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Abstract If electroweak symmetry breaking is driven by
a new strongly coupled dynamical sector, one expects the
bound states to appear at the TeV scale or slightly below.
However, electroweak precision data imposes severe con-
straints on most of the existing models, putting them under
strain. Conventional models require the new composite states
to come in pairs of rather heavy, close to degenerate spin-1
resonances. In this paper I argue that spin-1 states can actu-
ally be lighter without clashing with experimental bounds.
As an example, I consider a composite model with a light
pseudovector resonance that couples to the Standard Model
gauge boson, fermion, and scalar fields. I show how such
a resonance leaves basically no imprint on the NLO cor-
rections to the Standard Model. This happens not through
parameter tuning, but rather as a consequence of generic
properties of realistic UV completions. This pseudovector is
mostly unconstrained by existing data and could be as light as
600 GeV. In the last part of the paper I briefly discuss its most
characteristic signatures for direct detection at colliders.

1 Introduction

The recent discovery of a scalar sector in the Standard Model
has profound implications for particle physics, yet it does not
settle the issue of what dynamics is behind electroweak sym-
metry breaking and how the hierarchy problem is resolved.
In that respect, the discovery of new particles in the sub-
TeV region, either from weakly coupled or strongly coupled
dynamical extensions, should provide valuable hints.

The absence (so far) of new-physics states, together with
the Higgs-like character of the 126 GeV scalar, indicates
that deviations from the Standard Model paradigm have to
be small. This, together with flavor constraints, puts under
strain, if it does not already exclude, most of the natural
realizations of Supersymmetry and composite models.

a e-mail: oscar.cata@physik.uni-muenchen.de

In this paper I will concentrate on scenarios of strongly
coupled dynamics at the TeV scale. Composite models were
initially introduced as higgsless alternatives to the Standard
Model, borrowing heavily from patterns and characteristics
of QCD. While those models are nowadays ruled out, they
have been superseded by more elaborate strongly coupled
scenarios that accommodate a light scalar through the vac-
uum misalignment mechanism discussed in [1,2]. In those
dynamical scenarios the Higgs-like particle is a pseudo-
Goldstone mode of some broken global symmetry which
develops a potential through quantum corrections, thereby
avoiding the hierarchy problem. One of the virtues of the vac-
uum misalignment is that it is flexible enough to smoothly
interpolate between non-decoupling and decoupling new-
physics scenarios. Recently, such ideas have been formulated
in an effective field theory language [3–9], which allows for
a systematic scrutiny of deviations from the Standard Model
paradigm.

While an effective field theory is a general description
of the physics at low energies, specific models are needed
to identify potential signatures and guide searches at collid-
ers. However, without imposing rather ad hoc conditions,
the presently allowed size of new-physics effects seems hard
to accommodate within models of light (sub-TeV) states.
For instance, constraints on oblique parameters typically
push the mass range of vector and axial resonances at a
few TeV [10,11], or else one is lead to a certain degree of
fine-tuning by requiring unnaturally sizable one-loop correc-
tions [12,13].

In this paper I will assume that no large one-loop effects
are present, which otherwise would jeopardize the effective
field theory expansion, and therefore accept that composite
models seem to prefer rather heavy vector and axial states.
The question I will then address is whether other lighter spin-
1 states can be present. Such states should leave a rather
subtle phenomenological imprint in order not to upset elec-
troweak precision measurements but might leave at the same
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time rather clean signals for direct detection. In the follow-
ing I will work with a minimal dynamical setting, assuming
that the new dynamics is invariant under SU(2)L × SU(2)R

broken down to the custodial SU(2)V . This coset structure
guarantees that the number of pseudo-Goldstone bosons does
not exceed the experimentally observed ones. In order to be
fully general, a light Higgs-light scalar will be introduced
as a singlet. I will further assume that this new dynamics
is parity-preserving and generates its lightest resonance state
roughly around 700–900 GeV. This state will be described by
an antisymmetric rank-two tensor field Bμν with the quantum
numbers of a pseudovector.

This new dynamics will be assumed to be dual to a more
fundamental theory of constituents, which sets in at suffi-
ciently high energies. I will show that consistency with this
dual picture implies that a pseudovector would leave no trace
on effective operators with gauge bosons. At energies much
lower than its mass, its effects would only be noticeable
as anomalous top quark vertices. Its impact on low-energy
effective operators is thus rather elusive, but still it provides
distinct signatures for direct detection at colliders, mainly
through gluon fusion (gg → B → W +W −) and associated
production (pp → BZ ).

This paper is organized as follows: in Sect. 2, I discuss
some technical aspects of rank-two antisymmetric tensors,
such as its decomposition in longitudinal and transverse
modes and their connection through a duality transforma-
tion. In Sect. 3 the model for composite pseudovectors is
introduced. Its indirect traces at low energies are examined in
Sect. 4 while comments on the most promising signatures for
direct detection are addressed in Sect. 5. Concluding remarks
are given in Sect. 6.

2 Kalb–Ramond fields and massive spin-1 states

It is well known that massive spin-1 states can be described by
one-form Proca fields as well as two-form fields. The Proca
description successfully accounts for the Standard Model
fundamental gauge spin-1 fields (W ±, Z ), whose masses
are generated after gauge symmetry is spontaneously bro-
ken via the Higgs mechanism. In contrast, the two-form rep-
resentation seems to be better suited for composite spin-1
states.

In QCD, for instance, the coefficients of the NLO low-
energy expansion (the Gasser–Leutwyler coefficients) are
expected to be O( f 2/�2), with f the pion decay constant
and � the scale of hadronic physics. This is the natural size
one would expect from integrated-out hadronic degrees of
freedom lying at m ∼ O(�) and agrees rather well with
experimental data. A two-form representation of axial and
vector mesons naturally accounts for this pattern of vector
meson exchange [14] besides reproducing other key aspects

of low-energy chiral dynamics [15,16]. If mesons are rep-
resented by Proca fields, however, the contribution to the
NLO coefficients from tree level resonance exchange van-
ishes altogether.

Following the example of QCD, I will henceforth use the
tensorial representation. In this section I will lay out some
formal aspects of massive rank-two antisymmetric tensors
that will be useful for the sections to come. I will pay special
attention to the interplay of the longitudinal and transverse
components of the two-forms and a duality transformation
connecting them.

Let us start by examining the kinetic term. The most gen-
eral quadratic form for a second rank antisymmetric tensor
with well-defined parity is given by

LH = a

2
∂σ Hμν∂

σ Hμν + b ∂μHμν∂λHλν + c

2
HμνHμν.

(1)

Generically, the structure of the previous Lagrangian does
not furnish a representation of the Lorentz group. The generic
propagator contains two potential poles:

�μν;λρ = PT
μν;λρ

aq2 + c
+ P L

μν;λρ
(a + b)q2 + c

(2)

where

Pμν;λρL = gμλ
qνqρ

2q2 − gμρ
qνqλ

2q2 − gνλ
qμqρ

2q2 + gνρ
qμqλ

2q2

Pμν;λρT = −εμναβελρησ gαη
qβqσ
2q2 (3)

are the transverse and longitudinal projectors for rank-two
tensors. As such, Pμν;λρT + Pμν;λρL = Iμν;λρ , with Iμν;λρ =
1
2 (g

μλgνρ − gμρgνλ), as can easily be checked from (3).
The longitudinal mode is isolated by picking a = 0, b =

− 1
2 , and c = m2

L
2 , and it leads to

�L
μν;λρ = 2

q2 − m2
L

[
q2 − m2

L

m2
L

Iμν;λρ − q2

m2
L

P L
μν;λρ

]
, (4)

which corresponds to the Lagrangian

LL = tr

[
−∂μVμν∂ρVρν + m2

V
2

VμνVμν
]

(5)

where the trace is over the internal symmetry group. The
longitudinal field Vμν is the one currently used to represent
spin-1 mesons in QCD [14,15].

The transverse mode corresponds instead to the parameter

choice a = −b = 1
2 and c = −m2

T
2 , giving
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�T
μν;λρ = − 2

q2 − m2
T

[
q2 − m2

T

m2
T

Iμν;λρ − q2

m2
T

PT
μν;λρ

]

= 2

q2 − m2
T

[
Iμν;λρ − q2

m2
T

P L
μν;λρ

]
, (6)

which results from the Lagrangian

LT = tr

[
1

2
∂λBμν∂λBμν − ∂μBμν∂ρBρν − m2

B
2

BμνBμν
]
.

(7)

The transverse mode is the natural extension of the gauge
two-form field when a mass term is added. A gauged two-
form is defined by the free action

L = 1

6
tr
[
HμνρHμνρ

]
(8)

where Hμνλ ≡ ∂μHνλ + ∂νHλμ + ∂λHμν is the curvature
tensor and the metric signature is chosen mostly negative.
The previous Lagrangian is invariant under the gauge sym-
metry δHμν = ∂μ�ν − ∂ν�μ, which eventually leaves only
one independent degree of freedom. It therefore describes a
massless spin-0 mode, as can be seen by direct investigation
of its helicity structure [17] or through duality [18].

In the context of string theory, the field Hμν (both massless
and massive) was found to be the natural dynamical object
mediating interstring interactions [18,19] and is commonly
referred to as the Kalb–Ramond field Bμν . There, the gauged
two-form gets its mass through mixing with a gauge one-
form field, absorbs its two degrees of freedom and eventually
describes a massive spin-1 mode. The opposite also holds
true, namely a gauge field can be made massive by absorbing
the scalar degree of freedom hidden inside the gauged two-
form [20].

Equation (7) can easily be cast in the form

LT = tr

[
1

6
BμνλBμνλ − m2

B
2

BμνBμν
]
, (9)

which shows that Bμν is a massive Kalb–Ramond field.
Therefore, in full generality, a second rank antisymmetric

tensor Hμν has 6 degrees of freedom, which can be decom-
posed as two massive spin-1 fields, the transverse (Kalb–
Ramond) Bμν and the longitudinal Vμν .

2.1 Duality transformation

The existence of two tensorial representations for massive
spin-1 fields can also be understood by the fact that there
are two independent tensor structures for 1-particle creation

matrix elements, namely

〈0|V X
μν |X〉 ∝ i

m X
(pμεν − pνεμ) (10)

and

〈0|BX
μν |X〉 ∝ i

m X
εμνλρε

λ pρ, (11)

which are the normalizations leading to the propagators dis-
cussed above. The previous equations suggest that there is a
duality transformation between longitudinal and transverse
fields given by

Vμν → 1

2
εμνλρBλρ. (12)

To be more precise, one can show that a theory generically
given by

L = tr

[
−∂μVμν∂ρVρν + m2

2
VμνVμν + Vμν JμνV

]
, (13)

where the interactions are built to describe a particle species
X , is dual to another theory

L = tr

[
1

6
BμνλBμνλ − m2

2
BμνBμν + Bμν JμνB

]
, (14)

which describes the same particles X provided that JμνB =
1
2ε
μνλρ JVλρ . As a corollary, in the absence of masses, the

original gauge transformation of Bμν , δBμν = ∂μ�ν−∂ν�μ
is cast in terms of Vμν as δVμν = εμνλρ∂

λ�ρ .
The duality above means that every spin-1 particle can be

equivalently expressed in terms of either a longitudinal or a
transverse two-form field. In theories with parity conserva-
tion, particles with the same charge conjugation but opposite
parity can be described with Vμν and Bμν fields, respectively,
while leaving the form of the interaction terms untouched.
Thus, if an interacting theory for a regular 1−− vector is
described by a longitudinal field Vμν , the corresponding the-
ory for a pseudovector 1+− can be constructed simply by
replacing Vμν → Bμν in the interaction terms. This obser-
vation will be used in the following section.

3 A model for composite pseudovectors

If new strongly coupled dynamics trigger electroweak sym-
metry breaking, a mass gap will typically be generated
between their associated Goldstone bosons (at the elec-
troweak scale v) and bound states (typically at the TeV scale,
� ∼ 4πv or slightly below). In order to work with a min-
imal model, the following extra assumptions will be made:
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(i) the new strong sector is parity-conserving and invariant
under SU(2)L × SU(2)R , spontaneously broken down to the
diagonal subgroup SU(2)V . This is the minimal coset struc-
ture required to give gauge bosons a mass; (ii) the Higgs-like
scalar originates from spontaneous breaking of an extended
space-time or internal global symmetry, which occurs at a
higher energy scale. I will not model such breaking and
instead I will generically introduce the Higgs as a singlet
under the Standard Model gauge group; (iii) the first state
in the resonance spectrum is a light J PC = 1+− pseudovec-
tor mode in the mass range 600–1,000 GeV. Vector 1−− and
axial 1++ excitations are above the TeV, as suggested by
electroweak precision constraints.

Pseudovector states are not as exotic as it might seem
at first. In QCD their lowest-lying candidate is the b1(1,235)
meson, which is slightly lighter than the first axial excitation,
a1(1,260). Their properties and phenomenology have been
explored in a number of papers, from dispersive analysis
involving spectral sum rules [21–23] to holographic models
for spin-1 states [24–27], including its low-energy impact on
chiral couplings [28].

Here I will be assuming that, unlike in QCD, the pseu-
dovector resonance is the lowest-lying state of the composite
spectrum. It will be described by a Kalb–Ramond field Bμν ,
transforming as a triplet under the unbroken custodial group:

Bμν → ξV Bμνξ†
V (15)

where ξV ∈ SU(2)V .
The Goldstone bosons coming from spontaneous

SU(2)L × SU(2)R → SU(2)V breaking will be collected
in a nonlinear matrix U , which transforms as a bifundamen-
tal:

U → ξLUξ†
R (16)

where ξL ,R ∈ SU(2)L ,R . A convenient parametrization is

U = exp(2i�/v), � = φata = 1√
2

⎛
⎝ φ0√

2
φ+

φ− − φ0√
2

⎞
⎠ . (17)

Since only SU(2)L×U (1)Y is gauged, its covariant deriva-
tive is given by

DμU = [
∂μ + igWμ − ig′BμτL

]
U (18)

where τL = Ut3U †. In practice it will be useful to also define
Lμ = iU DμU †.

In order to couple the pseudovector to the Standard Model
fields in a gauge-invariant way, it is convenient to introduce
quantities that transform only under SU(2)V . This can be
done with the aid of the more fundamental field u

u → ξLuξ†
V = ξV uξ†

R, u2 = U. (19)

The building blocks covariant under SU(2)V are then

u†ψL → ξV u†ψL

uψR → ξV uψR

uμ → ξV uμξ
†
V

f μν+ → ξV f μν+ ξ
†
V (20)

where uμ= −u†Lμu and f μν+ = u†gWμνu + ug′Bμν t3u†.
Further derivatives on the fields can be shown to be redun-
dant.

The covariant derivative on Bμν is defined as

∇λBμν = ∂λBμν + [�λ,Bμν] (21)

with

�λ = 1

2

[
u(∂λ − ig′Bλt3)u

† + u†(∂λ − igWλ)u

]
. (22)

The model of electroweak interactions at energies above
mB will be written as

L = LK + LM + LB (23)

where

LK = −
∑

X

1

4
Xa
μνXμν a + i

∑
j

ψ̄ jγμDμψ j + 1

2
∂μh∂μh

LM = v2

4
tr[LμLμ]ζ(h)−v(ψ̄i Yi j (h)U P±ψ j + h.c.

)− V (h)

(24)

is the leading order electroweak Lagrangian in the notation
of [8], where X is a generic gauge boson and h the Higgs-
like scalar. P± simply project out the first and second element
of the doublet ψR , respectively. Since h is introduced as a
singlet, V (h), ζ(h) and Yi j (h) are generic functions of h,
whose particular coefficients are model-dependent.

The pseudovector sector is chosen as

LB = tr

[
1

2
∇λBμν∇λBμν − ∇μBμν∇ρBρν − m2

B
2

BμνBμν
]

+ ht (ψ̄Lσ
μνuBμνu P+ψR)+ hb(ψ̄Lσ

μνuBμνu P−ψR)

+ h.c.+ tr

[
f1Bμν f μν+ + i f2Bμν[uμ, uν]

]
, (25)

which contains the most general interaction terms linear in B.
Interactions with h can be incorporated by appending arbi-
trary functions of h to those operators. Here I will leave such
functions implicit.
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Based on naive dimensional counting, one expects the
interaction coefficients to gauge bosons to be fi ∼ O(v).
Regarding the fermion couplings, chirality suggests that h j

are proportional to the Yukawa couplings. In order to com-
ply with flavor bounds, we will implicitly assume that the
model falls into the framework of Minimal Flavor Viola-
tion [29,30]. Accordingly, the pseudovector couples mostly
to the third family of quarks. In the following, ψ will stand
for a (t, b) SU(2) doublet.

4 Indirect signals

The presence of a pseudovector in the sub-TeV region leaves
potential imprints on the low-energy theory through contribu-
tions to anomalous couplings. The size of these contributions
will show up as O(v2/m2

B)NLO corrections and can be cap-
tured efficiently by an effective field theory (EFT) analysis
provided that mB ∼ O(�). This is the scaling expected from
a bound state of strongly coupled dynamics, and guarantees
that the NLO new-physics counterterms match the size of
the LO loop divergences, O(v2/�2). This assumption is the
starting point to build a power counting in strongly coupled
theories, e.g. in QCD. To be more quantitative, I will choose
mB > �

5 ∼ 600 GeV as a lower bound in order not to upset
this naive power counting.

Indirect pseudovector effects can be seen by integrating
it out from the model of the previous section. The resulting
effective Lagrangian will match onto a subset of the NLO
terms of the EFT worked out in [8]. Writing the model as

L = tr

[
1

6
BμνλBμνλ − m2

B
2

BμνBμν + Bμν Jμν
]

(26)

and integrating out the pseudovector at tree level one ends
up with the effective Lagrangian1

Leff = 1

m2
B

J i
μν Jμνi =

∑
j

[
c(2)j O(2)

j + c(3)j O(3)
j + c(4)j O(4)

j

]
(27)

where

J j
μν ≡ 〈t j Jμν〉 = f1 tr

(
t j f+μν

)
+ i f2 tr

(
t j [uμ, uν]

)
+ ht (ψ̄Lσμνut j u P+ψR)+ hb(ψ̄Lσμνut j u P−ψR)

+ h.c. (28)

1 Strictly speaking, integration of B brings corrections to the gauge
kinetic terms of the form g2W a

μνWμνa and g′2 BμνBμν . Such terms
can, however, be reabsorbed by appropriate redefinition of the gauge
fields and couplings, such that the kinetic terms remain canonically
normalized.

Xμ
i Xν

j

Xμ
i

Xν
j

Xλ
k

Xρ
l

Xμ
i

Xλ
j

Xρ
k

f

f̄

f

f̄

f

f̄

Xμ
i

Xμ
i

Xν
j

f

f̄

Fig. 1 Different low-energy topologies affected by pseudovector
exchange. They correspond to anomalous Standard Model vertices,
except the last topology, which is not present in the Standard Model

and use has to be made of the SU(2) relation

ta
i j t

a
kl = 1

2
δilδ jk − 1

4
δi jδkl . (29)

The effective operators O(i)
j describe the anomalous

oblique, triple, and quartic vertices depicted in Fig. 1. They
are listed, together with their corresponding coefficients, in
Table 1. From it one would naively conclude that two-, three-,
and four-point vertices get modified. However, if one com-
putes explicitly the corresponding diagrams with pseudovec-
tor exchange, one realizes that only for the four-point vertices
there is actual resonance propagation. Pseudovector propa-
gation in two and three-point vertices is forbidden by P and
C conservation, and the contribution reported in Table 1 cor-
responds to a contact term interaction.

Such contact interactions are licit and physically relevant
provided that they do not spoil the consistency of the the-
ory at high energies. Even though I have not committed to
a UV completion of the present model, any strongly cou-
pled scenario implicitly requires duality, above the decon-
finement scale, to a theory of more fundamental constituents.
The paradigmatic example is QCD, where hadrons are made
of quarks and gluons.

In order to link the confined and deconfined phases, it will
be convenient to adopt the language of dispersion relations. If
the contact terms do not conform to the expected high-energy
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Table 1 Low-energy effective operators and coefficients resulting from
pseudovector integration. Complex conjugate operators are implicitly
understood. As discussed in the main text, internal dynamical consis-
tency requires the presence of additional counterterms. As a result, there
is only net contribution from the four-fermion operators

Operators O(i)
j Coefficients c(i)j

O(2)
1 = gg′〈WμντL 〉Bμν f 2

1 /m2
B

O(3)
1 = g〈Wμν [Lμ, Lν ]〉 i f1 f2/m2

B
O(3)

2 = g′ Bμν〈τL [Lμ, Lν ]〉 i f1 f2/m2
B

O(3)
3 = gψ̄LσμνWμνU P+ψR f1ht/m2

B
O(3)

4 = gψ̄LσμνWμνU P−ψR f1hb/m2
B

O(3)
5 = g′ψ̄LσμνBμνUt3 P+ψR f1ht/m2

B
O(3)

6 = g′ψ̄LσμνBμνUt3 P−ψR f1hb/m2
B

O(4)
1 = 〈LμLν〉〈LμLν〉 − f 2

2 /m2
B

O(4)
2 = 〈LμLμ〉〈LνLν〉 f 2

2 /m2
B

O(4)
3 = (ψ̄LσμνU P+ψR)(ψ̄LσμνU P+ψR) h2

t /(4m2
B)

O(4)
4 = (ψ̄LσμνU P−ψR)(ψ̄LσμνU P−ψR) h2

b/(4m2
B)

O(4)
5 = (ψ̄LσμνU P−ψR)(ψ̄LσμνU P+ψR) ht hb/(2m2

B)

O(4)
6 = (ψ̄LσμνU P−ψR)(ψ̄R P+σμνU †ψL ) −hbh∗

t /(2m2
B)

O(4)
7 = (ψ̄LσμνU P−ψR)(ψ̄R P−σμνU †ψL ) −hbh∗

b/(2m2
B)

O(4)
8 = (ψ̄LσμνU P+ψR)(ψ̄R P+σμνU †ψL ) −ht h∗

t /(2m2
B)

O(4)
9 = ψ̄Lσμν [Lμ, Lν ]U P+ψR i f2ht/m2

B
O(4)

10 = ψ̄Lσμν [Lμ, Lν ]U P−ψR i f2hb/m2
B

behavior of the theory, then the model has to be extended
with the addition of local operators such that the mismatch
is avoided. A similar strategy was adopted in QCD to assess
the impact of the b1(1,235) meson in chiral dynamics [28].

Consider the two-point function �W B , defined as

�
μν
W B(q) = δ2

δW 3
μδBν

L =
(

qμqν

q2 − gμν
)
�W B(q

2). (30)

This correlator is an order parameter of custodial sym-
metry breaking. At high energies, where the global group
SU(2)L ×SU(2)R is unbroken, one expects perturbative con-
tributions in terms of the fundamental constituents to cancel
to all orders. Nonzero contributions should come from non-
trivial vacuum condensates in the operator power expansion.
The correlator is therefore power-suppressed at high energies
and expected to satisfy an unsubtracted dispersion relation

�W B(q
2) =

∫ ∞

0

dt

t − q2

1

π
Im�W B(t). (31)

The contribution from the pseudovector to the absorptive
part above is exactly zero, because it is not a propagating

mode. Actually,�(B)W B(q
2)=−gg′ f 2

1
m2

B
q2 thus effectively gen-

erating a subtraction, which would indicate breaking of cus-
todial symmetry in the deep UV and is therefore ruled out by
general principles. This means that the model introduced in
Eq. (23) needs the addition of counterterms such that Eq. (31)
holds true. To be more precise, consistency is restored when
the counterterms balance out the naive pseudovector contri-
bution. Therefore, the pseudovector model is consistent only
when there is no net effect on�W B . This in particular means
that there is no pseudovector contribution to the S parameter.

Three-point vertices can likewise be examined through
a dispersive approach. For QCD-inspired UV completions,
Im�X X scales like a constant in the deep UV. Under this
assumption the three-point form factors of Fig. 1 must obey
once-subtracted dispersion relations of the form

FX→ f̄ f (q
2) = 1 + q2

∫ ∞

0

dt

t (t − q2)

1

π
ImFX→ f̄ f (t) (32)

and likewise for Xi → X j Xk . The subtraction above is
fixed by electric charge normalization. Again, the fact that
the pseudovector does not contribute to the absorptive part
means that counterterms are needed to avoid the appearance
of an unphysical subtraction. These counterterms precisely
balance out the naive pseudovector contribution.

Notice that the situation with the four-point functions is
rather different. There pseudovector exchange has a nonzero
absorptive part (C and P no longer prevent resonance prop-
agation) and its contribution resembles the one of regular
vector resonances. However, counterterms are also needed
in this case. To see this consider the longitudinal gauge-
boson scattering W a

L W b
L → W c

L W d
L . By the equivalence

theorem, at high energies this corresponds to the scatter-
ing of Goldstones φaφb → φcφd , up to corrections of
O(mW /

√
s). Goldstone scattering is determined by a sin-

gle function A(x, y, z), where x, y, z are the Mandelstam
variables. Since A is symmetric in the last two arguments,
only the first argument need to be kept above and one can
define A(x) ≡ A(x, y, z) = A(x, z, y). The total amplitude
reads

M(φaφb → φcφd) = δabδcdA(s)+ δacδbdA(t)
+ δadδbcA(u). (33)

In elastic channels with s ↔ u symmetry, the Froissart
bound [31] leads to the following forward (once-subtracted)
dispersion relation:

A(ν, t = 0) = c + ν2
∫ ∞

0

dη

η(η2 − ν2)

1

π
Im A(η, 0) (34)

where ν = 1
2 (s − u). If the new strong dynamics obeys

the Froissart bound at asymptotically high energies, then
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at high ν2 the previous amplitudes should go like a con-
stant. Explicit evaluation of pseudovector exchange shows
that pseudovector exchange is non-propagating in Goldstone
scattering. This generates a quadratic growth in (34), which
again calls for the addition of counterterms.

The non-propagating character of B in longitudinal high-
energy scattering also suggests that the four-point vertices
Xa Xb → f̄ f will likewise need counterterms. Actually,
explicit calculation shows that pseudovector contributions to
φaφb → f̄ f only generate a contact term.

A consistent pseudovector model thus requires to be
enlarged with the following counterterms:

LC = − f 2
1

m2
B

O(2)
1 − i

f1 f2

m2
B

(
O(3)

1 + O(3)
2

)

− f1ht

m2
B

(
O(3)

3 + O(3)
5

)
− f1hb

m2
B

(
O(3)

4 + O(3)
6

)
+ h.c.

+ f 2
2

m2
B

(
O(4)

1 − O(4)
2

)
− i

f2ht

m2
B

O(4)
9 − i

f2hb

m2
B

O(4)
10 + h.c.,

(35)

which precisely balance out the naive pseudovector low-
energy contributions. The net result is that, with the exception
of four-fermion topologies, low-energy traces of the pseu-
dovector are obliterated.

Since the conclusions above are based on generic high-
energy properties, they are independent of particular reso-
nance models above the TeV scale. However, in order to
understand the physical entity of the local terms introduced
above, consider enlarging the model we have presented here
to a model of large-Nc by inserting a full tower of pseu-
dovector excitations all the way up to infinity. In this case,
counterterms would be absent and consistency with disper-
sion relations would instead be satisfied through the existence
of a set of sum rules, where the added contributions of the
states in the tower would be required to non-trivially vanish.
Unlike more conventional sum rules, those would, however,
not be spectral sum rules. The counterterms introduced above
can therefore be understood as the integrated-out contribu-
tion of a full tower of pseudovectors, with the exception of its
lowest-lying mode, which at the energies we are interested
in is light enough to be dynamical.

5 Direct detection at colliders

The results of the previous section show how elusive the light
pseudovector can be for indirect detection. Its low-energy
traces reduce to anomalous four-fermion interactions, which
turn out to be mass-suppressed. Therefore, only top quark
four-point vertices are nonnegligible with c4t ∼ O(1/�2),
yet extremely challenging to probe. Unlike most of the exist-

ing new-physics candidates, a pseudovector can in practice
only be detected via direct searches.

In this section I will discuss the most promising modes
for direct detection of pseudovectors in a rather qualitative
way. This section is intended to provide a broad-brush picture
of the predominant channels for discovery. A more detailed
and quantitative study of the specific phenomenology and
prospects for detection is postponed to a future publication.

Inspection of Eq. (25) shows that the neutral pseudovector
component decays predominantly into a gauge-boson pair
and a top pair, B0 → W +W − and B0 → t̄ t . The charged
component instead is dominated by B± → W ±Z and B± →
t̄b.2 Explicit computation gives

�
(W+W−)
B = g4

48π

(
f 2
2

mB

)
(1 + 2x2

W )

√
1 − 4x2

W

x2
W

(36)

where xW = mW

mB
. Incidentally, if one compares (36) with

the same decay for a regular vector [32], one finds that the
pseudovector has a relative O(v2/m2

B) suppression. A pseu-
dovector is therefore generically narrower than a regular
vector.

Assuming CP-conserving interactions, the decay into a
top pair is given by

�
(t̄ t)
B = h2

t

24π
mB(1 − 4x2

t )
3/2 (37)

where xt = mt

mB
. Notice that since �(W W )

B ∼ O(g2mB) and

�
(t̄ t)
B ∼ O(h2

t mB), both decay modes are of comparable size:

�
(W+W−)
B
�
( f̄ f )
B

∼ g2

y2
t

∼ O(1). (38)

Numerically, for the mass range of interest, �B ∼ 2 % mB.
Regarding its detection at the LHC, the pseudovector is

most favorably produced through gluon fusion and subse-
quent decay into t̄ t jets and W +W − (see upper panel in
Fig. 2). The latter decay mode offers the cleaner signal for
detection, and direct searches should not differ much from the
ones already performed for the Higgs decay h → W +W −,
where both W decay leptonically, and in searches for heav-
ier scalar states [33]. However, due to the high pseudovector
mass, it might be more efficient to let one of the W decay
into a quark pair. The main background W+ jets can then be

2 If the charged component is heavy enough, the radiative channels
B± → B0W ±∗ will also be open. However, this splitting within the
B-multiplet, which would violate custodial symmetry, is not generated
by the present model.
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t
B0

μν

t

t̄

t
B0

μν

Xi
α

Xj
λ

Xa
α

Bb
μν

Xc
λ

Xi
ξ

Xj
τ

Xa
α

Bb
μν

Xc
λ

f

f̄

Fig. 2 Dominant modes for detection at colliders. See main text for a
detailed discussion

efficiently rejected by applying a cut on the neutrino trans-
verse momentum [34]. Unlike the Higgs, a specific feature
of B is that B0 → Z Z is also loop-induced. Therefore, there
should be an excess of W W production over Z Z .

Notice also that, contrary to the vector scenario studied
in [32], Drell–Yan production does not occur in this case,
since a (propagating) pseudovector cannot couple to a single
gauge boson. An interesting alternative is to consider the
pseudovector in associated production with a gauge boson,
as depicted in the lower panel of Fig. 2. The possible decay
modes are W t̄t , Zt̄b, W W W , and W Z Z . Among them, the
cleanest ones are Zt̄b with leptonic decay of the Z , and W Z Z
with one Z decaying hadronically.3 The pseudovector should
then show up by scanning the invariant mass distribution of
the t̄b and W Z pairs, respectively.

At the ILC, detection through two-body decay is almost
excluded, since it is suppressed by powers of the electron
mass. Therefore, the only clean signature at the ILC is the
associated production of B± with W ∓. The cleanest signa-
tures are W t̄b, with W decaying into leptons, and W W Z ,
with one W decaying into quarks. The pseudovector can be
detected in the invariant mass distribution of the t̄b and W Z
pairs, respectively.

6 Conclusions

The most pressing issue in particle physics is to pin down,
or at least shed some light on the dynamical mechanism that
triggers electroweak symmetry breaking. The existence of a
light scalar with properties close to the Standard Model Higgs
does not resolve the issue but poses additional requirements
that this underlying mechanism must fulfill, namely (i) it

3 As discussed in [32] the most efficient background rejection for triple
gauge production takes place when only two of them decay leptonically,
at least one of them being a Z .

must provide a mechanism to stabilize the light scalar mass;
and (ii) it should manifest itself around the TeV scale yet
complying with the strongly constrained deviations from the
Standard Model paradigm.

Dynamical symmetry breaking is a long-standing candi-
date for such a mechanism. In such scenarios a light scalar
can easily be accommodated as a pseudo-Goldstone boson
of an underlying broken global symmetry. However, light
states (below the TeV scale) are hard to reconcile with the
constraints of electroweak precision data. The smallness of
Standard Model deviations suggests that new-physics states
should leave a rather subtle imprint.

In this paper I have examined the viability of sub-TeV
states when confronted with experimental constraints. In par-
ticular, I have considered a scenario of new dynamics invari-
ant under parity and SU(2)L × SU(2)R , spontaneously bro-
ken down to the custodial SU(2)V . The lowest-lying reso-
nance in the spectrum is a pseudovector, described as a Kalb–
Ramond antisymmetric tensor field Bμν with couplings to the
Standard Model fields. I have shown that such a state is rather
elusive in the low-energy theory, not because of additional
ad hoc suppressions of its couplings, but by the requirement
that the strong dynamics possess a consistent asymptotically
free UV completion. Applying this criterion one can show
that the pseudovector evades the constraints coming from
oblique parameters, electric and magnetic dipole moments,
as well as triple and quartic gauge-boson vertices. Indirect
traces thereof would only affect third-family four-quark oper-
ators, which are presently poorly constrained.

Consequently, the existence of a Bμν could only be tested
by direct detection. At a hadronic collider like the LHC, it
is mostly produced through gluon fusion and subsequent
decay into a W +W − pair or a top dijet. In contrast, at the
ILC it could only be detected in its associated production
with gauge bosons. Its signal could be isolated in W t̄b and
W W Z by scanning through the invariant mass distribution of
the t̄b and W Z pairs, respectively. One could also entertain
the possibility of pair production with subsequent decay into
heavy quarks. Although not a dominant process, for rather
light pseudovectors this might well be within the LHC reach.
A more detailed quantitative analysis of the collider phe-
nomenology would require a dedicated paper and is left for
future work.
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