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Abstract

In surveys, and most notably in election polls, undecided participants fre-
quently constitute subgroups of their own with specific individual character-
istics. While traditional survey methods and corresponding statistical models
are inherently damned to neglect this valuable information, an ontic random
set view provides us with the full power of the whole statistical modelling
framework. We elaborate this idea for a multinomial logistic regression model
(which can be derived as a discrete choice model for voting behaviour) and
an imprecise classification tree, and apply them as a prototypic illustration to
the German Longitudinal Election Study 2013. Our results corroborate the
importance of a sophisticated, random set-based modelling. Furthermore, by
reinterpreting the undecided respondents’ answers as disjunctive random sets,
general forecasts based on interval-valued point estimators are calculated.

Keywords: Ontic data imprecision, survey methodology, election polls, multino-
mial logistic models, discrete choice models, imprecise classification trees, conjunc-
tive random sets, disjunctive random sets, epistemic prediction, German Longitudi-
nal Election Study 2013 (GLES 2013)
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1 Introduction
Although pondering between several options is characteristic for human beings, in-
decisiveness of respondents is not reflected in most surveys. Instead it is common to
force a precise answer, and at best to provide an additional category “Don’t know”
for those that are not decided. Frequently, in the framework of the analysis respon-
dents reporting this “Don’t know” category are no longer taken into consideration
as those answers are understood as unusable.
Proceeding like this leads to a loss of information in both steps, within the data
collection as well as within the data analysis: In many cases, indecisive respondents
are able to definitely exclude a variety of options. In this sense, answers of indeci-
sive respondents like “option A or option B” actually do reveal some information by
definitely excluding for instance “option C”. Such information is masked by category
“Don’t know”, which can be considered as a kind of residual category for various
kinds of indecisiveness. As respondents who decide for category “Don’t know” may
systematically differ from the respondents that have chosen a precise category, ex-
cluding those indecisive respondents in the framework of data analysis represents a
source not only of information loss, but also of obtaining biased results.
In order to deal with this problem, it is necessary that questionnaire designers allow
for multiple answers as “option A or option B” or at least provide ways to construct
them. Consequently, one reflects the preferences of the indecisive respondents in the
most informative way and is able to distinguish between different types of indecisive
respondents. Thus, category “Don’t know” no longer displays a residual category,
but indecisiveness between all options exclusively and we explicitly account for the
heterogeneity within the group of indecisive respondents.
In order to embed this idea into a proper statistical modelling framework, we mainly
will rely on the notion of ontic sets in the sense of Dubois and Prade ([14, 15]) as
well as Dubois and Couso ([10]). They stressed the importance of differentiating
between two views of a set, one representing precise collections of elements (ontic
view) and the other reflecting incomplete knowledge about a particular precise value
(epistemic view)([11]). As answers of indecisive respondents are interpreted as ontic
sets, we will call data that are coarse induced by indecision like “A or B” data under
ontic imprecision.
Our paper is structured as follows. In Section 2 we will recapitulate some notions
mainly based on random set theory ([19]) that have already been investigated in the
framework of ontic sets ([10, 11]). In this context, we will emphasize the applica-
bility of ontic sets to the general analysis in the presence of answers of indecisive
respondents, where the focus will be on incorporating the idea of the ontic view into
multinomial logistic regression analysis and classification trees in order to model
heterogeneity of respondents by their covariates. By turning to the epistemic view,
in Section 3 interval-valued forecasts will be constructed. These techniques are used
in an illustrative analysis based on the German Longitudinal Election Study 2013
(GLES 2013). In Section 4 GLES 2013 is briefly presented and it is demonstrated
how a variable that explicitly includes answers of indecisive respondents can be con-
structed. Corresponding results obtained from adapting the multinomial regression
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model and classification trees to ontic data imprecision are shown and compared to
those obtained from classical statistical analyses in Section 5.
For sake of simplicity, we focus on categorical data of nominal scale, yet adaptation
to ordinal scale for other applications may be derived only with little additional
effort. Moreover, we confine ourselves on dependent variables under ontic data im-
precision, where an extension to coarse categorical covariates may be achieved with
similar arguments.

2 Dealing with data under ontic imprecision:
Basic idea and extending some statistical
approaches

As argued in the introduction, it is crucial to distinguish between the ontic and
the epistemic view and thus between random conjunctive sets and ill-known random
variables ([10, 11]). In this section we will make use of random conjunctive sets,
underlying the ontic view.

2.1 General analysis
Although Kolmogorov ([18]) had introduced random sets indirectly by addressing a
“measurable region of the plane”, before the 1970s random sets were hardly noticed
([25]). Only when Matheron ([19]) defined the concept of random closed sets and in-
vestigated some fundamental mathematical background, their importance increased
and applications in geometrical statistics, image analysis, econometrics and many
other areas followed (e.g. [25, 20]).
As we regard the case of categorical data with a finite sample space, it is sufficient
to focus on the definition of finite random sets, which can be considered as a sim-
plification of the more general definition of random closed sets. A finite random set
is a mapping Z∗ : Ω→ P(S) such that

Z∗−1
(
{A}

)
=
{
ω ∈ Ω : Z∗(ω) = A

}
∈ A ,

for any A ⊆ S, where S denotes the state space, P the power set and (Ω,A) repre-
sents the underlying measurable space equipped later with the probability measure
P (e.g. [20]). In other words, a finite random set is characterized by a measurable
mapping on the power set. Couso and Dubois call this notion random conjunctive
set or (ontic) set ([10, 11]).
The important characteristic of an ontic set is that it represents a precise collection
of elements in the sense that there is no true element of S underlying, but the set
itself constitutes an entity of its own ([10]). Answers like “A or B” may be regarded
as an ontic set {A, B} as there is no unique preference. Therefore, the nature of
coarse data under ontic imprecision is well represented by the ontic view.
Consequently, this leads to a power set based view, meaning an extension of the
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classical precise state space S to S∗ = P(S) \ ∅, with the asterisk stressing ontic im-
precision. Thus, basing the analysis on S∗, and therefore regarding coarse categories
as own entities, provides the main idea of dealing with ontic imprecision. The one
and only difference compared to the classical case is the adapted sample space S∗.
Hence, by reinterpreting the random conjunctive set as precise random variable,
classical probability theory and its methods are applicable.
Before we will exploit this idea further for formulating regression models and classifi-
cation trees, a short example shall be given already here. It consists of calculating the
probability of respondents, who are at least indecisive between particular options C0,
by the probability of the family of corresponding supersets C = {T ⊆ S : C0 ⊆ T}
to

PZ∗(C) =
∑

C∈C
PZ∗(C) , (1)

which is essentially a sum over singletons of the space S∗ (cf. [10, p. 8]).

2.2 Regression analysis
Generally, the main goal of regression analysis consists of modelling the relation be-
tween several covariates X and a dependent variable Y , without claiming to describe
necessarily the causal impact of variables. In our case the dependent variable is as-
sumed to be coarse under ontic imprecision, whereas we address precise covariates.
As we restrict ourselves to a coarse categorical variable of nominal scale, a multi-
nomial logit model is the appropriate statistical model. At first a short overview of
the multinomial logit model in the precise case will be given in Section 2.2.1, before
we extend this model by considering a coarse Y in Section 2.2.2.

2.2.1 Multinomial logit model in the precise case

In this section it is mainly referred to [16, pp. 329-331]. A more thorough treatment
of discrete choice models can be found for instance in [28].
Here we consider the random variable Yi ∈ S = {1, . . . , c} describing the response
of individual i = 1, . . . , n.1Assuming a multinomial logit model, the probability of
occurrence of category s ∈ {1, . . . , c− 1} for i with given covariate values xi is set
to be

P (Yi = s |xi) = πis = exp(x̃T
i βs)

1 +∑c−1
r=1 exp(x̃T

i βr)
, (2)

with2 x̃T
i = (1,xT

i ) and category specific regression coefficients βs = (βs0, βs1, . . . , βsp)T

referring to p covariates. Because of the redundancy resulting from the fact that all
probabilities add up to one, the corresponding probability for the so-called reference
category c can be determined by

P (Yi = c |xi) = πic = 1− πi1 − . . .− πic−1 = 1
1 +∑c−1

r=1 exp(x̃T
i βr)

.

1Here the common representation by integers to simplify notation is applied.
2The first element of the vector x̃T

i is set equal to one in order to include a category specific
intercept βs0.
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This corresponds to involving the side constraint that the regression coefficients of
category c are set equal to zero.3
Expressing Equation (2) in terms of the linear predictor ηis = x̃T

i βs, one obtains the
logarithmised chances and the relative risks of category s and reference category c
by

log
(
πis

πic

)
= x̃T

i βs and πis

πic

= exp(x̃T
i βs) for s ∈ {1, . . . , c− 1} . (3)

Accordingly, the exponential of βsj (j = 1, . . . , p) expresses how the chance for
category s compared to the reference category c changes if the value of a certain
covariate xj is increased by one unit in the case of metric covariates or if xj is taken
instead of reference category xJ in the case of categorical covariates.

2.2.2 A multinomial logit model based approach under ontic imprecision

The redefinition of the original precise state space S = {1, . . . , c} of Y to the state
space S∗ = P(S) \ ∅ of Y ∗ is crucial for adapting the multinomial logit model to
account for ontic imprecision. Thus, we will treat answers of indecisive respondents
as own categories, as already pointed out in Section 2.1.
Consequently, the number of categories of the dependent variable Y ∗ amounts to
the cardinality of sample space S∗ (m = |S∗| = |P(S) \ ∅| = 2|S| − 1) and no longer
for each Y ∈ {1, . . . , c} but for each Y ∗i ⊆ {1, . . . , c} probabilities π∗i1, . . . , π∗im are
modelled and coefficients β∗1, . . . ,β

∗
m−1 are estimated. Hence, the probability of

occurrence of category s ∈ {1, . . . ,m− 1} for an individual i with given covariate
values xi is determined by

P ∗(Y ∗i = s |xi) = π∗ir = exp(x̃T
i β
∗
s)

1 +∑m−1
r=1 exp(x̃T

i β
∗
r)

and for reference category m by

P ∗(Y ∗i = m |xi) = π∗im = 1− π∗i1 − . . .− π∗im−1 = 1
1 +∑m−1

r=1 exp(x̃T
i β
∗
r) .

In this way, one obtains own regression coefficients for each coarse category, which
exactly reflects the underlying idea that different types of indecisive respondents are
regarded as own group.
In summary, one can account for ontic imprecision within categorical variable Y of
nominal scale by incorporating coarse answers as own categories into a multinomial
logit model. Apart from the up to exponential increase in the number of categories
nothing changes, such that all statistical methods refining and extending the classical
multinomial logit model, like penalization approaches, flexible covariate modelling
or random effects under repeated observations (e.g. [29]), and their fundamental
statistical properties, like consistency and asymptotic normality of estimators, can
be transferred.

3Alternatively, any other category may be chosen as reference category or a symmetric type of
constraint like

∑c
r=1 β

T
r = (0, . . . , 0)T can be applied (e.g. [29]). In order to ensure identifiability

it is important to include a side constraint for the regression coefficients into the basic model.
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2.3 Classification trees
Whereas in regression we are mainly interested in the estimation of the regression
coefficients, which provide a structural interpretation of the data, in the framework
of classification trees one major goal is to predict the value(s) of a dependent variable
(called class variable Y later on) of a future observation, based on values of some
independent, so-called feature, variables. As the class variable is required in the
learning process, classification tress belong to the group of supervised classifiers.
Learning a classification tree involves recursively partitioning the full data space as it
is available in the beginning, into disjoint subspaces by splitting with respect to some
(in-)homogeneity criterion. A most favourable property of a single classification
tree from a statistical modelling point of view is that it still allows a structural
interpretation, while such is lacking in the even more prediction orientated ensemble
of trees, so-called bags or forests.
In the framework of classification trees there are numerous algorithms available that
are able to deal both with nominal and numerical variables, some even account for
missingness at random, for instance Quinlan’s ID3 [22] and Breiman’s CART [8]
and their successors. They share the concept of selecting splitting feature variables
performing the partitioning by a similarity measure, in our context the entropy. For
sake of simplicity we confine ourselves to the case where both the dependent and
independent variable are of nominal scale.
In order to calculate the entropy and decide on a splitting feature variable, it is
required to estimate the class’ probabilities, classically achieved by the corresponding
relative frequency. Abellan and Moral [3] introduced imprecise classification trees by
changing the estimation to involve imprecise probability models. As a split criterion
they favoured a maximum entropy approach and presented in [3] an adaptation of
Quinlan’s ID3 algorithm, both of which for sake of simplicity we employ.
Yet there are more general approaches, where for instance the full entropy range is
taken into account, as in [17] or [12], the latter naturally growing a forest; and also
further improvements of the initial imprecise algorithm as well as a porting to the
concept of bagging [1, 2].
In our analyses in Section 5.3 we grow classification trees accordingly to [3] but
relying on a Nonparametric Predictive Inference (NPI) model for estimation of the
class probability distribution within a node instead, yet an Imprecise Dirichlet Model
would have been also applicable; see [9] for a more detailed introduction to NPI for
categorical data and [3] or [17] for a description on how an imprecise classification
tree based on it is actually constructed. Nevertheless, we briefly recall the estimation
with NPI within a tree’s node.
Each node of the tree consists of a collection of observations. They are assigned
to nodes in such a way that they form the aforementioned disjoint subspaces in an
optimal way with respect to the splitting criterion. In the context of an entropy
based splitting criterion the probability distribution of the class variable is required.
In [3] the assumption of a precise probability distribution is relaxed to a credal
set leading to a maximum entropy split criterion approach. According to NPI the
predictive probability that for a virtual next observation the class variable attains
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a value yi of its state space is within the following interval

P (Y = yi) ∈

max

(
0, ni − 1

n

)
,min

(
ni + 1
n

, 1
)
, (4)

with ni being the number of observations having a class value of yi and n the overall
number of observations, both with respect to the node under consideration.
In the situation where the class variable is only observable under ontic imprecision,
yet the underlying variable is assumed to be precise, one may be tempted to de-
rive the class probabilities only for the underlying precise class variable’s states.
The class probability distribution may then be derived by special queries as demon-
strated later in accordance to Section 3. However, this would contradict the ontic
viewpoint. Instead, analogously to the regression analysis, we embed ontic sets into
the framework of classification trees properly by a redefinition of the class variable as
a finite random set, thus basing it on the power set of the class variable space. After
this transformation each state of the (transformed) class variable is precise again.
Therefore, any classification tree technique might be applied that is able to deal with
a precise classification variable, regardless of the underlying probability model(s).
This technique is frequently applied in the framework of multi-label classification
(e.g. MODEL–n in [7]). Nonetheless, due to the increased number of classes the
concept of entropy correction ([26]) becomes more important, besides substituting
Y by Y ∗ in (4).

3 Interval-valued forecast
We consider the same data situation, but change our perspective and the aim of our
analyses. Instead of modelling the underlying structure of voting (in)decisions, we
now turn to forecasts based on an epistemic reinterpretation of our data.
Let’s assume that our main interest lies now in forecasting certain events by enforcing
a final decision expressed by a variable Yfinal. In the context of voting behaviour
such a situation arises when a forecast on the election result is required. Under the
assumption that the final decision is precise and consistent with the data collected
now, this means a precise true value is underlying the set-valued response.
In this way, set-valued elements A∗ of S∗ are no longer interpreted as own entities,
but are regarded as incomplete knowledge, which for every event B from the space
(S,P(S)) is given by (cf. [6, p.185])

P (Yfinal ∈ B |Y ∗ = A∗) ∈





{0}, if B ∩ A∗ = ∅
{1}, if B ⊇ A∗}
[0, 1], otherwise

,

postulating that the final answer is compatible with the initial information from the
ontic view.
This corresponds to an epistemic view of modelling4, yet models should be cau-

4First steps towards statistical modelling under epistemic data imprecision can be found in
([21]).
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tiously interpreted as the data were originally obtained under ontic imprecision.
Nevertheless, it may be justified for modelling purpose.
In the context of the epistemic view Couso and Dubois ([10]) consider ill-known
random variables Yepist with precise, but incomplete realizations yepist. An ill-known
random variable Yepist is a multiple-valued mapping Yepist : Ω→ P(S) described by
the disjunctive set of mappings

{
Yprecise : Yprecise(ω) ∈ Yepist(ω) , ∀ω ∈ Ω

}
,

where Yprecise : Ω→ S is a precise random variable. Thus, Yepist is interpreted as the
collection of several precise models that can be deduced from incomplete knowledge.
Taking the reinterpretation as disjunctive sets seriously, the range covering the true
probability of a certain event of interest E can be expressed by the lower and upper
probabilities suggested by Dempster ([13]) that are

P Yepist(E) =
∑

Yepist(ω)⊆E

p(ω) ,

P Yepist(E) =
∑

Yepist(ω)∩E 6=∅
p(ω) ,

where p is the probability mass function of P ([10]).
Thus, the proportion of a certain option E can be forecasted by the sample coun-
terparts Î(E) of the interval

I(E) =
[
P Yepist(E), P Yepist(E)

]
. (5)

As the difference between the values of the lower and the upper probability represents
the lack of knowledge induced by indecisive answers, it is apparent that the length of
this interval can be interpreted as the extent of the underlying epistemic imprecision.
In order to account additionally for statistical uncertainty due to finite sampling,
confidence intervals for I(E) may be calculated. This leads to so-called uncertainty
regions aiming to cover both, imprecision due to incompleteness as well as statistical
uncertainty ([30]).
The calculation of the interval-valued forecast Î(E) will be illustrated in Section 5.4.

4 Data
Until now the German Longitudinal Election Study (GLES) ([24]) is the most elab-
orated German electoral poll and currently focuses on three federal elections (2009,
2013, 2017).5 The sampling method of the initial data set of the GLES 2013 is a
(3-step) random sample, which is treated here in our illustrative analysis as a simple
random sample. As voting intentions before the election day are of main interest,
we consider the preliminary study of GLES 2013, which is a face-to-face interview

5The study description and the questionnaire are available at https://dbk.gesis.org/
dbksearch/download.asp?db=E&id=53820 and https://dbk.gesis.org/dbksearch/download.
asp?db=D&id=53819, respectively.
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two months prior to the election day.
Respondents’ voting intention is collected in a precise way and thus no multiple
answers are provided directly for indecisive respondents. For that reason, we have
to construct these multiple answers.
The main advantage of the addressed study lies in the fact that this indeed is
possible. The respondents are explicitly required to report their voting intention’s
certainty6.
This (here called) “certainty” variable is the basis for our construction of the variable
“ontic” that reflects the indecision of respondents that are not yet certain about their
vote by incorporating multiple answers. Furthermore, the current voting intention7
asked in a precise way as well as some variables that represent the assessment of
several parties by the respondent (q21a-q21h8) are included into the construction.
The procedure for our construction of the variable “ontic” is as follows: While for
all “very certain” respondents the reported party of the variable “vote” is taken,
the party or parties with maximal assessment are chosen for the respondents that
are “fairly certain” explicitly allowing by construction indecision between the corre-
sponding parties. For the respondents that decide for “neither/nor” or “not certain
at all” parties with maximal and second highest assessments are taken. The exam-
ples in Table 1 illustrate the way of construction by means of three randomly chosen
respondents.9
Alternatively, it could be reasonable to deal with respondents’ answer of “nei-
ther/nor” and “not certain at all” in a different way. Because of the small sample
size of respondents that are “not certain at all”, we decided against it. Nevertheless,
the chosen way of construction of the variable “ontic” is to some extent arbitrary,
but at least it accounts reasonably for ontic imprecision.
In the following we focus on the second vote, as similar steps and explanations hold
for the first vote as well.
As our goal consists of demonstrating the difference in results from an analysis in-
cluding ontic imprecision and a classical analysis, such a constructed variable is
required. Partly due to the construction of variable “ontic” several respondents had
to be excluded. The associated loss of information caused by the reduced sample
size is undesirable, but unavoidable. More in detail, from the initially n = 2003
respondents in the preliminary study of GLES 2013 only the respondents meeting
the following criteria were selected:

6q13 with categories “very certain”, “fairly certain”, “neither/nor” and “not certain at all”
7The German election system mixes elements of election by proportionality and by majority.

The voters have two votes (q11ab: second vote, q11aa: first vote). The second vote is generally
considered as more important, because the proportion of seats in the German Bundestag mainly
is allocated according to the second vote. The first vote determines the direct representative of an
election district in the Bundestag.

8Each measured on a scale from “-5” (“a very negative view of this political party”) to “+5”
(“a very positive view of this political party”)

9Translations of German abbreviations of political parties are used here. Considered parties
are: Christlich Demokratische Union Deutschlands (CDU) and Christlich-Soziale Union in Bayern
(CSU) representing throughout Germany one option only (here denoted by CD), Sozialdemokratis-
che Partei Deutschlands (SPD), Die Linke (LEFT), Bündnis 90/Die Grünen (GREEN), Freie
Demokratische Partei (FDP).
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case 13 case 126 case 1515

certainty very fairly neither/
certain certain nor

vote GREEN SPD CD
assessCD -1 -1 +3
assessSPD +2 +1 +3
assessFDP -4 0 0
assessLEFT -4 +1 -5
assessGREEN +4 -3 +2

⇓ ⇓ ⇓
ontic GREEN LEFT:SPD CD:GREEN:SPD

Table 1: Construction of variable “ontic” (illustrative example).

1. Asked for their “vote”: Only respondents reporting an intention to vote (q10 )
as “Certainly vote”, “Most likely vote”, “Maybe vote” , “Don’t know” or “No
answer” were asked for their vote. (⇒ n = 1723),

2. Response of variable “certainty”: Only respondents giving a valid party were
asked for their vote’s certainty. (⇒ n = 1385),

3. Response of variable “vote” within the set of most frequent parties (CD, FDP,
GREEN, LEFT, SPD) (⇒ n = 1281),

4. Party combination of variable “ontic” at least 10 times observed (⇒ n = 1196).

In this way, we are concerned with a severe sample loss. While the first and third
step may be attributed to common reasons10, the others are more important for us.
While the fourth step is required for technical reasons (i.e. a reasonable estimation
of the regression coefficients), and therefore is unavoidable in similar analyses, we
feel that the decrease in the second filtering step would be less sharp by account-
ing for indecisive answers in “vote” allowing multiple answers and making an ontic
analysis. As a consequence, indecisive respondents that are not able to report one
valid party no longer would be excluded, like the current design of the question-
naire implicitly enforces by the preceding filtering of the “certainty” item. Because
of this underrepresentation of indecisive persons in the available sample, we expect
less marked differences between an ontic and a classical analysis described in the
following sections as they actually are.
The resulting illustrative data set containing variable “ontic”, whose absolute fre-
quencies are given in Table 2, forms the basis of the following analysis.11

10In voting studies sample loss is rather common. Usually empirical analyses are reduced to
those parties, who entered the German Bundestag finally (e.g. [27]).

11Absolute frequencies of singletons differ from those of variable “vote” because of the construc-
tion of variable “ontic” as described.
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CD SPD GREEN LEFT FDP
495 271 125 106 39

GREEN:SPD CD:SPD CD:FDP GREEN:LEFT LEFT:SPD
36 35 18 15 14

CD:GREEN:SPD GREEN:LEFT:SPD CD:FDP:SPD
17 13 12

Table 2: Absolute frequencies of constructed variable “ontic”(second vote).

5 Data analysis
The principal goal consists of comparing the results obtained by an analysis using
the variable “ontic” constructed along the lines just described to a classical analysis
excluding all uncertain respondents. This issue will be considered in this section
with regard to the findings from Section 2. Hereby we focus on the second vote,
only where mentioned explicitly the first vote is considered. All analyses are based
on complete cases, dependent on the variables effectively under consideration. We
performed our analyses with the open-source statistical software R [23]. The code
is available on request from the authors.

5.1 General analysis
The analysis incorporating ontic imprecision is based on S∗ = P(S) \ ∅, where
S = {CD, SPD,GREEN,LEFT,FDP} is the state space. Since only 13 elements
of S∗ are attained in the addressed data set, we adapted S∗ to cover those values of
variable “ontic” only:

S∗ =
{
{CD}, {SPD}, {GREEN}, {LEFT}, {FDP}, {GREEN, SPD},
{CD, SPD}, {CD, FDP}, {GREEN, LEFT}, {LEFT, SPD},

{CD, GREEN, SPD}, {GREEN, LEFT, SPD}, {CD, FDP, SPD}
}
. (6)

If for instance the probability of respondents is of interest that are (at least) indeci-
sive between party “SPD” and “GREEN”, according to Equation (1) all probabilities
referring to respondents that are (at least) indecisive between both parties have to
be summed up, which can be estimated by associated relative frequencies to

P̂Z∗
(
Z∗ ⊇ {GREEN, SPD}

)

= P̂
({
ω : Z∗(ω) = {GREEN, SPD}

})

+ P̂
({
ω : Z∗(ω) = {CD, GREEN, SPD}

})

+ P̂
({
ω : Z∗(ω) = {GREEN, LEFT, SPD}

})

= 36
1196 + 17

1196 + 13
1196 ≈ 0.06 .
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The estimated proportion of indecisive respondents is 0.13, calculated analogously.
Consequently, if just decisive respondents are considered an amount of 13% of re-
spondents are not taken into account. As respondents are excluded because of the
value of the variable of interest itself, we are concerned with a not missing at random
situation and thus ignoring the indecisive respondents may lead to biased results.
This is particularly fatal for a theoretical understanding of voting decisions as well
as from a practical campaigners’ view, because this percentage covers those respon-
dents that are of particular interest.

5.2 Regression analysis
In order to analyse the heterogeneity within the coarse dependent variable Y , the
models presented in Section 2.2 are applied. The multinomial logit model has a
longstanding tradition in the context of modelling voting behaviour12.
In our analysis the variable “ontic” represents the coarse dependent variable, where
“SPD” is chosen as reference category. Generally, it is important to choose all
reference categories in such a way that interpretations enable answering the ques-
tion of interest. For our illustrative purpose we use a very simple voting model with
only two covariates13, namely socio-demographical variable “religious denomination”
(q228 ) as well as variable “most important source of information” (q97 ). In both
variables certain categories were aggregated. Thus, variable “religious denomina-
tion” here only takes values “Christian” and “non-Christian”, where the categories
of “most important source of information” are reduced to “television”, “newspaper”
and “other source”, the latter covering “radio”, “internet”, “talking to other people”
and “other source”. Every reclassification is subject to avoid categories with only
few observations in order to decrease statistical uncertainty.
By including “most important source of information” as a covariate into the model,
we assume that the way how voters inform themselves of the federal election influ-
ences their voting intention. Nevertheless, one cannot exclude an opposite (causal)
direction as respondents who vote for particular parties potentially avoid or prefer
certain information sources because of the way this party is represented in it. This
needs to be kept in mind when interpreting the results of this model.
For reasons of conciseness estimated regression coefficients are shown just for cate-
gory “CD” and “GREEN:SPD” (G:S) here.14 With nCD = 508 and nG:S = 36 they
form the largest groups of decisive and indecisive respondents, respectively, such
that the interpretation of corresponding regression coefficients is comparably trust-
worthy. Especially in the context of estimators for indecisive groups, we remark that
some of the regression coefficients’ calculations are based on few observations, and

12Actually, the multinomial logit model is the simplest model of the discrete choice family. Al-
though it has several disadvantages for the modelling of voting behaviour as discussed by [5], for the
sake of our illustrative application yet the multinomial logit model is appropriate, because it shows
the basic concept in handling data under ontic imprecision, which can be extended analogously to
more tailored models.

13Recent models of voting behaviour use policy distance, party identification and socio-
demographical variables and yield a remarkable fit and prognostic validity (cf. [4])

14Estimated regression coefficients for the other categories may be found in the appendix.
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Coefficient ontic classical

CD G:S CD

intercept 0.37 −1.47 *** 0.13
rel.christ 0.32 * −0.05 0.49 ***
info.tv 0.01 −0.29 −0.01
info.np −0.05 −1.67 ** −0.01

Table 3: Comparison of results (second vote).

thus corresponding interpretations have to be treated cautiously.
Furthermore, in context of interpretation one should check by taking the statistical
significance15 into account whether the regression coefficients vary just randomly.
The small sample size within several groups of variable “ontic” may be responsible
for non-significant estimators. Thus, from an increase in sample size statistical un-
certainty is reduced and potentially significant results can be obtained.
Considering the results of the second vote analysis presented in Table 3 (ontic)16,
for Christian respondents the probability of electing “CD” instead of “SPD” is in-
creased by the multiplicative factor exp(0.32) = 1.38 compared to non-Christian
respondents under the ceteris paribus assumption of unchanged other covariates.17
Furthermore, regression coefficients closely to zero indicate that no influence of co-
variate “most important information source” on the probability of electing “CD” in
comparison to the reference category “SPD” may be verified.
The crucial property of the multinomial regression model under ontic uncertainty
consists of estimating own coefficients for the different indecisive groups. For in-
stance, for respondents that report “newspaper” as their most important information
source in comparison to those that name another information source the probability
of being indecisive between the two parties “GREEN” and “SPD” instead of vot-
ing for “SPD” is decreased by the factor exp(−1.67) = 0.19 on the ceteris paribus
premise. Likewise investigations are important for election campaigners to adjust
their strategies adequately, as they show how potential voters differ from the core
voters of a party (as here “SPD”) in the choice of their favourable information source.
Results from a classical analysis that chooses variable “vote” as response variable
and takes only those respondents into consideration that are “very certain” or “cer-
tain” may be found in Table 3 as well, again just displaying coefficients for “CD”.
Comparing results from both analyses, estimators of similar magnitude are obtained
throughout. In this way, the classical and the generalized approach reflecting ontic

15“***”, “**” and “*” denotes statistical significance of level α = 0.01, α = 0.05 or α = 0.1,
respectively.

16Covariates “religious denomination” and “most important information source” are dummy
coded with “non-Christian” and “other source” as reference category, respectively. The estimates
quantify the difference between the group under consideration and the reference category (rel.christ:
“religious denomination” is “Christian”; info.tv (info.np): “most important information source“ is
television (newspaper)).

17Despite the name “CD” and the above results indicate a strong Christian relation, nowadays the
“CD” parties understand themselves as a general conservative party with members and supporters
of various religions or without religious affiliation.
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Coefficient ontic classical

CD G:S CD

intercept 0.33 −1.41 ** −0.12
rel.christ 0.37 ** −0.25 0.52 ***
info.tv −0.02 −0.32 0.25
info.np −0.12 −1.69 ** 0.13

Table 4: Comparison of results (first vote).

imprecision can still be judged to be not contradictory.
The importance of our ontic set based modelling is corroborated even stronger when
we consider the first vote instead. Now the analyses reveal remarkable differences
partly associated with a change in sign. Thus, some covariates have an amplifying
effect on the dependent variable in one analysis, while in the other analysis a weak-
ening effect is underlying (cf. Table 4), yet those are not statistically significant.

Although the complete case analysis and the carried out filtering steps mainly in-
duced by the questionnaire design led to a further decrease in the number of in-
decisive respondents18, this illustrative analysis already shows striking differences
between both analyses. Because of the here provided proof of concept for an ontic
analysis, it is strongly suggested to include the option of reporting multiple answers
such that those can be included into the analysis in an appropriate way. In cases
of large data sets with numerous indecisive respondents, we even expect increased
differences in the estimation of regression coefficients.

5.3 Classification trees
In a first scenario the settings are the same as we explored in the regression analy-
sis, thus considering “ontic” coarse class variable and “religious denomination” and
“most important source of information” as split feature variables, in the same scaling
as previously in section 5.2 (scenario 1). We are considering this setting to retain
direct comparability with the regression analysis, yet we are aware that a classifi-
cation tree’s ability lies in reducing the sample space by discovering few favourable
independent variables out of a potentially huge number of candidates. Therefore, we
are not expecting an outstanding performance in this scenario. As discussed above
we decided in favour of a Nonparametric Predictive Inference model as underlying
(imprecise) model of the classification tree. We choose the most frequent class as
prediction rule in the leaves, thus enforcing a precise result. Furthermore, we grew
imprecise classification trees on the data set neglecting the undecided, but in this
case we chose “vote” as the dependent variable as a counter part to the classical
regression analysis. In order to assess the predictive ability of the trees a 10-fold
cross-validation each was performed.
The results are to be found in the first row of Table 5, with respect to the first and

18Considering the second (first) vote 1176 (1141) and 1080 (1067) respondents were included in
the ontic and the classical analysis, respectively.

14



second vote. For a fair comparison we measure the accuracy for both data situations
by the correct classification rate (columns ontic and classical), and furthermore in
case of the ontic data sets we checked the prediction result of “ontic” against “vote”
(column vote). Any value of “vote” which was contained in the predicted coarse cat-
egory was considered correctly classified. As its clearly visible the predictive ability

Second Vote First Vote

ontic vote classical ontic vote classical

Scenario 1 0.41 0.43 0.45 0.43 0.45 0.47
Scenario 2 0.70 0.80 0.82 0.76 0.85 0.86

Table 5: Correct classification rate with respect to votes.

of the imprecise is unsurprisingly poor, and an inspection of the underlying trees
reveals the culprits. The selection of the independent variables only allows growing
of 13 different trees, which only in case of a strong dependency between the indepen-
dent and depend variables leads to reasonable accuracy results. Furthermore when
looking at the relative class frequencies in the root nodes, the category of “CD” is
with over 40% by far the most observed one. While the construction of most trees
involved at least one split, category “CD” is still predicted in a vast majority of the
tree’s leaves, in few cases even in all.
In further analyses, we incorporated more independent variables, allowing a higher
variation in potential trees (scenario 2). Further splitting candidate variables were
the party identification (q119 ), the person’s social stratum (q192 ), the sex (q1 ),
general political interest (q3 ) and the personal economic situation (q17 ). With
those and the previous variables the same analysing steps were repeated, but now
with the accuracy nearly doubling in either scenario as the second row of Table 5
indicates. Especially the party identification has a high influence.
Similar prediction results as above are obtained when considering the first vote,
instead of the second, also displayed in Table 5. Quite interestingly, the correct
classification rate is lower when we are predicting the “ontic” variable than in the
case when predicting “vote”. In the second scenario there is a notable gap of around
10%, which is mainly caused by an ontic coarse class prediction, whereas vote is
(naturally) precise.
In both scenarios the classical procedure of omitting the undecided persons leads to
better results, when just considering the predictive ability, yet with the help of our
ontic view we are able to identify hard to classify respondents.
A major reason for the small differences between the classical and ontic analyses
is the comparably little percentage of undecided persons (less than 10% within the
data under consideration). As mentioned in the discussion in the regression analyses,
this is partly due to the conducted complete case analysis and the construction of
variable “ontic”, but more gravely imposed by the design of the questionnaire. When
allowing for multiple answers directly in variable “vote”, we expect an increase in
the accuracy of the ontic prediction, as the number of hard to precisely classify,
indecisive persons raises.
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5.4 Interval-valued forecast
In Section 3 the epistemic view has been used in order to calculate interval-valued
forecast I(E), which will be illustrated in this section.
For instance, if one is interested in the forecasted proportion of respondents electing
“CD”, by referring to the absolute frequencies of variable “ontic” in Table 2 and to
Equation (5), the interval-valued forecast is calculated step-wise: The lower bound
is estimated by including the fractions of respondents that decide for values in S∗
(cf. Equation (6)) that are fully contained within event E = {CD}, i.e.

P̂Zepist

(
{CD}

)
= P̂

(
{CD}

)
= 495

1196 ≈ 0.41

and the upper bound is determined by involving all fractions that concern values in
S∗ intersecting the event E = {CD}, i.e.

P̂Zepist

(
{CD}

)
= P̂

(
{CD}

)
+ P̂

(
{CD, SPD}

)
+ P̂

(
{CD, FDP}

)

+ P̂
(
{CD, GREEN, SPD}

)
+ P̂

(
{CD, FDP, SPD}

)

= 495 + 35 + 18 + 17 + 12
1196 ≈ 0.48 .

Thus, all fractions that are included in the lower bound refer to respondents who vote
for the “CD” party for sure while all fractions that are used within the calculation
of the upper bound concern respondents who generally could imagine to vote for it.
Finally the interval-valued forecast is obtained

Î
(
{CD}

)
=
[
0.41, 0.48

]
.

Political studies gradually proceed to calculate the fraction of “potential voters”
which corresponds to the upper bound of interval Î(E).19
Nevertheless, forecasts are commonly based on respondents that are characterized
by a high degree of certainty concerning their voting intention only. In our data
example there are n = 1096 respondents that are “very certain” or “fairly certain”
according to their voting intention, where 490 of those intend to vote for “CD” and
thus the naive estimated forecasting probability results in

P̂naive
(
{CD}

)
= 490

1096 ≈ 0.45 .

As indecisive voters may systematically differ from respondents that are sure of
their voting intention, the proportion in terms of interval Î(E) contains valuable
information that is not expressed by P̂naive(E). Because of the difference between
these groups it is important to treat results ignoring indecisive respondents with
caution.

19cf. http://www.sueddeutsche.de/politik/umfrage-zur-bundestagswahl-die-meisten-
waehler-wuerden-sich-noch-umstimmen-lassen-1.1747539
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In practice forecasting the proportion of a set containing more than one element is
of considerable relevance: Frequently, for instance in Germany, the main interest
is the voters’ percentage not just for a particular single party, but for a coalition.
In this context the interval-valued forecast Î(E) becomes of particular interest, as
respondents that are indecisive between the parties contained in the coalition of
interest E are incorporated for sure. Thus, these coarse observations constitute a
precise vote for the coalition.
For instance, if the forcasted proportion of coalition composed of “GREEN” and
“SPD” is of interest, in our illustrative data example the interval-valued forcast is
obtained by

P̂Zepist

(
{GREEN, SPD}

)
= 271 + 125 + 36

1196 ,

P̂Zepist

(
{GREEN, SPD}

)
= 271 + 125 + 36 + 35 + 15 + 14 + 17 + 13 + 12

1196 ,

Î
(
{GREEN, SPD}

)
=
[
0.36, 0.45

]
.

6 Concluding remarks
While currently data under ontic imprecision is still neglected in most statistical
analysis, they could prove a valuable source of information. Especially in context of
election studies incorporating the different types of “The Undecided” into statistical
analyses becomes ever more important as more and more voters decide shortly be-
fore the election day20. From an applied viewpoint just the state space changes, the
statistical methods remain the same, as we could demonstrate. In our data exam-
ple we discovered that including the undecided respondents did make a difference,
even as the group was comparably small and we were forced to assess indecisiveness
indirectly by constructing an ontic variable representing multiple answers. There-
fore, as now appropriate statistical methodology has been proven to be available,
we strongly suggest allowing for multiple answers directly within questionnaires.
For simplicity we restricted ourselves to the case of a nominal scale of the variable
under ontic imprecision, yet the adaptation to an ordinal scale is achievable with
little additional effort as well. In further studies it is worth considering not only the
dependent variable under ontic imprecision but also the covariate. In principle, this
is achievable by involving the power-set based idea again.

20cf. e.g. http://www.welt.de/print-welt/article467015/Wahlforscher-Jeder-Dritte-
ist-noch-unentschlossen.html
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A Appendix
A.1 Comparison of regression estimators

Intercept rel.christ info.tv info.np

Ontic analysis
CD 0.37 0.32 * 0.01 −0.05
CD:FDP −14.78 *** −0.58 12.65 *** 11.61 ***
CD:FDP:SPD −14.73 *** −0.40 12.15 *** 11.44 ***
CD:GREEN:SPD −2.19 *** 0.59 −0.87 * −2.57 ***
CD:SPD −1.13 ** −0.25 −0.63 −1.57 **
FDP −2.38 *** 0.28 0.29 0.18
GREEN 0.10 −0.27 −0.77 ** −0.65
GREEN:LEFT −1.50 ** −1.69 *** −0.17 −22.01 ***
GREEN:LEFT:SPD −1.26 ** −1.11 * −1.13 −1.59
GREEN:SPD −1.47 *** −0.05 −0.29 −1.67 **
LEFT 0.23 −1.82 *** −0.19 −0.29
LEFT:SPD 14.70 *** −1.93 *** 12.74 *** 12.89 ***

Classical analysis
CD 0.13 0.49 *** −0.01 −0.01
FDP −2.10 *** 0.24 0.36 0.25
GREEN −0.02 −0.13 −0.82 ** −0.57
LEFT 0.16 −1.55 *** −0.33 −0.37

Table 6: Estimated regression coefficients: Second vote

Intercept rel.christ info.tv info.np

Ontic analysis
CD 0.33 0.37 *** −0.02 −0.12
CD:FDP −14.20 *** −0.37 11.82 *** 10.78 ***
CD:GREEN:SPD −2.47 *** 0.88 −1.14 −2.64 ***
CD:SPD −1.21 ** −0.22 −0.71 −1.92
FDP −15.34 *** 0.88 12.31 *** 12.03 ***
GREEN −0.20 −0.18 −0.72 * −0.79 *
GREEN:LEFT −2.21 ** −1.82 *** 0.46 −19.31 ***
GREEN:LEFT:SPD −1.38 ** −0.92 −1.29 * −1.70 *
GREEN:SPD −1.41 ** −0.25 −0.32 −1.69 **
LEFT 0.28 −1.85 *** −0.30 −0.604
LEFT:SPD −14.00 *** −1.88 *** 11.96 *** 12.01 ***

Classical analysis
CD −0.12 0.52 *** 0.24 0.13
FDP −14.18 *** 0.44 11.70 *** 11.13 ***
GREEN 0.52 −0.24 −0.41 −0.71 *
LEFT −0.05 −1.66 *** −0.18 −0.56

Table 7: Estimated regression coefficients: First vote
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