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Abstract

In this work we recall and discuss optimality criteria for decision making under
uncertainty with respect to different assumptions concerning the structure of
the information available. First, an overview of the basic concepts of classi-
cal decision theory is given. Here, particular emphasis is placed on explaining
classical decision criteria (i.e. criteria for the case that the uncertainty can
be characterized by using classical probabilistic models) from literature and
discussing the assumptions underlying them (specifically Bernoulli-, Maximin
and Hodges & Lehmann-criterion are discussed). Afterwards, in order to es-
tablish the mathematical basis necessary, a brief introduction to the theory of
linear optimization is provided. Thereby, particular interest lies in recalling
theoretical results concerning the resolvability of linear optimization problems.
Subsequently, we demonstrate how linear optimization theory can be used to
construct algorithms for determining optimal decisions (with respect to the
classical criteria) in finite decision problems. Examples of concrete decision
problems are given. Next, we give some (theoretical and practical) examples
that support the idea of introducing imprecise probabilistic models to decision
theory. Accordingly, two common generalizations of classical probability the-
ory are explained: Credal sets and interval probability. Connections of the
two concepts are shown up. Finally, we recall criteria for optimal decision
making, if the uncertainty is characterized by a credal set or an interval proba-
bility respectively (specifically interval dominance, E-admissibility, maximality,
Γ-Maximin-criterion, Γ-Maximax-criterion and a criterion combining the two
latter). Again, for all criteria discussed, we illustrate and explain algorithms
for determining optimal decisions.
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0 Introduction

0 Introduction

The present work deals with decision making under partial information and, there-
fore, contributes to the scientific field of Decision Theory. Accordingly, a straightfor-
ward way of introducing to this thesis is to briefly summarize (our standpoint on)
the basic characteristics of Decision Theory. Particularly, this helps to clarify where
this work is located within the broad field of this scientific discipline.

So, what is Decision Theory? A commonly accepted (and very general) definition
is the following: Decision Theory is the science of rational decision making in situa-
tions under uncertainty (see e.g. [2, p.3] or [33, § 1.1]). However, due to its immense
generality, this definition immediately gives rise to (at least) three (highly related)
questions:

1. What do we mean by rational decision making?

2. How can we formalize a vague concept like uncertainty adequately?

3. Where is the connection between rational decision making and the (yet formal-
ized) uncertainty underlying a situation?

Throughout the present work, the focus will mainly lie on dealing with question two
and three posed above. In contrast, the first question will be assumed to be answered
already (with the exception of the short discussion in Remark 3 on Definition 1).

Clearly, this seems to be a rather comfortable point of view: Defining and formaliz-
ing rationality is a highly non-trivial task and constitutes a fundamentally important
part of many different scientific disciplines, such as economics, (subjective) probabil-
ity theory, sociology and philosophy. So, how can we justify this incompleteness?

Like many others before, we do so by appealing to a well-established scientific prin-
ciple (or excuse?): ’To divide the difficulties, i.e. to concentrate on one (the subject
proper of the investigation in hand), and to reduce all others as far as reasonable
possible, by simplifying and schematizing assumptions’ ([31, p. 16, l. 7-10]).

Nevertheless, let us (very briefly) clarify our sight on what we understand by ratio-
nality and rational decision making in the present work (following for example [6,
Ch. 2.2] or [31, Ch. 1.3]):

Consider a decision situation under uncertainty and suppose the set of available
decisions (or actions, see Definition 1) is given by A. Furthermore, suppose the
uncertainty underlying the situation is about which of the elements of a set Θ (the
set of states, see Definition 1) corresponds to the true description of reality.

1



0 Introduction

Clearly, every pair (a, θ) ∈ A × Θ induces a consequence c(a, θ), namely the conse-
quence of choosing decision a under the condition that θ corresponds to the true
description of reality. Accordingly, the set of all possible consequences is given by

C :=
{
c(a, θ) : (a, θ) ∈ A×Θ

}
(1)

Note that, in general, the set C won’t consist of numbers. Instead, C might for
example be a listing of statements describing the consequences of the pairs by words.
Particularly, there does not exist a meaningful way of measuring distances between
the elements of C in general.

Now, for any actor (here the term actor labels the person having to choose between
the actions), we assume that he can order the elements of the set C (that is the
possible consequences) by individual preference in a certain way (if this assumption
is violated decision making is not possible at all, since there is complete indifference
between the possible consequences). For example, an actor might prefer consequence
c(a1, θ1) before consequence c(a2, θ2) (or vice versa). Note that, at this point, this
ordering doesn’t have to be meaningful at all.

Next, we define an actor to be rational if, and only if, his individual ordering of
preferences on the set of consequences C is in accordance with the axioms of von
Neumann and Morgenstern (see e.g. [31, § 3.6] or [33, p. 43]). This set of axioms of
rationality for example ensures the preference order to be transitive and total (see
Definition 5 for further details).

This is where the famous Theorem of Morgenstern and von Neumann (see [31, p.
617-632]) comes into game. It states the following: For any rational actor A there
exists a mapping uA : A×Θ→ R such that for all a1, a2 ∈ A and θ1, θ2 ∈ Θ we have

A prefers c(a1, θ1) before c(a2, θ2) ⇔ uA(a1, θ1) > uA(a2, θ2) (2)

Hence, the theorem guarantees the existence of a real-valued utility function perfectly
specifying a (rational) actor’s ordering of preferences. Note that the map uA is not
unique. Instead, any linear transformation of uA characterizes the same preference
order (see [31, p. 617-632]).

The Theorem of Mogenstern and von Neumann justifies the following approach: The
problem of a rational actor A having to decide in a situation under uncertainty can
be formalized by a triplet

(A,Θ, uA(·)) (3)

2



0 Introduction

where uA denotes a utility function for actor A. Note that this is in accordance with
Definition 1 and, therefore, justifies the approach chosen in the present work.

But when does a rational actor A make rational decisions? Clearly, he should try
to achieve the highest possible value of the utility function uA (remember that uA
perfectly characterizes his individual preferences between the possible consequences).
This can be used as a definition: A rational actor makes rational decisions if, and
only if, by his decisions, he always tries to achieve the best possible consequence
and, therefore, tries to maximize his utility function.

This gives us definitions of rationality and rational decision making. However, re-
member that an actor’s influence is restricted on choosing between the elements of
the set A. That is, in general, the actor doesn’t know which element of Θ corresponds
to the true description of reality and, therefore, is uncertain about the consequence
of his decision.

For this reason, the above definition of a rational decision strongly depends on what
is known about the set Θ. For example, consider the extreme case where Θ con-
sists of one single element. Here, a rational decision rule is not too hard to make
out: Choose the action that leads to the best consequence under the only possible
description of reality. But what if there are concurring descriptions of reality? How
can we use information about the set Θ best possible in order to determine rational
decisions? How can we best decide if there is no information available at all?

This allows us to refine the very general definition from the beginning for our pur-
poses: Decision Theory is the science of rational actors making decisions that use
the available information in the best possible manner in order to receive the best
expectable consequence (according to their individual preference ordering).

This is where our story begins.

In the present work, we recall and discuss criteria for rational (or optimal) decision
making with respect to different assumptions on the structure of the available in-
formation. Furthermore, we recall (and extend) algorithms that allow to determine
such optimal decisions computationally. The thesis is structured as follows:

• Chapter 1: In the first Chapter, the basic definitions and concepts from
Classical Decision Theory are recalled. Here, the term ’classical’ particularly
relates to the assumptions made on the structure of the available information:
Chapter 1 treats the case that the uncertainty between the different states of
reality (that is the elements of the set Θ) is either adequately characterizable
by a classical probability measure (see Paragraph 1.2.3) or can be compared to

3
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a game against an omniscient and all mighty enemy (see Paragraph 1.2.4). For
both cases, the standard criteria of optimality are recalled and discussed. Ad-
ditionally, we recall an approach for decision making under mixed uncertainty
types (see Paragraph 1.2.5).

• Chapter 2: Often, the task of determining optimal decisions can be refor-
mulated as the task of optimizing a real-valued linear function under linear
constraints (remember, any rational preference ordering is representable by a
real-valued function). This task coincides with the basic problem setting of
the well-investigated theory of linear optimization (see Definition 11). There-
fore, Chapter 2 deals with some concepts and results from this mathematical
discipline that are relevant for our purposes. Within the considerations in the
Chapters 3 and 5, the theory of linear optimization will turn out to be a very
help- and powerful tool for both computing optimal decisions and proving their
existence.

• Chapter 3: After having given an overview on the required mathematical
background in Chapter 2, the third Chapter explicitly treats how optimal
decisions can be determined by solving suitable linear optimization problems.
Specifically, suitable optimization problems will be recalled and explained for
every optimality criterion discussed in the first Chapter. Additionally, concrete
examples illustrating how optimal actions can be determined by the usage of
standard statistical software (for example using R) will be given.

• Chapter 4: In many applications, the uncertainty underlying a decision sit-
uation turns out to be not characterizable within the framework of classical
probability theory. The axioms of classical probability theory demand a de-
gree of precision that often can’t be justified by the available information. In
such cases, more general descriptions of uncertainty seem to be more adequate.
Therefore, the fourth Chapter is divided into two parts: In Paragraph 4.1, we
give some examples from different scientific disciplines that support the idea
of a generalized theory of uncertainty. Consequently, in Paragraph 4.2, we ex-
plain two common generalizations of the classical theory, namely the concepts
of credal sets (see Paragraph 4.2.1, Definition 16) and interval probability (see
Paragraph 4.2.2, Definitions 18 and 19).

• Chapter 5: In the fifth Chapter of the present work, we recall criteria for opti-
mal decision making if the uncertainty is described by a convex credal set (see
Paragraph 5.1) or an interval probability field respectively (see Paragraphs 5.2-
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5.6). It turns out that, applying the generalized theory, the choice of a suitable
criterion is strongly dependent of the actor’s attitude towards risk. Therefore,
many different concurring criteria exist. Additionally, we recall (and extend)
algorithms to determine optimal decisions with respect to these criteria using
linear optimization theory. Again, we illustrate the computational treatment
of these algorithms by many examples. Finally, we list a couple of results on
the connection of the different criteria.

Throughout the thesis, some basic knowledge in the mathematical disciplines Prob-
ability Theory, Calculus, Measure Theory and Linear Algebra is required. Here, we
refer to the standard textbooks [26], [16], [18] and [11] respectively. However, ad-
vanced application of the corresponding discipline are recalled at the appropriate
places in the text.

For the sake of readability, the following symbols are used to indicate the end of a
specific passage throughout the whole thesis:

�: Indicates the end of a proof.

5: Indicates the end of a definition.

?: Indicates the end of an example.

◦: Indicates the end of a remark.

•: Indicates the end of an excursus.

Furthermore, the following letters have a fixed meaning:

n: Number of actions in a finite decision problem.

m: Number of states of nature in a finite decision problem.

k: Number of possible observations when considering finite data-based extensions
(that is k := |X |, where X denotes the space of observations).

π: Probability measure on the set of states Θ of a decision problem (together with
some suitable σ-field).

p: Randomized action for some basic decision problem.

5



1 Fundamental principles of Classical Decision Theory

1 Fundamental principles of Classical Decision Theory

In the first chapter of the present work a (not too) short compilation of the basic
definitions of Classical Decision Theory is given. In the first paragraph the classical
decision problem and two of its extensions are defined. Subsequently, we recall and
discuss some common criteria for the optimality of decisions in a given decision
problem. Finally, we recall the Fundamental Theorem of Baysian Decision Theory
that makes up a connection between classical decision theory and Baysin Statistics.

The chosen presentation of Decision Theory doesn’t claim completeness, but focusses
on concepts needed here. Particularly, many results that could be shown in a greater
generality are only shown for the finite case. We mainly follow [40], [2], [3], [6], [33],
[35], [13], [29] and [41]. More precise references are given at the appropriate places
in the text.

1.1 The classical decision problem and its extensions

Informally, the classical decision problem in a situation under uncertainty can be
described as follows: An actor has to choose an action from an (often finite) set of
alternatives. However, the utility of the chosen action depends on the true state of
nature, which, in general, is unknown to the actor. How should he decide?

The following definition, which is used e.g. in [41, § 2], formalizes this situation.

Definition 1. A classical (no-data) decision problem (CDP) in utility form is a
triplet

A := (A,Θ, u(·))

consisting of

• an arbitrary non-empty set A,

• an arbitrary non-empty set Θ and

• a map u : (A×Θ)→ R , (a, θ) 7→ u(a, θ).

The sets A and Θ are called set of actions and set of states, their elements are
referred to as actions and states of nature. The map u is called utility function. The
decision problem A is finite, if |A| <∞ and |Θ| <∞. 5

Remark. 1.) By analogy, the CDP could be defined in loss form. If this is the case,
the map contained in the triplet is no longer denoted by u (like utility), but by l (like
loss). This alternative way of defining a CDP is especially used in (the literature
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1 Fundamental principles of Classical Decision Theory

on) Statistical Decision Theory (see e.g. [6]), where l could for example measure the
expected quadratic loss of an estimator (see [12] for an exact definition).

From a mathematical point of view, there is no difference in the two definitions, since
there are no formal restrictions concerning the utility/loss function. Semantically, it
is of course essential to know whether the values should be interpreted as loss or as
utility.

2.) If A is finite, now and and from now on always

A := {a1, . . . , an} and Θ := {θ1, . . . , θm}

the following compact presentation of a CDP can be used:

u(ai, θj) θ1 . . . θm

a1 u(a1, θ1) . . . u(a1, θm)
...

...
...

...
an u(an, θ1) . . . u(an, θm)

Here, the entry (i, j) of the table equals the utility of the pair (ai, θj). From now on
this presentation is used without further commentary . The letters n and m always
denote the cardinalities of the sets A and Θ respectively.

3.) The above definition implicitly makes a couple of idealizing assumptions. For
example, it is assumed that both, the set of possible states and the set of possible
actions, are completely known to the actor (this is sometimes referred to as closed-
world-assumption, see for example [2, p. 17]).

Furthermore, it is assumed that the utility of each pair of action and state (a, θ)
can be perfectly specified by one real number u(a, θ). More precisely, we assume
that any preference ordering on the set of consequences (see introduction) can be
adequately characterized by a real-valued function. This assumption is justified by
the famous and well-known Theorem of von Neumann and Morgenstern (see e.g. in
[31, p.617-632]). Here, the authors prove that any preference order satisfying a set
of four (not too far taken) rationality axioms can be represented by such a function
(a more detailed discussion of this was given in the introduction).

Finally, the term utility shouldn’t be interpreted in a too restrictive way (for example
only monetary: A classical example for purely monetary utility functions contradict-
ing rationality is given by the famous Saint-Petersburg Paradox, see for example [34,

7



1 Fundamental principles of Classical Decision Theory

§ 1.3]). Instead, this abstract utility is assumed to be a perfect weighing of all forms
of utility relevant to the actor.

Of course, as for any other scientific model, these assumption should be discussed
critically in each concrete decision problem. In the following we want to assume
them to be true. A far more in-depth discussion of the topic can be found in [36,
Ch.1] and/or in [31, Ch.1, Part 3]. ◦

For each CDP A (satisfying certain conditions of measurability) one can define its
mixed extension G(A). The idea is the following: Instead of having to choose an
action from the set A (the actions contained in A are said to be pure actions in
this context), it is now possible to the actor to choose a randomized action. For-
mally, each randomized action equals a probability measure p : σ(A) → [0, 1] on
the measurable space (A, σ(A)), where σ(A) is σ-field including all the singletons.
This motivates the following definition, which is taken from [2, p.53] (with adapted
notation).

Definition 2. Let A := (A,Θ, u(·)) be a CDP and σ(A) a σ-field on A such that
{a} ∈ σ(A) for all a ∈ A. Define

G(A, σ(A)) :=
{
p(·) : p is a probability measure on (A, σ(A))

}
Let, for each fixed θ ∈ Θ, the map

uθ(·) := u(·, θ) : A→ R ; a 7→ u(a, θ)

be p-integrable for all p ∈ G(A). Define the map

G(u) : (G(A, σ(A))×Θ)→ R , (p, θ) 7→ Ep(uθ) :=
∫
A
uθ dp (4)

Then the triplet
G(A) :=

(
G(A, σ(A)),Θ, G(u)(·)

)
is called the mixed extension of the CDP A. The set G(A, σ(A)) is referred to as
set of randomized actions. If no confusions can appear one writes G(A) instead
of G(A, σ(A)). This particularly is the case if A is finite, because then always
σ(A) := P(A) is used. 5

Remark. 1.) The mixed extension of a CDP is again a CDP. If the underlying
CDP is finite, this is not the case for its mixed extension: Even on a finite set
there exist uncountably many different probability measures. However, note that

8



1 Fundamental principles of Classical Decision Theory

the set of states of a CDP A and the set of states of its mixed extension G(A)
coincide by definition (Θ remains unchanged under the transition to the mixed
extension). Particularly, this implies that the set of states of the mixed extension
of a finite decision problem still admits only finitely many states of nature, that
is |Θ| < ∞. This will turn out to be very important, since in the following many
results (theorems and algorithms) are shown for CDPs that satisfy this condition.
Specifically, all theorems that only demand the condition |Θ| <∞ as a prerequisite
can be applied to either a finite CDP or its mixed extension.

2.) Every pure action a ∈ A can uniquely be identified with the randomized action
δa ∈ G(A), where

δa : σ(A)→ [0, 1] , A 7→

1 if a ∈ A

0 else

δa is called the Dirac-measure in the action a (see for example [26, p.12] ). Then,
for all (a, θ) ∈ (A×Θ), the equation

u(a, θ) = G(u)(δa, θ) (5)

holds. Using this identification the set A can be understood as a subset of G(A) .

3.) If A is finite and σ(A) := P(A), then all conditions of the above definition are
satisfied and the equation

G(u)(p, θ) =
n∑
i=1

u(ai, θ) · p({ai}) (6)

holds for all pairs (p, θ) ∈ (G(A)×Θ). This clarifies the fact that the term G(u)(p, θ)
equals the expectation of the randomized action p, if θ is the true state of nature.

4.) In the case of a finite CDP one can interpret the randomized action p as the
following rule: Choose an action ai with probability p({ai}), i.e. simulate a ran-
dom number Z from the set {1, . . . , n} with probabilities (p({a1}), . . . , p({an})) and
choose the action az (where z is the realisation of the simulation).

5.) The transition from a CDP to its mixed extension may appear counter-intuitive
at first sight: Why the risk of a bad choice shouldn’t be avoided completely? As
we will see subsequently, the question of the sense or non-sense of randomization
strongly depends on the chosen criterion of optimality. The criterion itself depends
on the type of uncertainty underlying the decision problem. It turns out that ran-
domization can lead to a superior utility in situations where the process generating

9



1 Fundamental principles of Classical Decision Theory

the states of nature can be compared to a game against nature. A more in-depth
discussion on the connection between randomization and the type of uncertainty un-
derlying a CDP can be found in Paragraph 1.2.2. ◦

Next, we want to describe how additional information (in form of data) can be in-
cluded in a CDP. Informally, the idea is the following: Instead of directly choosing
one of the actions in A, a random experiment is interposed. Which of the actions is
chosen in the end then depends on the result of this experiment. Thus, each action
now is a decision function from the set of all possible realisations of the experiment
X to the set of actions A. More precisely, the new set of actions equals the set of all
possible decision functions.

In addition, a parametric statistical model on the space of observations X is assumed.
The corresponding parametric space is given by Θ, i.e. every state of nature θ ∈ Θ
induces a probabilistic model pθ for the random experiment described above. The
utility of a decision function d, given the information that θ is the true state of
nature, then equals the expectation of d under pθ.

To formalize this, some preparation work has to be done: Let A be a CDP and Ω
and X be arbitrary non-empty sets. Note that the space Ω will get re-interpreted in
the context of the considerations concerning the Fundamental Theorem of Baysian
Decision Theory in Paragraph 1.3. Further, let

• X : Ω → X denote a σ(Ω)-σ(X )-measurable map, where σ(Ω) and σ(X ) are
σ-fields on Ω and X , such that {x} ∈ σ(X ) for all x ∈ X .

• Q(Θ) := {qθ(·) : θ ∈ Θ} denote a Θ-parametrized set of probability measures
on the measurable space (Ω, σ(Ω))

• L(Θ) := {pθ(·) := X[qθ](·) : θ ∈ Θ} denote the (again Θ-parametrized) set of
image measures from Q(Θ) under X on (X , σ(X ))

• σ(A) denote a σ- field on A (where {a} ∈ σ(A) for all a ∈ A) and let, for every
θ ∈ Θ fixed, the map

uθ(·) := u(·, θ) : A→ R , a 7→ u(a, θ)

σ(A)-B-measurable (where B denotes the Borel σ-field on R).

Then, every σ(X )-σ(A)-measurable map d : X → A is called a decision function
for the decision problem A. The set of all decision functions is denoted by D(A,X ).
Under the additional assumption that, for every pair (θ, d) ∈ Θ×D(A,X ) fixed, the

10



1 Fundamental principles of Classical Decision Theory

map
((uθ ◦ d) ◦X) : Ω→ R

is qθ- integrable, we get a well-defined mapping

U : (D(A,X )×Θ)→ R , (d, θ) 7→
∫

Ω
((uθ◦d)◦X) dqθ =

∫
Ω
u(d(X(ω)), θ) qθ(dω) (7)

This allows us (and motivates) the following definition. It is taken from [2, p. 66]
or [43, § 3.9.8] respectively (however, both authors use a notation that is slightly
different of the one used here).

Definition 3. Under the conditions described above, the triplet

D(A) := (D(A,X ),Θ, U(·))

is called the data-based extension of the CDP A. 5

Remark. 1.) According to the Theorem of Measure Transformation (see e.g. [26, p.
92]) for all (d, θ) ∈ (D(A,X )×Θ) the identity

U(d, θ) :=
∫

Ω
((uθ ◦ d) ◦X) dqθ =

∫
X

(uθ ◦ d) dpθ :=
∫
X
u(d(x), θ) pθ(dx) (8)

holds. This justifies the following approach: In statistical modelling the set Ω, in
general, is unknown. So, due to the above equation, one can build the model directly
on the space X of possible realisations of the corresponding random experiment. This
is backed-up by intuition: In general, it will be much easier to build a probabilistic
model on X than on Ω, because X is the space of observations and, therefore, known
to the actor.

2.) If both A and X are finite, then (together with Remark 1.) the equation

U(d, θ) =
∑
x∈X

u(d(x), θ) · pθ({x}) (9)

holds for all pairs (d, θ) ∈ (D(A,X )×Θ).

Additionally, if X := {x1, . . . , xk}, the set D(A,X ) contains exactly K := kn ele-
ments. Thus, D(A,X ) can be written in the form

D(A,X ) := {d1, . . . , dK}

and the following presentation for the data-based extension can be used:

11
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U(di, θj) θ1 . . . θm

d1 U(d1, θ1) . . . U(d1, θm)
...

...
...

...
dK U(dK , θ1) . . . U(dn, θm)

The structure of the corresponding random experiment (sometimes referred to as
information structure, see e.g. [2, p.67]) then is of the form:

pθj ({xi}) θ1 . . . θm

x1 pθ1({x1}) . . . pθm({x1})
...

...
...

...
xk pθ1({xk}) . . . pθm({xk})

Again, the above representations for data-based extensions of finite decision prob-
lems in the following will be used without further commentary.

3.) Formally, the data-based extension of a (no-data) CDP is again a (no-data)
CDP (all required formal conditions are satisfied by the data-based extension as
well). If the underlying (or basic) CDP is finite, the same holds for its data-based
extension. Particularly, the set of states remains unchanged under the transitions
to a data-based extension. Thus, all theorems and algorithms that demand a CDP
such that |Θ| <∞ is satisfied can also be applied to data-based extensions of finite
decision problems.

However, the cardinality of the set of all decision functions increases exponentially
in the number of actions in A: For example, if |A| = |X | = 10, then the set D(A, X)
has exactly 1010 = 10000000000 elements.

But the situation can get even more absurd: Suppose our random experiment not
only consists in observing the realisation of one single random variable X, but in
observing the realisations of an i.i.d. sample of such variables. More precisely, let
X1, . . . , Xs : Ω → V denote i.i.d. random variables on Ω, where |V| = w ∈ N.
Set X := ×si=1V and X := (X1, . . . , Xs) : Ω → X . Then, observing a sample
(X1(ω), . . . , Xs(ω)) ∈ X again fits in the above framework. However, as X now
contains exactly ws elements, the set D(A, X) now contains ws·n different decision
functions. For example, consider an i.i.d. sample consisting of 10 observation and
let again |A| = |X | = 10. Then, there even exist 10100 different decision functions,

12
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which is an absurdly high number for a very small decision problem. This combina-
torial explosion presents a vast computational challenge. However, the calculation
of an optimal decision function can be avoided for some purposes, as we will see in
Theorem 3 and the corresponding example (see Paragraph 1.3).

Another way of addressing this challenge, is to restrict the set D(A,X ) in a mean-
ingful way. How this restriction can be done without loosing too much generality,
depends on the concrete situation: Some decision function might be unreasonable
in the context under considerations and, therefore, don’t have to be taken into ac-
count. As a concrete example, consider the task of estimating the parameter of a
parametric statistical model. Here, both the set of states of nature Θ and the set
of actions A coincide with the parametric space of the model. Additionally, the set
D(A,X ) consists of all possible estimating functions. However, there exists a huge
variety of quality criteria for such estimating functions. For example, one could
restrict the set D(A,X ) in a meaningful way by only taking unbiased estimating
functions (see e.g. [12] for an exact definition) into account. In this way, one re-
ceives a much smaller decision problem without loosing anything: Why should we
care about biased estimating functions? ◦

1.2 Criteria for the optimality of actions

After having introduced the classical decision problem and two of its common ex-
tensions in the last paragraph, we now recall and discuss criteria for determining
optimal decisions in a given CDP. All considerations focus on CDPs in utility form.
The translation of the results to CDPs in loss form can be done canonically. This
will be the way of proceeding throughout the whole work.

So, let A := (A,Θ, u(·)) be a CDP in utility form. Now, the crucial question is:
Which action a ∈ A should be chosen? Clearly, it is very hard to answer this with-
out further information. So, as a first approximation to a solution of this problem,
it is conducive to remove all the actions that shouldn’t be chosen, independent of
what the true state of nature is. But, under which conditions an action shouldn’t
be chosen at all?

This question motivates the following definition, which also can be found (under the
name pointwise dominance in a slightly different notation) e.g. in [40, p.18].

Definition 4. Let A be any classical decision problem. An action a ∈ A is said to
be inadmissible, if there exists an action a∗ ∈ A, such that

1. u(a∗, θ) ≥ u(a, θ) for all θ ∈ Θ

13
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2. u(a∗, θ) > u(a, θ) for at least one θ ∈ Θ

In this case one writes a∗ � a and calls a strictly dominated by a∗. 5

Why shouldn’t inadmissible actions be chosen at all? Under the assumption that
the utility function is a perfect representation of the preference order of the actor
(see introduction for further details), he will always try to maximize his utility by
his choice (otherwise he would wilfully accept a loss of utility). Thus, he will never
choose a strictly dominated action, since he could decide for the strictly dominating
action without any risk. This action has at least the same utility for every state of
nature, but a strictly greater utility for at least one of them.

However, by removing inadmissible actions from A, the corresponding CDP in gen-
eral isn’t solved: Not all actions can be compared with respect to the relation �.
For example, consider a CDP with only two possible states of nature θ1 and θ2. Here,
the two actions (identified with the corresponding utility vectors) a1 := (10, 20)T

and a2 := (20, 10) are incomparable with respect to �.

Nevertheless, one can always work with the reduced set of action

Aad := {a ∈ A : @a∗ ∈ A s.t. a∗ � a}

instead of A, since for every inadmissible action there exists another action dominat-
ing its utility. Immediately, two questions come into mind: Do there always exist
admissible actions? And: Can we construct criteria that make all actions compara-
ble and being still compatible with the concept of admissibility? Before being able
to answer these questions, we need to recall some basics from order and relation
theory.

1.2.1 Excursus: Relations and orderings

For some aspects of decision theory, it is useful to introduce some basic termini
from order and relation theory. The presentation chosen here is kept to an absolute
minimum. Let V be any non-empty set (consider for example the set of actions A
of a decision problem). Then, every non-empty subset R ⊂ V × V of the product
space of V is called a (binary) relation on V . Instead of (u, v) ∈ R one often writes
uRv. This is sometimes referred to as the so called infix notation for relations. Since
the definition of a relation nearly makes no assumptions, there exist many different
types of relations.

The following two definitions introduce a couple of properties to be able to distin-
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guish between these different types of relations. They are taken from [19, Ch. 2.2].

Definition 5. Let R denote a binary relation on a non-empty set V . Then, R is
said to be

i) reflexive, if vRv holds for all v ∈ V .

ii) symmetric, if uRv implies vRu for all v, u ∈ V .

iii) irreflexive, if (v, v) /∈ R holds for all v ∈ V .

iv) transitive, if vRu and uRw imply vRw for all v, u, w ∈ V .

v) antisymmetric, if vRu and uRv imply v = u for all v, u ∈ V .

vi) total, if vRu or uRv holds for all v, u, w ∈ V . 5

Definition 6. Let R denote a binary relation on a non-empty set V . Then, R is
said to be

i) an equivalence relation, if it is reflexive, symmetric and transitive.

ii) a partial ordering, if it is reflexive, antisymmetric and transitive.

iii) a strict ordering, if it is irreflexive, antisymmetric and transitive.

iv) a linear ordering, if it is reflexive, antisymmetric, transitive and total. 5 •

After having recalled some basic definitions from order and relation theory in the
previous excursus, we can now reformulate the above mentioned inability of the rela-
tion� to make all actions comparable: The relation� is irreflexive, antisymmetric
and transitive, but it is not total. This leads us to the first of the questions posed
before: When do admissible actions exist? That, at least in the case of a finite CDP,
this always is the case, is the statement of the following theorem. A more general
version of the result can be found in [40, p. 18].

Theorem 1. Let A be a finite CDP. Then Aad 6= ∅.

Proof. Let A be finite. Assume, for contradiction, Aad = ∅. Then for all a ∈ A,
there exists an action a∗ ∈ A such that a∗ � a (:= (∗)). Otherwise, the action a∗

would be admissible, that is a∗ ∈ Aad, which would be a contradiction to Aad = ∅.
Since the relation� is known to be irreflexive, this always implies a 6= a∗. Otherwise,
(a, a) ∈� would hold, which contradicts the irreflexivity of �.
Now, consider the following construction:
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1.) Choose an arbitrary action a(1) ∈ A.

2.) Choose an arbitrary action a(2) ∈ A \ A1, where A1 := {a(1)}. If a(2) � a(1),
set A2 := {a(2)}. Otherwise, set A2 := ∅.

3.) Choose an arbitrary action a(3) ∈ A \ {a(1), a(2)}. If a(3) � a∗ for all a∗ ∈
A1 ∪A2, set A3 := {a(3)}. Otherwise, set A3 := ∅.

...

n.) Choose the remaining action a(n) ∈ A \ {a(1), . . . , a(n−1)}. If a(n) � a∗ for all
a∗ ∈

⋃n−1
k=1 Ak, set An := {a(n)}. Otherwise, set An := ∅.

The constructed set A+ :=
⋃n
k=1Ak then has the following properties:

i) There exists amax ∈ A+ such that amax � a for all a ∈ A+ \ {amax}.

ii) For all a ∈ A− := A \A+ we have ¬(a� amax).

Here, the properties i) and ii) directly follow from the construction of the set A+.
Now, we apply property (∗): Since amax ∈ A there exists an action a∗ ∈ A such that
a∗ � amax. According to property ii) we then have a∗ /∈ A \ A−, that is a∗ ∈ A+.
Then, according to property i), we have amax � a∗. Since the relation � is known
to be antisymmetric, this gives us a∗ = amax. But then we have a∗ = amax and
a∗ � amax. This contradicts the irreflexivity of �. Hence, Aad is non-empty. �

A big advantage of the described principle of excluding inadmissible actions is its not
doubtable claim for rationality: If an inadmissible action appears to be a rational
choice, then the underlying utility function is necessarily misspecified.

As a consequence of this big generality, the principle turns out to be not sufficient
to determine optimal decisions: The relation �⊂ A× A is not total and, therefore,
not all actions are comparable w.r.t. �. This leads us to the second question posed
before: If we want to construct criteria that induce a total ordering on A (that is, any
two elements of A are comparable with respect to the constructed criteria), we will
have to accept some loss of generality. However, since the exclusion of inadmissible
actions is undoubtedly reasonable, any reasonable construction should be compatible
with the concept of admissibility, in the following sense: An inadmissible action
should never be labelled optimal by any constructed ordering.

This motivates the following definition. It can be found e.g. in [2, p. 99].
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Definition 7. Let A be a CDP. Any function

ΦA : A→ R , a 7→ ΦA(a)

is called criterion.
An action a∗ ∈ A is optimal for the criterion ΦA (short: ΦA-optimal), if

ΦA(a∗) ≥ ΦA(a)

holds for all a ∈ A. 5

Remark. 1.) The image ΦA(A) ⊂ R of every criterion ΦA is a real subset. Thus,
any criterion ΦA induces a linear ordering 6ΦA on the set of actions A via: For all
a1, a2 ∈ A

a1 6
Φ a2 :⇔ ΦA(a1) 6 ΦA(a2)

where 6 denotes the usual smaller-equal relation on the real numbers R.

Here, the following convention is used: Actually, the relation 6Φ is not antisymmet-
ric, since ΦA(a1) 6 ΦA(a2) and ΦA(a2) 6 ΦA(a1) does not necessarily imply a1 = a2,
but only ΦA(a1) = ΦA(a2). However, after having chosen a criterion Φ, we are to-
tally indifferent between actions with coinciding criterion values. Hence, we write
a1 =Φ a2 if, and only if,the equation ΦA(a1) = ΦA(a2) holds. Note that =Φ defines
an equivalence relation on A. The relation 6Φ then is antisymmetric with respect
to the relation =Φ.

2.) Semantically, the definition of a criterion doesn’t make any assumptions. Thus,
the linear ordering induced by a criterion doesn’t need to be meaningful at all. Par-
ticularly, it is easy to construct criteria, which label inadmissible actions as optimal.
Hence, the choice of a criterion in a concrete decision problem should always be
based on well substantiated arguments. For a (far) more in-depth discussion of the
optimality of criteria, see for example [39]. A much shorter discussion of the topic
can be found in the following excursus. ◦

1.2.2 Excursus: Different types of uncertainty

The following excursus mainly refers to [2, p. 21]. Particularly, the classification
of uncertainty into different types has been adopted from this source. The crucial
question is: Which of the (uncountably many) criteria available should be chosen
in a concrete decision problem? According to the previous considerations, the cho-
sen criterion should at least be compatible with the concept of admissibility. This
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compatibility is independent of the type of uncertainty underlying a CDP. Thus, we
can specify our question: Which of the criteria being compatible with the concept
of admissibility should be chosen in a concrete situation?

The answer to this question strongly depends on the nature of the process generating
the states of nature. Firstly, we can observe two extremes:

• Type I : The process generating the states of nature can be compared to an
ideal lottery. Every state occurs with a fixed and known (classical) probability.
Thus, the realized state of nature is independent of the action chosen by the
actor. The nature (as an abstract concept) cannot influence the generation of
the states.

• Type II : The nature acts as an antagonist to the actor. For every action the
actor chooses, the nature will pick (one of the) state(s) minimizing the actors
utility (this state won’t be unique in general). In this case, the nature can
fully influence the process generating the states of nature and is omniscient
concerning the actor’s order of preferences. Otherwise, it wouldn’t be possible
for the nature to choose the actor’s least favourable state.

Both of the types of nature described above seem to be idealizing and, therefore, very
restrictive. The most (non-academic) examples for CDPs will neither fit strictly to
type I nor to type II. In the case of a situation under strict type I uncertainty,
especially the assumption of a known probability distribution often seems to be
unrealistic. In situations, which are rather of the second type, the assumption of
omniscience can’t be kept up in many cases. Therefore, we want to define two less
idealizing modifications of the types of uncertainty described above.

• Type I∗: Exactly like in the type I situation, the process generating the states
of nature can be compared to an ideal lottery. However, in this modification,
the exact probability mass function on the set Θ is assumed to be unknown (or
ill-known) to the actor. Depending on the quality of information concerning
the state generating process, the actor might be able to specify a best subjective
guess for the true probability measure. If this is the case, he can simply proceed
by acting as if this guess was the true measure (see Remark 1 on Definition 8).
If such a measure cannot be guessed in a consistent way, one has to consider
more general descriptions of uncertainty (for examples of such situations see
Paragraph 4.1).

• Type II∗: Again, the nature acts as an antagonist to the actor. However, the
assumption of omniscience can be weakened in different ways. For example,
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consider the situation of playing chess against a friend: As both players want
to win the game, the friend will always try to make a move that maximizes the
actor’s utility. However, as the friend is no computer, he won’t always know
this least favourable move.

As we will see later, even these weakened types of uncertainty are too restrictive in
many situations. Instead, very often a combination of the different types seems to
be suitable to characterize a situation under uncertainty adequately.

Another important point to mention in this context is the following: In reality, there
might be a vast difference in what the actor assumes about the type of uncertainty
underlying the CDP and the true type of uncertainty. Constructing criteria for the
optimality of decisions based on wrong beliefs about the true type of uncertainty
might have horrible consequences. This is a serious problem.

Nevertheless, in the following we assume that the actor’s beliefs about the type of
uncertainty and the true type of uncertainty coincide. •

1.2.3 Optimal criteria under type I/I∗ uncertainty: Bernoulli-/Bayes-Actions

Consider a CDP under strict type I uncertainty and let ξ be the probability measure
on (Θ, σ(Θ)) characterizing the purely stochastic uncertainty between the different
states of nature belonging to the set Θ. Here, σ(Θ) denotes a σ-field on Θ including
all the singletons.
A very straightforward criterion for the optimality of an action under this type of
uncertainty then is the following: An action a∗ ∈ A is optimal if, and only if, it
maximizes the expected utility under ξ, i.e. for all a ∈ A the inequality

Eξ(u(a∗, θ)) > Eξ(u(a, θ))

holds. This motivates the following definition. Similar definitions can be found in
e.g. [43, § 3.9.4] or [2, p.184].

Definition 8. Let A a CDP and ξ a probability measure on (Θ, σ(Θ)), where
{θ} ∈ σ(Θ) for all θ ∈ Θ. Let

ua(·) := u(a, ·) : Θ→ R , θ 7→ u(a, θ)

be a ξ-integrable map for all a ∈ A. Then the criterion

ΦA
B(ξ) : A→ R , a 7→ Eξ(ua) :=

∫
Θ
ua dξ (10)
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is called Bernoulli-criterion with respect to ξ.
Every ΦA

B(ξ)-optimal action is called Bernoulli-action with respect to ξ. The set of
all Bernoulli-actions w.r.t. ξ is denoted by AB(ξ). 5

Remark. 1.) Under Type I∗ uncertainty, the exact probability measure ξ is unknown
(or at least ill-known). Therefore, the Bernoulli-criterion is not applicable. In this
case, one has to content oneself with a prior-distribution π estimating ξ. This sub-
jective assignment of probability mass should take into account possible information
about the state generating process in the best possible manner.

In this case, the criterion ΦA
B(π) is called Bayes-criterion with respect to the prior

π. Every ΦA
B(π)-optimal action then is called Bayes-action with respect to the prior

π. For more information, see for example [3, p.6].

From a philosophical point of view, this needs some attention: Implicitly, the above
approach makes the assumption that any kind of prior information can be formal-
ized by using a classical probability distribution. And even more is assumed: Any
situation under uncertainty can be characterized by a classical probability. This as-
sumption is known as the Bayesian Paradigm or the Bayesian Dogma of Precision
(see for example [43, § 1.1.3], or [4, p. 32]).

This assumption is closely related to the (classical) subjective approach to proba-
bility theory established by Bruno de Finetti (1906-1985) (see [14] and [15]): Here,
the probability of an event is interpreted as the unique(!) degree of belief of a ratio-
nal actor in the occurrence of the event. According to this theory, a suitable prior
distribution π can be gained by simply assigning each singleton event in P(Θ) the
corresponding degree of belief. If the assignment is done by a rational actor, this
will induce a classical probability measure.

However, in practice, this assumption often is violated: Actors that are undoubtedly
rational sometimes produce degrees of belief that simply aren’t embeddable into the
restrictive theoretical framework of classical probability theory. Such situations will
be discussed in detail within the motivating examples in Paragraph 4.1. Of particu-
lar interest in the context of de Finetti’s theory is Paragraph 4.1.2.

Note that, from a mathematical point of view, there is no difference in the definition
of the Bernoulli- and the Bayes-criterion. Semantically, the Bernoulli-criterion can
be viewed as the special case of the Bayes-criterion where perfect information on
the mechanism generating the states of nature is available.

2.) If Θ is finite and σ(Θ) := P(Θ) then all conditions of the above definition are

20



1 Fundamental principles of Classical Decision Theory

satisfied and the equation

ΦA
B(π)(a) =

m∑
j=1

u(a, θj) · π({θj}) (11)

holds for all a ∈ A.
Again, it makes no difference, if ΦA

B(π) is a Bernoulli- or a Bayes-criterion. ◦

The following theorem makes a statement on the relationship between the Bernoulli-
or Bayes-criterion and the mixed extension of a finite CDP: The transition from a
CDP to its mixed extension does not improve the expected utility with respect to
an arbitrary prior probability measure on the set of states.

Assuming that the Bernoulli-criterion is optimal when considering decision problems
under type I uncertainty, the theorem gives certain evidence that there is no use in
randomization in such situations. An alternative proof of the theorem can for exam-
ple be found in [35, Theorem 2.4.2]. Another alternative proof for the theorem using
duality theory (see Paragraph 2.2) will implicitly be given within the considerations
in Paragraph 3.1.

Theorem 2. Let A be any finite CDP and G(A) its mixed extension. Let further
π denote a probability measure on (Θ,P(Θ)). Then the following holds:

∃a∗ ∈ A : ΦG(A)
B(π)(δa∗) > ΦG(A)

B(π)(p) ∀p ∈ G(A)

Proof. Let p ∈ G(A) be arbitrary. Then, according to the equations (11) and (6),
we have

ΦG(A)
B(π)(p) =

m∑
j=1

G(u)(p, θj) · π({θj}) =
m∑
j=1

(
n∑
i=1

u(ai, θj) · p({ai})
)
· π({θj}) (12)

A simple computation gives us

m∑
j=1

(
n∑
i=1

u(ai, θj) · p({ai})
)
· π({θj}) =

n∑
i=1

 m∑
j=1

u(ai, θj) · π({θj})

 · p({ai}) (13)

Using the the notations

• c(ai) :=
∑m
j=1 u(ai, θj) · π({θj}) for all i = 1, . . . , n and

• cmax := max{c(a1), . . . , c(an)}

21



1 Fundamental principles of Classical Decision Theory

we derive the following inequality

ΦG(A)
B(π)(p) =

n∑
i=1

c(ai) · p({ai}) 6 cmax ·
n∑
i=1

p({ai}) = cmax

As bounded functions attain their maximum on finite sets, there exists an action
a∗ ∈ A such that cmax = c(a∗). Therefore, we get

ΦG(A)
B(π)(p) 6 c(a

∗) =
n∑
i=1

c(ai) · δa∗({ai}) = ΦB(π)(δa∗)

As p was chosen arbitrarily, this completes the proof. �

Remark. Implicitly, the above Theorem 2 guarantees the existence of Bayes-optimal
actions in arbitrary finite CDPs. Furthermore, it proves that such actions remain
optimal when considering the mixed extension of a finite CDP. For any prior distri-
bution π, there exists a pure action admitting an expected utility that is at least as
big as the expected utility of any randomized action available. Hence, the theorem
as well guarantees the existence of Bayes-optimal actions in the mixed extension of
finite CDPs. ◦

1.2.4 Optimal criteria under type II/II∗ uncertainty: Maximin-Actions

Now, consider a CDP under strict type II uncertainty. Then, the occurrance of the
states of nature is assumed to be not at random, but controlled by a omniscient
nature trying to minimize the actor’s utility.

Taking this knowledge into account, a reasonable criterion for the optimality of a
decision is the following: Choose an action if, and only if, it maximizes the utility in
the worst-case-scenario, i.e. if it acts best under the least favourable state of nature.
This decision rule is called the Maximin-principle (or Wald-rule) and originally goes
back to works of the statistician Abraham Wald (1902-1950) (see [42, p. 184-185]
for further details).

This motivates the following definition. In this form (with a slightly different nota-
tion), it can for example be found in [2, p.153].

Definition 9. Let A be any CDP. Then the criterion

ΦA
M : A→ R , a 7→ inf

θ∈Θ
u(a, θ) (14)

is called Maximin-criterion.
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Every ΦA
M -optimal action then is called Maximin-action. 5

Remark. 1.) If A is finite, the above infimum is attained on the set Θ, i.e. there is
an action a ∈ A such that

ΦA
M (a) = min

θ∈Θ
u(a, θ) (15)

An action a∗ ∈ A then is ΦA
M -optimal if, and only if,

ΦA
M (a∗) = max

a∈A

(
min
θ∈Θ

u(a, θ)
)

(16)

This clarifies the following fact: The criterion ΦA
M labels all the actions as optimal

whose utility values are the most resistant (or robust) against the whims of nature.

2.) If the underlying CDP is of type II∗, using the Maximin-criterion is still the best
we can do. If additional information on the degree of omniscience of the nature is
available, a modification of the criterion might pay off. We will come back to this
point later (see Paragraph 1.2.5). ◦

The following example shows that, assuming strict type II uncertainty, the transition
to the mixed extension of a CDP might generate a strict improvement of the utility.
Here, we assume the Maximin-criterion to be the optimal decision criterion under
this type of uncertainty.

Example 1. Consider the following finite CDP A

θ1 θ2 ΦA
M (ai)

a1 10 30 10
a2 25 5 5

The unique Maximin-action in the above problem is a1 with an utility of 10 units.
Now, consider the randomized action p ∈ G(A) induced by the assignment p({a1}) =
0.6. We compute

ΦG(A)
M (p) = min{0.6 · 10 + 0.4 · 25, 0.6 · 30 + 0.4 · 5} = 16

Hence, the randomized action p has a strict greater Maximin-utility than any of the
pure actions available. An effective method to derive optimal randomized actions in
similar situations will be discussed in Paragraph 3.4. ?
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1.2.5 Combining the two approaches: The Hodges & Lehmann criterion

As already mentioned before, the vast majority of CDPs relevant to the praxis won’t
be exactly of one of the discussed uncertainty types. Instead, in many cases the true
type of uncertainty underlying a given CDP will be adequately described be a com-
bination of the two extremes.

In literature, one can find many different criteria trying to take this asymmetry
into account. In the present work, we will focus on only one of them: The crite-
rion of Hodges & Lehmann. It goes back two the work of the statisticians Joseph
Hodges (1922-2002) and Erich Lehmann (1917-2009) and was first published in [22]
in 1952.

The idea is the following: Any type of uncertainty can be viewed as a trade-off
between type I and type II uncertainty. The optimal criterion under type I uncer-
tainty is assumed to be the Bernoulli-criterion (see the considerations in Paragraph
1.2.3), the optimal criterion under type II uncertainty is assumed to be the Maximin-
criterion (see the considerations in Paragraph 1.2.4).

The weighing of the trade-off between these two extreme criteria can be controlled
by a trade-off parameter α ∈ [0, 1]. The closer α is to 1, the more the underlying
uncertainty type tends to type I and, therefore, the more the optimal criterion tends
to the Bernoulli-criterion. The closer α is to 0, the more the type of uncertainty
tends to strict type II uncertainty and, therefore, the more the optimal criterion
coincides with the Maximin-criterion.

Definition 10. Let A and ξ be defined as in definition 8 and α ∈ [0, 1]. The criterion

ΦA
H(α,ξ) : A→ R , a 7→ α · ΦA

B(ξ)(a) + (1− α) · ΦA
M (a) (17)

is called criterion of Hodges & Lehmann.
Every ΦA

H(α,ξ)-optimal action then is called H(α, ξ)-action. 5

Remark. Applying the Hodges & Lehmann criterion goes along with some strong
assumptions: Recall that one of the assumptions made in the definition of a CDP is
that the underlying uncertainty type is completely known to the actor. In the context
of the Hodges & Lehmann criterion this would mean that the exact value for the
trade-off parameter α is known. However, the Hodges & Lehmann is constructed for
situations in which the exact type of uncertainty underlying the CDP is hard to make
out. This somehow seems to contradict this assumption. One way of addressing
this problem is the following: As we actually don’t know the true uncertainty type
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underlying a CDP of interest, but only have vague guesses that it is neither strict
type I nor strict type II uncertainty, the best we can to, is to fix α best possible and
act as if the criterion perfectly fits the underlying uncertainty type. ◦

The next example illustrates the following: If the type of uncertainty underlying a
CDP is adequately characterized by the Hodges & Lehmann criterion, i.e. if the
Hodges & Lehmann criterion generates optimal decisions in a given CDP, then the
transition to the mixed extension of the CDP might generate strict higher utility.
Therefore, randomization is useful for combined uncertainty types (for the extreme
case that α equals 1, this was already shown in Example 1).

Example 2. Consider again the CDP of the previous example

θ1 θ2

a1 10 30
a2 25 5

Let ξ denote the probability measure on (Θ,P(Θ)) induced by the assignment
ξ({θ1}) = 0.3 and let α = 0.5.
Next, we compute the Hodges & Lehmann utility of the pure actions a1 and a2:

ΦA
H(α,ξ)(a1) = 1

2 · Φ
A
B(ξ)(a1) + 1

2 · Φ
A
M (a1)

= 1
2 · (0.3 · 10 + 0.7 · 30)

+ 1
2 ·min{10, 30}

= 17

ΦA
H(α,ξ)(a2) = 1

2 · Φ
A
B(ξ)(a2) + 1

2 · Φ
A
M (a2)

= 1
2 · (0.3 · 25 + 0.7 · 5)

+ 1
2 ·min{5, 25}

= 8

Now, consider the randomized action p ∈ G(A) induced by the assignment p({a1}) =
0.8. Again, we compute the Hodges & Lehmann utility:

ΦG(A)
H(α,ξ)(p) = 1

2 · Φ
G(A)
B(ξ) (p) + 1

2 · Φ
G(A)
M (p)

= 1
2 · (0.8 · (10 · 0.3 + 30 · 0.7) + 0.2 · (25 · 0.3 + 5 · 0.7))
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+ 1
2 ·min{0.8 · 10 + 0.2 · 25, 0.8 · 30 + 0.2 · 5}

= 1
2 · (21.4 + 13)

= 17.2

Hence, we get the following inequalities

ΦG(A)
H(α,ξ)(p) > ΦA

H(α,ξ)(a1) > ΦA
H(α,ξ)(a2)

Therefore, we found a randomized action p with a strict higher utility than all of
the pure actions available. Thus, in general, when applying the Hodges & Lehmann
criterion it doesn’t suffice to take only pure actions into consideration. Hereby,
the simplicity of the example even strengthens the argument: If randomization
can improve the utility even in very small decision problems, the improvement in
bigger CDPs might be even more drastically. An algorithm for determining optimal
randomized actions will be discussed in Paragraph 3.5. ?

1.3 The Fundamental Theorem of Bayesian Decision Theory

In this paragraph, we recall a connection between Bayes-optimal decision functions
in data-based decision problems and Bayesian Theory known from classical statis-
tics: When considering data-based extensions of classical decision problems, much
computational effort can be avoided by updating the measure before and, afterwards,
determining the Bayes-action with respect to the updated measure. Our presenta-
tion is strongly influenced by [4].

For a more in-depth discussion we need to recall some basic concepts from Baysian
statistics (for a detailed presentation see for example [37, § 2.4.1] or [7, Ch. 1]). Very
roughly spoken, the fundamental principle (or assumption?) in this field of statistics
(or philosophy?) is the following: For any situation under uncertainty there exists a
classical probability measure characterizing it. This (very rigorous) point of view is
sometimes referred to as the Baysian Paradigm (see e.g. [4, p. 32]). More precisely,
the idea underlying this view can be summarized as follows: There exists a set Ω
which contains all the possible (abstract) states of the world. The only random that
exists is between the different elements of Ω. That is, once we know which concrete
ω ∈ Ω has occurred, there is no random left at all. Particularly, this implies that ev-
ery random phenomenon which we are uncertain about can represented as a random
variable X : Ω → S from Ω to some set S. The different elements ω ∈ Ω occur at
random. Thus, a more precise version of the above paradigm could be: There exists
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a probability measure q on (Ω,A) adequately characterizing the uncertainty between
the different elements of Ω (under the information available). Here, A denotes a
suitable σ-field. Of course both, the measure q and the space Ω, are unknown.

Now, consider a finite classical decision problem A. We are uncertain about which
concrete state of nature from the set Θ occurs. According to the above assump-
tion, this uncertainty then necessarily has to be representable by a random variable
N : Ω→ Θ. Hence, if we assume π to be the probability measure on (Θ,P(Θ)) that
characterizes the uncertainty between the elements of Θ adequately, the following
identity necessarily has to hold:

π(A) = N [q](A) := q(N−1(A)) (18)

for all A ∈ P(Θ). That is, under this assumption π equals the image measure of p
under the random variable N .

Now, consider we know that event B ∈ A, where p(B) > 0, has occurred. Then, the
map

qB : A → [0, 1] , A 7→ q(A ∩B)
q(B) (19)

again defines a probability measure on (Ω,A), the so called conditional probability
measure w.r.t. the event B. This measure then adequately characterizes the uncer-
tainty between the elements of Ω given the new information. Using equation (19)
one easily verifies the following identity, which is well known under the name Bayes’
Theorem: For all A ∈ A, such that q(A) > 0, we have

qB(A) = qA(B) · q(A)
q(B) (20)

Now, let D(A) denote a data-based extension of some finite decision problem A.
Additionally, we assume the the space X to be finite, so that we can use the power set
σ(X ) := P(X ) as a σ-field. Thus, for every θ ∈ Θ, we receive a probability measure
pθ on (X ,P(X )). This measure is assumed to be the true measure on (X ,P(X ))
given the information N(ω) = θ. However, according to the above considerations,
we know that qN−1({θ}) equals the true measure on (X ,P(X )) given the information
N(ω) = θ as well. This, together with (19), implies the identity

pθ(A) := X[qθ](A) = qN−1({θ})(X−1(A)) = q(X−1(A) ∩N−1({θ}))
q(N−1({θ})) (21)
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for all A ∈ P(X ). Now, if π again is assumed to be the true measure on (Θ,P(Θ)),
this, together with (18) and (1.3), implies the following identity

qX−1(A)(N−1({θ})) = pθ(A) · q(N−1({θ}))
q(X−1(A)) = pθ(A) · π({θ}))

q(X−1(A)) (22)

for all A ∈ P(X ). If A = {x} for some x ∈ X , we receive

qX−1({x})(N−1({θ})) = pθ({x}) · q(N−1({θ}))
q(X−1({x})) = pθ({x}) · π({θ}))

q(X−1({x})) (23)

Clearly, for x ∈ X fixed, the above equation equation then induces a probability
measure πx on the measurable space (Θ,P(Θ)). More precisely, we have

πx(A) :=
∑
θ∈A

pθ({x}) · π({θ}))
q(X−1({x})) (24)

for all A ∈ P(Θ). For an event A ∈ P(Θ), the value πx(A) then can be interpreted
as the probability that event A occurs given the information X(ω) = x. Hence, we
get a new description of the uncertainty between the different elements of Θ that
takes the new information given by our random experiment into account.

Finally, this allows us to formulate the following theorem. It is sometimes referred
to as the Fundamental Theorem of Bayesian Decision Theory (see e.g. [37, p. 284]).

Theorem 3. Let A denote a finite decision problem and let D(A) denote a data-
based extension of A, where X := {x1, . . . , xk} is finite and q(X−1({x})) > 0 for all
x ∈ X . Further, let π denote the true probability measure on (Θ,P(Θ)). Then, the
following holds:

d∗ ∈ D(A,X )B(π) ⇔ ∀ x ∈ X : d∗(x) ∈ AB(πx) (25)

Particularly, a B(π)-optimal decision function for the data-based extension D(A)
can be gained by determining B(πx)-optimal actions for the no-data CDP A with
respect to all updated prior measures πx, where x ∈ X .

Proof. (similar in [2, p.267-270], more general version e.g. in [37, p. 284])

Before we can start to prove the theorem, we need to prove the following statement
(S): Let s ∈ N, A be any set and let f1, . . . , fs : A → R be functions such that
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maxx∈A fi(x) exists for all i = 1, . . . , s. Further, let c ∈ (R+)s. Define the function

f : As → R , (x1, . . . , xs) 7→
s∑
i=1

ci · fi(xi) (26)

Then, we have

max
x∈As

f(x) =
s∑
i=1

ci ·max
xi∈A

fi(xi) (27)

That is, f(x∗1, ..., x∗s) is maximal if, and only if, fi(x∗i ) = maxx∈A fi(x) for all
i = 1, ..., s.

Proof of (S): Let xm(i) ∈ A such that fi(xm(i)) = maxx∈A fi(x) for all i = 1, . . . , s.
Clearly, we have supx∈As f(x) > f(xm(1), . . . , xm(s)) =: f(xmax). Assume, for con-
tradiction, supx∈As f(x) > f(xmax). Then , there exists x∗ ∈ As such that

f(x∗)− f(xmax) =
s∑
i=1

ci · (fi(x∗i )− f(xm(i))) > 0 (28)

Since c ∈ (R+)s, this implies the existence of i∗ ∈ {1, . . . , s} such that fi∗(x∗i∗) >
f(xm(i∗)), which yields a contradiction to the definition of f(xm(i∗)). Thus, we have

sup
x∈As

f(x) = max
x∈As

f(x) =
s∑
i=1

ci ·max
xi∈A

fi(xi) (29)

and (S) is proven.

So, let’s turn to the proof of the theorem. For i = 1, ..., k, we define the functions

fi : A→ R , a 7→ ΦA
B(πxi )

(a) (30)

Since we know that for every probability measure on (Θ,P(Θ)) there exists a Bayes-
action, the expression maxx∈A fi(x) exists for all i = 1, . . . , k. Now, for i = 1, . . . , k,
define ci := q(X−1(xi)). Thus, c ∈ (R+)s.

Define the function

f : Ak → R (a1, . . . , ak) 7→
k∑
i=1

ci · fi(ai) (31)

Then, according to (S), we have

max
a∈Ak

f(a1, . . . , ak) =
k∑
i=1

ci ·max
ai∈A

ΦA
B(πxi )

(ai) =
k∑
i=1

ci · fi(a∗i ) (32)
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where, for all i = 1, . . . , k, a∗i ∈ AB(πxi ) denotes a Bayes action w.r.t. πxi . That is,
f(a∗) is maximal if, and only if, the vector a∗ ∈ AB(πx1 ) × · · · × AB(πxk ) consists of
Bayes-actions only.

Now, let d ∈ D(A,X ) arbitrary. We compute

ΦD(A)
B(π)(d) =

m∑
j=1

U(d, θj) · π({θj})

=
m∑
j=1

(
k∑
i=1

u(d(xi), θ) · pθj ({xi})
)
·π({θj})

=
k∑
i=1

(
m∑
j=1

u(d(xi), θ) · π({θj}) · pθj ({xi})
)

(24)=
k∑
i=1

(
m∑
j=1

u(d(xi), θ) · πxi({θj}) · q(X−1({xi})
)

=
k∑
i=1

(
m∑
j=1

u(d(xi), θ) · πxi({θj})
)
·q(X−1({xi})

=
k∑
i=1

ci · ΦA
B(πxi )

(d(xi))

= f(d(x1), . . . , d(xn))

Hence, ΦD(A)
B(π)(d) is maximal if, and only if, f(d(x1), . . . , d(xn)) is maximal. Accord-

ing to (32), this is the case if, and only if, d(xi) ∈ AB(πxi ) for all i = 1, . . . , k. This
completes the proof. �

As already mentioned before, Theorem 3 can help to avoid vast computational ef-
fort. The following example illustrates how this can be done in a concrete data-based
decision situation.

Example 3. Consider the finite CDP A given by

uij θ1 θ2

a1 25 15
a2 30 10
a3 20 30

where θ1 = 0.6 and θ2 = 0.3. Our random experiment is given by the variable
X : Ω → X := {0, 1}. Suppose, for θ = θ1, θ2, the conditional measure pθ on
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(X ,P(X )) is induced by the assignment

pθ({x}) := θx · (1− θ)1−x

for all x ∈ X . Further, let π be the probability measure on (Θ,P(Θ)) induced by
the assignment π({θ1}) = 0.5. Then, the data-based extension D(A) is given by

Uij θ1 θ2 Eπ(Ud(i,j))

d(1, 1) 25 15 20
d(1, 2) 28 13.5 20.75
d(1, 3) 22 19.5 20.75
d(2, 1) 27 19.5 19.25
d(2, 2) 30 10 20
d(2, 3) 24 16 20
d(3, 1) 23 24 24.5
d(3, 2) 26 24 25
d(3, 3) 20 30 25

where d(i, j) denotes the decision function that maps 0 to action ai and 1 to action aj ,
for i, j,∈ {1, 2, 3}. The last column contains the expected utility of the corresponding
decision function under the measure π. For example, the utility U(d(1, 3), θ1) of the
decision function d(1, 3) under the state θ1 can be computed as follows:

U(d(1, 3), θ1) =
∑
x∈X

u(d(1, 3)(x), θ1) · pθ1({x})

= u(a1, θ1) · 0.60 · 0.41 + u(a3, θ1) · 0.61 · 0.40

= 25 · 0.4 + 20 · 0.6 = 22

Then, the expected utility of the decision function d(1, 3) w.r.t. π is

Eπ(Ud(1,3)) = U(d(1, 3), θ1)·π({θ1})+U(d(1, 3), θ2)·π({θ2}) = 0.5·(22+19.5) = 20.75

Clearly, d(3, 2) and d(3, 3) are B(π)-optimal decision functions. That is, if our
random experiment ends up with 0, we have to choose action a3 and if it ends up
with 1, we can either choose action a2 or action a3.

Next, we want to apply Theorem 3. Therefore, for each x ∈ X , we compute the
updated measure πx from equation (24). So, let x ∈ X be fixed. Then, the measure
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πx is induced by the assignment

πx({θ}) = pθ({x}) · π({θ})
q(X−1({x})) = θx · (1− θ)1−x · 0.5

q(X−1({x}))

for all θ ∈ Θ. Since we have that q(X−1({x})) > 0, an action a∗ ∈ A maximizes the
expected utility w.r.t. πx if, and only if, the inequality

q(X−1({x})) · Eπx(ua∗) > q(X−1({x})) · Eπx(ua)

holds for all a ∈ A. First, let x = 0. We compute

q(X−1({x})) · Eπ0(uai) =


10.25 if i = 1

9.5 if i = 2

14.5 if i = 3

Hence, action a3 maximizes expected utility w.r.t. π0. Thus, we receive the same
optimal action as we get by evaluating one of optimal decision functions d(3, 2) and
d(3, 3) at x = 0.

Finally, set x = 1. Again, we compute

q(X−1({x})) · Eπ1(uai) =


9.75 if i = 1

10.5 if i = 2

10.5 if i = 3

Both, action a2 an action a3 maximize expected utility w.r.t. π1. That is, both
actions correspond to an optimal decision function evaluated at x = 1. ?

Remark. 1.) The previous example demonstrated how Theorem 3 can be used to
determine optimal data-based decisions without computing optimal decision func-
tions. However, another strength of the theorem turns out to be the following: In a
real decision situation with data available, we aren’t interested in the Bayes-actions
w.r.t. every πx (for all x ∈ X ). Instead, we are only interested in a Bayes-action
w.r.t. πxo , where xo ∈ X is the data that we have actually observed. Why should we
care about optimal decisions in versions of reality that aren’t compatible with our
information base? So, instead of computing all the decision functions and solving
an optimization problem in a vast number of variables, we can choose to only solve
one single decision problem (in a relatively small number of variables)!
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2.) Note that, in general, the theorem no longer holds when considering criteria
different from the Bernoulli/Bayes-criterion. Particularly, a version of the theorem
for the Maximin-criterion is not valid. To see that, consider again the situation
of Example 3: Here, action a3 is the unique Maximin-solution of the basic prob-
lem. Furthermore, since the Maximin-criterion completely ignores the outcome of
the random experiment, action a3 remains Maximin-optimal after having observed
any arbitrary realisation x ∈ X .

However, the decision d̃ function defined by the assignment d̃(x) := a3 for all x ∈ X
(that is the decision function d(3, 3)) is not Maximin-optimal in the data-based de-
cision problem D(A). An unique Maximin-optimal decision functions is given by
d(3, 2). For further details see e.g. [4, Remark 1]. ◦
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2 Fundamental principles in Linear Optimization

In this chapter some basic concepts from Linear Optimization (or Linear Program-
ming) are recalled. As we will see in later chapters (particularly in the Chapters 3
and 5), Linear Optimization turns out to be not only a very helpful (and powerful)
tool to determine optimal (randomized) actions in finite decision problems. Addi-
tionally, it can be used to simplify proofs in many cases. Particularly, the methods
of Linear Optimization often help to simplify proofs for the existence of optimal
actions with respect to some optimality criterion under consideration.

The chapter is structured as follows: In the first paragraph two basic types of lin-
ear programming problems are defined, namely Standard-Minimum-Problems and
Standard-Maximum-Problems. Afterwards, we recall sufficient criteria for the exis-
tence of optimal solutions. It will turn out that the existence of optimal solutions is
already guaranteed under relatively weak conditions.

In the second paragraph, the dual of a linear programming problem is defined. As
we will see, the dual of a linear programming problem is again a linear programming
problem. Additionally, some results on the connection between a linear program-
ming problem and its dual are recalled: The well-known Duality Theorem of Linear
Optimization guarantees that the optimal outcome of a linear programming problem
and its dual necessarily coincide.

In the last paragraph, we briefly recall and explain how optimal solutions of a con-
crete linear programming problem can be determined. It turns out that, instead of
looking for optimal solutions on the whole domain of the linear programming prob-
lem, it suffices to check optimality on certain finite subsets of the domain, namely
on the set of extreme points. This circumstance is used, for example, by the well
known Simplex Algorithm, which is one the most common algorithms to solve linear
programs in statistical software.

Again, the presentation doesn’t claim completeness but focusses on results relevant
for the present work. Particularly, many (almost all) of the proofs are left out, since
there exists a huge variety on excellent textbooks covering this topic and the tech-
nical details of linear programming theory are not within the scope of the present
work. However, references are given at the appropriate places whenever the proof
of a theorem is left out. For far more in-depth presentations of Linear Optimization
see for example [5, Ch.4, Einschub], [28, Ch.2], [25, Ch.2,4 and 5] and [24, Ch.2 and
3 ]. These are the sources that are used in the following presentation.
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2.1 Linear programming problems

The basic problem in linear optimization is the following: Find a vector x that
optimizes a linear function f , while satisfying a finite number of linear constraints.
Depending on the concrete problem, the task can differ in maximizing or minimizing
the linear function. As every minimization problem turns out to be equivalent to a
maximization problem and vice versa, it suffices in many cases to discuss only one
of the two types. Most of the results then can be transmitted canonically to the
other case. However, especially in duality theory, it is necessary to define both types,
since there exist deep (and useful) connections between them. We start with the
basic definition. It can be found (similar) in [5, p.129, Definition 4.1].

Definition 11. A function f : Rn → R is said to be linear, if there exists c :=
(c1, ..., cn) ∈ Rn such that for all x := (x1, ..., xn) ∈ Rn

f(x) = 〈c, x〉 :=
n∑
i=1

ci · xi

holds. If f is a linear function, b ∈ Rm is a real vector and A ∈ Rm×n is a real
matrix, then the optimization problem

f(x) −→ max
x∈Rn

with constraints

• x > 0

• A · x 6 b

is called Standard-Maximum-Problem (SMP).

By analogy, the optimization problem

f(x) −→ min
x∈Rn

with constraints

• x > 0

• A · x > b

is called Standard-Minimum-Problem (SMIP).

35



2 Fundamental principles in Linear Optimization

In both cases, the function f is said to be the objective function.
The sets

Z(A, b)+ := {x ∈ Rn : x > 0 ∧A · x 6 b}

or
Z(A, b)− := {x ∈ Rn : x > 0 ∧A · x > b}

are named the sets of admissible solutions of the SMP or the SMIP.
The sets

O(A, b, c)+ := {x∗ ∈ Z(A, b) : f(x∗) > f(x) for all x ∈ Z(A, b)}

or
O(A, b, c)− := {x∗ ∈ Z(A, b) : f(x∗) 6 f(x) for all x ∈ Z(A, b)}

are named the sets of optimal solutions of the SMP or the SMIP. 5

Remark. 1.) In the above definition, we used the following convention/notation: For
two vectors

x := (x1, ..., xn), y := (y1, ..., yn) ∈ Rn

the symbols 6 and > are to be understood component-wise, i.e. x 6 y or x > y

holds if, and only only if,

xi 6 yi for all i = 1, . . . , n or xi > yi for all i = 1, . . . , n

2.) In the following, a SMP or SMIP sometimes will be written in the form

max {〈c, x〉 : x > 0 ∧A · x 6 b}

or
min {〈c, x〉 : x > 0 ∧A · x > b}

Additionally, we will use the notation

f(x) := (c1, . . . , cn) ·


x1
...
xn


for the objective function, whenever this helps to simplify (or clarify) the presenta-
tion. Particularly, this will be the case in the later Chapters 3 and 5.
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3.) Every SMP can be transformed into a SMIP and vice versa, since we have

max {〈c, x〉 : x > 0 ∧A · x 6 b} = min {〈−c, x〉 : x > 0 ∧ −A · x > b} (33)

As already mentioned in the introduction to the chapter, the above identity now
allows us to restrict on the discussion of SMPs only for many purposes (see for ex-
ample in [5, p.130, Remark 4.2] for further details). ◦

Before turning to the question how optimal solutions can be determined for a given
linear optimization problem, we want to give some sufficient criteria for a linear
problem to be solvable at all.

First, we observe the following: If the set Z(A, b)+ is empty (that is, if there doesn’t
exist an admissible solution at all), then the constraints of the corresponding lin-
ear programming problem are inconsistent (for example, consider the constraints
demand both x1 6 8 and x1 > 15 ). Since every optimal solution is also admissible
by definition, of course, in such a case there exists no optimal solution.

So, when do optimal solutions exist? It turns out that there always is an optimal
solution, if the set Z(A, b)+ is non-empty and bounded (with the standard metric
of the space Rn). This is the statement of the following theorem, which can for
example be found in [5, p.130, Proposition 4.3, Part 1].

Theorem 4. Let max {〈c, x〉 : x > 0 ∧A · x 6 b} be a SMP such that the set Z(A, b)+

is non-empty and bounded. Then:

Z(A, b) 6= ∅ ⇔ O(A, b, c) 6= ∅

Sketch of the proof. ⇐: Trivial: O(A, b, c) ⊂ Z(A, b) follows directly from the
definition of the set of optimal solutions.
⇒: The SMP can be reformulated as the task of finding a vector x maximizing the
function

f � Z(A, b)+ : Z(A, b)+ → R , x 7→ f(x)

Now, it can be shown that the set Z(A, b)+ is closed. According to the assumption,
the set Z(A, b)+ is also closed. According to the theorem of Heine-Borel (see e.g.
[17, p.32]), this is equivalent with being compact for a subset of the space Rn. Hence,
Z(A, b)+ is compact.
We now observe that the function f � Z(A, b)+ is linear as the restriction of the
function f to the set Z(A, b)+. But any linear function is continuous.
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Thus, f � Z(A, b)+ is continuous.
According to the Theorem of the Maximum (see for example [17, p.34]), continuous
functions attain their maximum on non-empty compact sets. Thus, there exists
x∗ ∈ Z(A, b)+ such that

f(x∗) = f � Z(A, b)+(x∗) > f � Z(A, b)+(x) = f(x)

for all x ∈ Z(A, b)+. This completes the proof. �

Remark. By analogy, one could prove the theorem for the case of a SMIP: If the set
of admissible solutions of a given SMIP is non-empty and bounded, then the SMIP
has an optimal solution. ◦

Theorem 4 gives us a sufficient criterion for the resolvability of a linear programming
problem. However, to apply the theorem, the set of optimal solutions of the corre-
sponding linear program has to be bounded. This is a serious restriction in many
cases. The next theorem avoids this assumption. It can be found for example in [27,
p.56].

Theorem 5. Let max {〈c, x〉 : x > 0 ∧A · x 6 b} be a SMP such that

δ := sup{〈c, x〉 : x ∈ Z(A, b)+} <∞

Then there exists x∗ ∈ Z(A, b)+ such that 〈c, x∗〉 = δ.

Proof. See e.g. [27, p.56]. �

Remark. By analogy, one can prove the theorem for the case of a SMIP:
If min {〈c, x〉 : x > 0 ∧A · x > b} is a SMIP such that

δ := inf{〈c, x〉 : x ∈ Z(A, b)+} > −∞

holds, then the SMIP admits an optimal solution. Clearly, this directly follows by
applying Theorem 5 on the SMP equivalent to the above SMIP (see Definition 11,
Remark 3). ◦

Both, Theorem 4 and Theorem 5, guarantee the existence of optimal solutions of
linear programming problems under relatively weak conditions. However, both of
the proofs a pure proofs of existence. Specifically, the proofs do not contain a to
determine optimal solutions for concrete linear optimization problems. Suitable
methods to determine optimal solutions of linear programming problems are briefly
recalled in Paragraph 2.3. First, we want to recall some results from Duality Theory.
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2.2 Duality theory

For any linear programming problem one can define its dual linear programming
problem. In this context, the origin problem will be called the primal linear pro-
gramming problem, whenever we need to distinguish between the two. If the primal
problem is a SMP, then its dual problem will be a SMIP and vice versa. This is
the statement of the following definition. It can be found (similar) e.g. in [5, p.131,
Definition 4.4].

Definition 12. Let max {〈c, x〉 : x > 0 ∧A · x 6 b} be a SMP. Then the SMIP

min
{
〈b, y〉 : y > 0 ∧AT · y > c

}
is called the dual (linear programming problem) of the SMP.

By analogy, if min {〈c, x〉 : x > 0 ∧A · x > b} is a SMIP, then the SMP defined by

max
{
〈b, y〉 : y > 0 ∧AT · y 6 c

}
is the dual of the SMIP. 5

As to expect, there exist some deep connections between a linear programming prob-
lem and its dual problem: If the primal problem admits an optimal solution, so
does its dual. Even more is the case: The optimal outcomes of primal and dual pro-
gramming problem (that is, the value that is returned when evaluating the objective
function at the optimal solution) coincide. This is the statement of the following
theorem, which is often referred to as Duality Theorem of Linear Optimization. In
this form, it is taken from [5, p.132, Proposition 4.5, Part 1 and Part 3].

Theorem 6. Let
max {〈c, x〉 : x > 0 ∧A · x 6 b} (34)

denote a Standard-Maximum-Problem and let

min
{
〈b, y〉 : y > 0 ∧AT · y > c

}
(35)

denote the corresponding dual Standard-Minimum-Problem. The following holds:

1. The dual linear programming problem of (35) is again the linear programming
problem (34).

2. There exists an optimal solution x∗ for problem (34) if, and only if, there exists
an optimal solution y∗ for problem (35).
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3. If x∗ and y∗ are optimal solutions for the problems (34) and (35) respectively,
then we have 〈c, x∗〉 = 〈b, y∗〉. That is, the optimal outcomes of both problems
coincide.

Proof. See e.g. in [28, p.425, Theorem 14.3.1]. �

Theorem 6 will prove very important at several points of the later Chapters 3 and 5
(for example in the proof of Theorem 20). Often, if one wants to prove the existence
of an optimal solution of a linear programming problem, it is easier to prove the
existence of an optimal solution of its dual. According to the above Theorem 6, the
two approaches are equivalent. Next, we want to face the question how optimal
solutions can be determined in a concrete linear optimization problem.

2.3 Convex sets and the idea of the Simplex-Algorithm

In the first paragraph of this chapter, we gave the definition of a linear optimization
problem and recalled some results that guarantee the existence of optimal solutions
for such a problem under certain conditions. Next, we want to very briefly recall
some results on how optimal solutions for linear optimization problems can be de-
termined in concrete situations.

Here, the main idea is the following: The set of admissible solutions of a linear op-
timizations problem turns out to be a convex polyhedron. That is, solving a linear
optimization problem coincides with optimizing a linear function over a convex poly-
hedron. However, due to some special properties of convex polyhedra, maxima and
minima of such linear functions are always attained on special subsets of the under-
lying polyhedra, namely on the set of extreme points. Geometrically, each extreme
point of a convex polyhedron corresponds to one of its corner points (and vice versa).
As there always exist only finitely many corners (and therefore extreme points), we
then only have to evaluate the objective function at finitely many points. In this
way, we find an optimal solution of the optimization problem by simply taking the
maximum over all this evaluations.

To put this on sound theoretical ground, we need to recall some basic concepts from
the theory of convex sets. We start with the central definition. It can e.g. be found
in [28, p.34, Definition 3.3.1].

Definition 13. LetM ⊂ Rn. Then, M is called convex if, and only if, the following
holds for all λ ∈ [0, 1] and x, y ∈M :

λ · x+ (1− λ) · y ∈M
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For another real subset Q ⊂ Rn, we define

K(Q) := {M : Q ⊂M ∧ M convex }

Then, the set
conv(Q) :=

⋂
M∈K(Q)

M

is called the convex hull of the set Q. 5

As already mentioned, for our purposes another concept in the context of convex
sets proves very important: The concept of an extreme point. Informally, an extreme
point a is an element of a convex set K that cannot be written as a convex combi-
nation of two other points x and y from the set K (where a convex combination of
x and y is a term of the form λ · x + (1 − λ) · y, where λ ∈ [0, 1]). This motivates
the following definition. It can be found (similar) in [28, p.426, Definition 14.4.1].

Definition 14. Let M ⊂ Rn be a convex set. An element e ∈ M is said to be an
extreme point in M if, and only if, for all x, y ∈ M and λ ∈ (0, 1) the following
implication holds:

λ · x+ (1− λ) · y = e ⇒ x = y = a

The set of all extreme points of M is denoted by E(M). 5

Next, we want to identify the set of admissible solutions of a linear programming
problem as a special convex set, namely a so called convex polyhedron. One of the
special properties of such a convex polyhedron turns out to be that it possesses only
finitely many extreme points. We start with the definition, which can for example
be found in [38, p.17, Definition 2.7].

Definition 15. Any non-empty set P ⊂ Rn of the form

P = {x ∈ Rn : A · x 6 b}

where A ∈ Rm×n and b ∈ Rm, is called a convex polyhedron. 5

Remark. 1.) If the set of admissible solutions of a linear optimization problem is
non-empty, then it defines a convex polyhedron. This is obvious, since the condition
of non-negativity of the variables can easily be written in matrix form.

2.) As the name suggests, any convex polyhedron defines a convex set in the sense
of Definition 13. This is not hard to prove. A proof can for example be found in [38,
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p.17, Lemma 2.8, Part 3]. ◦

Now, we recall two fundamentally important results of linear optimization theory.
Together, they show up a way of resolving linear programming problems without
checking the whole (infinite) set of admissible solutions. We begin with a theo-
rem that guarantees that a convex polyhedron always possesses only finitely many
extreme points.

Theorem 7. Let P be a convex polyhedron of the form defined in Definition 15.
Then, we have |E(P )| <∞. That is, any convex polyhedron has only finitely many
extreme points.

Proof. See for example [3, Proposition 1], or [46, Ch. 2]. �

Next, we recall the central result of linear programming theory, namely the Funda-
mental Theorem of Linear Optimization. Roughly spoken, it states the following:
For any (resolvable) linear programming problem, the set of optimal solutions con-
tains an extreme point of the set of admissible solutions. In other words: The
existence of an optimal solution necessarily implies the existence of an optimal ex-
treme point. Thus, if we are only interested in finding an arbitrary optimal solution
of the optimization problem, it suffices to take only the set of extreme points into
account. The following theorem can be found (in a similar form) for example in [38,
p.34, Theorem 2.21].

Theorem 8. Let max {〈c, x〉 : x > 0 ∧A · x 6 b} be a SMP such that O(A, b, c)+ is
non-empty. Then, there exists xe ∈ E(Z(A, b)+) such that xe ∈ O(A, b, c)+. That is,
the set of optimal solutions contains at least one extreme point.

Proof. See for example [38, p.34, Theorem 2.21]. �

Together, the Theorems 7 and 8 imply the following: According to Definition 15, Re-
mark 2, the set of admissible solutions of any consistent linear programming problem
defines a convex polyhedron. Thus, according to Theorem 7, the set of admissible
solutions possesses only finitely many extreme points. However, according to The-
orem 8, there exists at least one optimal extreme point. That is, at least one of
the (finitely many!) extreme points of the set of admissible solutions is an optimal
solution.

In other words: If we want to determine an optimal solution of a linear program-
ming problem, it suffices to check the optimality on a finite set! More precisely, if
we evaluate the objective function for all extreme points of the set of admissible
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solutions and, afterwards, take the maximum over all the evaluations, the extreme
points generating the maximum values will be optimal solutions for the whole opti-
mization problem. That’s an enormous reduction of complexity!

Very roughly spoken, this is the main idea of the famous Simplex-Algorithm (and
of its modifications). This algorithm to determine optimal solutions of linear opti-
mization problems goes back to the mathematician George Dantzig (1914-2005) and
was developed in 1947. In its basic form it can be found in [9, Ch. 5.1, p. 94-101 ].
Nowadays, there exist many modifications of the origin algorithm.

The idea underlying almost all of them can, very briefly (clearly, the techniques un-
derlying the concrete algorithms are highly non-trivial and demand a large amount
of Linear Algebra), be summarized as follows: We start with evaluating the objective
function for an arbitrary extreme point of the set of admissible solutions.

Afterwards, we keep evaluating the objective function for other extreme points in a
systematic way. The term ’systematic’ is meant in the following sense: All of the
algorithms try to avoid an evaluation of the objective function for all extreme points,
because the number of extreme points might, though finite, become very large.

Instead, the idea is to always choose on of the extreme points that generate a higher
outcome than the one chosen in the step before. In this way, it is often possible
to determine an optimal extreme point without having to compute all of them (de-
termining extreme points has high computational costs). An in-depth discussion of
the Simplex-Algorithm lies not within the scope of the present work. In detail, it is
described for example in [9, Ch. 5.1, p. 94-101].

2.4 The role of Linear Optimization in this thesis

In this last paragraph of the present chapter, we want to point out the fundamentally
important role of the theory of linear optimization for the present thesis. Note
that this paragraph should not be understood as synonymous to the considerations
in Paragraph 3.1. Instead, the consideration in this paragraph have a preparing
character.

In order to do so, note the following: If we want to determine optimal actions with
respect to some criterion Φ (in the sense of Definition 7), naturally two (highly
related) questions matter:

• Do there exist optimal actions with respect to the criterion Φ?

• And: If the answer is yes, then how can we determine Φ-optimal actions?
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In many cases, the theory linear optimization allows to answer both questions si-
multaneously: If we succeed to reformulate the task of optimizing the criterion Φ
(remember that any criterion defines a real-valued function) as a linear optimization
task (in the sense of Definition 11), we always can apply the general results on the
existence of optimal solutions of linear programming problems (see Theorems 4 and
5) to Decision Theory! More precisely, we can derive results concerning the existence
of optimal decision by simply checking the boundedness of the set of admissible so-
lutions of the corresponding linear programming problem.

Furthermore, embedding our problem in the theoretical framework of linear opti-
mization allows us to determine optimal decisions computationally: Algorithms for
computing optimal solutions of linear programming problems are implemented in
almost every statistical standard software (e.g. R).

Finally, for our purposes, the role of linear optimization can be summarized by the
following two aspects:

• Aspect 1: The theory of linear optimization is a very powerful tool for gen-
erating and proving theoretical statements. Particularly, at several points
throughout the present work it will be used to prove the existence of opti-
mal actions with respect to some criterion. Additionally, the usage of duality
theory often allows to make up (and prove) connections between seemingly
different questions relevant to decision theory (for example, see the proof of
Theorem 12: Here, a connection between the Bayes-criterion and the Hodges
& Lehmann-criterion is proven by using duality theory).

• Aspect 2: Linear optimization offers the theoretical framework for an effective
computational treatment of (finite) decision theory. As algorithms for solving
linear programming problems are standard in almost every mathematical or
statistical software, optimal decisions can be computed for example in R. How
this can be done for concrete decision situation will be treated at several points
in the Chapters 3 and 5.
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3 Linear Optimization and Decision Theory

In this chapter we demonstrate, how the theory of linear optimization treated in
Chapter 2 can be used to determine optimal (randomized) actions in finite decision
problems. It turns out that the task of determining optimal decisions (with respect
to all criteria discussed in the first chapter) can be reformulated as a task of solving
suitable linear programming problems (in a more or less direct way).

This reformulation then not only proves the existence of optimal actions according
to the corresponding criterion by applying the results on linear optimization recalled
in Chapter 2. Moreover, it can be used to compute such optimal actions by using
methods implemented in standard statistical software (e.g. R).

Finally, especially in the case of the Hodges & Lehmann-criterion (see Theorem
12), we apply the duality theory recalled in Paragraph 2.2 to learn more about
the characteristics of optimal actions. We mainly follow [3], [2, § 2.4] and [41].
Particularly, the techniques used to reformulate the criteria as linear programming
problems are inspired and adopted by this sources.

3.1 Decision making meets Linear Optimization: A motivation

In the whole chapter, let A denote a finite CDP and G(A) its mixed extension.
Again, we use the power set of A as σ- field. Then, according to equation (5), every
action a ∈ A can be identified with the randomized action δa ∈ G(A). Thus, one
can always work with decision criteria (in the sense of Definition 7)

ΦG(A) : G(A)→ R

defined on the set G(A) of all randomized actions. If a pure action a ∈ A turns out
to have a higher utility than all randomized actions available, then the optimization
of ΦG(A) on the set G(A) will have δa as an optimal solution.

Now recall that, for a criterion ΦG(A) under consideration, a randomized action
p∗ ∈ G(A) is optimal, if, and only if, the inequality

ΦG(A)(p∗) > ΦG(A)(p)

holds for all p ∈ G(A) . Thus, determining a ΦG(A)-optimal action coincides with
computing the expression

argmax
{

ΦG(A)(p) : p ∈ G(A)
}
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To make up a connection to the structure of a linear programming problem, some
preparation work has to be done: Since the set of action A is assumed to be finite,
every randomized action p ∈ G(A) can uniquely be identified with a point of the
(n− 1)-dimensional simplex

∆n :=
{
x ∈ Rn :

n∑
i=1

xi = 1 ∧ xi > 0 ∀i = 1, . . . , n
}

This is possible, since the map

t : G(A)→ ∆n , p 7→ (p({a1}), . . . , p({an})) =: (p1, . . . , pn)

is bijective (this map will repeatedly be referred to throughout the whole work).

This implies that the identity

max
{

ΦG(A)(p) : p ∈ G(A)
}

= max
{

ΦG(A)(t−1(p)) : p ∈ ∆n

}
holds, whenever one of the above maxima exists.

Therefore, determining a ΦG(A)-optimal action p∗ ∈ G(A) is equivalent to solving
the optimization problem

ΦG(A)(t−1(p)) −→ max
(p1,...,pn)

(36)

with constraints

• pi > 0 for all i = 1, . . . , n

•
∑n
i=1 pi = 1

Particularly, this implies that there exists an optimal randomized action with respect
to the criterion ΦG(A) if, and only if, the above optimization problem (36) admits
an optimal solution.

Now, note that the second constraint of problem (36) is equivalent to the inequality

(
1 . . . 1
−1 . . . −1

)
·


p1
...
pn

 6
(

1
−1

)

Hence, problem (36) gives us an optimization problem with linear constraints (in
the sense of Definition 11). Additionally, if the function Φ ◦ t−1 is linear in p, then

46



3 Linear Optimization and Decision Theory

determining a ΦG(A)-optimal action is equivalent to solving a linear programming
problem where ∆n defines the set of admissible solutions.

Since ∆n obviously is both non-empty and bounded, Theorem 4 then implies that
the above SMP (36) has an optimal solution p∗ ∈ ∆N . Hence, we get an optimal
randomized action by re-transforming the point p∗ into the corresponding probabil-
ity measure t−1(p∗).

The approach just described seems to be very restrictive, since it helps us to deter-
mine optimal randomized action only for the linear case (both the constraints and
the criterion itself have to be linear in the sense of Definition 11).

However, in many cases also seemingly non-linear optimization tasks can be reformu-
lated as suitable linear programming problems. Which linear programming problem
needs to be solved clearly depends on the criterion to be optimized. In the following
paragraphs, common proposals for the criteria discussed in Chapter 1 are recalled.

3.2 Bernoulli/Bayes-criterion as a linear program

In this paragraph two different approaches for determining Bayes-optimal actions us-
ing linear optimization are recalled. Finally, it will turn out that the two approaches
are dual to each other (in the sense of Definition 12). Implicitly, the consideration
within this paragraph will give us an alternative proof of Theorem 2, that is an
alternative proof of the needlessness of randomization when defining optimality in
terms of the Bayes-criterion. The paragraph is orientated on [41, § 5.1].

In the whole paragraph, let π denote a probability measure on (Θ,P(Θ)), where Θ
again denotes the set of states of a finite CDP. Then, according to the equations
(12) and (13), the Bernoulli/Bayes-criterion

ΦG(A)
B(π) : G(A)→ R

with respect to π is given by

ΦG(A)
B(π)(p) =

n∑
i=1

 m∑
j=1

u(ai, θj) · π({θj})

 · p({ai}) (37)

for all p ∈ G(A). Here, we used again the exchangeability of the two sums in the
finite Bayes-criterion (see for example the proof of Theorem 2).
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Thus, for all p ∈ G(A), we can rewrite the criterion by

ΦG(A)
B(π)(p) = (cπ1 , . . . , cπn) ·


p({a1})

...
p({an})

 (38)

where
cπi :=

m∑
j=1

u(ai, θj) · π({θj})

for all i = 1, . . . , n.

With the function t : G(A) → ∆n being defined just like in the last paragraph,
the map Φ ◦ t−1 clearly is linear in p (on the set ∆n). Thus, according to the
considerations from the last paragraph, determining a B(π)-optimal action coincides
with solving the linear program

ΦG(A)
B(π)(t

−1(p)) = (cπ1 , . . . , cπn) ·


p1
...
pn

 −→ max
p

(39)

with constraints

• pi > 0 for all i = 1, . . . , n

•
(

1 . . . 1
−1 . . . −1

)
·


p1
...
pn

 6
(

1
−1

)

Thus, we succeeded in reformulating the finite Bayes-criterion as a linear optimiza-
tion problem. Since the set ∆n is non-empty and bounded, according to Theorem 4,
we have proven that there exists a Bayes-action with respect to π. As π was chosen
arbitrarily, this implies the existence of Bayes-actions in finite decision problems for
arbitrary prior distributions.

However, the approach described above completely ignores the additional informa-
tion given by Theorem 2: In the case of the finite Bayes-criterion it suffices to take
only pure actions into account. Instead, the linear programming problem (39) takes
all the randomized actions into consideration and, therefore, seems to perform avoid-
able computational efforts.

Therefore, let us now to describe a different approach taking the additional knowl-
edge given by Theorem 2 into account. Since we know that there exists a pure
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action a∗ ∈ A, which is B(π)-optimal for the decision problem G(A) (using the
identification a∗ ≈ δa∗), the optimal outcome of the optimization problem

m∑
j=1

u(a, θj) · π({θj}) −→ max
a∈A

(40)

equals the optimal outcome of (39). However, problem (40) is not a linear program,
since the set A is not convex (as a subset of the real numbers). So, how can we
reformulate (40) as a linear optimization problem?

Again, we need some preparing considerations: If Q ⊂ R is a finite real subset, then
the maximum of the set Q coincides with the smallest real number, which is greater
or equal than any number z ∈ Q, i.e.

max(Q) = min{M ∈ R : x > z ∀ z ∈ Q}

Now, define

Q :=


m∑
j=1

u(a, θj) · π({θj}) : a ∈ A


Then, for our problem, we arrive at

max(Q) = min

M ∈ R : M >
m∑
j=1

u(a, θj) · π({θj}) ∀ a ∈ A


Thus, the optimal outcome of (40) equals the optimal outcome of the optimization
problem

M −→ min
M∈R

(41)

with the linear constraint

•


1
...
1

 ·M >

∑m
j=1 u(a1, θj) · π({θj})

...∑m
j=1 u(an, θj) · π({θj})

 =


cπ1
...
cπn



Note that (41) still isn’t a linear program in the sense of Definition 11, since the
constraints do not restrict the variable M to be bounded from below by 0.

Therefore, another general consideration has to be done: Any real number M ∈ R
is representable as the difference of two positive real numbers w1, w2 ∈ R+

0 . Thus,
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for any set Q ⊂ R the following holds

inf Q = inf{w1 − w2 : w1, w2 ∈ R+
0 ∧ w1 − w2 ∈ Q}

Hence, the optimal outcome of problems (40) (and (41)) equals the optimal outcome
of the linear programming problem

w1 − w2 −→ min
(w1,w2)∈R2

(42)

• (w1, w2) > 0

•


1 −1
...

...
1 −1

 ·
(
w1

w2

)
>


cπ1
...
cπn



Finally, we succeeded in reformulating (40) as a linear opimization problem in the
sense of Definition 11.

As already mentioned in the beginning of the paragraph, the resulting SMIP (42)
turns out to be exactly the dual programming problem of the SMP (39) (in the sense
of Definition 12) and, therefore, admits the same optimal outcome.

This allows two different ways of interpretation: On the on hand, the above consider-
ations could have been shortened a lot by just applying the duality theorem (that is
Theorem 6). On the other hand, the duality theorem gives us the equivalence of the
linear programs (42) and (39), without using the additional knowledge we get from
Theorem 2. Thus, implicitly, the above considerations give an alternative proof for
Theorem 2.

3.3 Least favourable prior distributions

In the last paragraph, the connection between determining Bayes-optimal actions
and linear optimization was discussed. This gives us the possibility to prove a The-
orem on the existence of so called least favourable prior distributions. At this point,
the meaning of such special prior distributions might seem rather unclear: Why
should there be more than one prior distribution? And: Why should I be interested
in the least favourable one among them? The importance of this Theorem then will
show up when considering more general descriptions of uncertainty in Chapter 5.
More precisely, using the concept of least favourable prior distributions, it is possi-
ble to make up a connection between CDPs with precise and imprecise information
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available. Therefore, the following paragraph should be understood as a lookahead
on Chapter 5. Hereby, we mainly refer to the considerations [2, § 2.4.5] and [35, §
2.4].

Consider the following situation: Let M be a set of prior distributions on the set
of states Θ of a finite CDP A (for example a so called credal set, see Definition 16).
Suppose, according to your information base, all of the measures contained in M
are equally plausible to be the true measure describing the uncertainty between the
elements of Θ. That is, the uncertainty underlying our CDP is of type I, but our
information doesn’t suffice to determine a unique prior distribution.

We want to answer the following question: Does there always exist a least favourable
prior, i.e. an element ofM that minimizes the Bayes-utility under all priors inM?
And, if there is such an element ofM, how can it be determined?

It will turn out that, at least for a linearly defined set M, least favourable prior
distributions always exist and can be determined by solving suitable linear program-
ming problems. As we will see later, the assumption of a linearly defined set is not
a too serious restriction (see Theorem 15).

So, let A be any finite CDP. Then, for all i = 1, ..., r let

• (bi, bi) ∈ R2 such that bi 6 bi

• fi : Θ→ R

Now, define the set

M :=
{
π : π is pm on (Θ,P(Θ)) ∧ bi 6 Eπ(fi) 6 bi︸ ︷︷ ︸

=:R(i)

∀i = 1, ..., r
}

(43)

of all probability measures (pm) satisfying the constraints R(i) for all i = 1, ..., r.

As shown in the last paragraph, for every measure π ∈M there exists a Bayes-action
p∗π ∈ G(A) with respect to π. Specifically, we have

M(π) := ΦG(A)
B(π)(p

∗
π) > ΦG(A)

B(π)(p)

for all p ∈ G(A). That is, the expression M(π) equals the expected utility of an
Bayes-action with respect to π. Now, we show that the lowest possible Bayes-utility
on the setM is indeed attained.
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Theorem 9. There exists π∗ ∈M such that

M(π∗) 6M(π) (44)

for all π ∈M. π∗ is called least favourable prior with respect toM.

Proof. First note that the existence of a prior π∗ ∈ M satisfying condition (44) is
equivalent for the optimization problem

M(π) −→ min
π∈M

(45)

to have an optimal solution. Now, let π ∈M be arbitrary. For the sake of readability,
we define the notation a′ := −a for any number a ∈ R.

According to the considerations from the last paragraph, M(π) equals the optimal
outcome of the SMP

n∑
j=1

(
m∑
i=1

u(ai, θj) · π(θj)
)

︸ ︷︷ ︸
=:cπi

·pi := (cπ1 , . . . , cπn) ·


p1
...
pn

 −→ max
p

(46)

with constraints

• pi > 0 for all i = 1, . . . , n

•
(

1 . . . 1
1′ . . . 1′

)
·


p1
...
pn

 6
(

1
−1

)

Thus, by duality, M(π) equals the optimal outcome of the dual program

(1,−1) ·
(
w1

w2

)
−→ min

w

with constraints

• wk > 0 for k = 1, 2 (:=Rπ1 )

• w1 − w2 > cπi for all i = 1, ..., n (:=Rπ2 )

Hence, the optimization problem (45) has an optimal solution if, and and only if,
the optimization problem

min {w1 − w2 : Rπ1 ∧Rπ2} −→ min
π∈M

(47)
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has an optimal solution. We have the following identity

min{M(π) : π ∈M} = min {min {w1 − w2 : Rπ1 ∧Rπ2} : π ∈M}

= min {w1 − w2 : Rπ1 ∧Rπ2 ∧ π ∈M}

Thus, the optimization problem (47) has an optimal solution if, and only if, there
exists an optimal solution for the following optimization problem:

(1,−1, 0, ..., 0︸ ︷︷ ︸
m times

) ·



w1

w2

π1
...
πm


−→ min

w,π
(48)

with constraints

• Rπ1 , Rπ2

• π ∈ Πm

where, again, we used the one-to-one correspondence of the setM and the set

Πm :=
{

(π({θ1}), ..., π({θm})) : π ∈M
}

induced by the bijection

b :M→ Πm , π 7→ (π({θ1}), ..., π({θm})) =: (π1, ..., πm)

This gives us an optimization problem with a linear objective function (clearly, the
function to be optimized in problem (9) is linear in the variable (w1, . . . , pn) in the
sense of Definition 11). But is the optimization problem (48) linear in the sense of
Definition 11? In other words: Can we rewrite its constraints by a finite system of
linear inequalities?

To see the linearity of the constraints of the optimization problem (48) (in the sense
of Definition 11), note that they can equivalently be written as the following system
of linear inequalities

• w1, w2, π1, ..., πm > 0
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•



0 0 1 . . . 1
0 0 1′ . . . 1′

0 0 f11 . . . f1m

0 0 f ′11 . . . f ′1m
...

...
... . . .

...
0 0 fr1 . . . frm

0 0 f ′r1 . . . f ′rm

1 1′ u′11 . . . u′1m
...

...
... . . .

...
1 1′ u′n1 . . . u′nm


︸ ︷︷ ︸

=:H

·



w1

w2

π1
...
πm


>



1
1′

b1

b
′
1
...
br

b
′
r

0
...
0


︸ ︷︷ ︸

=:b

where the following notations are used

• fij := fi(θj) for all i = 1, ..., r and j = 1, ...,m

• uij := u(ai, θj) for all i = 1, ..., n and j = 1, ...,m

Next, we show that the above SMIP (48) admits an optimal solution. The following
holds:

inf
{
w1−w2 : Rπ1 ∧Rπ2 ∧π ∈ Πm

}
> inf

{
cπi : i = 1, ..., n∧π ∈ Πm

}
> min

{
uij
}
> −∞

Thus, according to Theorem 5, the SMIP (48) admits an optimal solution, i.e. there
exists

u∗ := (w∗1, w∗2, π∗1, . . . , π∗m︸ ︷︷ ︸
=:π∗∈Πm

) ∈ Z(H, b)−

such that
(1,−1, 0, ..., 0︸ ︷︷ ︸

m times

) · u∗ 6 (1,−1, 0, ..., 0︸ ︷︷ ︸
m times

) · u

for all u ∈ Z(H, b)−. Thus, we proved the existence of a least favourable prior.

Finally, we compute

min{M(π) : π ∈M} = min {w1 − w2 : Rπ1 ∧Rπ2 ∧ π ∈M}

= min
{
w1 − w2 : Rπ∗1 ∧Rπ

∗
2

}
= max

{
ΦG(A)
B(b−1(π∗))(p) : p ∈ G(A)

}
= M(b−1(π∗))
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Hence, a least favourable prior distribution in M is given by b−1(π∗). This com-
pletes the proof. �

As an immediate consequence, we derive the following

Corollary 1. There exists a pair (a∗, π∗) ∈ A×M such that

ΦG(A)
B(π∗)(p) 6 ΦA

B(π∗)(a
∗) 6M(π)

for all (π, p) ∈M×G(A).
In this work, (a∗, π∗) will be called a least favourable combination from A×M.

Proof. Let, according to Theorem 9, π∗ ∈M be a least favourable prior distribution.
That is, we have M(π∗) 6 M(π) for all π ∈ M. Now, according to Theorem 2,
choose an action a∗ ∈ A such that

ΦA
B(π∗)(a

∗) = ΦG(A)
B(π∗)(δa∗) > ΦG(A)

B(π∗)(p)

for all p ∈ G(A). Then, by the definition of M(π∗), we get

ΦG(A)
B(π∗)(p) 6 ΦA

B(π∗)(a
∗) = ΦG(A)

B(π∗)(δa∗) 6M(π∗) 6M(π)

for all (π, p) ∈M×G(A). This completes the proof. �

The proof of Theorem 9 not only shows the existence of least favourable prior distri-
butions for finite decision problems, but also describes a method to determine such
a distribution for a concrete decision problem: Again, least favourable prior distribu-
tions can be gained by solving suitable linear optimization problems and, therefore,
by applying statistical standard software. Let’s illustrate this by an example.

Example 4. Consider the finite CDP A defined by

uij θ1 θ2 θ3 θ4

a1 20 15 10 30
a2 30 10 10 20
a3 20 40 0 20
a4 10 30 50 30
a5 0 30 20 40

and let
M :=

{
π : π1 + π3 6 0.8 ∧ π4 > 0.5

}
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be a linearly restricted set of probability measures on the set of states. The linear
constraints R(i), i = 1, 2 defining the setM are given by

• f1(θ) :=

1 if θ ∈ {θ1, θ3}

0 else

• f2(θ) :=

1 if θ = θ4

0 else

• (bi, bi) :=

(0, 0.8) if i = 1

(0.5, 1) if i = 2

Now, according to the proof of Theorem 9, a least favourable prior π∗ ∈ M can be
found by solving the following linear programming problem

(1,−1, 0, 0, 0, 0) ·



w1

w2

π1
...
π4


−→ min

w,π

with constraints

• w1, w2, π1, ..., π4 > 0

•



0 0 1 1 1 1
0 0 −1 −1 −1 −1
0 0 1 0 1 0
0 0 −1 0 −1 0
0 0 0 0 0 1
0 0 0 0 0 −1
1 −1 −20 −15 −10 −30
1 −1 −30 −10 −10 −20
1 −1 −20 −40 0 −20
1 −1 −10 −30 −50 −30
1 −1 0 −30 −20 −40



·



w1

w2

π1
...
π4


>



1
−1
0
−0.8
0.5
−1
0
0
0
0
0


This linear programming problem can be solved using, for example, the lpSolve
package in the statical software R. As an optimal solution we get

(w∗1, w∗2, π∗1, . . . , π∗m) = (24, 0, 0.4, 0, 0.1, 0.5)
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Hence, a M-least favourable prior distribution for the above decision problem is
given by

π∗({θi}) =



0.4 if i = 1

0 if i = 2

0.1 if i = 3

0.5 if i = 4

Now, there are (at least) two possibilities to determine a π∗-optimal action. The
first one is the following: Pick a pure action in {a1, . . . , a5}, which maximizes the
expected utility with respect to the measure π∗. This is possible, since we know that
there exists at least one optimal pure action. We arrive at

Eπ∗(uai) =



24 if i = 1

23 if i = 2

18 if i = 3

24 if i = 4

22 if i = 5

We see that both, a1 and a4 (respectively δa1 and δa4), are π∗-optimal actions in the
decision problem G(A).

The second possibility to determine an π∗-optimal action is to solve the linear opti-
mization problem (39). We get

(24, 23, 18, 24, 22) ·


p1
...
p5

 −→ max
p

with constraints

• pi > 0 for all i = 1, . . . , 5

•
(

1 . . . 1
−1 . . . −1

)
·


p1
...
p5

 6
(

1
−1

)

Computing in R gives the optimal solution

(p∗1, ..., p∗5) = (0, 0, 0, 1, 0)
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Hence, we receive a4 as an optimal solution. Finally, least favourable combinations
fromM× A are given by (π∗, a1) and (π∗, a4). ?

3.4 Maximin-criterion as a linear optimization problem

In this paragraph, we recall how Maximin-actions in finite decision problems can be
determined by the usage of linear optimization theory. The presentation is strongly
orientated on [2, § 2.3, especially Proposition 2.4.3].

As a first step, recall that Example 1 proved that Maximin-actions doesn’t necessar-
ily have to be pure. There might exist randomized actions having a strictly higher
utility than all pure actions available. Therefore, all considerations in this paragraph
are based on randomized actions. More precisely, we always work on the mixed ex-
tension G(A) of a finite decision problem A.

Now, recall that a randomized action p∗ ∈ G(A) is Maximin-action if, and only if,

ΦG(A)
M (p∗) = min

θ∈Θ
G(u)(p∗, θ) > min

θ∈Θ
G(u)(p, θ) = ΦG(A)

M (p) (49)

holds for all p ∈ G(A). Thus, determining a Maximin-action is equivalent to the
optimization problem

min
θ∈Θ

G(u)(p, θ)︸ ︷︷ ︸
=:α(p)

−→ max
p∈G(A)

(50)

Particularly, this implies that there exists a randomized Maximin-action for the
decision problem G(A) if, and only if, the optimization problem (50) admits an
optimal solution.

Now, note that, for any p ∈ G(A) fixed, the term α(p) equals the greatest real
number M smaller than the utility of p under all possible states of nature, i.e.

α(p) = max{M : M 6 G(u)(p, θ) ∀θ ∈ Θ} (51)

Hence, the optimization problem (50) possesses an optimal solution if, and only if,
the optimization problem

(1, 0, . . . , 0︸ ︷︷ ︸
n times

) ·


M

p1
...
pn

 −→ max
(M,p1,...,pn)

(52)
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with constraints

• p ∈ ∆n

• M 6 G(u)(t−1(p), θ) ∀θ ∈ Θ

possesses an optimal solution. In this case, the optimal outcome of the optimization
problems (52) and (50) coincide. Note that we again used the one-to-one correspon-
dence of the sets ∆n and G(A).

Exactly like in the case of problem (41), the constraints do not restrict the variable
M to be bounded from below by 0. Again, in order to construct a linear optimization
problem in the sense of Definition 11, we substitute the variableM by the difference
of two non-negative variables w1, w2.

We arrive at the SMP

(1,−1, 0, . . . , 0︸ ︷︷ ︸
n times

) ·



w1

w2

p1
...
pn


−→ max

(w1,w2,p1,...,pn)
(53)

with constraints

• p, w1, w2 > 0

• p ∈ ∆n

• w1 − w2 6 G(u)(t−1(p), θ) ∀θ ∈ Θ

To see the linearity of the constraints, recall that

G(u)(t−1(p), θ) =
n∑
i=1

u(ai, θ) · pi

Hence, the the second and third constraint can equivalently be described by the
inequality 

0 0 1 . . . 1
0 0 1′ . . . 1′

1 1′ u′11 . . . u′n1
...

...
...

...
...

1 1′ u′1m . . . u′nm


︸ ︷︷ ︸

=:G

·



w1

w2

p1
...
pn


6



1
1′

0
...
0


︸ ︷︷ ︸

=:b∈R(n+2)×1
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Finally, we arrive at the linear optimization problem (53) (in the sense of Definition
11). But does the linear optimization problem (53) admit an optimal solution?

To see that this indeed is the case, note that the objective function w1 − w2 of
problem (53) is bounded on the set Z(G, b)+, since

w1 − w2 6
n∑
i=1

u(ai, θ) · pi 6 max
i,j

u(ai, θj) ·
n∑
i=1

pi = max
i,j

u(ai, θj) <∞

for all (w1, . . . , pn) ∈ Z(G, b)+. Hence, there always exists an optimal solution of
problem (53) according to Theorem 5. By equivalence, this implies the existence
of an optimal solution for problem (50). Thus, there always exists a randomized
Maximin-action for the decision problem G(A).

Particularly, every optimal solution of the SMP (53) then is of the form

(w∗1, w∗2, p∗1, . . . , p∗n︸ ︷︷ ︸
=:p∗∈∆n

) ∈ Z(G, b)+

Thus, solving the SMP gives us an optimal randomized action by simply re-transforming
p∗ into t−1(p∗), where t is the bijective map defined in the beginning of the chapter.

All together, we just gave a constructive proof for the following theorem. It also can
be found in [2, Proposition 2.4.3].

Theorem 10. For any finite CDP A there exists a Maximin-action p∗ ∈ G(A). �

Implicitly, the above considerations recalled an algorithm for determining Maximin-
actions in finite CDPs with the methods of linear optimization. Again, the computa-
tion of such an action can be done within standard statistical software. A concrete
application of this algorithm is demonstrated in the following example.

Example 5. Consider again the CDP from Example 4. According to the above con-
siderations, we can determine a (randomized) Maximin-action by solving the linear
optimization problem (53). Thus, we arrive at the linear programming problem

(1,−1, 0, 0, 0, 0, 0) ·



w1

w2

p1
...
p5


−→ max

(w1,...,pn)

with constraints
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• p, w1, w2 > 0

•



0 0 1 1 1 1 1
0 0 −1 −1 −1 −1 −1
1 −1 −20 −30 −20 −10 0
1 −1 −15 −10 −40 −30 −30
1 −1 −10 −10 0 −50 −20
1 −1 −30 −20 −20 −30 −40


·



w1

w2

p1
...
p5


6



1
−1
0
...
0



As an optimal solution we receive

(w∗1, w∗2, p∗1, . . . , p∗5) = (21.6̄, 0, 0, 0.5, 0.16̄, 0.3̄, 0)

Hence, a randomized Maximin-action p∗ ∈ G(A) is given by the probability measure

p({ai}) =



0 if i = 1
1
2 if i = 2
1
6 if i = 3
1
3 if i = 4

0 if i = 5

Finally, the Maximin-utility of the randomized action p∗ can be gained by evaluating
the objective function for the optimal solution just computed. Thus, the Maximin-
utility is given by w∗1 − w∗2 = 21.6̄. ?

3.5 Hodges & Lehmann criterion as a linear optimization problem

Finally, we want to construct linear programming problems optimizing the Hodges
& Lehmann criterion discussed in Chapter 1. As shown in Example 6 in Chapter
1, taking randomized actions into account sometimes might create a strict improve-
ment of the Hodges & Lehmann utility.

Again, since all pure actions can be uniquely identified with randomized actions
(namely the corresponding Dirac-measure, see Remark 2 on Definition 2 ), it suf-
fices to determine optimal actions on the mixed extension of a given CDP.

Recall that, for fixed α ∈ [0, 1] and a probability measure π on (Θ,P(Θ)), a random-
ized action p∗ ∈ G(A) is H(α, π)-optimal if, and only if, the inequality

ΦG(A)
H(α,π)(p

∗) > ΦG(A)
H(α,π)(p)
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holds for all p ∈ G(A), where

ΦG(A)
H(α,π)(p) = α · ΦG(A)

B(π)(p) + (1− α) · ΦG(A)
M (p) (54)

Hence, determining a H(α, π)-optimal action is equivalent to resolving the optimiza-
tion problem

ΦG(A)
H(α,π)(p) −→ max

p∈G(A)
(55)

Particularly, this implies that there exists a randomized H(α, π)-action for the de-
cision problem G(A) if, and only if, the above optimization problem (55) possesses
an optimal solution.

For the case of a finite CDP this optimization problem always has an optimal solu-
tion. This is the statemant of the following theorem. Additionally, the method used
to prove the theorem can be used to compute H(α, π)-optimal actions applying the
methods of linear programming theory.

Theorem 11. Let A be any finite CDP and let α ∈ [0, 1]. Let further π denote
a probability measure on (Θ,P(Θ)). Then there exists an H(α, π)-optimal action
p∗ ∈ G(A).

Proof. According to the above considerations, it suffices to show that the optimiza-
tion problem (55) has an optimal solution. Using equation (54) and the definition
of the Maximin- and the Bayes-criterion, we arrive at

ΦG(A)
H(α,π)(p) = α ·

( n∑
i=1

cπi · p({ai})
)

+ (1− α) ·min
θ∈Θ

G(u)(p, θ) (56)

where cπi is defined like in the proof of Theorem 9. According to equations (50) and
(51) we get

min
θ∈Θ

G(u)(p, θ) = max{M : M 6 G(u)(p, θ) ∀θ ∈ Θ} (57)

Hence, the optimal outcome of the optimization problem (55) equals the optimal
outcome of the optimization problem

α ·
( n∑
i=1

cπi · pi
)

+ (1− α) ·M =
(
(1− α), αcπ1 , . . . , αcπn

)
·


M

p1
...
pn

 −→ max
M,p

(58)
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with constraints

• p ∈ ∆n

• M 6 G(u)(t−1(p), θ) for all θ ∈ Θ

As already seen in the context of problem (41), in order to receive an equivalent
linear programming problem in the sense of Definition 11, one has to substitute the
variable M by the difference of two non-negative variables w1, w2. We arrive at

(
(1− α), (α− 1), αcπ1 , . . . , αcπn

)
·



w1

w2

p1
...
pn


−→ max

w,p
(59)

with constraints

• w, p > 0

• p ∈ ∆n

• w1 − w2 6 G(u)(t−1(p), θ) for all θ ∈ Θ

These are the same constraints as for the Maximin-criterion. Thus, the constraints
are linear, as already shown before. Hence, the optimization problem (59) is a SMP.
But are there optimal solutions? According to Theorem 2, there exists a pure action
a∗ ∈ A such that

U1 := ΦA
B(π)(a

∗) >
n∑
i=1

cπi · pi

for all p ∈ ∆n. Additionally, we have that

U2 := max
i,j

u(ai, θj) > min
θ∈Θ

G(u)(p, θ)

for all p ∈ G(A). Thus, we receive the inequality

α ·
( n∑
i=1

cπi · pi
)

+ (1− α) · (w1 − w2) 6 α · U1 + (1− α) · U2 <∞

for all (p, w) ∈ Z(G, b)+, where G and b are defined as in the last paragraph. Hence,
the objective function of the optimization problem (59) is bounded from above on
the set Z(G, b)+ of admissible solutions. Therefore, the SMP has an optimal solution
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according to Theorem 5.
Now, let

(w∗1, w∗2, p∗1, . . . , p∗n︸ ︷︷ ︸
=:p∗∈∆n

) ∈ Z(G, b)+

be an optimal solution of (59). Then, by construction, the following holds

max
{

ΦG(A)
H(α,π)(p) : p ∈ G(A)

}
= α · ΦG(A)

B(π)(t
−1(p∗)) + (1− α) · (w∗1 − w∗2)

But

w∗1 − w∗2 = max
{
M ∈ R : M 6 G(u)(t−1(p∗), θ) for all θ ∈ Θ

}
= min

θ∈Θ
G(u)(t−1(p∗), θ)

= ΦG(A)
M (t−1(p∗))

Finally, we arrive at

max
{

ΦG(A)
H(α,π)(p) : p ∈ G(A)

}
= α · ΦG(A)

B(π)(t
−1(p∗)) + (1− α) · ΦG(A)

M (t−1(p∗))

= ΦG(A)
H(α,π)(t

−1(p∗))

Hence, t−1(p∗) ∈ G(A) is a H(α, π)-optimal action. This completes the proof. �

The proof of Theorem 11 contains a method for determining optimal randomized
Hodges & Lehmann-actions in finite decision problems by using the methods of lin-
ear optimization theory. This algorithm can be app lied for arbitrary values of the
optimism parameter α ∈ [0, 1].

Again, this allows to determine randomized Hodges & Lehmann-actions by using
standard statistical software. How this can be done for a concrete decision problem
is demonstrated in the following example.

Example 6. Consider again the CDP defined in Example 4. Additionally, let π be
the probability measure on (Θ,P(Θ)) induced by the assignment

π({θj}) =



2
5 if j = 1
1
5 if j = 2
1
10 if j = 3
3
10 if j = 4
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Assume the uncertainty type underlying the CDP is perfectly characterized by set-
ting α = 0.7. We compute

cπi = Eπ(uai) =



21 if i = 1

21 if i = 2

22 if i = 3

24 if i = 4

20 if i = 5

Then, according to Theorem 11, a H(α, π)-optimal action can be determined by
solving the linear programming problem (59), that is

(
0.3,−0.3, 0.7 · 21, . . . , 0.7 · 20

)
·



w1

w2

p1
...
p5


−→ max

w,p
(60)

with constraints

• w, p > 0

•



0 0 1 1 1 1 1
0 0 −1 −1 −1 −1 −1
1 −1 −20 −30 −20 −10 0
1 −1 −15 −10 −40 −30 −30
1 −1 −10 −10 0 −50 −20
1 −1 −30 −20 −20 −30 −40


·



w1

w2

p1
...
p5


6



1
−1
0
...
0



Computing this linear programming problem in R, we receive the following optimal
solution:

s∗ := (w∗1, w∗2, p∗1, . . . , p∗5) = (21.6̄, 0, 0, 0.5, 0.16̄, 0.3̄, 0)

Like in the case of the Maximin-criterion, the probability measure p∗ ∈ G(A) induced
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by the assignment

p∗({ai}) =



0 if i = 1
1
2 if i = 2
1
6 if i = 3
1
3 if i = 4

0 if i = 5

is an optimal randomized action. Again, the Hodges & Lehmann utility can be
gained by evaluating the objective function for the optimal solution. We arrive at:

ΦG(A)
H(α,π)(p

∗) =
(
0.3,−0.3, 0.7 · 21, . . . , 0.7 · 20

)
·



21.6̄
0
0

0.5
0.16̄
0.3̄
0


= 22.016̄

?

To complete the paragraph, we want to show up a connection between the Hodges
& Lehmann-criterion and the Bayes-criterion. More precisely, given the prior π and
the trade-off parameter α, we describe a method to construct a probability measure
λπ,α on (Θ,P(Θ)) such that

ΦA
B(λπ,α)(a

∗) = ΦG(A)
H(α,π)(p

∗) (61)

where a∗ ∈ A denotes a Bayes-action w.r.t. λπ,α and p∗ ∈ G(A) denotes a random-
ized H(α, π)-action. That is, for every pair (α, π) consisting of a parameter α ∈ [0, 1]
and a probability measure π on (Θ,P(Θ)) there exists a probability measure λπ,α
on (Θ,P(Θ)) such that the Bayes-utility w.r.t. λπ,α equals the H(α, π)-utility. This
is the statement of the following

Theorem 12. Let A denote any finite CDP. Further, let π be a probability measure
on (Θ,P(Θ)) and let α ∈ [0, 1]. Let, according to Theorem 11, p∗ denote a random-
ized H(α, π)-action. Then, there exists a probability measure λπ,α on (Θ,P(Θ)) and
a pure action a∗ ∈ A such that equation (61) is satisfied.

Proof. According to the proof of Theorem 11, the expression ΦG(A)
H(α,π)(p

∗) equals the
optimal outcome of the linear optimization problem (59). Thus, by duality, it equals
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the optimal outcome of the dual programming problem of (59), namely

h(u1, . . . , σm) :=
(
1,−1, 0, . . . , 0︸ ︷︷ ︸

m-times

)
·



u1

u2

σ1
...
σm


−→ min

(u1,...,σm)
(62)

with constraints

• (u1, . . . , σm) > 0

• GT ·



u1

u2

σ1
...
σm


>



1− α
α− 1
α · cπ1

...
α · cπn


︸ ︷︷ ︸

=:~s

where G is the constraint matrix from the proof of Theorem 10. A simple computa-
tion shows that the second constraint is equivalent to the (in)equalities

m∑
j=1

σj = 1− α (63)

u1 − u2 > α · cπi +
m∑
j=1

uij · σj =
m∑
j=1

uij · (α · πj + σj) for all i = 1, . . . , n (64)

Now, let (u∗1, u∗2, σ∗1, . . . , σ∗m) denote an optimal solution of problem (62). By duality,
such an solution always exists, since (62) is the dual of (59), which always admits
an optimal solution according to Theorem 11. Then, according to equation (63), we
have

m∑
j=1

(α · πj + σ∗j ) = α ·
m∑
j=1

πj +
m∑
j=1

σ∗j = α+ 1− α = 1 (65)

Together with the non-negativity of α ·πj +σ∗j for all j = 1, . . . ,m, this implies that
α ·π+σ∗ ∈ ∆m. Hence, the assignment λπ,α := b−1(α ·π+σ∗) defines a probability
measure on (Θ,P(Θ)).

Next, note that for the optimal outcome of problem (62) the following identity holds:

u∗2 − u∗2 =
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= min
{
u1 − u2 : (u1, . . . , σm) ∈ Z−(GT , ~s)

}
= min

{
h(u1, . . . , σm) : (u1, . . . , σm) ∈ Z−(GT , ~s)

}
= min

{
h(u1, u2, σ

∗
1, . . . , σ

∗
m) : u1 − u2 >

m∑
j=1

uij · (α · πj + σj) for all i = 1, . . . , n
}

= min
{
u1 − u2 : u1 − u2 > c

λπ,α
i for all i = 1, . . . , n

}
However, the minimum in the last bracket coincides with the optimal outcome of
the linear programming problem (42) for determining a Bayes-action with respect to
λπ,α. That is, the optimal outcome of problem (62) coincides with the Bayes-utility
w.r.t. the measure λπ,α. Now, according to Theorem 2, let a∗ ∈ A denote a pure
Bayes-action with respect to λπ,α. Then, we arrive at the following identity:

ΦA
B(λπ,α)(a

∗) = u∗1 − u∗2 = ΦG(A)
H(α,π)(p

∗) (66)

This completes the proof. �

So, we succeeded in showing that, instead of applying the Hodges & and Lehmann
criterion, one always can maximize expected utility with respect to a suitable prior
distribution. Furthermore, the proof of Theorem 12 contains a method to construct
such a prior distribution using the linear optimization (and duality theory in partic-
ular).

Let’s apply the described method to our example.

Example 7. Consider once again the CDP from Example 4. Additionally, let π be
defined like in Example 6 and let α = 0.7. Next, we set up the optimization problem
(62) adopted for our example. We arrive at

(
1,−1, 0, 0, 0, 0

)
·



u1

u2

σ1
...
σ4


−→ min

(u1,...,σ4)

with constraints

• (u1, . . . , σ4) > 0
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•



0 0 1 1 1 1
0 0 −1 −1 −1 −1
1 −1 −20 −15 −10 −30
1 −1 −30 −10 −10 −20
1 −1 −20 −40 0 −20
1 −1 −10 −30 −50 −30
1 −1 0 −30 −20 −40


·



u1

u2

σ1
...
σ4


>



1− α
α− 1
α · cπ1

...
α · cπ5


=



0.3
−0.3

0.7 · 21
0.7 · 21
0.7 · 22
0.7 · 24
0.7 · 20


Running the above optimization problem in R returns the optimal solution

(u∗1, . . . , σ∗4) := (22.01666667 , 0 , 0.21583333 , 0.05750000 , 0.02666667 , 0)

Hence, the probability measure λπ,0.7 on (Θ,P(Θ)) is induced by the assignment

λπ,0.7({θj}) = 0.7 · π({θj}) + σ∗j =



0.7 · 2
5 + 0.21583̄ = 0.49583̄ if j = 1

0.7 · 1
5 + 0.0575 = 0.1975 if j = 2

0.7 · 1
10 + 0.026̄ = 0.096̄ if j = 3

0.7 · 3
10 + 0 = 0.21 if j = 4

The expected utilities of the actions a1, . . . , a5 with respect to λπ,0.7 are given by

Eλπ,0.7(uai) =



20.14583 if i = 1

22.01667 if i = 2

22.01667 if i = 3

22.01667 if i = 4

16.25833 if i = 5

Hence, we have the Bayes-actions a2, a3 and a4 and the following holds:

ΦA
B(λπ,0.7)(a2) = ΦA

B(λπ,0.7)(a3) = ΦA
B(λπ,0.7)(a4) = ΦG(A)

H(α,π)(p
∗)

where p∗ denotes the H(π, 0.7)-optimal solution computed in Example 6. ?

Remark. Theorem 12 shows up a (purely?) mathematical connection between the
Bayes-criterion and the Hodges & Lehmann-criterion. However, the following ques-
tion comes to mind: What does the theorem teach us about the philosophical rela-
tion of the two criteria? In other words: Can we interpret the Hodges & Lehmann-
criterion as a way of constructing prior distributions that take scepticism (as part
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of the information base) into account?

Let us deepen this idea little by little: According to the considerations in Paragraph
1.2.3, applying the Bayes-criterion is a reasonable choice, whenever the uncertainty
underlying the CDP is of type I∗ and there is a prior measure available that consis-
tently uses our information in the best possible manner. That is, if we know that
there exists a true (but unknown) classical probability measure on the set of states
and our information is sufficient to specify a best estimator for it.

However, suppose your information is sufficient to specify a prior measure, but it is
not sufficient to be sure that this specification has been done best possible. That
is, there exist several measures that are equally plausible candidates to be the true
one. Thus, there is no unique choice possible without accepting a certain degree of
arbitrariness.

There are many ways of addressing this problem, famous ones among them are the
usage of credal sets or interval probabilities respectively. Such concepts, namely so
called imprecise probabilistic models, will be recalled and applied in detail in the
later Chapters 4 (in particular, Paragraphs 4.2.1 and 4.2.2) and 5 (throughout the
whole chapter).

According to Theorem 12, another way of proceeding could be the following: First,
choose one of the compatible measures arbitrarily. Let π denote this measure. Next,
decide (depending on how many concurring measures exist) how certain you are
about π being the true measure. Express this (un)certainty by a parameter α ∈ [0, 1].

More precisely, choose α to be small, if you’re very uncertain and choose it to be
large, if you’re very certain about that description. Then, α is part of the informa-
tion base and, therefore, should be taken into account when constructing a prior
distribution characterizing the underlying uncertainty. Next, construct the measure
λπ,α just as described in the proof of Theorem 12. Finally, determine a (pure) Bayes-
action with respect to the constructed measure. In this way, we constructed a prior
distribution that also takes scepticism into account. ◦
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4 Generalized definitions of probability

The Bayesian Paradigm claims the following: Any situation under uncertainty can
be described by a classical probability distribution, i.e. by a set function satisfying
Kolmogorov’s Axioms (see also the discussions in Remark 1 on Definition 8 or in
the beginning of Paragraph 1.3). If new data (or more general: information) is
available this set function is updated in order to get an even better description of
the situation. This is not a contradiction, since the availability of new information
creates a new situation under uncertainty. This, very roughly, describes one of the
basic procedures in the field of Bayesian Statistics.

However, it turns out that there are many situations in which the available infor-
mation can’t be adequately characterized by using classical probability theory. The
axioms demand a degree of precision that simply can’t be guaranteed by the data.
Particularly, the additivity of disjoint events demanded by the third axiom creates
a far too restrictive framework for certain situations.

So, is there a way to use such imprecise information? There are (at least) two differ-
ent ways of addressing this problem: The first way to proceed is to simply ignore the
imprecision of the information by using a classical probability which represents the
available information in the best possible manner. But what is the best possible man-
ner? And is this always possible without generating inconsistencies? Subsequently,
we will see it is not.

The second way to proceed is to generalize the concept of probability: If the classical
concept of probability turns out to be too restrictive to describe certain situations
under uncertainty, then one has to widen the concept. Since the classical concept
still is sufficient and suitable to describe situations with precise information available,
the generalization should be done in a way which contains the classical concept as a
special case (see [5, p. 17]). There are several approaches to do so. In this chapter
we recall two of them, namely the theory of interval probability and the theory of
credal sets.

The chapter is structured as follows: In the first paragraph we recall some motivating
examples from the literature, i.e. we show concrete examples for prior information
that is not describable by classical probability theory. Within these examples, the
scope stretches from classical examples, like the Ellsberg Paradox, up to examples
occuring in even more recent scientific work from various disciplines. Subsequently,
we recall some theoretical arguments supporting the idea of a generalization of prob-
ability theory. One of them will be the inability of classical probability theory to
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describe situations in which no prior information is available at all.

In the second paragraph, we briefly explain two of the most common generalization
of probability theory, namely the theory of credal sets and the theory of interval
probability. Note that there exists many different other approaches for generalizing
descriptions of uncertainty. An overview is for example given in [44].

In a situation under uncertainty, a credal set (see Definition 16) is the set of all
probability measures being compatible with the information available. In contrast
to classical probabilistic descriptions, this set, in general, contains more than one
single element. Consequently, then the whole credal set is used as a more adequate
description of the uncertainty underlying the situation. Between the different mea-
sures contained in the credal set there is complete indifference.

An interval probability is a map (satisfying a set of axioms, see Definitions 18 and
19) that assigns each event of some σ-field an interval-valued probability component.
Every such assignment is a subset of the real unit interval [0, 1]. Roughly spoken,
such an interval then contains all the values that are, under the available informa-
tion, equally plausible to be the true probability.

As we will see, both approaches turn out to be closely related to each other: Every
credal set induces an interval-valued probability assignment and, vice versa, every
(consistent) interval probability is compatible with a (credal) set of classical prob-
ability measures. Finally, we demonstrate how such generalized descriptions can
avoid the inconsistencies arising from the classical theory. The description mainly
follows [5, Ch. 1], [10], [2, § 3.3], [47, § 2], [46, § 1.4] and [48]. Detailed references
are given at the appropriate places in the text.

4.1 Some motivating examples

As the scope of the present work mainly lies in determining optimal actions in deci-
sion problems under partial information, the following question comes to mind: Why
do we need a generalized concept of modelling uncertainty in decision theory? At
what point in decision theory is it necessary to build models of (possibly imprecise)
prior information?

To answer this question, recall the discussion in Remark 1 on Definition 8: If the
exact probability distribution on the set of states is unknown (or ill-known), one has
to work with an estimated uncertainty model. Now, if the additional information
suffices to estimate an prior probability distribution, one can simply proceed by ap-
plying the Bayes-criterion instead of the Bernoulli-criterion. That is, we choose a
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classical probability measure that is consistent with respect to the available infor-
mation and act as if it was the true one.

But what if this is not possible? In other words: What if any classical probability
measure on the set of states contradicts the available information? Can we construct
criteria that use the information available without translating it into a probability
measure? As we will see in Chapter 5, this is possible in many different ways.

To show that these questions are not only interesting from a theoretical point of view,
but are highly relevant for applications in various scientific disciplines, is the aim
of the considerations in the following paragraphs. We give examples for situation
under uncertainty in which the available information is not describable by classical
probability theory in a consistent way. We start with the classic one.

4.1.1 Ellsberg’s Paradox

The following example (or experiment) goes back to the economist Daniel Ellsberg
(* 7. April 1931) and was published in [10] in 1961. The presentation of the exam-
ple that is chosen in the present work is strongly influenced by [2, p.322-334], [48]
and [47, Example 2.6.33]. It is one of the best known examples when it comes to
supporting the idea of a generalized concept of describing uncertainty.

Before we can start, we need some short preparation: Assume the Bayesian Paradigm
to be true. That is, for each situation under uncertainty, there exists a classical prob-
ability distribution perfectly representing it (for a more in-depth explanation, see
Paragraph 1.3 or Remark 1 on Definition 8).

Now, consider a finite CDP under type I∗ uncertainty. Then, the mechanism gener-
ating the states of nature, together with all our information concerning it, describes
a situation under uncertainty. Thus, according to the Bayesian Paradigm, there
exists a probability distribution characterizing it.

Now, according to the considerations in Chapter 1, the best we can do to determine
an optimal decision in this situation is to apply the Bayes-criterion with this proba-
bility distribution on the set of states, i.e. maximizing our expected utility according
to the probability measure fully representing our information. Hence, the ordering
of preferences induced by the Bayes-criterion (recall that each criterion induces a
linear ordering on the set of actions) fully characterizes the actor’s preferences (un-
der the information available).

Now, consider the following situation under uncertainty of type I∗: An urn contains
an unknown (but finite) number of balls. Some of these are red, some are yellow
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and some are black. Every ball in the urn is of exactly one of these three colors.
Additionally, we have the information that the proportion of red balls fr contained
in the urn exactly equals 1

3 .

Thus, we conclude that both, the proportion of yellow balls fy and the proportion
of black balls fb, lay in the interval [0, 2

3 ] and we have fb = 2
3 − fy.

Next, a ball is drawn. One may choose between the following alternatives:

• a1 := Receive 100 $, if the ball is red.

• a2 := Receive 100 $, if the ball is black.

Which one would you choose?

Ellsberg performed this as a thought experiment (no real balls were drawn). The
experimental subjects were a group of economists and statisticians from the Harvard
University, i.e. experts in the field of probability theory. The result was that a vast
majority of these experts preferred alternative a1 before alternative a2.

So, if there was a probability measure π on measurable space (Ω,P(Ω)), where
Ω = {r, y, b}, which fully characterizes the ordering of preferences of rational actors
(or experts), the following would have to hold

π({r}) > π({b}) (67)

Otherwise, the Bayes-criterion according to π clearly would prefer alternative a2

before alternative a1 and, thus, wouldn’t describe our experts’ ordering of preferences
at all.

Now, another decision situation is proposed: In the same situation as described
above, one may choose between the following alternatives:

• b1 := Receive 100 $, if the ball is red or yellow.

• b2 := Receive 100 $, if the ball is black or yellow.

Note that the underlying situation under uncertainty hasn’t changed at all: There is
still the same information concerning the states of nature available. So, if there was
a distribution describing the situation, it would still have to be the same as above,
namely π.

Again, Ellsberg performed this as a thought experiment with the same group of
experts. But this time a vast majority preferred alternative b2 before alternative b1.
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So, if π would characterize the experts’ preference order, the following would have
to hold

π({b, y}) > π({r, y})

using an analogous argumentation as above. Since π is assumed to be a (classical)
probability and therefore additive for disjoint events, this is equivalent to

π({b}) + π({y}) > π({r}) + π({y})

or more simple
π({b}) > π({r}) (68)

which, together with (67), yields a contradiction.

So, what can we learn from this experiment? At least, two different points of view
are possible:

• Classical point of view: The majority preference order of the group of experts
is irrational as it contradicts the laws of classical probability theory. It is not
possible to model irrational preference orders.

• Imprecise point of view: The majority preference order of the group of experts
is rational, but classical probability theory doesn’t offer a suitable theoretical
framework to formalize it. Other frameworks (more general) might be suitable
to formalize such seemingly inconsistent prior information.

The strongest argument against the first (or classic) point of view is the expert status
of the experimental subjects: It is real hard to argue that experts for probability
theory act irrational when it comes to their field of expertise (of course, only under
the assumption that every expert does not willingly bias the experiment).

Additionally, the first point of view is very rigid and therefore non-constructive:
Is any kind of knowledge that can’t be embedded in classical probability theory
worthless or/and inconsistent? Surely not.

So, if one accepts the second (or imprecise) point of view, one arrives at the following
negation of the Bayesian Paradigm: There are situations under uncertainty that
cannot be described using classical probability theory. As such situations might be
highly relevant, this is a strong argument for the usage of generalized descriptions
of uncertainty in decision theory.

The following examples illustrate the need for a generalized probability theory in
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different scientific disciplines even more. We start with an example which concerns
both linguistic and artificial intelligence.

4.1.2 Dealing with linguistic uncertainty

Next, we recall the problem of modelling linguistic uncertainty. Much effort has
been put in formalizing this kind of uncertainty in a suitable way in the last sixty
years. Pioneer work in this field has been done by Lotfi Zadeh (*1921) in [50] and
[49]. Note that also classical probabilistic approaches have been proposed (see e.g.
[21]). Additionally, we refer to [45].

Roughly spoken, we have the following: Many of the expressions used in natural lan-
guage tend to be vague, i.e. inexact concerning their information content. However,
in many situations such vague information will be the best information available.

For example, consider the expression tall. Here, it is hard to make out an exact
threshold value separating the set of all people in two classes, namely the class of
people being tall and the class of people being not tall. Thus, the expression ’subject
is tall’ generates a situation under uncertainty, where the uncertainty is about the
subject’s exact body size.

However, as natural language is the main tool of exchanging (and storing) informa-
tion, the question how vague linguistic uncertainty can be formalized (and therefore
used for the statistical analysis) seems to be of great importance. Consider again
our example: If I have the information of a person being tall, what can I conclude
about his or her exact size, which I am still uncertain about?

Now, the question is: Is classical probability theory a suitable framework to formal-
ize such kind of knowledge? In other words: Is there always a probability measure
characterizing situations under uncertainty with given vague linguistic information
adequately (clearly, according to the Bayesian Paradigm, the answer has to be yes,
see the discussion in Remark 1 on Definition 8)?

In our example, there are several aspects to consider: Let Ω = {50, 51, . . . , 299, 300}
be the (for the sake of simplicity) finite set of possible body sizes of adult persons.
Additionally, we have the information that our subject’s exact body size, denoted
by b, has been labelled tall.

Firstly, we can state the following: In this situation (or any similar one) any objective
probabilistic description of the uncertainty about the exact body size necessarily has
to be meaningless, since the body size of our subject is not a random entity. The
subject is of unknown but fixed size. Thus, statements concerning the probability
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of b lying in some interval always have to equal one or zero, depending on whether
the corresponding interval covers the exact value or not.

Nevertheless, there exists uncertainty about the exact value of the body size, since
we don’t know it. One way of addressing the problem of the exact body size b not
being a random entity, is interpreting uncertainty in a subjective way. Following de
Finetti (see for example [14] or the discussions in Remark 1 on Definition 8 or Para-
graph 1.3), uncertainty is no longer interpreted as a property of the phenomenon to
describe, but of the subject describing it.

In other words: The probability of an event A equals the maximum buying price of
a rational actor for a bet paying out 1, if A occurs and 0, if it doesn’t. Note that
for this interpretation of probability no randomness is necessary at all, since the
probability describes the degree of belief of the actor in the truth of event A (again,
see the discussion in Remark 1 on Definition 8).

However, in the context of linguistic uncertainty, being a rational actor necessarily
goes along with using the available (vague) information in the best possible manner.
Again, the question is: Is it always feasible to assume this could be done using clas-
sical probability theory?

For the moment, assume the answer is yes. Then, in our example, a classical prob-
ability measure Ptall characterizing the situation perfectly could be constructed as
follows: Every event A ⊂ Ω is assigned our maximum buying price of the bet de-
scribed above. Since the assignment is assumed to represent our vague knowledge
perfectly, we know that events containing greater values receive higher assignments,
for example we have

Ptall({50, ..., 100}) < Ptall({180, ..., 230})

Again, the problem comes along with the additivity of disjoint events demanded by
Kolmogorov’s third axiom: Given the information of the subject of interest being tall,
I will be pretty sure about the truth of event A := {180, ..., 230}. Thus, my maximum
rational buying price Ptall(A) will be very close to 1. However, as the information
tall is very vague, I will be pretty unsure about the truth of every singleton event
Ai := {i}, i = 180, ..., 230. The degree of precision of the information tall simply
isn’t sufficient to label any of the values contained in A more plausible than others.
Thus, my maximal buying price for any event Ai, i = 180, ..., 230, will be close to 0.

But as Ptall is assumed to be a classical probability measure, Kolmogorov’s third
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axiom implies the following identity

Ptall(A)︸ ︷︷ ︸
≈1

=
230∑
i=180

Ptall(Ai)︸ ︷︷ ︸
≈0

which yields a contradiction. Thus, we found another class of situations under un-
certainty that can’t be adequately described using classical probabilities.

In a summarized form, we arrive at the following: In many situations under uncer-
tainty, the uncertainty is given by the vagueness of natural language. This is the
case, since the exchange of information often is done orally and, thus, by the usage
of natural language. This vague linguistic information often suffices to label certain
subsets A of the possibility space Ω as being very plausible, but not to split the
plausibility assignment on the singleton events contained in A. However, such kinds
of assignment contradict the additivity axiom of classical probability theory. There-
fore, classical probability theory, in general, isn’t a suitable framework to formalize
vague linguistic uncertainty.

4.1.3 Modelling uncertainty in expert systems

In this paragraph, we mainly follow [32], [5, p.12], [20] and [1]. Decision theory is
applied in many different scientific disciplines. One of them is the field of artificial
intelligence. More precisely, the question how optimal decisions can be derived from
a given (possibly imprecise or vague) information base is highly relevant for the
implementation of so called expert systems.

There exist many different definitions of what an expert system is, all of them
slightly different. In [32] the authors try to make out some properties, which all of
the different definitions have in common. According to them an expert system is a
computer program that (besides other properties)

• is based on knowledge

• implements human experiences and skills

• explains the decision made in natural language

For our purposes, the following vague definition is sufficient: An expert system is
a computer program trying to emulate the process of decision making of experts in
certain scientific discipline. Theoretically, using such programs it is then possible
for non-experts to make decisions just like an expert. Of course, in practice, a com-
puter system never can perfectly emulate the expert’s decision process, so that the
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proposals of the expert system should only be used as a guideline.

One of the main fields of application of such expert systems is the field of medical
diagnosis. One of the first and best known medical expert systems is theMYCIN sys-
tem. It was developed at the Stanford University in the early 1970s as the doctoral
thesis of Edward Shortliffe (*1947). Although it performed well in experimental
runs, it was never actually used in practice.

MYCIN was implemented for the following situation: The exact diagnose of certain
bacterial blood infection diseases of a patient often requires to grow cultures of the
infecting organism. This growing process lasts up to 48 hours. As there are very se-
rious blood infection diseases that require a quick therapy, growing cultures in many
cases takes too much time. So, in order to save the patients life, medical experts
often have to make a best guess for a diagnosis out of the available information base
using their experience. Of course, this guess should be done in a way that avoids
too huge risks for the patient (e.g. completely wrong medication).

Now, the problem is the following: Not every doctor is an expert for guessing suit-
able diagnosis out of vague information bases. Particularly, doctors just having
finished their studies often don’t have enough experience available. Additionally, if
the disease is a very rare one, almost no doctor (with the exception of a few experts)
will have the necessary experience available.

This is where MYCIN comes into game: If it is possible to emulate the decision and
explanation process of an expert for blood infection diseases computational, non-
experienced medical staff could use this programs to support (or improve) their own
guesses.

So, how does this motivate to think about generalized uncertainty measures besides
classical probability theory? Imagine the following situation: A patient comes into
the practice of a young general practitioner. The patient suffers of a bacterial blood
infection disease, which the doctor maybe never has heard of, but certainly is no ex-
pert about. However, the patient seems to be seriously ill and needs a quick therapy.
Using the patient’s description of the symptoms, the doctor will be able to eliminate
certain classes of diseases completely (remember, he is a doctor). Specifically, he
will be able to list up a couple of diseases that might be responsible for the symp-
toms. However, in general, it won’t be possible to the doctor to say which of the
diseases is the most plausible one. More precisely, we will end up with a couple of
lists containing diseases which the doctor is totally indifferent about to be the true
disease.
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Hence, this exemplifies another situation where the available information is not suf-
ficient to split the probability component of a union of disjoint events (the classes
of diseases) to the single ones. The doctor, in general, won’t be able to describe
his information by a classical probability measure on the ’space of possible diseases’.
Hence, a classical Bayesian learning model seems to be unsuitable in such a situa-
tion. Instead, the MYCIN system makes use of another description of uncertainty,
so called certainty factors. A discussion of this concept is not within the scope of
the present work. It can for example be found in [20]. However, the use of such
alternative concepts clarifies that expert systems, like for example MYCIN, profit a
lot (and are maybe only possible with) generalized descriptions of uncertainty.

4.1.4 Some theoretical reasons

Finally, we want to complete our paragraph on motivating examples with two theo-
retical reasons for using imprecise uncertainty descriptions. Here, the use the term
’theoretical’ can be explained in the following sense: In contrast to the examples
recalled before, generalized uncertainty description are no longer motivated by mod-
elling problems arising from concrete practical applications, but by theoretical consid-
erations that might concern many different scientific disciplines. Hereby, we mainly
follow the presentation in [5, p.9-10 and p.16-17] and [46, Ch. 1.4].

The first problem is particularly relevant for Bayesian statistics (and, therefore, for
all related areas as, for example, decision theory) and can be summarized as follows:
How can one specify a (classical) prior probability measure on a measurable space
(Ω,A) under consideration, if there is no information available at all? Does such a
measure exist? Or: Do we need more general uncertainty models to formalize such
a complete lack of information ?

One common way to proceed in such a situation is applying Bernoulli’s Principle of
Indifference (also called Principle of Insufficient Reason) (see [8]). It goes back to
the famous mathematician Jacob Bernoulli (1654-1705) and, roughly, states the fol-
lowing: If the space Ω is finite and there is no further information available, the best
we can do is to choose the uniform probability measure as a prior. More precisely,
if Ω consists of m elements, we choose the measure π induced by the assignment
π({ωj}) = 1

m for all j = 1, ...,m.

The problem here is simple to state: This is the same description of uncertainty as
we would use given the perfect information that every state has exactly the same
probability of occurring (i.e. in a situation under perfect symmetry). Thus, such a
description is not able to distinguish between certain situations with perfect informa-
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tion available and situations with a complete lack of knowledge/information. Hence,
this can’t be a suitable description of ignorance! This turns out to be structural
inability: The framework of classical probability theory is too restrictive to model
complete ignorance.

This problem is highly relevant for decision theory and, particularly, for the present
work: As our aim is to determine optimal decisions with respect to a given informa-
tion base, it is essential to know how to decide when there is no information available
at all (this is a information base as well). More precisely, if we find ourselves in a
decision situation where our only information consists of the fact that there exists
a classical probability measure generating the states of nature, the classical theory
is not able to formalize this knowledge different from the situation where each state
occurs with the same probability. So, this inability of the classical theory is a strong
argument for considering more general frameworks in decision theory!

The second problem is known as the problem of partially identified probability. Let
(Ω,A) denote some measurable space. Suppose, there exists a probability measure
π on (Ω,A) characterizing the uncertainty between the different elements of Ω ad-
equately. Further, suppose this measure π is unknown. However, we know the
probability components {

π(A) : A ∈ A0
}

(69)

for some subset A0 ⊂ A. That is, the true measure is only known on a subset of the
set of all events under consideration.

Now, the problem is the following: In general, this partial information won’t be
sufficient to specify the true measure π on the whole space on (Ω,A). Instead, there
will be a whole set of measures on on (Ω,A) being compatible with the available
information. So, if we want to choose a prior measure, how can we decide between
all these concurring measures? Again, we described a situation under uncertainty
that cannot adequately be characterized by the use of classical probability theory.

However, as we will see later, the problem of partially identified probabilities is highly
relevant to decision theory: Often, the information on the mechanism generating
the states of nature will be only partial. Suppose, for example, a situation in which
we only know that one state is surely at least as probable as another one. Such an
example seems not to be too far-taken, but can’t be formalized within the framework
of classical probability theory. In the next paragraph, we recall two generalizations
of the classical theory that allow us to formalize such situations more adequate.
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4.2 Generalized models of uncertainty

As seen in the previous examples there exist situations under uncertainty that can’t
be characterized by using classical probability theory. One of the main reasons for
this inability of the classical theory turned out to be the third of Kolmogorov’s
axioms, namely the additivity of disjoint events: Often the available information
doesn’t suffice to split the uncertainty assignment of a union of disjoint events con-
sistently on the single events. But how can we formalize such situations more ade-
quate? And is it possible to keep this formalization consistent with cases, where the
uncertainty is perfectly describable by classical probability theory?

There are several approaches trying to do so. A good overview is given e.g. in [44].
In the present work, we focus on only two of them: The concept of interval probability
and the concept of credal sets. The basic ideas of both concepts are briefly discussed
in the following two paragraphs. Afterwards, we explain how the two seemingly un-
related concepts are connected to each other. Additionally, we illustrate how these
generalized uncertainty concepts can help to avoid the inconsistencies arising from
the classical theory.

4.2.1 Credal sets

The theory of credal sets that is briefly recalled in the following paragraph goes back
to Isaac Levi (*1930) and was mainly developed in [30]. The presentation chosen
here doesn’t claim completeness, but focusses on results relevant for our purposes.

Consider a situation under uncertainty. What if the available information is not suf-
ficient to specify a classical probability measure that characterizes the uncertainty
adequately? More precisely: What if there are many different measures that are
equally plausible candidates for being the ’true’ description of the uncertainty? One
natural way of addressing this problem is the following: As a description of the un-
certainty underlying the situation, we use the set of all probability measures being
compatible with the information base.

Hence, the description of the uncertainty is no longer given by a single probability
measure, but by a whole set of such measures. As every such measure is compatible
with our information base, all of them are assumed to be equally plausible. That is,
between the measures contained in this credal set, we are totally indifferent.

Within this framework, the classical concept of probability is naturally contained: If
we have perfect information, the set of compatible measure shrinks to only one ele-
ment, i.e. one single probability measure describing the uncertainty. Additionally, it
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is possible to model situations in which there is no information available at all. Since
in such situations every probability measure is equally plausible, the corresponding
credal set then consists of all possible probability measures on the measurable space
under consideration.

Note that, in this way, we receive different characterizations for situations under
complete ignorance and situations under perfect symmetry and, therefore, already
managed to address one of the inconsistencies arising from the classical theory (see
Paragraph 4.1.4).

When it comes to the interpretation of credal sets, there are two fundamentally
different points of view to distinguish (see for example [2, p. 355-356]):

• Epistemic point of view: The credal set is the best we can derive about the true
(but ill-known) probability measure characterizing the uncertainty. That is,
for any situation under uncertainty there exists such a true measure. However,
the available information is not sufficient to specify it uniquely. Hence, the
credal set is interpreted as the smallest set of possible uncertainty descriptions
being compatible with the information base. Here, we distinguish between the
situation under uncertainty and the information available.

• Ontological point of view: The credal set is interpreted as an entity on its own.
That is, we no longer distinguish between situations under uncertainty and
the information available: The situation under uncertainty is fundamentally
determined by the information available. Hence, the credal set on its own is a
suitable description for a specific pair consisting of uncertainty/information.

No matter what point of view is preferred, we can give the following, very general,
definition of a credal set. A similar version of this definition can for example be
found in [44, § 5].

Definition 16. Let (Ω,A) be a measurable space. Further, let G(Ω,A) denote the
set of all probability measures on (Ω,A). Then, every non-empty subset C ⊂ G(Ω,A)
is called a credal set on (Ω,A). 5

The previous definition now allows us to define an extension of the concept of the
expectation of a random variable to the case, where the uncertainty is described by
a credal set. This generalized expectation then equals the set of expectations of the
random variable under all measures contained in the credal set. As probabilities of
events can be viewed as expectations of the corresponding indicator functions, this
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then gives rise to a natural description of the uncertainty about an event by sets of
classical probability assignments.

Definition 17. Let C ⊂ G(Ω,A) is be a credal set on some measurable space (Ω,A).
Further, let X denote a random variable, such that Ep(X) <∞ for all p ∈ C. Then,
the set

ECC (X) :=
{
Ep(X) : p ∈ C

}
(70)

is called Cred(C)-expectation of X.
If X = 1A for some event A ∈ A, that is Ep(X) = p(A) for all p ∈ C, the set

PC(A) := ECC (1A) =
{
p(A) : p ∈ C

}
(71)

is called the Cred(C)-probability of A. 5

Remark. The sets ECC (X) and PC(A) can be interpreted in the following way: As
the credal set contains all the probability measures that are compatible with our
information base, the set ECC (X) contains the expectations of the random variable
X under all the compatible measures. As we are totally indifferent between the
different elements of the credal set C, each of the values contained in ECC (X) is
equally plausible to be the true expectation of X. By analogy, the set PC(A) is
the set of all probability assignments for the event A that are compatible with our
information base. Again, all of the values contained in A are assumed to be equally
plausible to be the true assignment. ◦

The following theorem makes an statement about how Cred(C)-expectations (and
therefore Cred(C)-probabilities) look like if the underlying measurable space is finite
and the credal set C is a convex set (see Definition 13). This theorem will prove
very important for the decision theoretical applications of the theory discussed in
Chapter 5.

Theorem 13. Let Ω := {ω1, . . . , ωm} be any finite set. Further, let C ⊂ G(Ω,P(Ω))
be a convex credal set on (Ω,P(Ω)) and X : Ω → R be a random variable. Then,
the following relation holds:

ECC (X) ⊃
(

inf
p∈C

Ep(X), sup
p∈C

Ep(X)
)

(72)

Here, we used the notation (a, b) := {x ∈ R : a < x < b} for a, b ∈ R.

Proof. According to the assumption, the set C is non-empty.
We distinguish three cases:
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Case 1: |C| = 1. That is, there is a probability measure p∗ ∈ G(Ω,P(Ω)) such that
C = {p∗}. Hence, we have that

inf
p∈C

Ep(X) = sup
p∈C

Ep(X) = Ep∗(X)

Therefore, we have
E :=

(
inf
p∈C

Ep(X), sup
p∈C

Ep(X)
)
= ∅

which proves the statement, since ∅ ⊂ EC(X).

Case 2: |C| > 1 and E = ∅. Then, E ⊂ ECC (X) and the statement is proven.

Case 3: |C| > 1 and E 6= ∅. Then, let a ∈ E. Assume, for contradiction, that
a /∈ ECC (X). Then, there exist p1 6= p2 ∈ C such that

Ep1(X) < a < Ep2(X)

Otherwise, a 6 Ep(X) or a > Ep(X) for all p ∈ C would have to hold, which
contradicts a ∈ E in either case.
Since C is a convex set, we have that pγ := γ · p1 + (1− γ) · p2 ∈ C for all γ ∈ [0, 1].
We compute

Epγ (X) =
m∑
j=1

X(ωj) · pγ({ωj})

=
m∑
j=1

X(ωj) · (γ · p1({ωj}) + (1− γ) · p2({ωj}))

= γ ·
m∑
j=1

X(ωj) · p1({ωj}) + (1− γ) ·
m∑
j=1

X(ωj) · p2({ωj})

= γ · Ep1(X) + (1− γ) · Ep2(X)

But, since intervals are convex as well, every point lying in the interval[
Ep1(X),Ep2(X)

]
can be written int the form

γ · Ep1(X) + (1− γ) · Ep2(X)

for some γ ∈ [0, 1]. Hence, there exist γ∗ ∈ [0, 1] such that a = Epγ∗ (X). This yields
a contradiction, since pγ∗ ∈ C, but a /∈ EC(X). �
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As an immediate consequence, we can derive the following

Corollary 2. Consider the situation of Theorem 13. If the expressions

min
p∈C

Ep(X) and max
p∈C

Ep(X)

exist, the following identity holds

ECC (X) =
[

min
p∈C

Ep(X),max
p∈C

Ep(X)
]

�

Remark. Corollary 2 allows the following identification of credal sets and real inter-
vals: If we have a convex credal set on a finite measurable space such that maximum
and minimum expectation of arbitrary random variables are attained on the credal
set, we can identify credal expectations with closed real valued intervals. Particularly,
this implies that we can identify credal probabilities with closed interval-subsets of
the unit interval. This identification will prove very important for the considerations
of Chapter 5. ◦

The following example illustrates, how uncertainty can be described by using credal
set in situations where only imperfect information on the states of nature is available.

Example 8. (Similar in [2, p. 391-396]). Consider once again the situation of the
Ellsberg Paradox. The two concurring decision problems are summarized in the
following tables.

uij red yellow black

a1 100 0 0
a2 0 0 100

uij red yellow black

b1 100 100 0
b2 0 100 100

Here, Θ = {r, y, b} is finite. Thus, we can work on the measureable space (Θ,P(Θ)).
Again, let fr, fy and fb denote the proportion of red, yellow and black balls contained
in the urn. Then, the true probability measure pt characterizing the situation with
perfect information available is induced by the assignment pt({i}) = fi for i = r, y, b.
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However, the information available is only partial and, therefore, imperfect. More
precisely, we have the following three properties:

(P1) fr = 1
3

(P2) 0 6 fi 6 2
3 for i = y, b

(P3) fb + fy = 2
3

According to the information available, every probability assignment satisfying these
three properties is equally plausible to be the true one (under perfect information).
Hence, we can describe the information by the (non-empty) credal set M0 of all
classical probability measures on (Θ,P(Θ)) that are compatible with the properties
(P1)− (P3). That is,

M0 :=
{
p : p({r}) = 1

3 ∧ 0 6 p({i}) 6 2
3 for i = y, b

}
=
{
p : p({r}) = 1

3

}
Since all conditions of Corollary 2 are satisfied in this example, the Cred(M0)-
probability PC induced by our credal set is of the form

PC : P(Θ)→ Z([0, 1]) , A 7→
[

inf
p∈M0

p(A), sup
p∈M0

p(A)
]

where Z([0, 1]) denotes the set of all closed intervals being a subset of [0, 1]. In this
way, we receive a natural description of the uncertainty underlying the situation by
using the concept of credal sets. ?

4.2.2 Interval probability

In this paragraph we briefly recall the axiomatic approach of defining interval prob-
ability established by Kurt Weichselberger (*1929). We mainly refer to [5, Ch. 1],
[47, § 2.2] and [46, Ch. 1,2].

Roughly spoken, the idea is the following: Instead of a single number p ∈ [0, 1], ev-
ery event A ⊂ Ω in some possibility space Ω is assigned a real interval [a, b] ⊂ [0, 1],
where a 6 b, as a measure of its probability.

However, similar as for the interpretation of a credal set, there exist two funda-
mentally different points of view on how such an interval is connected to classical
probability theory (see for example [2, p. 355-356]):

• Epistemic point of view: For every event A there exists a true classical prob-
ability assignment p(A) ∈ [0, 1]. However, this true probability assignment is
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unknown (or ill-known). The interval probability [a, b] of the event A then
can be interpreted as the best we can derive about the true probability from
the available information. For this, the following is important to note: No
x ∈ [a, b] is more plausible to be the true assignment. That is, there is com-
plete indifference between the values lying in [a, b].

• Ontological point of view: Probability is understood as an interval-valued en-
tity. Thus, the concept of interval probability is understood to be a theory on
its own and not a theory explaining how true probabilities can be optimally
covered by intervals when only partial information is available. According to
this point of view, there is no true classical probability underlying the situation.
The interval probability is assumed to be the true probability.

For our purposes, the two concurring points of view generate coinciding mathemati-
cal theories. Philosophically, which view to prefer of course is a highly relevant ques-
tion. In the present work, we follow the epistemic way of viewing things, whenever
this is necessary. Doing so, the following interpretation of the probability interval
[a, b] is possible: Depending on the width of the interval, i.e. depending on how big
the number b− a is, one can state the following:

• The closer b−a is to 1, the more uncertain one is concerning the true probability
of A. In the extreme case of b − a = 1, that is b = 1 and a = 0, there is no
information on the probability of the event A available. The interval [a, b]
coincides with the interval [0, 1]. Thus all values in the interval [0, 1] are
equally plausible to be the true probability of the event A.

• The closer b−a is to 0, the more certain one is concerning the true probability of
A. In the extreme case of b− a = 0, that is b = a, there is perfect information
on the probability of A available. The interval probability assignment [a, b]
shrinks to a point. Thus, the true probability of the event A is known.

In this context, the uncertainty between the different values contained in the interval
[a, b] is called ambiguity or non-stochastic uncertainty (see for example [2, p. 333]).
According to the above considerations, the width of the interval can be used as a
measure for the strength of ambiguity underlying an assignment.

How can this idea be put on sound theoretical ground? We begin with the basic
definition, which is strongly orientated on the axiomatic approach to classical prob-
ability theory (in the sense that it is independent of interpretation). It is taken from
[46, Definition 2.1.4].
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Definition 18. Let Z([0, 1]) be the set of all closed intervals being a subset of [0, 1],
that is

Z([0, 1]) :=
{

[a, b] : a 6 b ∧ [a, b] ⊂ [0, 1]
}

(73)

Now, let (Ω,A) be a measurable space, where A denotes a σ-field on Ω. Define two
set functions

L : A → [0, 1] and U : A → [0, 1] (74)

such that
L(A) 6 U(A) ∀A ∈ A (75)

Thus, we get a well-defined map

P : A → Z([0, 1]) , A 7→ [L(A), U(A)] (76)

Then, the map P is called R-probability on (Ω,A) if, and only if, the set

M :=
{
p : p is pm on (Ω,A) ∧ L(A) 6 p(A) 6 U(A) ∀A ∈ A

}
(77)

is non-empty.
In this case, the setM is said to be the structure of the R-probability P . 5

For our purposes, a special class of R-probability turns out to be of particular interest,
namely F-probability. As we will see later, there is a strong connection between
the concepts of F-probability and the concept of a credal set. This motivates the
following definition. It is taken from [46, Definition 2.1.5].

Definition 19. Let P be an R-probability on the measurable space (Ω,A) and let
M denote the structure of P . Then, P is called an F-probability on (Ω,A), if the
following holds for all A ∈ A:

L(A) = inf
p∈M

p(A) and U(A) = sup
p∈M

p(A) (78)

That is, if the set functions L and U coincide with the lower and the upper envelope
of the structureM. 5

Finally, the concept of F-probability naturally gives rise to a generalization of the
concept of the expectation of a random variable. This will turn out to be very
important when considering criteria for optimal decision making under complex
uncertainty in Chapter 5. It can also be found in [5, Definition 2.2].
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Definition 20. Let P be an F-probability on a measurable space (Ω,A) with struc-
ture M. Let further X : Ω → R denote a real-valued random variable. Then, if it
exists, the expression

EM(X) :=
[
EM(X),EM(X)

]
:=
[

inf
p∈M

Ep(X), sup
p∈M

Ep(X)
]

(79)

is called interval expectation of X w.r.t. P . 5

In the following example, we demonstrate how the concept of F-probability can
be used to generate probabilistic models of situations under uncertainty with only
imperfect information available. Additionally, a first connection to credal sets is
made up.

Example 9. (Similar in [2, p. 391-396]). Consider once again the situation of the
Ellsberg Paradox. We want to model the uncertainty about the states of nature by
using the concept of interval probability. The R-probability P : P(Θ) → Z([0, 1])
that uses the available information in the best possible manner is given by

P (A) = [L(A), U(A)] =



[1
3 ] if A = {r}

[0, 2
3 ] if A ∈ {{y}, {b}, {y, b}}

[1
3 , 1] if A ∈ {{b, r}, {y, r}}

[1] if A = Θ

[0] if A = ∅

Since, for all A ∈ P(Θ), the inequality L(A) 6 π(A) 6 U(A) holds for all measures
π on (Θ,P(Θ)) with π({r}) = 1

3 , the structure of P is simply given by

M =
{
p : p({r}) = 1

3

}
Furthermore, one easily verifies

P (A) =
[

min
π∈M

π(A),max
π∈M

π(A)
]

for all A ∈ P(Θ). Therefore, P is an F-probability. Hence, we receive a natural
description of the uncertainty underlying the situation by using the concept of F-
probability. Since the structure M of P coincides with the credal set M0 of the
previous example, it makes no computational difference whether the uncertainty
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is described by the credal set M0 or the F-probability P in this example. More
precisely, we have

P (A) = PC(A) and ECM0(X) = EM(X)

for all A ∈ P(Θ) and X : Θ → R. However, in more general examples, both
descriptions no longer have to coincide. The connection between the two concepts
is briefly explained in the following remark. ?

Remark. How are the concepts of credal sets and F-probability related to each other?
Let (Ω,A) be a measurable space. IfM is the credal set of all probability measures
on (Ω,A) being compatible with our information, then the map P1 defined by

P1 : A → Z([0, 1]) , A 7→
[

inf
π∈M

π(A), sup
π∈M

π(A)
]

(80)

defines an F-probability on (Ω,A). Vice versa, if P2 is an F-probability on (Ω,A),
then the structure of P2 defines a credal set on (Ω,A).

However, note the following: In general, the structureMP1 of the F-probability P1

from (80) doesn’t necessarily coincide with the setM! More precisely, it is possible
thatM (MP1 . That is, the setMP might contain elements that aren’t contained
inM and, therefore, might be incompatible with the given information base. For a
more in-depth discussion of the topic see Paragraph 5.1. ◦

The previous examples showed how situation under uncertainty with only imperfect
prior information available can be characterized by the use of credal sets and interval
probabilities respectively. However, we still do not know, whether such an descrip-
tion avoids the inconsistencies arising by the use of classical probability. As a first
step on the way to the answer of this question, another aspect seems to be of great
importance: How can one derive preference orders from interval-valued probability
assignments? Is there an pendant to the principle of maximizing expected utility
that is applied in the precise case?

Definitions 17 and 20 give us well-defined extensions of the concept of the expecta-
tion of a random variable when the underlying uncertainty is described by a credal
set or an interval probability respectively. However, the definition gives rise to new
difficulties: In contrast to the precise case, we don’t know how to compare interval-
valued expectations: Given two intervals of the real line, how can we decide which is
the ’greater’ one? But the comparability of expectations is crucial for the concept of
maximizing expected utility. There exist several approaches to generate comparabil-
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ity between interval-valued expectations. A brief overview is given in the following
excursus.

4.2.3 Excursus: Interval orders

The following excursus refers to [46, § 2.6, especially p. 226-246] and [2, p. 384-388].
Note that there exist many way of constructing orders on sets of real intervals. there-
fore, our presentation doesn’t claim completeness, but focusses on interval orderings
relevant in the context of a generalized concept of maximizing expected utility.

Similar as done in equation (73), one can define the set Z(R) of all closed interval
being a subset of R, that is

Z(R) :=
{

[a, b] : a 6 b ∧ a, b ∈ R
}

(81)

How can we define an ordering on the set Z(R)? As a first idea, one could try the
following: Given two interval [a, b], [c, d] ∈ Z(R) define

[a, b] <I [c, d] :⇔ b < c

That is, an interval is defined to be less than another one, if its upper bound is
strictly small than the lower bound of the other one w.r.t. the ordinary < ordering
on the real numbers. Undoubtedly, in the context of interval expectation, this is a
reasonable definition: If the interval expectation of an action lies completely below
that of another action, it is not reasonable to choose this action.

However, the relation defined by <I is not total (see Definition 5): For example,
the intervals [1, 3] and [2, 4] are not comparable. Clearly, there are several ways
of construction total orderings on the set Z(R) (uncountably many, to be precise).
Which ones are suitable?

In the context of a generalized concept of maximizing expected utility, any suitable
construction of an ordering should be compatible with the ordering <I in the fol-
lowing sense: If v is a linear ordering on Z(R) that is potentially reasonable in the
context of a generalized concept of maximizing expected utility, then it has at least
to satisfy the implication

[a, b] <I [c, d] ⇒ [a, b] v [c, d] ∧ ¬([c, d] v [a, b]) (82)

for all [a, b], [c, d] ∈ Z(R). That is, if an interval is labelled strictly smaller as another
on w.r.t. <I , then it is necessarily labelled strictly smaller w.r.t. v.
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In the following, we recall three common ways of constructing linear interval orders
satisfying condition (82). The idea underlying all of these orderings is a representa-
tion of the interval expectation by one real number.

As we will see in Chapter 5, which one to apply in a concrete decision problem
depends on the attitude of the decision maker towards ambiguity (that is, optimistic,
pessimistic or optimistic with degree α).

1. The pessimistic interval order, short 6p: Only the lower bounds of the intervals
are compared. More precisely, we have:

[a, b] 6p [c, d] :⇔ a 6 c (83)

for all [a, b], [c, d] ∈ Z(R). Clearly, the total ordering defined by (83) saisfies
the condition (82): The inequaliy b < c implies a 6 c ∧ ¬(c 6 a), since a 6 b.
Therefore, the pessimistic interval order is compatible with the ordering <I .

2. The optimistic interval order, short 6o: Only the upper bounds of the intervals
are compared. More precisely, we have:

[a, b] 6o [c, d] :⇔ b 6 d (84)

for all [a, b], [c, d] ∈ Z(R). Again, condition (82) is satisfied: The inequaliy
b < c implies b 6 d ∧ ¬(d 6 b), since c 6 d. Therefore, the optimistic interval
order is compatible with the ordering <I .

3. The interval order with optimism degree α ∈ [0, 1], short 6α: Intervals are
compared with respect to a convex combination of their lower and their upper
bound. More precisely, we have

[a, b] 6α [c, d] :⇔ α · a+ (1− α) · b 6 α · c+ (1− α) · d (85)

for all [a, b], [c, d] ∈ Z(R). Again, condition (82) is satisfied: Let b < c and
α ∈ [0, 1]. Since a 6 b, we have α · a+ (1− α) · b 6 b and since c 6 d, we have
α · c+ (1−α) · d > c. Hence, we arrive at α · a+ (1−α) · b < α · c+ (1−α) · d.
Therefore, 6α is compatible with the ordering <I . Note that the orders 6p

and 6o are special cases of the ordering 6α, namely 6p=61 and 6o=60. •

The previous excursus discussed three possible ways to extend the strict ordering
<I on the set Z(A) to a linear ordering. Now, any of these linear orderings can
be used to define a generalized concept of the principle of maximizing the expected
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utility of an action. An in-depth discussion of what ordering is reasonable in which
situation under uncertainty will be one of the topics of the next chapter. As a
first intuition, the next example illustrates how the inconsistencies arising from the
classical formalisation of Ellsberg’s paradox can be avoided by the usage of these
generalized concepts.

Example 10. (Continuation of Example 9, similar in [46, Example 2.6.33] and [5,
p. 391-396]). Consider again the situation of Example 67. Now, note that any of
the actions a1, a2, b1 and b2 induces a random variable on the set Θ = {r, y, b} via

ua(·) := u(a, ·) : Θ→ R , θ 7→ u(a, θ)

for a ∈ {a1, a2, b1, b2}. We compute the interval expectation of the four random
variables:

EM(ua1) := inf
π∈M

Eπ(ua1) = inf
π∈M

(100 · π({r})) = 1
3 · 100 = 33.3̄

EM(ua1) := sup
π∈M

Eπ(ua1) = sup
π∈M

(100 · π({r})) = 1
3 · 100 = 33.3̄

⇒ EM(ua1) = [33.3̄]

EM(ua2) := inf
π∈M

Eπ(ua2) = inf
π∈M

(100 · π({b})) = 100 · 0 = 0

EM(ua2) := sup
π∈M

Eπ(ua2) = sup
π∈M

(100 · π({b})) = 100 · 2
3 = 66.6̄

⇒ EM(ua2) = [0, 66.6̄]

EM(ub1) := inf
π∈M

Eπ(ub1) = inf
π∈M

(100 · (π({r})) + π({y}))) = 100 · 1
3 = 33.3̄

EM(ub1) := sup
π∈M

Eπ(ub1) = sup
π∈M

(100 · (π({r}) + π({y}))) = 100 · 1 = 100

⇒ EM(ub1) = [33.3̄, 100]

EM(ub2) := inf
π∈M

Eπ(ub2) = inf
π∈M

(100 · (π({y})) + π({b}))) = 100 · 2
3 = 66.6̄
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EM(ub2) := sup
π∈M

Eπ(ub2) = sup
π∈M

(100 · (π({y}) + π({b}))) = 100 · 2
3 = 66.6̄

⇒ EM(ub2) = [66.6̄]

Next, we determine the preference orders for the two decision problems with respect
to any of the three interval orderings discussed.

• Preference order induced by 6p: For the two decision problems we have

EM(ua2) 6p EM(ua1) and EM(ub1) 6p EM(ub2)

Hence, according to the pessimistic ordering, we prefer action a1 before action
a2 and action b2 before action b1. This preference order coincides with the
majority preference order of the experts in Ellsberg’s experiment. Hence, this
description of the uncertainty underlying the situation avoids the inconsisten-
cies arising from the classical description.

• Preference order induced by 6o: For the two decision problems we have

EM(ua1) 6o EM(ua2) and EM(ub2) 6o EM(ub1)

Hence, according to the opimistic ordering, we prefer action a2 before action
a1 and action b1 before action b2. The preference order induced by 6o doesn’t
coincide wih the majority preference order of the experts.

• Preference order induced by 6α: As we know that the previous ordering are
special cases of the ordering 6α, we can already state the following: What
preference order is induced by 6α strongly depends on the value of α ∈ [0, 1].
We compute

α · EM(ua2) + (1− α) · EM(ua2) 6 α · EM(ua1) + (1− α) · EM(ua1)

⇔ (1− α) · 66.6̄ 6 33.3̄

⇔ 1
2 6 α

and

α · EM(ub1) + (1− α) · EM(ub1) 6 α · EM(ub2) + (1− α) · EM(ub2)

⇔ α · 33.3̄ + (1− α) · 100 6 66.6̄

⇔ 1
2 6 α
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Hence, the ordering 6α is compatible with the preferences of the experts when-
ever a > 1

2 . ?

The previous example showed that a generalized concept of the principle of maxi-
mizing expected utility can help to avoid inconsistencies when modelling preference
orders of experts. However, it also demonstrated that not every interval ordering
induces a suitable preference order for every situation. The ordering that is applied
has to reflect the decision maker’s attitude towards ambiguity suitably.

96



5 Decision making under complex uncertainty

5 Decision making under complex uncertainty

Roughly spoken, the following chapter can be viewed as a generalization of the pre-
vious Chapters 1 and 3 to the case, where only imperfect information about the
mechanism generating the states of nature is available. More precisely, this is meant
in the following sense:

In Chapter 1 we recalled criteria for optimal decision making, if the uncertainty type
underlying the CDP is describable by using classical probability theory (Bernoulli-
criterion, see Paragraphs 1.2.3 and 3.2) or can be compared to a game against nature
(Maximin-criterion, see Paragraphs 1.2.4 and 3.4).

In both cases, the uncertainty underlying the process generating the states of nature
is in some form predictable (and therefore precise): Under strict type I uncertainty
(see Paragraph 1.2.2) the exact expected utility of every action is known to the actor.
Hence, there is no uncertainty about this expectation, but only about which state
occurs in a concrete situation: The uncertainty is purely stochastic and there is no
ambiguity (see Paragraph 4.2.2) underlying the situation.

Under strict type II uncertainty (see Paragraph 1.2.2) actually there exists no un-
certainty at all (thus, maybe the term type II uncertainty is a bit misleading in this
context): For every action chosen, the actor knows the state of nature being realized
by the antagonist. The antagonist will always pick one of the states minimizing the
actor’s utility under the chosen action.

In Chapter 3 we discussed how such optimal decisions can be determined using the
methods of linear optimization. It turned out that the optimization of all of the
three criteria discussed can be reformulated as a linear programming problem and,
therefore, be resolved computationally by applying standard statistical software.

However, as shown in Chapter 4, there exist situations under uncertainty that are
not characterizable by a classical probability measure (see the motivating examples
of Paragraph 4.1 in particular). That is, there are situations in which the available
information is neither sufficient to specify a prior probability measure on the set of
states nor to be sure that the the situation can be compared to a game against an
omniscient enemy. As seen before, in such situations we need a more general way of
measuring uncertainty, namely the concepts of interval probability and credal sets.

This leads us to the main questions of the present chapter: If we find ourselves in
a decision situation with only imprecise information available, are there still crite-
ria to determine optimal decisions? How can the principle of maximizing expected
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utility suitably be generalized to the case where the expectation of the random vari-
ables associated with the actions are interval quantities? And: Is it still possible to
determine optimal actions with the methods of linear optimization? Subsequently,
we will see it is. However, it also turns out that the choice of the ’right’ decision
criterion is by far less obvious as in the precise case, since it is strongly connected
to the attitude of the decision maker towards ambiguity (see also [3, p. 13]).

The chapter is structured as follows: First, we explain the concepts of Interval dom-
inance and E-Admissibility. Both criteria can be viewed as a generalization of the
concept of admissibility, in the sense that they are independent of which element
contained in the credal set is the true measure (and, therefore, independent of the
decision maker’s attitude towards ambiguity). Nevertheless, E-admissibility turns
out to induce a pretty strong ordering.

Afterwards, we recall two ways of cautiously generalizing the concept of maximizing
the expected utility, namely Maximality and the Γ-Maximin-criterion. More pre-
cisely, the generalization is done in a way that takes only the lower bound of the
interval expectation into account and, therefore, is based on the pessimistic interval
ordering 6p (see Paragraph 4.2.3). Both criteria are equivalent for situations with
precise (or perfect) information available (that is, if the corresponding credal set
consists of one single element). However, they induce different orders when consid-
ering situations under imperfect information.

In the last paragraph, we first explain the Γ-Maximax-criterion. It can be viewed as
the optimistic counterpart of the Γ-Maximin-criterion: Instead of considering only
the lower expectations, here only the upper expectations are taken into account.
Accordingly, the criterion is based on the optimistic interval ordering 6o (see Para-
graph 4.2.3). Subsequently, we recall a decision criterion that allows the decision
maker to flexibly model his individual attitude towards ambiguity. Specifically, the
degree of optimism can be modelled by a real valued parameter η ∈ [0, 1]. The
corresponding criterion then is based on the ordering 6η (see Paragraph 4.2.3).

For all criteria under consideration, we recall algorithms for determining optimal
decisions. All of these algorithms are based on methods of linear optimization (see
Chapter 2). Additionally, we apply duality theory (see Paragraph 2.2) to learn more
about the characteristics of optimal solutions and to make up connections between
the different criteria.

We mainly refer to the works of [23], [40] and [43, § 3.9]. Detailed references are
given at the appropriate places in the text.
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5.1 Assumptions on the type of uncertainty and the structure of the
available information

Before we can start, we need to make a couple of assumptions: In the whole chapter,
we assume decision problems A = (A,Θ, u(·)), where |Θ| < ∞, to be a CDP under
theoretical type I uncertainty (or type I∗ uncertainty, see Paragraph 1.2.2). That is,
given perfect information, there exists a probability measure perfectly characterizing
the uncertainty between the different elements of Θ.

However, we assume our information to be imperfect. More precisely, we assume
our information concerning the states of nature can be expressed by a set M of
probability measures on the measurable space (Θ,P(Θ)) of the following form:

M :=
{
π : π is pm on (Θ,P(Θ)) ∧ bi 6 Eπ(fi) 6 bi ∀i = 1, ..., r

}
(86)

where, for all i = 1, ..., r,

• (bi, bi) ∈ R2 such that bi 6 bi

• fi : Θ→ R

That is, all the information available on the true measure generating the states of
nature can be described by lower and upper bounds of expectations of real-valued
random variables on the set Θ (the presentability of the available information as a
set of the above form is a common assumption, see for example [41, § 2]).

Then, the following holds for the setM.

Theorem 14. LetM be the set defined in equation (86). Then,M is a convex set
and there exist π1, π2 ∈M such that

Eπ1(X) = min
π∈M

Eπ1(X) and Eπ2(X) = max
π∈M

Eπ1(X)

for all random variables X : Θ→ R.

Proof. Convexity: As M is a credal set, it is non-empty by assumption. So, let
p1, p2 ∈ M and α ∈ [0, 1]. Clearly, pα := α · p1 + (1 − α) · p2 defines a probability
measure on (Θ,P(Θ)).
Now, let i ∈ {1, . . . , r} be arbitrary. Then, just like in the proof of Theorem 13, we
can derive the following identity

Epα(fi) = α · Ep1(fi) + (1− α) · Ep2(fi)
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Since bi 6 Epk(fi) 6 bi for k = 1, 2 by assumption, this implies that

bi 6 Epα(fi) 6 bi

Hence, pα ∈M. Since i and α were chosen arbitrarily, this implies thatM is convex.

It remains to show that, for any X : Θ→ R , maximum and minimum expectation
are attained on the setM. This is equivalent to the optimization problems

Eπ(X) =
m∑
j=1

X(θj)·π({θj}) −→ min
π∈M

and Eπ(X) =
m∑
j=1

X(θj)·π({θj}) −→ max
π∈M

having optimal solutions. According to the considerations in Paragraph 3.3, this is
equivalent to the optimization problems

(X(θ1), . . . , X(θm)) ·


π1
...
πm

 −→ min
π∈Rm

/ max
π∈Rm

(87)

with constraints

• π ∈ Πm

having optimal solutions. To see the linearity of the constraints, note their equiva-
lence to

• π > 0

• K · π > l / −K · π 6 −l

where

K :=



1 . . . 1
1′ . . . 1′

f11 . . . f1m

f ′11 . . . f ′1m
... . . .

...
fr1 . . . frm

f ′r1 . . . f ′rm


l :=



1
1′

b1

b
′
1
...
br

b
′
r


Hence, the optimization problems from (87) define a SMP/SMIP. Since the set
M (and therefore Πm) is non-empty by assumption and the objective function is
bounded on Πm, both problems from (87) have optimal solutions according to The-
orem 5. This completes the proof. �
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As an immediate consequence of the above Theorem 14 and Corollary 2 from Para-
graph 4.2.1 we receive the following statement. It shows up a deep connection be-
tween the concept of Cred(M)-expectation and the concept of interval expectation
with respect toM.

Corollary 3. Let X : Θ→ R be any random variable. Then, the following identity
holds for theM-expectation of X:

ECM(X) =
[

min
π∈M

Eπ(X),max
π∈M

Eπ(X)
]
=: EM(X) (88)

Proof. According to Theorem 14 the setM is convex and arbitrary random variables
attain their maximum and minimum expectations on elements of M. Thus, the
result directly follows from Corollary 2. �

Finally, the following theorem proves that the structure of an F-probability on a
finite space can always be written as a set of the form defined in (86).

Theorem 15. Let P (·) = [L(·), U(·)] be an F-probability on the measurable space
(Θ,P(Θ)). Then, the structureM0 of P is of the form defined in (86).

Proof. Since |Θ| = m, we have that |P(Θ)| = 2m =: K. So, let

P(Θ) = {A1, . . . , AK}

be a listing of all elements contained in P(Θ). For all i = 1, . . . ,K, define

(bi, bi) := (L(Ai), U(Ai)) and fi := 1Ai

Then, the following identity holds:

M0 =
{
π : π is pm on (Θ,P(Θ)) ∧ bi 6 Eπ(fi) 6 bi ∀i = 1, ...,K

}
=: D (89)

Proof of (89): ⊆: Let π ∈M0. Then, by definition, we have

L(Ai) 6 π(Ai) 6 U(Ai)

for all i = 1, . . . ,K. Since π(Ai) = Eπ(1Ai) =: Eπ(fi) for all i = 1, . . . ,K, we then
have that

bi := L(Ai) 6 Eπ(fi) 6 U(Ai) =: bi
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for all i = 1, . . . ,K. Hence, π ∈ D.

⊇: Let π ∈ D. That is,

bi := L(Ai) 6 π(Ai) = Eπ(fi) 6 U(Ai) =: bi

for all i = 1, . . . ,K. Hence, π ∈ M0. Thus, the structureM0 is representable as a
set of the form (86). �

The above considerations have shown that the information structure given by the
setM from (86) can be viewed in two different ways:

1. The set M directly is interpreted as a credal set on the measurable space
(Θ,P(Θ)). Hence, we make the assumption that we can express our informa-
tion as a convex credal set on which maximum and minimum expectations of
arbitrary random variables are attained.

2. The set M is interpreted as the structure of some F-probability on the mea-
surable space (Θ,P(Θ)). As, according to Theorem 15, the structure of every
F-probability can be represented in the form (86), there are no assumptions
on the F-probability at all.

Due to the special form of the set M, for the considerations in the following para-
graphs it makes no difference whether interpretation 1. or 2. is used: According to
Corollary 3, the concept of interval expectation of an F-probability with structure
M and the concept of Cred(M) expectation coincide.

More precisely, we have the following: Let P be an F-probability with structureM,
Then, for all random variables X : Θ→ R, we have

ECM(X) = EM(X)

Particularly, this implies PC(A) = P (A) for all A ∈ P(Θ). Hence, when considering
the generalized expectation, it makes no difference if the uncertainty underlying
a CDP is characterized by a credal set of the form M or an F-probability with
structureM.

5.2 Interval dominance

In Paragraph 4.2.3 we saw the following: Any interval ordering that is reasonable in
the context of a generalized concept of maximizing expected utility necessarily has
(at least) to be compatible with the ordering <I . Specifically, if the highest possible
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expected utility of an action a1 under all possible versions of reality (that is, the
highest expectation of ua1 under every π ∈ M) is strictly smaller than the lowest
possible expected utility of an action a2 under all possible versions of reality (that
is, the lowest expectation of the random variable ua2 under every π ∈ M), then it
is unreasonable to choose this action.

This principle is independent of the type of uncertainty between the different mea-
sures contained in the setM (and therefore does not depend on the actor’s attitude
towards ambiguity): Such an action is unreasonable, no matter what the true mea-
sure is. This motivates the following Definition. It can for example be found in [23,
Definition 8.5].

Definition 21. Let A denote any CDP such that |Θ| <∞. Consider the uncertainty
is described by an F-probability P on (Θ,P(Θ)) with structureM, or by the credal
setM. Then, an action a1 ∈ A is said to interval dominate an action a2 ∈ A, if the
following holds:

EM(ua2) <I EM(ua1)

According to the definition of the relation <I , that is EM(ua1) > EM(ua2).
If an action a∗ ∈ A is not interval dominated by any action a ∈ A, that is

EM(ua∗) > EM(ua) (90)

for all a ∈ A, we say that a∗ is <I (M)-admissible. The set of all <I (M)-admissible
actions is denoted by A<IM . 5

The aim of the following example is to illustrate to different aspects: First, it shows
that there might exist admissible actions that are not <I (M)-admissible. Second,
it demonstrates the fact that an action, which is <I (M)-admissible in the basic
problem, may become <I (M)-inadmissible when considering the mixed extension.

Example 11. Consider the CDP A defined by the following table:

uij θ1 θ2 θ3 θ4

a1 20 15 10 30
a2 25 10 10 20
a3 20 31 0 5
a4 10 30 50 30
a5 0 30 20 40
a6 26 0 0 1
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Obviously, all of the actions a1, ..., a6 are admissible (in the sense of Definition 4).
Additionally, let our information concerning the mechanism generating the states of
nature be given by the following set of probability measure on (Θ,P(Θ)):

M :=
{
π : π1 + π3 6 0.8 ∧ π4 > 0.4

}
Clearly, the above set M is of the form defined in equation (86). Thus, according
to the consideration in Paragraph 5.1, we can interpretM as a convex credal set or
the structure of an F-probability respectively: The Cred(M)-expectation and the
interval expectation w.r.t. M coincide for arbitrary random variables X : Θ→ R.

Accordingly, we can compute the expectations (interval- or credal-expectation re-
spectively) of every random variable uai , i = 1, ..., 6:

EM(uai) =



[18, 30] if i = 1

[14, 23] if i = 2

[2, 20.6] if i = 3

[18, 42] if i = 4

[16, 40] if i = 5

[0.4, 16] if i = 6

Immediately, we see that action a6 is interval dominated by both action a1 and action
a4. Therefore, action a6 is not <I (M)-admissible even though it is admissible. The
remaining actions a1, ..., a5 are <I (M)-admissible.

Now, consider the randomized action p∗ ∈ G(A) induced by the assignment

p∗({ai}) =



0.8 if i = 1

0 if i = 2

0 if i = 3

0.2 if i = 4

0 if i = 5

0 if i = 6

We compute the lower bound of the interval expectation of G(u)p∗ :

EM(G(u)p∗) = inf
π∈M

[ 4∑
j=1

G(u)(p∗, θj) · π({θj})
]
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= inf
π∈M

[ 4∑
j=1

( 6∑
i=1

u(ai, θj) · p∗({ai})
)
·π({θj})

]

= inf
π∈M

[
18 · (π({θ1}) + π({θ2}) + π({θ3})) + 30 · π({θ4})

]
= 18 · 0.6 + 30 · 0.4

= 22.8

Hence, we have that EM(G(u)p∗) > EM(ua3). Thus, there exists a randomized ac-
tion p∗ that interval dominates action a3. Thus, an action that is <I (M)-admissible
in a finite CDP A can become<I (M)-inadmissible under the transition to the mixed
extension G(A).

Implicitly, another aspect is illuminated by the previous example: Applying interval
dominance, in general, doesn’t bring us to a satisfying decision. In our example the
actions a1, . . . , a5 remain incomparable with respect to this criterion. Hence, simi-
lar as admissibility, interval dominance actually does not define a decision criterion,
but a criterion for labelling certain actions as being completely irrational choices. In
order to be able to further distinguish between the incomparable actions, we need
decision criteria that induce a stronger ordering. ?

5.3 E-Admissibility

In the previous paragraph, we recalled the principle of excluding interval dominated
actions. More precisely, we saw that, independently of what we assume about the ele-
ments ofM, an interval dominated action can never be a reasonable choice. However,
in general, the preference order induced by this principle is too weak to determine an
optimal decision: To many action remain incomparable with respect to the order<I .

Next, we recall a decision criterion, which also is independent of our assumptions on
how the elements ofM are chosen (and, therefore, of our attitude towards ambigu-
ity). It is called E-admissibility. In contrast to interval dominance, the preference
order induced by this criterion turns out to be pretty strong: As we will see in
Theorem 19, every E-admissible action turns out to be also maximal in the sense
of Definition 23. However, in contrast to E-admissibility, maximality is strongly
dependent of he decision maker’s assumptions on the setM.

Before we can start, some preparation work has to be done: Recall that, according
to Theorem 2, in every finite CDP there exists a Bayes-action w.r.t. any arbitrary
probability measure on the set of states. Thus, for all π ∈ M, there exists a Bayes-
action a∗ ∈ A w.r.t. π. ButM contains all the measures being compatible with the
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given information. Hence, measures that are not contained inM are incompatible
with the given information and, therefore, incompatible with the reality to describe.

Now, to the crucial point: Can it be reasonable to choose an action that is not a
Bayes-action for no matter what π ∈ M? Remember, we know that there always
exists such an action. In other words: Given the information that there always exists
a better one, why should we choose an action that is not optimal in every version of
reality being compatible with our information base? Of course, we shouldn’t. Other-
wise, we would wilfully accept a loss of utility, which contradicts the assumption of
a rational actor (see Introduction and/or the discussion in Remark 3 on Definition
1 for further detail). This motivates the following definition. In a slightly different
notation, it can for example be found in [23, Definition 8.7].

Definition 22. Let A be a CDP such that |Θ| < ∞. Define the set M like in
equation (86). Then an action a∗ ∈ A is called E-admissible with respect toM (or
short E(M)-admissible), if there exists a measure π∗ ∈ M such that a∗ is Bayes-
optimal with respect to π∗. That is

ΦA
B(π∗)(a

∗) > ΦA
B(π∗)(a) (91)

for all a ∈ A. The set

AE(M) :=
{
a ∈ A : a is E-admissible w.r.t. M

}
(92)

then is called set of E(M)-admissible actions. Every a ∈ A \ AE(M) is said to be
E(M)-inadmissible. 5

Remark. Note that, in the absence of ambiguity (i.e. if the set M consists of one
single element and the uncertainty is purely stochastic), E-admissibility reduces to
the classical Bayes-criterion (with respect to the only element contained inM). ◦

So, we have a criterion that labels certain actions as not being a reasonable choice.
Two questions immediately come to mind: How can we decide, whether an action
a ∈ A is E(M)-admissible or not? And: Can actions that are E(M)-admissible
in a finite (basic) CDP A become E(M)-inadmissible when considering the mixed
extension G(A)?

Let us answer the second question first: Suppose, the action a∗ ∈ A is E(M)-
admissible in a finite CDP A. Then, by definition, a∗ is a Bayes-action w.r.t. some
π∗ ∈ M. However, according to Theorem 2, we then have Eπ∗(ua∗) > Eπ∗(G(u)p)
for all p ∈ G(A). That is, δa∗ (and therefore a∗) is Bayes-action w.r.t. π∗ in G(A).
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Hence, a∗ is E(M)-admissible in the mixed extension as well. Thus, randomization
cannot improve the utility with respect to E-admissibility. Therefore, it suffices to
take only pure actions into account.

So, how can we decide whether a pure action is E(M)-admissible or not? Again, it
turns out that, at least for the case of a finite CDP, this can be done by solving suit-
able linear programming problems. Subsequently, we recall one possible algorithm
to decide, whether an action under consideration is E(M)-admissible or not. It goes
back to Augustin and Utkin in [41, § 5].

Let A denote a finite CDP under consideration. Then, according to condition (91),
an action al ∈ A, where l ∈ {1, . . . , n} is fixed, is E(M)-admissible, if there exists
π∗ ∈M such that

m∑
j=1

u(al, θj) · π∗({θj}) >
m∑
j=1

u(ak, θj) · π∗({θj}) (93)

for all k ∈ {1, . . . , n}. This is the case if, and only if, the set

Hl :=
{
π ∈M : al is Bayes-action w.r.t. π

}
(94)

is non-empty.

Next, note that for an action al ∈ A the set Hl is non-empty if, and only if, the set

Fl :=
{
g(π) : π ∈ Hl

}
⊂ ∆m (95)

is non-empty, where b is the bijective transformation map defined in the proof of
Theorem 9. But how can we check non-emptiness of the set Fl using linear program-
ming?

For a vector π ∈ [0, 1]m, define the following three conditions:

(C1)
∑m
j=1 πj 6 1

(C2) bi 6
∑m
j=1 fi(θj) · πj 6 bi ∀i = 1, ..., r

(Cl)
∑m
j=1 u(al, θj) · π({θj}) >

∑m
j=1 u(ak, θj) · π({θj}) for all k ∈ {1, . . . , n}

Then, the set Fl (and therefore Hl) is non-empty, if, and only if, the set

F−l :=
{
π ∈ [0, 1]m : (C1) ∧ (C2) ∧ (Cl)

}
(96)

contains an element π∗ such that
∑m
j=1 π

∗
j = 1. That is, if Fl contains an element,
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which is maximal with respect to the ‖ · ‖1 norm on Fl (and therefore corresponds
to a probability measure).

Hence, the set Hl is non-empty if, and only if, the optimal outcome of the optimiza-
tion problem

m∑
j=1

πj −→ max
π∈F−

l

(97)

equals 1. With both the conditions (C1), (C2) and (Cl) and the objective function
being linear, the optimization problem (97) is a SMP (in the sense of Definition 11).
More precisely, we have that (97) is equivalent to the linear programming problem

(1, ..., 1)︸ ︷︷ ︸
m-times

·


π1
...
πm

 −→ max
π∈Rm

(98)

with constraints

• π > 0

•


1
J1

J2

 ·

π1
...
πm

 6 (1, b′1, b1, . . . , b
′
r, br, 0, . . . , 0︸ ︷︷ ︸

n-times

)T

Here, we used the following notations (where fij , i = 1 . . . , r and j = 1, . . . ,m, and
uij , i = 1 . . . , n and j = 1, . . . ,m, are defined just like in the proof of Theorem 9):

• 1 := (1, . . . , 1)︸ ︷︷ ︸
m-times

• J1 :=



f
′
11 . . . f

′
1m

f11 . . . f1m
... . . .

...
f
′
r1 . . . f

′
rm

fr1 . . . frm



• J2 :=


(u11 − ul1) . . . (u1m − ulm)

... . . .
...

(un1 − ul1) . . . (unm − ulm)


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Note that, since l ∈ {1, . . . , n}, one of the rows of the matrix J2 equals zero in every
entry. This is not a problem, since it leads to the restriction 0 6 0, which is trivially
satisfied in any case.

Finally, we have the following: An action al ∈ A from the set of actions of a finite
CDP is E(M)-admissible, if the optimal outcome of the linear programming prob-
lem (98) equals 1. But does the SMP (98) always have an optimal solution?

Since the boundedness of the objective function is already guaranteed by the con-
dition (C1), Theorem 5 guarantees the existence of an optimal solution whenever
the set of admissible solution of the SMP (98) is non-empty. However, there doesn’t
always exist π ∈ [0, 1]m satisfying the conditions (C1), (C2) and (Cl) (that is, there
doesn’t necessarily exist an admissible solution of the SMP (98)). If this is the case,
we also can conclude the emptiness of the set Hl, since any element of Hl induces
an optimal and, therefore, admissible solution of (98).

Let us apply the algorithm just described to an example.

Example 12. Consider the following CDP A:

uij θ1 θ2 θ3 θ4

a1 20 15 10 30
a2 30 10 10 20
a3 20 40 0 20

We have the following information concerning the states of nation: We now that the
event {θ1, θ2} has a probability of at least 0.5. Additionally, we know that state θ4

is at least as probable as state θ3. Hence, the linear constraints defining the setM
from equation (43) are given by:

• f1(θ) :=

1 if θ ∈ {θ1, θ2}

0 else

• f2(θ) :=


1 if θ = θ3

−1 if θ = θ4

0 else

• (bi, bi) :=

(0.5, 1) if i = 1

(−0.5, 0) if i = 2
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We want to check E(M)-admissibility of the actions a1, a2 and a3. Hence, there are
three different linear optimization problems to be solved. We start with action a1.
The corresponding linear programming problem (98) is of the form:

(1, 1, 1, 1) ·


π1

π2

π3

π4

 −→ max
π

with constraints

• π > 0

•



1 1 1 1
−1 −1 0 0
1 1 0 0
0 0 −1 1
0 0 1 −1
0 0 0 0
10 −5 0 −10
0 25 −10 −10


·


π1

π2

π3

π4

 6



1
−0.5

1
0.5
0
0
0
0


Running the above optimization problem in R gives the optimal output 1. Thus,
according to the above considerations, action a1 is E(M)-admissible. More precisely,
a1 is a Bayes-action with respect to π(1) ∈ M, where the probability measure π(1)

is induced by the assignment

π(1)({θi}) =



0.4615385 if i = 1

0.1538462 if i = 2

0 if i = 3

0.3846154 if i = 4

Next, we check E(M)-admissibility for action a2. We arrive at the following linear
programming problem:

(1, 1, 1, 1) ·


π1

π2

π3

π4

 −→ max
π

with constraints
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• π > 0

•



1 1 1 1
−1 −1 0 0
1 1 0 0
0 0 −1 1
0 0 1 −1
−10 5 0 10

0 0 0 0
−10 30 −10 0


·


π1

π2

π3

π4

 6



1
−0.5

1
0.5
0
0
0
0


Again, we receive 1 as the optimal outcome of the optimization problem. Thus,
action a2 is as well E(M)-admissible. More precisely, a2 is a Bayes-action with
respect to π(2) ∈M, where the probability measure π(2) is induced by the assignment

π(2)({θi}) =



0.5 if i = 1

0 if i = 2

0.25 if i = 3

0.25 if i = 4

It remains to check the E(M)-admissibility for action a3. We arrive at the following
linear programming problem:

(1, 1, 1, 1) ·


π1

π2

π3

π4

 −→ max
π

with constraints

• π > 0

•



1 1 1 1
−1 −1 0 0
1 1 0 0
0 0 −1 1
0 0 1 −1
0 −25 10 10
10 −30 10 0
0 0 0 0


·


π1

π2

π3

π4

 6



1
−0.5

1
0.5
0
0
0
0


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Again, the optimal outcome equals 1. Thus, action a3 is E(M)-admissible. It is
an Bayes-action with respect to π(3) ∈ M, where the probability measure π(3) is
induced by the assignment

π(3)({θi}) =



0.75 if i = 1

0.25 if i = 2

0 if i = 3

0 if i = 4

Finally, the set of E(M)-admissible actions is given by AE(M) = A. ?

Next, we recall two (well-known) results that make up a connection between the con-
cept of E(M)-admissibility and the concept of admissibility from classical decision
theory as defined in Chapter 1 and the concept of <I (M)-admissibility respectively.

We start with the statement that every action being Bayes-action with respect to a
strict positive measure fromM necessarily has to be admissible as well. It can also
be found in [40, § 3.4].

Theorem 16. Let A be a CDP such that |Θ| <∞ and letM be any non-empty set
of probability measures on (Θ,P(Θ)). If there exists π∗ ∈ Hl such that π∗({θ}) > 0
for all θ ∈ Θ, then the action al ∈ A is admissible.

Proof. Let π∗ ∈ Hl such that π∗({θ}) > 0 for all θ ∈ Θ. Assume, for contradiction,
that there exists a∗ ∈ A such that a∗ � al. That is, the following two conditions
are satisfied:

1. u(a∗, θ) > u(al, θ) for all θ ∈ Θ

2. u(a∗, θ) > u(al, θ) for at least one θ ∈ Θ

Since π∗({θ}) > 0 for all θ ∈ Θ, the above conditions imply the following inequality

ΦA
B(π∗)(al) =

m∑
j=1

u(al, θj) · π∗({θj}) <
m∑
j=1

u(a∗, θj) · π∗({θj}) = ΦA
B(π∗)(a

∗) (99)

This yields a contradiction, since al was assumed to be a Bayes-action with respect
to π∗. Hence, the action al is admissible. �

Remark. Theorem 16 is optimal in the following sense: The condition of the strict
positivity of the measure π∗ is crucial and cannot be dropped. Additionally, admis-
sibility doesn’t necessarily imply E(M)-admissibility. Both properties can easily be
illustrated by the following two (minimal) examples. ◦
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Example 13. Consider the following CDP A:

uij θ1 θ2

a1 20 15
a2 30 10

Further, the setM consists of only one element, namely the probability measure π∗

induced by the assignment π∗({θ1}) = 0.5. Then, action a1 is admissible. However,
it is not E(M)-admissible, since

17.5 = ΦA
B(π∗)(a1) < ΦA

B(π∗)(a2) = 20

That is, action a1 is not a Bayes-actions with respect to any element ofM (which
is only one). ?

Example 14. Consider the following CDP A:

uij θ1 θ2

a1 20 10
a2 30 10

Further, the setM consists of only one element, namely the probability measure π∗

induced by the assignment π∗({θ1}) = 0. Then, action a1 is a Bayes-action w.r.t.
the measure π∗, since

ΦA
B(π∗)(a1) = 10 = ΦA

B(π∗)(a2)

Therefore, action a1 is E(M)-admissible. However, a1 is inadmissible. This shows
necessity of the condition of strict positivity in Theorem 16. ?

The next theorem states that the concept of E-admissibility is compatible with
interval dominance. More precisely, it guarantees that an E-admissible action never
appears to be interval dominated by any other action. Similar, it can be found in
[40, A.1., Theorem 1].

Theorem 17. Let A be a CDP such that |Θ| < ∞ and let M be any non-empty
set of probability measures on (Θ,P(Θ)). Then, for all actions a ∈ A, the following
implication holds:

a ∈ AE(M) ⇒ a ∈ A<
I

M (100)

That is, any E(M)-admissible action is automatically <I (M)-admissible.
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Proof. Let a∗ ∈ AE(M). That is, there exists π ∈M such that

Eπ(ua∗) > Eπ(ua)

for all a ∈ A. Additionally, we have

EM(ua) > Eπ(ua) > EM(ua)

for all a ∈ A. Since a∗ ∈ A, this implies

EM(ua∗) > Eπ(ua∗) > Eπ(ua) > EM(ua)

for all a ∈ A. Hence, a ∈ A<IM . �

Finally, let’s once again summarize the crucial aspects of this paragraph: An action is
E(M)-admissible, if it is Bayes-optimal with respect to (at least) one prior contained
in the credal setM. Furthermore, when considering E-admissibility, it is sufficient
to take only pure action into account: E-admissibility is robust under the transition
to the mixed extension. Additionally, if the basic problem is finite and the credal
set is of the form defined in equation (86), then E-admissibility can be checked by
resolving suitable linear optimization problems.

5.4 Maximality

In the previous two paragraphs we recalled the decision criteria E-admissibility and
interval dominance. For both criteria, there are no further assumptions concern-
ing the actor’s risk attitude necessary: An action that is interval dominated or
E-inadmissible respectively, is an unreasonable choice with respect to no matter
what measure contained in the setM corresponds to the true description of reality.

Similar as seen in the case of admissibility (see Paragraph 1.2 for further detail), this
not doubtable claim for rationality has its price: Especially applying interval domi-
nance, in general, won’t help us to find a satisfying decision in a concrete problem.
Often, there are simply too many actions that remain incomparable with respect to
this criterion. Surprisingly, E-admissibility turns out to a relatively strong criterion
(see Theorem 19 in particular).

So, the question is the following: How can we generate full comparability under
the actions without increasing our risk to make unreasonable decisions too much? A
common way to reach that goal is to compare the actions according to their expected
utility under the least favourable measure in M. In the following paragraphs, we
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recall two criteria that make use of this idea, namely Maximality and the Γ-Maximin-
criterion. As we will see, both criteria are closely related to each other.

Recall that, in the precise case, an action a∗ ∈ A is B(π)-optimal for some prior
measure π, if the inequality

Eπ(ua∗) > Eπ(ua) (101)

holds for all a ∈ A. As the precise expectation is a linear operator, this is equivalent
to

Eπ(ua − ua∗) = Eπ(ua)− Eπ(ua∗) 6 0 (102)

for all a ∈ A. Now, consider the uncertainty between the elements of Θ is no longer
measured by a single classical probability measure π, but by a set M of the form
defined in equation (86). Again, the setM can be interpreted as a convex credal set
or the structure of an F-probability respectively. Then, if we want to compare actions
according to their expected utility under the least favourable measure contained in
M, the equations (101) and (102) are no longer equivalent! More precisely, we have

EM(ua − ua∗) 6= EM(ua)− EM(ua∗) (103)

in general. Hence, we receive two non-equivalent ways of cautiously generalizing the
principle of maximizing expected utility to the imprecise case! The generalization
of equation (101) induces the Γ-Maximin criterion, whereas the generalization of
equation (102) induces the criterion of Maximality. In this paragraph, we start with
discussing the Maximality criterion. It originally goes back to [43, § 3.9.2]. Here,
we use a slightly different definition taken from [40, p.22].

Definition 23. Let A be a CDP such that |Θ| <∞. Further, letM be of the form
defined in (86). Then, an action a∗ ∈ A is calledM-maximal, if

EM(ua − ua∗) 6 0 (104)

holds for all actions a ∈ A. The set of all maximal actions is denoted by AmaxM . 5

Now, let A denote a finite decision problem. Two questions immediately come to
mind: How can we decide whether an action is maximal or not, without computing
the lower expectations of all the random variables ual−uak , for all l 6= k ∈ {1, . . . , n}?
And: Are pure actions that are maximal in A still maximal when considering the
mixed extension G(A)? The following example gives an answer to the second ques-
tion.
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Example 15. Consider the following finite decision problem A:

uij θ1 θ2

a1 0 10
a2 10 0
a3 4 4

Further, let our information about the states of nature be given by the following set
of probability measures on (Θ,P(Θ)):

M :=
{
π : 0.3 6 π({θ1}) 6 0.7

}
First, we show that action a3 is maximal in the basic problem A. We compute

EM(ua1 − ua3) = min
π∈M

Eπ(ua1 − ua3)

= min
π∈M

(
(−4) · π({θ1}) + 6 · π({θ2})

)
= (−4) · 0.7 + 6 · 0.3 = −1 6 0

and, by analogy,

EM(ua2 − ua3) = min
π∈M

Eπ(ua2 − ua3)

= min
π∈M

(
6 · π({θ1})− 4 · π({θ2})

)
= 6 · 0.3− 4 · 0.7 = −1 6 0

Hence, a3 is maximal in A.

Next, consider the randomized action p∗ ∈ G(A) induced by the assignment

p∗({ai}) =

0.5 if i = 1, 2

0 if i = 3

We show that action a3 is no longer maximal in G(A). We compute:

EM(G(u)p∗ −G(u)δa3
) = min

π∈M
Eπ(G(u)p∗ −G(u)δa3

)

= min
π∈M

(
π({θ1}) ·

( 3∑
i=1

u(ai, θ1) ·
(
p∗({ai})− δa3({ai})

))

+ π({θ2}) ·
( 3∑
i=1

u(ai, θ2) ·
(
p∗({ai})− δa3({ai})

)))
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= min
π∈M

(
π({θ1}) · (10 · 0.5− 4) + π({θ2}) · (10 · 0.5− 4)

)
= min

π∈M

(
π({θ1}) + π({θ2})

)
= 1 > 0

Hence, action a3 is not maximal when considering the mixed extension of A. ?

The previous example demonstrated the following: In general, maximality is not ro-
bust under the transition to the mixed extension. More precisely, if one is interested
in whether an action is maximal or not, it does not suffice to take only pure actions
into consideration. Hence, randomization might generate a strict improvement of
the utility with respect to the maximality criterion. This brings us back to the first
question posed before: How can we decide whether a (pure or randomized) action
under consideration is maximal in the mixed extension of a finite CDP?

Again, this can be checked by solving suitable linear programming problems. Let A
denote any finite CDP and let M denote a set of the form defined in (86) (which
can be interpreted as a convex credal set or the structure of an F-probability re-
spectively). Now, recall that a randomized action p∗ ∈ G(A) isM-maximal, if the
following inequality holds

EM(G(u)p −G(u)p∗) 6 0 (105)

for all p ∈ G(A). Next, note the equivalence of condition (105) with the inequality

sup
p∈G(A)

(
EM(G(u)p −G(u)p∗)

)
6 0 (106)

Thus, p∗ isM-optimal, if the optimal outcome of the optimization problem

EM(G(u)p −G(u)p∗)︸ ︷︷ ︸
=:κ(p)

−→ sup
p∈G(A)

(107)

is at most 0. Step by step, we want to reformulate (107) as a linear programming
problem. For p ∈ G(A) fixed, the following holds for the expression κ(p):

κ(p) = inf
π∈M

Eπ(G(u)p −G(u)p∗)

= inf
π∈M

m∑
j=1

( n∑
i=1

u(ai, θj) · p({ai})︸ ︷︷ ︸
=:epj

−
n∑
i=1

u(ai, θj) · p∗({ai})︸ ︷︷ ︸
ep
∗
j

)
·π({θj})
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= inf
π∈M

(ep1 − e
p∗

1 , . . . , e
p
m − ep

∗
m ) ·


π({θ1})

...
π({θm})


Thus, κ(p) equals the optimal outcome of the optimization problem

(ep1 − e
p∗

1 , . . . , e
p
m − ep

∗
m ) ·


π({θ1})

...
π({θm})

 −→ inf
π∈M

(108)

Then, according to (the proof of) Theorem 14, the above infimum in (108) is actually
attained on the setM and the optimal outcome equals the optimal outcome of the
linear programming problem

(ep1 − e
p∗

1 , . . . , e
p
m − ep

∗
m ) ·


π1
...
πm

 −→ min
π∈Rm

(109)

with constraints

• π > 0

• K · π > l

where K and l are defined just like in the proof of Theorem 14. Thus, by duality,
κ(p) equals the optimal outcome of the dual programming problem of (109), that is

sp(w1, ..., ur) := lT ·



w1

w2

l1

u1
...
lr

ur


−→ max

(w1,...,ur)
(110)

with constraints

• (w1, ..., ur) > 0
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•


1 1′ f11 f ′11 . . . fr1 f ′r1
...

...
...

... . . .
...

...
1 1′ f1m f ′1m . . . frm f ′rm


︸ ︷︷ ︸

=KT

·



w1

w2

l1

u1
...
lr

ur


6


ep1 − e

p∗

1
...

epm − ep
∗
m


︸ ︷︷ ︸

=:~e

Finally, since the equation

sup
p∈G(A)

κ(p) = sup
{
sp(w1, ..., ur) : p ∈ G(A) ∧ (w1, ..., ur) ∈ Z+(KT , ~e)

}

holds, the optimal outcome of the optimization problem (107) equals the optimal
outcome of the optimization problem

(lT , 0, . . . , 0︸ ︷︷ ︸
n-times

) ·



w1
...
ur

p1
...
pn


−→ sup

(w1,...,pn)
(111)

with constraints

• (w1, ..., pn) > 0

• p ∈ G(A)

• (w1, ..., ur) ∈ Z+(KT , ~e)

To see the linearity of the second and the third constraint, note that, together, they
are equivalent to the inequality



0 0 0 0 . . . 0 0 1 . . . 1
0 0 0 0 . . . 0 0 1′ . . . 1′

1 1′ f11 f ′11 . . . fr1 f ′r1 u′11 . . . u′n1
...

...
...

... . . .
...

...
...
′

. . .
...

1 1′ f1m f ′1m . . . frm f ′rm u′1m . . . u′nm


︸ ︷︷ ︸

=:D



w1
...
ur

p1
...
pn


6



1
−1
−ep

∗

1
...
−ep∗m


︸ ︷︷ ︸

=:z
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Hence, problem (111) defines an SMP. Additionally, since the objective function is
bounded on the set Z+(D, z), there exists an optimal solution of (111) according to
Theorem 5. That is, the supremum in expression (111) is actually attained on the
set Z+(D, z).

Summarized, we just showed the following: An action p∗ ∈ G(A) in the mixed
extension of a finite decision problem is maximal, if the optimal output of the cor-
responding linear programming problem (111) is at most 0. Thus, we can check
the maximality of (randomized) actions computationally. Pure actions are naturally
contained in the approach just described: If we want to check maximality for a pure
action a∗ ∈ A, we just need to run the above algorithm with p∗ := δa∗ . To get some
practice, note the following example.

Example 16. Consider again the CDP discussed in Example 12. Further, let the in-
formation concerning the states of nature be given by the following set of probability
measures on (Θ,P(Θ)):

M :=
{
π : 0.35 6 π({θ1}) + π({θ4}) 6 0.65

}
Hence, M is of the form (86) with r = 1, m = 4, n = 3, (b1, b1) = (0.35, 0.65) and
(f1(θ1), . . . , f1(θ4)) = (1, 0, 0, 1). We want to check M-maximality of action a1 in
the mixed extension G(A). According to the before considerations, this can be done
by solving the linear programming problem (111), where p∗ := δa1 . We arrive at the
following SMP

(1,−1, 0.35,−0.65, 0, 0, 0) ·



w1

w2

l1

u1

p1

p2

p3


−→ max

(w1,...,p3)

with constraints

• (w1, . . . , p3) > 0
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•



0 0 0 0 1 1 1
0 0 0 0 −1 −1 −1
1 −1 1 −1 −20 −30 −20
1 −1 0 0 −15 −10 −40
1 −1 0 0 −10 −10 0
1 −1 1 −1 −30 −20 −20


·



w1

w2

l1

u1

p1

p2

p3


6



1
−1
−20
−15
−10
−30


Running the above linear programming problem in R gives the optimal outcome 0.
Hence, action a1 is maximal, even when considering the mixed extension. ?

To complete the paragraph, we now want recall some results that make up con-
nections between the concept of maximality and other imprecise criteria for the
optimality of actions. We start with the following theorem. It can also be found in
[40, p. 25, Theorem 1].

Theorem 18. Let A be a CDP such that |Θ| < ∞ and let M be any non-empty
set of probability measures on (Θ,P(Θ)). Then, for all actions a ∈ A, the following
holds:

a ∈ Amax ⇒ a ∈ A<
I

M (112)

That is, anyM-maximal action is <I (M)-admissible.

Proof. Let a∗ ∈ Amax. Assume, for contradiction, that a∗ /∈ A<IM , i.e. there exists
an action a− ∈ A such that

EM(ua−) > EM(ua∗)

Particularly, this implies
Eπ(ua−) > Eπ(ua∗)

for all π ∈M. As the precise expectation is a linear operator, this is equivalent to

Eπ(ua− − ua∗) = Eπ(ua−)− Eπ(ua∗) > 0

for all π ∈M. However, this implies

EM(ua− − ua∗) := inf
π∈M

Eπ(ua− − ua∗) > 0

which yields a contradiction to a∗ ∈ Amax. Thus, a∗ ∈ A<IM . �

Theorem 18 proves the compatibility of the maximality criterion and the concept

121



5 Decision making under complex uncertainty

of interval dominance. Therefore, the maximality criterion evidently satisfies the
minimum requirement for rational imprecise decision criteria, i.e. for generalized
concepts of maximizing expected utility. But there are connections to other criteria
as well: The following Theorem makes a statement on the close relation between
maximal and E-admissible actions. It can be found e.g. in [43, § 3.9.5].

Theorem 19. Let A be a CDP such that |Θ| < ∞ and let M be any non-empty
set of probability measures on (Θ,P(Θ)). Then, the following statements hold:

i) AE(M) ⊂ AmaxM

ii) G(A)E(M) = G(A)maxM

Proof. i) Let a∗ ∈ AE(M). That is, there exists π ∈M such that

Eπ(ua∗) > Eπ(ua)

for all a ∈ A. As the precise expectation is a linear operator, this is equivalent to

Eπ(ua − ua∗) 6 0

for all a ∈ A. Since, EM(X) 6 Eπ(X) for any random variable X : Θ → R, this
implies

EM(ua − ua∗) 6 0

for all a ∈ A. Thus, a∗ ∈ AmaxM .

ii) ⊂: Since G(A) is again a CDP such that |Θ| <∞, this inclusion directly follows
from i).

⊃: The proof of this inclusion is highly non-trivial. It can be found for example in
[43, § 3.9.5]. �

Remark. Theorem 19 ii) shows that a randomized action isM-maximal if, and only
if, it is E(M)-admissible. Particularly, this implies the equivalence of the optimiza-
tion problems (111) (algorithm for checking maximality) and (98) (algorithm for
checking E-admissibility), since a maximal pure action that remains maximal under
the transition to the mixed extension is also E-admissible. More precisely, for a fixed
pure action a, the optimization problem (98) has the optimal outcome 1 if, and only
if, the optimal outcome of (111), where p∗ := δa, is at most zero. Thus, basically,
we have two different algorithms for checking the same thing. ◦
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5.5 The Γ-Maximin Criterion

In the beginning of the previous paragraph, we saw that there exist (at least) two
different ways of cautiously generalizing the principle of maximizing the expected
utility (where cautiously is to be understood in terms of considering the lower expec-
tation only). More precisely, if the uncertainty between the states is measured by a
set of probability measures, the equations (101) and (102) are no longer equivalent.
As seen before, the generalization of (102) induces the maximality criterion. Next,
we want to generalize (101) to the imprecise case. This motivates the following
definition, which is taken from e.g. [23, Definition 8.2].

Definition 24. Let A be a CDP such that |Θ| < ∞. Define the set M like in
equation (86). Again,M can be interpreted as a convex credal set or the structure
of an F-probability respectively. Then the criterion

ΦA
Γ(M) : A→ R , a 7→ min

π∈M
Eπ(ua) =: EM(ua) (113)

is called Γ(M)-Maximin-criterion. Every ΦA
Γ(M)-optimal action is called Γ(M)-

Maximin-action.
The set of all Γ(M)-Maximin-actions then is denoted by AΓ(M). 5

Remark. 1.) To see that the above criterion is well-defined, note the following:
According to Theorem 14, for any map X : Θ→ R the lower expectation EM(X) is
attained on the setM. Thus, for every a ∈ A fixed, the lower expectation EM(ua)
is attained on the setM.

2.) Note that the above criterion corresponds to the ordering 6p introduced in
Excursus 4.2.3: An action a∗ ∈ A is Γ(M)-Maximin-action if, and only if, the
inequality EM(ua) 6p EM(ua∗) holds for all a ∈ A. ◦

As for any other decision criterion, the following question immediately comes to
mind: If an action is Γ(M)-Maximin in the basic problem, will it still be optimal
compared to randomized actions? In other words: Can, in general, the Γ(M)-
Maximin utility be strictly improved by also considering randomized actions? Indeed,
this is the case.

As an extreme example, consider the situation where no additional information
concerning the states of nature is available. That is, the set M consists of all
possible probability measures on the space (Θ,P(Θ)) (M then is called vacuous, see
e.g. [4, p. 40]). In this case, the expression EM(ua) necessarily equals the utility of
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action a under one least favourable state of nature, that is

EM(ua) = min
θ∈Θ

u(a, θ) (114)

To verify equation (114), two statements have to be proven: There exits a probability
measure π∗ on (Θ,P(Θ)) such that Eπ∗(ua) = minθ∈Θ u(a, θ). And: For all other
probability measures π on (Θ,P(Θ)) we have Eπ(ua) > Eπ∗(ua). To see the validity
of the first statement, let θ∗ ∈ Θ be such that u(a, θ∗) = minθ∈Θ u(a, θ). This is
possible, since the function ua is defined on a finite set and, therefore, attains its
minimum on it. Now, set π∗ := δθ∗ and compute

Eπ∗(ua) =
m∑
j=1

u(a, θj) · δθ∗({θj}) = u(a, θ∗) = min
θ∈Θ

u(a, θ) (115)

This proves the first statement. To see the second statement, let π be any probability
measure on (Θ,P(Θ)). The following inequality holds:

Eπ(ua) =
m∑
j=1

u(a, θj) · π({θj}) > min
θ∈Θ

u(a, θ) ·
m∑
j=1

π({θj}) = min
θ∈Θ

u(a, θ) (116)

However, together with equation (115), this implies Eπ(ua) > Eπ∗(ua). Since π was
chosen arbitrarily, this shows the second statement and, therefore, finishes the proof
of equation (114).

Note that equation (114) yields an interesting connection to precise decision theory:
If there is no information on the states available at all, the precise Maximin-criterion
and the imprecise Γ-Maximin criterion coincide! Hence, the question posed before
is already answered: In general, randomization can generate a strict improvement
of utility w.r.t. to the Γ-Maximin-criterion, since it improves utility with respect to
the precise Maximin-criterion. This was illustrated in Example 1.

However, even in situation where there is some information on the states available,
randomization might be useful. This is clarified in the following

Example 17. Consider the CDP A defined by
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uij θ1 θ2 θ3 θ4 EM(uai)

a1 20 15 10 30 18
a2 30 10 10 20 14
a3 20 40 0 20 8
a4 10 30 50 30 18
a5 0 30 20 40 16

and let
M :=

{
π : π1 + π3 6 0.8 ∧ π4 > 0.4

}
The last column of the above utility table lists the lower bounds of the interval
expectation of the random variables uai w.r.t. M. Clearly, the actions a1 and a4

are Γ(M)-Maximin actions in the basic problem A with a Γ(M)-Maximin utility of
18.
However, the randomized action p∗ ∈ G(A) induced by the assignment

p∗({ai}) =



4
5 if i = 1

0 if i = 2

0 if i = 3
1
5 if i = 4

0 if i = 5

dominates all the pure actions available:

EM(G(u)p∗) = inf
π∈M

(
π1 ·

(4
5 · 20 + 1

5 · 10)

+ π2 ·
(4

5 · 15 + 1
5 · 30)

+ π3 ·
(4

5 · 10 + 1
5 · 50)

+ π4 ·
(4

5 · 30 + 1
5 · 30)

)
= inf

π∈M

(
π1 · 18 + π2 · 18 + π3 · 18 + π4 · 30

)
= 0.6 · 18 + 0.4 · 30 = 22.8 > 18

Hence, the transition to the mixed extension generates a strict improvement of the
Γ(M)-Maximin utility. ?

The previous two examples showed the following: When considering the Γ-Maximin-
criterion, we can improve our utility by taking also randomized actions into account.
In the case where no information is available at all, the criterion coincides with

125



5 Decision making under complex uncertainty

the Maximin-criterion. In this context, another aspect is interesting to mention:
Consider the situation with perfect information. That is, there is no ambiguity left
and the set M only consists of one single probability measure. In this case, the
Γ-Maximin-criterion reduces to the Bernoulli/Bayes-criterion known from precise
decision theory: The infimal expectation under all measures fromM simply reduces
to the expectation under the only measure contained inM. This seemingly trivial
statement helps to clarify two things: As there always exists a pure Bayes-action
according to Theorem 2, there are situations in which the Γ-Maximin-criterion labels
pure actions as being optimal. Hence, randomization doesn’t ensure a higher utility
in any situation.

Additionally, depending on the quality of the information available (that is, how
much ambiguity is left between the measures contained in M), the Γ-Maximin-
criterion tends more to the classical Maximin-criterion (lack of information) or to
the classical Bayes-criterion (perfect information). Hence, the two classical criteria
can be seen as the extreme poles of the Γ-Maximin-criterion with respect to the
quality of the available information.

So, how can Γ(M)-Maximin optimal randomized actions be determined? And: Do
there always exist such actions? The following Theorem guarantees the existence of
randomized Γ(M)-Maximin-actions in finite decision problems. Furthermore, the
procedure described in the proof shows up a way to determine these using linear
optimization algorithms. This procedure goes back to [41, § 3.2].

Theorem 20. Let A be a finite CDP and M be a set of probability measures of
the form defined in (86). Again, the set M can be interpreted as a convex credal
set or the structure of an F-probability respectively. Then there exists a Γ(M)-
Maximin-action for the decision problem G(A). That is, there exists p∗ ∈ G(A)
such that

ΦG(A)
Γ(M)(p

∗) > ΦG(A)
Γ(M)(p)

for all p ∈ G(A).

Proof. First, note that there exists an ΦG(A)
Γ(M)-optimal action if, and only if, the

optimization problem
inf
π∈M

Eπ(G(u)p)︸ ︷︷ ︸
=:α(p)

−→ max
p∈G(A)

(117)

has an optimal solution. Now, fix p ∈ G(A). As a first step, we show that the
infimum in the term α(p) is actually attained on the setM. This is equivalent for
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the optimization problem
Eπ(G(u)p) −→ min

π∈M
(118)

to have an optimal solution. Now compute:

Eπ(G(u)p) =
m∑
j=1

G(u)(p, θj) · π({θj}) =
m∑
j=1

( n∑
i=1

u(ai, θj) · p({ai})︸ ︷︷ ︸
=:epj

)
· π({θj})

Hence, the optimization problem (118) is equivalent to the SMIP

(ep1, . . . , epm) ·


π1
...
πm

 −→ min
π∈Rm

(119)

with the constraint

• π ∈ Πm

Here, we again used the one-to-one correspondence of the setsM and Πm that was
already described in previous paragraphs (see for example the proof of Theorem 9).
To see the linearity of the constraints note their equivalence to

• π > 0

•



1 . . . 1
1′ . . . 1′

f11 . . . f1m

f ′11 . . . f ′1m
... . . .

...
fr1 . . . frm

f ′r1 . . . f ′rm


︸ ︷︷ ︸

=:L

·


π1
...
πm

 >



1
1′

b1

b
′
1
...
br

b
′
r


︸ ︷︷ ︸

=:v

Since the set Πm is non-empty and bounded, the SMIP 119 has an optimal solution
according to Theorem 4. Thus, we proved the following: For every p ∈ G(A) the
infimum α(p) is attained on the setM. That is, for p ∈ G(A) fixed, the expression
α(p) equals the optimal outcome of the SMIP (119).
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Now, consider the dual linear programming problem of (119):

d(w1, . . . , ur︸ ︷︷ ︸
=:~w

) := 1, 1′, b1, b
′
1, . . . , br, b

′
r) ·



w1

w2

l1

u1
...
lr

ur


−→ max

(w1,...,ur)
(120)

with constraints

• (w1, . . . , ur) > 0

• LT ·



w1

w2

l1

u1
...
lr

ur


6


ep1
...
epm


︸ ︷︷ ︸

~f

According to duality, α(p) then also equals the optimal outcome of the linear pro-
gramming problem (120). Hence, the optimization problem (117) is equivalent to
the optimization problem

max
{
d(~w) : ~w ∈ Z+(LT , ~f)

}
−→ max

p∈G(A)
(121)

That is, there exists a randomized Γ(M)-Maximin action if, and only if, the opti-
mization problem (121) has an optimal solution. Since we have

max
p∈G(A)

{
d(~w) : ~w ∈ Z+(LT , ~f)

}
= max

{
d(~w) : ~w ∈ Z+(LT , ~f) ∧ p ∈ G(A)

}
(122)

the optimization problem (121) has an optimal solution if, and only if, the following
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SMP has an optimal solution:

(1, 1′, b1, b
′
1, . . . , br, b

′
r, 0, . . . , 0︸ ︷︷ ︸

n times

) ·



w1

w2

l1

u1
...
lr

ur

p1
...
pn



−→ max
(w1,...,pn)

(123)

with constraints

• (w1, . . . , pn) > 0

• p ∈ G(A)

• LT ·



w1

w2

l1

u1
...
lr

ur


6


ep1
...
epm



To see the linearity of the constraints, note that, together, the second and third
constraint are equivalent to the inequality

HT ·



w1

w2

l1

u1
...
lr

ur

p1
...
pn



6 (1,−1, 0, ..., 0︸ ︷︷ ︸
m times

)T
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where H is the matrix defined in the proof of Theorem 9.
Finally, note that the SMP (123) is exactly the dual of the SMIP (48) defined in the
proof of Theorem 9. So, according to duality and Theorem 9, the SMP (123) has
an optimal solution. This completes the proof. �

As an immediate consequence of Theorem 20, Theorem 9 and Corollary 1 we can
derive the following Corollary. It shows some interesting connection between the
precise Bayes-criterion and the Γ-Maximin criterion.

Corollary 4. Let A be a finite CDP andM be a set of probability measures of the
form defined in (86). Furthermore, let p∗ ∈ G(A) be a Γ(M)-Maximin action for
the mixed extension G(A). Then, there exists a pair (a∗, π∗) ∈ A×M such that

ΦA
B(π∗)(a

∗) = ΦG(A)
Γ(M)(p

∗) (124)

Proof. Let, in accordance with Corollary 1, (a∗, π∗) ∈ A × M denote a least
favourable combination. Particularly, this implies that π∗ defines a least favourable
prior with respect toM. Again, for π ∈M, let M(π) denote the Bayes-utility w.r.t.
the prior π. Then, according to the proof of Theorem 9, M(π∗) equals the optimal
outcome of the SMIP (48). Since the linear programming problems (48) and (123)
are dual to each other, M(π∗) then also equals the optimal outcome of (123). But
the optimal outcome of (123) equals ΦG(A)

Γ(M)(p
∗) by construction. Therefore, we get

M(π∗) = ΦG(A)
Γ(M)(p

∗) (125)

Since (a∗, π∗) ∈ A×M is a least favourable combination, we have

M(π∗) = ΦA
B(π∗)(a

∗) (126)

Thus, we get
ΦA
B(π∗)(a

∗) = ΦG(A)
Γ(M)(p

∗)

This completes the proof. �

Remark. Corollary 4 shows a connection between the precise Bayes-criterion and the
Γ-Maximin-criterion: There always exists a ’most pessimistic’ precise description of
the uncertainty (represented by a measure π∗ ∈ M), which is still compatible with
the information base. Under this pessimistic description of uncertainty, applying the
Bayes-criterion gives the same utility as applying the Γ-Maximin-criterion under the
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imprecise description.

Example 18. In this example we want to use the algorithm explained in the proof of
Theorem 20 to determine a Γ-Maximin action. Furthermore, we show that applying
the Bayes-criterion w.r.t. a least favourable prior induces the same utility value.

Now, consider the following CDP A:

uij θ1 θ2 θ3 θ4 θ5

a1 2000 15000 1000 3000 500
a2 6000 5000 4000 3000 1400
a3 5500 10000 2000 2000 800
a4 8751 3000 3100 4500 1800
a5 6200 300 20000 4000 160

Let ζ denote the true and unknown probability measure characterizing the uncer-
tainty between the elements of Θ (that is, the measure describing the situation under
perfect information). Further, let ζj := ζ({θj}) for j = 1 . . . , 5. Suppose, for some
reason, the following information about ζ is available:

• 2 · ζ3 > ζ1 + ζ5

• 0.25 6 ζ4 + ζ5 6 0.77

• 0.35 6 ζ2 + 0.5 · ζ3

Then, the information is representable as a M set of probability measures of the
form defined in (86). More precisely, we have r = 3 and

• f1(θ) :=


−1 if θ ∈ {θ1, θ5}

0 if θ ∈ {θ2, θ4}

2 if θ = θ3

• f2(θ) :=

1 if θ ∈ {θ4, θ5}

0 else

• f3(θ) :=


1 if θ = θ2

0.5 if θ = θ3

0 else
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• (bi, bi) :=


(0, 2) if i = 1

(0.25, 0.77) if i = 2

(0.35, 1) if i = 3

To compute a randomized Γ(M)-Maximin action, we set up the SMP (123) defined
in the proof of Theorem 20. We arrive at

(1,−1, 0,−2, 0.25,−0.77, 0.35,−1, 0, 0, 0, 0, 0)︸ ︷︷ ︸
=: ~d1

·


w1
...
p5

 −→ max
(w1,...,p5)

with constraints

• (w1, . . . , p5) > 0

• C · (w1, . . . , p5)T 6 (1,−1, 0, 0, 0, 0, 0)T︸ ︷︷ ︸
=: ~d2

where

C :=



0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 −1 −1 −1 −1 −1
1 −1 −1 1 0 0 0 0 −2000 −6000 −5500 −8751 −6200
1 −1 0 0 0 0 1 −1 −15000 −5000 −10000 −3000 −300
1 −1 2 −2 0 0 0.5 −0.5 −1000 −4000 −2000 −3100 −20000
1 −1 0 0 1 −1 0 0 −3000 −3000 −2000 −4500 −4000
1 −1 −1 1 1 −1 0 0 −500 −1400 −800 −1800 −160


Running the above SMP in R returns the optimal randomized action p∗ ∈ G(A) that
is induced by the assignment

p∗({ai}) :=


0.4389297 if i = 1

0.5610703 if i = 5

0 else

with a Γ(M)-Maximin utility of 4677.989.

Next, we want to determine a pair (a∗, π∗) ∈ A × M satisfying condition (124).
According to the proof of Corollary 4, it suffices to determine first a least favourable
prior with respect toM and, afterwards, the corresponding pure Bayes action w.r.t.
this prior. As already seen in the proofs of Theorem 9 and Theorem 20 respectively,
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a least favourable prior w.r.t. M can be computed by solving the dual of the above
SMP. Particularly, the following version of the SMIP (48) has to be solved:

~d2 ·



g1

g2

π1
...
π5


−→ min

(g1,...,πm)

with constraints

• (g1, . . . , πm) > 0

• CT · ~d2 > ~d1

Running the SMIP in R gives the optimal solution

(4677.989, 0, 0, 0.2529996, 0.1940009, 0.1649978, 0.3880017︸ ︷︷ ︸
=:o∗∈Πm

)

Thus, a least favourable prior distribution is given by π∗ := b−1(o∗). To find a Bayes
action w.r.t. π∗ we compute

Eπ∗(uai) =



4677.989 if i = 1

3079.197 if i = 2

3558.394 if i = 3

2801.295 if i = 4

4677.989 if i = 5

Hence, Bayes-actions w.r.t π∗ are given by a1 and a5 and we have

ΦA
B(π∗)(a1) = ΦA

B(π∗)(a5) = ΦG(A)
Γ(M)(p

∗)

That is, the Bayes solutions a1 and a5 of the CDP under the prior π∗ have exactly
the same utility as the randomized Γ(M)-action p∗. ?

Theorem 20 allows another immediate conclusion: For every finite decision problem
there exists a randomized action that minimizes the upper expectation with respect
toM. This is the statement of the following corollary.
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Corollary 5. Let A be a finite CDP andM be a set of probability measures of the
form defined in (86). Then, there exists a randomized action p∗ ∈ G(A) such that

EM(G(u)p∗) 6 EM(G(u)p) (127)

for all p ∈ G(A). That is, p∗ minimizes the upper interval expectation w.r.t. M.

Proof. Given a finite CDP A, we define a new finite decision problem

Ã := (A,Θ, ũ(·)) (128)

where the new utility function ũ is defined by

ũ : (A×Θ)→ R , (a, θ) 7→ ũ(a, θ) := −u(a, θ)

Then, according to Theorem 20, there exists a randomized Γ(M)-Maximin action
p∗ ∈ G(A) for the decision problem G(Ã). That is,

min
π∈M

Eπ(G(ũ)p∗) > min
π∈M

Eπ(G(ũ)p) (129)

for all p ∈ G(A). Now, note that the identity

Eπ(G(ũ)p∗) =
m∑
j=1

(
n∑
i=1

ũ(ai, θj) · p({ai})
)
· π({θj})

=
m∑
j=1

(
n∑
i=1

(−1) · u(ai, θj) · p({ai})
)
· π({θj})

= (−1) ·
m∑
j=1

(
n∑
i=1
·u(ai, θj) · p({ai})

)
· π({θj})

= (−1) · Eπ(G(u)p∗)

holds for all π ∈M. That is,

Eπ(G(ũ)p∗) = (−1) · Eπ(G(u)p∗) (130)

for all π ∈M. Next, note that, for any function f : A→ R (where A is an arbitrary
non-empty set), the identity

−min
a∈A

f(a) = max
a∈A

(−f(a)) (131)
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holds. Now, for fixed p ∈ G(A), define the function

ep :M→ R , π 7→ Eπ(G(ũ)p) (132)

Then, for all p ∈ G(A), we arrive at

max
π∈M

Eπ(G(u)p∗)
(130),(132)= max

π∈M

(
(−1) · ep∗(π)

)
(131)= − min

π∈M
ep∗(π)

= − min
π∈M

Eπ(G(ũ)p∗)

(129)
6 − min

π∈M
Eπ(G(ũ)p)

= max
π∈M

Eπ(G(u)p)

That is,
max
π∈M

Eπ(G(u)p∗) 6 max
π∈M

Eπ(G(u)p) (133)

for all p ∈ G(A). This completes the proof. �

The proof of Corollary 5 describes a method to determine randomized actions that
minimize the upper interval expectation: These actions are exactly the Γ-Maximin-
actions in the decision problem that is derived from the origin problem by multiply-
ing the utility function with the factor −1. Let’s apply this to an example.

Example 19. Consider again the setting of Example 17 (that is, the finite CDP
A together with the set M). We want to determine a randomized action that
minimizes the upper interval expectation with respect to M. According to the
proof of Corollary 5, this can be done by determining a randomized Γ(M)-Maximin
action in the transformed decision problem Ã given by

ũij θ1 θ2 θ3 θ4

a1 -20 -15 -10 -30
a2 -30 -10 -10 -20
a3 -20 -40 0 -20
a4 -10 -30 -50 -30
a5 0 -30 -20 -40

According to Theorem 20, a randomized Γ(M)-Maximin-action for the decision prob-
lem G(Ã) can be gained by solving the linear optimization problem (123). Solving
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the problem in R (similar as demonstrated in Example 18) gives the optimal ran-
domized action p∗ ∈ G(A) induced by the assignment

p∗({ai}) =



0 if i = 1
1
2 if i = 2
1
4 if i = 3
1
4 if i = 4

0 if i = 5

Thus, according to Corollary 5, the random variable G(u)p∗ minimizes the upper
interval expectation with respectM. ?

To complete the paragraph, we want to recall a result that shows how the Γ-Maximin
criterion is related to other decision criteria for the imprecise case. It turns out that
every Γ-Maximin-optimal action is maximal as well. As, according to Theorem 18,
every maximal action is not interval dominated by another action, this then implies
the compatibility of Γ-Maximin and interval dominance. A more general version of
the result can e.g. be found in [40, p. 25, Theorem 1].

Theorem 21. Let A be a CDP such that |Θ| <∞. Further, letM be of the form
defined in (86). Then, the following implication holds for all a ∈ A:

a ∈ AΓ(M) ⇒ a ∈ AmaxM (134)

That is, any Γ(M)-Maximin action isM-maximal.

Proof. (similar in [40, p.25]) Let a∗ ∈ AΓ(M). That is,

EM(ua∗) > EM(ua) (135)

for all a ∈ A. Now, for all random variables X,Y : Θ→ R, the following holds (see
for example [40, p.25]):

EM(X − Y ) 6 EM(X)− EM(Y ) (136)

Thus, we have

EM(ua − ua∗)
(136)
6 EM(ua)− EM(ua∗)

(135)
6 0 (137)

for all a ∈ A. Hence, a ∈ AmaxM . �
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5.6 Γ-Maximax and a combined approach

In the previous two paragraphs, we saw two ways of cautiously generalizing the con-
cept of maximizing expected utility (that is, generalizing equation (101) to the im-
precise case). In both cases, the corresponding criterion takes only the lower bound
of the interval expectation of an action into account. Therefore, both Γ-Maximin
and maximality are examples for so called ambiguity-averse decision criteria: An
actor applying such a criterion completely ignores the fact that all the measures
contained inM are equally plausible to be the true one.

Instead, the actor acts as if he was playing a game against an omniscient antago-
nist, who may freely choose between the measures contained in M. Although this
approach might be adequate in certain situations, in general, it seems to be over-
pessimistic and, therefore, fails to describe the process of decision making of rational
actors (see for example [3, § 5.1] or Example 10: Here, the ordering 6α only charac-
terizes the experts’ preference order, if the degree of optimism is at least 50 %).

One question immediately comes to mind: Are there generalizations of the concept
of maximizing expected utility that are less cautious (or pessimistic)? In other
words: Can the cautious approach be modified (or generalized) for arbitrary beliefs
concerning the degree of appropriate scepticism?

Obviously, one way of proceeding is the other extreme, namely: Choose an action
if, and only if, it maximizes the expected utility with respect to the most favourable
measure contained in the setM. In other words: With respect to this concept, an
action is optimal, if the corresponding random variable maximizes the upper bound
of the interval expectation underM. The criterion arising from this considerations
is often referred to as Γ-Maximax-criterion. This motivates the following definition.
A similar definition as the one given here, can for example be found in [23, p. 193,
Definition 8.3].

Definition 25. Let A be a CDP such that |Θ| < ∞. Define the set M like in
equation (86). Again,M can be interpreted as a convex credal set or the structure
of an F-probability respectively. Then the criterion

ΦA
M : A→ R , a 7→ max

π∈M
Eπ(ua) =: EM(ua) (138)

is called Γ(M)-Maximax-criterion. Every ΦA
M-optimal action is called Γ(M)-Maximax-

action. The set of all Γ(M)-Maximax-actions then is denoted by AM. 5

Remark. 1.) Again, according to Theorem 14, the above criterion is well-defined,
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as the maximum is actually attained on the setM for all a ∈ A fixed. For a more
in-depth argumentation, see the Remark on Definition 24.

2.) Note that the above criterion corresponds to the ordering 6o introduced in
Excursus 4.2.3: An action a∗ ∈ A is Γ(M)-Maximax-action if, and only if, the in-
equality EM(ua) 6o EM(ua∗) holds for all a ∈ A. ◦

Naturally, the above definition gives rise to two related questions: Under what con-
ditions do Γ(M)-Maximax actions exist? And: How can they be determined in
concrete decision problems?

At first sight, the task of determining a Γ-Maximax action seems to be very similar
to the task of determining a Γ-Maximin action. Surprisingly, it seems not to be
possible to formulate this task as a single linear programming problem. Instead,
simultaneously maximizing the expression Eπ(G(u)p) in the variables π and p nec-
essarily leads to a multi-linear optimization problem (see for example [3, Lemma 2]
or [41, §4]).

For the moment, let us place back the question how Γ-Maximax-actions can be de-
termined and, instead, face another problem: Obviously, applying the Γ-Maximax-
criterion seems to be over-optimistic as it reflects the attitude of ambiguity-seeking
actors only. Therefore, the criterion is vulnerable for a similar criticism as Γ-
Maximin: Assuming total indifference between the elements of M, why should it
be reasonable to always expect the most favourable one among them? Maybe this
optimism might be reasonable in certain situations. However, it does not seem to
be suitable to offer a general framework for rational decision making under interval
probability.

For this reason, we now want to recall a decision criterion that allows the actor to
flexibly model his personal attitude towards ambiguity by a real-valued caution pa-
rameter η ∈ [0, 1]. According to this criterion, an action is optimal, if it maximizes
a convex combination of the Γ-Maximin-criterion and the Γ-Maximax-criterion.

In this way, the decision maker can freely weight the influences of the two criteria:
While values of η that are close to 0 indicate a cautious decision maker, values of η
that are close to 1 indicate an optimistic decision maker. In general, such a criterion
seems to be more suitable to model the decision processes of real actors, since almost
no one acts purely optimistic or pessimistic respectively. The criterion can be found
e.g. in [3, § 5.1] or [41, § 4].

Definition 26. Let A be a CDP such that |Θ| < ∞. Define the set M like in
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5 Decision making under complex uncertainty

equation (86) and let η ∈ [0, 1]. Then the criterion

ΦA
M,η : A→ R , a 7→ η · EM(ua) + (1− η) · EM(ua) (139)

is called (M, η)-criterion. Every ΦA
M,η-optimal action is called (M, η)-action. The

set of all (M, η)-actions then is denoted by A(M,η). 5

Remark. 1.) As a convex-combination of two well-defined criteria, the above crite-
rion is well-defined as well (of course, this can also be derived by directly applying
Theorem 14). Additionally, note that both Γ-Maximin-criterion (η = 1) and Γ-
Maximax-criterion (η = 0) are special cases of the above criterion. Particularly,
this implies that any general method for computing (M, η)-actions can be used for
determining Γ-Maximax-actions as well.

2.) Note that the above criterion corresponds to the ordering 6α introduced in
Excursus 4.2.3: An action a∗ ∈ A is (M, η)-optimal if, and only if, the inequality
EM(ua) 6η EM(ua∗) holds for all a ∈ A. ◦

Trying to formulate the task of finding an (M, η)-action as a linear optimization
problem gives rise to the same difficulties as in the case of the Γ-Maximax-criterion:
Again, simultaneously maximizing the expression Eπ(G(u)p) in the variables π and
p necessarily leads to a multi-linear optimization problem. However, in [41, § 4],
Augustin and Utkin show that solving this bilinear optimization problem can be
avoided by solving a finite number of linear optimization problems instead. Their
technique, which is mainly based on the fundamental theorem of linear optimization,
is used in the proof of the following theorem.

Theorem 22. Let A be a finite CDP. Further, letM denote a set of the form defined
in equation (86) and let η ∈ [0, 1]. Then, there exists a randomized (M, η)-action
p∗ ∈ G(A).

Proof. Let η ∈ [0, 1]. First, note that the set b(M) = Πm (see the proof of Theorem
9) is a convex polyhedron, since it can be written in the form

Πm =
{
x ∈ Rm : K · x 6 l

}
(140)

where K and l are defined like in the proof of Theorem 14. Hence, according to
Theorem 7, the set Πm admits only finitely many extreme points. Let

E(Πm) :=
{
π(1), . . . , π(d)

}
(141)
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denote a listing of all extreme points. For π(k) ∈ E(Πm), consider the optimization
problems

fk(p) := η · EMG(u)p + (1− η) ·
m∑
j=1

G(u)(p, θj) · π(k)
j −→ max

p∈G(A)
(142)

Hence, we receive d optimization problems. Next, note that, for p ∈ G(A) fixed, the
following identity holds:

EMG(u)p = max
{
w1 − w2 : w1 − w2 6

m∑
j=1

G(u)(p, θj) · πj ∀π ∈ Πm

}
(143)

However, according to Theorem 8, for every fixed action p ∈ G(A) there exists a
value z(p) ∈ {1, ..., d} such that π(z(p)) ∈ E(Πm) and

m∑
j=1

G(u)(p, θj) · π(z(p))
j = max

{ m∑
j=1

G(u)(p, θj) · πj : π ∈ Πm

}
(144)

Therefore, equation (143) reduces to the equation

EMG(u)p = max
{
w1 − w2 : w1 − w2 6

m∑
j=1

G(u)(p, θj) · πj ∀π ∈ E(Πm)
}

(145)

Now, this yields that the k-th optimization problem in (142) admits an optimal
solution if, and only if, the optimization problem

η · (w1 − w2) + (1− η) ·
m∑
j=1

G(u)(p, θj) · π(k)
j −→ max

(w1,...,pn)
(146)

with constraints

• (w1, . . . , pn) > 0

• p ∈ ∆n

• w1 − w2 6
∑m
j=1G(u)(p, θj) · πj ∀π ∈ E(Πm)

has an optimal solution. Here, we again used the one-to-one correspondence of the
sets G(A) and ∆n (see paragraph 3.1).

To see that the problem (146) indeed defines a linear optimization problem, note
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that it can equivalently be written in the following form:

(
η,−η, (1− η) · cπ(k)

1 , . . . , (1− η) · cπ(k)
n

)
·



w1

w2

p1
...
pn


−→ max

(w1,...,pn)
(147)

with constraints

• (w1, . . . , pn) > 0

•



0 0 1 . . . 1
0 0 1′ . . . 1′

1 1′ −cπ(1)
1 . . . −cπ(1)

n
...

...
... . . .

...
1 1′ −cπ(d)

1 . . . −cπ(d)
n


·



w1

w2

p1
...
pn


6



1
1′

0
...
0



where, for π ∈ M and i = 1, . . . , n, the expression cπi is defined like in the proof of
Theorem 9. This gives us a linear optimization problem.

To see that problem (147) possesses an optimal solution, note that, according to
Theorem 2, its objective function is bounded from above by the expression

η ·m · n · |max
ij

u(ai, θj)|+ (1− η) · Eb−1(π(k))(ua∗) <∞ (148)

where a∗ ∈ A denotes a Bayes-action with respect to b−1(π(k)). Thus, according
to Theorem 5, there exists an optimal solution of problem (147) and, therefore, of
problem (142).

Hence, for every extreme point π(k) ∈ E(Πm), where k ∈ {1, . . . , d}, the optimization
problem (142) possesses an optimal solution. Thus, let p(k) ∈ G(A) denote an
optimal solution of the k-th optimization problem in (142). Then, fk(p(k)) equals
the optimal outcome of the k-th optimization problem in (142). Since E(Πm) is a
finite set, this implies the existence of k+ ∈ {1, . . . , d} such that

fk+(p(k+)) > fk(p(k)) > fk(p) (149)

for all k ∈ {1, . . . , d} and p ∈ G(A). Now, let p ∈ G(A) be arbitrary. Choose
πz(p) ∈ E(Πm) like in equation (144). Then, according to the equations (144) and
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(149), the following holds:

ΦG(A)
M,η (p(k+)) > fk+(p(k+))

> fz(p)(p)

= η · EMG(u)p + (1− η) · max
π∈Πm

(
m∑
j=1

G(u)(p, θj) · πj

)

= η · EMG(u)p + (1− η) · EMG(u)p

= ΦG(A)
M,η (p)

Here, the first inequality trivially holds, since

EM
(
G(u)

p(k+)

)
>

m∑
j=1

G(u)(p(k+), θj) · π(k+)
j (150)

Since, p was chosen arbitrarily, this yields

ΦG(A)
M,η (p(k+)) > ΦG(A)

M,η (p) (151)

for all p ∈ G(A). That is, p(k+) ∈ G(A) is a (M, η)-action.
This completes the proof. �

Remark. If we set η = 0, Theorem 22 implies a proof for the existence of random-
ized Γ-Maximax action as a special case. For η = 1, we get an alternative proof of
Theorem 20. However, note the following: While the proof of Theorem 20 shows up
a way to determine randomized Γ-Maximin actions by solving one single linear opti-
mization problem, the same seems not to be possible neither for Γ-Maximax-actions
nor for (M, η)-actions. As seen in the proof of Theorem 22, determining optimal
actions with respect to these two criteria requires to solve one linear optimization
problem for each extreme point. However, there also exists a way of determining
(M, η)-actions without computing the extreme points of Πm: In [41, § 4.2], the
authors derive an algorithm that is not based on extreme points. Nevertheless, also
this approach is based on solving several linear programming problems. ◦

Next, we want to apply the algorithm just described to an example. However, note
that for applying the algorithm the extreme points of the set need to be determined.
An effective algorithm for determining the extreme points of a set of the form Πm

(that is a set of the form b(M), where M is of the form defined in equation (86))
can e.g. be found in [5, p. 34, Remark 1.15]. In the following example we assume
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the extreme points to be already determined.

Example 20. Consider the finite decision problem A defined by

uij θ1 θ2 θ3

a1 20 30 40
a2 10 10 60
a3 30 30 25

Further, let our information be given by the following set of probability measures
on (Θ,P(Θ)):

M :=
{
π : 0.3 6 π1 + π2 6 0.8

}
Obviously, the setM is of the form defined in equation (86). The extreme points of
the set Π3 := b(M) are given by

π(1) = (0.3, 0, 0.7) , π(2) = (0, 0.3, 0.7) , π(3) = (0.8, 0, 0.2) , π(4) = (0, 0.8, 0.2)

Let η = 0.6. We want to determine a randomized (M, η)-action for the decision
problem G(A). According to the proof of Theorem 22, such an action can be gained
by solving the linear optimization problem (142) (and therefore problem (147)) for
every extreme point and, afterwards, choosing the optimal solution of the problem
with the highest optimal outcome. Thus, we arrive at the following four optimization
problems (the constraints coincide for all four problems):

(
0.6,−0.6, 0.4 · 34, 0.4 · 45, 0.4 · 26.5

)
·



w1

w2

p1

p2

p3


−→ max

(w1,...,p3)

(
0.6,−0.6, 0.4 · 37, 0.4 · 45, 0.4 · 26.5

)
·



w1

w2

p1

p2

p3


−→ max

(w1,...,p3)
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(
0.6,−0.6, 0.4 · 24, 0.4 · 20, 0.4 · 29

)
·



w1

w2

p1

p2

p3


−→ max

(w1,...,p3)

(
0.6,−0.6, 0.4 · 32, 0.4 · 20, 0.4 · 29

)
·



w1

w2

p1

p2

p3


−→ max

(w1,...,p3)

with constraints

• (w1, . . . , p3) > 0

•



0 0 1 1 1
0 0 −1 −1 −1
1 −1 −34 −45 −26.5
1 −1 −37 −45 −26.5
1 −1 −24 −20 −29
1 −1 −32 −20 −29


·



w1

w2

p1

p2

p3


6



1
1′

0
...
0



Resolving the above optimization problems in R gives us the optimal solutions

(20, 0, 0, 1, 0) , (20, 0, 0, 1, 0) , (28.1̄8, 0, 0, 0.0̄9, 0.9̄0) , (28, 0, 0.2, 0, 0.8)

Obviously, the third optimization problem has the highest optimal outcome, namely
28.1̄8. Hence, according to the proof of Theorem 22, a (M, 0.6)-optimal randomized
action p∗ ∈ G(A) is induced by the assignment

p∗({ai}) =


0 if i = 1

0.0̄9 if i = 2

0.9̄0 if i = 3

?

To complete the paragraph, we want to prove a theorem that makes up a connection
between decision problems under complex uncertainty and decision problems under
strict type I uncertainty. The proof of the theorem is essentially based on the dual
linear programming problem of problem (147).
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Theorem 23. Let A be a finite CDP. Further, let M denote a set of the form
defined in equation (86) and let η ∈ [0, 1]. According to Theorem 22, let p∗ ∈ G(A)
denote a (M, η)-optimal action for the decision problem G(A). Then, there exists a
finite decision problem Ã := (Ã, Θ̃, ũ(·)) and a probability measure ϕ̃ on (Θ̃,P(Θ̃))
such that

ΦG(A)
(M,η)(p

∗) = ΦÃ
B(ϕ̃)(ã

∗) (152)

where ã∗ ∈ Ã denotes a Bayes-action w.r.t ϕ̃ for the decision problem Ã.

Proof. Let η ∈ [0, 1] and let E(Πm) be defined like in the proof of Theorem 22. Then,
according to Theorem 22, there exists π(l) ∈ E(Πm) such that ΦG(A)

(M,η)(p
∗) equals the

optimal outcome of the linear optimization problem (147), where k := l.

Thus, by duality, the expression ΦG(A)
(M,η)(p

∗) equals the optimal outcome of the dual
of problem (147), given by

(
1,−1, 0, . . . , 0︸ ︷︷ ︸

d-times

)
·



u1

u2

κ1
...
κd


−→ min

(u1,...,κd)
(153)

with constraints

• (u1, . . . , κd) > 0

•



0 0 1 . . . 1
0 0 1′ . . . 1′

1 1′ −cπ(1)
1 . . . −cπ(d)

1
...

...
... . . .

...
1 1′ −cπ(1)

n . . . −cπ(d)
n


·



u1

u2

κ1
...
κd


>



η

−η
(1− η) · cπ(l)

1
...

(1− η) · cπ(l)
n



Now, let (u∗1, u∗2, κ∗1, . . . , κ∗d) denote an optimal solution of problem (153). Then, due
to optimality, the following two properties hold:

d∑
k=1

κ∗k = η (154)

u∗1 − u∗2 = max
{(

d∑
k=1

κ∗k · cπ
(k)
i

)
+ (1− η) · cπ(l)

i : i = 1, . . . , n
}

(155)
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Next, define the vector µ := (µ1, . . . , µd) by

µk =

κ
∗
k if k 6= l

κ∗k + (1− η) if k = l

Clearly, we have
∑d
k=1 µk = 1 and µk > 0 for all k = 1, . . . , d. Thus, the assignment

ϕ̃({π(k)}) := µk, for k = 1, . . . , d, induces a probability measure on the measurable
space (E(Πm),P(E(Πm))).

Now, define the finite decision problem Ã := (Ã, Θ̃, ũ(·)) by

• Ã := {ã1, . . . , ãn}

• Θ̃ := E(Πm)

• ũ : Ã× E(Πm)→ R , (ãi, π(k)) 7→ cπ
(k)
i :=

∑m
j=1 u(ai, θj) · π(k)

j

Let, according to Theorem 2, ã∗ ∈ Ã denote a Bayes-action w.r.t ϕ̃ for the decision
problem Ã. We compute

ΦÃ
B(ϕ̃)(ã

∗) = max
{

d∑
k=1

ũ(ãi, π(k)) · ϕ̃({π(k)}) : i = 1, . . . , n
}

= max
{

d∑
k=1

cπ
(k)
i · µk : i = 1, . . . , n

}

= max
{(

d∑
k=1

κ∗k · cπ
(k)
i

)
+ (1− η) · cπ(l)

i : i = 1, . . . , n
}

(155)= u∗1 − u∗2

= ΦG(A)
(M,η)(p

∗)

This completes the proof. �

In the following example, we demonstrate how the technique applied in the proof
of Theorem 23 can be used to construct the finite decision problem Ã and the
probability measure ϕ̃ given the finite decision problem A.

Example 21. Consider again the setting of Example 20 (that is, the decision prob-
lem A, the set M and the parameter value η = 0.6). According to the proof of
Theorem 23, the decision problem Ã is given by
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ũik π(1) π(2) π(3) π(4)

ã1 34 37 24 32
ã2 45 45 20 20
ã3 26.5 26.5 29 29

and the corresponding measure ϕ̃ can be gained by solving the dual of the third
linear optimization problem from Example 20 (because the third problem is the one
with the highest optimal outcome, as shown in Example 20). The corresponding
dual optimization problem is given by

(1,−1, 0, 0, 0, 0) ·



u1

u2

κ1

κ2

κ3

κ4


−→ min

(u1,...,κ4)

with constraints

• (u1, . . . , κ4) > 0

•



0 0 1 1 1 1
0 0 −1 −1 −1 −1
1 −1 −34 −37 −24 −32
1 −1 −45 −45 −20 −20
1 −1 −26.5 −26.5 −29 −29


·



u1

u2

κ1
...
κ4


>



0.6
−0.6

0.4 · 24
0.4 · 20
0.4 · 29



Resolving this problem in R returns the optimal solution

(28.1̄8 , 0 , 0.32̄7 , 0 , 0.2̄7 , 0)

Thus, according to the proof of Theorem 23, the measure ϕ̃ on (E(Π3),P(E(Π3))) is
induced by the assignment

ϕ̃({π(k)}) := µk :=



0.32̄7 if k = 1

0 if k = 2

0.2̄7 + 0.4 if k = 3

0 if k = 4
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Now, in order to determine a Bayes-optimal action with respect to ϕ̃ for the decision
problem Ã, we compute the following expression:

Eϕ̃(ũãi) =


27.2̄7 if i = 1

28.1̄8 if i = 2

28.1̄8 if i = 3

Hence, Bayes-action are given by ã3 and ã3 and we have

ΦÃ
B(ϕ̃)(ã2) = ΦÃ

B(ϕ̃)(ã3) = ΦG(A)
(M,0.6)(p

∗)

where p∗ denotes the (M, 0.6)-optimal action from Example 20. ?

148



6 Some concluding remarks

6 Some concluding remarks

In this last chapter of the present work, we aim to fulfil two objectives: First, we
want to give a brief summary of the main aspects treated throughout this thesis.
Subsequently, we want to point out topics that weren’t treated within this work.

6.1 Summary

Generally speaking, this thesis is about optimal decision making under different as-
sumptions concerning the mechanism generating the states of nature in finite decision
problems. Specifically, we focussed the question: How can one use the information
available best possible in order to determine a rational decision?

In Chapter one, we treated the classical case of information bases either describable
by a classical probability measure or comparable to a game against an omniscient
antagonist. Furthermore, we recalled arguments that in such cases optimal criteria
are given by the Bernoulli/Bayes-criterion or the Maximin-criterion respectively.
Additionally, we recalled a criterion that allows to label actions as optimal if the
information available is best described by a mixture of the types mentioned above:
The Hodges & Lehmann-criterion.

At this point, the following question naturally comes up: How can we determine op-
timal actions with respect to the criteria discussed? Chapter two lies the theoretical
foundation to answer this question, namely the theory of Linear Optimization. This
well-investigated theory not only allows us to prove the existence of optimal solution
of linear optimization problems, but also can be used to determine such solutions
by using standard statistical software.

In Chapter three, we recall how the classical criteria discussed in Chapter one can
be embedded into the theoretical framework of linear optimization theory. More
precisely, the task of optimizing each of the three classical criteria can be refor-
mulated as the task of solving a suitable linear optimization problem. Using this
circumstance makes it possible to prove the existence of optimal actions by applying
the general results from linear programming. Furthermore, in all cases the idea of
the proofs is constructive and, therefore, can be used as a method for determining
optimal actions.

Two results of this chapter seem to be of particular interest: The first one demon-
strates how linear programming theory can be used to determine a least favourable
prior distribution under all distributions contained in a linearly defined set (i.e. a
set of the for defined in equation (86)). Such least favourable distributions then turn
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out to have a deep connection to the Γ-Maximin-criterion that is recalled in Chapter
five.

Additionally, a connections between the Bayes-criterion and the Hodges & Lehmann-
criterion is shown up: For every prior measure π on the set of states and every
trade-off (or optimism) parameter α ∈ [0, 1], there exists a measure λπ,α such that
the Bayes-utility with respect to λπ,α equals the Hodges & Lehmann- utility with
respect to π. Again, we demonstrate a method for determining such measures using
linear optimization.

Afterwards, Chapter four seriously takes account of the fact that certain kinds of
uncertainty cannot be captured by considering classical probabilistic models only.
If the quality of the informations base is to weak, it often turns out not to be pos-
sible to give precise probabilistic descriptions of the situation. Instead one has to
consider generalized descriptions of uncertainty. The mentioned inabilities of the
classical theory are illustrated by a number of examples from various scientific dis-
ciplines. Furthermore, we recall some theoretical reasons that support the idea of a
generalization of probability theory.

Accordingly, in the second part of Chapter four, we recall two common generaliza-
tions of the classical theory: Credal sets and interval probability. Both frameworks
are strongly related to each other. Furthermore, they offer natural approaches for
dealing with imperfect information avoiding the inconsistencies arising from the us-
age of classical probability theory.

In Chapter five, we recall criteria for optimal decision making if the uncertainty is
described by a credal set or an interval probability respectively. However, the choice
of a ’good’ decision criterion turns out to be less obvious as in the precise case: What
makes a good criterion strongly depends on the decision maker’s attitude towards
ambiguity (i.e. on the way he faces the complete indifference between the measure
contained in the credal set).

However, even in the imprecise case there exist criteria that are independent of
the actor’s attitude towards ambiguity. We recall two of them, namely interval
dominance and E-admissibility. Interval dominance excludes actions as being unrea-
sonable choices, whenever the best possible (compatible) expectation of an action
is dominated by the worst possible (compatible) expectation of another action. E-
admissibility excludes action that aren’t Bayes-optimal with respect to every mea-
sure contained in the credal set.

Afterwards, we explain two decision criteria that reflect the preference orders of
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ambiguity-averse actors (by taking into account only the lower bound of the inter-
val expectations), namely Maximality and Γ-Maximin. Both of them reduce to the
classical Bayes-criterion, if the underlying credal set consists of one single element,
that is if the uncertainty is purely stochastic. However, in the presence of ambiguity
they no longer coincide. In the context of the Γ-Maximin-criterion, one result seems
to be of particular interest: If π∗ is a least favourable prior from the credal setM,
then the Γ(M)-Maximin-utility and the Bayes-utility with respect to π∗ coincide.
This builds a bridge between precise and imprecise decision theory.

Finally, we recall an imprecise decision criterion that allows us to reflect the prefer-
ence ordering of decision makers with arbitrary attitudes towards ambiguity. Here,
the degree of ambiguity-averseness is characterized by a parameter η ∈ [0, 1]. For
η = 0 we arrive at the prototypical criterion for ambiguity-seeking decision makers,
namely the Γ-Maximax-criterion. The case η = 1 coincides with the Γ-Maximin-
criterion mentioned above.

Additionally, we recall and apply algorithms for determining optimal actions with
respect to all of the imprecise decision criteria discussed. Again, these algorithms
are based on linear programming theory and, therefore, implemented in standard
mathematical software.

6.2 Outlook

So, which topics weren’t treated within this work? To answer this, bring to mind
again the Fundamental Theorem of Bayesian Decision Theory (see Theorem 3 in
Paragraph 1.3):

When considering a data-based extension D(A) of a finite decision problem A (see
Definition 3), we can avoid determining a B(π)-optimal decision function d∗ by sim-
ply determining a B(πx)-optimal action a∗x in the basic problem with respect to the
measure πx updated for the observed data x. The B(πx)-utility values of the actions
a∗x and d∗(x) necessarily coincide. For arguments supporting the importance of the
theorem for classical decision theory see the discussions in Remark 3 of Definition 3
and in the Remark on Theorem 3.

Naturally, the following question comes to mind: Are there similar results for the
imprecise decision criteria discussed in Chapter five? More precisely: Can we avoid
computing optimal decision function also when optimality is defined in terms of
some imprecise decision criterion (as for example E-admissibility of Γ-Maximin)?

An in-depth discussion of this topic can be found for example in [4]. Here, we just
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want to briefly summarize the main aspects. We start by generalizing the concept
of updating to the imprecise case. Suppose

D(A) := (D(A,X ),Θ, U(·))

to be a data-based extension of some finite decision problem A (in the sense of
Definition 3), where X := {x1, . . . , xk} is a finite space of observations. Further, let
M denote a set of probability measures on the measurable space (Θ,P(Θ)) of the
form defined in equation (86). For every pair (π, x) ∈ M× X , define the updated
measure πx like in equation (24). Then, for fixed x ∈ X , the set

Mx :=
{
πx : π ∈M

}
(156)

is called the updated credal set with respect to the data x (see [4, Definition 2]).

Now, we can give a precise formulation of the question posed above: Can we always
determine Mx-optimal actions instead of M-optimal decision functions? (Here,
’M-optimal’ means optimal w.r.t. some imprecise decision criterion under the infor-
mationM.)

Unfortunately, the answer is ’no’ in many cases. That is, in general, we will not
gain anM-optimal decision function d∗ by computing anMx-optimal action ax for
every x ∈ X and, afterwards, defining d∗(x) := ax.

However, if optimality is defined in terms of E(M)-admissibility or M-maximality
respectively, the procedure described above will lead to aM-optimal decision func-
tion. Particularly, for these two imprecise decision criteria a generalization of the
fundamental theorem holds.

In contrast, a simple counterexample for Γ(M)-Maximin is given in [4, p. 40]: Sup-
pose the set M is vacuous (see Paragraph 5.5). Then, so is Mx (for no matter
what x ∈ X we observe, see [43, p. 308]). Thus, according to the considerations in
the beginning of Paragraph 5.5, both the Γ(M)-criterion for the decision problem
G(D(A)) and the Γ(Mx)-criterion for the decision problem G(A) reduce to the cor-
responding classical Maximin-criterion.

However, according to Remark 2 on Example 3, there exists no pendant of the
fundamental theorem for the classical Maximin-criterion. More precisely, a similar
construction as described above would lead to a constant decision function, whereas,
in general, a Maximin-optimal decision function doesn’t have to be constant. This
gives us a counterexample. Hence, the fundamental theorem cannot be generalized
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to the case where optimality is defined in terms of the Γ-Maximin-criterion.

Since the Γ(M)-Maximin-criterion coincides with a special case of the (M, η)-criter-
ion (namely with the (M, 1)-criterion, see Remark 1 on Definition 26 for further
detail), this implies that a generalization of the fundamental theorem is not possible
if optimality is defined in terms of the (M, η)-criterion.
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