system induces a flat vector bundle and
to a flat vector bundle (V,V,dy) the sheaf of multivalued horizontal sections is a
local system L = VV. Moreover proving the proposition every flat vector bundle
(V,V,0y) induces a representation of the fundamental group as follows. For each
path ~ into X there is a unique horizontal 9y —holomorphic section s such that
Viws = 0% through each point vy - s(y(0)) = v - in the fiber over z. By
flatness this section is invariant under homotopy. s is in general not single-valued.
Hence moving around a puncture by a path shifts an element vy of a fiber V. to
an element guvg, g € Gl,(C). In the proof of A.3.2 it is also shown, that up to
Gl,,(C)—conjugation g is independent of the chosen base point vy. This leads us
to the corresponding 7 (X )—representation.

If we started with the corresponding local system L and a locally constant cover
U; of L, any section of s; € L(U;) can be uniquely identified with a section s; €
U;j, Uy == U;NU; # 0: The restrictions to U;; are isomorphisms for a locally
constant sheaf, i.e. elements of Gl,,(C). Hence s; = gj’lgisi, if we identify L(U;) ~
C™  and g;, g; are the restrictions. Going once around the puncture will lead us
to an element p € Gl,(C) - the monodromy - which is well-defined by the sheaf
axioms.

Further we may identify each stalk with its surrounding constant sheaf by definition
of the stalk. For example let p be a ray emitting from the puncture and U, an open
set over which the local system is constant and for which s € U, and pN U, # 0,
i.e. the/an element of the covering of X closest to the puncture intersecting the
ray. By the local constancy we may identify L, with U, for all x € U, N p. For
L(p) = U,¢, Ls, the monodromy maps 1 : L(p) = L(p),l = pl, p € GL,(C).
Proposition A.3.2 states that we find a sheaf isomorphism from L into the sheaf
of multivalued horizontal sections of some Zx—module (V, V).

We want to produce a single-valued holomorphic section of V. Choose a matrix M

such that e 2™M = [ 15 i e M = %. We have worked with the matrix logarithm

13The evaluation of Vs(y(t)) at §(t).

1Fix a basis and identify it with the standard basis on C"™. Then the g; are transformation
matrices from one basis to another.

150ver C the matrix exponential is surjective into Gl,(C).
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before, but on hermitian matrices, where it is single-valued. p is in general only
invertible, so the logarithm is not unique and M corresponds to the choice of a
branch of the logarithm for each eigenvalue.'® Denote by [ the multivalued flat
section which coincides with some [ in L(p) on U,. The section

h(Z) _ eMlogzl<Z)17

is single-valued, since continuing around the puncture once, [ goes to ul (another
branch of 1) and eM18% goes to eM0822mM Ly the 2w monodromy of the loga-
rithm. Thus

h(z) - eMlng€2mM;Ll(Z) — e_Mlogz,u_lul(z) — h(z),

i.e. h has only one branch, hence is single-valued. Similarly define h;(z) =
eMloez],(z) for a basis (I;)1<i<n of L(p). Since e8¢ does not depend on the
flat section, the h; become linearly independent like the [;, and form therefore a
holomorphic frame of V. Then V has the following connection matrix

dz
o M log z M log z -
Vh=d(e""#*) 1+ e VL = M—h.

=0

Define an extension V = span{Oxh;}. Then V has a pole of order 1 in the
(meromorphic) frame (h;) and hence is regular. So we constructed a regular
Px—module. O

Theorem 2.3.2. Denote by L the category of local systems and by Z the category
of filtered regular Zx—modules. ® : L — & with

(i) ®(L) is the regular Zx —module span{Oxh;} given by 2.3.1. V = dy + M=
in the frame (h;).

(i1)
(L) = {Oxhupr + hiy =M 2D1(2),1 € Lg,
A eigenvalues of M = R(\) > a — (}.

is an equivalence of categories and is compatible with determinants, duals, and
tensor products. (Denote by Ay the eigenvalue with the smallest real part.)

6Write p in Jordan normal form. For a Jordan block J = AE + N = A\(E + A~!N) by invert-
- k
ibility, A cigenvalue. Then log(J) = log(AE) +log(E +A~1N) = log(\)E + Y57 o (~1)F @200
and the second term is finite by N nilpotent.

17Choose the principal branch of the logarithm defined on the whole ray p N U,.
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Note that the monodromy of M is purely real and so (ii) reacts sensitive on mon-
odromy change of M.

Proof. By L = |, Lo we will always find a basis (/;) of L,,x € X such that
{l;} C Lg for B small enough.'”® Fix a matrix My as above. Then we have
a frame h;, = eMol°e2]; as above. Note that the space spanned by the h; is
independent of the chosen basis [;: Choose another basis (}),l; = > 7_, a;l;, then
b, = eMoloszl = S~ eMologzq, [, = N aphy for a; € Ox. It depends not on
M: Let My log(“)—”m = My — k be a different logarithm, then h = 2"*h,; and
27% € Oy. For the @(L)Q(U) the same holds as long as U contains no puncture.

In order to get a filtered regular Zx—module the filtration has to satisfy the
conditions (i) to (iv) stated in definition 2.1.4 and the conditions of 2.1.7:

ad (iv): We start with the last property because it will simplify showing the rest of
the properties. Let v € ®(L),(U) then M, € GL,(C)Ik € N,V1 < j <
k38 € R, 3lg, € Ly Ta; € Ox : RAy) > o — Bj,v = 35 aze sG],
It looks worse than it is! Let M) = M, + 1. Then §R(/\M/) —1=RA\y,) >
a—pB; = RAwy) > a+1-75 = &(L)an(U) 2 Z a; .My log(= )lgj =
2v = 2®(L)o(U) € ®(L)ay1(U). On the other hand for v € O(L)(U)
M, € Gl,(C)3k e N,V1 < j <k 36; € R, 3lg, € Lg,3a; € Ox': R(Ay,) >
a+l—p;,0= Z] L ajeM 8@, Define M = M, —1. Then R(\yy) +1 =
R(Aa,) > a+1-8; = R(ay) > a—p; = O(L)o(U) 2 35 ajeMloel), =
27 = 2®(L)o(U) D ®(L)ar1(U). This shows (iv) of 2.1. 4

ad (ii): For a basis (I;) of L we get our frame (h;) = (eM0'8(*)];) of holomorphic
sections. For « small enough all [; (resp. n linearly independent vectors)
will be in Lg. For o — —oo the eigenvalues of M, are unrestricted and

hence M, = bg@% = My — k leads to h;z7* for each k € N, i.e. in the

limit every f with a Laurent series expansion around 0 is in |J, g ®(L)(U)a
= J+®(L) = Uaer (L) (U)a-

ad (i)a: ©(L)(U)q D ®(L)(U)p for a < : By ad (iv) we may assume that M is fixed
- a change of M results in the desired inclusion. But then all h = 82
differ from [ by the same function and so L, D Lg for a < [ implies the
claim.

ad (iii): Ngen P(L)(U)s = ®(L)(U)a. Analogous to the previous item we may fix M
by ad (iv) and use (5., L = La-

80r the vector space spanned by L, has always dimension less L, and so the union over all «
has too small dimension.
Blocally constant, see below!



84 | 2. FILTERED OBJECTS

ad (i)b The ®(L)(U)gs are coherent: Although it is clear if the locally constant sheaf
takes values in vector bundles, recall that the coefficients a; in [ = E?:l a;l;,
l € L are constant - VI=0< >" [, ®da; =0« 0da; =0,1 <i <nby
linear independence; analogous da; = 0 by holomorphy. For every o € R we
will always find a 8 small enough such that all (I;) (resp. n-linear independent
sections) are in Lg and a k € Z such that Ry, — k > a — . Choose k
minimal. Then A" = e(Mo—kle@)]; is a frame of ®(L)(U)s by the linear
independence and the minimality of k. Hence ®(L)(U), isomorphic to O%.

Reg: Regularity of V: We have seen above that for h € ®(L),*

Vh = ve]Wlog(z)l _ MdzeMlog(
z

€2 2'B(L)adz = (L), ® Q1 (log(s)).

Hence we get a filtered regular Zx—module ®(L).

Let L = Eszl L*i k < n be the decomposition of L into generalized eigenspaces
L of u to the eigenvalue ;. Remember that L, was p—invariant, pu : L, — L,
induces an eigenvalue decomposition L, = @le Lki. Since l € Lk C L = 3Jr €
N:(p—wE)l=0= Lk C LM,

Lemma 2.3.3. (@Y L) = P, &(LH).

Proof. Decompose M = @le M*i as follows: Let J = P~'MP be the Jordan
normal form and J* the block diagonal matrix consisting of all Jordan blocks to
the eigenvalue p;. Then

Jmo0 0 Jm, 00
J=1lo0o . of| Mw=P' o . 0 |P
0 0 Jm 0 0 Jmdy

i.e. the matrix constructed from only one Jordan block. The J# are just In(u;) £+
> (—1)jM, N nilpotent. Since M*i is block diagonal we get (here for i = 1)

j=0 j+1
J“léh‘ IOg(Z) 0 0
6]\/[”1’ log(z) _ P—l exp 0 - 0 P
0 0 JHedy log(z)

20The O-coefficients f have holomorphic differentials, i.e. f € O, h® 0f € ®(L),.
og p is a (finite) sum of potentials of u, i.e. Ml in Lg if | € Lg. When we construct =~ we
have to be careful with an inverse statement.



2.3. LOCAL SYSTEMS | 85

exp(J*log(z)) 0 ... 0O
) 0 E 0 0

— P . o P
0 .. 0 B

Then eM"18(2) preserve LF and eM"108()] = ( for | € LF i # j - M los(=)mi —
M log()[mig, - for 1 € L* . The eigenvalues of M* are just lf(z‘j”) Now a choice
of a M amounts to one unique choice of the logarithm in M*¢ by construction. Of
course a different branch of the logarithm in M#* will change M. Finally using
that M*" and M*"i commute for ¢ # j since they are block diagonal and have

different non-zero blocks we may decompose the matrix exponential: For every
L= Zf I e @?:1 L

M log(2) (i l“") _ i ﬁ M" log(2) ppi

i j=1

= i ﬁ M lOg(z)lﬂidij

i j=1

k
7

Therefore ®(@DF_, L) = @F_, ®(L*) for the underlying space of the filtered
bundle.
For the filtration we need to show that ®(L), = @"_, ®(L*),, where

i=1

O(LM)o(U) = {Oxluh : b= M 18E () 1 € Ll
A eigenvalues of M* = R(Apymi) > o — [}

But

(L) (U) = {Oxlvh : h = M5@(2),1 € Ly,
A eigenvalues of M = R(A\y) > a — [}

k
= {Oxluh:h =" M 1oe&mi(z) 1m e LY,
=1

A eigenvalues of M* = R(Aymi) > o — 5}

k
= P{Oxluh : h= M @) 1 e L
i=1
A eigenvalues of M* = R(Ayw:) > o — B}
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where the last step is due to the fact that a choice of M corresponds to a unique
choice of a tuple (M*", ... MP).
m

Conclusion 2.3.4. Note that we even proved the stronger result that ® is com-
patible with a decomposition into py—invariant subspaces: The proof above obvi-
ously works for the decomposition into spaces corresponding to Jordan blocks. Let
L =W @& W’ into invariant subspaces and J the space corresponding to a Jordan
block, than W N J and W/N.J are invariant subspace, i.e. J = (WnNJ)®(W'NJ).
But J does not decompose into non-trivial invariant subspaces (can be read of the
form of a Jordan block). So J C W or J C W, i.e. the decomposition into Jordan
blocks is finer and therefore ® preserves the decomposition L = W ¢ W',

The lemma allows us to consider only local systems with one eigenvalue for the rest

of the proof. Let A be the unique eigenvalue of y and let \g = lf(—)‘) an eigenvalue

27
to a specific choice Mj. Define a vector subspace of ®(L) by
H = GMIOg(Z)L
and
H. — 61\/]10g(z)L7_§R()\0).
Then

spanOY‘U{zkHa_ﬂk €7}
= spanOY‘U{zkeMO 5 Lk min) |k € Z}
= spanOY‘U{e(M”k) 5 L ooy |k € Z}
= spanOY‘U{eM log(2)l|l € Lg
- m Ly, M =log(p)/(=2mi), R(Ay) = a — B}
<8
= spang_y{e’ log(2)I|l € Ly, M = log()/(=2mi), R(Awm) > @ — 7}
= ®(L),(U).

Instead of working with our original definition of the filtration ®(L), we may use
the more compact one spane_j{z" Ha-1|k € Z}.

Lemma 2.3.5. ® is compatible with taking tensor products.
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Proof. Let Ly be a filtered local system with monodromy pz, with the eigenvalue
A, let Ly be a filtered local system with monodromy i, with the eigenvalue Ap,.
Let L = Ly ® Ly and the monodromy is yt = iy ® p12.** The eigenvalue of iy ® i

is A = M A% and we get A\g = log(A\) = log(\;) + log()\s). Recall the Kronecker
sum A®@ B=A®R FE+ FE® B and exp(A ® B) = exp(A) ® exp(B) or

log(p1 @ p2) = log(p) ®log(ps) = My @ E+ E® My,
with M; = log(u1), Ms = log(uo) as before. In particular
exp(Mlogz) = exp(M;log(z))® exp(Mslog(z)).
Using H = exp(M log z)L, Hy = exp(M log z) Ly, Hy = exp(Mslog z) Ly we get
H=H &Hy= &(L) = &(L,) ® d(Ly).

for the underlying systems. Now consider the filtrations: Let Ly := ) 5c5(L1)s ®
(La)a—p = User(L1)s © (L2)a—p.2* This is in fact a filtration of the filtered local
system L:

(i) fa )I UBGIR((L1>)5 ®f(L2)1(f@B cL,= UﬁeR(Ll)B ® (Lg)y—p for v < a since
Ly)a—p C (La),—p for all j.

(ii) The tensor product of vector spaces is a vector space and since
(Ll)max{,ﬁ,afﬁ} & <L2)max{5,a75} C (Ll)ﬁ ® (LQ)Q—,B C (Ll)min{ﬁ,afﬁ} &
(L2)min{s,a—py We get L = Uyer La = Uacr U,BeR(Ll)/J’ ® (L2)a-p-

(iii) For the intersection we have (N, L, = (\,o,User(L1)p ® (L2)y—p =
User Nacy (L1)s @ (L2)y—p = User(L1)s @ (L2)a-p = La-

(iv) all Ly ® Lo—p are pig, ® pup,—invariant and hence the union is.

Hence

BER
6M1 log(z) ® €M2 log(2) |

D (L)s-20m) D Lyom(ans ) ROum) - (5-R0wr, )
B—R(Any)ER

= > <6M1 log(z)Lﬂ—%(AMQ) ® <€M2 e @ Lv—%(%—ﬂ))
BeR

22Tf 4 circle in Ly, 72 in Lo then v, ® 75 is circle in L.
Z3cf. Kronecker Product of Matrices and Applications [Ste91].
24Sum is justified by the finite dimension of the vector space.
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= > (Hi)s® (Ha)yp

BER
This implies the claim by
O(L)o(U) = spang_{z"Ha |k € Z}
= spang_p{2" Y (H1)s @ (Ha)a—k—glk € Z}

BER
= spang_u{ > (PHy)smp @ (2 P Hy)a (g |k € Z}
B—peR
= spang_u {> (P H1)sp @ (= PHo)ampepk € Z}
BER
= Y O(L1)s(U) @ B(Ly)a—p(U).

BER

O

Conclusion 2.3.6. ¢ is compatible with tensor products ®(L), =
@ (LM) @z 1 ZBGR (Lllh)ﬁ ® q)(Lgi)a—ﬁ = ZBGR (I)(LI)B ® (I)(L2>a—5-
Lemma 2.3.7. ® is compatible with taking the determinant.

Proof. Let (I;) be a basis of L and (l;, ® ... ®1; ), (i1,...,1,) € {1,...,n}" be
the corresponding basis of L™. Let Z(L) denote the ideal generated by those basis
element with 35,k € {1,...,n} : i; = 4. Analogously let h; = e1°5)]; be the
corresponding basis of ®(L), (h;, ®...®h;,), (i1,...,i,) € {1,...,n}" the basis of
O(L)", and Z(P(L)) the ideal generated by the elements with 35,k € {1,...,n}:
i; = ig. We want to show that ®(Z(L)) = Z(P(L)), but for (i,...,4,) € I index
set, the compatibility of & with tensor products leads us to

O(spang, {(ly @ ... ®@1,)}) = spang, {SONM @ @l }
= spanoxJ{elog(z)Mli1 ®...QsHM Y

= spanOXJ{hil X...x hzn}

Now if I is the set of all families with at least i; = i) for some j # k this reads
O(Z(L)) = Z(P(L)) (underlying bundles). Remember that at the beginning of the
proof of compatibility with tensor products, we saw that ®(L) is generated by the
h; independent of the chosen basis or matrix M.

For the filtrations this works analogously: Let Z(L), = L» N Z(L) (vector
space)? be the induced filtration on Z(L). Then for | = (ll, conly) € (LM =

Zmonodromy invariant: p® ... ® p maps a tensor with two equal entries to another one with
this property.
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ZT1+...+rn:a Lrl ® ...... ® LTn

O(Z(L))o = spane {(X) M5 ILi|l € L NI(L), M; = log(u)/(—2mi),
=1

RAw) = @ =}

= spang_{) "5 ;|1 € L7, M; = log(u)/(—2mi),

i=1

R(Ay,) > a—vFN spanox{é eMilos=) )1 e T(L),
My =log(p)/(<2m)}
= O(L")yNjP(Z(L)) = P(L")oNJIP(L) =: Z(P(L))q.

The exterior product is A\;_, L = L"/Z(L),\._, ®(L) = (®(L))"/Z(P(L)) =
Q(L™)/P(Z(L)) = P(AN;_ L) = P(det(L)) = det(P(L)), where we used that

PN, LRI(L)) = P(N\_, L) ® ®(Z(L)) is guaranteed by 2.3.4 and the p invari-
ance of I(L), and A, L (p invertible = {ul;, = uli, < i, =1;,}). O

Lemma 2.3.8. ® is compatible with taking duals.

Proof. Since duals and direct sums commute, we may restrict again to local sys-
tems with one eigenvalue A. The filtration of L* is (L*)s = (L_p)*. Check the
properties of a filtration:

(i) Let Lg C Ly, 8 > a. Then every linear form f : L, — C restricts to a linear
form Ly - C= (L*)_, =L C L = (L*)_p, —a > —0.

(i) L=Uses Ls = 1" = (Uses L) = Upex L = Usen(L) -5 = Ujen(L)s:

(i) (L) = L2 = (Mocca Lo) = Naoma (£6)" = Moo L = Mo L2 =
NacalL)s

(iv) The transition functions of the dual bundle are (1;;");; of those of the origi-
nal bundle - ;;; hence (7))~ is the monodromy of the dual bundle if ;1 was

the monodromy of the original bundle.

The dual bundle (®(L)*) is the bundle where each stalk is the dual of the

corresponding stalk of ®(L). Hence we may as well define (®(L)*)s =

(®(L)-p)*. The properties follow as above?, only note that z(®(L)*)s =

-1

26That the dual of a coherent sheaf is coherent follows directly from the definition of a coherent
sheaf.
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=z=21f(f2)=1=271f* =

(D(L)*)p41 since if f*(f) =1 = f*(zf
) = ( 1)k = (®(L)")p41-

(2f)" = 2(®(L)")s = (2 1q)(L)

Further note that (BT) (ll) = Bll) l; = Bll = Z?:l Bjilj

be the new basis and (BT)™'l; = " (B71)il;. Hence B(l;)*(l;) =

k=1 Buli(ly) = By and ((BY)7'L)"(l;) = ((BT)_ L) (BT (BT)7) =
(bé)*(BTb}) ( )(Zk 1 kb/) Zk Bjk(b Bﬂ

The logarithm of (pu7)~!is M = sllx 070 k’g( ) . Let (I;) be a basis of L and

—271

(I¥) be the dual basis of L*. Then hf = ¢~ M" loa(z l* is the basis of ®(L*). On the
other hand (h;)* = (eMe(=)],)* = e’MT log(2) [ — hj Therefore ®(L*) = ®(L)* for
the base spaces.

Let | € Lg, then h = M) ¢ d(L)y R+ Dy left-continuity. For [* we know
I* € (L)-p and h* = M5O € &(L) yir 095 = ((B(L))*)(r, r)+5- Thus
the dual filtration is induced by the dual sections, i.e. ® compatible with taking
dual. O

~
\_/
/\
@‘
~
\/

Lemma 2.3.9. & is invertible/essentially surjective.

Proof. We will proceed in a different fashion than Simpson does. Although his
construction leads to the same result, the bundles constructed there are not so
easy to work with a priori, i.e. before we find a good-looking representation.

Let M denote a logarithm of the monodromy corresponding to V divided by —27.

g’y = spanof{f = eiﬂ/[(IngJrQﬂk)h’k € Z, h € Ea, _%)\M > Y — Oé}.

We want to show that (E, &) is a filtered regular Zx—module. But this is just
the first part of the proof of our theorem 2.3.2. There we did the proof for a
particular branch of log(2)?" and not for all of them. However, the union over all
k will not interfere with the union over all indices, the inclusion, the coherence
or z&, = &y41. Same holds for the left-continuity, i.e. the intersection, since k
and ~ are independent of each other. We still need to show that V preserves
the filtration. Note that the proof above uses VI = 0 and is not applicable here.
However, we know that V preserves E,, i.e. for f = e M8p € &

—Md ZefM(log z4-2mik)

Vf — (Vh) ®67M(logz+2m‘k) —|—h®

N—— ¥4
ez~ 1E,
. —Md=z
_ —M (log z+2mik) -1 —M (log z+2mik)
= e ) eVh®z ' +e h
® ® 2
€Eq

€ & ®Qlo(log(s)

2Tog z + 2mik the k-th branch of the logarithm.
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Define ®1(E, E,) = (EV,&Y) the corresponding sheaves of V—flat holomorphic
sections. We know already that EV is a local system. The other properties of a
filtered local system follow directly from the filtration of &:

(a) & :=EVNé& CEVNE =6y for f <.
(b)

Ue = JEYng

YER vER
= EVn|J&=E"nE
vER
= EV.

& = (VE' NS

B<y B<y
= EVn(\&=E"Nn&,
By
_ v
= E7 .

(d) The monodromy invariance is the only say interesting point, because we can
use that we allowed any branch of the logarithm. Assume that f € Ey . Then
qu — Me—M(log(z)+27rk)h — e—27r]\/[6—M(log(z)+27Tk)h — 6—M(log(z)+2w(k+1))h — f c

v
EY.
So we know now that ®'(E) is a filtered local system. We still need to show that
the two constructions are inverse to each other.

Let B = ®(L): f = e Moe2p ¢ & = 3 € Ly, M and M logarithm of the
monodromy g such that

f _ €_M(10g(z)+2ﬂ—ki)6M10gzl,%)\M > — ﬁ >+ %)\M o 6

But two branches of M differ by an integer j: M = jE + M = j+ 8 > ~?% and
hence

1Edz
z

vf — vejElog(z)e—Qﬂ'ile _

/€ & ® 0 (log(2),

281n particular MM = (jE + M)M = jM + M? = M(j + M) = MM = M, M commute.
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where we used that e 2™*M] = k] still flat. So f is flat if and only if j = 0 or
f =0 (trivial case). For j =0
O N®(L)) = spancf{l|le Ls: B>~} =1L,

as Ly C Ly for 3 >~. We get ®~'(®(L)) = L. In particular ®~" surjective.
On the other hand let L = ®~'(E). Then for h € ®(L), IM, M logarithm of
.k €7 h e Eg:

h = eMlos() o= Mlog(=) 2k, Py > o — y > o+ RAy — B

We know that Ve Mg = Ve Mg 42wk — () = =M1y € Ly gy . The
last step becomes
eMlog(z)(go7 _ Spanoy{e—]\z10g(z)—277ikMB|§R)\M >y — 67 iL c Eﬁ}
= spanoy{ejElog(z)_gmlMiLﬁR/\M >~ —B,h € Eg}
= spang,_ e~ 2 M i BRI RN - ny—ﬂjzeE
Ox M B
= e’zmlMspanO?{ﬁ €Es | -RA\y>y—0—j+7J
::7'—/3+QRAN[—§RAM}
= e_zm'lMspanoy{m — Ry > — B, h € Eg}

—2milM E

€ Y+RAn -

Note [ variable, i.e. the union over all [ here. Thus
h € 6727rilME,87¥1‘t)\M+§R/\M N efQﬂikMef]\/[ log(z) eM log(z) Eﬁ
— 6727rilME,87¥E)\M+§R/\M N efQﬂikMZjEﬁ
— 6727”'IME,8+]' N eizm'kMEﬁJrj
=h = i"Esy;.
We get ®(®(F)), is p—invariant, since d~1(E)z as filtered local system is, i.e.
for every h € ®(®"YE)), Ih € D(PH(E))o, Ikn €Z : h=pu " h € Eg
Po(@HE) = {h€ Esp o R > a+ Ry — 4}
— {heE;:8>a}=E,.

Hence ®(®~1(FE)) = E for every filtered Zx—module. This finishes our proof.
[

Remark 2.3.10. Note that for a p with only one eigenvalue, this implies that
l € Lg if and only if eM'°8%] € ®(L)z1p,,) for some M.
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Lemma 2.3.11. & is fully faithful.

Proof. Let ¢ : Ly — Lo be a morphism of filtered local systems. Then ®(yp) :
®(L1) — ®(Ly) the Ox—linear extension of ©.2 ®(y) preserves the filtration:
Since @(Ly)g C (La)g = @(eM8GIL); = ML)y € eMsB)(Ly) =
®(Ly)q C ®(Lsy). Further

(Vernp)l®a) = Veu,)p(l) @ a

= (Voune(l) @a+ ¢(l) @ 0
=0

= ¢(l) ® da

= ¢l ®oa)

= (Vo) ®a+1® da)
=0

= (¢Vou))( © a)

= Vouwne = ¢V

and by D”-holomorphy of the flat sections

(Dgrye)l®@a) = Dgq,yp(l) ®a
= (Dyryp) @a +¢(l) @ da
=0
= () ® dx
= p(l®Jda)
—
=0
= (pDg(1,)® )
= D:I/)(Ll)(p = SOD%(LZy
Hence ¢ is a morphism of filtered regular 2y —modules. Analogously if we start
with a morphism of filtered regular Zx-bundles ¢ : ®(L;) — P(Ls), 1 restricts
to the subset of flat sections. Then v is Ox—linear as a morphism of coherent
sheaves. Therefore for [ € (L1)s we get Va(r,)¥(l) = ¥Vl = 0, Dy, ¢(1) =
VDl =0, ie. 9(l) flat. Furthermore we now that from the invertibility

w(l) _ ¢(6—]VI log(z)eM log(z)l)

efAM log(z)w( e]\/[ log(z)l )
P(L1)Rxy,+8

29There is a flat frame, so ¢ is fully determined.
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€ HO(L))-may+mrn+s = ©7H(2(L))s = Lg.
Thus v preserves the filtration. O

® is a fully-faithful essentially surjective functor, i.e. an equivalence of categories.
Hence theorem 2.3.2 is shown. O]



SECTIONS
AND MORPHISMS

The aim of this chapter is to show that = is fully faithful. In order to prove this
we start with a few technical lemmas, resulting in two Weitzenbock formulas, i.e.
a relation between pseudo-curvature (G, and the curvatures Fj, resp. R,. The
second step will provide the mutual boundedness of metrics that induce the same
filtration under =. Combining the two results shows = fully faithful. So for the
last two chapters we are left with the task to show essential surjectivity.

Lemma 3.0.1. Let (E,h,0,0z) be a holomorphic bundle (not necessarily har-
monic resp the Higgs field not necessarily holomorphic). Write D = 0p + 0 +
Op + 0" = D' + D" a metric connection, d”’ := g + 6.

(i) For a D—flat section e, D(e) = 0:
_h( 22/\( 2Gh) )

lell?

—Alog|le]; < 2[|A(F) = 2G)lF,

for [, = D? the curvature of D and G}, = (d")? = 00y + 0gf the pseudo-
curvature.

(ii) For d"—flat section e, d"(e) = 0:

- h( 22A( Gh @k)e)
lell?

Proof. Ad (i): D(e) =0= D'(e) =0,D"(e) = 0.

—Alog |le]|; < 2||A(Fh = Gi = Gi) I

dd|le||7 = 00h(e,e)
= 9 (h(D"e,e) + h(e,d'(e)))
W@ (€),5(e)) + hle, D'F(e))
= h(d'(e),d'(e)) + h(e, (D" + 6 D"e)
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Remember ' = D’ — 20 and hence

D//(S/ + 5/D// — (D/D/l _|_ DIID/) . Q(QD” _|_ DHH)
= D?—2(00p + 0pb) — 2(0'0 + 00")
Fy —2G), —2(070 + 007).

Moreover §'(e) = D’'(e) — 20e = —20e:

S Bl = A (e),5(e) + hle, (DS + §'D")e)
= 4h(0(e),0(e)) + hle, (Fj, — 2G1)e) — 2h(e, 007e) — 2h(e, 67 0e)
= 4h(0(e),0(e)) + hle, (F, — 2G1)e) — 2h(0Te, 0Te) — 2h(fe, Oe)
= 2h(0.(e),0.(e))dzANdZ+ h(e, (F, — 2Gp)e)
—2h(0le,0le)dZ Ad 2
= 2/|6.(e)|[|7dz AdZ + h(e, (Fj, — 2Gy)e) +2||0le]|2dz Ad Z.

Using 1.4.14 we may write

—Allelli; = —2iAh(e, (Fy — 2Ghn)e) — 8|6.¢]li — 8| 16lell;
= —h(e, 2iA(Fy, — 2Gp)e) — 8[|0-¢]l; — 8]|6le][;.- (W1)

Remark 3.0.2. This is a Weitzenbock formula: In general a relation between two
second order differential operators. See |[GHTS].

Now the logarithm comes into play:

2
aoglelf, = a0 (%)
eT?

(HeH%A(IleHi) - 48z|\e|!i&zllel\i)
lell
Alllelz) 4 0:llellad=llelln
lell lell
A(llellz) _ 47\ Ollellz A dllell:
lell? 2 el

(3.0.2.1)

Use again that Oh(e,e) = h(d'e,e)+h(e, D"e) = h(d'e, e) and Oh(e, e) = h(e,d'e) +
h(D"e,e) = h(e,d'e) and h(e,d'e) = h(de,e):

Ollellz Adllell; _ |h(d'e.e)?
lell lell
4|h(be, e)?

lell
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2|h(0e, e)|* + 2|h(0Te, e)|?

lell

by |h(fe,e)|> = |h(e, 00> = |h(0fe,e)|*> = |h(dTe,e)|>. By Cauchy-Schwarz
|h(fe, e)|> < |h(Be, Oc)|*|h(e, e)|> = ||0¢e||?]le||? and further
(lellz) 7, 2MellZ el + ll6"ellz)
lellz 2 lell
h(e, 2iM(Fy, — 2G)e) + 8|0.¢|; + 8[|01e]l}
lell?
_ 8([18:elli + 8ll01ell3)
lell?
h(@,QZA(Fh — 2Gh)€)

lell7

e
A

Alog|lelly >

Negating the inequality and applying Cauchy-Schwarz again

h(e, 2iA(F), — 2G})e) - h(e, —2iA(F), — 2G}p)e)
lell7 - ell7

lellnli2ACEL = 2Gn)elln _ llellnll2ACER = 2Gn)[[ellelln
lell7 B lell7

= 2||A(F, — 2Gh)]|p-

—Alog el < —

Ad (ii): The proof is similar to the one of (i). Start with d’(e) = (9g + 0)(e) =
0= 0g(e) = 0(e) = 0 by degree considerations. Then
90lelli, = 00h(e,e)
= 0 (h(Oge,€) + h(e, Op(e)))
= h(e,0p0g(e)) + h(0p(e), Op(e))

Next

0pOp +0g0p = D*— (00" + 070 + 00 + 005 + 0705 + 0x0")
= F,—G,— G, —00"— 0.
implies
h(e, (5];8]; -+ 8E5E)e) = (6, (Fh — Gh — @h — (9(9T + 6T9)€>
(e, (F), — G, — Gi)e) — hle,00'e) — h(e, 6 \92)

=0

h
h
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= h(e, (F, — G, — G)e) — h(f'e,0'e).
and hence
= —Alle[[; = —2iA (h(9p(e),dp(e)) + h(e, (F, — Gy — Gp)e) — h(f'e, b))
= —2iA (h((0r + 0")e, (Or + 0")e) + h(e, (Fy, — G — Gh)e))
= —2iA[[(0g + 0Y)e||Z + h(e, —2iA(F}, — G — Gh)e). (W2)

where we used dpf' = 0 of degree (2,0). Again we can use 3.0.2.1 and dh(e,e) =
h(Oge,e) + h(e,ge) = h(Oge, e) resp. Oh(e,e) = h(e,dge) = h(Ige, e):

S A QlelE A} [h(@pe,c)?
lell el
< oiplPzelliliells _ .\ 19zelli
a el lell7
< oL 10} _ o 10k el
h h
= Alog|le|; = A|(||(|3|6||2|f21) _4%A8||6||7L|é\’|f||6||%
h h
> 2iA||(Og + 0")e||? + h(e, 2iA(F, — G, — Gi)e)
N el
plt@s + ol
lell?
S h(e, 2iA(F}, — Gy, — Gp)e)
- el
- —Aloglel < - MeZATLCn = Cu)e)
lell
- h(e, 2iA(F), — Gy, — Gy)e)
B lell?
< 2lellnllACFL = Gn = Gr)elln
B el
2/|elZIA(Fy — Gh = Gh)llr
B lell?

= 2llelZlA(Fn — G = Gi)| -
again by Cauchy-Schwarz and the consistency of the Frobenius norm with h. [

Proposition 3.0.3. Let (E,h,0,0g) a holomorphic bundle as before. Suppose
| Ewll 7, |GallF € LP for some p > 1.' Let e be a section which is D—flat or d”—flat,

INo singularity outside the origin and smooth on any annulus Azz, 1 > € > & > 0.
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and additionally |le||, < c.|z|~¢ for all £ > 0 ans some ¢, > 0. Then e is bounded.

Before we start with the actual proof, we will need the following lemma

Lemma 3.0.4. |le]|n, < ce|z|7¢, Ve > 0 implies 1!;”'2' 0.

Proof. We know that

el _ e

[log |z[| ~ [log ]|’
Differentiating the right-hand side once (close to r = 0) leads us to

d cor™  —ceer = logr|4cor! ., (gllogr] — 1)

| log r|?

e

dr|logr| — | log r|?

We see that the function has an extrema at ¢|logr| =1 = r = exp(—1/¢) and it

is the unique extrema for » < 1. This is a minimum by

d  —ei(ellogr|—1)

dr* [log 7[* |, _exp(—1/e)
(—e — Dr=="2(e|logr| — 1 — ——)|log r|?
o [log [
r=¢1(e|logr| — 1)(2]logr|r~1)
‘ |log |4 r—exp(—1/2)

(—e—1)r—=2(1—-1+ ﬁﬂ logr|? + 7711 — 1)(2|logr|r—1)

= —Ce

(e +1)r—=72(¢)|logr|?
[ logr|*

>0
r=exp(—1/¢)

e

as the remaining parts are positive for all . Now for ¢ — 0 = exp(—1/¢) —

i.e. in the limit

€
Ce.€:=

= = c.ce — 0.
o1

Ce|Z|_E

‘ IOg |ZH r=exp(—1/¢)

[logr|* -

0,

O

proof of lemma 3.0.3. By the previous lemma —Alog [|e][}; < 2|[A(F}, — 2Gh)||r <
2|AFy || + 4|AGy||r resp. —Aloglellz < 2(|A(F, — Gh — Gi)llr < 2| AFLF +
4|AGy|F is in LP. In particular let f be a LP—majorant - —Alog |le||? < f =
—Aloglle||? — f < 0.Let @ : B! — R be a solution of the Poisson equation
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—Aw = f: For the existence see Lieb & Loss [LiLo00], p. 157, theorem 6.21.? In
particular [LiLo00], theorem 10.2 tells us that for p > 1 u is Hélder continuous
with positive exponent, in particular bounded. The bound 1|c|>2”|2| — 0 from the
previous lemma leads to lemma 1.7.9: = —Alog |le||7 — f = —A(log [le]|z —a) < 0
weakly over the origin, i.e. log |le]|? — @ subharmonic.

Let u := @ + ||ul|oo + ce then u is a solution of —Au = f, i.e. we still have
subharmonicity, and u > ¢, > c.clog(|z]) log le[3 = lim sup,_o, log [le(=)]2 —
u(z) < 0. By the maximum principle (+ remark 1.5.4) log|le]|7 —u < 0 =
log le]2 < u < 00 = [e]}2 < ev. .

Corollary 3.0.5. Let E be a vector bundle with either a flat connection D
or a (Higgs) operator d”, and two metrics h,k. Suppose that the curvatures
Fy, Fy, Gy, Gy are in LP and that Z(FE), is the same for both metric bundles.
Then h and k are mutually bounded.

Proof. Let idg be the identity automorphism of the bundle £ idj if it is con-
sidered as a map from the metric bundle (E,h) — (E, k) and idy; as the inverse
map. Then idg € I'(X, End(£)) under the usual identification. In the section on
the endomorphism we have seen, that D, d” induces operators D-—- D, d"-—-d"
on End(F). But then

DldE<€) — 1dED(€) =0= d”idE(e) — idEd"(e).

There we saw as well (remark A.4.2) that the inner product for maps ¥, ¢ :
(E,h) — (E,k) is

Pnd,h—k (@, V) = tr(KY " Hp)
= [[¢llEnapok = t1(K@"Hp) = (Hp, oK) is,

w.r.t. a suitable basis.
By construction this operator norm is consistent with the norms h and k

lellr = llidnrellx < [lidnkllendnskllelln-

From the definition of e € Z(E), we read of that e, > 0: |le||x < cepr® ¢, Ve >
0 < E|Ce7h >0 : HeHh < ce,kro‘_‘f. Therefore Hidh,kHEnd,h%k < ch,kr_a,vg > 0 for
a suitable constant c; ; or else the consistency of the norm gives a contradiction,
because every section s can be identified with an element of j,(E£) = J,cp Z(E)a,
ie. if |[idsgllpaansk > cppr ° for one € > 0 we find a section s such that the
consistency is violated.

Further recall from remark A.4.2 that the (pseudo-)curvature operators are LP on

2Qur LP—function is L', in particular L}, . on a bounded neighbourhood like B?.
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the endomorphism bundle, too. Then we may apply Proposition 3.0.3 and get
lidp k|l Enansk = (H, K)gs bounded. Analogously for idy ;. So the norms are
mutually bounded, i.e. |le]|, < 0o < |le||x < oo for every section e. O

Theorem 3.0.6. The functor = from the category of tame harmonic bundles to
the category of filtered regular Higgs bundles and filtered regular Zx —modules is
fully faithful, i.e. the induced function on the set of homomorphisms is a bijection.

Proof. We have already seen, how = maps a morphism of harmonic bundles to
a morphism of filtered objects, simply by considering it as a map on the bundle
underlying the filtered object. On the other hand every morphism of filtered
objects ¢ restricts to a bundle morphism of the underlying bundle, this will be
=1y, The two constructions are obviously inverse. So we only need to show that
= is surjective or in other words, that Z~! maps every morphism of filtered bundles
onto a morphism of tame harmonic bundles.

More explicitly: Let ¢ : Z(F) — Z(F) be a morphism of the filtered regular
Higgs resp. Zx—bundles corresponding to two Higgs resp. Zx—bundles E, F.
We have seen in 2.2.5, that = commutes with tensors and duals. So we may
consider a homomorphism as an element of Hom(Z(F),Z(F)) ~ Z(E)* @ Z(F) =
E(E")@Z(F) = Z(B* ® F) = Z(Hom(E, F)) as vector bundle homomorphism.
Hence it will be enough to show that ¢ is harmonic on the underlying bundles.

H(ii) For the Higgs bundle case we have ©*0r = p0p, p*0r = ©lg:
= QO*d/}/y = QO*(EF + GF) = QO*(EF) + 90*(9}7) = (,0(53 + QE)QOCZ%

Therefore the induced homomorphism on the harmonic bundle fulfills (ii) of
1.2.8 - (i), (iii) are missing.

D(i) For the Zx—module case we know ¢*D7}. = D%, ¢*Vp = Vg
= ¢'Dr = ¢"(Dy) + ¢"(Vr) = ¢Dp + ¢Vi = ¢Dp.
The induced homomorphism on the harmonic bundle fulfills (i) of 1.2.8 - (ii),
(iii) are missing.

First we treat (iii) simultaneously for both cases: Then ¢ : E — F may be
identified with ¢ € E*® F with Dp—¢D = Dp— Dy = 0 and D" —pD" =0 by
the definition 1.2.8. In the proof to the previous corollary we saw (at the example
of id) that preserving the filtration implies ||| p—pr < c,r~°. Analogously to the
proof of the corollary ||¢||z—r < ¢/, < 0o bounded.
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H(i) In the Higgs bundle case in order to prove (i) we need to show that ¢*d}y =

odpy, dy = 0p + HTE and d analogously. We know already that the pseudo
curvature G = (d’)? = 0l — 00 = 0 by the Higgs field property. Same
in the bundle F' and in the homomorphism bundle Gg_r = Gp-+-Gg = 0.
But we have Fz = 0 as well: p*DF = ¢DPF for any operator D extends to
higher (p, ¢)—forms ¢ as 3*DF = (—=1)PT4*1¢DP | because for p = ¢ ® w

=  Df(p®w)—(pew)D”
= (D59) @w+ ¢ ® dw — (=1)""(pDf @ w)?
= (DEp — (—1)P*1oDEY @ w4 ¢ ® dw
= (Dg - —=(=1""()DF) (¢ @ w)
= Dfo—¢DE=0= D (p@w)— (-1)"(¢®w)DF =0.
Then
Fro+oFp = o(dp)® + (dp)* + (dp)* + (dp)*e
+odydy + dpdpe + edydy + dpdpy
= ()’ + (dp)*e + dpedy — dpedp — dpedy + dpedy,
= (90}, + 05,08) + (9r0), + 01080

= =0

p— O,

by the Higgs field property (resp. 1.2.6). Our Weitzenbock formula W2
becomes

_AH()OH?E—)F = _QiAH<aE+9T)H0m90H2E—)F o
+hesr(e, =2iA(F, — Gr — Gh)Hom¢)
- _2HA(8E + 0T)Hom@||%aF

The equality holds on X and holds weakly over all of X: Again by lemma,
179, [lollpnr < —2I1A0F + 0N nom@l e py 1MOE + 0" )omel[5—, » POSitive
and since f bounded = ‘lfg(T)l — 0, we get [|[A(Or + 0" ome||%_, 1S inte-
grable. But the integral of the Laplacian of a bounded function on any ball

is zero. * So

0= [ Alpraz = [ 200+ 0 e,

and by the positivity of the integrand [|[A(Or + 0 )pomp(2)||% .p = 0 =
d'(p) = ¢d' = (0 + 0")¢p — (0r + 0") = 0. Finally D(¢) — D = d'(¢) -

3DF is a 1—form, so DE Aw = (=1)PT9w A DF for deg (w) =p +q.
4cf. Miiller, [PDE09], p. 14, lemma 2.6, (radius r fixed).
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od + d"(p) — pd” = 0 shows the missing part (i). So = is fully faithful into
the filtered regular Higgs bundles.

Similarly in the Zx—module case (ii) will follow from ¢*d = pd'. Tt is
enough to show p*0p = ©lg, cp*&} = gpQTE or equivalently the induced op-
erators on the homomorphism bundle vanish, since d” = D" — 67 + § and
©* DY = ¢* D't by degree considerations from ¢*Dpr = ¢Dp. We know that
the curvature Fp = Fr = Fr_r = 0 vanishes. For the pseudo-curvature we
get

Gry + ¢GE
= (df)2p + ¢(d})?* = (DF — di)*¢ + o(Dp — d,)?
= ((Dp)* = Dpdp — dpDp + (dr)*)e
+¢((Dp)? = Dpdy — dpDg + (d)?)
= dppDpg — dpoDp + (dp)*¢ + ¢(Dg)? — Dpedy + Dpedy + o(dy)?
= (OF + 9})24/3 + ¢(9E + GtE)z
= (OpbL + 0L.08) 0 + (IR0L; + 05,08)
=Gre+¢Ge = 0.

by the vanishing of the pseudo-curvature (resp. 1.2.6). Our Weitzenbock
formula W1 becomes

~Allelsor = —hesr(p, 20A(F, — 2G1) Hom®)
_8||A(9)End90||2E—>F - 8||A(9]L)End90||%—>F
= —8|’A<9)End<ﬂHiHF - SHA(QT)End@H%‘HF‘

Like in the Higgs bundle case lemma 1.7.9 guarantees the integrability over
the origin. Again the integral over the Laplacian does vanish and so the
same holds for the integrand 8||A(0)gna|| %, p +8|| A0 Enapl|% . » = 0. Both
summands are non-negative and therefore both have to vanish, i.e. p—pf =
0To — f" = 0. This was the missing part of the proof of (i). So = is fully
faithful into the filtered regular Zx—modules.

]



RESIDUES AND
STANDARD METRICS

On our way to essential surjectivity, we need to construct a metric A on our bun-
dle E that induces a given filtration under =. This standard metric will not be
our harmonic metric, but we will be able to construct a harmonic metric that is
mutually bounded with respect to h.

Recall our two examples 1.4.17 and 1.4.18. The bundles constructed are our small-
est building blocks in the following sense: By tensoring these building block we
may construct to each residue (V,, N) a bundle E, that has the residue (V,, N),
up to isomorphism. We will then show that E is isomorphic as a filtered vector
bundle to our initial bundle E. Then define a new metric h on E as the pullback
of the harmonic metric  on E. Tt turns out that h makes F into an acceptable
bundle, the new curvatures are LP,p > 1 and h induces the initial filtrations on F
under =.

We get a nice corollary at the end of the chapter, telling us that the filtration
induced on a filtered local system by order of growth, is the same as the filtration
provided by our functor ®.

4.1. JUMPS AND RESIDUES OF LINE BUNDLES

Let o € R be arbitrary for now and let X be the unit disc again. Let E be a line
bundle over X with trivialization ¢ : Fx — X x C. Choose e(z) = ¢ '(2,1). De-
fine an inner product h on E by requiring h(e,e) = |2|?** and extending sesquilin-
carly. If Op denotes the holomorphic structure then the holomorphy of ¢ im-
plies those of e: Oge = 0. Let fe = e ® 2dz. In example 1.4.17 we saw that
Ope = e ® “92 fe = ¢ ® ©d 2!, that the bundle is harmonic and that the metric

connection D = 0 + O is flat.
The harmonicity of E leads to a filtered regular Higgs bundles under = : Z(E), =

'We could write 9g = 0 + £ d z for the usual decomposition into differential and connection
matrix.
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{e: X — E|3C > 0Ve > 0 : |le|| < Cr*<}. Then e is only in level a and lower.
We get Z(E)qye # Z(E), for all € > 0. Further note that the map e +— 1 from
E, — Ox is an Ox—isomorphism, which preserves holomorphy.

On the other hand when we start with a regular filtered Higgs line bundle
(E,Es)ger with Z(E)qs. # Z(E), for all € > 0 and ¢ : E, — Ox holo-
morphic isomorphism. Then we find an element ¢ € Z(E), \ Z(E)ate. € is
holomorphic as preimage of a holomorphic function under ¢ and the required
compatibility of ¢ with the holomorphic structure dp. Then we may define
hie,e) = |z]**,0e = e ® 2dz and construct dp, 0%, as in 1.4.17 receiving har-
monicity and flatness of the metric connection. In particular note that e is a frame
of the base space E, i.e. E is holomorphic.

We want to understand how the "jump" in the filtration of E shifts when con-
sidering associated filtered regular Zx—modules and later filtered local systems.
Therefore we construct a D” = 0y + #'—holomorphic frame

v = e—2ilog|z|e — e*ﬁlog(zf)e
= (0p +0Nv = Ope ®exp(—alog(22)) +e® —azdz exp(—alog(z%))
~~ Zz
=0
+0'e ® exp(—alog(27))
—adz adz
f— — v + —
Z Z

=0
Moreover

||U||Ze = exp(—2alog|z|) exp(—2alog |z|)h(e,e)
= exp(—2(a + a)log |z])|z[*
= exp(—4R(a)log |2|)|z|** = |2[>*~2@F),

Hence v € Z(E)a—(ara). Since |le||7 > [z]***%, Ve > 0 for z small enough, we see

that v € Z(E£)a—(ata)te, Ve > 0, i.e. we get a "jump" at o —(a+a) = a—2R(a) in
the filtration of the =—corresponding regular filtered Zx—module. Furthermore

Vv = 0Ogv+6v

d
%% exp(—2alog |z|)
z

= Ope ®exp(—2alog|z|) + e ® Dexp(—alog(zz)) +

d L
- ¢ Ze®exp(—2&log|z|)+e®—aexp(—ﬁlog) +
P z

d

%% exp(—2alog|z|)
z

a—a-+a

= —vdz.
z

Then our matrix M from the previous section is (& — @ + a) and the monodromy
of the corresponding system is i = e~ 27(@=@+@) By the equivalence ® given in the
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chapter on Filtered Objects:

= {U = eMlOg(Z)”Z S LB : %()\]\/[) =0 > o — (G‘FE) — ﬁ}
= {v=2eM@]|l € Ly : 2R(a) > —B}.

Va—?ﬁ(a—a)

So the "jump" in the filtration of the local system occurs at —2R(a).

Remark 4.1.1. Recall 2.1.11. Then 6 has residue map res(f)(e) = e®adz, V
has residue map res(V)(e) = e® (e —a+a)dz = e ® (a + 2iS(a)) d z and the
local system has residue map p = e?@=@+a) — o=2miatdrS(a)

Remark 4.1.2. Note that we get a flat section e~ (*~@t@)19e()y, This section
|e~(@mara)log(z)y||, = |2|*"@3% is polynomially bounded.

4.2. RESIDUES OF VECTOR BUNDLES

Let us proceed with example 1.4.18. There we had £ = X x C? or analogously

E ~ X x C? with a trivialization ¢ and a frame (¢~ 'e;, o tes). The rest of

the calculation is the same, so we may stay with e;. Further £ = F; ® Fy with
E; = spany, {€;},1 < i < 2. Our metric was defined by |le;]|7 = —log|z|* =y
and |les||2 = (—log|z|*)~' =: y~'. The other operators are

_ _ dz dz
Oper = 0pgea =0, Opey = —€1 ® z_y’aE€2 =€ —,

<Y
g (0 0)dz (0 1) 0z
1 0] 2 0 0) zy2
Again we want to consider the associated Zx—module. Therefore construct a
Op + 0T—holomorphic frame. e; is already 0 + 6 —holomorphic:

_ 0 1\ dz /1
Ne, — e, — a4z _
(8E + 0 )61 = 0 €1 = (0 O) EyQ (0) 0.

For es this is not the case:

Therefore vy := ey — e; @ y~! is flat:

(EE + HT)UQ = —e X gy_l -+ QTGQ
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_ dz
= e ®0(—log(x7)  + e ® E—yZQ

z o dz
= (—log(22)) * +e1 ® E_yZ

= —61 ®

= 0.
The norm of this new basis element is ||va||7 = [lea]|2 +|le1|7y? = vy ' +yy 2 =2y~ L

Remark 4.2.1. wy,e; is not an h—orthonormal frame: h(ve,e;) = h(es,e1) —
h(ep,e))y™t = —1.

Again we want to consider the corresponding local system, too. We can further
modify to get a D—flat frame. vy is already flat

Vv, = (9 + 0w = (05 +0)(es —e1 @y ™)

The first half of the calculation leads to

dz 00 1 dz
Vel = ((9E+@)(61):—61®5+(1 0) (0)®_

2
dz d
= (a—ewy ) ®— — 0, ® —,
z z

Then define v; = e; — vy log(z). Note that this section is in general multivalued.
dz -1 _ -1
V02:v2®——v2®810g(z):v2®(z —z )dz:().
z

Let vgk) = e; — v9(log(z) + 27k) be an arbitrary branch. Then

[ = llerlli = 2R(h(er, v2) (log(2) + 2mik)) + [[vz]*| log(2) + 2mik
= y+ 2R((log(z) + 27mik)) + 2y~ '|log(2) + 2mik|?
= y+ 2R(log(2)) + 2y~ log(2)* = y|1 + y~ " (log(2) + 2mik)|”
The monodromy of the corresponding local system can be read of

M d
0=Vuvy=—dzvy resp. U2®—Z:V€1:—d261
z z z
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(01 (1 1),
v (o 0) == (o 1)
in the holomorphic frame of the Zx—module (vq, ;) (in this order). The frame of
L obtained in the way of chapter IV is just

e—Mlog(z) — F— (8 é) 10g<z) = e*Mlog(Z)v2 = Uy

—M log(z)

=e ep =e; —vylog(z) = vy,

Remark 4.2.2. Again we want to take a look at the residue maps. For the local

system we just saw that the residue map is pu = (é D For the Higgs bundle

we had res(f) = ((1) 8) dz w.rt. (er,ez) and for the Zxy—module res(V) =

((1) 8) dz w.r.t. (eg,v2), i.e. the same representation as for the Higgs bundle.

Remark 4.2.3. We gave some bounds on the growth of the V—flat holomorphic
sections here. v; and vy are both bounded in terms of the logarithm, in particular
have polynomial growth.

Lemma 4.2.4. Given a vector space V = @, Vo with and endomorphism
N compatible with the decomposition, there is always a harmonic bundle E such
that res(2(E),0) ~ (V,N) or res(Z2(F),V) ~ (V,N). Here an isomorphism of
residues is a vector space homomorphism ¢ : Z(E) — V which is compatible with
restriction to the subspaces of the grading and compatible with the endomorphism:
res(f) = o ' No.

Proof. We will use the two constructions from 1.4.17 and 1.4.18 to construct any
vector space V resp. a V' in the isomorphism class of V, with grading, and a
compatible homomorphism. By the compatibility of = with tensor products, com-
binations of those two concepts using tensor products will lead to the corresponding
connection between the filtrations.

Our second example 1.4.18 and its conclusions above have a natural extension to
higher symmetric powers than 2. For power n our resulting residue of the Higgs

2Check by power series of log.
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resp. Zx bundle will be the matrix

o 1 0 ... ... 0

0 0 1 0 0
res() = '

0 ... 01

0 ce 0

or (res(6))x = Ok+1.-

Next we use the one-dimensional line bundles from the previous section. We
constructed harmonic line bundles with arbitrary "jump" at « and arbitrary
eigenvalue a. In the section on the endomorphism bundle we saw as well that
a connection in the tensor product of (F,Vg) and (F,Vp) is chosen as Vg ®
idp +idg ® V. Analogous for homomorphism. So if N was our nilpotent matrix
from the second example and (a) was our one dimensional from the first, then
N ®1+ E ® a is a Jordan block to the eigenvalue a. Now taking the direct
product leads us to an arbitrary Jordan normal form, i.e. we may construct any
homomorphism. This homomorphism will respect the filtration by construction.
Further note that for the filtration of tensor products (E®@ F), = > g B, ® Fy
the "jump" of the second bundle induces a "jump" here. But the Grs are only
non-zero at a "jump". Since our "jump" in the line bundle was one-dimensional?,
we can get any dimensional "jump" by repeatedly tensoring with line bundles
with the "jump" at a.

Hence we get any grading, i.e. a vector space V ~ V and subspaces VI ~V, by
restriction of the general isomorphism. Together with our homomorphism we can
construct any V' = @, Vo with any endomorphism N from a harmonic bundle
(up to isomorphism).* Thus for any (V,V,, N) exists a harmonic bundle E such
that res(Z(F),0) ~ (V,N).

The proof for Zx—modules is the same only that we use now o/ = a — 2R(a)
instead of o and « + 23(a)i instead of a. It does not restrict our choice: Choose
first a as the real part of our eigenvalue and 23(a) as the imaginary part, then a
R(a) suitable to get a desired value o/ € R. O

Remark 4.2.5. The harmonic bundle is not uniquely determined by the data
(V,V,, N).

Lemma 4.2.6. Let E be a filtered regular Higgs bundles resp. filtered regular
Px—module. There is a tame harmonic bundle (F, 0z, 0z, h) such that res(E, 0) ~

3As a vector subspace of all Laurent series.
4Note that the construction of the spaces V,, only depended on the choice of a and e, and did
not interfere with the construction of N dependent on a.
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res(E, 05) resp. res(E,V) ~ res(E, V) and an isomorphism of filtered vector
bundles between £ and E.

Proof. We have already proved the lemma above - more or less. Note first that all
eigenvalues above where tame in 1.4.17, 0 in 1.4.18, hence the eigenvalues of 0
are tame.

Consider the stalk - a vector space - at the puncture s. By zE, = E,; all data
of the filtration is encoded in res(E) = Py 5., Gra(E). We required the isomor-

phism of residue 1 : res(E, §) — res(E, 0 3) to restrict to res(E) = Do<s, Gra(E).
Hence v induces a map g : Fg — E(E)g On the other hand 1) extends to a vec-
tor space homomorphism on j.(E)s. So close enough to the puncture 1) maps a
frame (e;) of E to a frame (¢;) of E.

As vector bundles of the same rank on a punctured disc (= trivial) we may define
an extension of 1, called ¢ as well, to be the Ox—linear extension of ¥(e;) = (&;).
There is one more degree of freedom, namely we may require i) to be compatible
with the holomorphic structures pdz = ¢*0z. The last property is a choice which
does not influence the residue of the harmonic bundle, since we never specified a
particular holomorphic structure by construction of the two examples. We rather
started already with the choice of a holomorphic section.

So (1, 13) is an isomorphism of filtered vector bundles. ]

Remark 4.2.7. This is not an isomorphism of regular filtered Higgs or
P x—bundles. In fact we will need further restrictions, namely stability, to get an
equivalence of categories.

4.3. EXISTENCE OF A STANDARD METRIC

Now we are in the position to state the main theorem of the chapter:

Theorem 4.3.1. Given a filtered regular Higgs bundle, Zx —module (E, hg, 0, 6)
or local system L, there is a metric A making E into an acceptable bundle, such
that the curvatures F}, resp. GGj, are in LP for some p > 1 and such that = induces
the original filtration on F resp. L and the dual filtration on E* resp. L*.

Proof. Let res(E) = (E, E,,res(0)). By the last lemma there is a harmonic bundle
(E, h,dp,0) with res(E) ~ res(E). Let ¢ : E — E be the corresponding isomor-
phism of filtered vector bundles provided by the previous lemmas. Let 6 denote the
Higgs field of £ and res(f) the residue. We get pres(f) = ¢*res(). Analogously
eres(V) = @*res(V).

Define a new metric h(e, f) := h(p(e), o(f)),e, f € T(X, E). This new metric is
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clearly harmonic with respect to 6 = © 1(9Eg0 @ is an isomorphism of filtered
vector bundles, in particular we have ©*0; = 0.

h(¢(aEe)7 @(f)) - hEaEe7 f) = ah(e7 f) - h(€7 aEf)

= pdp = @ 0.

Hence || Ry, = || Rjll 7 acceptable, since the || Rj|| must satisfy the necessary
bound by harmonicity of £ and then by the main estimate. In general we have
©*R; = @Ry,

Moreover

60 + 005 = ¢ 0500 050 + ¢ 0500 D
= ¢ ' (0p05 +0505)¢
= 0.
is a Higgs field. The adjoint of 6 is 07 = 90’19290 since

h(be, f) = h(Bpe(e) 9(f)) = hig(e), 050(1))
= h(ele), ¢0'(f) = he,0'(f)), Ve, f € (X, E).

Finally

Op+0p+0+0" = o (0p+05+05+0L)p
pu— O’

harmonic. So we can work on F now.

Define 05 = 0 — 0, i.e. 05 has no longer a df—part by equality of the residues:
Je,ea > 0 ||0allg < calz|7'". The norm is the one we now from the endomor-
phism bundle, i.e. [|A[|}; = tr(A*HAH).

Again by the harmonicity of E' we know that 0 = F}, ; = R, + 03 QT + QT 07

= F, = Ry +0p0% +0L0p
— Ry +00" 4010+ 050) + 0,05 + 0704 + 000" + 005 + 046
= F,5+0a0) +0K0a + 0705 + 050" + 005 + 050
= 00 + 0L0a + 0105 + 000" + 00 + 000,

Thus || Falli < 2010alf +410alul0lla < 26412727 +deay/Es|2[ 77 < caal2| >
by the main estimate 1.5.7. For p =1+ 5 = p(—2+¢) = -2+ ¢ — %5 + % =
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-2+ —2 > —2 = F}, is LP—integrable.

The proof for Zx—modules works similarly: The previous lemma now applied to £
with holomorphic structure D”. = 95+ 05 leads to a harmonic Zy—module E and
an isomorphism of filtered vector bundles ¢ such that ¢ D}, = D%p. Furthermore

hp(dge).¢(f) = h(dge, f) = Ohle, f) = hle, Dis(f))
= Oh(p(e), #(f)) = hlp(e), pDE(f))
= Oh(p(e), o(f)) — h(e(e), Dgp(f))
= h(dxp(e), o(f))
=00 = @ig.

Construct V = ¢ 'V and Vo = V — V=3 >0:|Vallg < calz| 7=
As above (E,V,0g + 6) is harmonic. The last calculation guarantees that
W*Rh,éﬁwg - (5;3 Dg)z = ¢(0p + Dg)* = SORh,gEH;T resp. Rhg 4ol T

V-4, V+Va—p 16 _1 Vo
R, 5, 4@ Further 0p = s = s— 2 = @ Bp + Yo =

*10 + VA — 9 + Va

EQO 2

In the general Px—module case (not necessarily vanishing Pseudo-curvature) we
already know that

Ry 5, ot + 200605 + 0}0)
= (0 — 0+ 0p + 07) +2(01.05 + 05.05)
= F, —2(0p0p + 0plp) +0'0 + (=2 4 2)(0p0%, + 05,05)
=0 flat
= —2(0p0g + 0pbr) = —2Gj,
Since G, ¢ = 0 by harmonicity of E this yields

—2G = Ry, .4 +2(060% + 0}50)

- v
= Rugeeor +2 (00 + @0+ T2

i Va  (Va)f (Va)l (VA)TVAVA(VA)T>

+(9)2+29+92+ 1

= Ghe +ValO) +(0)Va + (Va) 0 +0(Va)
=0

(Va)IVAVA(VA)!
+ 2
= Gulla < IVall® + 4 Vallllf]] < Alz| 727 + cay/cs|2| 72T




4.3. EXISTENCE OF A STANDARD METRIC | 113

For p =1+ 5 we get: Gj is LP—integrable.
Therefore we already have t~hat the curvatures Fj and G} are LP and that the
bundle is acceptable. That E induces the correct filtration was already proved in

the previous lemmas: e € E3 < ¢(e) € Z(E)z < |e]ln = h(e,e) = h(p(e), p(e)) <
Celz|7¢, Ve > 0.

We are left with the local system case: Analogously to the procedure in chapter
IV we consider the eigenspace L*i of the local system L, then construct ®(L)
and equip it with a harmonic metric. When summing up over all eigenvalues
the compatibility of ® with the eigenvalue decomposition allows us to sum up
over the Zy—modules with harmonic metric, and we get a harmonic metric on
®(L). Therefore it will be enough to consider a local system with one eigenvalue

A of the monodromy p and A\ = log) the eigenvalue corresponding to a choice of

—2mi
M — s

—2mi °
Consider the harmonic metric h induced on the corresponding Zx—module. Then

we want to show that [ € Lg, where Lg is now the filtration induced by @, if
and only if ||I||, < ¢r®¢,Ve > 0. Let us start with [ € Lg\ Lg,.Ve > 0 =
k= Mg € O(L), \ ®(L)are, Ve > 0 for R(Aar) > a+ 8 =k € ®(L)sinn) \
®(L)s+n(n)+e by left continuity. In the previous part of the proof we constructed
a harmonic metric such that ||k[[, ~ [2|*T®*. We have seen before that the
Frobenius norm of matrices in an h—orthonormal frame is consistent with the
h—norm - so use the Frobenius norm here. Therefore
12l < (ke 5@, < [le B[kl < caglo| V||V

= cg82|P
where we used that Mlogz = P~'JP, J Jordan normal form of M log(z), for

example

Alog(2) 1 0 0 0
0 Alog(z) 0 0 0
Jexample - 0 0 A log(z) 1 0
0 0 0 Alog(z) 1
0 0 0 0 Alog(z)
Thus exp(—Mlog(z)) = P lexp(—=J)P = |exp(—Mlog(2))|lzx <

| P~z || exp(—=J log(2)) |zl Pllg < cus|| exp(—J log(z))||z since P is constant. For
J = Mog(z)E + N, N nilpotent, N7 = 0:°

lexp(=J)|lu < [exp(=AlogzE)||u| exp(=N)|lm

5J and N commute.
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< eyl exp(—=Alog zE) || g

= ¢y lexp(=Alog 2)| | Ellg < cseexp(—R(Alog 2))
< eqrexp(—Aloglz]) = 047|z|’)‘.

The last step follows by log(z) = log|z| + ip., A = R(A) +iF(N) = R(Alogz) =
R(A) log |z] — ¢.S(N) and ¢, € [0,27] bounds ¢.J(\) independently of z. This
amounts to a possibly bigger constant cy7.

Recall that & was compatible with taking duals. Hence we can repeat the
procedure above to estimate [|[*]| < cag|z|77¢ for I* € (L*) 5. But |l € Lg
= 1" e (Lg)" = (L7)-p

= 1 =11 < [|I*]|a=|ll||n < caolz| 275\ 1||n, Ve > 0

= 2|77 > ||l||n, Ye > 0

h*

Both estimates together lead to [ ~ |z|?. This is our claim.”

We have seen above that we find a metric with acceptable curvature. Not only = is
well defined, it is as well compatible with duals, determinants and tensor products.
So we get the dual filtration on the dual bundles £*. Furthermore & fulfills the
same compatibility properties so we get as well the dual filtration on the dual local
system. [

Conclusion 4.3.2. Let E be a Y9x—module with a tame harmonic metric k.
Then the metric induces filtrations on the corresponding local system L by [ €
L, < lelL, |l <¢r*=,Ve > 0. On the other hand k induces a filtration F, on
E and ¢ generates a filtration L, on L. Then L, = L.

Proof. Let E, be the filtration on E induced by k and L, the by ® induced filtered
local system. Then by the previous theorem 4.3.1 we find a possibly different metric
h on E that induces E,, too. Since all requirements of 3.0.5 are fulfilled we may

conclude that h and k are mutually bounded. But A induces the filtration L/, on
L, so does k. Hence L, = L/ O

Remark 4.3.3. Remembering 4.1.2 and 4.2.3 we conclude that the flat section
of the Zx—module defined by = w.r.t. the new metric are polynomially bounded.

SWe used that [ ¢ Lgic,Ve > 0 in this last conclusion, else | < |z|?*¢ for some ¢ is possible,
i.e. we could not specify if [ really appears at level § in the filtration which is induced by the
metric.
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5.1. ANALYTIC AND PARABOLIC DEGREE

The first part of this chapter introduces the notions of degree and stability. We will
get three different forms of the Chern-Weil formula, connecting the curvature of a
subbundle with the curvature of the original bundle. The formula will particularly
help us prove that the analytic degree defined as the integral over the Chern form
is the same as the parabolic degree counting "jumps". Same holds for stability.
Then we may show that irreducible tame harmonic bundles are mapped onto stable
filtered regular Higgs bundle of degree 0 resp. stable filtered regular Zx —modules
of degree 0, and that every tame harmonic bundles decomposes into a direct sum
of irreducible tame harmonic bundles.

Definition 5.1.1 (Chern form). Let P, be the homogeneous polynomials in
det(E+ A) =1+ P(A) + ... P,(A). For the characteristic polynomial we know
that

det(AE — A) = X" —tr(A)A\" 4+ ...+ (—=1)"det(A).!

In particular ¢; = tr(A). Define the k—th Chern form as

7
cy = by (%Rh> ;

for the curvature of the unique metric connection R;, compatible with the holomor-
phic structure of the hermitian vector bundle (E, h,0g). In particular ¢; = tr(Rp,).

We want to add some properties of Chern forms. A proof may be found in Huy-
brechts (|[Huy05]), Complex Geometry, p. 197.

!Most books on linear algebra.
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Lemma 5.1.2. (i) Let £y and E5 be two hermitian vector bundles. Then
FEi @ E5 has an induced metric and an induced metric connection. We have
c1(Ey @ Ey) = ¢1(E1) + c2(Es). This is a special case of the Whitney sum.
In particular higher Chern forms decompose not trivially.

(ii) Let E* be the dual bundle to E with the induced dual metric and connection.
Then cx(E*) = (—1)k¢i(E). In particular ¢;(E*) = —ci(E).

(iii) For the tensor product of two vector bundles Ej, Ey - again with induced
metric and connection -

C1 (El X EQ) = dlm(El)Cl(Eg) + dim(Eg)Cl (E1>

Higher Chern classes are calculated by the product of the total Chern char-
acters.

(iv) Since €™ = det eX we get for X = log(H):

tr(log H) = log(e"8M) = log det €87 = log det(H)
= 00logdet(H) = 00tr(log H) = tr(00log H) = tr(R})

by linearity of the trace, where R}, is the curvature of the metric connection
on the original bundle. Hence the first Chern form of a bundle E coincides
with the first Chern form of the determinant bundle of FE.

Definition 5.1.3. The analytic degree of a hermitian vector bundle £ over X is
defined as

deg(E) = 7A / e1(E) = / (iAte(Ry)) dz A dy,
X X
with R, the curvature of the unique metric connection compatible with the holo-

morphic structure.

Remark 5.1.4. By the previous lemma 5.1.2 (iv) we see that the degree is invari-
ant under the transition to the determinant bundle. By (i) we get deg(E; @ Ey) =
deg(E,)+deg(Esy) and by (iii) deg(F; ® Ey) = deg(E,) dim(Ey) +deg(Ey) dim(Ey).
For the dual bundle we get deg(E*) = —deg(F).

For filtered vector bundles there is as well a notion of degree, which we call
parabolic or algebraic degree.

Definition 5.1.5. Let (E, E,) be a filtered vector bundle. The algebraic or

parabolic degree is defined as

par-deg(E, E,) := ndeg(Ey) + 7 Z Z adim(Gr,(Ey)).

seX\X 0<a<l
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Here deg(Fy) is the usual degree of the determinant line bundle:

Definition 5.1.6. The degree of a line bundle is the degree of the corresponding
divisor, i.e. for D =% _onss = degD =3 _on,.

For a vector bundle E the degree is the degree of the corresponding determinant
bundle - deg(F) := deg(det(E)).

We added here a scalar factor 7 in comparison with Simpson, because we have the
same factor for the analytic degree. In [Sim88| (explanation before lemma 10.5)
he adds 27 - the factor two corresponds to iA instead of $A.

Remark 5.1.7. The deg(Ep) part fulfills the compatibility described above. So
does the second part:

(i) The determinant of E has the fibers AJ_; E, and det(E,), =
> ritoirn—a et (Er)e. In order to get a non-vanishing Gr, in this fil-
tration we need a basis (e;) of E such that e, € E, and r; a jump,

ie. a =1+ ...+ r, and r, the jumps of the original filtration of F
= par-deg(FE) = par-deg(det(E)).

(i) For E1® Ey we have (E1® Ey)o = (F1)a® (E2)s and therewith dim Gr, (E; @
Ey) = dim Gr,(E)) + dim Gr, (E»).

(iii) For E* we have (E*), = E*_ and hence the non-vanishing quotients occur
at —a instead of a. The dimension is the same by £ ~ E*. Hence the degree
changes by a sign.

(iv) For the tensor product (Ey ® Ea)a = >, ,,_o(E1)r ® (E2)r,. Thus we
will get a non-trivial contribution to the degree only if r; and r, are each
jumps. Note that the weight is r; + 79, i.e. it "counts for both jumps" (we
are not counting twice). Now we may combine a jump a; with each jump
of Fy, ie. get dim(FEs)par-deg(F;) and analogous dim(FE;)par-deg(Ey) =
par-deg(E; ® Ey) = par-deg(E;) dim(FEs) + par-deg(Es,) dim(E ).

Lemma 5.1.8. If (E, h) is a holomorphic vector bundle with acceptable metric,
then the degree is convergent. If E, is the filtration induced by = then deg(E, h) =
par-deg(E, E,).

Proof. If (E, h) is acceptable then the curvature R, of the metric connection is
bounded by IZIQICIZW’ and is in particular L'—integrable. So the degree is ab-
solutely integrable: tr(Ry) = (Ry, E)r < ||RullFl|E|lF = v/n||Rul|r by Cauchy-
Schwarz.

As usual restrict to the punctured unit disc. For more singularities we only need
to sum up as done in the definition of the parabolic degree.
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Further we know that = is compatible with taking the determinant and that both
notions of degree are invariant under the transition to the determinant bundle.
Hence it will be enough to prove the lemma for every determinant bundle, i.e. for
every line bundle. Let L be our line bundle with filtration L., := =(L),, i.e. the
sections in Ly are the h—bounded sections. Hence we may identify L, with O.
In particular the corresponding divisor is 0, i.e. deg(Lg) = 0. Moreover the single
jump «, 0 < o < 1 in the filtration of L is of dimension 1 for a line bundle. Hence
deg(L, L) = ma. Furthermore we know that L = L, as Ox—bundles, i.e. we find
a Ox-frame e of L in L, - e ~ |2|* in the sense

|log ||e||n — logr®| < &|logr|, Ve > 0.

In order to show this, note first that e € L, = Z(L), = |le|ln < cer® 5, Ve > 0.
We may assume ¢, = 1 by rescaling e. Obviously this is still in L, = log |le||, <
logr® — élogr = log |le||n — logr® < &|logr|.

For the other direction use that = induces the dual connection on the dual bundle.
Take e* € L} = (L*)_, the dual section - e*(e) = 1. Remember as well that
e[l = llell;,”

= [le|ln <77 VES> 0= —log el < —logr® — Elogr, V& > 0
= log|le

|, —logr® > élogr = —&|logr|,VE >0
= |log |le||, — logr®| < &|logr|.

Remark 5.1.9. Note that we didn’t use any properties of a line bundle here,
so the estimate holds in general for every o € Z(F), \ Z(E)qa4e for a general
acceptable bundle F.

Now the curvature of the unique metric connection Rj of L is given by R, =
42042 A ¢ log [|e][5. On the completion however, we get = 92292 A< log |||, = R, —
2radyd 2z A dz?: First note logr® = alogr. But % log r is the Green’s function,
i.e. a d-distribution with weight at 0. Therefore A logr® = Axlogr® + 2wady.
We have seen that | e[, differs from log r® at most £logr. So we still need to show
that the Laplacian of log||e|;, — log r®* does vanish. But

1 — log r® 2|1
[log el ~logr*| _ éllogr] _ . .o

log r — logr
| log [lell» —log |

— 0, forr—0.

log r
Let Aly denote the trivial extension of Ax to X. Then —Ax(log |le||, — logr®) =
—Alx(log|lelln — logr®) =: —b. b is a L'—function since Ax log|le|| = 4R, and
Alogr® are L'—integrable.

26y is the d—distribution with weight at 0.
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Remark 5.1.10. Note that Ry, is L' since it is acceptable. Later on we will treat
subbundles, where we have an additional perturbation term which is L!. So the
theory applies there too.

By lemma 1.7.9 we get Ax(log |le]ln — logr®) = Alx(log|le||, — logr®).> Now
the integral of the Laplacian over a compact domain has to vanish* = 0 =

Jx Ax(log llefln —log ) = [5 Alx(log|le[ln —logr®) = [ Ax(log|le|[s —logr®).
This shows the formula ahead.
]

5.2. CHERN-WEIL FORMULA

In this section we will show that we may calculate the analytic degree of a Higgs
resp. Yx-bundle using the curvature of the connection F}, or the pseudo-curvature
(G}, instead of the curvature of the metric connection Ry,.

Proposition 5.2.1 (Chern-Weil). Let E be a metric bundle and F' be a holo-
morphic subbundle, then h induces a metric on F' and we get

deg(F, hy) = i /X tr(rARy) — /X | @ )na(m) 2.

with Rj the metric connection on E and 7 the h—orthogonal projection on F'.

(i) If moreover F is a Higgs bundle with Higgs field 6 and F' a Higgs subbundle,
i.e. F'is preserved by 6, then

deg(F, hy) = i /X t(rAF) - /X TEANEE

where Fj, is the curvature of dg + dp + 6 + 61, di, = Oy + 6.
(ii) If V is a Zx—module, i.e. Dy = Dj, + Dy, flat, F' a Px—subbundle, i.e.
preserved by Dj, and D{,, then

deg(IV. ) =i [

[ x(-2mAGa) = 5 [ NV )enalmIE

where G, is the pseudo curvature: 9y + 60y .

*Equality since —Af = —bon X = —Af+b=0,Af —b=0o0n X = -Af < —-b,Af <)
on X = b< Af <b.
4cf. Miiller, [PDE09], p. 14, lemma 2.6.
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Proof. The proof is similar to the one in [Sim90|, p. 752f. The general idea can
be found in [GHT78]|, p. 78.
Note that

(i) For a Higgs bundle F, = 0pdp+0p0p+00'+010+050+00k+ 00! +010p =
0p0p + 0g0g + 00" + 010 = R), + 00" + 670 by the holomorphy of the Higgs
field. When calculating the degree we use the trace, but tr(60" + 070) =
tr(60" — 00") = 0, where the "-" is due to the fact that we work with one-
forms. We have

deg(E,h) = i /X Atr(Ry) = i / Atr(F).

X

As every Higgs subbundle is a Higgs bundle itself, this notion of degree is
available in subbundles too.

(ii) For a Zx—module V we get by direct calculation using A.1.37

Ry = (Jv +01)(0y —0) + (9v — 0)(Jv + 07
= 5\/8\/ + avgv - (HQT + HTQ) + (a\/éﬁ + 6”8‘/) - (5\/9 + 65\/)
= OyOy + oy + 00" +0'0 +G), — Gy,
—2(00" 4 0'0) — G), — G,
= D?—2(00" + 0'0) — 2G),
= —2(00" + 0'0) — 2G),.

Again the trace of —2(00" + 010) does vanish:

deg(V,h) = i/XAtr(Rh):i/XAtr(—QGh).

Of course the same holds for a subbundle.

Let us start with the actual proof. Let Dg = 0 + Op be our metric connec-
tion. We use the Higgs bundle notation here but dg can be any (1,0) part
of a connection, such as 0y — 6 in the Zx—module notation. Let ' C E be
a holomorphic subbundle. Since F is Op—invariant, the metric connection is
Dp = 10T + 10T = 0T + TORT.

Then by 72 = 7 for the orthogonal projection

Rf = 7wOgndT + nOEmOgT
= ’iTaEEW + 7T5E8E7T + 7T(5E7F - 7r5E)8E7r
= 7REm + (0gm — 7n0g)(0pm — 70g)
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= 7R.T + (05)pnd(7)(0p)Ena (1),

where we used in the line before the last (g7 — 10g)7 = Jgm — Ogm = 0. We
now have

itr(AR}) = iAtr(nRE®) + z'Atr((??E)End(W)(_GE)End(W))
= iAtr(7®RY) — iAtr((@E)End(W)gaE)End(w )
= ZAtI‘(ﬂ'RE) — itr(A(@E)End(ﬂ) (aE End(Tr) .

Now using our Kéhler identities (applied to the connection on the endomorphism
bundle) we further conclude

—tr(iA(Op)bna (1) (0p)Ena (1)) = —U“(_—((—EE)End(f))*@E)End(ﬂ))
= +{(08)End(7), —(9r)End(T)) Hs

= —[|08)Ea(m) |7,

where we used that (9pm —70g)* = 70y — 07" = —(9g)pna () as the orthogonal
projection 7 is hermitian. Putting all together we get our Chern-Weil formula

|imart) = [inteerf) — [ 1@l
= deg(F,h) = /X iAtr(rRE) /X | @) ma ()12 (CW1)

For the curvature Fj, and G}, the procedure works essentially the same:

(i) Let Dg = 0g + 0 + 0 + 0" = dy + d's; d” = Dy + 0 be our connection with
curvature Fi¥ and F a sub-Higgs bundle. Since F is Op—invariant as well as
f—invariant we have Dp = ndym + nd}m = ndym + dfym.

Note that for a Higgs bundle 0 = 0p0+005 = (d})? = —(d')? = 00" —0"0g
= FF = dd}, + d}dy. Again using 7% = 7 for the orthogonal projection

Ff' = nadynor + rdyrndyn
= ndyor + rdypdym + 7(dym — 7dp)dgT
= aFfn+ (dfpm — ndp)(dgm — 7dly)
= 7FT + (d5)end (7)(dp)Ena (7),

where we used (df,m — wdy,)m = d;m — djm = 0. We now have

itr(AFL) = iMr(rFEr) + iAtr((d)gna (7)(dg) pna (7))
= iAte(7*Fy) — iAtr((dp)eaa (1) (A5 ) pna (7))
= iMr(nFF) — itr(A(dy) gna (7) (df) Ena (7).
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Applying our Kéhler identities (applied to the connection on the endomor-
phism bundle) we get

—tr(iA(dg)end (1) (dp)Ena (1)) = —tr(=((—=dp)mna (7)) (d5)Ena (7))
= ((dg)end (), —(dg)Ena (7)) s

= —lldg)ena(m)l[5:

where we used again that the orthogonal projection 7 is hermitian (cf. the
metrized bundle case). Putting all together we get our Chern-Weil formula

[inar) = [ ines(eEE) ~ [ 1(@)sam)

X X

~ deg(F,h) = /X iAtr(rFF) - /X () ma ()2 (CW2)

The third case of interest is the degree in terms of the pseudo-curvature Gy,.
Let W C V be a sub—Zx— module: Vi = 9y +0 and D, = 0y +01 preserve
W = Dy = Vy + Dy, preserves W. Then the by Dy induced connection
Dy satisfies

DW - ’/TDvﬂ' - Dv’ﬂ'.
Now we may write the pseudo-curvature as
4G), = Dy(dj —dy)+ (d} —dy)Dy
= Oydy — 08" — By Oy + vl + 60y — 00" + 676 — 670,
+0v 0y + v — Oy — Dy Oy + 00" + 00y — 019y — 070
= 2(5\/9 + 95\/) - 2(8\/9T + 9T8V)
= 4(0y0 + 00y)
using the proof of lemma 1.2.6. Let DY, := d, — d;,. Thus
4G)Y = DwDiy + DSy Dy
= 7mDynDyrm+ nDynDyrm
= 7Dy Dy + n(Dyr — nDy)Dim + wDy, Dym
= 47G) 7+ (Dym — 7wDy)(Dm — 7D5)
= 4nG) 7+ (Dy )ind (7)(Df)ina (1)

since Dym? — mDym = Dym — Dym = 0. Further use that

g s _ (DVEOLN (Do (Dito  (Di—o
VoV 2 2 2 2
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= dl —dj.
and therefore Dy DY, = Dy, 6y, — D{,6y, by degree considerations.

itr(A(GY))

— iAte(w(4GY )7) + At (D} )na (M) (8% Ena (1) — (DY )Ena () (87 )na(m))
zAtr( 2(4GY)) — it ((5 ) mma (M) (D} Jna () — (34 )Ena () (D ena (7))
= iAtr(w(4GY)) — it (A )na(7) (Df Jona () — A} )na(r) (DY ena ()

Applying our Kahler identities we get this time

—itr(A(07 ) End (7) (DY ) End (1) — A(y)End (1) (DY, )End (7))

= —itr(((= Dy )Ena (7)) " (Dy )End (1) + ((—DF)Ena ()" (DY) Ena (7))
= ((Dy + DY)gna(7), (Dy + DY )End (7)) 15

= [|(Dv )Ena(m) ||,

where we used the hermitian property of the orthogonal projection 7 as
before. Putting all together we get our Chern-Weil formula

/X itr(A(~2GY)) = /X itr(m(~2G})) — 5 /X |(Dy ) ()2

= deg(W.h) = [ inee(r(=26) = 5 [ DV )eaa(@) I (€W

O

Lemma 5.2.2. Let E be a metrized vector bundle with acceptable metric & and
let F' C E be a holomorphic subbundle with induced metric hr. Then either

(1) deg(F,h) = —o0 or,

(2) deg(F,h) finite and F extends to a filtered subbundle with deg(F, F,) =
deg(F). Here F,, is induced by Z.

(3) If deg(F,h) is finite and E is a meromorphic completion over X, i.e. h
has meromorphic growth w.r.t. a basis of E, then F extends to a subsheaf
FCE.

Proof. Since Ry, is acceptable we know that tr(R,) is L'—integrable. So the first
term in the Chern-Weil formula (CW1) is finite. The second is negative and
therefore deg(F, h) = —oo or finite. So let us assume that the degree is finite. Then
the curvature of the subbundle is LP—acceptable and hence Z(F) is a filtered vector
bundle. The proof that the degrees coincide for the subbundle F'is the same as
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for the general bundle F using remark 5.1.10. For the third property see [Sim88],

p. 915, lemma 10.6.° O
Remark 5.2.3. Note as well that for an analytic degree of —oo the parabolic
degree will be —oo too, since deg(Ly) = —oo.

5.2.1. SLOPE

Definition 5.2.4. (i) Let (E, h) be a metrized bundle. E is called analytically
stable if for all proper subbundles F

deg(F, h) _ deg(E, h)
rank(F) rank(E) -

%%Eh)) is called slope of E.

(ii) If moreover E is a Higgs bundle, E is analytically stable if for all proper
Higgs subbundles F' preserved by 6
deg(F,h)  deg(E,h)
rank(F) rank(E) -

(iii) If V is a Zx—module it is analytically stable if for all proper sub-
P x—modules W preserved by V
deg(W,h) _ deg(V, h)
rank(W)  rank(V)

Definition 5.2.5. (i) Let (E,h) be a metrized bundle. E is called alge-
braically stable if for all proper subbundles F

deg(F, Fu) _ deg(E, Ea)
rank(F) rank(E)

(ii) If moreover F is a Higgs bundle, F is stable if for all proper Higgs subbundles
F preserved by 6

deg(F, F,)  deg(E, Ea)
rank(F) rank(FE)
®Use the Pliicker embedding to reduce to the line bundle case. Then modify the metric as
before to apply an estimate by Aubin, giving us a L2—bounded section, holomorphic outside the

puncture, i.e. holomorphic everywhere. This section extends the line bundle to a meromorphic
subsheaf.
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(iii) If V is a Zx—module it is stable if for all proper sub-Zx—modules W pre-
served by V

deg(W, Wo) _ deg(V, Vo)
rank(7V) rank(V)

Remark 5.2.6. (i) The Chern-Weil formulas (CW 1), (CW?2), (CW3) guaran-
tee that this definition makes sense - for —oo the condition is trivially satis-
fied.

(ii) We have semi-stability if we replace < with < in the definitions.

(iii) If (£,0) is stable as a Higgs bundle, E is not necessarily a stable vector
bundle, since there might be a subbundle, not preserved by # that contradicts
stability in the vector bundle case.

Conclusion 5.2.7. If E is an acceptable vector/Higgs/Zx—bundle and E, =
Z(F), is the induced filtered object. Then (E, h) is analytically stable, if and only
if (E, E,) is algebraically stable.

Proof. Directly by 5.2.2. O]

Definition 5.2.8. A vector/Higgs/Zx—bundle is called irreducible, if it has no
non-trivial holomorphic/Higgs subbundles resp. sub-Zx—modules.

Remark 5.2.9. Every irreducible bundle is a priori stable.

Theorem 5.2.10. Suppose (E,dg, h,0) is an irreducible tame harmonic bundle.
Then the filtered Higgs resp. Zx—bundle induced by = has degree 0 and is stable.
Furthermore every tame harmonic bundle is the direct sum of irreducible ones.

Proof. We will treat the Higgs bundle case first, then the Zx—module case. The
proofs are the same up to renaming.

(i) By harmonicity we have F}¥ = 0, i.e. the analytic and therefore the parabolic
degree vanishes. Now assume that £ was not stable, i.e. that we find a Higgs
subbundle F of E with deg(F,h) > 0. Then the Chern-Weil formula (CW2)
tells us that

— [ V) = des(F.1) < 0 = (@) gnalr) = 0
X

Now apply the proof of theorem 3.0.6, namely H(i). Note that we have 7
bounded.® There we proved that (d4m —7d}y) = Dgmr—nDg =0, ie. Fisa

6Tt obviously preserves the filtration.
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harmonic subbundle of E. Thus E was either not irreducible - then we may
repeat the procedure to gain an irreducible subbundle - or if £ was already
irreducible we have a contradiction for non-trivial i = F = 0. Moreover
dtm — ndjy = 0 = Opm = 70p and so E/F is a holomorphic subbundle,
too. The projection onto E/F is (1 — w).7 This yields dfr = nd} =
dh(1 —7) = (1 — m)d}, and analogous Dg(1 — ) = (1 — 7)Dg, ie. E/F
becomes a harmonic bundle, too. Thus we found a direct sum decomposition
into harmonic subbundles - repetition leads to a direct sum decomposition
into irreducible tame harmonic subbundles.®

(ii) By harmonicity we have G = 0, i.e. the analytic and therefore the parabolic
degree vanishes. Now assume that F was not stable, i.e. that we find a sub-
Px—module W of E with deg(IW,h) > 0. Then the Chern-Weil formula
(CW2) tells us that

=5 ] 1Deaa(m)l} = deg(IW. ) <0 = (Di)enal) =0

Now apply the proof of theorem 3.0.6, namely D(ii). Note that we have 7
bounded. There we proved that (Dgm —nDg) = dym —nd}, =0, ie. Wisa
harmonic sub-bundle of E. Thus E was either not irreducible - then we may
repeat the procedure to gain an irreducible subbundle - or if £ was already
irreducible we have a contradiction for non-trivial W = W = 0. From here
on we may as well imply that we find a direct sum decomposition, since we
are now in the same situation as in (i), namely W is a Higgs subbundle too.

]

5.3. MAIN EXISTENCE THEOREM

As the title might suggest, we will finally get a harmonic metric. The proof is not
a part of Simpson’s [Sim90]-article and we originally planned to simply cite the
result from his previous work. However, for the convenience of the reader we will
cite the most of the intermediate steps with some further explanations.

In [Sim88] Simpson proves much more general the existence of a Hermitian-
Einstein-metric for every non-compact Kéahler manifold, that fulfills certain as-
sumptions described below. We are not sure if there is an essentially shorter proof
if one only searches for harmonic metrics. However, here is the theorem:

"Here 1 is the identity.
8The subbundles are tame since the restriction of # has the same eigenvalues (or less) than 6
on .
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Theorem 5.3.1. (1) Let E be a Higgs bundle on X and h a metric on E. If
Fyisin LP p > 1 with analytic degree 0 and stable, then there is a harmonic
metric £ which is bounded with respect to h.

(2) Suppose V is an analytic Zxy—module on X with a metric » on V. If the
pseudo-curvature Gy, is in LP for some p > 1, V has degree 0 and is stable,
then there is a harmonic metric £ on V bounded in terms of h.

We will start with some preliminaries, since they suit our results on hermitian
matrices of chapter one. We will namely extend the concept of divided sums. The
idea is to cover the space of positive-definite matrices (with LP—curvature) &2 by
another space Pp(Sy), with a local diffeomorphism Ke® for S € Pp(S;) and K
our initial metric in matrix form. If our bundle is stable, we can use a result of
Uhlenbeck-Yau [UY86] and Donaldson’s functional to bounded S.

The rest of the proof consists of technical details, how to extend the solution H; of
a heat equation involving the traceless part of our curvature Fj, resp. Gj. A proof
is included in [Sim88|, but the proofs of [Don85| resp. the methods of [Ham75|
work with some modifications.

The last step is to use H, = Ke® for some S and our bound on S to bound H,,
and hence find a weakly convergent subsequence. After restriction to a further
subsequence t — oo, H; converges to H., with vanishing trace-free curvature. Our
degree assumption implies Fy__ = 0, i.e. harmonicity.

Note that in this section we usually work on some endomorphism bundle. Hence
we may omit the additional index End, adding it only if we want to use special
properties of the connection on the endomorphism bundle, like D(F) = DE —
ED = 0 for the identity matrix F£.

5.3.1. FURTHER PROPERTIES OF DIVIDED SUMS

The concept of divided sums introduced when we first talked about harmonic
maps, can be generalized to other functions than exp. This works in exactly the
same way as for exp. Even further we may extend this notion to any differential
operator D that respects the Leibniz rule, since this is the only property explicitly
used above. Of course a different connection matrix than E will lead to

Df(H)(B) = f*(H) ¢ (DB).

Note that above we chose an orthonormal frame. However if our function has
a power series expansion we may move a basis transformation matrix inside -
P7'f(H)P = f(P"'HP). Hence the property holds for other operators, too. If
we further extend to sections into H,, this will add a differential O or O on both
sides. Still this looks like

Df(H)(B) = f*(H) e (DB).
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Since self-adjointness depends on a chosen inner product we might consider Hl, as
the space Sy of hermitian operators w.r.t. some initial metric £ on E. k induces
as norm on the endomorphism bundle (A, B)x = tr(KBKA).

Now we need to describe how this construction does work on Sobolev spaces HP4.
Let’s denote by HP!'(Sy) the space of sections H : X — H, such that H € L?(Sy)
and d"(H) € L*(S;). For Zx—module denote by HP'(S;) the space of sections
H : X — H, such that H € LP(Sy) and DH € LP(Sy). The Sobolev space has the

usual Sobolev norm || || gre = (310, ||f(i)||’£p)1/p. Then for b > 0:
(i) HY> = {H € HY,||H||x < b} resp. HE™ = {H € HY||H||x < b}.

i) HZY = {H € HR||Hl|x |d"(H)|x < b} resp. HEY = {H ¢
H) N Hl|k, |D(H)| x < b}.

Finally define the subspace of smooth section with finite norm by Py (S;) and
Par(Sk). Here the norms are |H||s» = supy || H||F + [|d"(H)|| 2 + |[iAd"d' (H)|| 12
and ||H||p = supy [|H||r + || D(H)| 2 + [[iA(D"8" — D'§")(H)||z1. The L?>— resp.
L'—norms shall be understood as [ || - [|% resp. [y |- ||Ix-

Remark 5.3.2. We will often omit the indicies for the connection - d” or D. It
will either be clear which one is meant or we may treat both cases in one. Usually
we will use D as operator if both choices work the same way.

Remark 5.3.3. Let ¢ be a smooth function R — R and ¢ : S, — S the
bounded linear operator given by the continuous functional calculus. Let e; be
an orthonormal frame of (FE,k) consisting of eigenvectors of H € S;.!° Then
©(H)(e;) = f(Ai)e;. In the same matter let ¥ be a function R x R — R and let
S(End, k) denote the space of hermitian operators from End(F) — End(F). Here
hermitian is w.r.t. the inner product tr(/K - K-). Choose again an H —orthonormal
frame (and the induced frame e/"! on End). Define W(H)(A) = W(\;, \j)A;jelnd,

ij ij
At least linearity in A and continuity in H can be read of this formula.

Proposition 5.3.4. Let ¢, U be the smooth functions constructed ahead.

(i) The map ¢ extends to a continuous map ¢ : HPO*(S,) — HPOY(S,) for
some 0.

(ii) The map ¥ extends to a map
U HPO0(S,) — Hom(LP(End(E)), LY(EndE)),

for ¢ < p. If we can choose ¢ < p, ¥ is continuous w.r.t. the operator norm.

9We changed f to ¢ to stay comparable with [Sim88].
10 [ hermitian, hence diagonalizable, hence such a basis exists (in particular every eigenspace
is one-dimensional, i.e. the eigenvectors are single-valued).



5.3. MAIN EXISTENCE THEOREM | 129

(iii) The map ¢ extends to a map
@ HPYO(Sy) — HPOY(Sy)

for ¢ < p. For ¢ < p we get again continuity. The formula d"o(H)(H) =
0> (H) o (d"H) resp. Do(H)(H) = ¢*(H) o (DH) is still well-defined.

(iv) If p and ¥ have a power series expansion with infinity radius of convergence,
the

¢ Pp(Sk) = Pp(Sk)
U Py(Sk) — Pp(S(End, k)),

are analytic, too. Here D can either be d” or D.

Proof. (i) ¢ is continuous by the functional calculus. Then ||¢o(H;)—(Hs)||r <
Csollsy — sallp < 2bcso = 0" and [[W(H,)(A) — W(H)(A)|r < [[V(Hy) —
U(Ho)|| rllAllF < es1]|s1—s2]|p||AllF < 2b||A|F. Integration over some power
p (of the first inequality) leads to (i) in the LP—norm.

(ii) Let H € HP"(S;), A € LP(EndE). We have to show that W(H)(A) €
LYEndFE): ||Hy — Hs|| < 2b, in particular ||H; — Hsl|| in every LP—space.
Thus we will always find a constant cso depending on b and the area of
integration such that |Hy; — Hs||pr < ¢so||Hy — Ha||re for every r,p > 1. Let
q<pand L+ 113 = é = r = L. Then by Hélder inequality!!

W (H)(A) = V(H)(A)l|ze < [|W(Hy) — Y(Hy)|or || Al e
< C53||H1 —H2||LT||A|LP
< csacs3||Hy — Hal| 1o || Al e

Thus we have continuity and well-definiteness. For p = ¢ directly by
(W (H)(A) = W (H2)(A)|lLe < [[Hy — Ha[ e [|All 2o

(iii) The same calculation as in (ii) can be applied to ©® instead of W. Then
l® (H1) =9 (Ha)l| 2o < sl Hi— Ha| o and for Do(H)(H) = o (H)e(DH)
we get

HDQO(H1> - ()0({_[2)HL<1 ~
= [l (Hy) o (D(H, — Hy)) + (0™ (Hy) — ¢°(Hy)) o (D(H:))]| s
< lo®(H) | » |D(Hy = Hy)|[ 1o+l (H1) = ¢ (Ha)|| o [| D(Ha) | o

-

cHP:1

Ly(H) acts by entry-wise multiplication on the matrix valued function A.
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< V|| Hy — Hallger + [|9®(Hy) — @™ (Ha)|| 1o || Ho| | o

This shows the claim for p < q. For p = ¢ we get the same result as in (ii).
This holds for D = d” as well as D = D.

Let o(H) = Y. 2gpeH" and W(H)(A) = 3% _ U HVAH*. 1t will be
enough to show that ||H™||. < c¢n|H|Z, i.e. use a k—orthonormal frame
and the Frobenius norm. Then the operators on P(Sy) will have a convergent
power series extension. Pointwise by chain rule:

|DH™ ||z < m||H||p|DH||p, D=4d"or D=D
and further

lird"d' (H™)||

= [[iA(d" (mH™ " d'(H)))| F

= [[iA(d" (mH™ " )d'(H) + mH™ d"d (H))||

= |liAtr(m(m — V)H™ 2(d"(H))d' (H) + mH™'d"d (H))||
< m|H™ | pllidd"d (H)||p + m(m — )| H™2||p|ld"(H)]|| lld (H)|| 7

< m|| H |~ liAd"d (H)|[p + m(m — 1| H | ~2(|d" (H)|[F."

Here ||d'(H)|p = ||d"(H)|r for H hermitian'®. Then the first term will be
compensated by ¢, ||iAd"d'(H)||7, within ¢, ||H|% and the second term by

Cl|d" (H) |75
The same calculation shall be done for D:

[iA(6" D" — D'6")(H™)||r

= [[iA(8"(mH™ ' D'(H)) — &' (mH™ ' D"(H)))||r

= |liAtr(m(m — VYH™ (8" (H))D'(H) +mH™ *§"D'(H)

—m(m — 1)H™ (§'(H))D"(H) — mH™ *§'D"(H))||r

< ml|[H|F[iA(8" D' = §'D")(H)||p + m(m — 1)|H|F*| D(H)||7,
where we used similar to the calculation of the Chern-Weil formula
(CW3) that for H hermitian iA§'(H)D"(H) = (D"(H))*D"(H) as well as

iN"(H)D'(H) = —(D'(H))*D'(H). This shows the claim.
[

5.3.2. DONALDSON’S FUNCTIONAL

Before we start with the main trick let us cite the conditions imposed by Simpson

12Gybmultiplicity of the Frobenius norm.
13Compare with the calculation of the Chern-Weil formula, where 7 was hermitian.
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Assumption 1. X has a Kdahler metric w and finite volume.

Assumption 2. There ezists a smooth function ¢ : X — Rxq with {z € X|¢(x) <
a},Va € R as well as 0 <i00¢ < Cw for some C > 0.

Assumption 3. There is an increasing function a : [0, 0o[— [0, oo with a(0) =0
and a(x) = x for x > 1, such that if f is a bounded positive function on X with
A(f) <b for some b€ LP,p>1 then

Sl)l(plfl < aa (/X |f|> :

Furthermore, if A(f) <0 then A(f) = 0.
However in future we don’t have to care about these conditions any more:

Remark 5.3.5. Every Riemannian metric on a Riemann surface is a Kéhler
metric. In complex dimension one every open domain is pseudoconvex, i.e. there
is a continuous pluriharmonic function resp. a bounded pluriharmonic function ¢
(Simpson gives a more general result in [Sim88|, 2.2.) To prove assumption 3 use
our weak extension from lemma 1.7.9. Then we may consider the compact case,
proved by Donaldson [Don87] or Simpson 2.1.

On can extend further to arbitrary metrics v(z)dz A dZ on the unit disc if v is in
LP for some p > 1.'* Then the Laplacian Ay = vA with A the Laplacian w.r.t.
the euclidean metric. Hence for Af < B = Ayf < Bv on X is still L' and we
may extend again by lemma 1.7.9.

Remark 5.3.6. Simpson states the assumption with b constant, however proves
it for b € LP,p > 1. Further he always requires the curvature to be uniformly
bounded in order to use the version of assumption 3 stated in [Sim88|. Since our
existence theorem expects a curvature in LP,p > 1 we will use the more general
version.

Remember that the exponential map was a map from the space of hermitian ma-
trices to the space of positive-definite ones. We may us it again to define a map
Py(Sk) — P, to the space of positive-definite matrices w.r.t. k that satisfy
[ IAF;|lx < oo. The map S +— Ke® is a diffeomorphism around 0 and K into
this space, which is even analytic by the previous section (5.3.4, part (iv)). Note
that the curvature Fy.s = (d")? + (d},)* + (d"d}, + dj,d") is integrable if and only if
|S]|a is finite. Same holds for F' replaced by the pseudo-curvature Gj,s.

This is a consequence of [Sim88], 3.1 (c¢) below and tr(d"(e®)d' (%)) = ||d"(e®)||r =
|d’(e)||r as well as the assumption that k has already LP-curvature.

H4cf. [Sim88|, p. 875, proposition 2.4.
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Lemma 5.3.7. If d is the usual d'—operator constructed with respect to the
initial metric & (and analogously 9,1 and so on), then for a metric h with H = Ke®:

dy, = d,+ S 'd,(9)
P () = S(Fy— B+ d"(e5)eSdy(e5);
and for Yx—modules:
(D"5,, — D'5Y)(e%) = 4e5(Gh — Gy) + D" (e%)e 55, (e%) — D' (e%)e 557 (e).

Remark 5.3.8. The lemma holds for e replaced by any hermitian matrix say
A, too.

proof of lemma 5.3.7. First we know that

h(0,m) = (n)"HOE = () Ke®0¢
k(e%0¢,m) = k(¢,6[¢%n)
(OFen)* K& = (6]en) He™5¢

= h(e™°¢,0Le%n) = (&, e 0L n),

ie. 0 = e 50leS =0 + e75(0]eS — 56]). Hence d), = d), + e~5(d,,(¢%)), i.e. the
first equality holds. Further by F, = d"d), + dj,d" we see
d"(d(e”)) = d"di(e”) + dj(e%)d"
= Sy dy) + S~ )"

= Fj, — Fy,) — e5(Fy, — Fy, ) + d"e%d), + 5 (d),d") — d"e%d), — e (d,d")
= e5(F), — Fy) +d"ed), — 5 (Fy, — dj,d") — d"e5d), + e*(Fy — d},d")
= ¥ (Fh— F) +d"e%d), — Sd”d;l —d"e%d) + e*d"d,

I
9]
95}
&
|
;ﬂ
+
&\
=7
U}

( )
( )+
( )

= (Fy - Fp) +d'(e ) —d"(e%)d,
( ) —d"e%d), — e®d" e %d) e + 5d" d),
( ) d//d/ S d// Sd/ eSd//ede;ﬂeS + €Sd”d;€
( )

Analogously for the pseudo-curvature: Replace d"d), by (D"6; — D'5})). With the
transformation rule derived for # above we get the same transformation for §” resp.
515 We have

D"(8'(e”)) = (D'(6"(e)))
=4e°(Gy, — G1) + D"(e%)e 26, (e) — D' (e”)e 5] (e”).
O]

P Now the data D resp. D’ and D" are fixed and &’,6”, as the missing parts to the metric
connections, transform under the transition k <> h.
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Let &2 be the component covered be the chart S+ Ke® and H € 920, i.e. we
find a S such that H = Ke”.

In order to define Donaldson’s functional, we stick closer with the original defi-
nition by Donaldson [Don85| and follow the description by Mochizuki [Moc02a].
Mochizuki proves that

Lemma 5.3.9. For S € T};P; - tangent space - 4(S) := [, tr(SiAG}) is a closed
one-form of P;,.

In order to prove the lemma he uses the following theorem by Simpson:

Theorem 5.3.10 (Stoke). Suppose X has an exhaustion function ¢ with
Jx |A¢] < oo and suppose 7 is a L’—integrable 1—form. If dn is integrable,
then [, dn=0.

Proof. A standard argument shows the claim. See Simpson [Sim88|, p. 884, lemma
0.2. L]

Definition 5.3.11. Let v be a path connecting two metrics K and H in P, then
M(K,H) = fv ®. In particular M (K, H)+ M(H,J) = M(K,J) by construction.

For H = Ke® this is equivalent to the definition

MK, H) = / te(SiAFY) + / (W(S)(DS), D)k,

X

with ¥ the operator coming from the smooth function

by = S I

given by Simpson. We will shortly repeat the idea, since we need some of the
formulas later on: We have

%M’(K@ts, Ke(t+u)5)

u=0

= 2/Xt]f(m%/\FKets)—I—/<\Il(uS)(l~)m9),DuS)Kezs

ou x

u=0

= / tr(SiAFyers) + 9.2 / (U (uS)(DS), DS) gors
X du X

u=0

= / tr(SiAFKetS).16
X
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Furthermore
0 M/<K€t5 Ke(t+u)5> 0 M/(K Ke(t+u)5)
otou ’ o Otdu 0

The formula is shown by [Sim88|, lemma 5.1: With the help of a transformation

rule for the curvature derived in 5.3.7 we may show that both sides differ by a

function which has to vanish by the Stokes theorem above.

We have further
0

%M/(Kets, Ke(tJru)S)

%)
= —M'(K, Kelttws
au ( Y € )

u=t=0 u=t=0

But then we have equality at one point and the differential is the same, i.e. the
functions are equal:

M(K,H) = M(K,Ke®) - M(K,K)

1
= / 21\4’(K,Ke<t+“>5) dt
0 ot u=0
Lo
— / _M/ Ke(t+u)s> dt
0 u=0

1
_ / tr(Sih Fyepes) d
0 X

)

Remark 5.3.12. Note that by smoothness of the metric M (K, H) is smooth as
well.

One of the major steps in order to prove the existence result of a harmonic metric
is the following proposition by Simpson:

Proposition 5.3.13. Fix a b € LP,p > 1. Let FE be our stable Higgs resp.
Px—bundle with [[iAFy|x < b resp. |[iAGyl|x < b. Then there are constants
C1, Cy such that

sup ||S||x < Cy + CoM (K, Ke®).
X

for any f—resp. V—invariant element S € I's(X,H,) with tr(S) = 0,
supy ||S|lx < oo and |[iAFges||x < b.

For 9x —modules replace F by the pseudo-curvature G.



5.3. MAIN EXISTENCE THEOREM | 135

Proof. First note that by the positivity of ¥

MK Ke) 2 [ (iR 2 bS]
resp. :

M(K, Ke5) > /X tr(siAGK) > [bl]1 S]] 1oe-

Thus it will be enough to show that

sup ||S|lx < Cy + Cymax{0, M(K, Ke%)}.
X

Furthermore we have for H = Ke°:

Alog tr(e®) < 2(||ihFu||u + [[iAFy k) < 26Cs
Alogtr(e®) < 8(|liAGy||lu + liAG| ) < 2bCs

for a big enough Cs. For a proof see [Sim88|, lemma 3.1 (d). The version of the
proof there comes from Y.T. Sui and is a consequence of 5.3.7 resp. [Sim88|, 3.1
(c). In particular once we have 5.3.7 the generalization to Zx—modules is clear.
By Assumption 3 we may further conclude that

sup [|Slc < Ci+ G518 || 21

Now let us assume that the claim does not hold. Then we have one of the following
cases

Case 1: There is a sequence S; € P(Sy),tr(S;) = 0 with supy [|S;||x — oo and
M(K, Ke) < 0.

Case 2: There is a sequence S; € Pp(Sk), tr(S;) = 0 with supy ||Si||x — oo and
M (K, Ke%) > 0. Then we further find a series C; > 0 such C; — oo and
supy [[Sillx = CiM (K, Ke™).

In both cases, ||Si||,1 — oo. Set l; := [|Si| 1 and w; :=[;'S;, so that [[ug]|,r = 1.1

Further supy ||u||x < Cs. Note that tr(u;) = 0 by the same property of the S;.

Lemma 5.3.14. After going to a subsequence u; — uy, weakly in H*'(S) the
limit is nontrivial. If ® : R x R — R is a positive smooth function such that
P (v, w) < (v —w)~! whenever v > w, then

/X tr(umiAFy) + /X (@ (o) (d"tns ), "1 ) i < 0.

ITHolder inequality.
BW.lo.g. S; # 0.
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Proof. If necessary replace ® with ® — ¢ to justify the assumption ®(v,w) <
(v —w)~! for v > w. From the proof of the equivalence of the two definitions of
M (K, Ke®) resp. lemma 5.2 in [Sim88], we know the formula

o2
Otou

o2
0 - otou

]\4(}161557 He(t+u)5) M(H, He(tJru)S)

u=0

u=

Hence
X X

The u; are by construction uniformly bounded, thus we can cutoff W, i.e. assume
that ¥ has compact support. Furthermore for v < w
6lw—lv _ (lw _ l’U) -1 el(w—v)

(lw — lv)? ~ l(w—v)?

(v, lw) = 1

—  0OQ.

and for v > w: 1P(lv, lw) — ﬁ and monotone increasing in [. Hence for a big
enough [ we may assume that

O (v,w) < IV (lv,lw).

This yields

X X

The condition sup ||u;]|x < Cs implies that Du, is L?—integrable, i.e. u; € H>',
But any bounded sequence has a weakly convergent subsequence® in H?!. In
abuse of notation call this subsequence as well u; and the weak limit u,,. Now

2
take Z a compact subset of X. Then the u; 2> . Tesp. Sy lluille = [ Juoo|l !
By assumption 1 (finite volume) and supy |Jus||x < Cé

=l < [ Jude+ [ il <Co [+ [ il
X-Z Z X—-Z Z
Z X-Z
———

=€

For the first case choose any sequence C; — oc.
2OFunctional Analysis Course [FA0S].
2Lg2! ¢ LY(Z) compact by Rellich-Kondrachov, Miiller [PDE09], p. 125.
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Thus ||ucl|/;r > 1 —¢ > 0 for X — Z with small enough volume. Since the trace
is continuous in the u; we get additionally that [ tr(uiAFy) — [, tr(usiAFy,)

2
resp. [y tr(u;iAGy) = [, tr(usiAGy). Therefore we have wu; Ly as well as
~ 2 ~ ~ 2 ~
Du; L Du. By continuity of ¥: & (u;)Du; L D (Us ) Dus. Now LP—convergence
implies convergence in measure and convergence in measure allows us to apply the
lemma of Fatou:

/X<<I)(uoo)l~)uooauoo>l( Sliminf/x(q)(ui)[?ui,ui}K.

1—>00
]

Remark 5.3.15. The idea to use Fatou’s lemma is taken from [Moc02a| 13,
p. 21. Note that LP—convergence does in general not imply almost everywhere
convergence (as claimed in [Moc02a|, p. 21), but anyway convergence in measure
is enough for Fatou’s lemma.

Lemma 5.3.16. The eigenvalues of u., are constant, in other words there are
Ay .-+ A, which are the eigenvalues of uy,(z) for almost all z € X. There are at
least two distinct eigenvalues.

Proof. 1f we are able to show that for all smooth functions ¢ : R — R, tr(p(us)) is
constant, then all eigenvalues are constant. Choose the smooth function given by
the functional calculus belonging to the projection onto a generalized eigenspace.
The projection is hermitian, thus this is justified. Since the trace is only the sum
over the eigenvalues, we get constancy of each eigenvalue.

We have
Dtr(p(uso)) = t1(Edpyap(uso)) + tr((dpna B) "¢ (o))
— (Bdlpliee)) = (A () (@02c)
as well as
(0 + 0)tr(p(uce)) = tr(EDpnap(too)) + tr((Dpna E) " ¢(tos))

= tr(EDpnap(uso)) = tr(¢™ (o) (Dusc)).

Furthermore remember that o> (v,v) is the differential of ¢ at v. Construct a
function ® such that ®(v,v) = ¢*(v,v) and that for N large enough N®*(v, w) <
(v —w)™t for v > w.?? Hence tr(p™(Uo) (D)) = tr(P(tee)Dusy). By the

22For v — w the condition holds trivially for any N. Thus the two conditions don’t interact.
For example take a cutoff function, that has support in some tubular neighbourhood of v = w
in R2.
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previous lemma (®? is positive.)
J 1ot Du)lc = [ (@) (D), D) D
= /X<<I>2(uoo)([)uoo),l~?uoo);<

1
N /X tr(usiAFy),

or replace Fj by Gy for the Zx—module case. By our assumptions on the cur-
vatures Fj, resp. Gy and us, (by construction of the wu;) the right-hand side is

IN

bounded by % Together we get

| (ovdtro(use)|| 2 < % —0, N — o0,

or
= C
(0 + O)trp(uos) || 22 < N —0, N — oco.

Since s is hermitian tr(¢(us)) is real-valued, i.e. Otro(us) = 0 = tr(p(uq))
constant, V¢ smooth.

On the other hand if u., had only one eigenvalue, then tr(Eu.) = tr(us) = 0
would imply that u., had only eigenvalue 0. But a hermitian matrix with only
zero eigenvalues is 0, hence we get a contradiction to the non-triviality of u., from
the previous lemma. Therefore there are at least to distinct eigenvalues. O]

In abuse of notation let \; < ... < Az be the distinct eigenvalues of u.,. By
definition of ¢ and ® the operators ¢(u) and ®(uy ) depend only on ¢()\;) resp.
PN, N), 1 <i,j<k.

Lemma 5.3.17. If & : R x R — R is a smooth function with ®(\;, \;) = 0 for
Ai >N, 1 <i,j <k. Then ®(uw)(Dus) = 0.

Proof. Since ® depends only on the eigenvalues we may replace it (as in the pre-
vious proof) with ®; defined by

®1(\i, Aj) = 0 and N(®,)*(v,w) < (v —w)~" for v > w.

Again we get [|@; (us0)(Duno) |2 < §& — 0 for N = 00, Then ®(uq,)(Dus,)

D1 (o) (Dtsg) = 0. 5
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Let I; =]\, \i1[, 1 <i <k —1. V0 <i < k2 Let p; : R — R be any decreasing
function such that p;(xz) =1 for x < \; and p;(z) = 0 for > A\; ;1. Denote further
7 i= pi(Us). By 5.3.4 the m; are in H*'. Again since our operator only depends
on the eigenvalues and p;(\;)* = p;i();) for all 1 <4, j < k.

Moreover

Dm = DPi(“OO) = pzA(UOO)(DuOO)

and define ®;(v, w) = (1 — p;)(w) - p (v, w). We conclude

(1—m)Dm = (1— Wi)p?(uoo)(f)uoo)
= D;(too) (D).

Since we have ®;(\;, \;) = (1 — 1)(\;) - p2(v,w) = 0 for i > j.

The previous lemma 5.3.17 tells us ®(uo)(Duss) = 0, ie. (1 — m)Dm =
®;(too) (Do) = 0. Thus we have a H2'—projection.

We are now in the position to state a result of Uhlenbeck and Yau, that will help

us to contradict our assumption - supy [|.S;||x — oo for some sequence S;- made
far back:

Proposition 5.3.18. If F is a Higgs bundle resp. Zx—module with metric k&
and if 7 is H?!'—subbundle, then there is saturated sub-Higgs-sheaf resp. sub-
Px—module V' C W such that 7 is a projection onto V', defined where V is a
subbundle.

Proof. See Uhlenbeck-Yau [UY86] for the vector bundle case. Thus we only need
to understand why the subbundles are preserved by 6 resp. V. By degree consider-
ations (1—7)d"m = 0 and d"w € L? = (1—7)0gm = 0, (1 —7)f7 = 0 and O € L%
Then V is a saturated subsheaf by [UY86] and it is preserved by 6. Analogously for
the Zx—module: (1 —7)Dr=0and Dr € L* = (1—m)Va=0,(1-7)D"7 =0
and (0 + 0")7 € L2 O
Thus if V; is the image of m;, it is already a subbundle preserved by either 6 or
V. Hence if one of the m; satisfies jfri((“;)) > ddeign(fE’];), we have a contradiction to
stability.

But we can use our Chern-Weil formulas (CW2) resp. (CW3) now. Write

k
Uso = Z%’(Wz’—ﬂifl)
i=1

= )\kﬂ-k — <)\k — /\k—l)ﬂ-k—l I (/\2 — /\1)7'('1 — )\171'0

23Note as well that the following construction makes sense since we have at least two distinct
eigenvalues, in particular we find 4, j such that (A\; — \;)~! is well-defined.
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k—1
= )\kE— E a;7;
=1

for a; = Aiy1 — Ni.2* Using Dm; = p (oo ) (Do) again,

k—1

W = Xideg(E) — Z aideg(Vi)

i=1

k—1 k—1
= [ wlnE = Y amiF) + [ ald )
X i—1 X =1

k—1
= /tr(uooiAFk)+/ Z<aipiA(uoo)2(d”uoo),d"uoo>K,
X X =1

and
k-1

W= Adeg(E) — > aydeg(V)

i=1

- /X tr(()\kE—ll

k—1
_ : 1 A2
_ /X r(usiAGy) + /X ;@pl. (o) 2(Dusc), D) .

k—1
) 1
a;m;)iNGy) + 5/ ZazHD(m)H%(
X =1

i=1

For A, > X we have p (A, \j) = 2popl8) — Sty < Lo gince A,y # \j;

k—1
A 2 )\m_)\]
=Y ai (O N) = ks
— ( J ) ()\m _/\j)Q
B 1
A=A

Now by Lemma 5.3.14 W < 0. We get \deg(E) < Zf;ll a;deg(V;). Fur-
thermore the trace is the sum of the ); times their multiplicity, i.e. 0 =
tr(ueo) = Sob A dim(V; \ Viiy) = A dim(E) — S5 a; dim(V;) = Ay dim(E) =

Z;:ll a; dim(V;). This contradicts stability: Assuming otherwise, i.e. d(;grfl(Eé’;) >
(fri—((“z)) leads to the contradiction
deg(E, k) dim(V;) :
> deg(V; V1<i<k-—1.
dim(E) es (V) ==

245 — m;_1 is the projection onto the generalized eigenspace to \;. In particular 7, = E.
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k-1

deg(E, k) dim(V;) > ‘1 a; dim(V;)
:>Z Tn(E) = Mpdeg(E, k) = = Apdeg(E, k)

k-1
> Z a;deg(V;)
i=1

Hence we find at least on V; contradicting stability. ]

5.3.3. HEAT EQUATION AND EXISTENCE RESULT

We will shortly repeat the contents of chapter 6 in [Sim88]. There Simpson proves
the existence of a global solution of the heat equation stated below. The proof is a
modification (using 5.3.7 and the assumptions 1, 2, 3) of the one in [Don85| using
further results of [Ham75| and additionally 5.3.7.

dH
H dtt —iAFg  or
A Hy :
H* T —zAGﬁt
where Fﬁ(t) =: F* resp. Gﬁ(t) =: Gi denotes the trace free part of Fpy resp.

Gp)-* Before we impose some boundary conditions remember that we wanted to
bound our harmonic metric with respect to some initial metric say Hy, H; = Hy f;.
Then the Heat equation becomes

d H,

H! T H;'Hod f,dt = f7'd f,dt
d f .
=gy = AR

= —URAFY) — ifAE = B
= (g @ hena ) Jo = A+ N GOS ()

where we used 5.3.7. For Zx—modules this looks similar

d // / 11

dt
= —ifiMGy) +iND"(fo) [0 (fo) = D'(fo) 105 (fo))-
Remember the exhaustion ¢ function given by assumption 2. Then X, = {z €

X|p(z) < ¢} is compact. Denote Y, = 0X,,. If 2 denotes the dlfferentlatlon in

BEL = F — tr(F)id.
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direction perpendicular (w.r.t. the unique k—metric connection compatible with
Op) to the boundary. Now we may state the boundary conditions

(1) Neumann boundary condition:

0
—Hly, =0.
v Iv.
(2) Dirichlet boundary condition
Hly, = Kly,.

Then

Proposition 5.3.19 (|Sim88|, 6.6, p. 892). Let b € LP,p > 1 and let X satisfy
the assumptions 1, 2, 3 and let £ be a Higgs bundle resp. Zx—module over X.
Suppose k is a metric satisfying the assumption that sup [[iAFy| x < b.

(i) Then there is a unique solution H to the heat equation with det(H) =
det(K), with Hy = K, and such that supy || H||x < oo on each finite interval
of time. For this solution, |[iAF,|g <.

(ii) Let H; be the solution of (i). Then thereis a S € Px(Sy) such that K = H,e®
and M (K, H,) is continuously differentiable in ¢ with
d

TMUH) == [ JiAFEI,

resp.

M(K, H,) = /HZAGLHHt.

loc

(iii) If H, — H. in C° then the H, are bounded in H??.

Proof. Ad (i): Simpson uses methods and results described by Donaldson [Don85]
as well as Hamilton [Ham75| as well as lemma 5.3.7.

Ad (ii): The first part is an application of 5.3.7 and the results derived in the proof
of (i). The differentiability uses additionally M (K, H) + M (H,J) = M(K,J) (by
definition of M) to reduce the problem to differentiability at ¢t = 0.

Ad (iii) is the remark to lemma 6.4 on page 891 of [Sim88]. O

The proposition and the previous subsection finally lead to the main existence
theorem:
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Theorem 5.3.20. Let b € LP,p > 1 and let X satisfy assumptions 1, 2, 3. Let £
be a Higgs bundle resp. Zx—module over X. Suppose k is a metric satisfying the
assumption that ||¢AFy|| < b. Suppose further that (£, k) is stable. Then there is a
metric h with det(H) = det(K), H and K mutually bounded and D(K~'H) € L.
Moreover iAF;- = 0 resp. iAGE = 0.

Remark 5.3.21. A metric with iAF;- = 0 & iAF = tr(iAF)id is called
Hermitian-Yang-Mills metric or Hermitian-Einstein metric.

Proof. We only want to describe how our estimate on S given in proposition 5.3.13
comes into play. First note that most of the conditions of proposition 5.3.13 are
clear for H, = K f; the solution given by the previous proposition. It remains to
show that log(f;) is traceless. But det(H;) = det(K)det(f;) = 1 = det(f;) =
det(eloef1)) = etrloe(ft) = 0 = log(1) = tr(log(f;)). Applying proposition 5.3.13
now, we get independently of ¢ < co

sup || log fi||x < Cy + CoM (K, K f,) = sup || fi||x < C,
X X

since ||e'°¢ /|| < ell°g /il the monotone behaviour of the real exponential function
and the decreasing character of M (K, K f;) (previous proposition (ii)). In par-
ticular since Hy is already bounded uniformly in the K —norm by part (i), H; is
bounded for all ¢, too.

Furthermore M (K, H;) is bounded from below?® and monotone decreasing, i.e.
we find a subsequence t; — oo such that M(K, Hy,) converges, ||AFF|2, — 0.
Moreover

/x<‘1’(10g f)D(log f1), D(log fi))x < Caol D(f) £ 1132 < Coll D(f)72-
This shows D(K~'H) e L2
Furthermore we may find by boundedness again a weakly convergent subsequence
H — H,, - weakly in H*'. In particular H; — H,, (strong) in L? on every
bounded open set.?” Additionally we know that the H; are uniformly bounded, so
they are a L?—Cauchy sequence.
Now apply lemma 3.1 (d), [Sim88], as in the proof of proposition 5.3.13 to get first
Alogtr(H; 'H;) < 2b and then by assumption 3 that supy | log tr(H; 'H;)|x <
|| log tr(H; 'H;)||;r — 0 (Cauchy). Thus H; — H, in C° Part (iii) of the
previous proposition tells us that the H; are bounded in Hlpo’f. Therefore we find
a further subsequence H; — H., weakly in Hfo’f, i.e. the limit Fpy_ exists and
iNFE_ =0,

26The first term is bounded by our assumption on Fj, resp. Gy, the second one is positive.
2TRellich-Kondrachov as in [LiLo00], p. 214, 8.9 (ii).
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Finally use elliptic regularity and the standard boot strapping argument using
5.3.7 to conclude H., smooth.?® Thus we are done. O

We didn’t use yet that we have degree 0. But det(H) = det(K) = deg(E,h) =
deg(E, k) = 0= 0= [, tr(iAF},) = iAF}, = iAF;- = 0, i.e. h is harmonic. Thus
the main existence result is proved.

5.4. MAIN RESULT

There is not much left to do now. A first theorem will show that every filtered
regular Higgs bundle resp. Zx—module, that comes from a harmonic bundle has
in fact degree 0 and is stable. Since ® preserves the notion of degree and stability
too, we are finally in the position to prove the main theorem.

Theorem 5.4.1. The Higgs bundles resp. Zx—modules E, which come from
tame harmonic bundles by the functors =, are exactly those objects which are
direct sums of stable objects of degree 0.

Proof. (i) Start with a stable filtered regular Higgs bundle E of degree 0. By
theorem 4.3.1 we find an acceptable metric A such that Fj, is in L, p > 1,
which induces the original filtration F,. Since the algebraic and the analytic
degree coincide (conclusion 5.2.7) we can apply the main existence theorem
5.3.1. The harmonic metric k& (provided by the theorem) and the original
metric h are mutually bounded = £ induces the filtration £, i.e. the filtered
bundle (F, E,) comes from a harmonic bundle.

The bundle is tame, since 6 is regular, i.e. preserves the filtration - assuming
0 had an eigenvalue with pole of order greater than 1 and e an eigensection in
some [,, then fe ¢ I'(X, E) ® Q" (log s).2. This shows the first direction.

The other direction was shown by theorem 5.2.10.

(ii) Again the case of a Zy—module is just the same, since all previous results
used in (1) were formulated for Zx—modules too. So we only have to care
about tameness: Use 4.3.3, where we described the flat sections belonging to
the construction of 4.3.1. They were polynomially bounded w.r.t. the metric
h. Again by the mutual boundedness they grow at most polynomially w.r.t
k. Now we are in the situation of proposition 1.7.2, which tells us that

polynomial growth of the flat sections implies tameness.
O

28"hoot strapping” : Once we have it for one differential, then the formula 5.3.7 lifts it to a
higher differential; then apply the formula to this higher differential, and so on.

29We may multiply any eigensection with a scalar function to guarantee that it is in a certain
E,, over some open U and at least s € OU.
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Definition 5.4.2. The degree of a filtered local system is defined as

deg(L,Lo) = > > dimGry(L,).

seX\X BER

A local system L is called stable if for all y—invariant subsystems U C L, U, :=
L,.NnU

deg(U,U,)  deg(L, L,)
dim(U) dim(L)

holds. It is called semi-stable if < is replaced with <.

Remark 5.4.3. The degree of a filtered local system underlies the same rules
as the second term of the parabolic degree of filtered regular Higgs bundles resp.
Px—modules. In particular it is compatible with taking duals, determinants and
tensor products in the same way as described above.

Lemma 5.4.4. The degree of a filtered local system is the same as the degree of
the ®—corresponding filtered regular Zx —module.

Proof. By the previous remark we may again assume that L comes from a line
bundle. Remember the previous chapter and our two examples 1.4.17 and 1.4.18.
Let a be a jump in the filtration of L, | € L, \ Loye. Then by the monodromy of
M, h = eM8%] we get a jump at ®(L)aim(r,,) for every choice of logarithm M.
In particular all jumps (in the line bundle case only 1) in the filtration of Lgz have
exactly one corresponding jump in ®(L),,0 <~ < 1. So it will be enough to show
that ®(L), has exactly degree —%(Ays) for one choice of M. So fix M. However
we have seen in conclusion 4.3.1 that the filtration of the Lg is just the filtration
induced by the standard metric k£ constructed there.?® In order to calculate the
degree of Ly we have to find a holomorphic section in Ly. But h = e Mgz —
le ®(L)y < he ®(L)w(r,,) and therefore AllkllZ]ln < e]z|**) ¢ Ye > 0. Hence
ndeg(®(L)y) = —mR(Ayr) as claimed. O

Lemma 5.4.5. ® preserves the notions of stability and semi-stability.

Proof. Let U C L be a subsystem, i.e. a subspace of L preserved by the mon-
odromy p with filtrations U, = U N L,. Since ® is compatible with the decom-
position into pu—invariant subspaces and U is such a subspace, we may restrict to
generalized eigenspaces, i.e. assume that M has only one eigenvalue \j;.

When we introduced the functor ® we saw as well that the image of a p—invariant

30Tf we take the main existence theorem in count, we get a harmonic metric witch is bounded
w.r.t. k£ and then 4.3.2 tells us that the filtrations are the same.
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space is preserved by V and vice versa under ®!. Thus ®(U) is a sub-
Px—module of ®(L). But for any local system we now that [ € Lg if and only
if eMlogz] ¢ q)(L)?R(AM)-I—B' Then u € UB if and only if eMlogz] ¢ ®<U)§R(/\M)+ﬂ'
On the other hand u € Ug implies that e 8%y € ®(L)pr,)+s N J+P(U) and
eMlogzy € ®(L)poyyep N J@(U) implies uw € Lg N U. Thus O(U)go, )+ =
Q(L)ro)+s N J®(U), ie. every p invariant subsystem corresponds to a sub-
P x—module of same rank. The degrees are anyway the same by 5.4.4. Thus the
slopes are the same, i.e. stability and semi-stability is preserved. O

Remark 5.4.6. In particular the decomposition of the Zy—module ®(L), into
a direct sum of stable filtered regular Zx—modules of degree 0 induces a decom-
position of L into a direct sum of stabled filtered local systems of degree 0. Since
every summand is V—invariant, ® respects invariant subspaces.

Main theorem. The category of tame harmonic bundles is naturally equivalent
via the functors =, to the categories of direct sums of stable filtered regular Higgs
bundles of degree zero, of direct sums of stable filtered regular Zx—modules of
degree zero, and of direct sums of stable filtered local system of degree zero.

Proof. We have seen, that ® is an equivalence of the categories of filtered local
system and filtered regular Zx—modules. The previous two lemmas 5.4.4 and
5.4.5 ensure that ® respects degrees and stability. Already before we saw that ®
is compatible with direct sums of preserved subbundles/subsystems. A morphism
of stable filtered regular Zx—modules of degree zero resp. direct sums of stable
filtered local system of degree zero is just an usual morphism of filtered regular
P x—modules resp. filtered local systems. Hence & is still fully faithful on the
restricted categories. Thus ® is an equivalence of categories.

We know already that = is fully faithful on the named categories. As for ® this still
holds for the restricted categories. Further = maps harmonic bundles to filtered
regular Higgs bundles resp. Zx—modules. Essential surjectivity is the result of
theorem 5.4.1. Thus = establishes an equivalence of categories.

. = stable filtered regular
[tame harmonic bundles ~=———— Higgs bundles of degree 0

(1]

stable filtered regular stable filtered
P x—module of degree 0 v local systems of degree 0




SOME FURTHER
DEVELOPMENTS

6.1. ANALYTIC AND PARABOLIC DEGREE

In the last twenty years there were several new developments, too many to mention
them all. Here we will shortly review the different fields influenced by the main
result resp. its generalizations.

First let us start with reviewing the last two chapters in [Sim90|. While the first
part (chapter 7) stays an attempt to simplify Schmid’s norm estimates not using
Schmid’s SLy—orbit theorem (cf. [Sch73|), the last chapter leads back to Simp-
son’s original area of interest. There he rewrites the main theorem in terms of
variations of Hodge structure.

The Hodge theoretical point is one of the main developments proceeding [Sim90).
Simpson himself proves for example that a rigid discrete subgroup of a real alge-
braic group, which is not of Hodge type, cannot split quotient of the fundamental
group of a smooth irreducible projective variety (cf. [Sim92]). He further describes
the relation between Mixed twistor structures and variation of Hodge structure in
[Sim97]. The topic is treated in great generality by Mochizuki, for example in the
books [Moc07a] and [Moc07b]. See as well Sabbah [Sab05].

On the other hand there was a number of authors describing the moduli spaces of
our objects, in particular Higgs bundles. To name only a few: Mumford, Gieseker,
Maruyama, Mehta, Ramanathan or Yokagawa. A nice overview is given in Simp-
son [Sim94a| and [Sim94b|. Furthermore interpreting the moduli schemes as non-
abelian cohomology we get a correspondence between the moduli scheme for princi-
pal G—modules with integrable connection and the moduli scheme for semi-stable
principal Higgs bundles with vanishing rational Chern class. For further details
and a general overview see for example [Sim97].

Maybe the most expectable development is the one generalizing Simpson’s main
theorem above. This has been done stepwise for higher dimensional quasiprojec-
tive manifolds by Corlette [Cor88|, Biquard (for divisors smooth at infinity) [Biq97]
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and Just-Zuo [JZ97| proving the existence of a tame pluri-harmonic metric on any
semi-simple local system over a quasi-projective variety. Their metric is nowadays
known as Corlette-Just-Zuo or only Just-Zuo metric. Furthermore there have been
several extensions to p—adic harmonic metrics, i.e. replacing the field C by the
p—adic field K. To mention only a few people involved in this field: Deligne
and Husemoller [DH87|, Goldman and Iwahori |GI63|, Jost-Zuo [JZ87],[JZ97| and
Gromov-Schoen [GS92]. An overview about the construction of finite energy har-
monic maps in both cases gives Zuo [Zu099|.

Finally we want to add an obvious extension: P. Deligne suggested in a letter to
Carlos Simpson (cf. [Sim94a]) that the equivalence constructed above is a special
case of a more general correspondence, namely Higgs bundles and Zx—modules
are a special case of bundles equipped with a A—connection. A A—connection has
to fulfill the twisted Leibniz rule D*(fs) = fD*+As®d(f). Then the special case
A = 0 is the Higgs bundle case, while for A = 1 we have the Zx—module case. We
get a holomorphic structure Oz + MA@ and all other operators are constructed as for
the Zx bundle case. In particular this is the foundation of the considerations by
Simpson [Sim97] and Mochizuki.



APPENDIX

A.1. BASICS

This first section contains basic definitions as well as some well-known results,
mainly consequences of Serre’s [GAGA| and the Riemann-Hilbert correspondence.
The results from algebraic or differential geometry can be seen as a general starting
point on the way of constructing our equivalence, while the subsection on the Hodge
theory contains some technical results used later on.

A.1.1. DEFINITIONS (ALGEBRAIC GEOMETRY)

Definition A.1.1. A non-compact curve is a compact Riemann surface deleting
finitely many points, i.e. more precisely X = M \ S with M compact Riemann
surface and S = {ay,...,a,}.

The completion X in the analytic topology is just M.

Remark A.1.2. The name curve comes from the well-known equivalence between
compact Riemann surfaces and smooth projective complex algebraic curves, e.g.
in [Sza09].

Definition A.1.3 (Algebraic Variety). Let k be an algebraically closed field,
V(I) = {v e V"|f(v) = 0Vf e S}, V* € {A" P*}. If V" = A" then S C
klxy,...,x,); if V* = P then S is a subset of the set of homogeneous polynomials.
X C V™ is an algebraic variety if V(1) = X for some prime I. Further X is called
affine if V™ = A" := k" and projective if V" = P" = k"1 \ {0}/ ~ with the usual
equivalence relation.!

Definition A.1.4. A map f: D(g) — k is regular if it is in k[z1,...,x,][1/g],
i.e. a rational function with ¢ in the denominator.

!More general one can define quasi-projective (resp. quasi-affine) varieties as locally closed
subsets of a projective (resp. affine) variety.
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A map f:U — X,U open is regular if f|p(gnv is regular for all g € I.
The ring of all regular maps on U C X is denoted by Ox(U) resp. Ox(X) = Ox.

Definition A.1.5. Let X be an algebraic variety. The following definitions are
equivalent:

(i) The Zariski topology is the weakest topology such that regular maps are
continuous and points are closed.

(ii) The Zariski topology is the topology generated by the basis D(g) = X —
V(g),g € k[z1,... )

To avoid confusion we denote the sheaf of holomorphic functions by O%".

Remark A.1.6. Ox (with the usual restriction of functions) forms a sheaf with
values in the category of rings. Further Ox = k[z1,...,x,]/I for X =V (I).

Definition A.1.7. Let F be a sheaf on a manifold M. The stalk F,,xz € X of F
at M is the disjoint union of the F(U), z € U C M open, modulo the following
equivalence relation for s € F(U),t € F(V)

s~t:eIdWcUnViee W :slw = tlw.

In symbols

= Fuy~.

zeU open
Remark A.1.8. (i) Equivalently F, is the direct limit of F(U) for z € U.
(a) If F is aring so is F,.

Definition A.1.9. A point z € X is called non-singular if the stalk Oy, is a
regular local ring, i.e. if dimy 7, X? equals the Krull dimension of Ox . For k = C
this is equivalent to 3U C C" open, 3B C C" ball, dp : U — B biholomorphic
such that (U N X) = BNV for some subspace V C C".2

A variety is called non-singular or smooth if all points are non-singular.

Remark A.1.10. For k£ = C a non-singular variety is a complex submanifold of
A" or P".

2T, X tangent space at € X.
3A proof can be found in [Aral2].
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Definition A.1.11. Suppose D = ) _¢n,sis a divisor, S C X finite, X Riemann
surfaces. Let M(U) denote the vector space of meromorphic functions (resp.
rational functions) on U open. Define &'(D)|y as the vector space of all f € M(U)
which have at s € U order at least —n,. In particular for D = s these are just
the functions with a pole of order at most 1. (D) is a sheaf of O%'—modules
(resp. Ox—modules), since multiplication with a holomorphic function preserves
this property.

Now consider a coordinate neighbourhood of s € S with the coordinate z, then
every function in &(D)|y has a Laurent expansion of the form z~"sg with some
holomorphic function g.

Remark A.1.12. (i) The last property shows that €'(D) is locally isomorphic
to Oy, i.e. is an invertible sheaf.

(ii) Further (D) ®o, O(D') ~ O(D + D’).

A.1.2. DEFINITIONS (DIFFERENTIAL GEOMETRY)

Definition A.1.13 (Vector bundle). Let M be a complex manifold (resp. topolog-
ical space resp. algebraic variety), E the total space (another manifold /topological
space/algebraic variety) and w : E — M a holomorphic (resp. continuous resp.
regular) map. (F, M, ) is called a holomorphic (resp. topological resp. algebraic)
vector bundle if

(1) 7=*(z) is a finite-dimensional C—vector space.

(2) 3k € N, 3(U;) open covering (in the analytic resp. Zariski topology) with
local trivializations

¢j: By, =7 (U;) > U; xK*  biholomorphic

(resp. homeomorph resp. biregular),
such that 7r|EUj = pryop; and ¢, = ¢i|g, : E, — {a} xK* is an isomorphism.

Definition A.1.14. (i) A bundle morphism o : E' — F between two smooth
(resp. holomorphic, resp. algebraic) vector bundles 7p : B — X, 7p : F —
X is a smooth (resp. holomorphic, resp. algebraic) map such that 7p = 7po
and ¢ is C—linear on the fibres.

(ii) For a bundle morphism ¢ : E — F' the kernel kero = (J, .y kero|g, and
the range im 0 = (J,.yim o|g, are subbundles if and only if rk(o|g,) is
independent of z, i.e. constant in z.*

4See Griffith and Harris [GH78| p. 68
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Example A.1.15. (i) does not imply (ii): Take the trivial bundle £ with 7 =
r; : C x C — C and the bundle morphism, £ — E, o(x,y) = (x,zy), then

o is obviously smooth (resp. holomorphic resp. regular) and rk(o(1,)) = 1 #
rk(c(0,-)) = 0.

Remark A.1.16. (1) For smooth manifolds replace holomorphic by smooth
and biholomorphic by diffeomorphic in definition A.1.13.

(2) (7" (x,€:))1<i<k for the standard basis (e;)1<i<x € K* is sometimes called
local frame field (over U;). In particular we will always find such a local
frame, which is holomorphic, smooth or regular dependening on the kind of
bundle we are working with.

Theorem A.1.17. Let X be a smooth manifold (resp. complex manifold resp.
algebraic variety) then there is a one-to-one correspondence between the cate-
gories of smooth (resp. holomorphic resp. algebraic) vector bundles of rank r
and the category of isomorphism classes of locally free sheaves of Ex— (resp.
O%— resp. Ox))-modules of rank r by assigning to every bundle its sheaf
of smooth /holomorphic/regular sections.” Particularly the equivalence respects
sums, tensor products, dualizing, etc.

Proof. This follows from Serre’s [GAGA|. O

Remark A.1.18. (i) The theorem says nothing about morphisms. Note that
vector bundles homomorphisms are often defined to have constant rank®,
while for O% (resp. Ox)-modules this is usually not the case.”

(i) If we drop the restriction on constant rank homomorphisms there is an equiv-
alence. To see this consider

U Vect(E, F) — (Homg(T'(U, E), T(U, F)))y
o= {s—={x—o(z,s(x))}}

where (Home ) (I'(U, E),I'(U, F)))u is the set of £(U)—sheaf homomor-
phisms and Vect(E F) the set of smooth vector bundle homomorphisms
with not necessarily constant rank. An inverse map is given by

® : (Homeu(D(U, E),T(U, F)))y — Vect(E, F)
© — ®(z,s(2)) := (p(s))(z), =€V open,Vse(V,E)B

Ssee A.1.20.
6A.1.14, (ii).
"See Huybrechts [Huy05], p. 72.
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® is well-defined since sheaf homomorphisms respect restrictions, i.e. we need
to consider only a small neighbourhood of  and hence there is always a local
section given by the inverse of the local trivialization for some fixed second
component (Ve € E, C Ey3é € C" : ' (y,é) = e). Further take a local
smooth frame field e; and two sections s,t € I'(V, F) with s(y) = t(y) =
e. Then there are s;,t; € E(V) such that s(z) = Y7 s;(2)e;(x), t(x) =
T e)ele) and 3, C2(V) such a(e)le) =S (@) (@)er(w) =
S Bi(x)ti(x)ei(x) = Bi(x), Vo € V and oy(y) = Bi(y) ¥ < i < n. Thus

)s
(y)
Z a;® (s;e;) = (Z 0 S; el> = (Z Bit; el> Z Bi® (tie;)

(5]} (o ()

— (p())().

Hence W is independent of the chosen section. It is a homomorphism on the
fibers since

O(z,a(s(x) + 1)) = (plals +1)))(x) = ap(s)(z) + ap(t)(z)
= a®P(z,s(z)) + ad(z,t(x)),

= (¢(5)(v)

where we associated a with the constant (smooth) map = — a.

The images of ¥ and ® are smooth by definition of a smooth bundle resp. a
smooth section.

Finally

Vod(p) = Y((p(s))()) =s—={r = @(s(x))} = ¢ and
PoW(o)(z,s(x)) = @ {s—{zr—o(z,s(x))}}) =olz,s(z))
for all s € T'(U, E),z € U, i.e. ® and ¥ are inverse to each other. As we
have additionally
V(o +7) =¥(0) + ¥(7) and (¢ + ¢) = B(p) + B(0),
U (idvect(z,r)) = idHome ("W, B).L(U,F)), and
CI)(id(Homg(U)(F(U,E), (U,F)))U) 1dVect (E,F)-

These are inverse functors making the two categories equivalent. As usual
we can replace smooth by holomorphic resp. regular and so on.

80f course we wrote a value on the right hand side which is formally not correct. However it
should be clear, which map we mean.
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On the other hand if we denote now by (Homg)(I'(U, E),I'(U, F)))u the
set of &£(U)—sheaf homomorphisms of constant rank? and Vect(E, F) the
set of smooth vector bundle homomorphisms (of constant rank), then the
functors ® and W establish an equivalence as well. For a rank k vector bundle
homomorphism ¢ and a local holomorphic frame (s;)1<;<pn, ¥(0)(s;) = {x —
oz, s:(x)) = 20 ij(x)s;(z)},¥1 < i < n for some holomorphic functions
s;.** Hence ¥(o) has rank k as a map from I'(U, E), — I'(U, F),. On
the other hand for rky = k, ¢ € (Homg(I'(U, E),I'(U, F)))y, and for a
basis s;(z) € E, we get ®(p)(si(x)) = o(s;)(x) = Z?Zl a;i(z)sj(x), ie.
rk®(p) = k.

In algebraic geometry it is more reasonable to enlarge the category of locally
free Ox—modules rather than to restrict it. The reason is that one needs
the cokernel of those morphisms to be in the category again. For locally
free Ox—modules the cokernel of a homomorphism with non-constant rank
no longer is a locally free Ox—module, but a coherent sheaf. In fact the
category of coherent sheaves is the smallest category enlarging the category
of locally free Ox—modules (with not necessarily constant rank homomor-
phisms) where the cokernel of each (local) morphism is again a coherent
sheaf. More precisely any sheaf F of Ox—modules with a local presentation
Oy — 0% — F — 0,m,n € N (exact, i.e. F isomorphic to the cokernel) is
coherent (and vice-versa); quasi-coherent if n, m are allowed to be not finite.

Theorem A.1.19. (1) Over a compact Riemann surface the algebraic and

(6)

holomorphic vector bundles are the same.
In the non-compact case (i) no longer holds.

However, every algebraic vector bundle is holomorphic w.r.t. the Zariski
topology.

In fact every holomorphic vector bundle on a non-compact Riemann surfaces
is trivial.

There is as well an equivalence between the category of algebraic vector
bundles with flat regular connection and holomorphic vector bundles with
flat connection.

There is a bijection between Gauge equivalence classes of flat vector bun-
dles and equivalence classes of vector bundles defined by constant transition

9Restricted to the stalks the map has constant rank.
0W l.o.g. we choose the image to be spanned by the first k basis elements s;.



A.l. Basics | 155

functions g;; for gpl-cpj_l(x,g) = (z,9i;9) and ¢; : 7 H(U;) — X x C" local
trivializations. Two cocycles are equivalent if they differ by a coboundary,
1.e. 9ij = hz’j =4 V(Z,]> el xI E'CLZ', Q; € Gln(C) such that 9ij = a;lhijaj.

Proof. (1) Again by Serre’s famous paper [GAGA]. For (2) and (3) see as well 16
in [CGT75]. (4) by 30.4 in "Lectures on Riemann surfaces" [For81| by Otto Forster.
(5) Deligne [Del70], p. 97, 5.9. (6) Szamuely [Sza09] for the vector bundle case or
Reisert, |Reil0] for the principal G—bundle case. O

Definition A.1.20. Let 7 : £ — X be a smooth projection, £, X smooth
manifolds, then I'(X, E) := {s: X — E|s smooth, mos = idx } is the set of smooth
sections into E. In the same way I',,(X, F) := {s : X — E|s holomorphic,mos =
idx} or I'ey(X, E) := {s : X — E|sregular,m o s = idx} are defined. Further
denote Ex = {f : X — C|s smooth}. Then Ex acts on I'(X, E') by multiplication,
ie. f-s:axw f(z)s(x), fe&x,s e (X, FE).

Define A? := {a : T,M? — C|a C — multilinear and alternating},a € X and
/\1)7( = Uan /\g Then

Oy = T(XAY)

is the set of differential p—forms. If X is a complex manifold and z;,Z;,1 < <r
are local holomorphic coordinates then Q87 is the subspace of Q% locally spanned
by forms

w(z)=n(z)dz; AN...dz, NdZ; A...ANdZ;,, n smooth into C

(with pairwise different indices). Then

o= P %

pta=k

Equivalently Q%7 = T(X, A%Y) with AY = U,ex AVL AV = {a @ T,XP9 —
Cla C — multilinear and alternating} and 7, X9 =T, X? @ T/ X?, where T/ X =
C(a%\l <1 <n),n=dimX is the holomorphic and T))X = C(%H <i < n) the
antiholomorphic tangent space.!!

On 0% an exterior derivative d : Q% — Q4" can be defined by the C—linear
extension of

on(x)
8xj

dw(z) = dn(z)dx; A...dx;, = Z dz; Adx;, AL da,.
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For a complex manifold there is a splitting d = 9 4+ 0 such that
on(z)dz, N ANdz, NdZ; AL ANdE,

0
- Z —ndzk/\dzil/\...dzip/\dijl/\.../\dqu

ke{i1 ..... ’Lp}82:k
on(z)dzy A...Adz, AdZ;, AL AdZ,
on _ _
— Z a—zkdzk/\dzil/\...dzip/\dzjl/\.../\dzjq.
ke{jl 7777 ]q}

Remark A.1.21. (1) Ay = 7*X the cotangent bundle.
2) @=02=9 =0 and 90 = —90.
(3) 0,0 satisfy the Leibniz rule, i.e.

IanApB)=0anB+ (-1 andp
daApB)=0anB+(—1)P"a Adp,

for o € QR € QY .12

(4) The holomorphic tangent bundle is naturally isomorphic to the holomorphic
vector bundle 7Ty given by the transition functions v;;(2) = J(ii(¢;(2)))

for the Jacobian J () (73(2)) = (52 (#4(2)), of the local rivializations
@; of the bundle 7 : £ — X .13

There is an extension of 0 to the case of E—valued differential forms:

Theorem A.1.22. (i) If E is a holomorphic vector bundle then there exists a
natural sheaf homomorphism of C—vector spaces.

Ip : QY(B) = QYHE) = T(X, B) Qe DX, AF)
1’\()(7 E) ®5X Q%Q-HM
which obeys 52 = 0 and the Leibniz rule dp(n @ w) =7 ® d(w) + Ip(n) Aw

for n € QY(E),w € QY. Here the A—product is defined as: Let n €
Q%O(E),wl,wg € Q%7 then (N ®@ wy) Aws := 1N ® (w1 A wa).

12Gee [Huy05] lemma 1.3.6, p. 44.
13 Again in Huybrechts [Huy05], p. 71.
Mgy actsas f-s:ax— f(z)s(x) for f € Ex and s € QRY.
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(ii) Let (s;)1<i<r be a holomorphic local frame field of E, for example s;(x) =
go,}l(x,ei),ei standard basis element of C", ¢y local trivialization, then we
can write for all &' € QPY(E) : ' = s @w with s = > ays;, 04 € E(U). Op
acts on s as

0p(s) = Z 5 @ O(aw).

This description of 05 is independent of the chosen holomorphic frame field
since any transition matrix to another holomorphic frame field is holomorphic
in each component and makes therewith by Leibniz rule no contribution to
the result.!?

(iii) The holomorphic structure of a holomorphic vector bundle is uniquely de-
termined by an operator g : Q% (E) — Q%' (E) with the properties named
in (i).

Proof. Huybrechts [Huy05], p. 109f. O

Remark A.1.23. (i) In future it may be often enough to consider only local
sections since a global section restricts to sections on open subsets and local
section can be glued together to a global section if they coincide on some
open set'®; a sheaf homomorphism ¢ commutes with the restrictions and
is thus defined by local sections, since for an open covering (U;)ics, €.g.
those with local trivializations, s; v, = P(8i)|vinu, = (s
90(5’]' UmUj) = %0(31')
For example 52 = 0 follows by (ii) locally out of 9" = 0 and this follows
from d?> = 0 by degree considerations. However, for a Riemann surface this
is obvious since there are no non-trivial (p, ¢)—forms for p > 1 or ¢ > 1.

Uz‘j == Sj UiﬁUj) -

UiﬂUj .

(ii) For smooth vector bundles an operator 0y does in general not exist.
In the following we will denote a holomorphic vector bundle by (E,Jg).

Remark A.1.24. Recall that the topology on F ®¢ F' := UxeXEx ®c F, resp.
Ey ®c Fy = UerEx ®c F., U open, is the unique topology such that

vou : By ®@Fy —Ux (C°®cCh), e=1k(E),f=rk(F)
rp @ xp = (2,05, (r) Q@ ¢, (2r)), Tp®zr € E,®F,

5 Huybrechts [Huy05], p. 109f.
6Differences to a presheaf.



158 | A. APPENDIX

is homeomorphic, where @, resp. pg, are the local trivializations over U.'" Note

that C® ®c C/ ~ C% i.e. the ¢gr can be identified with local trivializations of

the ef—dimensional tensor product bundle.

For smooth resp. regular resp. holomorphic vector bundles we want the maps to

be diffeomorphic resp. biregular resp. biholomorphic. '®

Let (€;)1<i<e be the standard basis of C* and (f;)1<j<; the standard basis of C/ then

ei®fi(x) =gy (. (e; ® fj)igéef is a local frame field since local trivializations
SIS

are C—isomorphisms for z fixed. Let e;(x) := gp,}é(m, (€i)i<i<e) and fj(z) :=

@ (4, (fj)1<j<s) be the corresponding frame fields on E resp. F. Then define a

map ¢ : I'(U, E ®c F) = T'(U, E) @¢y I'(U, F) by linear extension of

p(z = e f;(@) = {z = e(@); @ {z = fi(z))

i.e.

0|z E ai(z)e; @ fi(z) | = E aijp(z — e ® fi())
1<i<e 1<i<e
1<j<f 1<y<f

for some maps a;; : X — C. Of course the o;; cannot be chosen arbitrary under
all functions if ¢ is defined on I'(U, E ®c¢ F). More precisely

S i =& T +—> Z Oéij(l’)ei & fj(x)
1<i<e
1<j<f

is smooth iff

Pau 0 sa(r) =gz | 2, Z aj(z)e; @ f
1<i<e
1<ji<f

is smooth. But this is only the case iff all component functions are smooth, i.e. iff
a;; is smooth for all 1 <1i <e, 1 <j < f. In particular ¢ well-defined.
Since E(U) acts on I'(U, E ®¢ F') by multiplication we have ¢(as) = agp(s) for

17Use a common refinement to find a covering which suits both vector bundles. The map is
well-defined in the first component since for local trivializations pry g, (zg) = 7|g, (xg) =z =
7lr, (xp) = prypr, for all zp @ xp € E, @ F.

18See e.g. Hatcher [Hat03], p. 9.
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acéU),sel(U E®cF),ie ¢isa&(U)—homomorphism.
On the other hand

e Y ai{r e e@)} @ {o e fi(a)}
1555

=T Z a;i(x)e; ® fi(x)

1<i<e
1<5<f

inverts ¢. Thus ¢ is a £(U)—isomorphism. Since the restriction maps in the
sheaves I'(U, E @¢ F') and I'(U, E) @¢ ) I'(U, F') are just the usual restrictions for
maps, i.e. sy :z+— s(x),Vo € U, ¢ is an isomorphism of sheaves with values in
E(U)—modules.

The same construction works if we replace smooth with holomorphic resp. regular,
diffeomorphic with biholomorphic resp. biregular, £(U) with O%*(U) resp. Ox(U)
and I" with I'y, resp. I'ey. Therefore we have the following canonical sheaf-
isomorphisms

MU, E®c F) ~T(U,E) @y I'(U, F)  resp.
Lot (U, E @c F) = T(U, E)pot @oanw) (U, F)rot - 1eSP.
Freg(U> E ®C F) (U E)Teg ®O(U (U F)reg

Remark A.1.25. For vector spaces E,, F, we have Hom¢(E,, F,) ~ EX®c F,. So
we can define the homomorphism bundle Home (£, F) = J, .y Home(E,, F,) ~
U,ex Ei @c F = E* @c F." We have

T (U, Home(E, F)) ~ (Homg(T(U, E), T(X, F)))y  resp.
Fhol(U7 HOHl(c(E'7 F)) (HOIHOan(U)(PhOZ<U, E), Fhol(Ua F)))U resp.
FTGQ(U? Hom(C<E> F)) = (HomOX(U)<FT€g(U7 E)? FTEQ(U> F)))U

where (Homg oy (I'(U, E),T'(U, F)))v is the set of £(U)—sheaves homomorphisms
or analogously in the other cases. For the last step we use that

o(z,e):={ew (s(z))(e)}, e€E,

is a vector bundle homomorphism with not necessarily constant rank for all
s € T'(UHom¢(E, F)): o is smooth iff o(z, f(z)) = {z — (s(x))(f(z)) €
LU, E),Yf e T'(U,E) iff s is smooth. ¢ is a C—homomorphism since s(x) is.

Differential Forms and Connections, Darling [Dar94], p. 122, or [Rei09], p. 27.
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On the other hand if we have a vector bundle homomorphism o we get a smooth
section of the homomorphism bundle (without rank restrictions) by

s(x) == o(z,-).

The two constructions are obviously inverse. Thus I'(U, Hom¢ (E, F)) is isomorphic
to the vector bundle homomorphisms with not necessarily constant rank. Further
A.1.18, (ii) shows the connection to sheaf isomorphisms.

At the end of this subsection we want to add two well-known theorems:
Theorem A.1.26. The following categories are equivalent

(i) Smooth projective algebraic curves (i.e. one dimensional projective algebraic
varieties) with regular maps.

(ii) Compact Riemann surfaces with holomorphic maps.

Remark A.1.27. The analogue to punctured surfaces are quasi-projective curves.
We will mainly work in the holomorphic category.

Theorem A.1.27. There is a one-to-one correspondence between the isomorphism
classes of invertible sheaves, divisors and line bundles?® on a Riemann surface X.
To a line bundle L the corresponding invertible sheaf is I'(U, L), U C X open and
the corresponding divisor is defined as > ords(f)s for any non-zero meromorphic
section f: X — L.2

Proof. A proof can be found in Miranda [Mir95|, chapter XI. O

A.1.3. DEFINITIONS (HODGE THEORY)

Let V be a real vector space then I : V — V,I? = —id is called almost complex
structure. Extend I : Vi — V¢ the complexification of V|, Ve = V ®g C. Then
I has eigenvalues +i and eigenspaces V' = {v € V¢|I(v) = ww}, VO = {v €
Vell(v) = —iv}, Ve = V0 @ VOl Complex conjugation induces V10 ~ V%! real
isomorphism. On V* we have an induced almost complex structure I(f)(v) :=
f(I(v)) and an induced decomposition (V10)* = (V*)L0 (Vo) = (V*)%1 The
exterior algebra is A"V = @,_, /\kV,n = dimg V = dime V¢ resp. A" Ve =
B o N Ve N Ve =B,y NPV for AUV = NP VIO ®c ATVOL For (2, %)
the complex coordinates, (z1,yi,...) real coordinates, we have the volume form
(20)™ Nizy (2 AN Zi) = Nimy(zi A y;). We define the fundamental form to  on an

20GSee A.1.11 for a definition of a line bundle, i.e. a rank one vector bundle.
21This is well-defined up to some equivalence relation. See [Mir95].
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euclidean vector space (V, (-,-)) as w := (I(),(+)) = —((+), 1(-)) for I compatible
with (-,-), ie. (I(:),I(-)) = ((-),(:)).*> Moreover (-,-) := (-,-) — iw defines a
positive hermitian form and Vg = V% ® V%! is an orthogonal decomposition
w.r.t. to (v @ A\, w® u) = (An)(v,w) on V ®g C for v,w € V, A\, u € C.

Remark A.1.28. An example is V = T, X a tangent space. Then AP4V* = QR

Definition A.1.29. Let V be an euclidean vector space with a compatible complex
structure and e; a basis of V' with volume form e; A ... Ae,.

)L : N"VE — AN Vi a = wA ais called Lefschetz operator. We have
C C
L(APV*) ¢ APTHTH Y of bidegree (1,1).

(i) The Hodge x—operator A"V — A" "V is defined as a A = (ay, By)vol for
all o, 3 € A"V, :i= oo Njer €, B = Bo Nier€in I € {1,...,n},|I| =k and
extend C-linearly on complex forms. In particular xvol = 1, *(e;, A...Ae;,) =
sign (i1, .-y 9k, J1y - s Jnek)€jy Ao N €j
We get a non-degenerated pairing A"V x A" 7"V = A"V, (a, ) = a A %03
that we will denote as well with (-,-).23 Then (a, *8) = (—1)*"=%) (xa, B),
i.e. * self-adjoint up to sign.

* maps A\P/V* c NPTV Note that (—1)F" %« is the inverse to * on
/\k V. In the manifold setting which we will treat next, a complex manifold
will have even R—dimension, i.e. (—1)¥"k) = (—1)F* = (=1)*,

(iii) The dual Lefschetz operator is defined as A = «~* o L o*. Tt is the unique
operator A : A\*V* — A" V* with this property. We have A (A" V*) C
APV of bidegree (—1,—1).

For details see Huybrechts [Huy05| p. 33ff.

Next consider the hermitian manifolds (X, g), i.e. g, on T, is compatible with the
almost complex structure I,. In this context we call w := g(I(-), (*)) fundamental
form. Tocally w = § E” Lhijdz ANdZ, H = h;; positive-definite hermitian. We
will mainly use h;; = E the euclidean metric. Note the g is uniquely defined by w
and I via g(-,-) = g(I1(-),I(:)) = w(+,I(+)). Therefore we might sometimes use w
instead of g.

Remark A.1.30. (i) From a Riemannian metric g and the almost com-
plex structure I we can construct a hermitian metric ¢'(-,-) = 3(g(-,-) +
g(1(-),I(+))) or as in the vector space case above (-,-) = (-,-) —iw is a her-

mitian form for any fundamental form.

22T is orthogonal.
ZFor n = 0 we get our inner product back.
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(ii) In the K&hler case w has to be closed. For the euclidean metric on the unit
disc the volume form is just $dz A dz. We will mainly use this metric in
our one-dimensional case.

Recall that for an open subset in U C C we get a basis of T,,U: a , d and a complex
structure I(Z) = 2 (2 ) = —-2 and analogous on (T,U)* the dual basis dz, dy

Ay
and the complex structure I(dz) =dy,I(dy) = —dx. Usually we use the complex
coordinates on the complexified tangent space: £ = l((% — Zady), gz =1(Z+ Z@y)

and the dual basis dz = doz +idy,dz = dz —itdy. On T,U we may use the
euclidean metric % dzAdz.

Definition A.1.31. (i) L: \"T*X = A"’ T*X a —» a Aw.

(ii) *: A" T*X — A* " T*X as before using the metric g as inner product and
the natural orientation dx Ady resp. 5dzAdZz of the complex manifold X.
Here n = dimg(X).

(i) A: A"T*X = NF2T*X, A =x"oLox.

(iv) For any d, 0,0 define d*, 0%, 0" as the x-adjoint. For example d* = — xod o x.
Sometimes d* is denoted as codifferential §.

Extend the formalism to E—valued differential form for (£, h) a hermitian vector
bundle. We may interpret h as a map ¢ : E — E* e — h(-,e). This bijection is
C—antilinear.

Definition A.1.32. The Hodge x—operator on F is defined as

1-p,1—q

EPRE E®/\X—>E*® N X
with ¥g(s @ w) := h(-,s) ® *(w) = h(-,s) ® x(w) by C—linearity of x.

Again we get a pairing
n,n

AXx ANPPX - AX, n=dimnX
(a, B) = a Axg(f) = (o, B)

where "A" is the evaluation in the bundle part and the exterior product in the
form part. Replacing E by E* we get *g« and g« o g = (—1)P*7 since we have
in the bundle part the identity and in the form part the conjugation drops out
and it remains the classical *—operator which leads for even real dimension (in
the complex manifold case) just * o x = (—1)% = (—1)PT,

As before we define

24For the euclidean metric and for all other metrics by multiplying with the corresponding hy;.
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Definition A.1.33. (i) For any connection D = D'+ D" define (D')* = —%p-o0
D'y o%p and (D")* = —%pg« o DY, o%pg. Let D* = (D')" + (D")*.

(ii) Analogous for Lg«(h(-,s) ® w) = h(-,s) ® L(w) define A = —%p+ o Lp-*p.

Remark A.1.34. In general a connection D on a vector bundle E induces a
connection on the dual bundle E* by Dg-(f)(r) = df (r)—f(D(r)), f € E*,Vr € E.
This becomes D' h(r,s) = Oh(r,s) — h(D'r,s) = (=1)%&"h(r, D"s) for a metric
connection - f = h(-, s) - or more general for any two operators D', D" such that
D'+ D" = D a connection and h(D'r,s) + h(r, D"s) = 0h(r,s).*> Analogously
D% h(r,s) = (—1)%"h(r, D's).

Lemma A.1.35.

p—1ygq p,q—1

[@Dp= [(Wap, sers\vacEs \Xo A\ X
X X

if both sides are well-defined, i.e. finite, and if # vanishes on the boundary.

Proof. See Huybrechts, [Huy05] lemma 4.1.12, p. 169f. Huybrechts assumes X
compact, which is only used to ensure finiteness of the integral and in order to
use Stoke’s theorem in the proof we need S to vanish on the boundary. Further
he takes Jp instead of an arbitrary (part of a) connection, but the only property
used is the Leibniz rule, which by the way changes slightly in notation, since we
redefined A as well. O

Remark A.1.36. For example Ag := 5;515 +5E52 is the Laplace operator and
a section of F is called harmonic if it is killed by Apg.

Lemma A.1.37. (Kéhler Identity) Let D' 4+ D" be a connection and 0h(-,-) =
h(D',-) 4+ h(-,D")* then Vs = sp@dz € E@ QY =5 0dzc E® QY
i[A,D"]s =iAD"s = (D")*s and i[A,D'|5§=14iAD's = —(D")*s.
Proof. We show the case of a metric connection. If the degree of D’ is not fixed
we need to apply the following calculation to s too. By direct calculation
(D")*s = —%p:o0 Dy oxgs
= —%po Dy oh(-,s0) @ =*(dZ)
= —%pe o h(-, (—1)%0d3) D50 ) @ (i)(d )

=:s5,dz

25The generalization lies in the fact that we don’t require D’ to be of degree (1,0) resp. D"
of degree (0,1). Furthermore degr becomes of importance if we extend to higher order forms 7.
26e,g. a metric connection.
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= —%p-oh(s,)(—i)dzAdZ
—%p«oh(+,8,) - (—2)L(1) = —%pg« o Lg« o h(-,s,) - (—2)

—2
= —;E* e} LE* e} ]’L(',SZ) . 2-?((15/\(12) == _ZgE* @) LE*gE Sy dzAdz
/l/ ~ TV 7 TV

A D's
= AD"s.

and since A maps O-forms to 0 we have as well i[A, D"|s = iAD"s. The second
equality follows analogously:

(D//)*g = _¥E* O D%* O¥E<§
— —;E* O D%* o h(, <§0) ® *(d Z)
= —Fg o h(-, (—1)%814D D5 ) @ (—i)(d2)
=:5.dz
e _¥E* Oh(',§2>(_l)d2/\dz
= —Fp-0h(-5,) (=2)L(1) = —%Fp- 0 L= 0 h(-,5,) - (~2)

2
— —;E* O LE* (@] h/(‘7 gz) . 2—§(d2’ /\ dz)
]

= —(—i)%p: o LpFp(5.d2 NdZ

—A D’s

= —iAD's.
[l

Remark A.1.38. The general case of the Kéhler identities can be found in
[Huy05], p. 120, 3.1.2 or [GH78]|, p. 80ff.

A.2. METRIC BUNDLES AND CONNECTIONS

This section is divided into two parts. The first one is still a general discussion
of metric bundles and metric connections. It also includes an extension of a met-
ric to differential forms. The second part will treat a hermitian inner product
as a map into the space of positive-definite matrices P,. We will endow it with
a real manifold structure using the exponential map and the correspondence be-
tween hermitian matrices and the euclidean space R™. In particular H, may be
equipped with an inner product. Furthermore we will show that P, is a com-
plete, non-negatively curved Riemannian manifold. In order to do so we will use
the continuous functional calculus and "divided sums" to find a formula for the
differential of a matrix. The "divided sum" will be used later when constructing
a harmonic metric, the completeness and non-negative curvature will be used to
work with geodesics.
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A.2.1. FIBER-WISE METRICS AND CONNECTIONS

Definition A.2.1. A holomorphic bundle is called a metric bundle if for each
x € X there is a hermitian inner product h, on E, = 7 '({z}) such that for
s,5 : U — FE smooth sections, U open neighbourhood of z: h,(s(z),5(z)) is
smooth.

Remark A.2.2. Each smooth vector bundle can be equipped with a hermitian
metric.

Remark A.2.3. For an arbitrary function f : X — C and smooth sections § and
n: h(f€,m) = fh(&,n) = h(g, fn).

Definition A.2.4 (Connection form). A connection form on a vector bundle
71 E — M is a sheaf homomorphism of C—vector spaces?”

Dy: T(U,E)=0(E) — Qy(E)=T(U,TU®E)
s — D(s),

which obeys
(I) Do(s®&) =Dy(s) NE+s@dEVE € EU), s e I'(U, E) (Leibniz Rule),
where d denotes the exterior derivative.
We can extend Dy to
D,: Q(E) — QF(E)
s@w = Dy(s@w)=Dy(s) A\w+s®dw, s€QHE),we N,

The curvature R is then
R=D;oDy: 02 (E)— QF(E).
A connection is called flat if R = 0.

Definition A.2.5 (Connection (local)). Let s = (8;)1<i<r, 8; € Q% (F) a basis of E,
for each z € U, i.e. s a frame field. Then we can write Ds; = 25:1 55 @ wji = sw,
where w;; € Qf. The matrix w = (wj;)1<i < is called connection form of D.

Further for a section £ =Y 7 s; ® &, & € QY

T

D¢ = D(Zsz‘@&) :ZD(Sz‘@&)ZZ(D(Si)A§i+Si®d§i)

i=1 =1

Z1C acts on QF(E) by multiplication with the value. Note that this is weaker than the
Ex —linearity; more precisely: it corresponds to the linearity w.r.t. constant C—valued func-
tions.
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— Z Z(Sj Qwji) N& + 8 ® dfz)

i=1 \j=I

= Z Zsj (wji N&) + 5 @ dE;

)
T )

= Z ZSZ (Wi N&G) + 50 @ dE;
= Zé’i@(dfri-zwij/\fj)-
i=1 j=1

Writing £ = ((&;)1<i<-)" as a column vector this becomes
DE = df + wE.

The curvature form 2 is
Q=dw+wAw.

Remark A.2.6. Since d : Q% — Q%' and Q% = D, i X" (resp.
Ok (BE) = L ORI(E)) we write 0 OB — L QPP and

X ptg=k " "X ptg=k " "X ptg=k " "X
DB B = DB, Q%9 such that d = @ + 9. The same can be done for
a connection D, i.e. Dy = D; + D}, k = p+ ¢ with

D, P B~ @ KHUE), DI P RUE)— P BTUE

ptq=k p+a=Fk p+Hq=k ptq=Fk
Further

Di(s®@w)=Di(s) N\w+s®0w, Di(s®@w)=D{(s)Aw+s® dw,
for s € QY (F),w € Q1.2

Definition A.2.7. Let sy = (s;)1<i<r be a frame field over U and h a metric on
our vector bundle £ then define h;; := h(s;, s;) and Hy = (hij)1<ij<i-

(i) sy is called unitary at a point zg if Hy = E is the identity matrix at x.

(ii) sy is called normal at z if Hy = E and w;; = >, _; hi A Ohj, = 0 at x.

Z8With the natural inclusion into @ Qpt.

p+q=Fk
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(iii) A connection D on (E,h) is called metric connection if

d(h(&,m)) = h(DE,m) + (—1)*8©n(¢, Dy) & ne QY (E).? (A2.7.1)

This means that for each Y € Q0(X) = I'(X,TX)

Yh(¢,n) = h(Dy&,n) + h(&, Dyn).>°

Xh = Lxh = dh(X) is the Lie derivative: Let v(t) : [ =] —e,e[— X be any
smooth path in X, then A(&(~(t)),n(v(t))) for sections £,n € T'(X, E) is a
path in C, i.e. Lyh(§(a),n(a)) = & (1)),n(v(t))],_y, where a = ~(0)
and Y (a) = [y], € T,X (Y (a) tangent vector to the curve 7).

Another way to read A.2.7.1is: ho(£,n): X — C and thus ho (&, 1) € Q%,
Dé(z) € B, @ T*X

h(DE,m) = h(se ® we,n) := h(se, n)we
(5 DT]) h(f 5n®wn)3 h(f 577)
= d(h(&,n)) = h(se, Mwe + h(§, sy

Remark A.2.8. The last reformulation of h on higher forms corresponds to
the choice of the euclidean metric on X. Usually the induced metric on a tensor
product £ ® F, where E is equipped with hg, F' with hp, is defined as hpgr(e; ®
fi,e2 ® fo) := hg(er,ex)hp(fi, f2). Since we are on a one-dimensional complex
manifold we only need the hermitian extension of hy (dz,dz) = hy (dZ,d%) =
2,hy2 (dzAZ,dz AdZ) = 4 for the hermitian metric. Applying these to A.2.7.1
resp. decomposing the right hand side hg(, ~)hA§or 2(+,-) preserves the equality.

Remark A.2.9. (i) For a holomorphic hermitian vector bundle over X and
xo € X there is a local normal frame field sy at z(.%?

(ii) For a metric connection w and € are skew-hermitian, i.e. w, Q € o(r) the
Lie algebra to the Lie group of orthogonal r x r matrices.

29 Although we consider for now only degree 0 forms, i.e. (—1)4°8(&) = 1, (—1)4°8(&) indicates
how the condition can be generalized. This will be important when we consider Higgs fields.

OPE = s @w,w(x) : T*X — C. Define wy : = — (w(x))(Y(z)), then Dyf == s @ wy =
wy - s® 1, Dy :=wy -s.

31Well-defined, i.e. compatible with the equivalence relations defining the tensor product, since
the hermitian metric is C—linear in the first component. Same holds with conjugated C—linearity
and the tensor product in the second component. Further note that fdz+ ¢dz := fdZ+gdz
for a 1—form.

32Kobayashi [Kob87], p. 13.
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Theorem A.2.10. Given a hermitian structure h on a holomorphic vector bundle
(E,Jg), there is a unique metric connection D such that D" = 0.

Proof. A proof can be found in [Kob87|, p. 11. or [Huy05|, p. 177, 4.2.14. [

Remark A.2.11. (i) The curvature of a hermitian connection is of degree
(1,1) and w of type (1,0).

(ii) For a metric connection parallel transport is an isometry.
(iii) There is a (slightly more) general version of A.2.10 which states that for any
given (1,0) resp. (0,1) part d we find a unique (0,1) resp. (1,0) operator d

such that d + d is a hermitian connection.?3

Definition A.2.12 (Holomorphic Connection). A holomorphic connection is a
map

Do : Thot( X, E) = Thot(X, E) @ Q3.
such that
(I) 2(s®&)=D(s) NE+s®IEVE e T(U,C), s € I'(U, E) (Leibniz Rule),
In abuse of notation this becomes
E— E®Q),

where E is now the associated locally free O"—module (i.e. 'y, (X, E)).
An extension to higher forms is done as in the case of an ordinary connection.

Remark A.2.13. (i) There is a decomposition of 2 = 0 + w as for general
connections.

(ii) D = 2+ 0 is an ordinary connection on F.

(iii) Not every (1,0)—part of an arbitrary connection is holomorphic, since D
could send holomorphic sections to non-holomorphic elements of Q;O(E),
i.e. fdz, f not holomorphic.

Remark A.2.14. On a flat holomorphic vector bundle exists a holomorphic
connection.

33Gee e.g. Bedford [Bed91] p. 96. The proof is essentially the same as the one of the theorem.
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Consider the unique metric connection D = 9 + O given by theorem A.2.10.
Then

d(h(&,m)) = Oh(&,m)+0h(E,n)

ey’ !
= h((0p + 0p)&.n) + h(¢, (Or + Op)n)
= h(sg® @uwp®,m) +h(sgt @)
+h(S 5" @wy) + b€ syt @ W)
o1

= his” mwe” +h(sg" mwe” + (€ 5, )wy” + hE, sy wy”

Vo VT Vv WV
enl? ey’ et ey’
and therefore

O(h(&,m) = h(Os& ) +h(E,Ten)
B(h(E,m) = h(Butn) + h(E, D).

Of course 9% = 0 for a Riemann surface since there are no non-trivial (p, ¢)—forms
forp>lorg>1(dzAdz=dzAdz=0).

A.2.2. METRIC AS A MAP

There is an equivalence between Gl, (C)—representation of the fundamental group
(up to Gl,(C)—conjugation) and flat smooth vector bundles. In fact every flat
regular smooth vector bundle is equivalent to X x C"/ ~ with (p, g) ~ (pd, f(8)g)
for § € m(X). Here X can be understood as a principal 7;(X)—bundle. f is
the corresponding Gl,,(C)—representation of 71 (X). For more details see Reisert
[Reil0).

So if we consider E = X x C"/ ~ a metric is a map

h:(XxC'/ ~)x (X xC" ~)—C,
which rises to a map h = hpr
h: (X xC" x(XxC") —C.

By the equivalence relation a frame (s;) can be written s;(z) = & x s/ with Z
in a fixed (basis) leaf of X, i.e. as a map of sets X — X x C". Then a metric
(which is always fiber-wise) acts only on the vector space part C". Further a
matrix is uniquely defined on the basis, i.e. by h(s;,s;). As before write H =



170 | A. APPENDIX

(hij)i<ij<n = h(sj,$i))1<ij<n as a matrix and thus h(v,w) = w*Hv.>* H has to
be positive-definite and hermitian as representation of an inner product.

Remark A.2.15. Note that the unique hermitian connection compatible with
the holomorphic structure 0 is

Dyn i=d+H '0H,

where d,0 act as the usual exterior derivative on each component. Hence the

curvature is D? = E(F‘laﬁ). In the line bundle case the curvature becomes
00 log(H).%

Let P, denote the set of all positive-definite hermitian matrices.®® Then Gl,(C)
acts on P,, by

pcLp, - Gln(C) xP, —P,
(G.H) > GHG* 3

Note that the isotropy group of this action at E' is just U(n).
This action is transitive since by Cholesky decomposition H = LyLj,H =
Ly Ly, for unique invertible lower triangular matrices Ly and L. Hence

H' =LyLy = Lp Ly H(Ly) 'Ly = GuuwHGy . Guar € Glo(C).

=Gy

Remark A.2.16. Since U(n) is a closed subgroup of Gl,(C)*® the action (right-
translation) of U(n) on Gl,(C) is smooth, proper and free and G1,,(C)/U(n) is a
smooth manifold with smooth submersion w1, ym) @ GL,(C) — G1,(C)/U(n).*
Thus we may identify T, . (c)(Gl.(C)) =~ T6(GL,(C)) /Te(GU(n)) by the fun-
damental theorem on homomorphisms and ker(dng, vm))a = T6(GU(n)).

Another Proposition of Lee [Lee00| p. 175, 7.21, tells us that for a set on which
a Lie Group G acts such that the isotropy group at one point is a (closed) Lie
subgroup of GG, there is a unique manifold topology and a unique smooth structure
such that the given G—action is smooth.

34y, w written in the basis s;.

35 A proof can be found p. 185f [Huy05].

36This is not a subgroup of Gl,(C), since for hermitian matrices H, H', (HH')* = (H')*H* =
H'H # HH' in general.

37[)@,1)[@” (E, H) = }I7 PG1P, (F, PG1P, (G, H)) = PGLP, (F., GHG*) = FGHG*Fx =
(FOVH(FG)" = pers, (FG.H)

38Lee [Lee00] p. 174, proof of theorem 7.19. Even compact by Heine-Borel.

39 Again [Lee00] p. 172, proof of theorem 7.15.
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Then our action is smooth and therefore we find an Gl,,(C)—equivariant diffeomor-
phism ¢(GU(n)) = paie, (G, £)* from G1,(C)/U(n) — P,.*' In particular the
smooth structure on P, is just the unique smooth structure such that ¢ is a diffeo-
morphism. Moreover note that Gl,,(C)/U(n) is not a Lie Group, as U(n) C Gl,(C)
not normal.

As a result h can be written as a map X — Gl,(C)/U(n).

Remark A.2.17. The singular value decomposition leads to the similar result
Gl,(C) = P,U(n), i.e. every invertible matrix can be uniquely written as the
product of a positive-definite hermitian and an unitary matrix.*?> But then

Gl,(C) — =" G1,(C)/U(n)

with
¢ o TG, um) © LH) = pomay, um(HE) = o(HU(n)) = H.
In particular we have the induced C**"—standard topology on P,,.
Now lifting / to / results in a map h: X & X B GL,.(C)/U(n) with
h(z6) = f*(6)h(&)f(6)
since for s7(z) = (26, prysi(x)) = prs] = [20, prysi(w)] = [7, f(9)prysi()],
o= hs)(). 5] (2))

= he(f(9)ss, f(5/)5j) = h, (Z F(0)kisk, Z f<5/)1j31>

=

= > FO)kif()jhukle = Zf ()15 (H (£(6)) )il

J=1

= (f(&) H(f(9)))jilz-

This is just f—equivariance of h.

h

10U(n) acts by multiplication from the right.

“1For a proof see [Lee00] p. 174, theorem 7.19. Choose the isotropy group at p = E. In fact
we only map every H on its Cholesky lower triangular matrix.

42For example in Chevalley [Che46] p. 14, §5 Prop. 1.
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Remark A.2.18. If f:m(X)— U(n) than A is invariant under the action of f
(by equivariance of ). This is just Kobayashi’s [Kob87]|, Proposition (4.21) on p.
14:

The existence of a flat metric connection E is equivalent to E defined by a homo-
morphism f: m(X) — U(n).

Further note that for matrix groups G: exp(g) = G. Under exp hermitian matrices
are mapped injectively into the set of positive-definite hermitian matrices (x #
0),Vt € R:

exp(tH)* = exp(tH") =exp(tH) < H=H"

* SN H N (f Ha)
*exp(H)r = z Z u x:ZWHxHQ
k=0 ' k=0

e <t:r*Ha:)
= |z]fexp | —
|2

=z exp(tH)r > 0 2"Hr € R,

and x*Hx € R already fulfilled for H hermitian. Moreover this is a homeomor-
phism w.r.t. the by Gl,(C) induced topology.*® The tangent space to P, at the
identity FE is the space of hermitian matrices H,,. This can be seen either by using
the restriction of the exponential map on gl, and the previous calculation or by
the decomposition

TP, ~ Tp(GlL,(C)/U(n)) =~ Tr(GL,(C))/Te(Un)) = gl /u,

where the unitary Lie algebra is just the set of skew-hermitian matrices SH,,:
Vi € R : exp(tS) exp(tS) = exp(t(S* + 95)) = F <& S*+ S = 0. But any
n X n—matrix can be decomposed

M, (C) = H, ® SH.,,.

For any A € M,(C) set Ay, = 3(A+ A*) € H,, Asn, = 3(A — A*) € SH,.
Uniqueness by A € H, NSH,, = A= A*=—-A = A =0. Hence

TP, ~ gl /u, = M,(C)/SH,, ~ H,,.

Remark A.2.19. P, is homeomorphic to H,, under exp. Further H" is homeomor-
phic to R™™:* Obviously all entries under the diagonal are uniquely determined
by those over the diagonal. The diagonal itself is real, i.e. H,, >~ R" x Cr*/21/2 ~

43Chevalley [Che46] page 14, §4 Prop. 6.
44|Che46]| , p. 14, §4 Prop. 6.
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R7-20%/2=20/2 — Rrxn - Explicitly we have the splitting H,, = S, ®1S;, S, real sym-
metric n—dimensional matrices, S, real skew-symmetric n—dimensional matrices
and the R—Ilinear homeomorphism

PH,R -

1 .
PH, R -

S, ® iS,,
(5,7)

Rn

- R”

= Rk = 2 ZZ]’ZI 6k§”(n—1)/26k,in+jfnsij
+ Z? 6”(n—1)/22k>n(n—1)/26k,m+z;nSn’
+2 370 o1 Okn(n-1)/20k in-j-nTh

— H,

n2
— 2H, = Zk:lZékﬁn(”"‘1)/25l"+m—"7k51SmRk
+ 22:21 Ok<n(n+1)/20mn+1—nkOr>m Lk
0D 5k>n(n+1)/z5ln+m+n2T,n7k5l>mRk

5 45
+iD 5k>n(n+1)/25mn+l+ n227n7k51<mRk

Now we find ourselves in the position to define a Riemannian metric, namely the
standard inner product on R™ and pull it back. Thought the calculation might
seem tiring, QTP for Q,P € R™,Q = ¢y, z(?S +i9T), P = ¢y, w(F'S +i"'T)

becomes

’I’L2
> QP
k=1

2 Z 0i<; 055" Sij + @i S + 20:5,°T;, 7T

i,57=1

2 Xn: En: 0i<;9 85" Sji + 9Si" S + 2 Zn: Xn: 855957 T
=1 g=1 i=1 j=1

DD 98 S+ Y > O T

i=1 j=1 i=1 j=1

tr(@ST - F8) +tr(9TT,PT)
tr(¢ST-P8) +tr((—i) - 9TT i - PT)
tr(9ST - FS) i tr(9ST - FT)

—i - tr(9TT - P8) 4 tr(i - 9T - T
tr((“S — 9T (S +i"T))

tr((2S +i9T)*(PS +i"T))

45Note as well that all component functions are in fact smooth. However, since H, is already
a tangent space, continuous will be enough for us.
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where we used first the symmetry resp. skew-symmetry of 9S, 7S resp.
QT.PT and further that the trace of the product of a symmetric and a skew-
symmetric matrix vanishes.?” But the last term is just the Hilbert-Schmidt norm
(A, B)ys = tr(B*A).

Remark A.2.20. (i) This is a symmetric inner product - not hermitian - and

(i

(i)

as such it only works on hermitian matrices. Write (A, B)ys = tr(BA) =
tr(AB),A, B € H, to point out the symmetric character; (A, B)psc =
tr(B*A) is more familiar and is directly recognizable as a positive-definite
inner product. In fact:

We are used to considering the complexified tangent spaces Tc M = TM ®@rC
of a manifold M. Therefore TcP,, = H,, & H,, =: HS. The inner products
extends trivially via (A+iB, C+iD) = (A, C)+(B, D)+i({B,C)—(A, D)) to
a hermitian inner product w.r.t. the usual scalar multiplication (a + ib)(A +
iB) =aA—-bB+i(bA+aB),a,be R, A B, C,D e H,. We will henceforth
use this complexified inner product when working with complex differential
formes:

When extending the metric to differential forms, for example to calculate
the derivative of our metric map h : X — P, ~ G1,(C)/U(n) we extend the
metric on maps 7X — HC. In the previous subsection A.2.8 we mentioned
how the metric splits up under the tensor product. There we saw that for
alz)dz=a(z)®(1dz2),8(2)dz = a(z)®(1d z) we have hpealogal! (a(2)®
(1d2),B8(2) ® (1dz)) = hp(a(z),5(2))hA;o®Ag(,1(dz,dz) for any space F'
where «, 3 take values in. In our case F = HE.%.

Usually we will work on an open disc with the euclidean metric. For the
euclidean inner product we get /110, 0.1 (w, n) := wA*1.* This is a positive
differential form for w = 71 since for w = fdz = WA *w = fdz AxfdZ =
|[fPdzAidz =d|f[*dzAdz =2|f]*dx Ady. Further w A% =0<< w =10
and linearity is obvious.

YRename i <> j and interchange the sums to get > . > 8,987, =

Jj=1

Z?:l Z?:l (Si>]‘QSijPSij and by symmetry QSZ‘jPSi]‘ = QSjZ‘PSjZ‘. Hence
2 Z?:l Z;‘lzl (5i<jQSjiPSji == Z?:l E?:l (5i¢jQSjZ‘PSJ’i. Analogous for T'.

Tir(H) = tr(HT) = tr(ST) = tr((ST)T) = tr(TTST) = —tx(TS) = —tr(ST) = tr(ST) =
0,VS €S,,T €8, by elementary properties of the trace.

48Maps dH : TX — TP,, can be identified with an element of (Aﬁ(’0 ® Ag(’l) ® H,,.

9¢f. A.1.3.
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Since our Gl,(C)—action is smooth and invertible

pgl,]P’n :Pp = Py, ngP,L(Q) = pgl,IP’n(Gv Q)

is a diffeomorphism. In particular (dpg p )g is an isomorphism. Thus TP, ~
Taa-Pn ~ ToPy, VQ € P, by transitivity of the action. Note that (dpg p )5(Q) =
GQG* € Tgg-(P™) by a basic calculation.

Finally we get the metric (corresponding to our topology) by

(Q,P)ryp, = tr(H'Q"(H)"'H'P), VQ,P e TyP,

since this inner product is invariant under our action: For @ = GQ\G*, P =
GP,G* € ToaP,, Qo, By € TgP,, we get

(Q: P)rggr, = tr((GG*)"HGQuG") (GG*) " (GP,GY))
— ()G GQIG (GY) T G GRGY)
= tr((G*) QG RG™) = tr(Qe PG (GF) ™) = tr(Qp Po)
(Qo, Po)ns-

At the end of this section we want to describe the Levi-Civita Connection on P,,.

Lemma A.2.21. The Levi-Civita Connection on P, is given by
1
VxY = XY — §(XH‘1Y +YH'X),

with H € P,, X,Y € I'(P,,, TPP,,) vector fields, i.e. Xy,Yy € TyP, = {H} x H,,.
Here XY shall be understood as the "product" of vector bundles, i.e. the
derivative of Y in X —direction.

Proof. First note that the connection is torsion free, since
VY = VyX = XY — XY = [X,Y].

In order to show "metric" choose a path H(t) : [0,1] — P,. By the chain rule we
get LH-1(t) = —H ' (t)H(t)H '(t). Then

%tr(fé O Xgo H () Yaw)

=tr (EH_I(t)XH(t)H_l(t)YH(t))

- (H‘l(t)H(t)H‘l(t)XH(t)H‘l(t)YH(t)> Ftr (H‘l(t)XH(t)H‘l(t)YH(t))
—tr (H*l(t)XH(t)Hfl(t)Hu)H*l(t)YH(t)) ¥ tr <H*1(t)XH(t)H*1(t)YH(t)> .

0y ] = L= Poy(0) = BEX = S0,y ([dpGip)e(X) = HCGvOG|,_, =
G %V(t)‘t:o G* = GX@G*. In particular TyP = H,,.
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On the other hand
tr (H OV XuwH _1(t)YH<t>>
= tr (H_l(t)H(t)XH(t)H_l(t)YH(t)> — %tr (H‘l(t)H(t)H_l(t)XH(t)-
H ()Y — %tr (0 Xm0 H (B () H (1Y )
tr (H O XupH (f)VH(t>YH(t>)
= tr (Hfl(t)XH(wH’l(t)H(t)YH(tO - %tr (H’l(t)XH(t)H’l(t)H(t)

H0Yi) — 2t (H™ ()Xo H™ (1) Yo H (O H()

Now using Xp 1) = H(t)#(t)XH(t) we get the claim. O
Lemma A.2.22. The space P, is non-positively curved.

Proof. The curvature tensor of the Levi-Civita connection follows by an elementary
calculation using torsion freeness (cf. [CPR93|.)

1
Ru(X,Y)Z = —ZH[[H‘lX,H‘lY],H‘lZ]

Next compute

1
(Ru(X,Y)Y, X)u, n = —1<[[H_1X7 H 'Y, H'Y],H ' X)u, &

1
=~ (XY B X, p = 2(H ' YHOXH Y, H ' X,

+((H'Y)Y?H X, H’1X>HmE)

Every positive hermitian matrix H has a square root, even more a matrix is
positive-definite if and only if it has a square root.’! Using the properties of
the trace we get for X_1/o:= HV2XH Y2 Y )y :== HV2YH1/?

(Ruy(X, Y)Y, X)u, n
1

= v (<X71/2(Y71/2)2, X71/2>H,L,E - 2(Y,1/2X,1/2Y,1/2, X71/2>]HI”,E

H((Y_1/2)* X102, X1 )2)m,.2)

51 Any book on linear algebra or by H = UDU*, D = diag(dy,...,d,) diagonal, U unitary,
DY? = diag(d)/?,...,dy/?) = H = UDU* = U(DY?)2U* = UDY2U*UDY2U* = (H,)?, i..
Hy square root of H.
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1

] (tr((X_1/2)%(Yo1/2)%) — 2tr(Yo1 09X 1/2Y 12X _1)2)

Htr((Yo2)*(X 1 p2)%))
By Cauchy-Schwarz

tr(Yo10X 1/0Y 12X _1/2)

= (X oa/2Yo1/2) Yor o X))

< tr((Xoaj2Yorgo) (Xoa oY) 20 (Yo o X ) (Y- 1/2X 1/2))'?
=tr(Y_1 0 X 10X 10Y 1)2) 1/2 tr( X1 )oY 1 /0Y )0 X0 1/2)

= tr((X_12)*(Yo1/2)?)

Hence
(Ry (X, Y)Y,X>HH,H < 0.
O]

Definition A.2.23. Define a metric on P, as dp, (A, B) = inf{L(y)|y : I —
P, path from A to B.} where L(vy) = fol | L) L A is the length of .

Define Defl (K) = limy o w = LeHHiB ., the differential of exp at the

point H € H,, in B—direction, B € H,,.

Lemma A.2.24. || De(B)

H, ot = |le 72D (B)e 2w, g > || Bllu,.e

Proof. In order to show this inequality and afterwards that P, is complete, we
follow the approach of Bhatia [Bha06|, p. 203ff.
Remember first:

Theorem A.2.25 (Continuous functional calculus). VA € H, 3 a unique ® :
C(spec(A)) — (BL)(C") bounded linear operator on C" with

(i) ®(id) = A and &(1) = iden (1: A — 1),

(i) Vo, B € C, f,g € C(spec(A)): @(af + Bg) = a®(f) + BL(g), 2(fg) =
O(f)2(g), 2(f) = (f)",

(iii) @ continuous.

Proof. Miiller Functional Analysis Course II, [FA09|, Chapter 1.2, page 5. [
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As usual write ®(f) = f(H). Restrict to f € C*(spec(A)). Further denote f the
first divided sum of f defined on spec(A) x spec(A) :

) =)
A ) = T a

FEN) = F(N).

Back to f = exp. Choose an orthonormal frame such that H = diag(hy,...,hy).
Then el = diag(e™, ..., e"). We have already seen, that exp induces exp : H,, —
P,, C H,,. We want to show that D exp(H)(B) = exp”(H) @ B>, where exp®(H)
is the matrix with entries exp™(\;, \;) for the eigenvalues of H in the fixed order
corresponding to our basis, i.e. how they occur in the diagonal form.

. A F

et — M

NN
(exp™(H))u = €.

= (exp®(H))i; = if i # j,

Moreover the commutator of a hermitian matrix H and a skew-skew hermitian
matrix A is again hermitian. So we may apply D. By Leibniz rule

exp(H)A — Aexp(H)

_ e—tAeH etA

I
e 2=
(e

ml

£
S|

X

S
I
o

t=0
e—tAHetAe—tAH . HetAe—tAHetA

n!

M]3

S
o

t=0
(e—tAHetA)n

n!

NE

i
o

t=0

— 53 exp (eftAHetA)

t=0

2 (—tA)" 2 (tA)
(E) (55

d
= O (H + HtA —tAH + O(t%))

2o aja 2la 2le

@
»
T

)

5Ze is the entry-wise multiplication. If it is clear that we are working with divided sum, we
might omit e in future.

t=0

t=0
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— % exp (H + t[H, Al + O(t*))

t=0

Next the differentiability of exp allows us to move the limes from the differential
quotient under the exponential function and hence O(t*)/t drops out. Hence

d _ 6Hth[H,A] _eH i
e (H). A] ;o0 (H 4 {H, A)| = lim == = Del'(1H, 4)
Further define the subspace SCy = {[H,A] : A* = —A} of the commutators

of H with skew-hermitian matrices. This is an additive subspace of H,,, as the
commutator is linear. Therefore H,, induces an inner product tr(AB) on SCy. But

tr([H, A], B) = tr(HAB — AHB) = tr(ABH — AHB) = tr(A[B, H]) = 0,

VA € SH, B € H, if and only if [B, H| = 0. This follows from [B,H| =: M
skew hermitian: tI'(AM) = ZZj:l Qi5Mj; = 0 and for Q55 = aijékidlj — a_ﬂ(Sk]éh
= aymy = 0 for k # [ implies my, = 0 and for [ = k: my = 0 skew-hermitian.
Hence M = 0. So

Zy orthogonal complement.

Let B € SCy = B = [H, A] for some skew-hermitian matrix A. Then De” (B) =
lexp(H), A] and in the basis with H = diag(hy, ..., h,) = efl = diag(e™, ... eM).
For )\z 7& )\j

(De™(B))y; = (lexp(H), Al)yj = (e"ay; — aye),,

ehi — ehi
= (G ),
ij
el — ehi
- (m[ﬂ = AL‘J‘) )
3 J 14
h

ehi — el
= (——B,
( hi—hj ])..
ij

For h; = h; = B;; = 0 and e’”aij — al-jehi = 0 so the equality holds anyway.
The other case is B € Zy = [H,B] = 0: If H, B commute we may diagonalize
simultaneously - B = diag(by,...,b,) - and so

" . HHB _ H
(De"(B))y; = lim | —-
ij

t—0 t

53 €7tAH€tA tA

is again hermitian, since e* is unitary, i.e. exp well-defined.
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ehittbi _ ohi

= hm _—
t—0 t .
()

— (),

Putting all together we get De (B) = exp®(H) e B.
Our original problem becomes (B is no longer diagonal, since it must not commute
with H - but hermitian)

h;

HefH/2D€H<B)efH/2H%I 5 = Zehel_ehJ e hehJ—e B
" hi — h; hj — h;

n ehi _ ehj 2
= Z e~ i —( )2 | By |?
= (hi = h;)
= (hi — hy)? ?
n (ehi/2—h]~/2 _ 6—hi/2+hj/2)2
= - |Bi;*
Pyt (hi = h;)
n(ehil2 Rl e—hi/2+hj/2)2
= > | By;I?

Pyt (hi = hy)?
<= (2sinh(Ri/2 = hy/2))%
- ZJZI (hz o h]) ‘BH’

e sinh?(hi/2 = hy/2)
= 2 ok Pl

ij=1
> > |Byl* = u(B"B) =
ij=1
where we used in the last step that Smh(x > 1,Vz € R. ]

Lemma A.2.26. For any path H(t) in H, and the induces path v(t) = ef®:

) > / VE(8) s, .5
Moreover
L(y) > ||(log(A) — log(B))

which implies 0p, (A, B) > [|(log(A) — log(B))||m,.z
54The tangent space to H,, is TH,, ~ TR™ ~ R" ~ H,.

H7L7E7
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Proof. By the chain rule 7/(t) = Def’®(H'(t)). By the previous proposition for
B=H'(t)

1 1
L(y) = / 15O DEHO (B (1)), A > / | (), d .
0 0

Remember that we had the bijection exp : H,, — P,. Therefore we may define
log the unique function with log(exp) = idg,. Now take a path v from A to B
in P,,, then H(t) := log~(t) is path joining log(A) and log(B) in H,,. Therefore
fol |H'(t)|m, g dtis the length of H(t). Recall that our metric on H, is induced by
the euclidean metric on R”. Hence a geodesic in H,, is a straight line and therefore

L(y) = /OHH/(t)HHn,EdtZ/O [(log(A)(1 —t) + tlog(B)) e, d

= /0||(10g(B)—10g(A))|IHn,Edt=||(10g(A)—log(B))IIHn,E.

Thus we get
Proposition A.2.27. (P,,dp,) is complete.

Proof. Take a Cauchy-sequence F,, in (P,,dp, ) and let H,, = log F,,, be the corre-
sponding sequence in H,,. By A.2.26: VI € N,dN € NVk,m > N:

| H — Hillg,,z = || 1og(Fn) — log(Fi)|lm,.e < 0p, (Fin, Fr) <27

Then H,, converges to H € H,,. As mentioned before (|Ched6|, p. 14) exp is even
a homeomorphism, i.e. continuous, and we may interchange exp and the limit to
receive

lim F,, = lim log(H,,) =log(H) € P,.

m—00 m—r00

[]

This result is of particular importance, because it enables us to use some results
for complete geodesic spaces.

A.3. LOCAL SYSTEMS AND Zx-MODULES

After defining local systems we will recall the Riemann-Hilbert correspondence.
Then we will define the pushforward bundle, which will appear again, when we
define our functors later on; and recall two equivalent notions of regularity due to
Deligne [Del70].
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Definition A.3.1. A Local System L is a locally constant sheaf over X.

Proposition A.3.2. There is an equivalence of categories between local sys-
tems (modulo sheaf isomorphism) and representations of the fundamental group
m (X, z) — Gl,(C) (modulo Gl,(C)—conjugation) for a fixed base point x € X
and flat vector bundles up to Gauge equivalence.

Proof. A proof can be found in [AtkO08|, p. 13 or Reisert [Reil0]. Essentially we
associate to each flat vector bundle the sheaf of sections killed by the connection,
i.e. the corresponding local system and on the other hand reconstruct V' with the
stalks of the local system as fibers. O

Carlos Simpson uses for vector bundles with a flat connection - in contrast to vector
bundles with constant transition function - the name Zx—module. However, in
general:

Remark A.3.3. The space Zx is the sheaf of differential operators, i.e. the Ox-
(resp. O%-, Ex-)module generated® by derivations given by the vector fields on
X. A space V is an Zx—module if there is an action of Zx on V.5 If V has the
structure of a locally free Ox- (resp. O%-, Ex-)module, it is the same as equipping
V with a flat connection.

We will use the Zx—module mainly in the part on filtered vector bundles, where
we add some more restrictions on the vector bundles resp. coherent sheaves.

The following definitions and results can be found in Deligne [Del70)].

Definition A.3.4. Assume that X = X \ {s}. Let (V,V) be a Zx-module (flat
vector bundle), F the sheaf of holomorphic sections into V. Denote j : X — X
the inclusion and j,(F) the pushforward sheaf, i.e. j.(F)(U) := F(j~'(U)) for
all open sets U C X.°7 For a sheaf F of Ox-(resp. Ex—, O%—)modules the
pushforward is a sheaf of j,Ox—(resp. j.Ex—, 7.0%—)modules, i.e. in the case of
isolated punctures j,Ox is the set of functions holomorphic outside the punctures.

Definition A.3.5. (V,[V]) with V vector bundle on X, V vector bundle on X is
called meromorphic vector bundle iff

(i) V extends V, in terms of sheaves V C 7, V.

55sum, composition.

560One might differentiate between left and right Zx-module.

57j continuous = j~'(U) open. Further for W C U the restriction maps are pf;y
J«(F)U) = 4(F)(W) just p?J,W = Pi-1(U),j -t (W) where Pj-1(U),j-1(w) are the restrictions
of F.
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(ii) [V] is an equivalence class, with V; ~ V, for Vi, V, with (i) iff 3n € N such
that for the corresponding sheaves®

2V C Vo C 27"V C g« V.

Definition A.3.6. A frame of V is called a meromorphic frame of [V, [V]] if it
restricts to a holomorphic frame of V. A frame on V is called meromorphic if it is
the restriction of such a frame.

Definition A.3.7. A holomorphic connection V on V is called meromorphic if
V extends to a meromorphic bundle with meromorphic frame (s;) and V=d+ A
w.r.t. (s;) with all entries of A meromorphic.

A connection V is regular if it is meromorphic and one can choose (s;) such that
A has at most a pole of order 1.

Lemma A.3.8 (Deligne). Let (V,h) be a metric bundle, V the corresponding
locally free Ox—sheaf and V; an extension of V. A section s € V; is meromorphic

if and only if it has "moderate crossing", i.e. if it is bounded by ||s||, < C|z|" for
some C, N > 0.

Proof. This is proposition 2.18. [Del70]|, p. 68. [

Remark A.3.9. (i) There are indeed meromorphic sections on an open neigh-
bourhood_of a puncture s with pole at the puncture, even global functions
on all of X (cf. Forster [For81] 29.17, p. 225.).

(ii) Let (s;) be a holomorphic frame of V. If m is our meromorphic function
from (7), PO} B local t.rivializatio.n,.t}?en mz(x) = %}i{s}(%m(‘l‘)&) forms
a meromorphic frame, since the trivialization is a C—isomorphism. Hence
there always is a meromorphic extension defined by the Ox—span of the m;,.

(iii) The stalk of j.(F) at s consists of equivalence classes of local sections of F.
In particular Yo € j,(F)(U),s € U 3 a possibly smaller neighbourhood V' of
s such that v|y\ (53 € 7.(F)(V\{s}) = F(V \ {s}) can be uniquely identified
with v, i.e. there is only one element in the equivalence class of v. Therefore
every sheaf homomorphism 6 on F rises to a sheaf homomorphism on j,F.
An isomorphism induces an isomorphism. We denote the morphism on j,F
by 6.. Analogously for connections D resp. V holomorphic.

Theorem A.3.10. Let (V,V) be a flat vector bundle on X. The connection
V has a regular singularity at s if and only if each branch of a flat holomorphic
section e (Ve = 0) grows at most polynomially along each ray p out of s (in terms
of a meromorphic basis).

582 local coordinate vanishing at the puncture.
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Proof. Deligne [Del70|, p. 55, theorem 1.19. Parts of the proof involving mon-
odromy will be given later. O

In signs: Let D be an open neighbourhood of p containing no other puncture and
z a local coordinate around D. Set p(zo,t9) = {z € D : z = t(tozo — p) + p,0 <
t < 1,tp € Ry} for zy # p. For ty small enough exists U,, in the trivializing
cover of V such that p(z9,%y) C U,,. The connection V can locally be written as
V = d+ A¥, with A a matrix valued one-form (4.2.5 on page 174 in [Huy05])
w.r.t. a meromorphic frame of V on U, e.g. the meromorphic frame constructed
before the last example. Than Vs = 0 < ds = —As, i.e. an ordinary differential
equation which can be solved in some small neighbourhood of an initial value and
by flatness of the connection be extended along some paths.®® As long as we stay
in some contractible neighbourhood the solution will be single-valued, in general
multivalued (e.g. possible on D\{p}). If necessary restrict U,, to a possibly smaller
neighbourhood named U, as well. Let oy, = denote the trivialization on U, and
P2 (t) be a parametrization of p(zo,%y) with p(zo,%0) C U,, and lim; .o p.,(t) = p.
Now V has a regular singularity at p iff VzoVp,,(t)Vs (multivalued) horizontal
section s on U,,: 3k € Ndc € R,

Ipr, 0., 5(p= (E)] < clt|™ V2 <m < n+1,tsmall enough.*

A.4. ENDOMORPHISM BUNDLE

This section on the endomorphism bundle starts with a fundamental construction
of a metric on End(E) as well as the construction of the induced differential
operators. This subsection is of particular importance, since it will be often
advantageous to consider the endomorphism bundle instead of E itself, in order
to get the right result. So we will often use the description of this subsection.
Consider the bundle End(E) over X. If (E,h) is a hermitian bundle
with orthonormal frame (e;)i<i<n, then h*(ej,ej) = §;; defines a hermi-
tian scalar product on E*, where (e})1<i<, is the dual basis. Recall that
End(E) ~ E* ® E via the isomorphism f : ¢ — > " (ef o ¢) ® (e;). Now
hena(p, X) = szzl h*(ej o, e5 o x)h(e;, e;). Obviously this is a positive-definite
hermitian inner product.

9 is the trivial connection, i.e. dY | a;s; = > i (da)si, s; frame.

60Flatness guarantees the independence of the chosen path.

611n abuse of notation s stands for a local horizontal section on U or a branch of a multivalued
horizontal section.
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To introduce a connection on End(F) ~ E* ® F recall the induced connection on
E*: D.(f)(s) =d(f(s))— f(D(s)), f € E*,Vs € E. Here D is metric and h* is the
induced metric. If (E, h) is a hermitian bundle with orthonormal frame (e;)1<;<p,

then h* (e}, ej) = d;; defines a hermitian scalar product on £, where (€} )1<i<, is the

dual basis. Recall that there is an anti-linear bijection £ — E* £ — h(-,&) = £*.
Our metric becomes

e = G e =S e,
i—1 j=1 i=1
= ) &mhlee) =h()_&Gen > nje))
i=1 i=1 j=1

= h(&n),

i.e. we could equally define h*(£*,n*) = h(&, n).5 Our induced connection satisfies

D.(&7)(n) = Dau(h(n,€)) = dh(n,&) — h(Dn,&). If D is metric, than D.(£)(n) =
(D&)*(n). Further

dh*(€%,n") = dh(&,n) = h(DE;n) + h(&, Dn)
= hA((DE)" ") + h (€7, (D))
= W(DLE), ") + B (&7, Du(n7)).
Now we have seen, that on the tensor product E® E* ~ End(F) a metric is defined

by hpgp-((s,&%), (r,n®)) = h(s,r)h*(£*,n*). D induces a connection Dggps =
D®1+1® D,. If D is metric so is Dggp=:

dhpep-((s,€%), (r,n"))
= (dh(s,m))h*(§",n") + h(s,r)(dh"(
= (h(Ds,r) 4+ h(s, Dr))h(&,n) + h(s,r) (K" (D" n") + h* (€7, Din’))
= hpep-((D®14+1® D,)(s,£), (r,n"))
+heer+((s,€"), (D®1+1® D,)(r,n")).

&)

Finally we want to find the induced metric on End(E). We have

E®E* — End(E),

&n*) = {s—=n"(s)§ = h(s,n)&}
End(E) — E® E*,

n

© HZez (€F o) Zei®h(go-,ei)

=1

2Conjugation since a* = ah(-, &) = h(-,af) = (af)*.



186

| A. APPENDIX

Hence we define the metric on End(F) as the pullback of the metric on £ ® E*:

hEnd(Spy w) = hE@E* <Z €; & h(gp7 61‘), Z Gj X h(1/)’ 6j)>

i=1 j=1

- Z hegp~ (€: ® M-, €:),e; @ h(1-, €5))

1,7=1

= Z hﬂh*«@*ez)*? (¢*€J)*)

ij=1

= Z h]zh Z Pil€l, Z w]kek

'le

- Z hjitkhiapa
gl k=1
= tr(HyY " Hyp)
= tr(¢"p) for (e;) orthonormal, i.e. H =F

= llelly  for o =1.

In general for ¢ = 1) we still have a norm ||Hy||% by H* = H. Usually we define
H on a basis (e;) as h;; = h(ej, e;).

Remark A.4.1. (i) The inner product on End(F) is just the Hilbert-Schmidt

inner product, i.e. hgada(A, B) = 1, h(Ae;, Be;) = tr(B*A) =37, a;ibj
for e; orthonormal frame. The Correspondlng norm is the Frobenius norm.
This justifies our choice of the Frobenius norm.

Further we see that hgnq(A, B) = hgna(E, A*B). Even more hgu(A, BC) =
hgna(AC*, B) for matrices A, B, C' in orthonormal coordinates H = E. The
last equality follows for example by

hena(A, BC) = tr(HAH(BC)*) = tt(HAHC*B*) "=" tr(AC*EB")
= hgaa(AC*, B).

If we have to differ between different metrics we will sometimes denote
ol := tr(p*HpH).

The induced norm on the endomorphism bundle is consistent with the orig-
inal norm H in the following sense:

—II I7 =
tr(H?) HEH%
for any section e € E.
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Remark A.4.2. Before we proceed with the construction of connections on the
endomorphism bundle a short interlude on bundles with different metrics. Assume
that we want to find an inner product for maps from (F,h) to (E, k) for two
different metrics on the same bundle E. From the previous calculation we read off
(using the general identification Hom(V, W) — V*@ W, f — >, w; o f ® w; for
w; basis of W.)

hEnd,h—)k‘((pa ¢) = Z k(eia ek)h* (ei ® k(@'v ei)’ €j & kj(ﬁ“ ej)) .

t,j=1

Let e; be an k—orthonormal frame and denote all matrices in this frame. Let K =
E be the representation of k and H the representation of H. Since h(e;, e;) = e;He;
we have

k(€, f) — f*KG = f*Kl/QH_l/QHH—l/QKl/Qe
= h(H_1/2K1/267 H_1/2K1/2f)
= h(Hfl/Qe,Hfl/Qf), e.fcEK=E.

Then

hEnd,/Hk(SD, ¢)
= k(e e))h* (k(H P

ij=1

o H71/2K1/2g0*6i>’ k(Hfl/QKl/Q" H71/2K1/2¢*€j)>

_ Z Ejzh* (h(7 Kl/QH_lKl/ZSO*Gi), h(, Kl/zH_lKl/Qw*ej))
ij=1

_ tr<KK1/2H71Kl/?w*HKl/QHflKl/%p)

= tr(H %), K=F

= (pH 2 0H ) ys.

Instead of a k—orthonormal frame we may choose a K'/2H~'K'/?—orthonormal
one.””  Then norm becomes ||¢||f a0 = tr(K@*Hp) = (Hp,pK)ps =
[(Hp,pK)us| < ||Hellrl|Ke|lr by Cauchy-Schwarz. We will later on use that
the last formula shows: If ¢ is LP—integrable with respect to h and with respect
to k then ¢ is LP—integrable w.r.t. || - ||gnd n—k-

Furthermore note that we didn’t use any properties of the endomorphism bundle,
that a general homomorphism bundle does not have. Indeed the identification

BKV2ZH-1KY? positive-definite since z*K'V2H 'K'?z = (K'/22)*H-'(K'?z) > 0 by
K'/2 invertible, H positive-definite.
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Hom(V,W) = V*@ W, f — > wfo f ®@w, for w; basis of W works perfectly
with general homomorphism. As well the basis (w;) only depends on the range;
the usual identification with X x C” via trivializations leads to a compatible basis
in V.

The connection D becomes

Dpep-(p) = z”: De; @ h(p-,€;) + e; ® Dy (h(ip-,€;))

i=1

= z": De; @ h(p-, ;) +e; @ Dy(p e;)"
i=1

- i De; @ h(p-,€;) + e; @ dh(ip, e;) — e; @ h(¢D-, ¢;)
i=1

= Dpna(p) = Zn: De;h(p-, e;) + eidh(p-, ;) — eih(pD-, e;)

i=1

= Y Dehly &) +edh(p,e;) — pD

i=1

= Y D(eih(¢,e:)) — 9D = D(>_ eih(p-,e:)) — D
i=1 1=1

= Dp—pD.

By construction this connection is metric again.

Remark A.4.3. e¢; induces a basis on End(E) by e} ®@e;, which as a matrix looks
like (Ejj)ix = 6401 - all entries 0 apart from the (¢, j)—entry 1. If e; is D—flat,
then for s = >0, spex

(DEZJ - EzD)(S) = Dsjei — Eij Z Dek X Sk +er® dSk
k=1

= D@i X Sj +e ® de — E”(Z e X dSk)
k=1

€; ®d8j — €; ®d$j
= 0.

Hence Ejj is a D—{flat frame.

We showed:
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Lemma A.4.4. A metric connection D = 9r + O on a hermitian bundle E
induces a metric connection DY, : T'(U,End(E)) — I'(U,End(E)) ® Q% by

Dy () := [Dina, 0] = Dip(s) — o(Ds), s e D(U E), ¢ € (U End(E)).%

We see that it obeys the Leibniz rule

Dig(p®a) = D(p@a)(s) — (¢ ®a)(Ds)
= Dy(s) @ a+p(s) @da—¢D(s) ® a
= Diaa(9)(s) ® a+ ¢(s) @ da,

for s e I'(U, E),p € I'(U, End(FE)),a € I'(U, C).
By the requirement D ;(p @ w) = D () ® w + ¢ @ dw we get further

Di.g : T(UEnd(E)) ® Q% — I'(U,End(E)) ® 0%,
Dia(p@w)(s) = DY p@w)(s)+ (p @w)D(s)
= Dp)(s) ®w+p(s) @dw+ (p ®w)(spo ® wpo)
= D(p)(s) @w +p(s) @ dw + (p(5p0) ® W A wpo)
= D(¢)(s5) @w+ ¢(s) @ dw — (@(spo) ® wpo Aw)
= Dp)(s) ®@w +p(s) ®dw — (pD°)(s) Aw
= (D’ —¢D") @ w)(s) + ¢(s) © dw
- DEnd( ) () (

The curvature of Dgpq is

5) ® dw.

DipaDina(9) = Dipa(Dp — D) = D*¢ — DpD + DD — pD?
= [D* ¢] = ad(D?)(y).

Remark A.4.5. The construction extends naturally to higher order differential
operators. For two operators Dg, Dp of the same degree (p,q) on E resp. F the
induced operator on Hom (£, F') is just Dyom(r,r) () = Dpe + (—1)P %0 Dg. This
follows directly by adding some indices in the calculation above.

Let’s take another look at the curvature in general. Note that for any hermitian
connection D on any holomorphic bundle E':

hg(D?*s,s) + hg(s, D*s)
= dhg/(Ds,s) + hg(Ds, Ds) 4+ dhg (s, Ds) — hg/(Ds, Ds)

o =1 ®@n, acts on s ®w by p(s ®w) = {z = (21(2))(s(2)) ® (1, A w)().
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= dhg(Ds,s) + dhg/(s, Ds)

= d*hp(s,8) =0, sel(X,E)
= hg(D?s,s) + hg(s, D*s) = hg(D?s, s) + hg (D2s,5) = 0
= hp(D?s,s) imaginary form, i.e. fdzAdZ, f real.®

In our case E' = End(FE).

65The name imaginary comes from dz Adz = —2idz Ady, i.e. as a real differential form the
function part is imaginary.
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