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Abstract

The present master's thesis investigates speci�c applications of the MCP-Mod approach which is a

uni�cation of the two approaches typically applied in the matter of dose-�nding, the multiple com-

parison procedures and the modelling of a parametric dose-response function. By the combination of

both, one bene�ts from the advantages of the continuous modelling, but improves the validity of the

results by basing the analyses not only on one pre-speci�ed model but on a set of suitable models.

The MCP-Mod approach by Bretz et al. (2005) has been designed for normally distributed outcomes

collected in a basic study design. An enhancement by Pinheiro et al. (2014) makes the approach

applicable to a broader range of outcome types, particularly for binary endpoints. As a binary data

setting is the underlying scenario for the investigations in the practical part of the thesis, a description

of this generalized version is as well included.

Furthermore, a third approach is presented which is based on the same idea: the approach by Klin-

genberg (2009).

The �rst aim of this thesis is the comparison of the naive application of the original MCP-Mod ap-

proach with its generalized version and the Klingenberg approach for the case of a binary endpoint

via simulations. Aspects for the comparison are the achieved power, the preservation of the type-I

error and the precision of the target dose estimate. The simulations reveal that the �rst mentioned

approach leads to a loss in power and a potential in�ation of the type-I error whereas the other two

methods show good performances in both, the testing and the estimation part.

Secondly, the thesis investigates two di�erent approaches for the combination of target dose results of

separate trials with the aim of obtaining a common dosage proposal if adequate. The �rst approach is

to pool the data of the separate trials and perform the analysis based on the combined data set. For

the second approach, the trials are analyzed separately and the results are combined only afterwards.

The two approaches are judged by the same criteria as considered in the �rst part. Simulations show

that for an inconvenient combination of trial-speci�c design aspects, the pooled analysis approach

without adjustments may lead to an in�ation of the type-I error while the second approach produces

good results for all of the investigated aspects. Evidently, the type-I error in�ation of the pooled

analysis approach can be avoided by adapting the determination of the p-value.
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Chapter 1

Introduction

The identi�cation of the appropriate dosage is a decisive step in the development and registration

process of a new drug. In the past, there have been several examples of drugs that were marketed

with an excessive dosage. The Food and Drug Administration (FDA) reports that for 20% of all new

molecular entities approved between 1980 and 1999, the labels were changed belatedly. In 79% of

these cases, the dosage was decreased, principally for safety reasons (Cross et al., 2002).

A famous example for a belated dose reduction, which was as well thematized by the Oscar-winning

movie "Dallas Buyers Club", is Zidovudine, also known as Azidothymidine (AZT). AZT has been

the �rst government-approved drug for the treatment of Human Immunode�ciency Virus (HIV) and

Acquired Immunode�ciency Syndrome (AIDS) patients. In the years after the approval, it became

obvious that the applied dosage causes serious adverse events, for example severe anaemia or reduction

in white blood cell count (AIDSinfo, 2014). Later studies showed that half the original dose is just as

much e�cacious and far better tolerated so that the dosage recommendation was revised downwards

(The Washington Post, December 10, 2013).

But not only an excessive dose can lead to problems. Contrary to this, choosing a dose that is too

low can involve the risk of failing to show the e�cacy of the substance in a later con�rmatory phase.

In fact, selecting an inappropriate dose is regarded as one of the main reasons for a considerable high

failure rate of clinical phase III trials. This is not only a loss for the pharmaceutical company in the

economic sense, it also means that a potentially bene�cial substance will never �nd its way to the

patients.

Generally, if a new drug shall be launched onto the market, the newly developed substance has to

pass four di�erent clinical phases of testing in humans.

In Phase I, the drug is �rst administered in men, i.e. to healthy human volunteers (except for sub-

stances in oncology), to investigate the safety, pharmacodynamics, pharmacokinetics and digestibility

of the new substance. Thereby, pharmacodynamics deal with the e�ects of a drug on the processes in

a living organism whilst pharmacokinetics vice versa describe the in�uences of a living organism on

the drug. Additionally, this phase serves for the determination of the dose range to be set up in Phase

II with respect to e�cacy as well as safety. One step to address this matter can be the identi�cation

of the Maximum Tolerated Dose (MTD).

For trials conducted in the context of dose �nding in Phase II, according to Ruberg (Ruberg, 1995),

the following questions should be addressed:

• "Is there any evidence of a drug e�ect?"

And beyond that, is the e�cacy and safety of the drug su�cient to detect a bene�t over existing

substances in the subsequent phase III trials? This is often referred to as Proof-of-Concept

(PoC) or Proof-of-Activity (PoA). For the investigation of this matter, the drug is administered

to a limited number of patients that su�er from the disease or condition to treat.
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Chapter 1 Introduction

• "What doses are (relevantly) di�erent from control?"

... and are therefore remarkable for potential dosages to be recommended.

• "What is the dose-response relationship?"

Broader as in the previous question, the objective is to identify a functional model for the dose-

response relationship. The response variable can thereby either describe the e�cacy or the safety

of the drug under investigation.

• "What is the optimal dose?"

The di�culty of this question is that an unambiguous de�nition for which dose is considered

optimal is missing. A possible solution could be the Minimum E�ective Dose (MED) or the dose

leading to a certain proportion p of the maximal e�ect to be achieved, the so-called EDp.

Only if the drug shows promising results in this �rst administration to patients in Phase II, the drug

is transferred to the con�rmatory stage. Using the dosages identi�ed as reasonable in the previous

phase, the trials in Phase III are aimed to statistically proof the bene�t and safety of the new drug

and therewith support the submission for registration to the responsible authorities.

But even when a drug has already passed the registration process, additional trials might be con-

ducted, for example to detect any possible long-term side e�ects. These studies are referred to as

trials of the clinical Phase IV or post-marketing trials.

This thesis will concentrate on the process of establishing the dose-response relationship, i.e. on the

design and analysis of dose-�nding studies in clinical phase II. The expression of "dose-response" is

here generally referring to the population average of the dose-response instead of individual dose-

response relationships. For these studies, patients are typically randomized into di�erent prespeci�ed

dose groups of the substance under investigation or a placebo group. An additional group with an

active comparator can optionally be included.

In some cases, a crossover study design can be utilized. Therefor, patients are administered a sequence

of dosages in two or more periods of the study. The simplest crossover design is a 2 × 2 where one

arm is treated with dose A in period I and dose B in period II while the patients randomized into the

second arm take dose B �rst and dose A in the second part of the study. The advantage of such a

design is that it is possible to account for potential trends in the manifestation of the disease such as

progression or seasonal variation. Furthermore, each patient serves as its own control and thus, the

unexplained variability in the study population can be reduced. However, the e�cacy of a multitude

of drugs cannot be observed within a short time period and thus, the usage of a crossover design would

be (too) time-consuming in the context of dose-�nding (Ting, 2006, Section 7.2.2).

Apart from these commonly used study designs, one can also use designs that include possible dose-

escalation steps (administration of prespeci�ed doses in an ascending order) or an eventual up- or

down-titration (individual adaptation of the administered dose dependent on the observed response

or the occurrence of side e�ects) as well as adaptive designs.

However, this thesis will focus on the classic case of a parallel �xed dose design. The latter designs

will not be part of this thesis.

Historically, the matter of �nding an optimal dose in later stages of drug development has been ad-

dressed by two di�erent methods which both have their de�ciencies.

2
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Either the selected dose is the result of multiple comparisons of all doses under investigation against

placebo/an active control dose or it is determined with the help of a modelled functional dose-response

relationship. The crucial di�erence between those methods is that the former treats the dose as a

qualitative factor while the modelling approach considers the dose as a quantitative factor with re-

gard to the response variable. These characteristics at the same time represent the pitfalls of both

methods. Applying a multiple comparison procedure implies the restriction of the appropriate dose

to the doses de�ned in the planning phase of the trial. Furthermore, this method does not take into

account possible dependencies between the responses of di�erent doses. On the other hand, the great

advantage of this approach is that no assumptions are to be met for the dose-response relation.

In contrast to this, when modelling the relationship by a parametric function, basically every value

in the range of the investigated dosages can be identi�ed as the optimal dose. But the validity of the

results strongly depends on the choice of an appropriate model to �t to the data.

The International Conference on Harmonization of Technical Requirements for Registration of Phar-

maceuticals for Human Use (ICH) (1994) points out that "what is most helpful in choosing the starting

dose of a drug is knowing the shape and location of the population (group) average dose-response curve

for both desirable and undesirable e�ects".

To address this aim and to overcome the drawbacks of the historical approaches mentioned above,

Bretz, Pinheiro, and Branson (2005) proposed to combine these methods. The so-called MCP-Mod

approach consists of two major steps and enables the user to simultaneously address both aims of

phase II trials by using a seamless design.

In a �rst step, the null hypothesis of a �at dose-response curve is tested for a prede�ned set of candi-

date models. If at least one model has a signi�cant test result given the data, a non-�at dose-response

curve is established. While doing so, the Familywise error rate (FWER) is controlled by the use of a

Multiple Comparisons Procedure. Each model for which the corresponding null hypothesis has been

rejected can be considered as satisfactory approximation of the true model and is hence included in

the reference set for the second step.

In case more than one appropriate model has been identi�ed for the next step, either a model selection

procedure has to be set in place or the reference models have to be combined using model averaging

techniques.

The resulting model is then �tted to the actual data in the Modelling step and characteristics for the

dose-response relationship are estimated, for example the minimum e�ective dose.

The original paper introducing the MCP-Mod approach only concentrates on normally distributed,

homoscedastic outcome measures collected for a single time point in a parallel group design. Pinheiro

et al. (2014) enhanced the MCP-Mod approach so that it is also applicable to binary or survival data,

repeated measurements or data from crossover studies. Rather practical issues related to the original

approach such as sample size determination and sensitivity analyses are considered in the paper of

Pinheiro et al. (2006).

All these methods have been implemented in the R package called DoseFinding (Bornkamp et al.,

2014).

3
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Another approach for dose-�nding in binary data which in its basic idea is similar to the MCP-Mod

approach is the one presented by Klingenberg (2009). It also starts with a set of eligible candidate

models for binary data to take into account the uncertainty about the true shape of the dose-response

relationship. But contrary to the original approach, the identi�cation of the best model(s) is done

using a permutation-based test instead of a multiple contrast test. However, this also ensures the con-

trol of the FWER. The �nal model is then obtained by averaging over all models showing a signi�cant

dose e�ect.

The aim of this thesis is to compare the naive application of the MCP-Mod approach for normal data

with the enhancement proposed by Pinheiro et al. (2014) and the Klingenberg approach for a binary

data setting. The comparison will be done with respect to power evaluations, the preservation of the

type-I error and the precision of the target dose estimator via simulations. Furthermore, it investi-

gates di�erent approaches for the combination of the target dose results of two separate studies. These

studies are conducted in two di�erent populations that vary in their expected responses and with that

also in their dose-response pro�les. However, a common recommendation for the dose to administer

to those patients is aimed for.

The thesis is structured as follows. The second chapter serves as an introduction to the basic methods

for the analysis of dose-�nding studies in later phases (Phase II/III). Hereby, both principles that are

usually applied, multiple comparison procedures and modelling approaches, are considered. The third

chapter introduces the MCP-Mod approach as a hybridization of the previously mentioned principles

and deals with the question how to design such a study optimally, that is to determine the dose groups

to be used in the trial, as well as how many patients are needed to achieve a certain target power and

how they are allocated to the di�erent dose groups. For every step of the procedure, the commands for

the practical implementation by means of the statistical software R are given and important options

are pointed out. In a second section, the chapter also includes the extension for data that is not

normally distributed as well as the related approach of Klingenberg (2009).

In the fourth chapter, the methods presented for binary data are evaluated in terms of power and the

preservation of the type-I error via simulations. Furthermore, the precision of the target dose estimate

is investigated. Secondly, two di�erent approaches for the combination of two separate studies are

presented and their performance is investigated again via simulations. The criteria for this are the

same as for the comparison of the methods in the �rst part of this chapter: power, preservation of the

type-I error and the precision of the target dose estimate. In the last chapter, the thesis is summed

up and the methods presented are discussed in basic matters as practicality and statistical inference.
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Chapter 2

Basic Principles

Before introducing the MCP-Mod approach itself, this chapter addresses some general characteristics

of dose-response relationships and then gives a (non-exhaustive) overview of commonly used pro-

cedures for dose-�nding studies in Phase II/III. These methods cover both, several approaches for

multiple comparisons procedures as well as the main methodological aspects of parametric modelling

of dose-response relationships. Methods for dose-�nding in early phases (as for example 3 + 3 designs,

up-and-down designs or continual reassessment methods) will not be considered in this thesis. Infor-

mation about such methods can be found for example in Ting (2006, Chapter 2 & 3), Chevret (2006)

and Krishna (2006).

2.1 Dose-Response Relationships

The analysis of dose-response relations is implicitly based on the assumption that the e�ect of a drug is

in a way dependent on the amount of medicine administered to the patient. Thereby, the "e�ect" has

to be an accurately de�ned (and observable) event which is appropriate to evaluate the severity of the

disease or medical condition to treat. It can either be a quantitative measure as the increase or reduc-

tion in some clinical value or a qualitative measure, for example the occurrence of an asthmatic attack.

The intuitive assumption on the dose-response relationship is that a pharmacological e�ect increases

monotonically with an increasing dosage and at some dosage achieves saturation, i.e. a level where

the dose-response curve plateaus. In some cases, also a subsequent decrease in the response, resulting

in an "inverted U-shaped" dose�response pattern, cannot be ruled out. However, when considering a

range of doses that are assumed to be therapeutically bene�cial, such types of relationships will be

rather rare.

Two important characteristics of the dose-response relationship are the Maximum Tolerated Dose

(MTD) referring to the dose "which, if exceeded, would put patients at unacceptable risk for toxicity"

(Rosenberger and Haines, 2002) and the Minimum E�ective Dose (MED) de�ned by Ruberg (1995)

as "the lowest dose producing a clinically important response that can be declared statistically, signif-

icantly di�erent from the placebo response". In case of a monotonous relationship, the range between

these two measures is called the therapeutic window and contains the values that could be recom-

mended in the label (cf. Figure 2.1). In the case of a U-shaped dose-response curve, the therapeutic

window can be narrower than the range between MED and MTD, for example if the favourable dose

e�ect reaches its peak at a dose lower than the MTD.

Another important family of measures that can be used as optimal doses are the EDp de�ned as the

smallest dose resulting in p% of the maximum e�ect Emax. Hereby, Emax is the maximum e�ect at-

tributable to the drug which can be derived as the di�erence between the absolute maximum response
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Figure 2.1: Dose-Response Relationship: Dose Ranges

and the placebo e�ect E0 (cf. Figure 2.2). A common choice is p = 50% implying ED50 to be the

dose that leads to half of the Emax.
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Figure 2.2: Dose-Response Relationship: Characterizing Quantities

For more detailed discussion of dose-response relationships, it is referred to Unkelbach and Wolf (1985,

p.4), Ting (2006, Chapter 1) and Senn (1997, Chapter 20).
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Chapter 2 Basic Principles

2.2 Multiple Comparisons

This section contains basic methods for multiple comparison procedures in the application to dose-

�nding studies. Firstly, possible generalizations of the type-I error for multiple testing procedures

are given. The ensuing subsections include the principle of ordered alternatives and other stepwise

procedures as well as closed test procedures. Finally, the class of contrast tests is explained in more

detail as this is as well the method used in the MCP-Mod approach. The methodology presented in

this section can be found in Benjamini and Hochberg (1995), Sha�er (1995), Hsu (1996) and Hochberg

and Tamhane (1987).

2.2.1 Generalization of the Type-I Error for Multiple Testing

Generally, two types of errors can occur when conducting a test, either the null hypothesis is rejected

although it is true (type-I error) or it cannot be rejected although it is not true (type-II error).

Formally, the type-I error (denoted by α) is de�ned as

α = P(H0 rejected | H0 true) .

One of the main issues in testing is to keep the type-I error below a certain designated level which is

referred to as the signi�cance level, usually of a value of 2.5%, 5% or 10%.

In the framework of dose-�nding, it is usually the case that more than one (pairwise) comparison has

to be drawn among the di�erent dose groups. Each of those k comparisons is represented by one null

hypothesis Hi0, i = 1, . . . , k. Conducting each of the pairwise comparison tests at the same (local)

level α can eventually produce a rate of false positives (meaning erroneously rejected null hypotheses)

above this prede�ned signi�cance level. However, di�erent de�nitions of error rates for a multiple

testing procedure are in place.

The most conservative one is the Familywise error rate (FWER), de�ned as the probability of com-

mitting at least one type-I error, e.g. the probability to erroneously reject any of the k null hypotheses

in the whole set of comparisons:

FWER = P(# false positives > 0) .

As especially for a huge set of null hypotheses, rejecting one single true hypothesis is more or less

unavoidable, it can be more appropriate to consider the False Discovery Rate (FDR), de�ned as the

expected number of true null hypotheses among all that have been rejected

FDR = E
(

# false positives

R

∣∣∣∣ R > 0

)
· P(R > 0)

with R being the number of rejected hypotheses.

If all k null hypotheses are correct, the number of false positives equals the number of rejected null

hypotheses R. This comes true for two cases: either there are no false positives, then the probability

of P(R > 0) and as a consequence the FDR is zero, or on the other hand, the number of false positives
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is not zero implying

FDR = E
(

# false positives

# false positives

)
= E(1) = 1 .

In this special case, the two error rates are equivalent. Di�erently spoken, if the FDR is controlled,

also the FWER is controlled, but in a weak sense. Strong control is only achieved if the FWER is

controlled under all con�gurations (for the exact de�nitions, see Hochberg and Tamhane (1987, p.3)).

In general, the implication for these two error rates only holds for the opposite direction, i.e. the

control of the FWER implies the control of the FDR as the FWER is more conservative.

Another type of de�nition is the Per-Comparison error rate (PCER) de�ned as the probability for

each hypothesis of committing a type-I error

PCER =
E(# false positives)

k
.

The PCER is the least conservative error rate out of the three presented here. Hence, if one of the

others, FWER or FDR is controlled, also the PCER is controlled.

2.2.2 Types of Multiple Comparisons Procedures (MCPs)

Generally, there are four main types of MCPs (Hsu, 1996):

1. All-contrast comparisons: all contrasts (cf. subsection 2.2.6 for the de�nition of a contrast) are

to be tested

2. All-pairwise comparisons: all pairwise di�erences are to be tested

3. Multiple comparisons with the best: all treatment/dose groups shall be tested against the treat-

ment/dose with the best e�ect

4. Multiple comparisons with the control: all treatment/dose groups shall be tested against the

placebo/active control group

The most common type for dose-�nding studies and therefore most thoroughly discussed in this thesis

is the last one: multiple comparisons with the control.

2.2.3 Methods Based on Ordered p-Values

The setting for the methods presented in the following is a set of null hypotheses H1, H2, . . . ,Hk with

corresponding p-values P1, P2, . . . , Pk that shall be tested at a global signi�cance level α. By sorting

them by the size of the p-values, one obtains a list of ordered p-values P(1) ≤ P(2) ≤ . . . ≤ P(k)

for the hypotheses H(1), H(2), . . . ,H(k). In the context of dose-�nding, each of these hypotheses is

representing the comparison of one of the k dose groups with the placebo/active control group, or

di�erently stated, the comparison of the mean responses µ1, . . . , µk in the active dose groups with the

mean response µ0 in the placebo/active control group.
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Bonferroni

A simple but e�ective procedure is to split the global signi�cance level α (equally) between the set of

hypotheses such that Hi is rejected if pi ≤ αi with the αi summing up to 1. This results in a local

signi�cance level of αi = α
k for each of the tests. Alternatively, one could adjust the p-value pi by

multiplying it by the number of hypotheses k. Expressed by the adjusted p-value, Hi is rejected if

p∗i = min{1, k · pi} ≤ α for all i = 1, . . . , k .

The order of p-values or tests is not relevant in this case, although if H(i) cannot be rejected, all

subsequent hypotheses won't be rejected either.

The so-called (unweighted) Bonferroni method controls the FWER in a strong sense, that is under all

con�gurations.

The main disadvantage of this procedure is that the power for the individual tests decreases with an

increasing number of hypotheses to be tested. This is due to the fact that the method ensures the

probability of committing at least one type-I error (FWER) to be less or equal to α by augmented

critical values. Consequently, higher values for the test statistics are needed to reject the individual

null hypotheses which then results in a lower power.

Holm

The Holm procedure (see Holm (1979)) is slightly less conservative than the Bonferroni method and

hence more e�cient. For this procedure, the ordered p-values P(1), P(2), . . . , P(k) are compared sequen-

tially against the adjusted signi�cance levels αi = α
k−i+1 . If the p-value is below the corresponding

level, H(i) is rejected and the next hypothesis belonging to the next larger p-value is tested. If not,

the procedure is stopped and all following hypotheses are considered as not rejectable.

Formulating it by means of adjusted p-values, H(i) is rejected if

p∗i = min{1, (k − i+ 1) · pi} ≤ α for all i = 1, . . . , k .

The Holm procedure also controls the FWER in a strong sense and therewith also shows a (substantial)

loss of power with an increasing number of hypotheses.

Benjamini-Hochberg

A further correction procedure is the method of Benjamini and Hochberg (1995). Contrary to the

previous method, the null hypothesis to be tested �rst is the one with the highest p-value, namely

H(k). If the corresponding p-value p(k) ≤ α, all k hypotheses in the set are rejected. If not, H(k)

cannot be rejected and the next smaller p-value is taken into consideration. This is repeated until one

p-value, p(i) say, stays below the corresponding adjusted α-level of α(i) = i
kα. If this is true for one i,

all null hypotheses H(j) with j ≤ i are rejected and the method stops. In other words, the aim is to

�nd the largest i for which the p-value p(i) is smaller than the corresponding α(i).

9
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The method of Benjamini-Hochberg is less conservative than the two presented before. In contrast

to them, this method only ensures the control of the FDR instead of the FWER. This strong control

holds as long as the test statistics are independent or at least positively dependent (cf. Benjamini and

Yekutieli (2001)).

Resampling-Based Step-Down Procedure by Westfall and Young (1993)

More complex methods for the multiplicity adjustment make use of resampling methods. Therefor,

the original data set is resampled B times under the global null hypothesis by means of permuta-

tion or bootstrap (with replacement). Let the observed p-values for the original data be denoted

by pobs1 , pobs2 , . . . , pobsk whereas the p-values for the b-th permutation or bootstrap sample shall be

designated by p
(b)
1 , p

(b)
2 , . . . , p

(b)
k , b = 1, . . . , B.

According to the single-step method presented in Westfall and Young (1993, Section 2.5.2), the ad-

justed p-value corresponding to the i-th null hypothesis is given by the proportion of permutations

for which the minimum p-value is greater than or equal to the observed one:

padji =
1

B

B∑
b=1

I(pobsi ≤ min
j=1,...,k

p
(b)
j ) .

Here, I(·) is denoting the indicator function taking the value 1 if pobsi ≤ min
j=1,...,k

p
(b)
j is true or 0 else.

The use of the minimal p-value for the global test decision is implied by de�ning the global null

hypothesis as the intersection of all single null hypotheses. For detailed explanation it is referred to

subsection 2.2.6.

A more powerful approach deduced from the previous method is the step-down procedure by Westfall

and Young (1993, Section 2.6)) based on ordered p-values. The procedure starts with the adjustment

of the smallest p-value, say pobs1 , by using the minimum p-value distribution like for the single-step

adjustment

padj1 =
1

B

B∑
b=1

I(pobs1 ≤ min
j=1,...,k

p
(b)
j ) .

But, in contrast to the previous approach, the remaining p-values are no longer adjusted according

to the minimum p-value distribution, but according to a reduced set of p-values. This means that all

resampling p-values p
(b)
1 are deleted and the adjustment of the second smallest p-value, say pobs2 , is

done based on the minimum p-value distribution of all remaining p-values

padj2 =
1

B

B∑
b=1

I(pobs2 ≤ min
j 6=1

p
(b)
j ) .

The other adjusted p-values are calculated analogously and in an ascending order. After every ad-

justment step, the corresponding resampling p-values are deleted from the sampled set.

The advantage of using a reduced set of p-values for the adjustment is that also the adjusted p-values

are smaller than the ones obtained by the single-step method. Hence, the power is improved.
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It was shown that both methods ensure the control of the FWER in a strong sense, i.e. independent

of the number of true individual null hypotheses and which ones are true or false. In fact, the strong

control is based on the condition of subset pivotality.

Let P be a random vector following a certain distribution and de�ne PK as an arbitrary subvector of

P . The property of subset pivotality is true if the joint distribution of PK = {Pi; i ∈ K} under the
global null hypothesis H0 and the subset of null hypotheses ∩i∈KHi

0 is identical. This must hold for

all arbitrary subsets K of true null hypotheses.

Also important to note is that this approach is more e�cient than for example the Bonferroni or

Holm procedure due to the possibility of taking into account potential correlations between the test

statistics.

2.2.4 Partitioning Principle

The basis for this hierarchical testing method (also known as principle of ordered alternatives) pre-

sented in the following is a disjoint family of hypotheses. Suppose there are k active doses to be tested

versus placebo (dose 0), one could (pre-)de�ne a series of hypotheses as follows:

1. H0k: dose k is ine�ective (H0k : µk = µ0),

2. H0(k−1): dose k is e�ective, but dose k − 1 is ine�ective (H0(k−1) : µk 6= µ0 ∧ µk−1 = µ0),

...

i. H0i: doses i+ 1, . . . , k are e�ective, but dose i is ine�ective

(H0i : µk 6= µ0 ∧ . . . ∧ µi+1 6= µ0 ∧ µi = µ0),

...

k. H01: doses 2, . . . , k are e�ective, but dose 1 is ine�ective

(H01 : µk 6= µ0 ∧ . . . ∧ µ2 6= µ0 ∧ µ1 = µ0).

By means of the appropriate tests, a local signi�cance level of α can be applied to all hypotheses

ensuring the strong control of the FWER at the same time. Although k hypotheses are tested simul-

taneously by this procedure, an adjustment for multiplicity is not needed as there is always only one

true null hypothesis (at most). However, in some cases the construction of a test for those disjoint

hypotheses may be complicated.

A common misconception is that the procedure is based on the assumption of a monotonic dose-

response function. But this is not always true as the ordering of the hypotheses is arbitrary. If for

example the assumed relationship is that of a quadratic curve, the sequence could be speci�ed as:

dose 3, then dose 2, then dose 4, then dose 1 (cf. Figure 2.3).

This approach is very e�cient as each of the k hypotheses can be tested with respect to a signi�cance

level of α. The disadvantage is that the order of the hypotheses has to be speci�ed in advance. This

involves the risk that possibly e�cient doses may not be detected due to unfavourable ordering.

For more detailed information of methods using the partitioning principle, see Bretz et al. (2008),

Finner and Strassburger (2002) and Ting (2006, Chapter 11).
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Figure 2.3: Partitioning Principle for a Quadratic Dose-Response Relationship

2.2.5 Closed Testing Procedure

In contrast to the method based on the partitioning principle, the closed testing procedure requires

a closed set of hypotheses under investigation. A closed set of hypotheses is a set which contains

the hypotheses themselves as well as all their distinct intersections. It is hierarchical as some of

the hypotheses are proper components of others. The top of the hierarchy in such a closed set is

represented by the intersection of all single hypotheses.

For a closed testing procedure, each hypothesis in the closed set is tested at the (global) signi�cance

level α. In order to be able to control the FWER, a null hypothesis of the original set can only be

rejected if all hypotheses in the hierarchy that are above the considered one are also rejected. This

implies that no hypothesis can be rejected if the hypothesis on the top of the hierarchy does not show

a signi�cant test result.

Practical examples and further information on closed testing procedures can be found in Marcus et al.

(1976) and Ting (2006, Chapter 11).

2.2.6 Multiple Contrast Tests (MCTs)

The principle of (multiple) contrast tests allows to test a more general set of hypotheses than the

methods presented before. Not only pairwise comparisons of an active dose and the control can be

addressed, but all types of comparisons listed in subsection 2.2.2. Contrary to the previous methods,

the null hypotheses are no longer formulated directly on the basis of the group means themselves but

by means of contrasts of these group means. A contrast is a linear combination of the group means
k∑
i=0

ciµi with the restriction that all ci's sum up to 0. One could also express this by the product of

c>µ with the vector forms µ = (µ0, . . . , µk)> and c = (c0, . . . , ck)> of the group means and contrasts

respectively.
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Assuming the responses Yij , i = 0, . . . , k, j = 1, . . . , ni to be normally distributed and independent

within and across the di�erent dose groups, the following test statistic can be used for testing the null

hypothesis H0 : c>µ = 0

T (Y ) =

∑k
i=0 ciȲi

S
√∑k

i=0
c2i
ni

. (2.1)

Thereby Y is the matrix of all responses, Ȳi denotes the mean response in dose group i and

S2 =
1

ν

k∑
i=0

ni∑
j=1

(Yij − Ȳi)2 (2.2)

is the estimator of the pooled variance with ν =
k∑
i=0

ni − k degrees of freedom.

As the test statistic consists of the normally distributed contrast
k∑
i=0

ciȲi divided by the independent

chi-squared distributed estimator of the pooled variance, under the null hypothesis H0, the test statis-

tic follows a central t-distribution T (Y ) ∼ tν with ν de�ned as above. This implies a rejection of the

null hypothesis if the value of the test statistic exceeds the (1−α)-quantile of the central t-distribution

t1−α, ν in the case of a single one-sided contrast test and the (1− α
2 )-quantile t1−α2 , ν in the case of a

single two-sided contrast test.

In the case of a Multiple Contrast Test, i.e. when testing several contrasts simultaneously, one of the

methods presented in the previous subsections can be applied. So if m contrasts are to be tested, one

could use the (1 − α
m )-quantile of the central t-distribution instead of the (1 − α)-quantile for each

individual (one-sided) test in order to adjust according to the Bonferroni method. This, however,

leads to a rather conservative control of the FWER.

A method less conservative than the Bonferroni correction is the Union-Intersection Method (UIM)

(Roy and Bose, 1953). It is applicable if the global null hypothesis can be expressed by an intersection

of all individual null hypotheses

H0 =

m⋂
i=1

Hi
0 .

In the matter of dose-�nding for example, one would express the global null hypothesis of no overall

drug e�ect H0 by the intersection of the single null hypotheses Hi
0 stating that there is no drug e�ect

for dose i.

For each of these individual null hypotheses Hi
0, an appropriate test Ti should be available which

rejects Hi
0 if Ti(y) > a.

Consequently, the global null hypothesis will be rejected if at least one individual null hypothesis can

be rejected
m⋃
i=1

{y : Ti(y) > a} = {y : max
i=1,...,m

Ti(y) > a}

resulting in the maximum of all individual test statistics as a possible test statistic for the global null

hypothesis H0

T (y) = max
i=1,...,m

Ti(y) .
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The exact opposite of this principle is called the Intersection-Union Method (IUM) and will not be

considered further in this thesis as it is not common in the �eld of dose-�nding. This is due to the

fact that it is not necessary for all dose groups to show an e�ect but PoC is established if at least in

one of the dose groups, the response is signi�cantly better than in the placebo group.

To derive the distribution of this maximum t-statistic, consider the following

P
(

max
i=1,...,m

Ti ≤ t
)

= P(T1 ≤ t, . . . , Tm ≤ t) = P(T ≤ t)

with T = (T1, . . . , Tm)> and t = (t, . . . , t)>.

This means that the maximum t-statistic follows a central m-dimensional t-distribution Tmν,R with ν

degrees of freedom and a correlation matrix R = (ρij) where

ρij =

k∑̀
=1

ci`cj`
n`√(

k∑̀
=1

c2i`
n`

)(
k∑̀
=1

c2j`
n`

) , 1 ≤ i, j ≤ m . (2.3)

Here, ci` is the contrast coe�cient for dose group ` within the i-th hypothesis.

Proof.

Cov

 k∑
i=0

c1iȲi,

k∑
j=0

c2j Ȳj

 = E

( k∑
i=0

c1iȲi − E

(
k∑
i=0

c1iȲi

)) k∑
j=0

c2j Ȳj − E

 k∑
j=0

c2j Ȳj


= E

( k∑
i=0

c1iȲi

) k∑
j=0

c2j Ȳj


=

k∑
i=0

k∑
j=0

c1ic2jE(ȲiȲj)

=

k∑
i=0

c1ic2iE(Ȳ 2
i ) +

k∑
i,j=0
i 6=j

c1ic2jE(ȲiȲj)

=

k∑
i=0

c1ic2iVar(Ȳi) =

k∑
i=0

c1ic2i
σ2

ni
.

Inserting this into the de�nition of the correlation

ρij =

Cov

(
k∑
i=0

c1iȲi,
k∑
j=0

c2j Ȳj

)
√√√√Var

(
k∑
i=0

c1iȲi

)
Var

(
k∑
j=0

c2j Ȳj

) ,

using Var

(
k∑
i=0

c1iȲi

)
= σ2

k∑
i=0

c21i
ni

and Var

(
k∑
j=0

c2j Ȳj

)
= σ2

k∑
j=0

c22j
nj

for the variance of the contrasts

respectively, this implies the above formula for the correlation of two contrasts.
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Hence, the preservation of the FWER is ensured by comparing the maximum t-statistic against the

(1−α)-quantile of them-dimensional t-distribution tm1−α, ν, R with correlation matrixR. The quantile

of a multivariate t-distribution can be de�ned in a non-unique sense by the following equation

Pm(|T | ≤ tm1−α, ν, R) = 1− α (2.4)

with T = (T1, . . . , Tm)> and tm1−α, ν, R = (t1, 1−α, ν, R, . . . , tm, 1−α, ν, R)>.

The most straightforward version is the equicoordinate quantile tm1−α, ν, R = (t, . . . , t)> ∈ R resulting

in a cubic con�dence region. Due to the fact that its computation (via numerical integration or sam-

pling methods) is comparatively easy, it is well suited for multiple contrast tests. Alternatively, one

could also de�ne quantiles that lead to spherical or ellipsoid con�dence regions.

More information about the UIM can be found in Hochberg and Tamhane (1987, Chapter 2).

By de�ning the null hypotheses by means of contrasts, e.g. H0 : c>µ = 0 as mentioned above, it

is possible to address every hypothesis as long as only linear components of the means are involved.

Particularly, by specifying appropriate contrasts, every set of pairwise comparisons can be de�ned.

This also includes the four di�erent types of MCTs presented in subsection 2.2.2.

Depending on the type of MCT, the contrast vectors for all pairwise comparisons that are involved in

this particular contrast test are set up in a matrix, called contrast matrix:

C =



c>1
...

c>i
...

c>m


=



c10 . . . c1k
...

...

ci0 . . . cik
...

...

cm0 . . . cmk


with the single contrasts ci = (ci0, . . . , cik)> as row vectors.

By multiplying this matrix with the vector of mean responses, one obtains a vector of all pairwise

di�erences that are to be tested. Hence, also the corresponding null hypothesis can be expressed by

means of this matrix: H0 : Cµ = 0. It is rejected if the maximum of the individual test statistics

constructed according to the formula (2.1) exceeds the quantile of a m-dimensional t-distribution

tm1−α, ν, R where m is the number of (pairwise) hypotheses that are part of the test.

In the following, a choice of popular MCTs will be presented. For the sake of illustration, a trial with

3 active dose groups and 1 placebo group shall serve as an example.

Tukey Test

The largest set of pairwise di�erences is the one containing all comparisons between the treatment or

dose groups under investigation, also referred to as "all-pairs comparison". It is generally addressed

by the Tukey test (Tukey, 1953). The contrast matrix of a Tukey test contains the contrasts of all

m =
(
k
2

)
pairwise comparisons (for our example

(
4
2

)
= 6 comparisons in total).
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In case of the example trial, the contrast matrix would be the following:

CT =



−1 1 0 0

−1 0 1 0

−1 0 0 1

0 −1 1 0

0 −1 0 1

0 0 −1 1


and the maximum test statistic would be compared against the t61−α, ν, R-quantile.

Dunnett Test

The Dunnett procedure (Dunnett, 1955) is a method for the comparison of multiple treatment groups

(or dose groups as in the present case of dose-�nding studies) with a control. As the set of hypotheses

is a subset of the all-pairwise comparisons set, one could apply the Tukey test and only consider the

comparisons of interest for the Dunnett test. However this would be a rather conservative approach.

Therefore, a smaller contrast matrix is de�ned only containing the contrasts corresponding to the

comparisons of the active treatment groups with the control group. In the introduced example, the

contrast matrix would be:

CD =


−1 1 0 0

−1 0 1 0

−1 0 0 1


and the maximum test statistic would be compared against the t31−α, ν, R-quantile.

Williams-Type MCT

The Williams-type MCT is a procedure to test the existence of a treatment e�ect by comparing all

active dose groups with a control in case of an underlying monotonic dose-response relationship. Orig-

inally, Williams (1971) presented his procedure as a combination of a test for the PoC and, if this has

been successfully shown, a stepwise procedure to identify the lowest dose with a signi�cant change in

the response variable.

The method itself uses the Maximum Likelihood (ML) estimates µ̂ML = (µ̂0,ML, . . . , µ̂k,ML) as es-

timates for the mean responses in the di�erent dose groups. But as a monotonic dose-response

relationship is assumed, also the ML estimates shall satisfy

µ̂0,ML ≤ µ̂1,ML ≤ . . . ≤ µ̂k,ML . (2.5)

One way to ensure this is via the so-called Pool-Adjacent-Violator algorithm (PAVA). If the inequality

is ful�lled by all estimates of the mean responses, the ML estimates remain unrevised. Otherwise,

if there is one i > 0 with µ̂i, ML > µ̂i+1, ML, both estimates are replaced by the weighted mean of

themselves

µ̂i, µ̂i+1 =
wiµ̂i,ML + wi+1µ̂i+1,ML

wi + wi+1
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with equal weights wi = wi+1 = 1. If these means are again part of an averaging step, they are

weighted by 2 and so forth. The process is repeated until all means satisfy the inequality condition

(2.5). Note that the estimate for the placebo group is excluded from this process, that is µ̂0 = µ̂0,ML.

For testing the global null hypothesis of no treatment e�ect, the mean response in the highest dose

group is tested against the placebo response by means of the following test statistic

T̄k,W =
µ̂k − µ̂0,ML

s
√

1
nk

+ 1
n0

with s2 being some kind of variance estimator.

Originally, Williams (1971) used the denominator from the usual two-sample t-test√
2

r

(ni − 1)S2
i + (nj − 1)S2

j

ni + nj − 2

with sample variances S2
i and S2

j and replication r for the studentization of the test statistic.

But Bretz (1999) showed in his PhD thesis that the use of a usual (pooled) variance estimator of the

whole sample
k∑
i=0

ni∑
j=1

(Yij − Ȳi)2

k∑
i=0

ni − (k + 1)

shows more favourable results in terms of power.

In any of the two cases, the test statistic will be compared against the same critical value t̄1−α,k,ν .

It should be emphasized that if k > 1, the critical value cannot be derived from the Student's t-

distribution because of the potential averaging of the estimates. Instead it has to be computed

numerically or can be derived theoretically. Only in case k = 1 the critical value is a quantile of the

Student's t-distribution.

If the global null hypothesis has been rejected, the single tests to identify the lowest e�ective dose

can be conducted successively. By means of the analogous test statistics (exchanging µ̂k by µ̂k−1 et

cetera), the procedure starts with the comparison of the second highest dose group with the placebo

group and does continue until no signi�cant di�erence between the mean responses can be detected.

Unlike for the other MCTs, it is not the same critical value to be used for every comparison but the

critical values di�er depending on the number of mean responses involved in the PAVA process.

Bretz (1999) established a link between the Williams test (in the variation described above) and a

MCT for the evidence of an overall treatment e�ect by de�ning the following contrast matrix

CW =


−1 0 · · · 0 1

−1 0 · · · nk−1

nk−1+nk
nk

nk−1+nk
...

... · · ·
...

...

−1 n1

n1+...+nk
· · · nk−1

n1+...+nk
nk

n1+...+nk

 .
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This implies

maxCW µ̂ML = µ̂k − µ̂0,ML .

Hence, by comparing the maximum of the single contrast tests with the same critical value that is

used for testing the global null hypothesis in the original Williams test, the existence of an overall

treatment e�ect can be tested. The exploration of the lowest e�ective dose as it is realized by the

stepwise procedure presented in the original paper is not included in this MCT procedure.
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2.3 Parametric Modelling of the Dose-Response Relationship

Instead of applying multiple comparison procedures, another method to address the identi�cation of

the optimal dose is to model the dose-response relationship by a prespeci�ed parametric function.

In the following, a selection of frequently used models will be presented and displayed by plotting the

function with varying parameter values. Besides, as is it needed for the construction of appropriate

contrast tests in the MCP-Mod approach later on, for each model the derivation of prior estimates

will be explained. These prior estimates can be used as initial parameters for iterative procedures of

non-linear model �tting as well.

Furthermore, the procedure of testing for the existence of a dose-response and the estimation of an

adequate dose on the basis of the �tted model will be outlined.

The theory in this section is mainly based on Ting (2006, Chapter 10), Branson et al. (2003) and

Bretz et al. (2008).

2.3.1 General Notation

Generally, a clinical outcome Y (either an e�cacy or a safety measure) is observed for a population

of patients assigned to one of the active doses d1, . . . , dk or the control d0. In total, this amounts to

k + 1 dose groups, mostly investigated in a parallel group design. Hence, let Yij denote the response

of patient j in dose group i, i = 0, . . . , k, j = 1, . . . , ni. In the basic case, the response is assumed to

be normally distributed Yij ∼ N(µi, σ
2) in consequence of the following model

Yij = f(d,θ) + εij , εij ∼ N(0, σ2) (2.6)

with f(·) being a linear or non-linear function parameterized by a vector θ ∈ Rp.
In practice, it is often su�cient to consider the standardized version f0 of a dose-response model

which can be obtained according to the decomposition

f(d,θ) = θ0 + θ1f
0(d,θ0) .

Thereby θ0 ∈ Rp−2 is the standardized model parameter of f0.

If such a decomposition is possible, the model is called location-scale model.

2.3.2 Frequently Used Model Shapes

Linear Model

The simplest dependency is a linear dose-response model which is expressed by

f(d,θ) = E0 + δd, θ> = (E0, δ)

and a standardized version is given by

f0(d) = d .
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The parameter E0 will hereinafter be termed as basal or placebo e�ect, that is to say the value of the

response for d = 0, and δ can be considered the scale parameter of the model.

Another type of linear model is the linear log-dose model

f(d,θ) = E0 + δ log(d+ c), f0(d) = log(d+ c) ,

where the constant c > 0 is only included to avoid issues if d = 0. Typically, c is chosen to be 1.

The in�uence of the model parameters E0 and δ are illustrated in Figure 2.4(a) for a linear dose-

response model, and in Figure 2.4(b) for a log-dose model. In both cases, only positive values for δ

are considered resulting in a positive slope. A negative value would lead to a decreasing dose-response

curve.
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2.4 (a): Linear Dose-Response Relationship
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2.4 (b): Linear Log-Dose Model

Figure 2.4: Linear Dose-Response Relationship

For the linear dose-response models presented in this paragraph, no prior estimates for the parameters

are necessary as the standardized function is completely independent from their choice. Only the doses

are needed.

Quadratic Model

As already mentioned at the beginning of this chapter, a monotonously increasing dose-response

relationship is very likely in most of the cases. However, if also a non-monotonous model is worth to

consider, there is the option to �t a quadratic model

f(d,θ) = E0 + β1d+ β2d
2, θ> = (E0, β1, β2) . (2.8a)

Thus also a possible non-monotonic relationship can be captured. Again, the model can be varied by

substituting d with log(d+ c) in equation (2.8a).

The determination of the standardized version for the quadratic model can be obtained by dividing
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the whole term by the absolute value of β1

f0(d, δ) =

d+ δd2, if β2 < 0

−d+ δd2, if β2 > 0
, δ =

β2
|β1|

. (2.8b)

The more common inverted-U shape (also called umbrella shape) stems from a quadratic model with

β2 < 0. It is illustrated in Figure 2.5 for a set of di�erent parameter values.
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Figure 2.5: Quadratic Dose-Response Relationship

An initial value for the parameter of the standardized model function δ can be obtained by conditioning

on the dose which is assumed to produce the maximum (minimum for U-shaped curves) response

dopt = − β1

2β2
= − 1

2δ . Without loss of generality, let dopt be the dose associated with the maximum

response which is synonymous with an underlying umbrella shaped curve. For a pair of values (d∗, p∗)

derived from prior knowledge, with p∗ being the suspected percentage of the maximum change over

placebo for a given dose d∗, an estimate for δ∗ can be derived by solving the equation

δ̂ =

−
1−
√
1−p∗

2d∗ , if d∗ < dopt

− 1+
√
1−p∗

2d∗ , if d∗ ≥ dopt .

Proof.

If dopt is the dose associated with the maximum change in the response, the maximum change itself

is given by

f0(dopt, δ) = dopt + δd2opt

= − 1

2δ
+ δ

(
− 1

2δ

)2

= − 1

2δ
+

1

4δ
= − 1

4δ
.

21



Chapter 2 Basic Principles

By inserting this into the standardized model formula (2.8b) and solving the equation for δ, the above

formula is obtained:

p∗
(
− 1

4δ

)
= d∗ + δ(d∗)2

⇔ p∗ = −4δd∗ − 4δ2(d∗)2

⇔ δ̂ =

−
1−
√
1−p∗

2d∗ , if d∗ < dopt

− 1+
√
1−p∗

2d∗ , if d∗ ≥ dopt .

Exponential Model

If the relationship between the administered dose and the response can be assumed to be convex, the

exponential model is a suitable way to describe this. It is de�ned as

f(d,θ) = E0 + E1 exp

(
d

δ

)
with model parameter θ> = (E0,E1, δ) and a standardized version

f0(d, δ) = exp

(
d

δ

)
. (2.9)

The parameter δ can be interpreted as the rate of increase in the response variable (or decrease if

δ < 0 respectively).
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Figure 2.6: Exponential Dose-Response Relationship
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Again, the shapes of an exponential model are illustrated for a set of di�erent values for E1 and δ in

Figure 2.6. By increasing the parameter E1, not only the slope of the dose-response curve changes,

but also the intercept increases.

An initial parameter estimate for δ can be obtained analogously to the case of a quadratic model by

using prior knowledge of an expected percentage of the maximum change over placebo p∗ for a given

dose d∗. Note that for the exponential model the percentage increase in the response over placebo

can be expressed by f0(d, δ)− 1. By inserting the prior information into the model formula (2.9), the

following estimate can be derived

δ̂ =
d∗

log(1 + p∗)
.

Emax Model

Another very common descriptor of a dose-response relationship is the (hyperbolic) Emax model

f(d,θ) = E0 +
Emaxd

ED50 + d
, θ> = (E0,Emax,ED50) (2.10)

where E0 is again the placebo e�ect as described for the linear model, Emax is the maximum e�ect over

placebo, i.e. the di�erence between the maximum response (at an in�nite dose) and the response for

placebo and ED50 is the dose which is expected to induce half of the maximum change (cf. section 2.1).

The corresponding standardized version of the model is given by

f0(d,ED50) =
d

ED50 + d

and models the percentage of the maximum e�ect over placebo achieved by dose d (cf. equation

(2.10)).

The sign of the maximum e�ect in the Emax model is decisive for the monotonous behaviour of the

dose-response curve. A positive value Emax > 0 represents an increase in the response with increasing

dose level whereas a negative value Emax < 0 indicates a monotonously decreasing dose-response

function. A higher (absolute) value of Emax > 0 is accompanied with a broader range of the dose-

response curve. Again, this model family is illustrated for a choice of parameter values in Figure 2.7.

As the standardized version of the Emax model directly represents the percentage of increase in the

response over placebo, an estimate for ED50 can be derived as before using a pair of values (d∗, p∗)

from prior knowledge. This implies an estimate given by

ÊD50 =
d∗(1− p∗)

p∗
.
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Figure 2.7: Emax Model as Dose-Response Relationship

Sigmoid Emax Model

An extension of the (hyperbolic) Emax model is the sigmoid Emax model which includes an additional

slope factor h, also termed Hill factor

f(d,θ) = E0 +
Emaxd

h

EDh50 + dh

with parameter θ> = (E0,Emax,ED50, h). The standardized version is given by

f0(d,ED50) =
dh

EDh50 + dh

and, analogously to the hyperbolic Emax model, represents the percentage of the maximum change

over placebo related to a certain dose d.

For the sigmoid Emax model, the value of ED50 determines the in�ection point of the dose-response

curve, but does not have impact on the slope of the curve so that with a changing value of ED50,

the curve is shifted along the x-axis. Besides, the Hill factor can be interpreted as a measure for

the sensitivity of the response variable to a change in the administered dose as it is regulating the

steepness of the curve. This behaviour can also be observed in Figure 2.8.

Due to the additional slope factor, it is not that straightforward to derive the initial parameter

estimates for the sigmoid Emax model as for the other models presented in this section. One possibility

is to �t a smoothing spline function to the observed data and to extract the parameters E0, Emax and

ED50 from the resulting plot.
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Additionally, the hill factor h can be estimated using the following rule of thumb

h ≈ 1.91

log10

(
ED90

ED10

) .

The two parameters ED90 and ED10 can again be obtained from the plot.

This method is described in more detail in Ting (2006, Chapter 9).
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Figure 2.8: Sigmoid Emax Model as Dose-Response Relationship

Logistic Model

An alternative for the modelling of an S-shaped dose-response curve is the logistic model

f(d,θ) = E0 +
Emax

1 + exp
[
ED50−d

δ

]
with parameter θ> = (E0,Emax,ED50, δ) and a standardized version of

f0(d,θ) =
1

1 + exp
[
ED50−d

δ

] . (2.12)

In contrast to the interpretation of the previous models, E0 can still be seen as some kind of basal

e�ect. However, it is no explicit placebo e�ect as it is not the response for d = 0 but the left limit of

the function, i.e. the limit for d −→ −∞.

The meaning of the other parameter, ED50, remains the same as before. It again determines the

in�ection point and thus can be regarded as a kind of location parameter. The steepness of the curve

is controlled by the parameter δ. Figure 2.9 shows the curves of a logistic model for varying values of

the parameters ED50 and δ.
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As the standardized logistic model is a function of two parameters, one also needs (at least) two pairs

of values (d∗1, p
∗
1) and (d∗2, p

∗
2) for the derivation of the initial estimates. Just like in the Emax model,

the standardized version of the logistic model can be interpreted as the maximum e�ect Emax related

to a certain dose. Therefore, the initial estimates can be directly derived from the inversion of formula

(2.12) and are hence given by

δ̂ =
d∗2 − d∗1

logit(p∗2)− logit(p1∗)

and

ÊD50 =
d∗1logit(p

∗
2)− d∗2logit(p∗1)

logit(p∗2)− logit(p∗1)
.
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Figure 2.9: Logistic Model as Dose-Response Relationship

In general, if more pairs of values are available than it would be necessary for the derivation of the

estimates, one can determine the initial estimates for every pair of values and afterwards use the

average of all estimates as the "�nal" initial estimate.

The �tting of these dose-response models under the assumption of independent and identically dis-

tributed (iid) errors εij can either be conducted by means of least squares estimation in case of a

linear model or via Generalized Least Squares (GLS) procedures as for example the iterative New-

ton's method. For the latter, as mentioned at the beginning of this section, the initial estimates are

used as starting values for the algorithm according to the presented formulae.
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2.3.3 Estimation of the Minimum E�ective Dose (MED)

Having �tted the prespeci�ed dose-response model to the data, one can determine the target dose of

interest on the basis of the �tted dose-response curve.

As previously mentioned, there are several criteria for de�ning a dose as optimal. To be consistent

with the MCP-Mod approach, the focus in this thesis is on the MED, i.e. the dose that produces a

certain (clinically relevant) di�erence ∆ in the outcome compared to placebo.

Formally, the MED is de�ned as

MED = arg min
d∈(d0,dk]

{f(d,θ) > f(d0,θ) + ∆} . (2.13)

It is restricted to the interval (d1, dk] to prevent issues caused by an extrapolation beyond the inves-

tigated dose range. The lower limit of the interval, d1, represents placebo whereas dk is the highest

dose included in the study.

Possible estimates for the MED are given by the following formulae:

M̂ED1 = arg min
d∈(d0,dk]

{Ud > f(d0, θ̂) + ∆, Ld > f(d0, θ̂)} (2.14a)

M̂ED2 = arg min
d∈(d0,dk]

{f(d, θ̂) > f(d0, θ̂) + ∆, Ld > f(d0, θ̂)} (2.14b)

M̂ED3 = arg min
d∈(d0,dk]

{Ld > f(d0, θ̂) + ∆} (2.14c)

with Ld and Ud denoting the lower and upper (1−2γ) con�dence limits of the expected outcome value

f(d, θ̂) associated with dose d. Thereby it is not absolutely necessary to choose γ small enough to

produce a statistically signi�cant e�ect at the signi�cance level of α. But, if chosen too generously, it

may happen that the estimate for the MED is smaller than a dose that failed to show any signi�cant

e�ect in the study which leads to interpretation issues.

By construction, the estimates are in an ascending order M̂ED1 ≤ M̂ED2 ≤ M̂ED3 implying that in

general, the estimate given by formula (2.14a) tends to determine a dose that is smaller than the true

MED while using equation (2.14c) in contrast may lead to an overestimation of the MED. This has

been shown by simulations, for example in the paper of Bretz et al. (2005).

2.3.4 Precision of Estimation

There are several ways to determine the precision of the MED estimate or the estimated response at

a �xed dose d = d∗ for a certain underlying dose-response model.

One option would be to use non-parametric or parametric bootstrap methods.

In the case of a non-parametric bootstrap, the patient data is re-sampled by randomly drawing ob-

servations with replacement of the original data set and analyzed analogously to the analysis of the

original data for an adequate number of times. The resulting characteristic(s) of interest (estimated

MED values and/or expected response at dose d = d∗) for each run are collected and represent the

bootstrap sample.

Alternatively, the parameter vector θ of the dose-response model can be directly re-sampled using

parametric bootstrap. This means that a sample of parameter vectors is produced by generating

random numbers of a normal distribution as θ is asymptotically normally distributed with mean θ̂
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and covariance matrix V̂ (θ) as a result of the assumed dose-response model (cf. equation (2.6)). The

bootstrap sample is then obtained by reading out the response values from the dose-response model

with the inserted parameter vectors and, if desired, by estimating the MED on the basis of the result-

ing dose-response model.

The bootstrap samples, no matter whether they are obtained by non-parametric or parametric boot-

strap, can then be used in the �nal step to derive a con�dence interval for the MED estimate and/or

the response value at d = d∗ by means of Monte-Carlo methods, i.e. by using their empirical analogues.

Another option is to make use of the asymptotic behaviour of the least square estimate (that is also

used for the parametric bootstrap as previously described) to analytically derive a variance formula

for θ̂ in model (2.6).

In a usual non-linear regression setting (each observed value of the response corresponds to a unique

value of the independent variable), the least squares estimate θ̂ asymptotically follows a normal

distribution with mean θ and covariance matrix

V (θ) = σ2
(
G(θ)>G(θ)

)−1
= σ2

 k∑
j=0

g(dj ,θ)g>(dj , θ)

−1

where

G(θ) =

(
∂f(di,θ)

∂θj

)
i=1,...,N ; j=0,...,p−1

is representing the matrix of partial derivatives of the response function f(d,θ) and

g>(d,θ) =
∂f(d,θ)

∂θ
=

(
1, f0(d,θ0), θ1

∂f0(d,θ0)

∂θ2
, . . . , θ1

∂f0(d,θ0)

∂θp−1

)
is denoting the gradient of the response function with respect to θ accordingly. This results from

linearization by means of Taylor's theorem, if the appropriate regularity conditions are ful�lled.

In the underlying case of a dose-�nding study where the independent variable is in fact discrete, i.e.

there are several observations for a certain dose di, the formula has to be adapted such that

V (θ) =
σ2

N

 k∑
j=0

wjg(dj , θ)g
>(dj , θ)

−1 (2.15)

with allocation rates (w0, . . . , wk).

By application of the delta method, an approximately normal distribution can be derived also for the

transformation of θ̂

f(d, θ̂) ∼ N
(
f(d,θ), g>(d, θ)V −1(θ)g(d, θ)

)
.

Hence, the limits of the point-wise con�dence interval for the predicted response at a certain dose

d = d∗ are given by

f(d∗, θ̂)± z1−α2
σ̂√
N

g>(d∗, θ̂)

(
k∑
i=0

wi g(di, θ̂)g>(di, θ̂)

)−1
g(d∗, θ̂)


1
2

+ o

(
1√
N

)
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with

σ̂2 =
1

N − p
‖y − f(θ̂)‖2 =

1

N − p

k∑
i=0

ni∑
j=1

(yij − f(di, θ̂))2

denoting the common least squares estimate of σ2 and zβ the β-quantile of the standard normal dis-

tribution.

By replacing the (deterministic) σ2 in the formula by its estimate σ̂2, the normal distribution turns

into a studentized t-distribution. However, if the sample size is su�ciently large, the quantile of the

normal distribution is an adequate approximation of the quantile of a t-distribution.

If it is of further interest to investigate the precision of the MED estimate, it is useful to start from an

explicit formula for the estimate itself. When considering the decision rule given in equation (2.14b),

a possible approximation would be

M̂ED = ap(θ̂) := h0
(
f0(d0, θ̂

0) +
∆

θ̂1

)
where h0 is the inverse of the standardized model function f0 with respect to d.

By using the delta method again, the variance of this estimate can be derived as

Var(M̂ED) = Var(ap(θ̂)) + o

(
1

N

)
= b>(θ)V (θ)b(θ) + o

(
1

N

)
where

b(θ) = b(θ0, . . . , θp−1) =
∂

∂θ
ap(θ0, . . . , θp−1)

=
∂

∂θ
h0
(
f0(d0,θ

0) +
∆

θ1

)
(2.16)

is the gradient of function ap with respect to θ and V (θ) is the generalized inverse of the matrix

V (θ) so that the formula also holds in the case of a singular covariance matrix.

Consequently, the asymptotic con�dence interval for the MED estimate is given by

M̂ED± z1−α2
√
b>(θ̂)V (θ̂)b(θ̂)

where zβ is denoting the β-quantile of the standard normal distribution as before.

The theory presented in the last two sections is taken from Branson et al. (2003, Section 4.3) and

Dette et al. (2008, Section 3). For more detailed information about the asymptotic behaviour of

GLS estimates, it is referred to the books of Seber and Wild (2003, Chapter 5) and Gallant (1987,

Chapter 1 & 4).

29





Chapter 3

The MCP-Mod Approach

3.1 MCP-Mod Approach for Normally Distributed Outcomes

As both of the common procedures for the planning and analysis of dose-�nding studies presented

in the last chapter have their shortcomings, Bretz et al. (2005) introduced an approach for normally

distributed data that combines both principles in one. Thus, it is possible to bene�t from the mod-

elling approach such that the choice of the optimal dose is not restricted to those doses included in the

trial. At the same time, the validity of the results is improved in comparison to the basic modelling

approach by considering not only one but several shapes of dose-response relationships and selecting

the one that �ts best to the collected data. Furthermore, a study conducted according to the MCP-

Mod approach is able to simultaneously address the aim of PoC and estimating the optimal dose in

the course of one single study.

The general framework of the MCP-Mod approach is the same as for the parametric modelling of the

dose-response curve presented in subsection 2.3.1. The current section will �rst cover the steps that

must be considered in the planning phase of the study, meaning prior to the start of the trial, and

will then take into consideration the methods applied to the analysis of the data. For each step, the

realization by means of the functions implemented in the R package DoseFinding (Bornkamp et al.,

2014) will be presented and important options will be cited.

Before starting with the detailed explanation of the single design and analysis steps, the following �ow

chart (Figure 3.1) shall serve as an overview over the basic idea behind this approach.

After the de�nition of the main study characteristics (e.g. the primary endpoint and the study

population) as it is essential for any study, the study-speci�c features have to be set up such that the

outcome of the study is as promising as possible. Those features include

• candidate models for the dose-response relationship (selected on the basis of available prior

knowledge which can be obtained for example from similar compounds),

• the choice of dose groups to be included in the study as well as the corresponding allocation

ratios (may be restricted by practicability or technical reasons),

• the optimal contrasts for the selected candidate models to maximize the power of the trend tests

conducted in the MCP-step,

• the sample size providing a certain target power for the establishment of PoC or a certain

precision for one of the estimates of interest.

Once the study has been designed thoroughly and the data has been collected accordingly, the analysis

is carried out in two subsequent steps. First, the models are tested separately for an existing dose
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definition of primary endpoint, study population, ...

pre-specification of candidate models for the dose-response relationship

identification of optimal dose groups to include in the study plus corresponding allocation ratios

computation of optimal contrasts for chosen candidate models

sample size calculation (with respect to target power / precision)

model-specific contrast tests: non-flat dose response given a certain model?

inclusion of all models with significant
test results in reference set

stop of analysis, PoC not established

at least one statistically significant
 dose-response signal

no statistically significant
 dose-response signal

estimation of model parameters

estimation of target dose

model selection / 
model averaging

precision of estimation
(optional)

one model in
reference set

> 1 model in
reference set

Figure 3.1: Flow Chart of MCP-Mod Approach

e�ect while still adhering to the overall type-I error. If that could be proven for at least one of the

candidate models, the dose-response relationship is modelled by means of a parametric model that is

either the candidate model that �ts the data best or an average over those candidate models with a

signi�cant test result. On the basis of the �tted model, the target dose can be estimated via inverse

regression techniques and precision of the estimates can be assessed if desired.

The explanations in this section are based on the papers of Bretz et al. (2005), Pinheiro et al. (2006)

and Branson et al. (2003). Further considerations concerning the planning of the study and the

robustness of the chosen design can be found in the paper of Dette et al. (2008).
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3.1.1 De�nition of the Candidate Models

The starting point of the planning phase is the determination of possible shapes for the dose-response

model, i.e. one has to select functions f(d,θ) that �t to the prior suppositions of the functional

dose-response relationship. Therefor, the same model shapes as presented for the simple parametric

modelling approach in section 2.3.2 can be used. For the selection it is advisable to take into con-

sideration prior knowledge about the true dose-response relationship on the one hand and to enable

�exibility within the assumed range of shapes as much as possible on the other hand. It might also

be reasonable to include several versions of the same model family, namely with di�erent parameter

speci�cations. But the more models are included in the candidate set, the less powerful the testing

procedure is to di�erentiate between them and the stricter the multiplicity adjustment will be for the

PoC part. However the latter fact is moderated by an increasing correlation between the models in

the candidate set as the p-value is computed from the multivariate distribution of the test statistics

(cf. equation (2.4)).

For each of the model shapes selected in the previous step, initial estimates for the parameters of

the standardized model, the so-called "guesstimates", are to be computed on the basis of some prior

knowledge about the true underlying dose-response curve. The prior knowledge can be taken for

example from pharmacokinetic data as well as from the dose-response relationship itself that was

identi�ed for a similar compound. The theoretical derivation of these "guesstimates" for the choice of

common models presented in this thesis can be found in section 2.3.2.

In R, the guesstimates can be obtained by means of the function guesst for a choice of parametric

models including the ones presented in section 2.3.2. Note that for the correct computation, the

function demands for the "expected percentages of the maximum e�ect achieved at [dose] d" (cf.

Bornkamp et al., 2012) instead of the absolute values of the outcome variable.

The set of candidate models can be de�ned by aggregating the prespeci�ed model shapes and cor-

responding guesstimates with information about the placebo e�ect and the maximum change from

placebo via the Mods function.

3.1.2 Determining the Optimal Study Design

Once the set of candidate models M = {Mm, m = 1, . . . ,M} has been prespeci�ed, one can search

for the optimal selection of dose groups to be included in the study and identify how to allocate

the patients optimally to the selected dose groups. The identi�cation of optimal design features

is implemented in the function optDesign, which o�ers three di�erent kinds of optimality criteria

(speci�ed via designCrit = "Dopt" | "TD" | "Dopt& TD"). Either the study design is optimized

with regard to the estimation of the model parameters (D-optimality), with regard to the Target

Dose (TD) estimation (TD-Optimality) or with regard to both. In practice, D-optimality signi�es

the minimization of a criterion which involves the variance of the model parameters whereas TD-

Optimality means minimizing the length of the con�dence interval for the TD as proposed by Dette

et al. (2008).

Formally, the criterion for the D-Optimality is given by

Ψ(ξ,θ) = −
M∑
m=1

pm
km

log (det |Vm (ξ,θ)|)

33



Chapter 3 The MCP-Mod Approach

where ξ = {di, wi}ki=0 contains the design information (dose groups d0, . . . , dk with corresponding allo-

cation weights w0, . . . , wk) and Vm(ξ,θ) is the covariance matrix of the parameter estimate belonging

to model Mm as de�ned in equation (2.15).

A penalization for the complexity of the model can be included by choosing the km equal to the

number of model parameters used in model Mm. The penalization can be suppressed by setting the

values km equal to one (in R: option standDopt = FALSE). Furthermore, the models can be weighted

by specifying appropriate model probabilities pm, m = 1, . . . ,M .

Alternatively, the criterion for the TD-Optimality can be expressed by

Ψ(ξ,θ) =

M∑
m=1

pm log(b>m(θ)Vm (ξ,θ)bm(θ))

with bm(θ) as de�ned in equation (2.16) with respect to a particular model Mm.

The criterion for the joint optimization is a combination of the single criteria, given by

Ψ(ξ,θ) =

M∑
m=1

pm

(
1

2
· − log (det |Vm(ξ,θ)|)

km
+

1

2
· log(b>m(θ)Vm (ξ,θ)bm(θ))

)

again with the possibility to suppress the penalization by �xing km = 1, m = 1, . . . ,M .

The optimal design for one of those optimality criteria is the one that minimizes the appropriate

criterion Ψ(ξ,θ) with respect to the design vector ξ.

However, it must be mentioned that due to feasibility matters, it might be necessary to deviate from

the optimal study design, for example if the manufacturing of the optimal dosages is not possible

or due to technical restrictions. In these cases, it is recommended to evaluate the e�ciency of the

chosen design ξ̃ compared to the optimal design ξopt. The e�ciency can be computed as the ratio of

optimality criteria for the two models

e�(ξ̃,θ)) =
Ψ(ξ̃,θ)

Ψ(ξopt,θ)
.

As in R, the calcCrit function outputs the criterion on the log-scale, the e�ciency is obtained by

exp(calcCrit(design.actual,...)-calcCrit(design.opt,...)).

3.1.3 Computation of the Optimal Contrasts

For every model that has been included in the candidate set, the optimal contrast coe�cients have

to be computed separately. A contrast is meant to be optimal with respect to a speci�c model if the

resulting test has maximum power in case the assumed model is correct. This implies that a test for

a null hypothesis H0 : c>µ = 0 with a model speci�c contrast vector c can be interpreted as a test

of the assumed model versus a null model with a �at dose-response. The actual testing (including

use of maximum statistic as global test statistic, joint distribution of the single contrast test statistics

under null and alternative hypothesis, critical values) will be analogous to what has been described

in subsection 2.2.6.

As the optimality criterion for the contrasts is related to the power, the distribution of the contrast

test statistic for the respective model under the alternative hypothesis is decisive for the derivation
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of the optimal contrast. To recall what has been discussed in general for (multiple) contrast tests

in subsection 2.2.6, note that under the null hypothesis, the test statistic for one single model (cf.

formula (2.1)) is centrally t-distributed. Under the alternative hypothesis H1 : c>µ 6= 0, where

µ = (µ0, . . . , µk)> = (f(d0,θ), . . . , f(dk,θ))> is denoting the vector of unknown treatment means

under the assumed model, the test statistic follows a non-central t-distribution with non-centrality

parameter

τ = τ(c) =
c>µ(

σ2
k∑
i=0

c2i
ni

) 1
2

. (3.1)

As shown by Abelson and Tukey (1963), the maximization of the power can be achieved by maximizing

the non-centrality parameter which is again equivalent to the maximization of the correlation between

the model speci�c contrast cm and the standardized mean response µ0
m according to model m.

Hence the optimal contrast for a speci�c model (for a two-sided test) can be de�ned as

copt(f) = arg max
c

τ(c) = arg max
c

(c>µ)2

k∑
i=0

c2i
ni

with the additional condition that the coe�cients of the contrast sum up to 0 (cf. �rst paragraph of

subsection 2.2.6). But, as this only de�nes copt up to a multiplicative factor, it is further required

that ‖copt‖ = 1 with ‖ · ‖ being the L2-norm to make the optimal contrast unique (except for the sign

as ±copt both are optimal).

For the one-sided test, −copt is the optimal contrast for the alternative hypothesis H−1 : c>µ < 0 and

copt is the optimal contrast for the alternative hypothesis H+
1 : c>µ > 0.

If a standardized version of the model exists, it su�ces to �nd the optimal contrast for the standardized

model as

arg max
c

(c>µ)2

k∑
i=0

c2i
ni

= arg max
c

θ21
(c>µ0)2

k∑
i=0

c2i
ni

with µ0 representing the vector of unknown standardized means (f(d0,θ
0), . . . , f(dk,θ

0)).

In the case of equal patient allocation n0, . . . , nk = n, the calculation of copt simpli�es to

copt(f) = arg max
c

n(c>µ)2

k∑
i=0

c2i

= arg max
c

(c>µ)2

due to the restriction ‖copt‖ = 1. By application of the Cauchy-Schwarz inequality (and the assump-

tion that the coe�cients of c sum up to 0) it follows that

(c>µ)2 =
(
c>(µ− µ̄1)

)2 ≤ ‖µ− µ̄1‖2

where µ̄ is denoting the overall mean across all treatment groups. This implies that in case of equal

allocation a closed-form solution for the optimal contrast is given by

copt =
µ− µ̄1

‖µ− µ̄1‖
=

µ0 − µ̄01

‖µ0 − µ̄01‖
.
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In general, if the group sample sizes are not equal, the optimal contrast has to be determined by numer-

ical optimization. Therefor it is preferable to express the contrast vector by means of a parametrization

function c = h(γ) where the vector γ contains all of the k − 1 free parameters of c. The other two

parameters of c can be expressed as a function of the elements in γ because of the two restricting

assumptions
∑
ci = 0 and

∑
c2i = 1.

In R, the computation of optimal contrasts can be handled with the function optContr using a

quadratic programming algorithm. By choosing the option type = "constrained", the optimization

algorithm allows for a further restriction of the contrast coe�cients, namely that the coe�cients for

the control groups need to have a di�erent sign than the ones for the active dose groups.

As the contrast coe�cients have to be �xed prior to the collection of any study data and only on

the basis of some prior estimates for the model parameters, this introduces a possible risk for a loss

of power due to weak prior knowledge. However, the MCP-Mod approach was shown to be robust

against moderate misspeci�cation of the prior estimates (e.g. see Pinheiro et al. (2006)). In case of

unreliable information about the true dose-response curve in the planning phase of the study, it is

advisable to include a choice of di�erent parameter speci�cations for one model in the candidate set.

3.1.4 Sample Size Calculation

The last step in the planning phase of the study is the determination of the required sample size. For

the MCP-Mod approach, the sample size can be chosen with respect to di�erent criteria, dependent

on what is the main focus of the trial. If the establishment of the PoC is considered of prime im-

portance, the sample size can be calculated to meet a certain target power for the PoC test whereas

for the target dose estimation, the sample size should be chosen in a way that provides a prespeci�ed

precision of the resulting estimate. A combination of these criteria is possible as well.

The starting point for the derivation of the required sample size N∗ in order to achieve a prespeci�ed

target power π∗ is to derive a formula for the power under the assumption of a single true model and

afterwards generalizing it for a multiple-model scenario.

Suppose model Mm is the true underlying dose-response model with corresponding mean vector

µm = (fm(d0,θm), . . . , fm(dk,θm)). The power to detect a non-�at dose-response curve (i.e. to

show the existence of dose-response) is the probability that the maximum test statistic exceeds the

critical value q1−α given µm is the true mean vector

πm(N) = P( max
i=1,...,M

Ti ≥ q1−α | µ = µm) = 1− P(T1 < q1−α, . . . , TM < q1−α | µ = µm) . (3.2)

Analogously to the contrast test for one speci�c model, the joint distribution of all test statistics

T1, . . . , TM under model Mm is a non-central (multivariate) t-distribution with N − k degrees of

freedom, correlation matrix R = (ρij), i, j = 1, . . . ,M and non-centrality parameter τ = (τ1, . . . , τM )

where the single parameters τj are de�ned as in equation (3.1) and reduce to

τj =
√
n
c>j µj

σ
, j = 1, . . . ,M

36



Chapter 3 The MCP-Mod Approach

in case of equal allocation to the dose groups. Note that cm is the contrast vector for model Mm.

In practice, the power under one single true model as in equation (3.2) can be calculated via numerical

integration (cf. Genz and Bretz (2000)).

As one of the main advantages of the MCP-Mod approach is the possibility to use di�erent candidate

models instead of one prespeci�ed model, it is preferable to consider the vector of power values for all

models in the candidate set π(N) = (π1(N), . . . , πM (N))> and to de�ne a monotonically increasing

summary function s : [0, 1]M → [0, 1] that combines the single power values to a measure for the over-

all power. That could be for example the minimum/maximum of all values, but also the (weighted)

mean of all power values or any quantile. In any case, the chosen summary function should map

into the range of individual power values, or in other words, they should not exceed or fall below the

minimum and maximum power respectively.

This generalized power de�nition is also the basis for the sample size considerations. The required

number of patients N∗ is the smallest integer value that results in an overall power equal to or greater

than the prespeci�ed target power. Practically, this N∗ is calculated using an iterative algorithm

which starts with a given upper bound Nu and reduces the number of patients by 1 (or k in the case

of equal allocation) until the corresponding overall power falls below the target power. The required

sample size is then chosen as the smallest integer resulting in an overall power not less than the target

power. For the algorithm to work, the upper bound Nu has to be chosen as the maximum of the sam-

ple sizes required to achieve the target power of π∗ for the single contrast tests using the multiplicity

adjusted critical value of the global test statistic.

An alternative approach uses a root-�nding algorithm to solve the equation s(π(N∗))−π∗ = 0 for N∗

to �nd the required sample size. The latter method is also the one that is implemented in R in the

function sampSizeMCT. It uses a bisection search algorithm and within each step, it calls the powMCT

function for the calculation of the single power values. The summary function can be speci�ed by

means of the option sumFct= "min" | "mean" | "max".

Another option, as already mentioned at the beginning of this subsection, is to aim at a certain level

of precision for one or more estimates of interest (for example the estimates for the parameters in the

dose-response model, the expected response for a given dose or the estimate for the MED). To address

this matter, one would use the formulae derived in subsection 2.3.4 (either the variance formulae

themselves or the length of the con�dence intervals, calculated as the di�erence between the upper

and lower limits) and express them as a function of the total number of patients N . By setting this

function equal to the target value and transforming it adequately, the required sample size N∗ can be

derived with the help of a root �nding algorithm.

In R, one can realize this by means of the sampSize function with a user-de�ned target function in

targFunc which is supposed to achieve the target value de�ned in target.
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3.1.5 Analysis of Study Data

Test for PoC via MCP

The �nal analysis of the collected data consists of two main steps.

The �rst step is the establishment of PoC via a multiple testing procedure. Therefor, the mean

responses in the individual dose groups Ȳ0, . . . , Ȳk are calculated and the covariance matrix S2 is

estimated on the basis of the data according to the formula given in equation (2.2). These measures

are then entered into the single test statistics (cf. equation (2.1)) and the resulting values of the test

statistics are one by one compared against the (equicoordinate) (1−α)-quantile of theM -dimensional

t-distribution with correlation matrix R as de�ned in equation (2.3). Thus, it is possible to test if each

of the models in the candidate set (seen individually) is signi�cantly di�erent from a �at dose-response

curve given the observed data whilst controlling the FWER at a certain level α. All models which are

shown to be statistically signi�cant by means of the single contrast tests are included in the reference

set for the subsequent modelling phase.

For the global null hypothesis of no overall dose-response, the maximum of all the single test statistics

is compared against the same quantile as above. If the test statistic exceeds the quantile, the existence

of a signi�cant dose-response signal is proven and hence, PoC is established. If not, this means that

no model is signi�cantly di�erent from a �at dose-response and hence the procedure is stopped after

the �rst stage without being able to establish PoC.

Note that failing to show a dose-response e�ect might also be due to an insu�cient sample size or a

high variance in the collected data. Another reason might be that the models included in the candi-

date set don't describe the true dose-response shape appropriately.

Modelling of the Dose-Response Relationship & Estimation of the MED

The second step of the �nal analysis is modelling the dose-response relationship. Therefor, all the

models in the reference set are taken into consideration. If more than one model was included in the

reference set, one has to decide which of those shall be used for the dose estimation. This can either

be the model with the smallest p-value as it is most likely to be (closest to) the true model or the best

model with respect to some goodness-of-�t criterion (e.g. the Akaike Information Criterion (AIC)).

The latter could be preferable in case the candidate models are more complex. Then the AIC identi�es

the model that shows the best trade-o� between goodness of �t and complexity of the model. Another

option to develop a �nal model is to use model averaging over all signi�cant models, as for example in

Verrier et al. (2014). As Bornkamp (2015) states in his paper, the usage of model averaging techniques

is theoretically superior to model selection for the following two reasons. Firstly, a model selection

process, whether based on an information criterion or some other indicator, is not necessarily robust.

This means that small changes in the underlying data set can lead to substantially di�erent models

and by that to a di�erent conclusion at the extreme. Furthermore, deriving con�dence intervals with-

out taking into account the model selection process may lead to overoptimistic con�dence intervals

(too narrow), i.e. to an incorrect coverage probability and an in�ation of the type-I error. On the

contrary, model averaging techniques o�er the possibility to take into account the uncertainty in the

model selection process and prevent potential bias. Concrete examples for model averaging are given
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in a later section for the Klingenberg approach (subsection 3.2.3).

The selected model(s) is/are �tted to the data via GLS estimation and the MED for each model is

estimated as described in subsection 2.3.3. In case the �nal model is obtained by model averaging,

the �nal MED estimate is calculated as a weighted mean of the model-speci�c MEDs, using the same

weights as in the model averaging process itself. The precision for the estimated MED as well as for

the expected response at a certain dose can be assessed via bootstrap methods or using the asymptotic

behaviour of the GLS estimates (see subsection 2.3.4).

In R, the contrast tests can be conducted via the function MCTtest; �tting one of the built-in models

to the data can be realized via the function fitMod. The whole analysis procedure is also implemented

in one single function called MCPMod which o�ers three di�erent options for the selection of the �nal

model (selModel = "AIC" for the model with the smallest AIC, selModel = "maxT" for the model

with the greatest value of the test statistic or smallest p-value respectively or selModel = "aveAIC"

for a weighted average of the signi�cant models with model weights

wi =
exp(−0.5 ∗AICi)
k∑
j=1

exp(−0.5 ∗AICj)
. (3.3)

Additionally, it includes the estimation of the optimal dose, either the MED for a certain e�ect of

Delta over placebo or the E�ective Dose (ED) that produces a certain percentage p of the maximum

e�ect over placebo.

The target dose can also be estimated separately using the R functions TD and ED respectively.
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3.2 MCP-Mod Approach for Binary Distributed Outcomes

The original MCP-Mod approach as outlined in the previous section is constructed for homoscedastic

normally distributed outcomes collected in a simple study setting, i.e. in a parallel group design with

non-repeated measurements. However, the practical part of this thesis focuses on a binary data setting,

i.e. on studies which have a responder rate as their primary outcome variable. Naively using the same

methods for binary data, especially in the case of small sample sizes, may lead to questionable results.

In this section, three main approaches to deal with binary outcome data in the framework of a uni�ed

dose-�nding procedure are presented and their advantages and disadvantages are brie�y discussed.

The �rst is the above mentioned naive application of the original MCP-Mod approach to binary data.

The second approach was presented by Pinheiro et al. (2014) and enhances the original MCP-Mod

approach in order to make it more generally applicable, e.g. particularly for binary distributed data,

but also for count data, longitudinal data and even for time-to-event settings. It is based on the idea

of transforming the data via an appropriate parametric model and using the essentially unmodi�ed

MCP-Mod methods on this parameter level. This can be justi�ed by the fact that for most of the

common estimation problems, the model parameters asymptotically follow a normal distribution.

The third approach by Klingenberg (2009) is in its basic idea similar to the original MCP-Mod

approach, but is constructed for binary data. The candidate models are basically Generalized Linear

Models (GLMs), but allow non-linear in�uencing variables such as the logarithm of the given dose.

Furthermore, the dose-response signal is tested by means of the deviance di�erence between the

assumed dose-response model and a model only including the intercept instead of a contrast test.

3.2.1 "Naive" Approach on Outcome Level

As mentioned in the introductory paragraph of this section, the simplest idea is to apply the unmod-

i�ed MCP-Mod methods to the data in spite of the fact that the data is not normal but follows a

binomial distribution. According to the de Moivre�Laplace theorem, the binomial distribution can

be satisfactorily approximated by a normal distribution for a su�ciently large sample size n and a

success probability p that is not too extreme (Krengel, 2002, Chapter 5). A rule of thumb says that

an approximation can be seen as valid if np(1− p) > 9.

However, the following simulations show that in some cases, the type-I error for the PoC test may be

in�ated and the power may not reach the target level although the sample size was calculated in view

of that. Simulations were done for the following four scenarios:

• Scenario 1: moderate response rates

0 mg: 0.2, 5 mg: 0.25, 10 mg: 0.3, 25 mg: 0.5, 50 mg: 0.7

• Scenario 2: large maximum e�ect over placebo

0 mg: 0.15, 5 mg: 0.4, 10 mg: 0.6, 25 mg: 0.75, 50 mg: 0.9

• Scenario 3: small response rates

0 mg: 0.05, 5 mg: 0.08, 10 mg: 0.1, 25 mg: 0.15, 50 mg: 0.2

• Scenario 4: high response rates

0 mg: 0.6, 5 mg: 0.7, 10 mg: 0.8, 25 mg: 0.85, 50 mg: 0.9
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For each scenario, i.e. for each set of expected response rates, the set of candidate models consists of

the linear model, the Emax model, the exponential model and the quadratic model to cover a wide

range of possible dose-response shapes. The guesstimates for these models are derived on the basis of

the above listed response rates resulting in the dose-response pro�les visualized in Figures 3.2(a)-(d).
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3.2 (a): Scenario 1
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3.2 (b): Scenario 2

Figure 3.2: Candidate Models for the Naive Approach
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3.2 (c): Scenario 3
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3.2 (d): Scenario 4
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The rhombi in the four plots mark the expected response rates that serve as prior information for the

prespeci�cation of the candidate models. Based on these candidate models, the optimal dose groups

and the corresponding allocation ratios for the simulation process are derived and the total sample size

needed to reach a mean power (averaged over all candidate models) of at least 80% is computed. After

all design matters have been determined, the "study" data is simulated and analyzed according to the

MCP-Mod approach for normal data (as described in section 3.1) multiple times, that is for 10 000

simulation runs. The signi�cance level for the contrast test was de�ned as α = 5%. As generally, the

optimal dose groups are not equal to the doses for which prior information is available, the response

rates for the power simulation are chosen to be the means of the response values predicted by the four

candidate models for the corresponding doses. These mean values are marked as asterisks in the plots

of the candidate models 3.2(a)-(d). For the simulation of the actual type-I error, the response rates

are set to be equal to the placebo response for all dose groups involved.

The power and type-I error values are estimated from the simulations as the percentage of simulation

runs for which the null hypothesis has been rejected. As several models are tested in each run, di�erent

power de�nitions can be applied. In the following Table 3.1, two of those de�nitions are listed. The

"average power" (the "average type-I error") represents the mean power (type-I error) over all four

models. The de�nitions in columns 4 and 6 (i.e. the power to reject at least one of the model-speci�c

null hypotheses and therewith achieving the PoC or the type-I error of erroneously rejecting at least

one of the model-speci�c null hypotheses and hence also falsely con�rming PoC) match the decision

over PoC as proposed for the MCP-Mod approach. The results for other versions of the power (type-I

error) term such as minimum/maximum power (type-I error) as well as the model-speci�c charac-

teristics can be found in Tables A.1 and A.2 in appendix A. Additional to the simulations with an

optimized sample size, simulations have been conducted with a remarkably increased sample size in

order to investigate if this can compensate the in�ation of the type-I error and is hence a problem of

insu�cient approximation and not a consequence of an inadequate testing procedure.

Table 3.1: Power and Type-I Error for the Naive Application of the MCP-Mod Approach to Binary
Data

Scenario Sample Size
Average
Power

Power to
Reject at

least one H0

Average
Type-I
Error

Type-I
Error of

Rejecting at
least one H0

Scenario 1

9 5 3 9 0.6818 0.7657 0.0425 0.0493

20 each 0.9501 0.9646 0.0540 0.0659

40 each 0.9992 0.9997 0.0444 0.0579

Scenario 2 2 2 2 3 0.8212 0.8308 0.0352 0.0519

Scenario 3
42 11 10 8 27 54 0.4385 0.5096 0.0298 0.0480

60 each 0.8577 0.9017 0.0980 0.1254

Scenario 4
12 6 10 11 0.6164 0.6709 0.0638 0.0891

70 each 0.9999 0.9999 0.0353 0.0548

The results in Table 3.1 allow the conclusion that for the scenario with moderate response rates

(Scenario 1), the power stays below the target power of 80% for which it was originally powered (cf.

�rst row in the table). Also the type-I error shows increased values, especially for the simulation with

20 patients per group. The in�ation of the type-I error reduces with an increasing number of patients.
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In contrast to this, the simulations for Scenario 2 (big change over placebo in the highest dose group)

show that in some cases, the naive application of the original methods is acceptable and does not lead

to a loss in power or an in�ation of the type-I error respectively.

For the scenario with small response rates (Scenario 3), the power values are low despite of a relatively

high number of simulated observations. The type-I error shows acceptable results for the simulation

with the optimal sample size but is clearly in�ated when increasing the sample size. The reason for

this counter-intuitive behaviour is unclear.

The simulations for Scenario 4 again come up with low power values if the optimal sample size is

used but this improves with an increasing number of observations. Also the type-I error shows better

results for a higher sample size.

The simulations reveal that the naive usage of the original methods may lead to a worsening in

terms of power. Furthermore, it seems to be impossible to control the type-I error, even with sample

sizes which would theoretically allow the approximation of the binary distribution with a normal

distribution. Hence, Pinheiro et al. recently published a proceeding paper that proposes to use an

adequate transformation of the non-normal data up-front and to analyze the data on the parameter

level of the transformation.

3.2.2 Pinheiro et al. (2014): Transformation to Parameter Level

As already mentioned, the approach developed by Pinheiro et al. is generally applicable to a broad

range of endpoint types as binary or count data, survival data and longitudinal data (also if resulting

from crossover studies). As the practical part of this thesis focuses on binary data, the following

explanations of the generalized MCP-Mod approach will be illustrated for the case of binary data.

However, the procedure for other data situations only di�ers in the transformation step at the begin-

ning and hence, is very similar.

The basic idea of the extension to non-normal data is a transformation of the original data via a

parametric model in a way that one of the parameters still captures the dose-response relationship

(which was formerly the role of the expected response value in the original formulation). Formally,

this means that the random variable Y describing the response follows a certain distribution with

distribution function F

Y ∼ F (µ(x), η, z) (3.4)

where µ(x) is the dose-response parameter, η the nuisance parameter and the vector of possible co-

variates is denoted by z.

As soon as the data has been transformed, everything is formulated with respect to the dose-response

parameter µ(x), meaning that also the candidate models and the target e�ect are speci�ed on this

parameter level. This can sometimes be challenging and hence it is important to keep in mind that

the dose-response parameter should be well interpretable.

Further demands on the parametrization are as follows. Firstly, it has to be an Analysis of Variance

(ANOVA) parametrization ensuring that the dose-response for every single dose level is represented

by a separate parameter. Furthermore, the estimate µ̂ = (µ̂0, . . . , µ̂k)>, obtained for example via

maximum likelihood estimation or GLS estimation, follows a normal distribution N(µ,S) where S is

the covariance matrix of µ̂. The latter assumption is known to hold for most of the common paramet-
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ric estimation problems including, inter alia, all generalized linear models and mixed-e�ect models.

In the case of binary data, the transformation commonly used to obtain ANOVA-type parameters

would be a logistic regression without intercept. Hence, the parameters the subsequent MCP-Mod

methods are based on are the means of responses on the logit scale. This implies that also the candi-

date models have to be speci�ed on a logit scale.

Apart from the prespeci�cation of the candidate models and the computation of the optimal contrasts

(will be explained later on in this section) that are necessary for the conduction of the contrast test

in the analysis part, none of the design aspects of the study has been explicitly discussed by Pinheiro

et al. (2014).

Problems arise when trying to plan the study with respect to which dose groups shall be included

and how many patients are needed to reach the target power. In the case of homoscedastic normal

data, the variance is equal to σ2 for all dose groups and therefore, can be estimated by means of the

common pooled variance estimate. But this is not generally true, particularly not in the case of binary

data. Here, the variance in each dose group is directly dependent on the corresponding response rate

which makes optimization more complicated because prior information about the nuisance parameters

denoted by η is needed already at planning stage.

In the following, the computation of the optimal contrasts will be addressed and the two analysis steps

of the extended MCP-Mod approach will be explained in more detail.

Computation of the Optimal Contrasts

When having prespeci�ed a set of candidate models on the parameter level (for binary data that is on

the logit scale), the next step is the computation of optimal contrasts. Analogously to the approach

for normal data, a contrast for a speci�c model is considered optimal if the power of the corresponding

univariate contrast test is maximal. Again, this can be obtained by maximizing the non-centrality

parameter

τ = τ (c) =
c>µ√
c>Sc

(3.5)

with respect to c where µ is the mean vector on parameter level and S the covariance matrix of µ.

Furthermore, the optimal contrast copt has to meet the condition c>opt1 = 0.

To directly include the condition on the contrast coe�cients in the maximization problem, one of the

coe�cients has to be expressed by means of all other coe�cients, e.g. c0 = −
k∑
i=1

ci such that the

reformulated contrast vector is given by

c̃ =



−
k∑
i=1

ci

c1
...

ck


= (c0, c1, . . . , ck)>



0 0 · · · · · · 0

−1 1 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0

−1 0 · · · 0 1


= c>C0 .

45



Chapter 3 The MCP-Mod Approach

Consequently, the maximization of equation (3.5) is equivalent to the maximization of(
c>C0µ

)2
c>C0SC>0 c

which is the (only) solution of a generalized eigenvalue problem (see Ahrens and Läuter, 1981, for-

mula (2.66)) given by

C0µµ
>C>0 x = λC0SC

>
0 x .

This implies that a closed form of the optimal contrast for model m is proportional to

copt ∝ S−1
(
µ0
m −

µ0
m
>
S−11

1>S−11

)
.

Again the condition
∑
ci = 0 has to be ful�l.

The derivation of this formula can be found in more detail in the appendix of Pinheiro et al. (2014).

Test for PoC via MCP

The actual contrast tests can be performed analogously to the procedure described in subsection 3.1.5

for the original MCP-Mod approach, i.e. the (model-speci�c) test statistics for testing the null hy-

potheses Hm
0 : c>mµ = 0 versus the alternative hypotheses Hm

1 : c>mµ > 0 are given by

Tm =
c>mµ̂

[C>SC]
1
2
m,m

, m = 1, . . . ,M

with C = [c1, . . . , cM ] being the matrix of all optimal contrast vectors and [A]m,m referring to the

m-th element on the diagonal of a matrix A.

For testing the global null hypothesis, that is for establishing PoC, the maximum of these (model-

speci�c) test statistics

Tglobal = max
m

Tm

is compared to a critical value derived from the asymptotic joint distribution of all single test statistics,

a multivariate normal distribution.

The same critical value is also used for the individual contrasts tests when computing multiplicity

adjusted p-values.

The only di�erence to the basic homoscedastic case is concerning the covariance matrix S. In this

basic setting, S was proportional to a diagonal matrix with elements equal to the reciprocal of the

number of observations in the dose groups. More generally however, S may additionally depend

on the nuisance parameter η and, as for example in the binary case, also on the expected response

rates in the di�erent dose groups. Therefore, in the planning phase of the study, guesstimates are

needed also for all nuisance parameters that are contained in the covariance matrix. In most cases,

prior information about those nuisance parameters is quite unreliable. The solution is that once the

actual study data is available, the nuisance parameters can/should be re-estimated and used for the

revaluation of the contrasts and the critical value involved in the contrast tests. Important to stress is

that the re-estimation is stringently restricted to nuisance parameters as a re-calculation of the model

parameters θ or θ0 respectively, would result in a serious in�ation of the type-I error.
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Modelling of the Dose-Response Relationship & Estimation of the MED

Also the �tting of the �nal dose-response model and the estimation of the target dose is generally

similar to the original methods. Only the transformation of the observed data to the parameter level

has to be run up-front so that the actual modelling can be done on the basis of the dose-response

parameters. Hence, the Mod-part consists of two consecutive stages.

The ANOVA estimates µ̂ and Ŝ, as already described in the introductory paragraph of this section,

can be obtained using the common methods for the respective general parametric model (3.4), for

example ML estimation, Partial Maximum Likelihood (pML) estimation or Generalized Estimating

Equations (GEE).

The actual model can then be �tted to the resulting ANOVA estimates via GLS as in the original

MCP-Mod approach by minimizing the following equation with respect to θ

θ̂ = arg min
θ

Ψ̂(θ) = arg min
θ

(µ̂− f(d,θ))>Ŝ−1(µ̂− f(d,θ)) (3.6)

where f(d,θ) = (f(d0,θ), . . . , f(dk,θ))>.

The reason for choosing this two-stage �tting approach instead of a standard ML estimation is that

the optimization has to be conducted with respect to only k+1 di�erent parameters (as many as there

are di�erent dose levels included) whereas the ML estimation is based on the full likelihood depending

on the complete data. For the same reason, it is preferred to use a generalized model selection criterion

as the Generalized Akaike Information Criterion (gAIC) de�ned as

Ψ̂(θ̂) + 2 dim(θ)

for the selection of the �nal dose-response model.

The motivation of preferring the GLS estimation to other estimation methods is that it produces

similar results as the ML estimation; in the case of homoscedastic normal data, the results are even

identical. The same yields for the model selection criterion: for homoscedastic normal data, the gAIC

is equal to the AIC.

Once a �nal model has been worked out and �tted to the data, the MED is estimated as described

in subsection 2.3.3. Note that the clinically relevant improvement over placebo has to be de�ned on

parameter level, i.e. as a di�erence in the dose-response parameter compared to placebo.

Precision of Estimation

As for the basic setting, the precision for the extended version of the MCP-Mod approach can be

assessed on the basis of the asymptotic normality of the estimator given in equation (3.6)

√
an(θ̂ − θ0)

d−→ N(0, (F (θ0)Σ−1F (θ0)>)−1)

with an being a non-decreasing sequence ful�lling an
n→∞−−−−→∞ and anS

P−→ Σ.

Alternatively, a parametric bootstrap method can be used. Herein, one element of the bootstrap

sample of model parameters is generated by sampling from the multivariate normal distribution of the

ANOVA estimates and estimating the model parameters on their basis via GLS methods. Con�dence
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intervals can then be obtained by determining the appropriate empirical quantile of the bootstrap

sample.

Simulations show that for small sample sizes, the bootstrap method is preferable over the asymptotic

procedure even though it is computationally more complex (cf. Pinheiro et al. (2014, page 16)).

For the practical implementation of the generalized MCP-Mod approach, the same R functions of

the DoseFinding package can be applied. In the function calls, the results of the parametrization

procedure, i.e. the estimate for the dose-response parameter and its covariance matrix, need to be

speci�ed instead of the original data. For the analysis functions (MCTtest, fitMod and MCPMod), the

option type = "general" has to be selected. This implies that on the one hand, the model �tting

is conducted by means of GLS instead of ordinary least squares estimation and on the other hand,

the functions for the testing procedure skip the �tting of an ANOVA model and interpret the entered

responses as the results of the transformation conducted beforehand.

3.2.3 Klingenberg (2009)

The third approach that combines a test for PoC based on a set of candidate models with the sub-

sequent �tting of the best model is the approach presented by Klingenberg (2009). Contrary to the

previous ones, the approach as presented in the original paper is speci�c for binary data collected

under a parallel group design.

The methods of this approach have already been implemented in R by the author of the paper

and made available at http://sites.williams.edu/bklingen/research/poc/rcode/ including ad-

ditional explanations and example code.

Candidate Models

As already mentioned, the starting point is a binary outcome variable, for example a responder vari-

able indicating if the patient experienced a certain improvement in a speci�c (laboratory/score/...)

value or not. For patient j receiving dose di, the response is denoted by Yij with i = 0, . . . , k and

j = 1, . . . , ni. The responses are assumed to be independent within and across the di�erent dose

groups. The candidate models for the dose-response curve are de�ned directly on the response level,

that is they model the success probabilities π(di) = P(Yij = 1), i = 0, . . . , k. The structure of the

models is given by a link function (log-link, logit-link, identity-link, ...) and a predictor describing the

in�uence of the dose, i.e. it is structurally similar to a GLM. If the predictor is linear, the model is a

GLM by construction.

The number of parameters in the predictor is restricted by the number of di�erent dose groups k+ 1.

When de�ning a complex predictor with more than k + 1 parameters, this can lead to problems of

over�tting. Concerning the decision which models to include in the candidate set, it is advisable to

cover a broad range of di�erent dose-response pro�les, but matching the anticipations of the clinical

team. A list of possible candidate models (Table 3.2) is extracted from Klingenberg (2009, page 277).

When plotting those models prior to study start, initial estimates for the model parameters are needed.

They can be derived from "educated guesses" of the placebo and maximum e�ect in the case of a
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model with only two parameters. For a model with three parameters, information about the dose

which is expected to result in the maximum e�ect is required in addition. However, contrary to the

MCP-Mod approach, these estimates are only needed for the premature visualization of the models,

but are not involved in the analysis of the data. The estimation of the prior guesses and the plotting

of the resulting models is implemented in the function plotModels for a set of di�erent link functions

and structures of the predictor. The plots for the candidate models listed in Table 3.2 are presented

in Figure 3.3.

Table 3.2: Examples of Candidate Models for the Klingenberg Approach

Model
Link

Function
Predictor

Model 1 Logit β0 + β1d

Model 2 Logit β0 + β1
√
d

Model 3 Logit β0 + β1 log(d+ 1)

Model 4 Logit β0 + β1√
d+1

Model 5 Logit β0 + β1

(d+1)

Model 6 Log β0 + β1d

Model 7 Identity β0 + β1 exp(exp( d
max d ))

Model 8 Logit β0 + β1d+ β2d
2

Model 9 Logit β0 + β1 log(d+ 1) + β2

(d+1)

Model 10 Logit β0 + β1 log(d+ 1) + β2d

dose
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y 0.3

0.4

0.5

0.6

Model 1

0 5 10 15 20 25

Model 2 Model 3
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Model 4 Model 5
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Model 6 Model 7

0 5 10 15 20 25

Model 8 Model 9
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Model 10

Figure 3.3: Examples of Candidate Models for the Klingenberg Approach
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The �lled squares in the plots mark the responses for the set of doses to be included in the study

(speci�ed in dose). As apparent from the plots, this set of candidate models already represents a wide

range of dose-response pro�les, including some non-monotonous scenarios.

Test for PoC via a Permutation Test

Analogously to the MCP-Mod approach, the �rst analysis step is to conduct separate tests for each

of the candidate models to investigate the existence of a potential dose-response signal. But instead

of a contrast test, one uses the following signed and penalized likelihood ratio statistic to test the

model-speci�c null hypotheses Hm
0 : πm(di) = β0, m = 1, . . . ,M

Tm = (−1)I(π̂m(dmax)≤π̂m(d0)){−2[logL(y,n,M0)− logL(y,n,Mm)]} − 2dfm (3.7)

with I(·) denoting the indicator function taking the value 1 if π̂m(dmax) ≤ π̂m(d0) is true or 0 else and

π̂m(d) is the ML estimate for the success probability π(d) for dose d assuming modelMm. Furthermore,

L(y,n,Mm) is the maximum of the binomial likelihood under the assumed model Mm if a number of

y = (y0, . . . , yk)> successes have been observed for the k+1 dose groups in n = (n0, . . . , nk)> patients

respectively. This test statistic is constructed to compare a speci�c model Mm with the null model

M0 : πm(di) = β0 via the deviance di�erence between these two models (part in curly brackets). As

the response is assumed to be binomially distributed, the deviance di�erence is explicitly given by the

following formula

2

k∑
i=0

yi log

(
π̂m(di)

π̂0(di)

)
+ 2

k∑
i=0

(ni − yi) log

(
1− π̂m(di)

1− π̂0(di)

)
with π̂0(d) = 1

N

∑k
i=0 yi being the mean number of successes across all doses; N =

∑k
i=0 ni.

The sign of the test statistic is intended to restrict a positive test decision to the existence of a

positive dose e�ect, implying that the outcome variable Yij has to be coded such that high probabil-

ities π(d) are desirable. It is achieved by considering the dose e�ect under model Mm positive when

π̂m(dmax) > π̂m(d0) is met. Here, dmax represents the dose that maximizes the absolute di�erence

of the associated e�ect over placebo arg maxd |π̂m(d)− π̂m(d0)|. Note that this de�nition still covers

dose-response pro�les starting with a relatively small negative e�ect (called "J-shaped" pro�les) but

excludes those where the extend of the negative e�ect compared to placebo is too large (which is the

case for some quadratic models).

Furthermore, subtracting two times the degrees of freedom of Tm (which are equal to the di�erence

in the number of parameters involved in the two models) from the signed deviance di�erence signi�es

a penalization for complex models.

As the exact distribution of the test statistic in equation (3.7) is not known, the derivation of an

exact p-value can only be attained via permutation. Therefor, one repeatedly arranges a random

permutation of the patients' assignments to the di�erent dose groups and subsequently calculates the

test statistics for those permutations, denoted as (T
(b)
1 , . . . , T

(b)
M ) for the b-th of B permutations. The

(estimated) p-value for the observed test statistic T obsm can then be computed as follows

pobsm =
1

B

B∑
b=1

I(T (b)
m ≥ T obsm )
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where again, I(·) denotes the indicator function. In the following, it is referred to as "raw p-value".

The described approach can be justi�ed by the fact that, under the null hypothesis, the response

values are independent of the given dose and hence interchangeable.

Another option would be to use the asymptotic distribution of Tm. It is well-known that the likelihood

ratio statistic (part in curly brackets) is asymptotically chi-square distributed with dfm degrees of

freedom. Consequently, the asymptotic p-value for Tm is given by

pm =

 1
2 + 1

2P
(
χ2
dfm
≤ −(Tm + 2dfm)

)
if Tm + 2dfm ≤ 0

1
2P
(
χ2
dfm
≥ Tm + 2dfm

)
if Tm + 2dfm > 0

with χ2
dfm

being a chi-square distributed random variable with dfm degrees of freedom.

The last paragraph dealt with the procedure to derive p-values for the model-speci�c test statistics.

However, the main aim of the testing step is the establishment of PoC. It is done by comparing the

minimum of the individual p-values with an appropriate critical value c, i.e. PoC is established if

min
m

pm ≤ c. This is equivalent to the usage of the maximum statistic in the MCP-Mod approach.

Herein, the right choice for c ensures the preservation of the overall type-I error.

As for the individual p-values, the distribution of this minimum p-value can be estimated by means of

its permutational distribution. For each permutation b ∈ {1, . . . , B}, the minimum p-value is denoted

by min
m

p
(b)
m where

p(b)m =
1

B

B∑
l=1

I(T (l)
m ≥ T (b)

m )

is the p-value that corresponds to the test statistic T
(b)
m for model Mm under the b-th permutation.

To ensure that the type-I error of falsely declaring PoC is kept below the global signi�cance level of

α, c has to be equal to the α-percentile of the distribution of min
m

pm.

Alternatively to the adjustment of the critical value, one can use the step-down procedure proposed by

Westfall and Young (1993) for the direct adjustment of the p-values as presented in subsection 2.2.3.

The procedure adjusts the p-values in an ordered fashion, starting with the one corresponding to

the most signi�cant model. The adjustment of this minimum p-value is based on the permutational

minimum p-value distribution; all subsequent adjustments are carried out on the basis of stepwise

reduced sets. This implies that the adjusted version of the i-th smallest p-value is equal to "the

proportion of permutations for which the minimum p-value over the [M − i+ 1] remaining models is

smaller than the observed one" (Klingenberg, 2009).

As already stated in subsection 2.2.3, the stepwise adjustment procedure ensures the preservation of

the FWER at a speci�ed level α when conducting all model-speci�c tests simultaneously. At the same

time, the FWER for the PoC test is controlled by rejecting the global hypothesis if one of the adjusted

p-values does not exceed the global signi�cance level α.

Modelling of the Dose-Response Relationship & Estimation of the MED

Analogously to the previously described approaches, the �nal model can either be the best of all can-

didate models or a model obtained by averaging over all models that are signi�cantly di�erent from a
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model with intercept only. Methods for the �tting of the �nal model are not mentioned in the paper.

However, the function that is implemented to �t the dose-response model in R calls the glm function

which uses Iteratively Reweighted Least Squares (IWLS) estimation.

For the determination of the MED under a speci�c model Mm, one can use the same de�nition and

estimator as described in subsection 2.3.3, formulae (2.13) and (2.14b) respectively. If the assumed

model is relatively simple with respect to the predictor, as it is the case for models M1 or M6 in

Table 3.2, the MED estimate can be obtained by solving a polynomial. For more complex predictors,

numerical optimization methods such as the gradient descent, Newton's method or the Quasi-Newton

method are necessary.

In case the �nal model is not the best of all candidate models but the result of model averaging, the

true MED is also a (weighted) average of the MED estimates from each model (if existent)

M̂ED =

∑
m
wmM̂EDm∑
m
wm

.

Herein, the weights wm have to be chosen suitably. Common examples are

• wm = exp( 1
2Tm),

such that a ratio of weights is equal to the likelihood ratio of two models provided that they

have the same number of parameters,

• wm ∝ exp(− 1
2ICm)

with ICm being an information criterion for model Mm (e.g. AIC or BIC; the MCPMod function

for the original MCP-Mod approach uses AIC); see Bornkamp (2015),

• wm =
P(Mm) exp(− 1

2 ICm)∑K
l=1 P(Ml) exp(− 1

2 ICl)

with prior model weights P(Mm) which is a generalized version of the previous weights and has

been proposed in Bornkamp et al. (2009),

• wm = P(Mm|D),

the posterior distribution of the model given the observed data; a Bayesian approach described

for example in Hoeting et al. (1999).

Although only presented for binary data, this approach can also be applied for other data situations

such as count data, other non-normal continuous data and repeated measurements, as long as the

model �tting process is not too complex. Some of the mentioned data situations demand the usage of

non-likelihood-based estimation methods for the model parameters, for example via GEEs. If this is

the case, the test statistic proposed in the original paper can be replaced by a penalized generalized

score statistic (see Boos, 1992).

Realization in R

As already stated at the beginning of this section, the R implementation of the Klingenberg method

is available on the author's homepage. The candidate models can be speci�ed by uniting the required

information (distribution family, link function, structure of the predictor) in a list object. The
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speci�cations are analogous to those of the glm function to �t a Generalized Linear Model. If no

predictor is speci�ed, a linear relationship is assumed. Models of the form a + b(dose + o� )p can

be de�ned by the command model=pow(dose,p, <off, dmax>) where off is optional. If p=0, the

model includes the logarithm of the dose instead of the original dose. In addition, entering a value for

dmax implies that the maximum response is assumed at the speci�ed dose instead of the highest one.

Finally, all models are stored together in a list object. Optionally, one can provide a label for each

candidate model in the same statement. The models can be plotted by means of the plotModels

function for a given placebo e�ect and a maximum e�ect (to be speci�ed in the arguments low and

high respectively).

For the analysis of the data, the response data has to be handed over in the form of a matrix. This

matrix has to contain the number of responders for every dose group in the �rst column and the

number of non-responders in the second column. Hence, the row sums are equal to the sample sizes in

the individual dose groups. The permutation test is implemented in the permT function. It �rst �ts the

models in the candidate set to the data and then computes the test statistics and the corresponding

adjusted p-values. Besides, it is able to determine the MED for a given target e�ect entered in the

clinRel argument. A plot of the most signi�cant model can be obtained by using the plot with the

object resulting of the permT function as a parameter.

For more detailed information, see the example code on the homepage.
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Simulations

The present chapter contains the descriptions and results of simulations conducted to investigate cer-

tain aspects of the approaches presented in this thesis. All investigations are made in a setting of

binary outcome data collected in a parallel group design.

The aim of the �rst set of simulations is to compare the methods for binary data presented in sec-

tion 3.2 with regard to their power and type-I error results as well as the precision of the target dose

estimates. As already seen in subsection 3.2.1, the naive application of the original MCP-Mod meth-

ods to binary distributed outcome data leads to a loss of power and in some cases also to a substantial

in�ation of the type-I error. Hence, this approach is not further investigated. The simulations are

restricted to the enhanced MCP-Mod method for binary data developed by Pinheiro et al. and the

Klingenberg approach.

The second section of this chapter is addressing two di�erent approaches for combining the target

dose results of two separate studies to ideally come to a common target dose.

The underlying scenario for the simulations is the following:

The aim is to �nd the optimal dose for a new drug in patients su�ering from a chronic disease. From

other substances in this indication, it can be suspected that the patients' reactions will be di�erent

depending on whether or not they were unsuccessfully pretreated with a certain agent. Therefore,

dose-�nding will be initially done independently for the two subpopulations. Patients who failed to

respond to the previous treatment are called "Failures", those that have not been pretreated are

referred to as "Naives". The Naives will be randomized into �ve dose groups: 0 mg, 90 mg, 120

mg, 180 mg and 240 mg; the Failures will be assigned to only four di�erent dose groups: 0 mg, 90

mg, 150 mg and 240 mg. For each of the subpopulations, a high and a low response scenario will be

investigated. The assumed response rates characterizing these scenarios are presented in Table 4.1.

Table 4.1: Assumed Response Rates for the Simulations

Population Scenario 0 mg 90 mg 120 mg 150 mg 180 mg 240 mg

Naives
High Scenario 0.3 (0.3) 0.3 0.5 0.7

Low Scenario 0.3 (0.3) 0.3 0.5 0.6

Failures
High Scenario 0.25 (0.25) 0.25 (0.35) 0.45 0.65

Low Scenario 0.25 (0.25) 0.25 (0.35) 0.45 0.55

The numbers not written in parentheses (response rates for dose groups 0 mg, 120 mg, 180 mg and

240 mg) are used for the (pre-)speci�cation of the candidate models, and hence represent the prior

knowledge for the estimation of the initial model parameters. The additional ones in parentheses are

only used for the generation of the data.

Not taking into account the latter information for the prespeci�cation of the candidate models re�ects
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the situation when prior knowledge is available, for example from existing study data for similar com-

pounds, but the doses that are selected for the actual trial are not the same as the doses for which

the prior information is given.

Although the subpopulations potentially react di�erently on the drug under investigation, the ideal

case would be to identify a common optimal dose for the whole population. Therefore, two di�erent

possibilities for the development of a universal dose recommendation are investigated by means of

simulations. Roughly spoken, on the one hand, one could aim for a pooled analysis, that is to �t

an overall model to the pooled data from both subpopulations and to derive the optimal dose from

the resulting dose-response curve. On the other hand, separate dose-response models could be �tted

and given they are not "too di�erent", the optimal doses resulting from these models are in a way

combined to �nd one common optimal dose.

In the following, the candidate models for the two approaches that will be compared for the use in

binary data are presented and illustrated by means of plots. The candidate models for the generalized

MCP-Mod approach are also used in the second part for the investigations concerning the combination

of target dose results.

In the �rst section of this chapter, the simulation macros to assess the performance of the methods are

explained and the comparison between the two methods is drawn on the basis of the obtained results.

The second section deals with the combination of study results. The principle of the two approaches

is delineated and their performance with respect to power, type-I error and precision of the MED

estimates is investigated via similar simulations as used for comparison part.

Candidate Models for the Generalized MCP-Mod Approach

The candidate models for the generalized MCP-Mod approach are de�ned on response level instead

of on parameter level to achieve a better comparability of the models over the two approaches. As a

consequence, the contrasts that result from these candidate models are also de�ned on response level.

Nevertheless, they can be used for the contrast test on parameter level as applying the logit func-

tion to the models on response level does not essentially change their shapes. The same proceedings

can be found in the example for binary data given in the paper by Pinheiro et al. (2014, Section 4.2.1).

The candidate set for the generalized MCP-Mod approach comprises the Emax model, the sigmoid

Emax model, the exponential model and the quadratic model with initial parameters derived from the

assumptions given in Table 4.1 (numbers that are not in parentheses).

Important to note is that the guesst function in R that is used for the estimation of the initial

parameters can only take into account the percentages of the maximum e�ect over placebo associated

with a certain set of doses if they are not zero, that is if the responses in the active dose groups are

di�erent from the placebo response. Therefore, to ensure that the information for the 120 mg dose

group is considered for the estimation of the initial model parameters, the percentage of the maximum

e�ect for this dose group is minimally increased by 0.1 percentage points.

Additionally, in order to determine the location and scale parameters, the maximum e�ect over placebo

is de�ned as the di�erence between placebo and maximum response plus 0.1 for the Naives and plus
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0.05 for the Failures. The resulting candidate shapes on response level are depicted in Figure 4.1(a)-

(d).
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4.1 (a): Naives: High Scenario
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4.1 (b): Naives: Low Scenario

Figure 4.1: Candidate Models for the Simulations: Generalized MCP-Mod Approach
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4.1 (c): Failures: High Scenario

Dose

M
od

el
 m

ea
ns

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250

emax exponential quadratic sigEmax
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As visible from those plots, the set of candidate models covers a broad range of dose-response pro�les;

the Emax model (blue curve) describes a relationship that is almost linear, the quadratic model (green

curve) represents a concave dose-response shape and the exponential (pink curve) and the sigmoid Emax

model (red curve) a convex one. The prior knowledge used for the computation of the guesstimates

is added to the plots as black rhombi.

Candidate Models for the Klingenberg Approach

As already stated in subsection 3.2.3, the candidate models for the Klingenberg approach are basically

GLMs and hence di�er from the models used for the generalized MCP-Mod approach. However, the

following candidate models for the Klingenberg approach are chosen to match those for the MCP-Mod

approach as good as possible to make the results comparable:

Table 4.2: Candidate Models for the Simulations of the Klingenberg Approach

Model Link Function Predictor

Log-Linear Model Logit β0 + β1 log(d+ 1)

Linear Model (Log-Link) Log β0 + β1d

Quadratic Model Logit β0 + β1d+ β2d
2

The corresponding plots of those candidate models are shown in Figure 4.2(a)-(d) for all scenarios.

Note that for the displayed plots, the models are only �tted to the placebo and the maximum e�ect.

Information about the expected responses related to other dosages is not taken into account. Besides,

no information will be extracted from this �tting process for the analysis of the data.

As before, the set of candidate models covers a broad range of dose-response shapes, i.e. convex

shapes are represented by the linear model with log-link, and concave shapes by the log-linear and the

quadratic model respectively. The �lled rhombi mark the model-predicted response rates associated

with the dose groups for which data shall be simulated.
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Figure 4.2: Candidate Models for the Simulations: Klingenberg Approach
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4.1 Comparison of the Methods for Binary Outcomes

The data sets that are generated for the comparison of the two methods shall contain 40 patients per

dose group for the Naives and 50 patients per dose group for the Failures such that the total number

of patients for the separate analyses of both subpopulations amounts to 200. This is true for the

power and type-I error simulations as well as for the simulation to assess the precision of the MED.

Simulation Macro for the Estimation of Power and Type-I Error

The data is generated according to the response rates that are assumed under the alternative hypoth-

esis (cf. Table 4.1) for the simulation of power, or according to the null hypothesis for the type-I error

simulation (i.e. response rates in all dose groups equal to placebo, namely 0.3 for the Naives and 0.25

for the Failures). The simulated data is then used for the test of PoC as described in subsection 3.2.2

and subsection 3.2.3 respectively.

The simulation and analysis steps are repeated 10 000 times for the generalized MCP-Mod approach

and 3 000 times with 3 000 permutations for the Klingenberg approach. The reduced number of sim-

ulation runs for the Klingenberg results is due to long run times caused by the permutation testing.

The test decisions of all simulation runs are stored together in a matrix. A positive test decision for

model m in simulation run r is coded as successrm = 1 if the adjusted p-value for model m is less than

or equal to α = 0.05; a negative test decision as successrm = 0 if the condition wasn't met. The prob-

ability of rejecting a model-speci�c null hypothesis given the null hypothesis is true (type-I error) and

under the alternative hypothesis (power) is estimated by calculating the frequencies of positive test de-

cisions (successrm = 1) per column, that is separately for each of the models. The overall power/type-I

error is then obtained by condensing the model-speci�c values with the help of a summary function

such as the minimum, maximum and mean. Beside these, another de�nition is derived from the PoC

decision rule: the frequency with which at least one model-speci�c test decision was positive within

a simulation run. This can be taken as an estimator for the power of rejecting the null hypothesis

for at least one model or for the type-I error of erroneously rejecting one model-speci�c null hypothesis.

Simulation Macro for the Precision Assessment

For the precision assessment, each of the candidate models is assumed to be the true dose-response

pro�le in one of the simulations. Consequently, data is generated according to the responses that are

predicted by this speci�c model. In the analysis step, all the models in the candidate set are �tted

to the simulated data, independent of which one was the true model chosen for the data generating

process. Based on the �tted dose-response functions, di�erent versions of the MED are estimated

(cf. equation (2.14b) and subsection 3.2.3). The clinically signi�cant e�ect that shall be induced by

the MED is de�ned to be a change of δ = 0.3 in the response rate. The set of estimates comprises

all model-speci�c MEDs as well as the mean MED over all models, the MED of the model with the

smallest AIC value and a weighted mean MED. For the latter, the weights are de�ned as in equation

(3.3). Important to mention here is that the model-speci�c MED estimate was set to "not applica-

ble" in case the corresponding model was not signi�cantly di�erent from a �at dose-response curve.

Furthermore, this estimate was not included in the determination of the mean MEDs. The estimates
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of all simulation runs are again collected in a matrix.

In a �nal step, the means, variances, Mean Square Errors (MSEs) and bias of the true MED for each

of the seven variants are estimated. To get a better impression of the precision of all the di�erent

MED estimates, their distributions are illustrated by means of box plots.

The number of simulation runs for the precision assessment is set to 10 000 for both approaches. This

is possible as only the models need to be �tted, the permutation test is not conducted here. For the

decision whether the MED estimate will be excluded due to a negative test decision, the asymptotic

p-value is used for the Klingenberg approach.

The macros for the generalized MCP-Mod approach are programmed in R, Version 3.0.3, the macros

for the Klingenberg approach in Version 2.14.2 as some functions of the stats package that are used

in the implemented functions were updated for newer R versions and hence, lead to errors.

4.1.1 Power and Type-I Error Results

The �rst characteristic for the comparison of the two approaches is the power. The simulation results

for the generalized MCP-Mod approach are displayed in Table 4.3, for the Klingenberg approach they

are listed in Table 4.4.

Table 4.3: Power Results for the Generalized MCP-Mod Approach

Scenario
Emax
Model

Expo-
nential
Model

Quadratic
Model

Sigmoid
Emax
Model

Power to
Reject at
least one

H0

Mean
Power

Minimum
Power

Maximum
Power

Naives High 0.9803 0.9963 0.9589 0.9944 0.9975 0.9824 0.9589 0.9963

Naives Low 0.9004 0.9312 0.8685 0.9087 0.9502 0.9022 0.8685 0.9312

Failures High 0.9908 0.9967 0.9778 0.9959 0.9982 0.9903 0.9778 0.9967

Failures Low 0.9227 0.9470 0.8859 0.9243 0.9618 0.9200 0.8859 0.9470

Table 4.4: Power Results for the Klingenberg Approach

Scenario
Log-
Linear
Model

Linear
Model
(Log-
Link)

Quadratic
Model

Power to
Reject at
least one

H0

Mean
Power

Minimum
Power

Maximum
Power

Naives High 0.7947 0.9870 0.9837 0.9897 0.9218 0.7947 0.9870

Naives Low 0.6493 0.9203 0.9047 0.9290 0.8248 0.6493 0.9203

Failures High 0.8883 0.9930 0.9927 0.9940 0.9580 0.8883 0.9930

Failures Low 0.7167 0.9327 0.9103 0.9397 0.8532 0.7167 0.9327

It becomes obvious that for each scenario, all models except the log-linear model used in the Klingen-

berg approach show power estimates exceeding the 80% power margin, most of them are even greater

than 90%. The power that matches the decision rule for the global PoC test for both approaches,

namely the power to detect a statistically signi�cant dose-response signal for at least one model, is

the most liberal of all overall power terms. That means it results in the highest number of rejected

global null hypotheses throughout all simulation runs and hence in the highest overall power.

Concerning the results for this power term, as well as for all other summarizing functions, the values

for the generalized MCP-Mod approach are slightly higher than the ones for the Klingenberg approach.

62



Chapter 4 Simulations

When comparing the power values for the concave (quadratic) models only, the power to detect a

non-�at dose-response is slightly higher for the Klingenberg approach than for the generalized MCP-

Mod approach. Comparable power values are obtained for the convex models (sigmoid Emax model

and exponential model in the generalized MCP-Mod approach versus linear model with log-link in

the Klingenberg approach). In conclusion, none of the two approaches can be identi�ed as clearly

superior to the other in terms of power.

The results of the type-I error simulations are again displayed in two separate tables, the ones for the

generalized MCP-Mod approach in Table 4.5, the ones for the Klingenberg approach in Table 4.6.

For all scenarios and all de�nitions of the type-I error, the estimates stay below the prespeci�ed

signi�cance level of α = 0.05 or only show negligible exceedances. This is true for both the generalized

MCP-Mod approach as well as for the Klingenberg approach. In general, the type-I error for the

Klingenberg approach is slightly higher than that for the generalized MCP-Mod approach throughout

all simulations, i.e. the signi�cance level seems to be better exploited by the Klingenberg approach.

This is desirable as a test that is too conservative (does not make use of the maximum error probability)

is usually less powerful. However, a loss in power could not be observed in the investigated scenarios.

Table 4.5: Type-I Error Results for the Generalized MCP-Mod Approach

Scenario
Emax
Model

Expo-
nential
Model

Quadratic
Model

Sigmoid
Emax
Model

Type-I
Error of
Rejecting
at least
one H0

Mean
Type-I
Error

Minimum
Type-I
Error

Maximum
Type-I
Error

Naives High 0.0282 0.0267 0.0269 0.0270 0.0449 0.0272 0.0267 0.0282

Naives Low 0.0254 0.0288 0.0246 0.0278 0.0440 0.0267 0.0246 0.0288

Failures High 0.0273 0.0277 0.0264 0.0289 0.0460 0.0276 0.0264 0.0289

Failures Low 0.0247 0.0274 0.0241 0.0291 0.0431 0.0263 0.0241 0.0291

Table 4.6: Type-I Error Results for the Klingenberg Approach

Scenario
Log-
Linear
Model

Linear
Model
(Log-
Link)

Quadratic
Model

Type-I
Error of
Rejecting
at least
one H0

Mean
Type-I
Error

Minimum
Type-I
Error

Maximum
Type-I
Error

Naives High 0.0293 0.0317 0.0323 0.0500 0.0311 0.0293 0.0323

Naives Low 0.0293 0.0317 0.0323 0.0500 0.0311 0.0293 0.0323

Failures High 0.0270 0.0287 0.0353 0.0513 0.0303 0.0270 0.0353

Failures Low 0.0270 0.0287 0.0353 0.0513 0.0303 0.0270 0.0353

To be able to assess more distinctively which of the two approaches is preferable, another set of

simulations has been conducted with dose-response signals that are not that highly signi�cant. The

dose groups as well as the sample size of 40 per group have been adopted from the �rst set of simulations

for the Naives.

Again, several scenarios for the response rates have been considered (cf. Table 4.7): a scenario with

a weak dose-response signal, a moderate scenario and a scenario with a strong dose-response signal.

Note that even for the best of those scenarios, the corresponding dose-response signal is not as strong

as in the previous settings.
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Table 4.7: Assumed Response Rates for the Second Set of Simulations

Scenario 0 mg 90 mg 120 mg 180 mg 240 mg

Low Dose-Response Signal 0.35 0.35 0.4 0.5 0.5

Moderate Dose-Response Signal 0.35 0.35 0.35 0.5 0.55

High Dose-Response Signal 0.3 0.3 0.4 0.5 0.6

As intended, the estimated power for the second set of scenarios (cf. Tables 4.8 and 4.9) is in general

(substantially) lower than in Tables 4.3 and 4.4.

However, the comparison between the two approaches reveals that also for the second set of scenarios,

no clear preference for one of the approaches can be inferred. Both result in similar power values,

independent of the underlying scenario. The modest inferiority of the Klingenberg approach could be

explained by the fact that the corresponding candidate set only comprises three di�erent candidate

models instead of four models as for the generalized MCP-Mod approach.

Table 4.8: Power Results for the Generalized MCP-Mod Approach - Part 2

Scenario
Emax
Model

Expo-
nential
Model

Quadratic
Model

Sigmoid
Emax
Model

Power to
Reject at
least one

H0

Mean
Power

Minimum
Power

Maximum
Power

Low 0.3900 0.3246 0.3892 0.2457 0.4465 0.3374 0.2457 0.3900

Moderate 0.6018 0.6351 0.5695 0.5813 0.7038 0.5967 0.5695 0.6351

High 0.8328 0.7985 0.8190 0.7285 0.8805 0.7947 0.7285 0.8328

Table 4.9: Power Results for the Klingenberg Approach - Part 2

Scenario
Log-
Linear
Model

Linear
Model
(Log-
Link)

Quadratic
Model

Power to
Reject at
least one

H0

Mean
Power

Minimum
Power

Maximum
Power

Low 0.3267 0.4133 0.3567 0.4473 0.3656 0.3267 0.4133

Moderate 0.3727 0.6300 0.5833 0.6520 0.5287 0.3727 0.6300

High 0.7393 0.8453 0.8007 0.8603 0.7951 0.7393 0.8453

Apart from the power, the same scenarios have also been investigated in terms of the type-I error.

However, the results are similar to those already presented in Tables 4.5 and 4.6 for the �rst set of

simulations and hence, are not shown here.

4.1.2 Precision Results

The second aspect for the comparison of the two approaches is the precision of the target dose es-

timate, that is of the MED. Separate simulations are conducted for every of the four scenarios and

every assumed true dose-response model within these scenarios. As already described in a previous

section, seven di�erent estimates of the MED have been collected for the generalized MCP-Mod ap-

proach and six di�erent estimates for the Klingenberg approach respectively. For each simulation,

the precision of these estimates is illustrated by means of a plot. Each plot comprises a single box

plot for one version of the MED estimate. The red horizontal line marks the MED according to the
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true underlying model. Important to state is that an estimate for the MED is only available for those

simulation runs in which the prespeci�ed e�ect over placebo of δ = 0.3 is achieved at a dose between

0 and 240 mg (i.e. within the dose range of the study), else it is not applicable. This means that the

box plots display the conditional distribution of the MED estimates, given the estimated target dose

does not exceed 240 mg.

Furthermore, as stated in subsection 4.1, the MED estimate for a speci�c model was only included

for the precision assessment if the corresponding model was shown to be signi�cantly di�erent from

a non-�at dose-response curve. However, the box plots do not change remarkably when generated

without this restriction (cf. plots in the Appendix, subsection B.2).

The plots of the results for the two scenarios of the Naives are presented in Tables 4.10 and 4.11. For

both scenarios, all MED estimates for the generalized MCP-Mod approach show good performances.

None of them can be identi�ed as severely biased or highly variable. If the true underlying model is

convex (exponential or sigmoid Emax model), the variance of the estimates is generally smaller. On

the contrary, if the true model is either the Emax model or the quadratic model, the estimates are

more variable. This can be explained by the fact that in the latter cases, the MED is located in a

�atter part of the dose-response curve. This means that although the given dose varies, the response

rate is almost constant. However, if the MED is located in a steep part, as it is the case for convex

model shapes, a small change in the dose implies a large change in the response rate.

For the Klingenberg approach, the estimates for the high scenario also show acceptable precision char-

acteristics. However, the performances of the estimates are more heterogeneous. The linear model

with log-link results in a highly biased MED estimate if one of the concave models (log-linear model or

quadratic model) is the true underlying dose-response pro�le. On the other hand, if the linear model

with log-link is the true dose-response relationship, the MED estimate resulting from the log-linear

model proposes a value that is much too small. In general, the estimates for the Klingenberg approach

are less precise than the ones for the �rst approach and also tend to have a higher variance.

When considering the plots for the low scenario, it becomes obvious that it is indeed the conditional

distribution of the estimates which is shown. The estimates are clearly biased towards smaller doses

and vary clearly. From these plots one can deduce that the dose range of 0 to 240 mg is not appropriate

for the low response scenario.

As the results for the Failures are very similar to the ones shown for the Naives, the plots are not

included in the main part of this thesis. They can be found in the Appendix (subsection B.1).

65



Chapter 4 Simulations

Generalized MCP-Mod Approach
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4.2 Combined Analysis of Study Data

As stated in the introductory paragraph, the aim of the second section of this chapter is to investigate

two approaches for the combination of the target dose results for the two subpopulations. Ideally,

one would like to see results leading to a common optimal dose for the whole population which is

independent from the speci�c population or line of treatment. The criteria for the comparison of the

approaches are the same as in the last section: the power, the preservation of the type-I error and the

precision of the common target dose estimate.

The two approaches to be considered in this section are the following:

• pooled analysis:

A contrast test is conducted for H0 : �at dose-response curve for the overall population. The

contrasts stem from the candidate models with initial parameters calculated on the basis of the

assumed response rates for both subpopulations. If the null hypothesis can be rejected, the best

model is �tted to the pooled data and the MED is estimated from this overall dose-response

model.

• combination of separate analyses:

The subpopulations are separately tested for a non-�at dose-response. The global test is then

characterized by the null hypothesis of H0 : �at dose-response curve for the Naives and the

Failures and the corresponding alternative hypothesis of HA : non-�at dose-response curve for

the Naives and/or the Failures. The global null hypothesis can be rejected if one of the separate

p-values is smaller than α
2 , i.e. Bonferroni correction is used to account for multiplicity (cf.

subsection 2.2.3). An alternative multiplicity adjustment is the Benjamini-Hochberg procedure

(cf. subsection 2.2.3) which means that the smaller one of the two separate p-values is compared

against α
2 whilst the maximum p-value is compared against α. Again, the global null hypothesis

can be rejected if one of the p-values is smaller than its comparative value.

If the global null hypothesis can be rejected, a separate dose-response model is �tted for each

subpopulation and the corresponding MEDs are estimated. The common optimal dose is then

chosen as the MED that produces response rates that are higher than the placebo response by

at least δ for both subpopulations. In case of monotonously increasing dose-response functions,

this is equal to the maximum of both MED estimates. The combination of the MED results can

be additionally restricted by demanding that the MED estimates for the Naives and the Failures

should not be "too di�erent", for example, they should not di�er by more than 30 mg (referred

to as the restricted version of the combination approach in the results section).

Both approaches will be implemented in macros similar to the ones that have been described in

section 4.1. For the power and type-I error simulations, all combinations of scenarios for the Naives

and the Failures will be considered. For the simulations to investigate the precision of the MED

estimate, a selection of four di�erent scenarios will be considered. The scenarios are chosen such that

the extent of similarity between the true MEDs of the Naives and the Failures varies. In any case, it

is assumed that the true underlying dose-response model is the same for the Naives and the Failures.

Otherwise, it would be doubtful if a combination of the results makes sense at all. The results of such

a scenario with di�erent dose-response models is subject to further research.

As the generalized MCP-Mod method showed better results in terms of the precision of the MED

estimate than the Klingenberg approach, the analysis of the data is done according to this approach

only.
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4.2.1 Power and Type-I Error Results

The results of the power and type-I error simulations for the pooled analysis approach are presented in

Tables 4.12 and 4.13. Study data has been simulated according to the response rates given in Table 4.1

with 40 patients per dose group for the Naives and 50 patients per dose group for the Failures.

The power estimates are very similar across the scenarios and all models provide impressively good

results. All of the power values are above 99%.

Table 4.12: Power Results for the Pooled Analysis

Scenario
Naives

Scenario
Failures

Emax
Model

Expo-
nential
Model

Quadratic
Model

Sigmoid
Emax
Model

Power to
Reject
at least
one H0

Mean
Power

Minimum
Power

Maximum
Power

High High 1 1 0.9999 1 1 1 0.9999 1

High Low 0.9999 1 0.9986 0.9999 1 0.9996 0.9986 1

Low High 1 1 0.999 1 1 1 0.9990 1

Low Low 0.9977 0.9990 0.9945 0.9976 0.9996 0.9972 0.9945 0.9990

When looking at the estimates for the type-I error of rejecting at least one individual null hypothesis

(seventh column), the estimate for the second scenario (high response scenario for the Naives and low

response scenario for the Failures) is slightly in�ated.

Table 4.13: Type-I Error Results for the Pooled Analysis

Scenario
Naives

Scenario
Failures

Emax
Model

Expo-
nential
Model

Quadratic
Model

Sigmoid
Emax
Model

Type-I
Error of
Reject-
ing at

least one
H0

Mean
Type-I
Error

Minimum
Type-I
Error

Maximum
Type-I
Error

High High 0.0311 0.0233 0.0324 0.0227 0.0452 0.0274 0.0227 0.0324

High Low 0.0350 0.0285 0.0358 0.0268 0.0506 0.0315 0.0268 0.0358

Low High 0.0301 0.0245 0.0319 0.0247 0.0465 0.0278 0.0245 0.0319

Low Low 0.0319 0.0277 0.0321 0.0246 0.0471 0.0291 0.0246 0.0321

This becomes even more obvious if the di�erence in the sample sizes per dose group between the

subpopulations is higher, for example 30 patients for the Naives and 60 for the Failures. The type-I

error results for this scenario are shown in Table 4.14.

Table 4.14: Type-I Error Results for the Pooled Analysis -
Sample Sizes of 30 (Naives) and 60 (Failures) per Group

Scenario
Naives

Scenario
Failures

Emax
Model

Expo-
nential
Model

Quadratic
Model

Sigmoid
Emax
Model

Type-I
Error of
Reject-
ing at

least one
H0

Mean
Type-I
Error

Minimum
Type-I
Error

Maximum
Type-I
Error

High High 0.0317 0.0253 0.0329 0.0240 0.0469 0.0285 0.0240 0.0329

High Low 0.0343 0.0294 0.0349 0.0272 0.0501 0.0315 0.0272 0.0349

Low High 0.0335 0.0269 0.0365 0.0268 0.0512 0.0309 0.0268 0.0365

Low Low 0.0313 0.0289 0.0332 0.0277 0.0502 0.0303 0.0277 0.0332
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The in�ation of the type-I error for the pooled analysis approach results from the fact that the placebo

responses for the Naives and the Failures are not identical and at the same time, the dose groups that

were chosen for the single trials do not coincide. Hence, as presented in Table 4.15, the mean overall

response rates are no longer constant over all dose groups and thus, �tting a model to the pooled

data does not necessarily result in a constant function. Therefore, the null hypothesis of a �at overall

dose-response curve tends to be rejected too often.

Table 4.15: Mean Response Rates under H0 for the Pooled Analysis

Population 0 mg 90 mg 120 mg 150 mg 180 mg 240 mg

Naives 0.3 0.3 0.3 0.3 0.3

Failures 0.25 0.25 0.25 0.25

Overall 0.2722 0.2722 0.3 0.25 0.3 0.2722

Apart from this visual explanation, the inappropriateness of a pooled analysis approach in this setting

also becomes obvious when considering the distribution of the test statistic under H0. For the single

trials, the mean responses under the null hypothesis are constant over the dose groups. Hence, as the

elements of the contrast vector have to sum up to 0, the nominator of the test statistic (product of

contrast vector and mean vector of responses) is expected to be zero. Consequently, the contrast test

statistic follows a central t-distribution.

However, with varying mean responses across the dose groups as it is the case for the present pooled

analysis approach, the centrality of the t-distribution of the contrast test statistic is no longer valid.

As a results of that, choosing the critical value as a quantile of that distribution does not ensure the

preservation of the type-I error at the given signi�cance level α.

For further support of this explanation, the same simulations have been repeated but response data

for the Failures has been generated for the same dose groups that were used for the Naives, namely

0 mg, 90 mg, 120 mg, 180 mg and 240 mg, together with a balanced number of 40 patients per dose

group over both subpopulations. The results of these simulations are presented in Tables 4.16 and 4.17.

The power estimates are very similar to the ones from the �rst set of simulations such that the power

clearly exceeds the 90% margin for all cases. Again, the values do not vary much across the four

scenarios.

Table 4.16: Power Results for the Pooled Analysis - Equivalent Dose Groups and Equal Sample Sizes

Scenario
Naives

Scenario
Failures

Emax
Model

Expo-
nential
Model

Quadratic
Model

Sigmoid
Emax
Model

Power to
Reject
at least
one H0

Mean
Power

Minimum
Power

Maximum
Power

High High 0.9998 1 0.9995 1 1 0.9998 0.9995 1

High Low 0.9995 0.9998 0.9978 0.9997 0.9999 0.9992 0.9978 0.9998

Low High 0.9991 1 0.9983 0.9998 1 0.9993 0.9983 1

Low Low 0.9964 0.9987 0.9911 0.9970 0.9990 0.9958 0.9911 0.9987

Again endorsing the above stated explanation, the estimates for the type-I error of rejecting at least

one model-speci�c H0 are now preserving the signi�cance level of α = 5% for all scenarios.

Equivalent results can be observed if choosing the same dose groups for both subpopulations but
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with di�erent sample sizes per dose group (cf. Appendix, section C). In this case, the overall mean

responses are weighted means of the responses in the single trials, but still, they are constant over all

dosages.

Table 4.17: Type-I Error Results for the Pooled Analysis - Equivalent Dose Groups and Equal Sample
Sizes

Scenario
Naives

Scenario
Failures

Emax
Model

Expo-
nential
Model

Quadratic
Model

Sigmoid
Emax
Model

Type-I
Error of
Reject-
ing at

least one
H0

Mean
Type-I
Error

Minimum
Type-I
Error

Maximum
Type-I
Error

High High 0.0295 0.0296 0.0287 0.0283 0.0463 0.0290 0.0283 0.0296

High Low 0.0283 0.0281 0.0274 0.0293 0.0476 0.0283 0.0274 0.0293

Low High 0.0279 0.0283 0.0268 0.0279 0.0455 0.0277 0.0268 0.0283

Low Low 0.0287 0.0285 0.0302 0.0276 0.0482 0.0288 0.0276 0.0302

As a consequence, the approach of conducting an (unmodi�ed) overall contrast test for the pooled

data set of Naives and Failures leads to an in�ation of the type-I error if the setting for the single

studies do not coincide, i.e. the studies use di�erent dose groups and/or sample sizes. Therefore, this

approach cannot be recommended in a general setting.

However, if the global p-value is derived from the appropriate noncentral t-distribution with noncen-

trality parameter

τ =
C>µ0

(C>SC)
1
2

where µ0 is the overall mean vector of responses under H0, the in�ation of the type-I error can be

prevented. The corresponding simulation results are presented in Tables 4.18 and 4.19.

The power estimates are only slightly smaller than those that result from the use of an unmodi�ed

p-value and the type-I error estimates stay below the signi�cance level of α = 5% for all scenarios.

Table 4.18: Power Results for the Pooled Analysis - p-Value from Noncentral t-Distribution

Scenario
Naives

Scenario
Failures

Emax
Model

Expo-
nential
Model

Quadratic
Model

Sigmoid
Emax
Model

Power to
Reject
at least
one H0

Mean
Power

Minimum
Power

Maximum
Power

High High 1 1 0.9999 1 1 1 0.9999 1

High Low 0.9997 1 0.9984 0.9998 1 0.9995 0.9984 1

Low High 0.9993 0.9998 0.9984 0.9995 0.9999 0.9993 0.9984 0.9998

Low Low 0.9980 0.9991 0.9944 0.9981 0.9995 0.9974 0.9944 0.9991

Table 4.19: Type-I Error Results for the Pooled Analysis - p-Value from Noncentral t-Distribution

Scenario
Naives

Scenario
Failures

Emax
model

Expo-
nential
model

Quadratic
model

Sigmoid
Emax
model

Type-I
error of
rejecting
at least
one H0

Mean
Type-I
error

Minimum
Type-I
error

Maximum
Type-I
error

high high 0.0279 0.0275 0.0281 0.0267 0.0450 0.0276 0.0267 0.0281

high low 0.0293 0.0271 0.0305 0.0273 0.0475 0.0286 0.0271 0.0305

low high 0.0299 0.0269 0.0313 0.0263 0.0464 0.0286 0.0263 0.0313

low low 0.0302 0.0269 0.0311 0.0271 0.0474 0.0288 0.0269 0.0311
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In practice, the computation of the true noncentrality parameter under H0 may not be perfect as an

estimate of the overall mean vector of responses under H0 is needed. This may involve the risk of not

preserving the type-I error due to a misspeci�cation.

The second approach investigated in this thesis is the combination of results stemming from sep-

arate analyses of the single trials. The power and type-I error estimates presented �rst (in Ta-

bles 4.20 and 4.21) are a result of the combination of p-values using the Bonferroni correction for

multiple testing.

As already observable for the pooled approach, the estimated power is extremely high for all of the

considered scenarios. All values are close to 100% power.

Table 4.20: Power Results for the Combination of Separate Analyses (Bonferroni Correction)

Scenario
Naives

Scenario
Failures

Emax
Model

Expo-
nential
Model

Quadratic
Model

Sigmoid
Emax
Model

Power to
Reject
at least
one H0

Mean
Power

Minimum
Power

Maximum
Power

High High 0.9987 0.9999 0.9961 0.9999 0.9999 0.9987 0.9961 0.9999

High Low 0.9954 0.9992 0.9845 0.9987 0.9997 0.9945 0.9845 0.9992

Low High 0.9969 0.9997 0.9912 0.9991 0.9999 0.9967 0.9912 0.9997

Low Low 0.9751 0.9868 0.9584 0.9789 0.9915 0.9748 0.9584 0.9868

Also the results of the type-I error simulations show very good results. All values stay below the critical

margin of α = 5% and the estimated type-I error of rejecting at least one of the null hypotheses is

close to 5%. Hence, the signi�cance level is adequately exploited.

Table 4.21: Type-I Error Results for the Combination of Separate Analyses (Bonferroni Correction)

Scenario
Naives

Scenario
Failures

Emax
Model

Expo-
nential
Model

Quadratic
Model

Sigmoid
Emax
Model

Type-I
Error of
Reject-
ing at

least one
H0

Mean
Type-I
Error

Minimum
Type-I
Error

Maximum
Type-I
Error

High High 0.0227 0.0238 0.0225 0.0253 0.0408 0.0236 0.0225 0.0253

High Low 0.0243 0.0258 0.0235 0.0272 0.0431 0.0252 0.0235 0.0272

Low High 0.0249 0.0250 0.0253 0.0257 0.0425 0.0252 0.0249 0.0257

Low Low 0.0248 0.0251 0.0240 0.0257 0.0427 0.0249 0.0240 0.0257

Alternatively to the Bonferroni correction, the same simulations are conducted using the Benjamini-

Hochberg correction for the �nal test decision. The Benjamini-Hochberg method is slightly less

conservative than the Bonferroni correction. The power and type-I error results are presented in

Tables 4.22 and 4.23.

Table 4.22: Power Results for the Combination of Separate Analyses (Benjamini-Hochberg Correction)

Scenario
Naives

Scenario
Failures

Emax
Model

Expo-
nential
Model

Quadratic
Model

Sigmoid
Emax
Model

Power to
Reject
at least
one H0

Mean
Power

Minimum
Power

Maximum
Power

High High 0.9988 0.9999 0.9972 0.9999 0.9999 0.9990 0.9972 0.9999

High Low 0.9969 0.9994 0.9876 0.9990 0.9998 0.9957 0.9876 0.9994

Low High 0.9976 0.9999 0.9926 0.9991 0.9999 0.9973 0.9926 0.9999

Low Low 0.9792 0.9884 0.9640 0.9816 0.9926 0.9783 0.9640 0.9884
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As for the previous simulations, the power estimates are almost at 100% for all scenarios.

The estimates for the type-I error also look very good. They do not exceed the signi�cance level of

5% for any of the scenarios but at the same time, the signi�cance level is well exploited.

When comparing the results for the Benjamini-Hochberg correction against those for the Bonferroni

correction, the �rst is superior. The power estimates show higher values and the signi�cance level is

better exploited. However, di�erences are small such that both of the approaches can be recommended.

Table 4.23: Type-I Error Results for the Combination of Separate Analyses (Benjamini-Hochberg
Correction)

Scenario
Naives

Scenario
Failures

Emax
Model

Expo-
nential
Model

Quadratic
Model

Sigmoid
Emax
Model

Type-I
Error of
Reject-
ing at

least one
H0

Mean
Type-I
Error

Minimum
Type-I
Error

Maximum
Type-I
Error

High High 0.0230 0.0239 0.0227 0.0253 0.0410 0.0237 0.0227 0.0253

High Low 0.0246 0.0259 0.0240 0.0273 0.0435 0.0255 0.0240 0.0273

Low High 0.0252 0.0252 0.0255 0.0261 0.0432 0.0255 0.0252 0.0261

Low Low 0.0252 0.0253 0.0242 0.0257 0.0430 0.0251 0.0242 0.0257

Altogether, the approach of the subsequent combination of the results for the single subpopulations

is preferable to a pooled analysis. It ensures the preservation of the type-I error for arbitrary settings

of the single trials and induces good power results at the same time.

4.2.2 Precision Results

As mentioned at the beginning of this chapter, only a choice of scenarios is considered for the precision

assessment. The intention of the selection is to cover di�erent extents of similarity between the true

MEDs of the Naives and the Failures, with di�erences in the true MEDs ranging from 3.99 mg up

to 61.88 mg. In any case, the true underlying dose-response pro�le according to which the data is

generated is assumed to be of the same family for both subpopulations. The four chosen scenarios

together with the corresponding di�erences of the true MEDs are listed in Table 4.24.

Table 4.24: Scenarios for the Precision Simulations for the Combined Analysis of Study Data

Scenario Naives Failures True Model
Di�erence of
True MEDs

Scenario 1 High Scenario High Scenario Exponential 3.99 mg

Scenario 2 High Scenario High Scenario Emax 16.02 mg

Scenario 3 Low Scenario Low Scenario Emax 25.81 mg

Scenario 4 High Scenario Low Scenario Emax 61.88 mg

For each of the scenarios, simulations have been performed using three di�erent types of analysis: the

pooled analysis, the combination of the separate study results and the restricted combination of the

separate study results for which the MED estimates must not di�er by more than 30 mg.

Just like for the comparison of the methods for binary data, the precision of the MED estimates

is again illustrated by means of box plots (Table 4.25). The red horizontal lines in the plots mark

the true MEDs for the Naives, the blue horizontal lines represent the true MEDs for the Failures.
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Pooled Analysis
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Chapter 4 Simulations

Additionally, a true overall MED has been determined on the basis of the candidate model which is

of the same family as the data generating model. The initial parameter estimates of this candidate

model have been calculated taking into account the prior knowledge for both subpopulations. The

true overall MED is depicted by the green horizontal lines.

Furthermore, the number of MED estimates that were included for the plot is added as a note in the

low right hand corner of the plot. The reason for exclusion can either be a non-signi�cant test result

in the �rst analysis step or, in the restricted combination approach, a di�erence in the MED estimates

that is too extreme and exceeds the prede�ned margin of 30 mg.

The plots show that the estimates of the pooled analysis stay below the true MEDs for the Naives

which is the lowest of the three types of true MEDs. This is true for almost all types of MED esti-

mates in all scenarios. That means using the pooled analysis approach, the MED is systematically

underestimated.

On the contrary, the estimates resulting from the combination of the subpopulation-speci�c estimates

mostly exceed the true MEDs for the Failures which is the highest of the true MEDs. However, this

is a consequence of the applied combination rule for the estimates as the overall MED is chosen to be

the maximum of the single MEDs for the Naives and the Failures.

The third approach, the restricted version of the combination of results, shows the best performance

of all three investigated approaches. The medians of the estimates coincide quite well with the true

overall MEDs for all di�erent versions of the MED and for all scenarios.

Concerning the variance of the estimates, no clear di�erence can be detected between the three ap-

proaches, i.e. none of them can be identi�ed as preferable over the others in terms of variability.

In conclusion, it is apparent that the combination of study results after the analyses of the separate

trials have been �nalized is a better approach than the pooled analysis, in terms of testing as well as

for the estimation of the target dose. Among the two combination approaches, there is no di�erence in

power and the preservation of the type-I error as the testing procedure is not a�ected by the restriction

for the combination of the MED estimates. However, the estimates for the restricted combination

approach �t better to the true overall MEDs than the ones for the unrestricted combination approach.

Furthermore, conditioning the combination of the single estimates on a certain extent of similarity

is well reasonable, either to the margin of 30 mg or another arbitrary value. Because if the single

estimates are too di�erent, a common dose may cause that patients from one subpopulation are

overdosed whereas others are also not adequately treated and could be medicated more appropriately.

So in this case, the conclusion is to recommend di�erent dosages depending on the success of a potential

�rst treatment.

76



Chapter 5

Discussion and Outlook

This thesis introduced the MCP-Mod approach as a hybridization of the methods that are commonly

used for the matter of dose-�nding, namely multiple comparisons and the parametric modelling of the

dose-response curve. In comparison to the original approach which is restricted to a very basic case of

normal data, an enhancement has been presented which enables the application of the approach also

to non-normal or heteroscedastic data as well as survival data, repeated measurements and others.

Both methods, the original approach as well as its enhancement, consist of two steps: a contrast

test is conducted to investigate if any of the models from a prede�ned candidate set is signi�cantly

di�erent from a �at dose-response curve. Models to be used for this approach are parametric models,

e.g. linear models, quadratic models or the so-called Emax model. If at least one of those models

achieves a positive test result, the one that describes the study data best is �tted and the target dose

is estimated from the resulting parametric function.

Furthermore, the related Klingenberg approach has been examined. Just like the two previous ap-

proaches, it also uni�es the PoC with a parametric modelling of the dose-response curve, but is

primarily developed for binary data. Contrary to the MCP-Mod approaches, the PoC is tried to be

established using penalized deviance di�erence statistics. The corresponding test decisions are made

on the basis of the permutational distribution of the test statistic.

After a theoretical introduction to these methods, the �rst aim of the practical part was to compare

the naive application of the original method to binary data with the other two methods. Criteria for

the comparison were the achieved power, the preservation of the type-I error and the precision of the

target dose estimate (here the MED). All these qualities have been estimated by means of simulations.

The naive application of the original MCP-Mod approach to binary data led to a loss in power and

a potential in�ation of the type-I error, hence it cannot be recommended for other situations than

normal data resulting from a simple study design.

Apart from that, a clear preference for one method could not be established, neither for the generalized

version of the MCP-Mod approach nor for the Klingenberg approach. The power and type-I error

results were very similar for both approaches. Only in terms of precision, the generalized MCP-Mod

approach is slightly preferable. The corresponding target dose estimates come out to be less variant

and tend to be more precise.

On the other hand, the Klingenberg approach is clearly in favour in terms of the interpretability of

the results as the dose-response models are directly de�ned on response level. Another advantage is

the use of GLMs which are common knowledge also for users without an in-depth understanding of

statistics. In contrast to this, the dose-response models for the generalized MCP-Mod approach are

de�ned on a parameter level. Hence, their interpretation is not straightforward, the results are not

self-explanatory, especially for non-statisticians.

77



Chapter 5 Discussion and Outlook

What is missing for both approaches is a recommendation for the appropriate designing of such a

study. Neither the paper by Klingenberg, nor the one by Pinheiro et al. proposes methods for the

identi�cation of the optimal dose groups to include in the study or for the sample size assessment.

Using the R function sampSize as implemented for the original approach leads to power values smaller

than the target power aimed for.

Consequently, this would be a topic for the further development of these approaches.

Beside the comparison of the approaches for binary data, the additional objective of the thesis was

the combination of target dose results of separate trials with the aim of obtaining a common dosage

proposal if adequate. Therefor, two di�erent procedures have been investigated with respect to the

same aspects as considered for the comparison of approaches in the �rst part, namely power, preser-

vation of the type-I error and the precision of the target dose estimate.

The �rst approach was a pooled analysis of the combined data set of both single trials according to the

generalized MCP-Mod approach. Simulations showed that for the considered scenarios, i.e. in case

the dose groups from the single trials do not coincide and the placebo responses are assumed to be dif-

ferent for the study populations, the pooled analysis approach leads to an in�ation of the type-I error.

This results from deriving the global p-value from a central t-distribution whereas the true distribution

of the maximum statistic under the global null hypothesis in this setting is a noncentral t-distribution.

One possible correction is the derivation of the p-value from the appropriate noncentral

t-distribution. Simulations con�rmed the preservation of the type-I error in this case. One could

also try to modify the computation of the optimal contrast vector such that the matrix multiplication

of this vector with the vector of mean overall responses under H0 equals zero. However, the success

of this method is subject to further investigation.

Alternatively to analyzing the pooled data, one could pool the results from the separate trials after

having �nalized the analyses of both, herein referred to as the combination of separate analyses ap-

proach. Therefor, the p-values resulting from the application of the MCP-Mod methods for non-normal

data are combined using either the Bonferroni correction for multiplicity or the Benjamini-Hochberg

procedure. The results for both correction methods are very similar. The achieved power for the con-

sidered scenarios is close to 100% and the type-I error has been preserved for all simulations. Also the

precision assessment was contenting. Even better results in terms of the precision of the target dose

estimate could be achieved by adding a restriction to the combination of population-speci�c MEDs.

This means that a common dosage is only recommended if the population-speci�c MEDs do not di�er

relevantly.

An additional aspect which hasn't been investigated is the precision of the combination approaches

in case the response data of the separate trials stem from di�erent model families. For the precision

assessment presented in this thesis, the responses for the two trials have been generated on the basis

of one family of dose-response models. Hence, the behaviour of the target dose estimate should be

examined also for this more inconvenient setting.

Furthermore, one question that arises for these approaches is how to identify the best matching model

from the set of candidate models most appropriately. Is it preferable to select the model based on

information criteria or to use model averaging techniques? This issue is addressed in a more general

context by Bornkamp (2015) and could be investigated more speci�cally for the background of these

unifying dose-�nding approaches.
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Other topics that go beyond this thesis and are worth future research are combinations of these uni�ed

approaches with adaptive designs and/or Bayesian methodology.

For example one could use the �rst part of an adaptive trial to learn about the rough shape of the dose-

response pro�le and use this information to adapt certain design features in the course of the interim

analyses, for example the sample size or the allocation of patients. Besides, one could add/change the

dose groups of the ongoing trial to aggregate the data around the suspected range for the target dose.

A study putting this into practice can be found in Selmaj et al. (2013).

Another approach is to de�ne a priori distributions for the model parameters as well as prior model

probabilities and update the design features according to the posterior means of the model parameters

and the posterior model probabilities computed at the interim analyses. The methodology of such an

adaptive design involving Bayesian statistics is presented in Bornkamp et al. (2011).
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Appendix

A MCP-Mod for Binary Data: Simulation Results for the Naive

Approach (Relates to subsection 3.2.1)

Table A.1: Power for the Naive Application of the MCP-Mod Approach to Binary Data (Full Table)

Scenario Optimal Doses Sample Size
Average
Power

Mini-
mum
Power

Maxi-
mum
Power

Power
to

Reject
at least
one H0

Power
Linear
Model

Power
Emax
Model

Power
Expo-
nential
Model

Power
Quadratic
Model

Scenario 1 0-20-22.5-50

9 5 3 9 0.6818 0.6739 0.6904 0.7657 0.6904 0.674 0.689 0.6739

20 20 20 20 0.9501 0.9485 0.9527 0.9646 0.9527 0.9485 0.9492 0.9498

40 40 40 40 0.9992 0.999 0.9994 0.9997 0.9994 0.999 0.9991 0.9991

Scenario 2 0-5-27.5-50 2 2 2 3 0.8212 0.8113 0.8247 0.8308 0.8247 0.8113 0.8245 0.8243

Scenario 3 0-7.5-10-25-27.5-50
42 11 10 8 27 54 0.4385 0.2691 0.4991 0.5096 0.4991 0.2691 0.4988 0.4869

60 60 60 60 60 60 0.8577 0.8217 0.8742 0.9017 0.8742 0.8217 0.8719 0.863

Scenario 4 0-5-25-50

12 6 10 11 0.6164 0.5814 0.6471 0.6709 0.5938 0.6431 0.5814 0.6471

70 70 70 70 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

150 150 150 150 1 1 1 1 1 1 1 1

Table A.2: Type-I Error for the Naive Application of the MCP-Mod Approach to Binary Data (Full Table)

Scenario Optimal Doses Sample Size
Average
Type-I
Error

Mini-
mum
Type-I
Error

Maxi-
mum
Type-I
Error

Type-I
Error of
Reject-
ing at
least
one H0

Type-I
Error
Linear
Model

Type-I
Error
Emax
Model

Type-I
Error
Expo-
nential
Model

Type-I
Error

Quadratic
Model

Scenario 1 0-20-22.5-50

9 5 3 9 0.0425 0.0393 0.0456 0.0493 0.0394 0.0456 0.0393 0.0456

20 20 20 20 0.054 0.0518 0.0553 0.0659 0.0538 0.055 0.0518 0.0553

40 40 40 40 0.0444 0.0434 0.0456 0.0579 0.0434 0.0456 0.0434 0.0452

Scenario 2 0-5-27.5-50 2 2 2 3 0.0352 0.0192 0.0487 0.0519 0.0265 0.0487 0.0192 0.0465

Scenario 3 0-7.5-10-25-27.5-50
42 11 10 8 27 54 0.0298 0.0051 0.047 0.048 0.0439 0.0051 0.047 0.0231

60 60 60 60 60 60 0.098 0.0636 0.1127 0.1254 0.1126 0.0636 0.1127 0.1031

Scenario 4 0-5-25-50

12 6 10 11 0.0638 0.0609 0.066 0.0891 0.0625 0.066 0.0609 0.0659

70 70 70 70 0.0353 0.0346 0.0362 0.0548 0.035 0.0362 0.0346 0.0354

150 150 150 150 0.033 0.0327 0.0334 0.0481 0.0327 0.0327 0.0334 0.0333
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Appendix

B Comparison of the Methods for Binary Data - Precision

(Relates to subsection 4.1.2)

B.1 Box Plots of MED Estimates from Signi�cant Models

Generalized MCP-Mod Approach
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B.2 Box Plots of MED Estimates from Signi�cant & Non-Signi�cant Models

Generalized MCP-Mod Approach
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Unconditional Distributions
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Table B.6: Precision of Target Dose Estimates - Naives, Low Response Scenario -
Unconditional Distributions
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Generalized MCP-Mod Approach
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Table B.7: Precision of Target Dose Estimates - Failures, High Response Scenario -
Unconditional Distributions
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Table B.8: Precision of Target Dose Estimates - Failures, Low Response Scenario -
Unconditional Distributions
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C Combination of Study Results - Type-I Error for Pooled

Analysis Approach (Relates to subsection 4.2.1)

Table C.9: Type-I Error Results for the Pooled Analysis - Equivalent Dose Groups and Di�erent
Sample Sizes

Scenario
Naives

Scenario
Failures

Emax
Model

Expo-
nential
Model

Quadratic
Model

Sigmoid
Emax
Model

Type-I
Error of
Reject-
ing at

least one
H0

Mean
Type-I
Error

Minimum
Type-I
Error

Maximum
Type-I
Error

high high 0.0288 0.0303 0.0286 0.0302 0.0487 0.0295 0.0286 0.0303

high low 0.0265 0.0303 0.0256 0.0302 0.0470 0.0282 0.0256 0.0303

low high 0.0276 0.0285 0.0272 0.0288 0.0460 0.0280 0.0272 0.0288

low low 0.0304 0.0298 0.0305 0.0302 0.0503 0.0302 0.0298 0.0305
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