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Abstract

In this master thesis some properties of bags of imprecise classification trees, as
introduced in Abellán and Masegosa (2010), are analysed.

In the beginning the statistical background of imprecise classification trees is
outlined – starting with an overview on measuring uncertainty within the con-
cept of Dempster–Shafer theory is presented, followed by a discussion of its
application in a tree–growing–algorithm, which employs the so–called Imprecise
Dirichlet Model in the splitting process.

The motivation of so–called ensemble methods is to reduce the instability of a
single classification tree, increasing its predictive accuracy, but at cost of struc-
tural interpretability. A description of the well known ensemble methods, such
as bagging, random forests and boosting, is given along with two approaches,
generating the ensemble by allowing more than one splitting variable within a
node.

In the next step a bag of imprecise classification trees is generated; following,
its sensitivity in relation to

- different ensemble aggregation/fusion rules (majority voting, disjunction
and average rule),

- the external stopping criterion of minimal observations within a node and

- the main parameter of the Imprecise Dirichlet Model

is analysed by a simulation study.

The results of the simulation indicate that the commonly applied majority vot-
ing rule is also a fair choice for imprecise classification ensembles. Regarding the
external stopping criterion the simulation indicates that such may be neglected,
while the parameter does highly affect the predictive accuracy, favouring lower
values of it.

. . . . . . . . .
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Chapter 1

Introduction

The task of classifying items according to some feature variables may be accom-
plished by a broad methodology. Generally a classifier is a mapping of feature
variables to a certain state of classification variable. A classifier may be used to
understand the underlying structure on how the classification variable is related
to the features. Another application is to predict the class of new items on
the basis previous items, for which the true class is known to the researcher.
No matter the intention classification is a statistical inference as a structure is
inferred on some known observations, referred to as learning data/sample.
In this master thesis the focus is on the special case of classification trees,
which perform a recursive partitioning of the sample space. As demonstrated
in Breiman et al. (1984)1 those classification trees are sensitive to noise in the
data. In the classifying context Zaffalon (2002) proposed the Naive Credal
Classifier (NCC) as a generalization of the Naive Bayes Classifier (NBC). It is
an approach accounting for the general imprecision in the learning sample. The
NCC is allowed to output a set of states of the classification variable, instead
of being restricted to singletons. In Zaffalon et al. (2003) they demonstrate the
superiority of the NCC over the NBC in a noisy context, due to missing values.
The concept of credal classification is also introduced by Abellán and Moral
(2003a) but with a different motivation. They derive their credal classifier by
introducing an imprecise splitting criterion into Quinlan’s ID3 algorithm. The
splitting criterion is based on measurements of uncertainty in Dempster-Shafer
theory.
Breiman’s approaches to tackle the tree’s instability to noisy data were bagging
(Breiman (1996)) and its generalization random forests (Breiman (2001)). Both
techniques belong to the category of ensemble methods. In an ensemble method
a base learner is applied multiple times to a varying learning sample. The
output of the ensemble is an aggregate/fusion over the base learners’ output in
the ensemble itself. Another popular ensemble technique is Boosting (Freund
and Schapire (1966)).
Recently Abellán and Masegosa (2010) studied the performance of bagging their
imprecise classification trees in comparison to bagging precise trees.
In the following the focus is set on the comparison of different aggregating
approaches for a bag of imprecise classification trees.

1Breiman et al. (1984), p. 156ff
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In chapter 2 the basic concept of a classification tree is outlined. After it follows
a discussion on measure of uncertainty in the context of Dempster-Shafer theory
(chapter 3). For better insight Walley’s Imprecise Dirichlet Model is described
in chapter 4, as it is heavily involved in the actual growing of an imprecise
classification tree as described in chapter 5. In the then following chapter 6
common ensemble methods - bagging, random forests and boosting as well as
TWIX ensembles - are sketched, finishing it with a discussion on the application
of frequently used fusion rules on imprecise bags. Chapter 7 states the results of
a simulation regarding the impact of the fusion rules on the predictive accuracy.
Finally, concluding remarks and an outlook on further research on the topic are
given in chapter 8.
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Chapter 2

Classification trees

2.1 Introduction

The purpose of classification trees is to classify an observation according to
feature/attribute variables. It is achieved by recursively partitioning the data
space into rectangular disjoint subspaces. Each area is then assigned to just one
value of the classification variable.
In order to build the tree for some of the observations the values of the classi-
fication variable need to be known, on which the tree will then be constructed.
Thus the method of classification trees is a so–called supervised learning tech-
nique. In the following, restrictions to the data and a general tree building
procedure will be presented.

2.2 Restriction to the data

It is obvious that the classification variable C needs to be categorical. Although
an ordinal nature of it may be acknowledged, it will not be taken into account
in this work. As for the feature variables (X1 to Xn) there are generally no
restrictions on the scale: they may either be continuous or categorical (ordered
and unordered). The most popular classification tree algorithms, Breiman et al.
(1984) CART algorithm produces binary splits for both scales, whereas Quin-
lan (1986) C4.5 produces binary splits for continuous predictor variables and
as many nodes as categories of the prediction variable for categorical variables
(Often referred to as k–array–splitting). In here a k–array splitting algorithm of
Abellán and Moral (2003a) will be used. To split a continuous feature variable
in the context of k–array–splitting, two approaches are worth noting here. A
naive one would force the continuous variable on a nominal scale, thus enforcing
k–array–splitting. However for those variables with many different values, espe-
cially not exhaustive in the training sample, a rather suboptimal tree is grown.1

In a more elaborate approach, as in C4.5, the continuous variable is binarily
split. For each value of such a feature variable the split criterion is calculated,
assuming a binary split, i.e. all values smaller than the cutpoint are assigned

1A summary on how the number of categories influences the splitting itself is outlined in
chapter 5.1.
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to the left side, all others to the right. In this master thesis however all feature
variables are assumed to be categorical.

2.3 Tree building

In terms of the above section, we have a data set D with a set L of predictor
variables {Xi}1n, of any scale. Furthermore D contains the discrete classification
variable C with states in in ΩC = {c1, c2, . . . , c|ΩC |}.
The tree is grown from its root, the complete data, to its leaves, disjoint subsets,
in a recursively applied splitting procedure. In each splitting step an optimal
variable is chosen according to this, the data in the node are optimally assigned
to daughter nodes. It appears that the splitting in a node can be described as
a twofold optimization problem.

Step 1 Finding an optimal split point for each of predictor variables each in
terms of a pre–chosen impurity criterion.

Step 2 Splitting the data in the node according to the predictor variable which
produces the greatest decrease of the impurity criterion at its optimal split
point, calculated in Step 1.

Assuming the actual node is C and {Cti} is the set of daughter nodes produced
by splitting Xi at point ti. In case of binary splitting {Cti} is reduced to
{Cleftti ,Crightti

}.
In the first step the reduction in impurity criterion ∆IC is achieved by compar-
ing IC(C) to IC({Cti}). Its actual calculation is done by the plug–in estimator

∆̂IC. The optimal split point is then calculated by:

t∗i = arg max
ti

∆̂IC(C, {Cti}) ∀i = 1, . . . , n. (2.1)

In case of k–array–splitting or a binary variable Xi no optimization is needed,
as there is only one possible split point for the variable so Step 2 is omitted.
The second step reveals a less feasible optimization. In order to find the optimal
splitting variable Xi∗ one has to solve

i∗ = arg max
i

∆̂IC(C, {Ct∗i
}) (2.2)

with t∗i being the optimal split for each variable as calculated in equation (2.1).
The knot C will then be split at the variable Xi∗ at its split point t∗i , resulting in
the set of daughter nodes {Ct∗i

}. For each of these daughter nodes the algorithm
is applied again.
This naive approach leads obviously to pure leaves, i.e. all observations in it have
the same state of the classification variable. In fact it leads to an extremely over–
fitting of the learning data. Hence some restrictions need to be incorporated
both in the actual tree growing and as a post–processing step after the tree is
completely built.
In the first case the splitting of a node into daughter nodes is restricted to a
pre–chosen minimal number of observations, passed to each of the successor
nodes. Another restriction limits the tree to a user–specified depth.
The post–processing is called pruning. It takes into account the generalization
aspect of the tree: By moving from the leaves to the root it cuts back branches
which lead to an increase in the generalization error.
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Chapter 3

Measuring uncertainty in
Dempster–Shafer theory

The underlying concept of Dempster–Shafer theory1 is a general mass assign-
ment. Provided a finite set X of size |X| = n and its power set P(X) a basic
probability assignment is a mapping function m of

m : P(X)→ [0, 1]

with the restrictions

m(∅) = 0 and
∑
A⊆X

m(A) = 1 .

Contrary to point–probability–assignments, m(A) gives a degree of belief for an
element x ∈ X being in any subset of A, but not favouring one particularly.
Applying the above notation, one may obtain the Belief Bel and the Plausibility
Pl as functions on the assignment.

Bel(A) =
∑
B⊆A

m(B)

Pl(A) =
∑

B∩A6=∅

m(B)

which are linked on the condition of

Pl(A) = 1−Bel(Ā).

According to the theory of Yager total uncertainty could be divided into ran-
domness and non–specificity.2 While randomness measures how information3

is split on disjoint subsets, i.e. it attains its maximum when the information is
split uniformly over the disjoint subsets, non–specificity takes the imprecision
of information into account, i.e. has higher values for an assignment m for a set
with more than one element.

1cf. Dempster (1967) and Shafer (1976)
2Yager (1983), p. 252, 259
3induced by the mass assignment m
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In Harmanec and Klir (1994) a chronological overview of proposed functions
to measure total uncertainty is given. They developed a measure of total un-
certainty generalizing the Shannon–Entropy. It is motivated as any body of
evidence on P(X) may be seen as a set of constraints defining probability func-
tions on X acceptable. Among those acceptable functions there is one which
maximizes the Shannon–Entropy. According to them the attained value of the
maximal Shannon–Entropy is a reasonable measure of the total uncertainty as
it furthermore satisfies the required properties of a measure for total uncertainty
in Dempster–Shafer theory.4

Definition 1. Harmanec and Klir’s measure of Total Uncertainty5

Let X, Bel denote a frame of discernment and a belief function on P(X),
respectively, and let 〈px |x ∈ X〉 denote a probability distribution on X. Then
we define the amount of uncertainty contained in Bel, denoted as AU(Bel), by

AU(Bel) = max

{
−
∑
x∈X

px log2 px

}
, (3.1)

where the maximum is taken over all distributions 〈px |x ∈ X〉 that satisfy the
constraints:

(a) px ∈ [0, 1] for all x ∈ X and
∑
x∈X px = 1;

(b) Bel(A) ≤
∑
x∈A px ≤ 1−Bel(Ā) for all A ⊆ X.

The above measure is then employed by Abellán and Moral (2000) to measure
the randomness in a general credal set. They call it the Upper Entropy G(m)
where m is the mass assignment.
In order to measure the non–specificity they generalize Dubois and Prade (1985)
measure of non–specificity. It is defined, using the Möbius Inverse function. For
a deeper understanding at first there are three preliminary definitions given.
All are derived from their basic definitions in the context of Dempster–Shafer
theory.

Definition 2. Lower Probability function on Credal Set6

Let C be a c.s.p.d.7 on a universal X. We define the following capacity function:

f(A) = inf
P∈C

P (A), ∀A ∈ ℘(X)

where ℘(X) is the power set of X.

Definition 3. Möbius Inverse8

For any mapping fP : ℘(X)→ R [...] the mapping mP : ℘(X)→ R, given by

m(A) =
∑
B⊆A

(−1)|A−B|f(B), ∀A ∈ ℘(X),

will be called Möbius Inverse of f .

4The properties are given in Harmanec and Klir (1994), p. 408f
5Harmanec and Klir (1994), p. 412f
6Abellán and Moral (2000), p. 360f
7convex set of probability distributions; note from the author
8Abellán and Moral (2000), p. 361
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Definition 4. Focal elements9

Let C be a c.s.p.d. on a universal X, f its minimum lower probability as in
Definition 2 and let m be its Möbius Inverse. We say that m is the assignment
of masses of C: And we call any A ∈ X such that m(A) 6= 0, a focal element of
m.

In this context m(∅) = 0. Furthermore the sum over all elements in the power

set of X equals 1:
∑

A∈℘(X)

m(A) = 1. With definition 4 the index set of the sum

is reducible to the focal elements.
With the above definitions a generalization of Dubois and Prade non–specificity
measure U10 may be obtained by definition 5.

Definition 5. Non–specificity measure11

Let C be a c.s.p.d. on a universal X. Let m [be; note from the author] the
assignment of masses associated to C. We define [IG(C); note from the author]
the non-specificity of C as

IG(C) =
∑
A⊆X

m(A) ln(|A|). (3.2)

Maeda and Ichihashi (1993) added to the entropy like measure (3.1) the non–
specificity measure (3.2) to obtain a measure of total uncertainty for any basic
probability assignment.12 Accordingly, Abellán and Moral (1999) applied this
measure to the case of credal sets:

UT (m) = I(m) +G(m) , 13 (3.3)

where m is the mass–assignment.
In an addition to this uncertainty measure, Abellán and Moral (1999) proposed
a factor to correct the uncertainty measure. They call it the Kullback–Factor.
It takes the distance of the uniform distribution to the frontier set of the convex
set of probabilities associated with m into account, in case it is included in it.14

However in their following work they changed their opinion on a reasonable
measure of total–uncertainty for credal sets. As G(m) also increases subject to
non–specificity they argue that adding I(m) “gives rise to overweight impreci-
sion”,15 settling for the randomness measure G(m) finally.
While Harmanec and Klir do not justify their measure intrinsically, Abellán
and Moral (2005) state a plausible explanation within the theory of evidence:
The probability distribution with maximum entropy is the one with minimum
payment under a logarithmic scoring rule. Hence the less certain one is about
the true value, the higher will be the value of the upper entropy and vice versa.
Abellán and Moral point out that this does not satisfy a substitution of the whole
credal set with the distribution of maximum entropy, but may be considered as
a reasonable measure of uncertainty within it.16

9Abellán and Moral (2000), p. 361
10Dubois and Prade (1985), p. 282: Equation 16
11Abellán and Moral (2000), p. 361
12Maeda and Ichihashi (1993), p. 387 equation 11)
13With I being another notation of IG (equation (3.2)) and G of AU (equation (3.1))
14A description and the properties are given in Abellán and Moral (1999)
15Abellán and Moral (2005), p. 239
16Abellán and Moral (2003c), p. 5
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In order to measure the uncertainty within a credal set, regardless the measure,
the credal set itself needs to be defined and estimated when dealing with actual
data. In order to estimate such credal sets, Abellán and Moral (2005) employ
the Imprecise Dirichlet Model locally, which was introduced in Walley (1996).
A justification as reasonable choice to estimate a credal set was proposed in
Zaffalon (2002) to obtain a credal classifier, assuming that the classification
variable’s values are drawn from a multinomial distribution.
For a better understanding of the tree-building process a short introduction to
Walley’s Imprecise Dirichlet Model is given.
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Chapter 4

Imprecise Dirichlet Model1

In the context of Bayes multinomial sampling a Dirichlet prior distribution is
a common choice as it is conjugated to the multinomial distribution of the
underlying observed data.
The assumptions of the standard multinomial model are as follows:
Considering a sample space Ω = {ω1, . . . , ωK} with K ≥ 2 mutually exclusive
categories, N observations have been sampled independently and uniformly ac-
cording to the probability distribution P (ωj) = πj with j = 1, . . . ,K and restric-

tions to πj ≥ 0 and
∑K
j=1 πj = 1. The number of the occurrences is recorded

for each category, denoted by nj for category ωj . Obviously the category occur-

rences are non–negative integers and sum up to N :
∑K
j=1 nj = N . To simplify

the notation the category occurrences n = (n1, . . . , nK) and its probabilities
π = (π1, . . . , πK) are vectorized.
Under those assumptions the random numbers for nj follow a multinomial dis-
tribution and the observed likelihood function of n is

L (n|π) ∝
K∏
j=1

π
nj

j .

As stated above a Dirichlet prior is a common choice for π: π ∼ Dir(α1, . . . , αK).
Its probability density function is then:

f(π) ∝
K∏
j=1

π
αj−1
j .

However, in its motivation of the Imprecise Dirichlet Model, Walley gives a
different parametrisation of it. Each of the αj is divided into αj = s · tj where

s > 0 characterises the distribution and 0 < tj < 1,
∑K
j=1 tj = 1, here π ∼

Dir(s, t). In this version tj is the expectation for category j: E (πj) = tj .
Using the latter notation the probability density function becomes:

f(π) ∝
K∏
j=1

π
stj−1
j .

1The whole chapter is based on Walley (1996)
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The posterior distribution is obtained by multiplying the prior of π and the
observed likelihood function of n, resulting in

L (π|n) ∝
K∏
j=1

π
stj+nj−1
j ,

which is in the form of a probability density function of a Dir(N + s, t∗) distri-
bution with t∗ = (stj + nj)/(N + s).
In case of a standard multinomial model the parameters α, t and s respectively,
are fixed in the sense that the model takes just one value (for the vectors:
one vector of values) of it into account. Thus it leads to precise results when
calculating the expected posterior mean for instance.
Walley lifts the restriction to precise results by taking not a single prior distri-
bution Dir(s, t) but rather all possible Dir(s, t) distributions, short Dir(s), for
a fixed s where t satisfies the aforementioned properties. The so constructed set
is calledM0. Taking the whole set as prior means that no value specific assump-
tions concerning the chances π are made, thus modelling near prior ignorance.
However symmetry of the categories is still modelled.
Taking a set as prior naturally leads to a set MN of posterior distributions
Dir(N+s, t∗). Note that N+s is a fixed value too. As the posterior distribution
is a set rather than a single function there is not a point probability but a set of
probabilities for a specific data situation. The lower and upper bounds, posterior
lower and upper probabilities, are calculated by the probability infimum and
supremum of an event of all Dirichlet distributions in MN .2

So the probability that nj occurrences of category j appear in N tries is equal
to the posterior mean of πj . As aforementioned it is the set of all t∗j = (stj +
nj)/(N+s) which belong to Dirichlet distributions inMN . The posterior lower
probability is then obtained by minimizing t∗j with respect to tj :

E (πj |n) = lim inf
tj

t∗j

= lim inf
tj

stj + nj
N + s

= lim
tj→0

stj + nj
N + s

=
nj

N + s
. (4.1)

Analogously the corresponding posterior upper probability is calculated:

E (πj |n) = lim sup
tj

t∗j

= lim sup
tj

stj + nj
N + s

= lim
tj→1

stj + nj
N + s

=
s+ nj
N + s

. (4.2)

2For a theoretical justification see Walley (1991)
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Those two equations will be needed later in the tree generation process.
Although the bounds of the interval depend on the actual occurrences nj , the
width is independent of the category and only based on the value of s and the
number of samples N :

E (πj |n)− E (πj |n) =
s+ nj
N + s

− nj
N + s

=
s

N + s
. (4.3)

As s increases, so does the interval width and thus the imprecision generated
by the IDM. However for a fixed s the more information is available to the
model, i.e. increasing number of N , the smaller the interval gets, reflecting the
information gain.
Another notably feature of the IDM, which will be used later on, is the possibility
to easily combine categories, for instance categories i1 and i2. Then πi = πi1 +
πi2 directly from the properties of the Dirichlet distribution. This leads to a
generalisation of (4.1) and (4.2):

E (C|n) =
∑
ωj∈C

t∗j =
st(C) + n(C)

N + s
,

where t(C) =
∑
ωj∈C tj and n(C) =

∑
ωj∈C nj is the number of occurrences.

Following the same rationale as in (4.1) and (4.2) the lower and upper bounds
are obtained to

E (C|n) = lim inf
t(C)

∑
ωj∈C

t∗j

= lim inf
t(C)

st(C) + n(C)

N + s

= lim
t(C)→0

st(C) + n(C)

N + s

=
n(C)

N + s

(4.4)

and

E (C|n) = lim sup
t(C)

∑
ωj∈C

t∗j

= lim sup
t(C)

st(C) + n(C)

N + s

= lim
t(C)→1

st(C) + n(C)

N + s

=
s+ n(C)

N + s
.

(4.5)

Walley gives a reasonable interpretation of the parameter s as the number of
hidden instances and N the already revealed one, thus interpreting (4.4) and
(4.5) as relative frequencies of the event C.3

3cf. Walley (1996), p. 10
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For the parameter s Walley does not give any clear preference of a value, yet he
slightly advocates values of 1 ≤ s ≤ 2. As demonstrated in (4.3) smaller values
of s produce more precise results, i.e. smaller intervals; deciding on greater
values may lead to overcautious results.4

Armed with a variety of different imprecision measurements and a model to
estimate the relative frequencies of a category state, we can move on to the
process of growing a classification tree using imprecise probabilities.

4The choice of s = 1 or s = 2 are employed in e.g. Walley (1996), Abellán and Moral
(2003a) and Abellán and Moral (2005); Bernard (2005) associates different values of s with
certain types of prior distributions in case of a Dirichlet Model (slide 19)
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Chapter 5

Classification tree under
imprecise probabilities

In the previous chapters the basic tools of growing a classification tree from the
root to its leaves were given. The algorithm employed by Abellán and Moral
(2003a) is based on Quinlan’s C4.5 algorithm.
As the notation in Abellán and Moral is intuitive, it will also be deployed in
here.
In here the predictor variables are limited to the nominal or ordinal scale, how-
ever the additional information of the order in an ordinal variable is not taken
into account and hence treated as nominal. The predictor variables in L 1 are

discrete and take values/states in ΩXi
= {x1

i , x
2
i , . . . , x

|ΩXi
|

i }. As stated in chap-
ter 2.3 the classification variable is also of a nominal scale, indexed by cj for
j = 1, 2, . . . , |C| = k.
To retain the path from the root node to any other Abellán and Moral introduce
the configuration σ.

Definition 6. Configuration2

Let {Xi}1n be a set of discrete variables with values in the finite sets ΩXi , re-
spectively. We call a configuration σ of {Xi}1n any m-tuple(

Xr1 = x
tr1
r1 , Xr2 = x

tr2
r2 , . . . , Xrm = x

trm
rm

)
(5.1)

where, x
trj
rj ∈ ΩXrj

, j ∈ 1, . . . ,m, rj ∈ 1, . . . , n and rj 6= rh with j 6= h. A

configuration σ is thus an assignment of values for some of the variables in
{Xi}1n.

Applying the above notation, Xσ is the set of observations compatible with the
configuration σ. A configuration allows to identify such observations satisfying
the conditions induced by the configuration.
As seen in chapter 3 Abellán and Moral favour the Upper Entropy as impurity
measure. In the context of classification trees it serves as splitting criterion in
a node, defined by

1See chapter 2.3
2Abellán and Moral (2003a), p. 1218
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Definition 7. Upper Entropy on Credal Set
Given a credal set P on a variable U , then the upper entropy is given by

G (P) = max
P∈P

{
−
∑
x∈U

P (x) ln (P (x))

}
. (5.2)

This follows immediately from equation (3.1). The probability distribution with
maximal entropy is called Upper Entropy Distribution. The Upper Entropy
Distribution is the probability distribution in the credal which minimizes the
distance to the uniform distribution. It may be interpreted as the most un-
informative distribution in the credal set and hence the most cautious one in
estimating the probabilities of the different states.

5.1 Splitting in a node

In this section the Imprecise Dirichlet Model will be applied to generate esti-
mators of the class–probabilities within a node. Based on those the distribution
with maximum entropy is calculated and deployed as plug–in estimator to the
impurity measure. The advantage of an imprecise model over a precise one is
an increase in prediction robustness.
Starting in the root node (or any subsequent node) the Imprecise Dirichlet
Model is locally applied to the node’s configuration to obtain the probability
for each state of the classification variable. Locally means here that the model is
based exclusively on those observations complying with the node’s configuration.
However the characterizing parameter s is chosen globally. As the value of s
influences both the size of the grown tree and its accuracy, which will be shown
later, the more conservative approach of Walley (1996) and Abellán and Moral
(2003a) for s = 1 or s = 2 is reasonable.
As presented in chapter 4 the posterior lower and upper probabilities of a state
cj ∈ C, given a configuration σ[

Pσcj , P
σ

cj

]
=
[
P (C = cj |Xσ) , P (C = cj |Xσ)

]
=

[
nσcj

Nσ + s
,
nσcj + s

Nσ + s

]
, (5.3)

where nσcj is the number of observations in configuration σ in state cj and

Nσ =
∑
cj∈C

nσcj is the overall number of observations compatible with σ.

The associated credal set Pσ contains all probability distributions P on C,

restricted by pj ∈
[
Pσcj , P

σ

cj

]
for all j = 1, . . . , k.

In Abellán and Moral (2003b) an easily computable algorithm to obtain the
upper entropy distribution is presented, provided a set of probability intervals
as obtained by the IDM. However the set is required to be proper and reachable.

Definition 8. Proper and reachable set of probability intervals3

A set of probability intervals {[li, ui]}n1 is called proper, iff condition

n∑
i=1

li ≤ 1 ≤
n∑
i=1

ui (5.4)

3cf. De Campos et al. (1994), p. 168f
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is fulfilled.
A proper set of probability intervals {[li, ui]}n1 is called reachable, iff conditions∑

j 6=i

lj + ui ≤ 1 (5.5)

and ∑
j 6=i

uj + li ≥ 1 (5.6)

are met.

By the construction of the IDM the obtained posterior lower and upper proba-
bilities define a proper and reachable set of probability intervals.4

As the constraints on the set of probability intervals are guaranteed to be ful-
filled, Abellán and Moral’s algorithm may be applied safely. Note that in case
the observations assigned to the node contain missing values, the properness
and reachability is natively obtained only under certain circumstances.5

Starting with the lower bounds of the intervals in the set under consideration, it
recursively increases the value of those with minimal value, until the constraint
of a probability distribution is reached.6 7

Afterwards the Upper Entropy Distribution is employed to estimate the Upper
Entropy as a plug–in estimator to G(P) (See equation (5.2)), as generalized
Shannon Entropy. The value of it characterizes the impurity in the node.
The purpose of splitting in a node is to decrease the impurity. As candidates
for splitting are all those predictor variables which are not in the configuration
defining the node. This approach is reasonable as the k–array splitting is ap-
plied: A predictor variable X previously used for splitting already restricts the
observations in the node to X = xj , with j being a fixed index characterizing
any category in X, hence a further refinement regarding X is not achievable.
As the aim is an impurity reduction, for each splitting candidate the Upper
Entropy is calculated as if it was already selected:
Let X be one splitting variable candidate with its states in {x1, . . . , xJ}. If
the node with configuration σ is split according to X, J daughter nodes are
created. For each of these daughter node its Upper Entropy G(Pσ∪(X=xj)) is
calculated. It follows the same steps as for the mother node, but with fewer
observations taken into account due to the restriction X = xj being enforced.
The Upper Entropies for each daughter nodes are then combined by summing
them up, weighted proportional to its observations

G
(
Pσ∪X) =

J∑
j=1

nσ∪(X=xj)

nσ
G(Pσ∪(X=xj)) . (5.7)

The variable X∗ with minimal G
(
Pσ∪X) is then chosen as splitting variable,

provided G
(
Pσ∪X∗)

< G (Pσ). In that case for each state in X∗ a daughter
node is created and the splitting process is repeated on each of those. If no

4The proof is in Appendix B.1
5De Campos et al. (1994) provide a way to circumvent this, cf. page 169f (Proposition 2)
6As it is a discrete probability distribution the constraint is that the sum over all the states’

probabilities equals 1.
7An algorithmic outline is given in Appendix A.2
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variable is found to reduce the impurity or no splitting candidates are left,
the node is declared as leaf.8 Another termination criterion is the number of
minimal observations assigned to any possible new daughter node. The less
observations are in a daughter node, the broader are its posterior probability
intervals generated by the IDM, inducing more imprecision thus making it more
difficult to obtain dominated states of the classification variable, as will be seen
in the next section 5.2. The experimental results on different data sets in Abellán
and Moral (2003a) indicate that growing the trees to a maximum size ignoring
a pre–specified minimal leaf size does not lead to overfitting as in context of
precise classification trees. Yet in this master thesis such a minimal number of
observations within a leaf is considered.
The initial splitting algorithm was extended in the sequent articles of Abellán
and Moral,9 in the way that not even a node’s children are considered but also
their grandchildren. However the latter will not be considered in here.
As Strobl (2005) pointed out the Upper Entropy is sensitive to different number
of categories in the predictor variables, favouring those with a higher number
of categories. However, the effect decreases with increasing number of obser-
vations. She proposes as reasonable alternatives Abellán and Moral’s original
measure of total uncertainty TU(P) = G(P) + IG(P)10 and a correction to
the estimation of the entropy, similar to the one introduced by Miller (1955)

ĤMiller(p̂) = Ĥ(p̂) +
|C| − 1

2N
, (5.8)

withN being the number of observations which are included in entropy–calculation
and |C| being the number of categories of the classification variable.
Regarding IG it is obtained by calculating the Möbius Inverse function of the
power set P(C) first. As the lower probabilities are obtained by the IDM the
Möbius Inverse function of any subsets of P(C) besides the singletons and the
complete set reduces to 0 due to the additivity induced by the Dirichlet distri-
bution. The values of the singletons coincide with the lower probability bounds
and the value of the complete set is obtained by the restriction concerning the
sum of all focal elements. However the final value of IG only consists on the
Möbius Inverse function of the whole set multiplied with the logarithm of its
cardinality, due to the singletons having cardinality 1 and all other subsets hav-
ing a Möbius Inverse function’s value of 0. The value of IG thus depends only
on the number of categories (by ln(|C|)) and the general interval width of the

probability interval
s

N + s
, mainly specified by the number of observations. A

simulation study performed by Strobl (2005) implies that the correction tends
to be overcautious and only “reliable for sufficiently large N and small |C|”.1112

5.2 Decision in the leaves

In the previous section 5.1 a description of a general generation method of a
tree structure was given. However the main interest in a classification tree is

8An algorithmic outline can be found in Appendix A.1
9e.g. Abellán and Moral (2003a), Abellán and Moral (2005)

10cf. Abellán and Moral (1999)
11Notation adapted; note from the author
12Strobl (2005), p. 7
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not necessarily the underlying structure but the predictive ability. Each leaf is
labelled with a single class it predicts in the case of precise classification trees.
All observations attached to this leaf are then classified to the same value.
The general concept also applies to imprecise classification trees, but here a leaf
is not restricted to predict one single state but rather any possible set of state.
To account for the information residing in the observations assigned to the leaf
any non-dominated state is returned as class prediction of the leaf.
One dominance criterion applied to credal set is interval dominance.13 Zaffalon
introduces also the credal dominance,14 but the returned non–dominant states
coincide as the credal set was generated by the IDM.

Definition 9. Interval dominance
Let C be a discrete random variable defined over C and let c′ ; c′′ ⊆ C be
two generic events. Let X represent what is known, and let the probabili-
ties P (c′|X) and P (c′′|X) be, respectively, represented by the intervals I ′ =
[P (c′|X);P (c′|X)] and I ′′ = [P (c′′|X);P (c′′|X)]:
The interval I ′ is said to dominate I ′′ if

P (c′|X) > P (c′′|X) ;

in this case c′ is said to interval dominate c′′.

The rationale in the comparison is that the probability intervals create a partial
order. After obtaining all non-dominated states of the classification variable,
they are assigned to the corresponding leaf.15

As pointed out before, the number of observations in the leaf dramatically in-
fluences the number of predicted states in it. Recalling the estimation of the
posterior probability intervals, the denominator consists of the number of ob-
servations under consideration N and the pre–chosen hyper-parameter s of the
IDM. As seen in chapter 4, equation (4.3), for a fixed value s the interval width
increases with smaller values N thus making it less likely to obtain dominated
states. The same result is obtained when increasing the parameter s for fixed N .
Especially at leaves with only a few observations assigned to it, proportional to
the number of possible state N/|C| ≈ 3, larger values of s > 2 tend to generate
no dominated state.
When a new observation is to be classified, it is passed down the tree, starting
from the root node to a leaf according to its values of the splitting variables
on its way down. After reaching a leaf, its assigned non–dominated states are
employed as prediction of the classification variable for the new observation.
Whenever an observation is predicted only one single state, this observation is
said to be determinate, in all other cases, may it be 2 or more states, it is said
to be indeterminate. Those two states will be important when measuring the
accuracy of a tree.
Another approach, as in Abellán and Moral (2005), does not utilize the infor-
mation the credal set provides: the maximum frequency criterion. The most
frequent state of the classification variable is assigned to the leaf and employed
for its prediction. It generates more determinate observations (leaves) in com-
parison to interval dominance which may be seen as advantageous. However in

13cf. Zaffalon (2002), p. 9
14cf. Zaffalon (2002), p. 14
15An intuitive algorithm is described in Appendix A.3
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uncertain situations, i.e. one state beats all others by just one observation with
a lot under consideration, a certainty is pretended, which is more accurately re-
flected by an indeterminate prediction derived from interval/strong dominance.

5.3 Measuring the performance of a credal clas-
sifier

To evaluate the predictive accuracy of a precise classification tree the misclassi-
fication rate is a reasonable measure. It gives the relative frequency of incorrect
classified cases for a set of observations which were not used in the learning
process. This may be accomplished by the means of pre–dividing the observa-
tions into learning and test data, or for cross–validation or bootstrapping the
out–of–bag observations.
In a naive approach one may try to extend it to credal classifiers. When the tree
classifier is completely determinate on all those observations, then the misclas-
sification rate may be a reasonable choice, in all other cases it underestimates
the actual error.
Let CTV be a classification tree, which predicts all possible categories of the
classification variable C. Such a classifier is called vacuous. The misclassification
rate is obviously 0, yet this classifier in not desirable, as no new information is
revealed.
Another deficiency of the misclassification rate is dealing with different cardinal-
ity predicted states, especially when comparing credal classifiers, as comparing
the optimal precise classifier, i.e. the classifier which outputs all states cor-
rectly, to a credal classifier which outputs also all states correctly but for every
observation a set of two states. Accounting for the misclassification rate both
classifiers are equally desirable, yet it is obvious that the precise one should be
preferred.
This observation leads to the concept of discounted–accuracy : Both the mis-
classification rate and the discounted accuracy are a 0-1-loss function in the
observations. The major difference is the way they are aggregated over all ob-
servations: While the misclassification rate gives all equal weight (1/n with n
being the number of observations) the discounted–accuracy weights them ac-
cording to the number of predicted states ( 1

n ·
1

# predicted states ).

Definition 10. Discounted–Accuracy16

Let C = C1, . . . ,Cn be a credal classifier for n observations. Let ICi
(Ci) be

the indicator function of prediction Ci and Ci the true class. The discounted–
accuracy is then given by:

d-acc (C ) =
1

n

n∑
i=1

ICi
(Ci)

|Ci|
.

Yet there is a certain arbitrariness in the choice of the discount for a correct clas-
sification. In the above definition the discount increases linearly in the cardinal-
ity of the predicted states. One may obtain different results when transforming
it elsewise. Hence Corani and Zaffalon (2009) propose to use a Friedman rank

16cf. Corani and Benavoli (2010), p. 333
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test to evaluate which of the credal classifiers performs better. In their article
they employ it to compare two different classifiers. However in case of compar-
ing multiple credal classifiers, as in an ensemble, this method leads to excessive
dual-comparisons. Another notable advantage of the discounted–accuracy is
that it aggregates the available information into a single number, with values in
[0, 1], thus allowing it to be interpreted as a percentage.
As Zaffalon et al. (2011) point out the discounted–accuracy does not distinguish
between a vacuous and a random classifier, as they have the same expected
predictive accuracy. They propose to include into the measure the variance
of the prediction. This is accomplished by the means of specifying a concave
utility function. In their binary simulation studies it gets evident that the
utility based approach is performing better in comparison to the discounted–
accuracy. However they emphasize on the fact in order to “generate sensible
results when using utility-based metrics, it is fundamental to carefully elicit the
decision makers utility”.17

Less convincing, Abellán and Moral in their work deal with the case of inde-
terminate predictions. In order to compare their trees to precise tree based
classification methods, they did not classify those instances, inducing “a loss of
some valuable information in certain situations (if for example we have a set
with two non–dominated classes when the number of possible classes is 5)”.18

Other measures, as the single-set accuracy or the set-accuracy, may be used to
quantify the predictive accuracy of a tree. Both employ the correct classification
rate but with only determinate (indeterminate) observations under considera-
tion. Another aspect is the average output size of the classifier. The determi-
nacy gives the relative frequency of determinately predicted instances, whereas
the indeterminate output size the average number of classes when predicting
indeterminately. As Corani and Zaffalon (2008) stress, the indeterminate out-
put size and the set-accuracy are only meaningful for non-binary classification
variables.19

17Zaffalon et al. (2011), p. 410
18Abellán and Moral (2005), p. 250
19cp. Corani and Zaffalon (2008), p. 594
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Chapter 6

Ensemble Trees

In the previous chapter 5 the construction of imprecise classification trees was
outlined, now those trees are employed to construct ensembles. Before actually
dealing with imprecise ensembles some basic concepts are described.

6.1 Introduction

Ensemble methods are a technique which constructs multiple instances of a base
learner and aggregates them afterwards for prediction purposes. The rationale
of ensemble methods is to induce a variance of the base learner on a given
training setting, resulting in a reduction of the variance in the prediction on
a test setting using the aggregate. At the first glance it sounds illogical, why
a increase in variance of the base learner in a training set should decrease it
in a test setting. However a greater variance in the learning sample means
that the aggregate of the base learners is less sensitive to small changes in
it. Ensemble methods share in a way the same idea as the IDM: in both the
predictive performance of a precise basis, Dirichlet prior and base learner, is
increased by adding uncertainty, set of Dirichlet priors, multiple instances of
the base learner, respectively.
Generally there are no restrictions to the base learner, however for an ensemble
of an already robust base learner the accuracy is not notably increased. A
base learner may be any supervised learning technique, e.g. classification trees.
The way aggregation is performed depends on the type of data but in terms
of classification analyses a majority vote is carried out. The observation to
classify is predicted for each tree, resulting in a vote for a class in each tree. In
a majority vote the class with the most votes is then returned as the ensemble’s
prediction for the observation to classify.
Unfortunately the increase in accuracy is obtained on the sake of interpretabil-
ity of the underlying structure. For a single classification tree the underlying
classification structure is obvious and interpretable, however for an ensemble it
is sacrificed, as each tree may still be interpreted, yet the final aggregation does
not allow such.
There exists a variety of procedures on how to generate an ensemble. The most
popular are bagging, random forests (Breiman (1996), Breiman (2001)) as well
as the Boosting algorithms of Freund and Schapire (1966). Those will be revised
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shortly and also the more robust approach of TWIX (Potapov (2009)) and an
ensemble method employing imprecise trees on the basis of entropy ranges in
the splitting process Crossman et al. (2011). All those previously listed will be
looked into in terms of a classification task.

6.2 Bagging, Random Forests and Boosting

The method of Bagging (bootstrap aggregating) was introduced by Breiman
(1996). It generates classification trees on the basis of bootstrap samples of the
learning data. Bühlmann and Yu (2002) gave a definition on the algorithmic
nature of a bagging in terms of a regression task.1 However this may be adapted
without much effort to a classification set–up.

Definition 11. Bagging classification trees
Provided a set of data pairs L = {Li}n1 , Li = (Ci, Xi) with Ci being the
classification variable and Xi a set of p feature attributes, the parameter of
interest is the predicted class θ̂C , which is a function t based on the learning
sample L. So for any instance x the predicted class is obtained by,

θ̂C(x) = tL(x) = tL1,...,Ln
(x).

Bagging is then defined in the following way:

1. Generate a bootstrap sample L∗ of L,

2. Compute the bootstrap predictor θ̂∗C(x) by the plug–in principle to θ̂∗C(x) =
tL∗(x) = tL∗

1 ,...,L
∗
n
(x),

3. The bagged predictor is then obtained to θ̂∗C;B(x) = vote∗
(
θ̂∗C

)
(x).2

As pointed out by Bühlmann and Yu (2002), the third step is calculated by
repeatedly performing the first two steps, J times, and later voting over the J
different results of θ̂∗C;j(x), j ∈ {1, . . . , J}.
In their article they conclude that bagging smooths out instability, introduced
by a hard decision, such as thresholds,3 and thus lowering variance in the pre-
diction.
However Breiman demonstrated that bagging classifiers may not necessarily lead
to an improved classifier under majority voting.4

As Bagging includes bootstrapping the learning set, a test set may be con-
structed for each sample from the leftover, so called out–of–bag observations.
This is advantageous in situations where the number of available observations
is low. Breiman (1996) argues that even the complete learning set may be
employed as test set.5

The random forests of Breiman (2001) are related to bagging. In each node
the considered splitting variables are drawn at random. The randomization
allows to grow an even broader variety of trees, thus increasing the predictive

1cf. Bühlmann and Yu (2002), p. 927f
2Note that vote∗ may be any adequate calculus to obtain a dominating class
3i.e. Splitting performed according to values of an attribute variable
4cf. Breiman (1996), p. 130f
5cf. Breiman (1996), p. 131f

21



ability. While in Breiman (2001) only the feature variables are randomized,
Dietterich (2000) advocates to draw a split point from a certain number of
optimal attribute variables in the node. Quite obviously Bagging is included in
the concept of random forests in case all feature variables are considered in the
splitting process.
An advantage of random forests in comparison to bagging is that the correla-
tion between feature variables in broken. So the researcher is able to identify
attribute variables which are linked closely together and with almost equal pre-
dictive ability, whereas in the set–up of bagging as only the more dominant
one would have been identified, thus providing a measure of feature variable
importance along with.
While random forests (bagging as special case) grow trees on (sub)samples of
the original data obtained by equally weighting them, boosting incorporates
sampling according to weights. The most popular algorithm is AdaBoost by
Freund and Schapire (1966). It re–weights the sampling probabilities for the
next step according to the performance in the previous. Thus misclassified
observations are assigned a greater weight whereas for correct classified ones
their weight is decreased.
The performance of bagging, random forests and boosting of trees in compar-
ison to other ensemble methods or single trees (other tree derivates) has been
studied i.a. Breiman (1996), Bühlmann and Yu (2002), Dietterich (2000) and
Gatnar (2008), focussing on different fusion rules. It appears that boosting is
a reasonable method in a situation with low noise in the classification variable,
while bagging and random forests outperform it for noisy set–ups.

6.3 TWIX and Ensemble trees under imprecise
entropy

In the previous section 6.2 the ensemble is constructed by repeatedly growing
a classification tree on a varying basis of observations. In the following, two
methods are described where the ensemble is build in the actual tree growing
process.
TWIX6 (Trees with extra Splits) grows multiple trees by choosing not a single
splitting point, but a pre–specified number m of the most favourable ones. The
most favourable cutpoints could be either the m local maxima of the splitting
criterion or m highest values of the criterion, or according to a grid. To avoid
the problem of one variable shadowing others they allow to set m overall or per
feature variable. Shadowing may be induced by varying numbers of categories
in the feature variables7 or a high correlation. The splitting procedure leads to
a nested tree. To obtain a prediction either an optimal tree out of those nested,
calculated by the means of cross–validation, or an aggregate of all trees may be
applied.
Potapov et al. (2006) indicate that TWIX trees (ensembles) yield more accu-
rate results on certain data. However this comes along with extremely high
computational cost.8

6Potapov (2009)
7cp. chapter 5.1; Strobl (2005)
8cp. Potapov et al. (2006), p. 12
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To tackle this difficulty, Strobl and Augustin (2009) presented a splitting pro-
cedure which identifies the robust cutpoints. They analyse it in case of a binary
split tree, nonetheless conclude that it may be adapted to the non-binary case.
As in each split two daughter nodes are generated, they identify robust cutpoints
by assigning virtual observations to each of the daughter nodes and then recal-
culating the Gini gain, which they incorporate as the splitting criterion. The
maximum number of virtual observations is chosen in advance. To obtain the
Gini gain they employ the IDM and the upper entropy, although not in terms
of a model decision but as a tool. The more virtual observations are added the
more likely the splitting point will be different from the one obtained without
any. They conclude that the minimal number of virtual observations required
to change the initial cutpoint is a reasonable measure of the cutpoint’s robust-
ness. Similarly to TWIX trees prediction is accomplished by either predicting
an optimal tree or the whole ensemble as aggregate.
Another approach of nested trees is presented in Crossman et al. (2011). In this,
rather than using a single probability distribution to estimate the entropy, as in
Abellán and Moral (2003a)9, a set of entropies is compared to split in a node.
This is accomplished by computing the distributions with maximal and minimal
entropy, provided a credal set of probabilities. The credal set may be calculated
by either the IDM or by a NPI10 approach, as in Coolen et al. (2010) for ordinal
data. An entropy interval is then calculated according to the potential and
the guarantee of the credal set11 being the minimum and maximum attained
entropy for all distributions in it. The tree is then calculated as follows: For
a given node compute the entropy interval for each of the splitting candidates.
Select amongst the entropy intervals only those which are not dominated, their
linked feature variables are then used for splitting. The complete tree including
the node is then cloned as many times as there are splitting variables and one
is assigned to each once. If one aggregates over all those grown trees with
equal weight, one would favour those feature variables which introduce a higher
number of sub–trees (i.e. more non–dominated entropy intervals). To tackle this
the trees are weighted down in each cloning step to ensure that each mother
node has the same weight.12

The two last approaches already introduced the employment of imprecise prob-
abilities to obtain improved classification trees. In the next section 6.4 a rea-
sonable approach of bagging imprecise classification trees is presented.

6.4 Bagging imprecise classification trees

The subject of bagging imprecise classification trees as described in chapter 5
has already been studied by Abellán and Masegosa (2010). In their article they
create an ensemble of imprecise trees and compare it to bagging classification
trees based on Quinlan’s C4.5 trees. The ensemble was aggregated by majority
vote. For a fair comparison they adapted their imprecise trees to deal with
missing values and continuous feature variables.13 They conclude that for data

9cp. chapter 5.1
10Nonparametric Predictive Inference
11cp. Crossman et al. (2011), p. 131
12compare the intuitively example in Crossman et al. (2011), p. 132
13cf. Abellán and Masegosa (2010), p. 253f
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sets with medium–high classification noise bagging imprecise trees reduces the
classification error.
However they do not give an explanation on the choice of majority vote. In the
following an approach is presented why the majority vote is a reasonable choice
of a fusion rule for imprecise classification trees.
The majority voting rule for an instance x over an ensemble of M classifiers is
defined as

C(x) = argmax
cj

(
M∑
m=1

I (Cm(x) = cj)

)
,

where cj are all classes of the classification variable C.
Without loss of generality assume the case of a binary classification variable.
For a given observation the imprecise classification tree may predict three dif-
ferent outcomes C1, C2 or {C1, C2}. As the training data are bootstrapped for
each classification tree their results are independent in the sense that they do
not influence each other. In case a tree returns the indeterminate prediction
{C1, C2} it is considered as vote for both classes C1 and C2 when calculating
the majority rule.
The attained predictive accuracy of majority rule is dependent on the “luck”
of the researcher, however a slight improvement may be obtained in an aver-
age situation. A beneficial aspect of the majority rule is its ability to break
ties between to classes. This becomes obvious when analysing certain types of
observation within the classification task.
Easy to classify observations will still be identified by the majority vote as a
majority of the trees will most likely identify them as such. Concerning those
whose class label may be mistaken for another, i.e. “surrounded” by a different
class, there is only a small chance that they are predicted correctly in each tree
and thus in the majority vote. If there exists such a “lucky” tree, i.e. one that is
correctly labelling those, a frequent occurrence in the ensemble even close to the
majority is extremely unlikely. An improvement may be accomplished for those
areas which are feasible to discriminate. These observations are most likely to
be indeterminately classified, however some trees may label them determinately.
In the aggregate those determinate trees decide for the predicted label.
On the one hand this behaviour is appreciated for those observations where there
is a reason to believe that they should be classified determinately, on the other
hand this leads to an extremely unsatisfactory result when all classification trees
except one are unable to decide on a specific class and in the aggregation step
this single tree decides on the final class.
To avoid such a situation the prediction of {C1, C2} could be treated as a third
class and not as vote for both classes. More generally each class in the power set
of C is treated individually. In the case of a binary classification variable this
approach seems reasonable for such an extreme situation as described above.
Nonetheless it is a very conservative prediction rule as it results in an inde-
terminate output, when there are some trees, close to the majority, deciding
determinately on the same class and the others are indeterminate. For more
categories of the classification variable the number of possible ensemble out-
put classes is increased drastically, leading yet to unsatisfactory results again:
Consider the situation of m trees in the ensemble, which m being odd, where
bm/2c trees vote for {C1, C2} and the other dm/2e for {C2, C3}. Applying the
original majority voting rule the ensemble predicts C2, quite contrary the ma-
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jority voting rule decides on {C2, C3}, ignoring the presence of C2 in each tree’s
prediction.
In calculating the dominant class by majority voting all trees have been given
equal weights. An alternative would be to assign weight to each tree according
to its performance, thus weighting down those trees performing poorly on the
provided data. However such an approach requires a sufficient number of obser-
vations in the data. A reasonable accuracy measure is one weighting the trees
according to their discounted-accuracy.14

The weighted majority voting rule for an instance x over an ensemble of M
classifiers is defined as

C(x) = argmax
cj

(
M∑
m=1

(I (Cm(x) = cj) · dacc(m))

)
,

where cj are all classes of the classification variable C.
This measure takes only the performance of each tree on a given data set into
account, so arbitrariness as previously described does still occur.
Up to this point only the predicted classes were considered. But the leaves
of a tree also provide the attained posterior probabilities of the local IDM.
Aggregating those over all trees in the ensemble may yield a sensible prediction
of the ensemble.
The most conservative approach would be to get the union of all posterior prob-
ability distributions belonging to a certain observation. De Campos et al. (1994)
provide the methodology to calculate it. The disjunction of a set of probabil-
ity intervals is associated to the union of the according probability measures.
“The disjunction is the [conclusion; note from the author] inferred if at least
one piece of observation is considered to be true.”15 They give the calculus of
the disjunction (l1⊕ l2, u1⊕u2) for a pair of probability intervals (l1, u1), (l2, u2)
on a domain C as

(l1 ⊕ l2)(A) = min (l1(A), l2(A)) , (u1 ⊕ u2)(A) = max (u1(A), u2(A)) ∀A ⊆ C .
(6.1)

This can be easily generalized to the disjunction of any number of probability
intervals on the same domain.

Proposition 1. Disjunction
Let {Ij}n1 = {(lj , uj)n1} be a set of probability intervals on the same domain C.
The disjunction

⊕
j Ij is obtained to⊕

j

lj ,
⊕
j

uj

 (A) =

(
min
j

(lj(A)),max
j

(uj(A))

)
.

Proof. Due to the associativity of the disjunction operator,
⊕

j Ij may be writ-
ten to ⊕

j

Ij = (. . . (((I1 ⊕ I2)⊕ I3)⊕ . . .)⊕ In .

14compare chapter 5.3 for a discussion on accuracy measures
15De Campos et al. (1994), p. 176
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This is then applied to all lower bounds:⊕
j

lj(A) = ((. . . (((l1 ⊕ l2)⊕ l3)⊕ . . .)⊕ ln)(A) .

For the most inner expression the result is given in (6.1),

(l1 ⊕ l2)(A) = min (l1(A), l2(A)) .

The second inner most expression may be written as,

((l1 ⊕ l2)⊕ l3)(A) = min (min (l1(A), l2(A)) , l3(A)) = min (l1(A), l2(A), l3(A)) .

by replacing the expression in the inner brackets with the one above. Similarly
are all outer brackets solved, resulting in⊕

j

lj(A) = min
j

(lj(A))

Accordingly, the proof for the upper bounds is carried out.

In case of a set of proper probability interval sets, the disjunction results in a
proper set of probability measures. This guarantees that at least one probabil-
ity distribution is defined by the intervals. Furthermore if reachable probability
intervals are provided, the result is reachable as well.16 In the general context
interval probabilities, as in De Campos et al. (1994), they prove that the dis-
junction is not closed. However, this is only due to the way the disjunction
operator handles non–singletons. As this master thesis does not discuss situa-
tions with such probability measures, the above probability measures are still
called probability intervals.
To obtain the class(es) for prediction, the attained intervals are compared by
any dominance criterion.17 As the minimum (maximum) of the lower (upper)
bound of the probability intervals is taken over all leaves, to which the obser-
vation to be classified belongs, the resulting intervals are decently wide. Thus
interval dominated states are less likely to be seen at all. Especially in a noisy
classification task this aggregation approach will most likely predict vacuously,
i. e. all states.
Another method which is widely employed when combining the class probabili-
ties of precise tree is the average (mean) rule.18 For an ensemble of precise tree
the result when applying it is indeed a single probability distribution, due to the
commutativity of the addition. But does the average rule, when applied to an
ensemble of imprecise trees, yield a proper or even reachable set of probability
intervals?
As proven in Appendix B.3 the outputted set of probability intervals is reach-
able. Similarly to the disjunction rule and the decision in the leaves the final
class is obtained by applying any dominance criterion on it. In comparison to
the disjunction rule the width for the probability intervals is smaller as the av-
erage over all widths is taken, whereas the disjunction rule provides a maximal
range. Moreover the average rule generates class probability intervals of the

16See Appendix B.2.1 and B.2.2
17See chapter 5.2
18cp. Gatnar (2008), p. 23
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Table 6.1: Output of artificial binary experiment

P (C = 0) P (C = 0) P (C = 1) P (C = 1)

P1 0.1 0.2 0.8 0.9
P2 0.6 0.7 0.3 0.4
av(T1, T2) 0.35 0.45 0.55 0.65
dis(T1, T2) 0.1 0.7 0.3 0.9

same width in case the IDM is applied in the tree generation step. The last is
even true for any general method resulting in class probability intervals of same
width.19 By calculating the mean, all trees get the same weight. As proposed
for the majority vote, another weighting, according to some accuracy measures,
may be beneficial, however this is not being studied herein.
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Figure 6.1: Probability distributions ac-
cording to the binary result in Table 6.1:
The dotted line (· · · ) depicts all proba-
bility distributions in the disjunction of
P1 and P2, while the dashed line (−−−)
is the resulting set of probability distri-
butions by the average rule.

When applying the disjunction rule to
an ensemble, the output contains all
original probability distributions, al-
though broadening the range in com-
parison to a single tree. This does
not hold for the average rule, as it
centres the distributions. Assuming a
binary case with the results according
to Table 6.1, then the resulting sets of
probability distributions are shown in
Figure 6.1.
The probability distributions P1 and
P2 are obviously disjunct, i.e. their
intersection is empty.
This simple example contrasts the dif-
ferences in the two decision rules.
When applying the disjunction all
trees in the ensemble are considered
fully trustworthy, even most extreme
ones, so no information on the out-
standing situations is discarded. As
pointed out previously this aggrega-
tion method is considerably sensitive
to outliers. Just one tree in the en-
semble is able to spoil an otherwise
homogeneous result. The average does not fully trust all trees. It tries to
manage the trees’ opinion and thus discarding some probability distributions
the trees offer, especially those of outliers. It adapts to a central probability
distribution.
In the next chapter 7 the results of a simulation comparing the previously de-
scribed aggregation methods and also the accuracy of the whole ensemble in
contrast to a single tree are presented.

19See Appendix B.3.3
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Chapter 7

Simulation study

In order to study how the meta parameter s of the IDM influences a single
tree and an ensemble, a simulation was performed on real data. The impact of
the different aggregation methods as outlined in chapter 6.4 are compared on
artificially generated data. They may be seen as a first indication on how the
predictive ability is affected. The simulations carried out are not exhaustive and
the presented results are subject to the underlying data. To obtain more gener-
alizable results more different data should be considered, as in the simulations
done only the concept is depicted.
All simulations are run using the statistical software R.1 The tree building algo-
rithm was implemented employing those algorithms described in Appendix A.
The prediction of either a single tree or an ensemble is performed by a function
written in C.2

At first the results on the real data set SPECT Heart Data Set3 are described
comparing a single imprecise tree with a bagged ensemble of imprecise trees
concerning the behaviour subject to changes in the IDM parameter s and the
stopping rule of minimal leaf size. In section 7.2 the different aggregation meth-
ods are studied on an artificial data set.

7.1 Simulation on SPECT Heart Data Set

The data set describes diagnosing of cardiac Single Proton Emission Computed
Tomography (SPECT) images, into a binary classification variable, ‘normal’
and ‘abnormal’. The here employed data set has 22 binary feature attributes.
Overall are 267 instances available which were divided into 80 instances on a
training set and 187 in a test set, however this artificial split is ignored.
In order to reliably extract a potential difference in the behaviour of a bagged
ensemble and a single tree, 50 bootstrap sample were generated on the complete
data set (267 instances), which were employed as learning sets. The left–over
observations of each were employed as test set to assess the predictive accuracy.
Within each bootstrap sample both a single tree and an ensemble of 50 were
constructed for different values of s and mls, as IDM parameter and minimal

1R Development Core Team (2012a)
2The code of it is based on the prediction function employed by TWIX (Potapov (2009))
3Frank and Asuncion (2010)
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Figure 7.1: Boxplots of Accuracy for optimal Bag and Single Tree

leaf size respectively. Regarding the minimal leaf size integer values from 1 to
5 (5 different values) were considered. For s the values were in the range be-
tween 0.5 and 5 (19 different values) in steps of 0.25. To identify a possible
interaction they were varied concomitantly, thus resulting in a 5 × 19 matrix
of 95 settings. To account for any structure in the bootstrapped sample, a 10–
fold cross–validation was carried out in each setting. The setting’s accuracy
was calculated to the average accuracy obtained by the cross–validation, mea-
sured by the determinacy, single–set accuracy and discounted–accuracy. The
set based measure are not considered, as the classification variable is binary.
The prediction of the ensemble is obtained by the majority voting rule.
A direct comparison of the two different methods is applicable when considering
the best classifier of the single trees and ensembles within each bootstrap sample.
Due to the simulation’s limits, induced by the settings, the overall best classifier,
with respect to all hyper–parameters, may not be present in the sample, however
the one with highest accuracy within it is a reasonable approximation.
The best model is assessed individually for the above mentioned accuracy mea-
sures. As depicted in Figure 7.1a there is only a slight difference regarding the
single–set accuracy between the optimal ensemble tree and its single tree coun-
terpart. This indicates that the single tree predicts as accurately as the ensem-
ble on determinate leaves. However when looking at the discounted–accuracy
(Figure 7.1b) the bagged classification trees attain significant4 higher ones.
One reason might be that the bagged imprecise trees attain a significant greater
determinacy,5 thus less vacuous predictions, which have a less numerical effect on
the discounted accuracy. When considering the single-set accuracy alongside, it
means that those hard to classify instances are more determinately predicted in
case of an ensemble. For almost half the bootstrap samples the discounted– and
the single–set accuracy coincide for the bagged trees, whereas the discounted–
accuracy is always smaller than the single–set accuracy for the single trees.

4Mann-Whitney-U test performed on a 5% significance level
5Mann-Whitney-U test performed on a 5% significance level
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Condensely, the bagging of imprecise trees leads to an increase in the discounted–
accuracy and determinacy in comparison to a single imprecise tree, but the
single–set accuracy remains nearly unaffected.
The second aspect of this simulation is to compare the influence of the parameter
s and the minimal leaf size mls. To obtain estimates for each setting, the average
over all bootstrap samples is taken.
For a single imprecise tree one would expect the determinacy to decrease with
lower values of s and mls, as the impurity within the leaves increases, induced
by a more conservative class estimation (s) and a smaller size of the tree (mls).
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Figure 7.2: Contour plot of average determinacy

Figure 7.2b6 supports the intuitive approach in case of a single imprecise tree. It
demonstrates that s has a greater impact on the determinacy as mls. However in
the case of the bagging (Figure 7.2a) neither a clear and intuitive structure, nor
a trend is visible. But on the second sight it appears that all coloured categories
in Figure 7.2a are included in the upper most (dark grey) in Figure 7.2b. This
supports the aforementioned superiority of the Bagged Imprecise trees in terms
of determinacy.
As a tree grown with higher values of s has wider class probability intervals, it is
likely to generate more leaves with indeterminate states (as seen in Figure 7.2b)
but the accuracy of the remaining determinate leaves should not be affected. On
contrast, the number of minimal observation mls is expected to influence the
single set accuracy as it is an external stopping rule independent of the upper
entropy in the node. In Figure 7.3b both intuitive assumptions are confirmed,
yet concerning s a slight increase in single-set accuracy is visible for larger values
of s. This may be accounted for larger values of s filtering out more difficult to
predict instances, leaving only those in a single set which high evidence in the
data.
Interestingly, for the bagged imprecise trees the assumption on the impact of
s made on a single tree does not hold. As Figure 7.3a illustrates the single

6Caution should be taken when interpreting the contour plots: They are generated only
by values on the intersection of grid lines, including the margins.
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Figure 7.3: Contour plot of average single–set accuracy

accuracy decreases with growing s. It may be explained by the aggregation rule
applied. As the majority voting rule tends to produce a single class even when
there is evidence that a set would be more appropriate, it is able to lead to false
conclusions on the true class.7 Whereas the single tree is invariant to changes
in s the bag is receptive generating less accurate results for higher values of s.
However the minimal leaf size has the same effect as on a single tree.
Concerning the range of attained single–set accuracy, neither the bag nor the
single tree should be favoured as their accuracies are in almost the same range,
when considering all configurations.
As the classification is binary the discounted–accuracy is mainly affected by the
single–set accuracy and the determinacy, thus the previous results are combin-
able to form hypotheses about the discounted–accuracy. For a single tree it
is reasonable to assume that the highest value will be for small s and mls as
both the determinacy and the single–set accuracy are high in that area, whereas
for larger values of both the discounted–accuracy should decrease. Figure 7.4b
shows indeed such behaviour.
Similarly the result for an ensemble is expected, yet from a different background.
As seen in Figure 7.2a the determinacy is almost 1 for each configuration, which
means for the discounted–accuracy of the bag that it will be mostly influenced by
the single–set accuracy. Indeed the effect of s and mls in Figure 7.4a, depicting
the average discounted–accuracy of the ensemble, is almost equal to the single–
set accuracy (Figure 7.3a).
In direct comparison of the attained discounted–accuracy of the ensemble and
the single tree they are almost of the same shape but the values are generally
higher in case of the ensemble.
Overall the simulation on this particular data set indicates that the discounted–
accuracy, as a naive measure of the general predictive ability, is affected by both
the artificial stopping rule mls and the parameter s of the IDM. For both the
discounted–accuracy decreases with higher values. As mls was introduced in

7cp. chapter 6.4
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Figure 7.4: Contour plot of average discounted–accuracy

order to avoid overfitting as in a precise classification context, the above results
indicate that in case of imprecise classification trees, either single or bagged, it
may be neglected as the best result on the test sets is obtained for its overall
minimum value 1.
Furthermore, the simulation has demonstrated that the favour for slower values
of s is justified. In case of the SPECT data set the smallest value of s = 0.5
attained the optimal results regarding the bag, both in case of the single–set
and the discounted–accuracy. However in case of the single tree it does not hold
for the single–set accuracy as a slight favour for larger values was found.
Nonetheless the simulation covers only a small aspect of all classification tasks.
The results pointed out here should be viewed as an indication on the effect
of s and the arbitrary stopping rule, but not as strong evidence or even proof.
To obtain more general statements more classification settings on a variety of
different data sets must be carried out in a much broader simulation.
In the following, the results of a simulation comparing the different aggregation
methods are described.

7.2 Simulation on artificial data

In the simulation the differences in the aggregation/fusion methods are of main
interest. The ensemble is formed by bagging imprecise classification trees. The
class prediction dependent rules majority voting and weighted majority voting,
as well as methods based on the aggregation of probability intervals, disjunc-
tion and average rule were studied. As the latter ones only provide probability
intervals as result, the actual classes were predicted by the interval dominance
and the maximum frequency criterion. Thus 6 different aggregation methods
are competing. In order to maintain a base line a single imprecise tree is grown
alongside. The predictive ability is evaluated by determinacy, single–set accu-
racy and discounted–accuracy.
The data set employed contains a binary classification variable and 10 feature
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attributes on 1050 instances. The class variable C is drawn from a Bernoulli
distribution with equal chances for the two classes. In order to obtain class
dependent feature variables X, a restriction on the conditional chances was
compelled: |π0 − π1| ≥ 0.1, with πj = P(X = 1|C = j).8 This restriction
ensures that both conditional chances are not too similar or even equal. The
πj are drawn form a uniform distribution on [0, 1]. If the restriction was not
satisfied, both were discarded. π was sampled 50 times and for each π 100 data
sets were generated, thus overall 5000 different data sets. The π are classified
according to the difference in their conditional chances: data sets created by
π with a small absolute difference (≤ 0.4) are considered as having a high
classification noise, as the class dependencies are less strong; absolute difference
values between 0.4 and 0.7 are of medium, and greater as 0.7 of low classification
noise. This allows for a more detailed comparison of the fusion methods. In
the simulation were 4 π associated with low noise, 15 with medium and 31 with
high noise.
On each data set a bag of 50 imprecise trees and a single one is grown on the
first 50 instances, the remaining 1000 were employed as test set to assess the
accuracy. According to the results in the previous section 7.1, the minimal leaf
size and s were globally set to 1.
At first, the determinacy of the different aggregation techniques is presented as
it allows to deduce some aspects of the discounted–accuracy. When comparing
the dominance criterion within an aggregation rule, one would expect the inter-
val dominance generate less determinate outputs than the maximum frequency
criterion.
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Figure 7.5: Boxplot of determinacy over 5000 test sets

Figure 7.5 gives the attained determinacy over the 5000 test sets for the differ-
ent methods. Both majority voting rules lead to almost exclusively determinate
prediction results. Such a behaviour as already suspected as described in chap-
ter 6.4. The graphic also supports the aforementioned hypothesis concerning
the different dominance criteria. The average rule in disjunction with strong
dominance attains not as high determinacy as the majority voting rules, but

8The data generation is analogously to Zaffalon et al. (2011)
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is on the same level as the single tree. However when applying the maximum
frequency criterion the average rule generates just determinate outputs, reach-
ing the highest possible determinacy of all methods under consideration. The
least determinate outputs are generated by the disjunction rule. Even when ap-
plying the maximum frequency criterion, still 75% of the ensembles attained a
determinacy of lower than 50%. This is due to a lot of vacuous aggregated pre-
dictions obtained by the disjunction rule, before applying a dominance criterion.
The conclusions remain the same when distinguishing between the classification
noise induced by π.9

As the single–set accuracy is the other factor influencing the discounted–accuracy,
those results are presented next.
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Figure 7.6: Boxplot of single–set accuracy over 5000 test sets (4689 for disjunc-
tion (Strong))

At first it should be noted, that for 311 test sets of high classification noise the
classifier applying the disjunction rule together with interval dominance was
completely vacuous, so a single–set accuracy could not be assessed. Besides the
disjunction rule, the methods differ only slightly with the weighted majority
rule showing the smallest range as it is visible in Figure 7.6. Where for the
determinacy the tree was inferior to the aggregation methods (excluding the
disjunction rule), concerning the single–set accuracy it is on the same level.
Regarding the single–set accuracy of the disjunction rule, it is superior to all
other methods. As the disjunction rule was introduced as a somewhat con-
servative approach, it seems justified, because it classifies only those instances
determinately when there is strong evidence for a certain class. When compar-
ing the different classifying criteria, in terms of single–set accuracy the interval
dominance has a significant10 greater mean than the maximum frequency for
both the average and the disjunction rule. When considering the classification
noise, the disjunction rule generates by far the most precise outputs, as well as
applying the interval dominance criterion.11

9See Appendix C.1
10Mann-Whitney-U test performed on a 5% significance level
11See Appendix C.2
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The simulation demonstrates that neither determinacy nor single–set accuracy
may be taken as a measure for overall accuracy, as they lead to quite opposing
results, yet capturing only one aspect of the classifier. In the following the
discounted–accuracy is considered, merging the previous conclusions.
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Figure 7.7: Boxplot of discounted–accuracy over 5000 test sets

Both majority voting rule based aggregation methods attained the same me-
dian in discounted–accuracy, differing only in terms of the minimal reached
value, which is higher for the weighted vote (Figure 7.7). Due to the weighting
being based on the discounted–accuracy of each tree in the ensemble, the in-
creased lower value is not surprising, however for more than 75% of the test sets
there is no difference in those 2 rules. As the determinacy of the disjunction
rules is comparably low overall, the discounted–accuracy reflects it, leading to
the overall lowest medians. When considering the average rules, there is little
difference and they are on the same level as the majority voting based aggrega-
tion methods. In comparison to the discounted–accuracy of the single tree both
the majority voting and the average rules have a significant greater median.12

For both the disjunction and the average rule the interval dominance results in
a significant lower median of discounted–accuracy.
The results remain the same when accounting for different classification noise
in the data, yet for more noisy settings the difference between the average and
majority voting rule and the disjunction rule is smaller.13

Considering all above results it seems that there is only little difference in the
majority voting based fusion methods. In terms of discounted– and single–
set accuracy they are equal, only for determinacy the weighted outperforms the
standard majority voting. As the weighted majority voting assesses the accuracy
of each tree in the ensemble, the additional computational effort required seems
not to be satisfied.
As already stated at the introduction of the disjunction rule the extremely wide
probability intervals lead to less determinate outputs. However when single–set
accuracy is the main concern they provide the most accurate outputs, yet for

12Mann-Whitney-U test performed on a 5% significance level
13See Appendix C.3
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only a few instances. In any other cases the disjunction rule is considerably
conservative, sometimes even vacuous.
When talking about the average rule the dominance criterion for the final class
prediction needs to be considered. While the average rule with maximum fre-
quency criterion attains the highest determinacy it comes at cost of single–set
accuracy. When applying the interval dominance instead, those effects are bal-
anced, yet the discounted–accuracy attained is still significantly lower.
Comparing the dominance criterion applied to the disjunction and average rule,
the maximum frequency criterion yielded more determinate outputs than the
interval dominance, but less accurate on those. As main advantage of interval
dominance appears its general superiority in terms of single–set, whereas the
maximum frequency criterion attains a higher determinacy and discounted–
accuracy.
The deployment of ensemble seems justified when looking at the achieved accu-
racy of the single trees: For both the discounted– and the single–set accuracy
the ensemble aggregated by the majority and the average rule, independently
of weighting or dominance criterion, attains higher values than the simple tree.
Also when exclusively considering the single–set accuracy the disjunction rule
is superior to the single tree as the single trees’ achieved single–set accuracy is
significant lower than the one of the ensemble.
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Chapter 8

Conclusions and further
research

In this master thesis the statistical background of imprecise classification trees is
outlined. Based on the concept of Dempster–Shafer theory they allow to account
for imprecision in the learning data set, yet attaining a reasonable degree of
predictive accuracy. Contrary to precise classification trees they are more robust
to changes in the learning data. The algorithm by Abellán and Moral (2003a)
is based on Quinlan’s ID3 algorithm employing an entropy splitting criterion.
The class probabilities are estimated as relative frequencies by the so called
Imprecise Dirichlet Model to probability intervals.
The Imprecise Dirichlet Model is based on the choice of the parameter s, which
affects the introduced imprecision. In literature a value of s = 1 or s = 2 is
commonly applied, but this is an arbitrary choice. In their work on imprecise
trees, Abellán and Moral set the value for s to 1, but gave no empirical justifica-
tion for such a choice. An analysis, performed on the SPECT Heart Data Set,1

revealed that the actual choice of s has a great effect on the attained accuracy,
favouring lower values of s for the determinacy and discounted–accuracy. How-
ever, regarding the single–set accuracy, it slightly increases with greater values
of s.
The tree–growing method by Abellán and Moral (2003a) does not include any
stopping criterion, such as a minimal leaf size. Herein the effect of a minimal
leaf size was considered, affecting the discounted–accuracy through the single–
set accuracy. In the analysis on the SPECT data set, the highest accuracy was
achieved for a value of 1, equalling no restriction.
In a next step the bagging of imprecise trees was considered. Bagging those
trees has already been studied by Abellán and Masegosa (2010), but with the
main purpose of comparing the imprecise to precise bags. Similarly to imprecise
trees the behaviour of the imprecise bag, when considering different values of s
and a minimal leaf size was evaluated on the SPECT data set, leading to almost
the same conclusions: The restriction on the minimal leaf size is unnecessary
and lower values of s give higher accuracy. In direct comparison of the two
classification techniques, bag of imprecise trees versus a single tree, bagging
attained a significant higher median in discounted–accuracy.

1Frank and Asuncion (2010)
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As the above conclusions are based on just one data set, they may be misleading.
To further support or confute those, a broader variety of different data sets needs
to be taken into account. The influence on the accuracy subject to the number
of trees within an ensemble is also worth studying.
The creation of ensembles automatically raises the question on how to aggregate
their outputs into a single one. In Abellán and Masegosa (2010) the majority
voting rule is employed. The simulation on an artificial data set in chapter 7.2
supports the choice. A weighted majority rule, with weights based on the at-
tained discounted–accuracy for each tree, does not notably improve the predic-
tive accuracy. Regarding probability based fusion rules, the disjunction and the
average rule were considered. As they output probability intervals, in a second
step the outputted classes need to be estimated by a dominance criterion. The
disjunction is extremely cautious and sometimes even vacuous when classifying,
but on determinately predicted instances, it outperforms all considered aggre-
gation methods. The average rule however is rather similar to majority voting,
but in conjunction with the maximum frequency criterion the most determinate.
For the sake of simplicity the classification variable was binary in both simula-
tions. One step to generalize the above results could be to expose the methods to
a non-binary classification. Then accuracy measures as the set–accuracy should
be considered.
The studied aggregation rules employ only the properties of probability inter-
vals, however in general they are not limited to them. In the context of a
non-binary classification task the interval probability, induced by the probabil-
ity intervals,2 may be combined as in (Troffaes, 2006), by assigning trust to
each tree. However for large ensembles the calculation gets feasible as the au-
thor stated himself.3 From De Cooman and Troffaes (2004) another aggregation
rule is deducible which collapses to the disjunction rule in the case of conflict in
the trees,4 but with a large ensemble this is likely to appear.
Further modifications may be made when changing the underlying model to
estimate the class probabilities, as in Crossman et al. (2011) the ordinal NPI
for an ordinal classification variable.
As already stated in the introduction, the feature variables were limited to
categorical ones. As this is arbitrary, the tree growing algorithm should be
adapted to deal even with continuous attribute variables in a similar fashion as
Quinlan’s C4.5 algorithm.5

Another generalization of the aggregation/fusion would be to allow missing val-
ues. In the current state the algorithm is capable of dealing with missing values
in the training set on both the feature and the classification variable by ignoring
them in the locally applied IDM in each node. However, missing values in any
feature variable in the test set are not allowed, thus they do not influence any
aggregation.

2In De Campos et al. (1994) a general method on how to obtain interval probabilities when
applying the disjunction is described (p. 178)

3cp. Troffaes (2006), p. 378f
4The solution to problem 3 may be seen as the aggregation rule.
5This algorithm was employed as basic tree inducer in Abellán and Masegosa (2010)
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Appendix A

Algorithms

A.1 Tree growing algorithm

In the following a algorithmic version of the tree growing process is given:1

Algorithm 1 Tree growing algorithm

Input: A node containing observations and a configuration
Output: A tree structure with knots and leaves

Initialization: L ← {Xi}n1
TreeBuild(No,L ) {

if (L = ∅) then {exit}
σ ← configuration ofNo
Compute the Upper Entropy of No: α0 = G (Pσ)
Compute α = min

X∈L
G
(
Pσ∪X)

if (α ≥ α0) then {
exit # Making No a leaf

} else {
Let X∗ be the variable for which the minimum α is attained
Remove X∗ from L
Assign X∗ to Node No
for (State x∗k ∈ {States of X∗}) do {

Add a Node Nok
Make Nok child of No
Call TreeBuild (Nok,L )

}
}

}

1It is based on the algorithm BuildTree given in Abellán and Moral (2005) on page 246;
adapted to the case where just children are taken into account.
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A.2 Upper Entropy Algorithm

In the following the Abellán and Moral’s algorithm to calculate the Upper En-
tropy distribution is described:2 3

Algorithm 2 Upper Entropy Algorithm

Input: A set of reachable probability intervals [li, ui]
1
n

Output: A probability distribution p̂ = (p̂1, p̂2, . . . , p̂n)

Helping functions:
Sum(x): returns the sum of the elements of array x
Imin(x, S): returns the index/indices of the minimum value of the array x

considering only indices in S
Sig(x, S): return the index/indices of second minor value of the array x

considering only indices in S; if not existent returns -1
Nmin(x, S): returns the number of indices attaining the minimum value

of array x considering only indices in S
Min(x, y, z): return the minimum of values x, y, z

Initialization: S ← 1, . . . , n

GetMaxEntropy(l, u, p̂, S){
for (i = 1 ton) do {p̂i ← li}
if (Sum(l) < 1) then {

for (i = 1 ton) do {
if (li = ui) then {

S ← S − {i}
}

}
s← Sum(l)
r ← Imin(l, S)
f ← Sig(l, S)
m← Nmin(l, S)
for (i = 1 ton) do {

if (i ∈ r) then {
if (f = −1) then {

li ← li +Min(ui − li, 1−s
m , 1)

} else {
li ← li +Min(ui − li, lf − lr, 1−s

m )
}

}
}
GetMaxEntropy(l, u, p̂, S)

}
}

2cf. Abellán and Moral (2003b), p. 593f
3For a more intuitive understanding the notation is slightly modified.
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A.3 Class Predicting Algorithms

Provided with a set of probability intervals these short algorithms removes the
states according to interval dominance4 and maximum frequency:

Algorithm 3 Class Predicting Algorithm applying Interval Dominance

Input: A set of probability intervals {[li;ui]}n1
with a set of associated states C = {c1, . . . cn}

Output: A set of non–dominated states C ∗

Initialization: C ∗ ← {c1, . . . , cn} # List of states

PredictClassIntDom ({[li;ui]}n1 ) {
for (i = 1 ton) do {

for (j = 1 ton; j 6= i) do {
if (ui < lj) then {

Remove ci from C ∗

Break j-loop and continue with i-loop
}

}
}

}

Algorithm 4 Class Predicting Algorithm applying Maximum Frequency

Input: A set of probability intervals {[li;ui]}n1
with a set of associated states C = {c1, . . . cn}

Output: A set of non–dominated states C ∗

Initialization: C ∗ ← ∅
maxv ← −1 # Stores the maximum value

PredictClassMaxFreq ({[li;ui]}n1 ) {
for (i = 1 ton) do {

if (maxv = ui) then {
Add ci to C ∗

} else if (maxv < ui) then {
C ∗ ← ∅
Add ci to C ∗

maxv ← ui
}

}
}

4cp. Corani and Zaffalon (2009), p. 31
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Appendix B

Proofs

B.1 IDM generating proper and reachable sets
of probability intervals

For sake of simplicity a classification variable C with 3 different states (C1,
C2, C3) is assumed. The number of observations under consideration is n1, n2

and n3 for states C1, C2 and C3 respectively. As the states are exhaustive the
number of the observation in the different states sum up to the overall number
n under consideration. Given an IDM with s > 0 one obtains the following
intervals:

For state C1 : I1 =
[
n1

n+s ,
n1+s
n+s

]
(B.1)

For state C2 : I2 =
[
n2

n+s ,
n2+s
n+s

]
(B.2)

For state C3 : I3 =
[
n3

n+s ,
n3+s
n+s

]
(B.3)

The set of probability intervals I = {I1, I2, I3} is proper:

Proof.
First summing up the lower bounds of the intervals

3∑
i=1

li =
n1

n+ s
+

n2

n+ s
+

n3

n+ s

=
n1 + n2 + n3

n+ s

=
n

n+ s
< 1 ,
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then the upper bounds

3∑
i=1

ui =
n1 + s

n+ s
+
n2 + s

n+ s
+
n3 + s

n+ s

=
n1 + s+ n2 + s+ n3 + s

n+ s

=
n+ 3s

n+ s

= 1 +
2s

n+ s
> 1 .

The set I is reachable:

Proof.
Starting with the first Interval I1:

l2 + l3 + u1 =
n2

n+ s
+

n3

n+ s
+
n1 + s

n+ s
=
n1 + s+ n2 + n3

n+ s
= 1 ≤ 1

u2 + u3 + l1 =
n2 + s

n+ s
+
n3 + s

n+ s
+

n1

n+ s
=
n1 + n2 + n3 + 2s

n+ s
> 1

Due to the symmetric nature of the IDM regarding categories the result is
obviously identical for I2 and I3.

B.2 Properties of the disjunction for probability
intervals

Without loss of generality a set of m sets of probability intervals
{
{Iij}k1

}m
1

on
a domain with dimension k, with Iij = (lij , uij). The disjunction leads to the
result ⊕

j

Iij =

(
min
j

(lij),max
j

(uij)

)
= (l∗i , u

∗
i ) ∀i = 1, . . . , k .

B.2.1 The disjunction of proper probability intervals is
proper

For now assume that each of the m sets is proper.

Proof.
At first the requirement to lower bounds is looked into:
By supposition all sets of probability intervals are proper:

k∑
i=1

lij ≤ 1 ∀j = 1, . . . ,m .
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Summing over all lower bounds of the disjunction leads to

k∑
i=1

(
min
j
lij

)
≤

k∑
i=1

 1

m

m∑
j=1

lij


≤ 1

m

k∑
i=1

m∑
j=1

lij

≤ 1

m

m∑
j=1

(
k∑
i=1

lij

)

≤ 1

m

m∑
j=1

1

≤ 1

Accordingly is the proof of the restriction on the upper bounds.

B.2.2 The disjunction of reachable probability intervals is
reachable

By supposition the m sets are reachable this time.
As reachable includes proper, with the above proof it is evident that the result
also yields a proper set of probability intervals. In the following it is proved
that it is even reachable, i.e. equation (5.5) and (5.6) (chapter 5) are met.

Proof. By supposition (5.5) is valid for all sets, so especially for the one with
l∗i = minj(lij).

1 ≤
∑
j 6=i

u∗j + l∗i =
∑
j 6=i

u∗j + min
r

(lir) ∀i

≤ max
r

∑
j 6=i

ujr

+ min
r

(lir) ∀i

≤
∑
j 6=i

(
max
r

(ujr)
)

+ min
r

(lir) ∀i

The last expression gives (5.5) for the disjunction result.
As (5.6) is valid for all sets, so especially for the one with u∗i = maxj(uij).

1 ≥
∑
j 6=i

l∗j + u∗i =
∑
j 6=i

l∗j + max
r

(uir) ∀i

≥ min
r

∑
j 6=i

ljr

+ max
r

(uir) ∀i

≥
∑
j 6=i

(
min
r

(ljr)
)

+ max
r

(uir) ∀i,

demonstrating (5.6) for the disjunction result.
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B.3 Properties of the average rule for probabil-
ity intervals

Without loss of generality a set of m sets of probability intervals
{
{Iij}k1

}m
1

on
a domain with dimension k, with Iij = (lij , uij). The average rule leads to the
result

Mean(Iij) =

 1

m

m∑
j=1

(lij),
1

m

m∑
j=1

(uij)

 = (lai , u
a
i ) ∀i = 1, . . . , k .

B.3.1 The average over a set of proper probability inter-
vals is proper

Proof.
Concerning the lower bounds, by supposition all sets are proper, i.e.

k∑
i=1

lij ≤ 1 ∀j = 1, . . . ,m .

Does this also hold for the average rule’s result?

k∑
i=1

 1

m

m∑
j=1

(lij)

 =
1

m

k∑
i=1

m∑
j=1

lij

=
1

m

m∑
j=1

(
k∑
i=1

lij

)

≤ 1

m

m∑
j=1

1

≤ 1 .

Analogously is the proof on the restriction of the upper bounds.

B.3.2 The average over a set of reachable probability in-
tervals is reachable

Proof.
As reachability conditions on properness, from the above proof the result of the
average rule is proper in any case.
For any i ∈ {1, . . . , k} the properties (5.5) and (5.6) are proven. Starting with
(5.6):

∑
j 6=i

(
1

m

m∑
r=1

urj

)
+

1

m

m∑
r=1

lri =
1

m

m∑
r=1

∑
j 6=i

urj

+
1

m

m∑
r=1

lri

=
1

m

m∑
r=1

∑
j 6=i

urj + lri


≥ 1

m

m∑
r=1

1 = 1
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Analogously for (5.5):

∑
j 6=i

(
1

m

m∑
r=1

lrj

)
+

1

m

m∑
r=1

uri =
1

m

m∑
r=1

∑
j 6=i

lrj

+
1

m

m∑
r=1

uri

=
1

m

m∑
r=1

∑
j 6=i

lrj + uri


≤ 1

m

m∑
r=1

1 = 1

B.3.3 The average rule returns intervals of equal width
for each class

Suppose every probability interval within each of the m sets has the same width.
This allows to re-define the upper bound with respect to the lower bound and
a width, fixed for each of the m sets:

uij = lij + dj dj ≥ 0 ∀i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}

For any i ∈ {1, . . . , k} the width of the aggregated result is obtained to:

wai = uai − lai =
1

m

m∑
j=1

(uij)−
1

m

m∑
j=1

(lij)

=
1

m

m∑
j=1

(lij + dj)−
1

m

m∑
j=1

(lij)

=

�
�

�
�
�1

m

m∑
j=1

(lij) +
1

m

m∑
j=1

(dj)−
�

�
�

�
�1

m

m∑
j=1

(lij)

=
1

m

m∑
j=1

(dj)

As seen from the last expression the width is independent of i and thus is is the
same for all i ∈ {1, . . . , k}, which proves the statement of equal widths.
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Appendix C

Figures of the second
simulation

The following boxplots depict the attained determinacy, single–set accuracy and
discounted–accuracy, when distinguishing the tests sets by their classification
noise induced in the data generation.

C.1 Determinacy
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Figure C.1: Boxplot of determinacy over 400 test sets with low classification
noise

47



●
●●●●●●●●●●●

●

●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●
●●
●●●●●●●●●●●●

●
●●
●
●

●

●

●
●●●●

●

●

●

●●

●
●●
●●●●
●●
●

●●

0.0

0.2

0.4

0.6

0.8

1.0

Determinacy (medium noise)

Majority Vote Weighted
Majority Vote

Disjunction
(Interval)

Disjunction
(Max)

Average
(Interval)

Average
(Max)

Tree

Figure C.2: Boxplot of determinacy over 1500 test sets with medium classifica-
tion noise
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Figure C.3: Boxplot of determinacy over 3100 test sets with high classification
noise
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C.2 Single–set Accuracy
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Figure C.4: Boxplot of single–set accuracy over 400 test sets with low classifi-
cation noise
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Figure C.5: Boxplot of single–set accuracy over 1500 test sets with medium
classification noise
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Figure C.6: Boxplot of single–set accuracy over 3100 test sets with high classi-
fication noise (2799 for Conjunction (Strong))

C.3 Discounted–Accuracy
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Figure C.7: Boxplot of discounted–accuracy over 400 test sets with low classifi-
cation noise
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Figure C.8: Boxplot of discounted–accuracy over 1500 test sets with medium
classification noise
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Figure C.9: Boxplot of discounted–accuracy over 3100 test sets with high clas-
sification noise
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Appendix D

Attachment on electronic
mediums

Along with this master thesis a CD is attached, containing the R1–scripts and C–
sources, as well as the generated graphics and the final results of the simulations.
Below the functions in the scripts are shortly summarized. A more detailed
description could be found in the scripts itself. For full functionality the C–
sources are required to be compiled by R.2

D.1 R–Scripts

accuracy.r: In this file the function accuracy is defined. It calculates the de-
terminacy, single–set accuracy, average number of classes when indetermi-
nate, set–accuracy and discounted–accuracy and return also the underly-
ing prediction result.

treebuilder.r: This file contains the main functions of imptree and impbags
which generate a single imprecise classification tree (object of class imptree)
and a bag of imprecise classification trees (object of class impbag), respec-
tively. Also the function predclass is defined in there, which predicts the
attained classes based on a set of probability intervals.

predict.r: In this file the prediction functions for objects of class imptree and
impbag are defined. For the bags one may specify different fusion rules such
as majority voting and weighted majority voting, as well as disjunction and
average rule with class prediction by interval dominance and maximum
frequency criterion.

print.r: Herein functions could be found, defining a fancy printing for objects
of class imptree and impbag.

init.r: This file sources all necessary files mentioned above in order to use all
functions described above. It also loads the shared objects, generated by
the C–sources.

1R Development Core Team (2012a)
2For more details on how to compile C–sources see R Development Core Team (2012b),

chapter 5.5.
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spectsimu.r: Program code of the simulation in chapter 7.1.

artificialsimu.r: Program code of the simulation in chapter 7.2.

D.2 C–Sources

maxentropy.c: Herein the function carrying out the calculation of the Upper
Entropy Distribution is defined.

predict.c: In this file the prediction of observations for an imprecise classifica-
tion tree is carried out, i.e the climbing down of the tree. The functions de-
fined herein are based on those defined in predict.c of the TWIX-package.3

D.3 Outline of the contents

In the main directory the following items could found:

thesis.pdf: This master thesis in pdf-format.

R: The directory containing all R–scripts (Appendix D.1) and directories with
results of the simulations, including a README-file each.

src: The directory containing all C–sources (Appendix D.2).

3Potapov (2009)
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