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Introduction

Numerous epidemiological studies have consistently dem-
onstrated the strong association between type 2 diabetes 
mellitus (T2DM) and cardiovascular disease (CVD). T2DM 
patients have a 200% increased risk of cardiovascular death 
compared to the non-diabetic population, and vascular com-
plications such as coronary artery disease and peripheral 
artery disease are the major cause of morbidity and mortal-
ity in T2DM.1,2 The increasing global prevalence of diabetes 
makes the prevention and treatment of its vascular compli-
cations a public health priority.3 Hence, identification of 
those individuals at risk for vascular complications within 
the heterogeneous population of T2DM patients is essential 
to prevent and reduce vascular morbidity and mortality.4

In T2DM, two types of vascular diseases are distin-
guished: microvascular diseases such as retinopathy, neu-
ropathy and nephropathy, and macrovascular disease such 
as coronary artery disease, cerebrovascular disease and 
peripheral arterial disease.5 The pathophysiology of T2DM 
that eventually results in the development of microvascular 
and/or macrovascular complications is complex and 
remains incompletely understood.

The key pathophysiological characteristics of T2DM 
include insulin resistance (IR), glucose intolerance, hyper-
insulinemia, hyperglycaemia and diabetic dyslipidemia.5 In 
addition, T2DM is commonly complicated by the presence 
of co-morbidities including obesity, metabolic syndrome 

and hypertension, among others. Together these factors 
promote a chronic, systemic, low-grade inflammation, 
eventually resulting in the progression of T2DM and the 
development of vascular disease.5 Increasing evidence sug-
gest that the tumour necrosis factor (TNF) (receptor) 
(TNF(R)) family members CD40 and CD40L contribute to 
the T2DM-associated inflammation and subsequent devel-
opment of vascular complications.

CD40–CD40L

The co-stimulatory molecule CD40 and its ligand CD40L 
(CD154, GP139) are expressed on not only immune cells, 
including B cells, T cells, dendritic cells and monocytes, 
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but also on non-immune cells, including platelets, endothe-
lial cells, fibroblasts, pancreatic islet β-cells and pancreatic 
ductal cells.6–9 Besides a membrane-bound form (mCD40L), 
CD40L also exists as a soluble molecule; soluble CD40L 
(sCD40L), mainly derived from activated platelets and T 
cells.10 Although the exact biological function of sCD40L 
remains elusive, two-nested case-control studies and two 
cohort studies, with a total number of 2660 participants free 
from CVD demonstrated that increased levels of sCD40L 
were associated with myocardial infarction and cardiovas-
cular death. The adjusted relative risk estimates for sCD40L 
varied between 1.9 and 2.8.11 Although sCD40L can be 
used as a biomarker, sCD40L by itself also has biological 
activity. For example, Hristov et al.12 demonstrated that 
sCD40L reduced the viability and proliferative capacity of 
endothelial progenitors, thereby possibly contributing to 
endothelial dysfunction. In addition, sCD40L has been 
shown to promote platelet activation and proliferation and 
migration of vascular smooth muscle cells.13,14

CD40–CD40L interactions are required for many 
immune processes, for example, chemokine and cytokine 
production, B cell activation, co-stimulation, immunoglob-
ulin isotype switching and memory cell formation.6,10 In 
addition, CD40–CD40L signalling is involved in the patho-
physiology of numerous inflammatory diseases, including 
atherosclerosis, inflammatory bowel disease, systemic 
lupus erythematosus (SLE), rheumatoid arthritis, type 1 
diabetes mellitus and allograft rejection.15–18 For example, 
in atherosclerosis CD40–CD40L interactions critically 
contribute to the development of atherosclerotic plaques in 
the vessel wall. Inhibition of the CD40–CD40L axis in 
murine models of atherosclerosis results in the formation of 
smaller atherosclerotic plaques, characterized by a clini-
cally favourable stable phenotype, which is low in inflam-
matory cell numbers and high in fibrosis.16,17 Until now, 
inhibition of CD40–CD40L is one of the most powerful 
plaque-stabilizing strategies in laboratory settings.

In recent years, experimental and clinical studies have 
demonstrated the involvement of the CD40–CD40L axis in 
the development and progression of T2DM and its vascular 
complications. Plasma levels of sCD40L are elevated in 
sub-optimally treated, hyperglycaemic and dyslipidemic 
T2DM patients and sCD40L levels may also predict the 
occurrence of cardiovascular events in these patients.19–21 
Experimental studies suggest that inhibition of CD40–
CD40L may reduce the systemic inflammatory response 
responsible for the progression of T2DM and the develop-
ment of CVD, as discussed below.8,9,22

CD40–CD40L interactions in 
the pathogenesis of pancreatic 
inflammation in T2DM

Chronic, low-grade inflammation is a hallmark of T2DM 
and is manifest in the pancreas, adipose tissue, liver, 

vasculature and in the circulation.5 The inflammatory 
responses are characterized by increased leukocyte num-
bers and elevated expression of pro-inflammatory 
cytokines, such as interleukin (IL)-1β and IL-6,23 which are 
induced and maintained by oxidative stress, lipotoxicity, 
glucotoxicity and ectopic lipid deposition.5

The co-stimulatory molecule CD40 is expressed on both 
human and mouse pancreatic islet β-cells and pancreatic 
duct cells, but not on α-cells.9 The expression of CD40 on 
pancreatic islet and ductal cells is increased upon exposure 
to pro-inflammatory cytokines, including TNF-α, IL-1β 
and interferon (IFN)-γ, all abundantly present in the dia-
betic pancreas.8,9 Whereas membrane-bound CD40L is 
expressed on immune cells that infiltrate the diabetic pan-
creas, sCD40L is cleaved from the surface of activated 
platelets by the proteinase ADAM 10.10 Although the bio-
logical effects of sCD40L-mediated signalling in T2DM 
remain largely unknown, binding of membrane-bound 
CD40L to CD40 on β-cells results in the activation of 
nuclear factor kappa B (NFκB), and subsequently induces 
the expression of cytokines, including IL-6, IL-8 and 
chemokines, such as monocyte chemoattractant protein 
(MCP)-1 and macrophage inflammatory protein (MIP)-
1β.8,9 This further enhances pancreatic inflammation and 
impairs β-cell insulin release or production. Although in 
vitro experiments suggested that insulin metabolism is not 
affected by CD40L signalling, Poggi et al.22 recently dem-
onstrated that obese CD40L−/− mice have preserved insulin 
sensitivity and low plasma insulin levels compared to obese 
CD40L+/+ mice.8 However, CD40L−/− mice were not more 
glucose tolerant, probably as a result of decreased plasma 
insulin levels.22 The effects reported in CD40L−/− mice 
could be mimicked by antibody-mediated inhibition of 
CD40L in obese CD40L+/+ mice.22 Interestingly, the 
improvement of insulin sensitivity and decreased plasma 
insulin concentrations in anti-CD40L antibody treated mice 
was independent from body weight,22 suggesting that 
CD40L may have direct effects on insulin metabolism, at 
least in a mouse model of diet-induced obesity.

CD40–CD40L interactions may thus induce or exacer-
bate pancreatic inflammation in T2DM, thereby indirectly 
impairing insulin metabolism, and initial studies suggest a 
direct role for CD40–CD40L in insulin production or 
release. Future studies are required to explore the full effects 
of the CD40-signalling pathway on insulin metabolism.

CD40–CD40L promotes adipose 
tissue inflammation in T2DM

Systemic inflammation is a key feature of T2DM and its 
co-morbidities such as obesity and the metabolic syn-
drome.24,25 Systemic inflammation aggravates the pro-
gression of T2DM and the development of vascular 
complications. In recent years, it has been demonstrated 
that adipose tissue is a major endocrine organ that 
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contributes to the development of systemic inflammation 
in various inflammatory diseases, such as obesity, athero-
sclerosis and T2DM.25,26

CD40 messenger RNA (mRNA) levels in adipose tissue 
and plasma levels of sCD40L positively correlate with body 
mass index, and CD40 is expressed on adipocytes and stro-
mal adipose tissue, including immune cells.27 CD40L sig-
nalling in adipose tissue increases the expression of 
pro-inflammatory mediators, including TNF-α, IL-6 and 
MCP-1.27 Furthermore, CD40L stimulation enhances lipid 
droplet accumulation and adipogenesis in 3T3-L1 cells.28 
Interestingly, CD40L exposure reduces insulin-mediated 
glucose uptake by adipocytes, as a result of reduced expres-
sion of insulin receptor substrate (IRS-1) and glucose trans-
porter type-4 (GLUT-4), whereas IRS-2 and GLUT-1 levels 
remain unaffected.22,28 These findings could be reproduced 
by co-culture of adipocytes and T cells, the main source of 
membrane-bound CD40L.22 Thus, in vitro experiments sug-
gest that CD40L+ T cells may directly induce adipocyte 
inflammation and impair adipose tissue insulin sensitivity, 
thereby contributing to systemic inflammation and IR.

IR results in increased plasma glucose levels and com-
pensatory hyperinsulinemia.29 Both hyperglycaemia and 
chronic hyperinsulinemia increase the expression of mem-
brane-bound CD40L on circulating platelets, platelet CD40L 
subsequently promotes the formation of platelet-leukocyte 
aggregates and leukocyte-endothelium interactions, thereby 
enhancing vascular inflammation.30,31 In contrast to chronic 
hyperinsulinemia in T2DM, short-term hyperinsulinemia 
decreased plasma sCD40L levels.32 Although the underly-
ing mechanisms were not elucidated, one can speculate that 
short-term hyperinsulinemia mimics the physiological 
response to transient fluctuations in glucose metabolism and 
does not reflect inflammatory conditions, whereas chronic 
hyperinsulinemia reflects a pathological condition.32

In conclusion, CD40–CD40L signalling plays a major 
role in adipose tissue inflammation, adipogenesis and IR. 
Together these factors promote systemic inflammation, 
thereby stimulating the progression of T2DM and its com-
plications. However, current evidence is mainly based on 
correlation studies and in vitro studies, emphasizing the 
need for additional in vivo studies to unravel the exact role 
of CD40–CD40L in adipose tissue inflammation in T2DM.

The key role of CD40–CD40L in 
vascular inflammation

Atherosclerosis, the pathological substrate of macrovascu-
lar disease in T2DM, is the result of chronic inflammation 
of the large- and mid-sized arteries.33 The immune system 
plays an important role in the development of atheroscle-
rotic plaques. Plaque rupture subsequently results in throm-
bosis and vascular occlusion, thereby causing clinical 
symptoms, such as peripheral occlusive artery disease and 

myocardial infarction.33 In the last decade, we and others 
have demonstrated a critical role of the CD40–CD40L dyad 
in the development of atherosclerosis.6,15–17 Both genetic 
and pharmacologic inhibition of CD40(L) signalling 
reduced plaque size and induced a plaque phenotype char-
acterized by high levels of collagen and low numbers of 
inflammatory cells.15,16,34 Interestingly, even when anti-
CD40L treatment was started after plaques had developed, 
these plaques transformed into this beneficial phenotype.

Both CD40 and CD40L are expressed on immune cells 
and non-immune cells present on cells in the atherosclerotic 
plaque, as discussed above. In initial atherosclerotic plaques 
CD40–CD40L interactions promote leukocyte recruitment 
by at least three mechanisms. First, activation of CD40 on 
endothelial cells results in the expression of adhesion mol-
ecules, including vascular cell adhesion molecule (VCAM)-
1, intercellular cell adhesion molecule (ICAM)-1 and 
E-selectin.35 Second, macrophages present in initial plaques 
secrete pro-inflammatory chemokines upon CD40L expo-
sure such as MCP-1, MIP-1α, MIP-1β and Regulated upon 
Activation, Normal T-cell Expressed, and Secreted 
(RANTES).36,37 Third, platelet CD40L contributes to the 
formation of platelet–leukocyte aggregates and promotes 
leukocyte adhesion to the activated endothelium.31

In advanced plaques, CD40–CD40L interactions further 
aggravate inflammation by stimulating macrophage 
cytokine production (IL-1β, IL-2, IL-6 and TNFα), and 
CD40-induced production of matrix metalloproteinases 
contributes to destabilization of the atherosclerotic plaque, 
thereby promoting plaque rupture and subsequent arterial 
occlusion.36–38

Unfortunately, antibody-mediated blockage of CD40L 
was complicated by thromboembolism when applied to 
patients, as a result of disrupted CD40L-αIIbβ2 interactions 
in arterial thrombi.39 Therefore, clinical trials using the 
anti-CD40L antibody were stopped. Furthermore, investi-
gation of CD40L-CD40 induced signalling pathways is 
required to identify therapeutic targets without these side 
effects. Our group recently evaluated the role of leukocyte-
specific CD40L-CD40-TNF receptor-associated factor 
(TRAF) signalling in atherosclerosis. Since CD40 has no 
intrinsic signalling ability, it requires TRAFs to elicit intra-
cellular signalling. The cytoplasmatic domain of CD40 
contains a proximal binding site for TRAF6, and two distal 
sites that bind TRAF1, TRAF2, TRAF3 and, indirectly, 
TRAF5. To evaluate the contribution of leukocyte-specific 
CD40L-CD40-TRAF2/3/5 and CD40L-CD40-TRAF6 sig-
nalling to atherosclerosis, we generated ApoE−/−CD40−/− 
mice expressing a chimeric CD40 transgene with mutations 
at the TRAF6 and TRAF2/3/5 binding site under the con-
trol of class II major histocompatibility complex (MHCII) 
promotor.15 Deficiency of CD40-TRAF2/3/5 signalling did 
not affect atherogenesis.15 Interestingly, deficiency in 
CD40-TRAF6 interactions abrogated atherosclerosis as a 
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result of reduced blood counts of Ly6Chigh monocytes, 
impaired recruitment of Ly6C+ monocytes to the arterial 
wall and polarization of macrophages towards the anti-
inflammatory M2 phenotype.15 Hence, inhibition of 
CD40L-CD40-TRAF6 signalling may become a promising 
therapeutic target for atherosclerosis.

Do sCD40L levels reflect the 
inflammatory status in T2DM 
patients?

Glycated haemoglobin A1c (HbA1c) is used as a marker for 
glycaemic control of diabetes.35 Current guidelines state 
that the treatment of T2DM should aim to reduce HbA1c 
levels to 7% of total haemoglobin, or even lower.40 
However, an increasing amount of evidence indicates that 
HbA1c may not adequately predict the development of 
microvascular and macrovascular complications.2,41–45 
Thus, additional biomarkers, that reflect systemic inflam-
mation, may be required to identify the T2DM patients who 
are at risk to develop macrovascular complications.

sCD40L levels may predict the risk of major cardiovas-
cular events, including acute myocardial infarction, sudden 
cardiac death and recurrent angina in patients suffering 
from coronary artery disease.46–48 For example, Lobbes  
et al.11 demonstrated that sCD40L levels predict the occur-
rence of myocardial infarction and cardiovascular death in 
a population free from CVD, as discussed above. 
Interestingly, T2DM is independently associated with ele-
vated sCD40L levels in patients suffering from acute coro-
nary syndromes and myocardial infarction.49,50 In T1DM, 
sCD40L levels have been shown to correlate with endothe-
lial dysfunction, monocyte activation and increased num-
bers of platelet-leukocyte aggregates.50,51 Although elevated 
levels of sCD40L were associated with carotid atheroscle-
rosis in T1DM, elevated levels did not predict cardiovascu-
lar mortality.52,53

As discussed above, IR, hyperinsulinemia, hypergly-
caemia and obesity are all associated with increased 
sCD40L levels.54 Correlative studies have demonstrated 
that treatment of these factors may reduce plasma levels  
of sCD40L. For example, thiazolidinediones reduced 
sCD40L levels by 27% in recent onset T2DM, while in 
long-standing disease, sCD40L was reduced by 29%  
in patients without macrovascular complications and  
by 34% in patients suffering from these complications.55 
Furthermore, treatment of diabetic dyslipidemia using 
atorvastatin reduced sCD40L levels in T2DM patients who 
suffered from coronary artery disease.56 However, con-
flicting study outcomes are reported21,57–60 in Table 1, and 
we suggest that this is the result of heterogeneity in study 
protocols. At least three factors may contribute to this het-
erogeneity. As mentioned, activated platelets are the main 
source of sCD40L, hence the levels of the protein differ 

between plasma and serum samples. The highest levels 
have been reported in serum samples, and sCD40L levels 
in clotting plasma increased with time.61,62 Since low tem-
peratures inhibit the increase in serum samples, it is likely 
that the increase is the result of ex vivo release of sCD40L 
from activated platelets.61–63 In addition, Dominguez-
Rodriguez et al.64 observed a circadian rhythm in sCD40L 
levels in patients suffering from myocardial infarction. 
Samples drawn at 9 p.m. contained 41.5% higher sCD40L 
levels than samples obtained at 2 a.m. Although the exact 
mechanisms were not investigated, it was hypothesized 
that circadian differences in proteinase levels may be 
involved.64 Finally, the use of anti-platelet drugs, such as 
Cyclooxygenase inhibitors or adenosine diphosphate 
receptor inhibitors, may affect the release of sCD40L from 
platelets.65 Hence, the use of this type of drugs should be 
carefully monitored in clinical studies.

Thus, both experimental and clinical studies suggest that 
sCD40L may reflect the inflammatory status of T2DM 
patients, and may be used as a biomarker to identify those 
who are at risk to develop CVD. However, standardization 
of study protocols is of great importance to evaluate the full 
potential of sCD40L as a novel biomarker.

CD40–CD40L as a therapeutic 
target in T2DM

Commonly used anti-diabetic drugs may reduce inflamma-
tion in T2DM. For example, metformin and thiazolidinedi-
ones have been shown to reduce C-reactive protein (CRP) 
levels.66 These effects are not merely due to glucose lower-
ing, because the reductions in inflammatory markers are 
greater than the reduction seen after similar glucose lower-
ing induced by other anti-hyperglycaemic approaches.66,67 
Nevertheless, these drugs do not prevent the occurrence of 
CVD in a major number of T2DM patients, emphasizing 
the need for additional anti-inflammatory therapeutic strat-
egies. For example, the blockade of the pro-inflammatory 
cytokine IL-1β improved endocrine pancreas function, and 
reduced hyperglycaemia and systemic inflammation in 
T2DM patients.68,69

The therapeutic potential of CD40 and CD40L has been 
investigated in multiple inflammatory diseases, including 
atherosclerosis, inflammatory bowel disease, psoriasis, 
SLE, rheumatoid arthritis, allograft rejection and type I  
diabetes.18 The anti-CD40 monoclonal antibody (mAb) 
ch5D12 reduced disease severity in Crohn’s disease, and 
Ruplizimab, an anti-CD40L mAb, was successfully used in 
the treatment of SLE and inflammatory bowel disease.10 In 
addition, Poggi et al.22 demonstrated that anti-CD40L mAb 
(MR-1) treatment improved insulin sensitivity in a mouse 
model of diet-induced obesity. Thus, specific inhibition of 
CD40L-CD40 signalling may become a promising strategy 
to improve adipose tissue and vascular inflammation, 
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thereby reducing the occurrence of vascular complications 
of T2DM.

Concluding remarks and future 
directions

The CD40–CD40L dyad has a complex and not fully eluci-
dated role in the pathogenesis of T2DM. However, both 
experimental and clinical studies show that CD40–CD40L 
interactions promote pancreatic, adipose tissue and vascu-
lar inflammation, and induce a chronic, systemic inflamma-
tory response that eventually results in the formation of 
atherosclerosis (Figure 1).

Numerous clinical studies have demonstrated that 
sCD40L levels are elevated in patients suffering from dia-
betes and its complications. Although the exact inflamma-
tory mechanisms that are responsible for this increase are 
not completely understood, it is clear that sCD40L reflects 
the inflammatory status in T2DM. Future studies should 

explore the potential of sCD40L as a biomarker to identify 
those patients who are at risk of developing vascular com-
plications within the heterogeneous T2DM population. In 
order to do so, it is essential to standardize sCD40L meas-
urement protocols. Finally, elucidation of CD40–CD40L 
signalling pathways involved in diabetic inflammation 
may identify novel therapeutic targets for T2DM and its 
complications.

Key messages

•	 CD40–CD40L interactions promote pancreatic, adipose 
tissue and vascular inflammation in T2DM.

•	 sCD40L may become a biomarker for the development 
of CVD in patients with T2DM.

•	 Specific inhibition of CD40–CD40L signalling may 
reduce the occurrence of vascular complications of 
T2DM.

Table 1.  Conflicting results regarding the effects of anti-hyperglycaemic and anti-hyperlipidemic drugs on serum or plasma sCD40L 
levels in T2DM subjects have been reported. The heterogeneity may be the result of different sCD40L levels in plasma and serum, a 
circadian rhythm in sCD40L release, and the use of anti-platelet drugs.

Anti-hyperglycaemic drugs

Study Population Intervention Results

Varo et al.55 Short-term (<3 years) and 
long-term (>3 years) T2DM 
participants with or without 
CVD (n = 61)

Troglitazone 600 mg/day for 12 
weeks

Plasma sCD40L levels reduced by 29% 
(p < 0.01)

Marx et al.21 T2DM participants with CVD (n 
= 39)

Rosiglitazone 8 mg/day for 12 
weeks

Serum sCD40L levels reduced by 
27.5% (p < 0.05)

Chu et al.57 Hyperlipidemic T2DM subjects 
(n = 30)

Rosiglitazone 4 mg/day for 12 
weeks

Serum sCD40L levels reduced by 9.6% 
(NS, p = 0.267)

Yener et al.59 Normotensive, 
normoalbuminuric T2DM 
subjects without CVD (n = 20)

Rosiglitazone 4 mg/day for 12 
weeks

Serum sCD40L levels reduced by 6.1% 
(NS, p > 0.05)

Yener et al.59 Normotensive, 
normoalbuminuric T2DM 
subjects without CVD (n = 20)

Metformin 1700 mg/day for 12 
weeks

Serum sCD40L levels increased by 
25.8% (NS, p > 0.05)

Anti-hyperlipidemic drugs

Study Population Intervention Results

Blanco-Colio 
et al.56

T2DM subjects (n = 112) Atorvastatin 10, 20, 40 or 80 
mg/day for 12 weeks

Plasma sCD40L levels reduced by 
47.0% (10 mg, p < 0.001), 35.5% (20 
mg, p < 0.01), 64.8% (40 mg, p < 
0.001), 37.8% (80 mg, p < 0.01)

Chu et al.57 Hyperlipidemic, rosiglitazone-
treated T2DM subjects (n = 30)

Atorvastatin 10 mg/day for 12 
weeks

Serum sCD40L levels reduced by 
25.0% (p < 0.05)

Blaha et al.58 T2DM subjects with CVD  
(n = 30)

Atorvastatin 10 mg/day for 24 
weeks

Plasma sCD40L levels increased by 
5.9% (p = 0.68)

Nomura  
et al.60

Hyperlipidemic T2DM subjects 
(n = 45)

Pitavastatin 2 mg/day for 24 
weeks

Serum sCD40L levels reduced by 30% 
(p < 0.001)

T2DM: type 2 diabetes mellitus; CVD: cardiovascular disease; NS: non-significant.
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