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Abstract

Background: A statistical analysis plan (SAP) is a critical link between how a clinical trial is conducted and the clinical
study report. To secure objective study results, regulatory bodies expect that the SAP will meet requirements in
pre-specifying inferential analyses and other important statistical techniques. To write a good SAP for model-based
sensitivity and ancillary analyses involves non-trivial decisions on and justification of many aspects of the chosen
setting. In particular, trials with longitudinal count data as primary endpoints pose challenges for model choice and
model validation. In the random effects setting, frequentist strategies for model assessment and model diagnosis are
complex and not easily implemented and have several limitations. Therefore, it is of interest to explore Bayesian
alternatives which provide the needed decision support to finalize a SAP.

Methods: We focus on generalized linear mixed models (GLMMs) for the analysis of longitudinal count data. A series
of distributions with over- and under-dispersion is considered. Additionally, the structure of the variance components
is modified. We perform a simulation study to investigate the discriminatory power of Bayesian tools for model criticism
in different scenarios derived from the model setting. We apply the findings to the data from an open clinical trial on
vertigo attacks. These data are seen as pilot data for an ongoing phase III trial. To fit GLMMs we use a novel Bayesian
computational approach based on integrated nested Laplace approximations (INLAs). The INLA methodology enables
the direct computation of leave-one-out predictive distributions. These distributions are crucial for Bayesian model
assessment. We evaluate competing GLMMs for longitudinal count data according to the deviance information
criterion (DIC) or probability integral transform (PIT), and by using proper scoring rules (e.g. the logarithmic score).

Results: The instruments under study provide excellent tools for preparing decisions within the SAP in a transparent
way when structuring the primary analysis, sensitivity or ancillary analyses, and specific analyses for secondary
endpoints. The mean logarithmic score and DIC discriminate well between different model scenarios. It becomes
obvious that the naive choice of a conventional random effects Poisson model is often inappropriate for real-life
count data. The findings are used to specify an appropriate mixed model employed in the sensitivity analyses of an
ongoing phase III trial.
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Conclusions: The proposed Bayesian methods are not only appealing for inference but notably provide a
sophisticated insight into different aspects of model performance, such as forecast verification or calibration checks,
and can be applied within the model selection process. The mean of the logarithmic score is a robust tool for model
ranking and is not sensitive to sample size. Therefore, these Bayesian model selection techniques offer helpful
decision support for shaping sensitivity and ancillary analyses in a statistical analysis plan of a clinical trial with
longitudinal count data as the primary endpoint.

Keywords: Statistical analysis plan, Sensitivity analysis, Longitudinal count data, Bayesian generalized linear mixed
models, INLA, Predictive performance, Bayesian model evaluation, Informed model choice

Background
A statistical analysis plan (SAP) is a critical link between
how a clinical trial is conducted and the clinical study
report. To secure objective study results, regulatory
bodies expect that the SAP will meet requirements in pre-
specifying inferential analyses and other important statis-
tical techniques. Writing a good SAP for a model-based
sensitivity or ancillary analysis [1,2] involves non-trivial
decisions on and justification of many aspects of the cho-
sen model setting. In particular, trials with longitudinal
count data as primary endpoint pose challenges for model
choice and model validation. This paper explores tools for
this decision process when sensitivity analyses are per-
formed using generalized linear mixed models (GLMMs)
for the analysis of longitudinal count data. These tools can
be used to build transparent strategies for shaping the final
models reported in the SAP.
The documentation of longitudinal profiles for the pri-

mary endpoint offers many advantages. They are more
informative compared with a single timepoint analysis and
give information about the ’speed of efficacy’ [3]. Treat-
ment effects evaluated by comparing change over time
in quantitative outcome variables between the treatment
groups are of great interest [4,5]. The analysis of longitu-
dinal profiles offers an effective way to handle composite
endpoints like: (1.) the long-term effect of experimental
treatment (E) is better than that of standard treatment (S),
and (2.) patients under E reach a pre-specified effect faster
than those under S.
We are interested in parametric modeling approaches

for quantifying absolute effects, adjusting for baseline
covariates and handling stratification. There is a rich lit-
erature on nonparametric methods for longitudinal data,
for example, Brunner et al. [6]. These models do, in
general, allow estimation of relative effects. Omar et al.
[7] provide an overview of several alternative parametric
approaches in trying to deal with individual longitudi-
nal profiles: (i) the ’summary statistic method’ [8] using
a suitable summary measure (e.g. rates of change, post-
treatment mean, last value of the outcome measure, or
area under a curve) calculated for each subject, and subse-
quently analyzed with rather simple statistical techniques;
(ii) repeated measures analysis of variance; (iii) marginal

models based on generalized estimating equations (GEE)
[9]; (iv) mixed effects modeling approach involving fixed
and random effects components [10,11].
Mixed effects (or random effects) models allow us to

investigate the profile of individual patients, estimate
patient effects and describe the heterogeneity of treatment
effects over individual patients. They account for differ-
ent sources of variation (patient effects, center effects,
measurement errors) and provide direct estimates of the
variance components which might be of interest in their
own right. Furthermore, they allow us to address various
covariance structures and are useful for accommodating
overdispersion often observed among count response data
[10-12].
The EMA Guideline on Missing Data in Confirma-

tory Clinical Trials from 2010 [13] explicitly considers
random effects approaches (i.e. generalized linear mixed
effects models (GLMMs) in the case of a non-Gaussian
response) as an approach to handling trials with a series
of primary endpoints measured repeatedly over time.
Mixedmodels are also helpful for handling missing values.
They are applicable under missing completely at ran-
dom (MCAR) as well as missing at random (MAR) [14],
while simple repeated univariate analyses for each time
point using test procedures such as the t-test, ANOVA, or
the Wilcoxon rank sum test rely on the more restrictive
assumption of MCAR. Also, for non-ignorable missing
data mechanisms, newer model-based strategies for lon-
gitudinal analyses are increasingly available and offer the
opportunity to account for dropout patterns (e.g. pat-
tern mixture models [15]). To be fully compatible with
the intention-to-treat (ITT) principle, one has to explic-
itly consider incomplete individual profiles to correctly
incorporate the information available for all randomized
patients.
These points in summary may explain why our interest

focuses on GLMMs as a powerful tool for the sensitiv-
ity analysis of longitudinal count data. What we need is
to pre-specify in detail a robust, valid, and parsimonious
strategy for the data to come (see ICH E9, EMA or PSI
Guidelines [13,16,17]). Writing the SAP prospectively for
a randomized clinical trial with longitudinal counts as
the primary endpoint asks for a series of decisions when
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specifying a GLMM for the analysis. Consideration should
mainly be given to the following issues:

(i) Distributional assumptions: Poisson, negative
binomial, or more sophisticated extensions, e.g.,
accounting for zero-inflation.

(ii) Transformation of outcome variable: e.g.
log-transformation for skewed continuous positive
variables [18], or variance-stabilizing transformations
(e.g. inverse hyperbolic sine-transformation for
non-negative count variables). An FDA guideline [19]
postulates that a rationale for the choice of data
transformation along with the interpretation of the
estimates of treatment effects based on the
transformed scale should be provided. In some
situations, transformation of endpoint data is
indicated and preferred to untransformed analyses on
the original scale. However, careful consideration
should be given to using a transformation which
should be pre-specified at the protocol design stage.

(iii) Variance-covariance structure: specifying whether
random effects (e.g. patient-specific intercept,
patient-specific slopes) are appropriate; specification
of the within-error structure. Altogether, random
effects selection can be challenging, particularly when
the outcome distribution is not normal (see [20-22]
for more details).

(iv) Methods for handling dropouts: e.g. dealing with
informative drop-outs, applying an analysis in which
the last observation is carried forward, accounting for
non-ignorable missing data mechanisms
(pattern-mixture models). This approach must be
fully compatible with the intention-to-treat principle.

(v) Use of covariate- or baseline-adjusted analyses,
handling multi-center data: specifying the mean
structure by identifying the fixed effects terms.

The last issue is proposed by Pocock et al. [23] for avoid-
ing misuse and data-driven selection of covariates within
the clinical trial setting. The typical strategy for settling
this complex issue is to decide on a simplemodel onwhich
the primary analysis is based and to use sensitivity anal-
yses to assess the robustness of the derived result under
realistic model deviations.
In this paper, we propose using pilot or pre-study data

to make an informed choice about the sensitivity analysis
stated in the SAP. Pilot or pre-study (commonly called a
“feasibility” or “vanguard” study) data come from a trial
in an earlier phase, from a registry, or from a proof-of-
concept study. For phase III trials, data from phase II
trials generally exist [24]. In this respect we could also
use data from the comparable treatment arms of related
studies. Using these data helps to shape and justify in
advance the modeling strategy for analyzing the main

trial data, and to check the validity and the appropri-
ateness of several model assumptions. It is imperative
to minimize misspecification of the assumed GLMM,
and this analysis enables the trial statistician to define
a broad and robust setting for the final choice of the
model.
Having determined the main focus of this paper, we

need to motivate our choice of Bayesian tools for achiev-
ing our goal. Within the GLMM framework, analytical
methods for model assessment and goodness-of-fit cri-
teria are not straightforward, and frequentist approaches
remain limited. The inclusion of random effects makes
theoretical derivations rather complex, imposing com-
putational challenges. Some proposed model evaluation
procedures focus on checking the deterministic compo-
nents (i.e. mean and variance-covariance structure) of a
GLMM based on the cumulative sums of residuals, or
assess the overall adequacy by means of a goodness-of-
fit statistic which can be used in a manner similar to
the well-known R2 criterion [25,26]. Furthermore, for
small sample sizes, likelihood-based inference via penal-
ized quasi-likelihood in the case of a longitudinal discrete
outcome can be unreliable with variance components
being difficult to estimate. In contrast, many easy-to-
implement tools are available within the Bayesian frame-
work. We will briefly review Bayesian tools developed
recently and demonstrate their usefulness: For assess-
ing goodness-of-fit and performing model validation, we
apply the probability integral transform (PIT) [27-29] as
a graphical posterior model check. We implement formal
statistical criteria such as the deviance information cri-
terion (DIC) [30], conditional predictive ordinate (CPO)
[31,32], or proper scoring rules [28,29,33-36] to compare
the forecasting capability of different competing GLMMs.
A further objective is exploring the behavior of these dif-
ferent Bayesian methods for model validation concerning
the coherence of their preference for a certain candidate
model.
The article is organized as follows: TheMethods section

reviews Bayesian strategies for GLMMs in the count
response situation. The main idea of integrated nested
Laplace approximation (INLA) proposed by Rue et al. [37]
is described briefly. We also introduce tools for model
ranking and for evaluating the performance of the pro-
posed model alternatives based on a prediction-oriented
approach. Additionally, a case study is presented which
will be used in the subsequent section to motivate the
methodology. The Results section applies the proposed
Bayesian methodology to clinical trial data on vertigo
attacks and presents the findings of our simulation study.
The Discussion section contains the limitations of the
methods proposed.More technical material is provided in
the Appendix. Selected R-INLA code with further details
concerning the INLA approach is included in the Web
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Supplementary Material of this paper [see Additional files
1 and 2].
For data analysis, inla-program [38] based on the

open-source software R version 2.12.1 [39] was used to
demonstrate the applicability of the Bayesian toolbox.

Methods
Bayesian generalized linear mixedmodels for longitudinal
count data
In the following, regression approaches to modeling dis-
crete count outcomes are briefly outlined. In the clinical
trial setting, we assume that each patient i, i = 1, . . . ,N ,
is randomized to a new drug (xi = 1) or a standard treat-
ment (xi = 0). The observations yij for each patient are
counts measured in the course of time during each study
visit, j = 1, . . . , ni (presuming an imbalanced design), with
time tij ∈ R and ti1 = 0. The linear predictor is defined as

ηij = (β0 + b0i)+ (β1 + b1i) tij + β2 xi + β3 xi tij , (1)

with β = (β0, β1, β2, β3)T being the population-level
parameter vector (fixed effects), b0i denoting patient-
specific random intercepts and b1i subject-by-visit ran-
dom slopes. The fixed effects (in a frequentist framework)
account for group-specific effects (e.g. treatment group
or time), serving at the same time as parameters of
interest in a clinical trial. We want to relate the count
response to explanatory variables such as time and treat-
ment. In the most general case, a standard assumption
for a GLMM with both random intercept and slope is
that bi = (b0i, b1i)T follows a bivariate normal distribu-
tion with mean zero and an unknown precision matrix
Q = Q(φ) depending on parameters φ, i.e.

bi|Q ∼iid N2(0,Q−1).

The variance covariance matrix Q−1 for variance com-
ponents φ is parameterized in terms of precisions and a
correlation parameter. That is,

Q−1 =
(

1/τb0i ρ/
√
τb0iτb1i

ρ/
√
τb0iτb1i 1/τb1i

)
,

where τ. refers to the marginal precision of random effects
b.i. Therefore, it is necessary to allow for the correlation
ρ between random intercepts and slopes. In GLMMs for-
mulated within a Bayesian framework, a non-Gaussian
hyperprior distribution must be assigned to the precision
matrix Q(φ), where τ. and ρ represent the hyperparame-
ters. As proposed by Fong et al. [40] and Wakefield [41],
we assume

Q ∼ Wishart2(r,R−1).

The prior parameters of the Wishart prior are
(r,R11,R22,R12), where r > 1 (to obtain a proper prior)

in the case of two dependent random effects. R12 is ele-
ment (1, 2) of the inverse of R and R12 = R21 be-
cause of symmetry. Integration over Q gives a marginal
t2(0, [ (r − 1)]−1 R, r − 1)-distribution of bi = (b0i, b1i)T,
with t2 denoting the Student’s t distributionwith 2 degrees
of freedom.

Poisson GLMM
Poisson loglinear regression is a common choice for mod-
eling count response data. The probability function can be
expressed as

Pr μ(y) = exp(−μ)μy/y!

for y = 0, 1, 2, . . . and μ > 0. For longitudinal count data
with i = 1, . . . ,N subjects and j = 1, . . . , ni measure-
ments per subject, the observed counts yij are condition-
ally independent Poisson variables Yij ∼ Poi(μij), with the
conditional mean of Yij related to the linear predictor by
a logarithmic link function. Let μij = E (Yij|β , bi). Hence,
the resulting predictor in a standard Poisson GLMM for
predicting the mean rate is

log(μi) = ηi = Xiβ + Zibi,

where Xi is an ni × p matrix and Zi is an ni × q matrix,
with β a p×1 vector of population-level parameters (fixed
effects) and bi a q × 1 vector of zero-mean normally
distributed random effects. In the longitudinal setting
described in equation (1), p = 4, q = 2 and Zi = (1, ti).
The primary Poisson assumption is equidispersion, i.e. the
equality of the mean and the variance functions. However,
this is often inconsistent with empirical evidence. In real-
ity, the value of the variance often exceeds that of themean
μij, resulting in overdispersion. Thus, although they are
widely used to model count data, Poisson GLMMs may
not well be suited to types of count outcomes from specific
applications.

Negative binomial GLMM
A conventional modeling approach for overdispersed
count data where the variance exceeds the mean (i.e. a
given rate μij) is the negative binomial (NB) loglinear
regression. In the classical univariate setting (dropping the
subscript i), the NB density can be written as

Pr k,p(y) = �(y + k)
�(k) �(y + 1)

pk (1 − p)y ,

for y = 0, 1, 2, . . ., probability 0 < p ≤ 1, and k ∈ R,
k > 0. �(n) = (n − 1)! denotes the Gamma function,
and y represents the number of failures which occur in
a sequence of Bernoulli trials before a target number of
successes is reached. Additionally, the hyperparameter k
(often called “size”) plays the role of an overdispersion
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parameter. For negative binomial data, the corresponding
mean and variance are then given by

μ = k (1 − p)
p

and σ 2 = μ+μ2/k = k (1 − p)
p2

,

with p = k/(k + μ) = μ/σ 2, k = μ2/(σ 2 − μ).
Overdispersion in the negative binomial model can

be interpreted by unobserved heterogeneity among the
observations y. If this phenomenon is not taken into
account in the modeling process, it can lead to underes-
timated variance which then leads to incorrect posterior
inference. It must be kept in mind that in the NB regres-
sion, the dispersion parameter takes observation-specific
values. In the limit k → ∞, holding μ fixed, the variance
approaches the mean and therefore the negative bino-
mial NB(k, p) converges to Poi(μ) (with μ = k 1−p

p ) in a
distributional manner.

Zero-inflated GLMM
In many biometrical and epidemiological applications,
the count data encountered often contain a high propor-
tion of extra zeros relative to the Poisson distribution,
which is routinely applied for these situations. Therefore,
a major source of overdispersion in these situations is a
preponderance of zero counts. Zero-inflated count mod-
els provide a parsimonious yet powerful way to model
this type of situation. Such models assume that the data
originate from a mixture of two separate processes: one
generates only zeros, and the other is either a Poisson or
a negative binomial data-generating process. The result of
a Bernoulli trial is used to determine which of the two
processes generates an observation.
Hence, as regards zero-inflated estimation method in

general, two regression equations are created: one predict-
ing whether the count occurs (“always zero group”) and
a second predicting differences in the occurrence of the
count (“not always zero group”). While these differences
are not modeled with standard Poisson or negative bino-
mial regression, zero-inflated models first account for the
excessive zeros by predicting group membership – i.e. an
unobserved latent dichotomous outcome – based on the
constellation of covariates included in the model and then
predicting frequency of counts for only those in the “not
always zero group”. The zero-inflated version of a distri-
bution D of a random variable Y ∼ ZID(π0, θ), where
ZID denotes a zero-inflated distribution, has a probability
function of the form

fZID(y) = π0 I[y=0] + (1 − π0) fD(y; θ ) ,

where fD(y|θ) is the probability function of distribution D
with parameters θ . Hence, fZID(y) exhibits an additional,
zero-inflation hyperparameter π0 for the proportion of

additional zeros. From the equation above, the probabil-
ity of zero is equal to π0 + (1 − π0)fD(y = 0|θ), while the
probability of y > 0 is given by (1 − π0)fD(y|θ ).
Two popular models that account for data with excess

zeros are the zero-inflated Poisson (ZIP) and the zero-
inflated negative binomial (ZINB). The ZIP distribution
introduced by Lambert [42] is the simplest ZID.
In the longitudinal setting, the full ZIP mixed effects

model has the following representation:

Yij ∼ ZIP(π0ij,μij) and

Yij ∼
{
0, with probability π0,ij
Poi(μij), with probability (1 − π0,ij).

A ZIP model will reflect the data accurately when
overdispersion is caused by an excess of zeros. In gen-
eral, a ZIP mixed effects model can be used when one is
not certain about the nature of the source of zeros, and
observations are overdispersed and simultaneously corre-
lated because of the sampling design or the data collection
procedure. By contrast, if overdispersion is attributed to
factors beyond the inflation of zeros, a ZINB model is
more appropriate [43]. Furthermore, the rate of zero-
inflationmay change over time. This problem goes beyond
the scope of this paper, and we focus on ZIP GLMMs as an
alternative to the Poisson GLMM generally used for ana-
lyzing longitudinal counts. More details concerning these
issues can be found in Hilbe [44] or Lambert [42].
Again, a Bayesian approach provides an easy way to deal

with zero-inflated hierarchical count data by incorporat-
ing a prior for π0 (generally beta prior or a uniform prior
when no information is available). For longitudinal data
with repeated observations, the correlation structure may
be taken into account by introducing random effects in the
proposed zero-inflated model. More details can be found
in Dagne [45] or Ghosh et al. [46].

NMMwith variance-stabilizing transformation
It is not uncommon for a regression model to be inap-
propriate for a given response variable but reasonable
for some transformation provided that it is methodolog-
ically justified. For a longitudinal count outcome, this
means that a normal mixed effects model (NMM) should
be considered as an alternative modeling strategy, with
an assumption of Gaussian errors on the transformed
scale: an inverse hyperbolic sine-transformation [47] of
the response y via

arcsinh(y) = log(y +
√
y2 + 1)

can be performed to accomplish stabilization of the vari-
ance and is often useful in practice. For more details
concerning the asymptotic variance-stabilizing transfor-
mation resulting from negative binomial count data, see
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the Appendix A1. This approach is motivated by analyz-
ing the data with a robust and well-understood algorithm
as regards parameter estimation. Particularly in a fre-
quentist framework, likelihood-based inference is far less
straightforward for GLMMs than it is for NMMs. Analyt-
ical intractability is the reason why a variety of numerical
integration techniques for maximizing the likelihood have
been developed (e.g. Gauss quadrature or penalized quasi-
likelihood). In a Bayesian framework, computation is a
major issue for complex hierarchical GLMMs since the
usual implementation based on the Markov chain Monte
Carlo (MCMC) method tends to exhibit poor perfor-
mance, lack of convergence or slow mixing properties
when applied for such models. As regards computational
cost, NMMs clearly outperform mixed models for non-
Gaussian response.

Bayesian inference using the INLA approach
For Bayesian GLMMs, an analytical computation of the
posterior marginals of the unknown fixed parameters and
hyperparameters is not possible: The posterior marginals
are not available in closed form because of the non-
Gaussian outcome. Hence, the standard approach used to
obtain posterior estimates are MCMC methods [48-50].
However, within the MCMC framework several problems
in terms of both convergence and computational time
occur in practical applications. Recently, Rue et al. [37]
proposed an approximate alternative for parameter esti-
mation in a subclass of Bayesian hierarchical models, the
so-called latent Gaussian models. These are models with
a structured additive predictor

ηi = α +
nf∑
l=1

f (l)(uli)+
nβ∑
g=1

βgxgi + εi, (2)

where f (l)(·) represents an unknown function of continu-
ous covariates u, comprising for example nonlinear effects
of covariates, time trends, spatial dependencies, or inde-
pendent identically distributed individual-level parame-
ters (random effects). The βg ’s denote the linear effect of
some covariates x, and the εi’s are unstructured terms.
Gaussian priors are assigned to α, f (l)(·), βg and ε, whereas
the priors for the hyperparameters φ do not have to
be Gaussian. Random effects are introduced by defining
f (ui) = fi and letting {fi} be independent, have zero mean
and be Gaussian distributed. INLA is a new computa-
tional approach to statistical inference for latent Gaussian
Markov random field (GMRF) models that can bypass
MCMC. Known problems with MCMC no longer apply
using INLA as no Monte Carlo inference is involved.
The theoretical background and computational issues are
described in detail in Rue et al. [37,51]. In short, a latent
GMRF model, which underlies INLA, is a hierarchical
model which can be characterized through three stages. In

the first stage, the distributional assumption is formulated
for the observables yi, usually assumed to be conditionally
independent given some latent parameters and, possibly,
some additional hyperparameters. In the second stage, an
a priori model for the unknown parameters is assigned
and the corresponding GMRF is specified. The third and
last stage of the model consists of determining the prior
distributions for the hyperparameters. With this method,
a recipe for fast Bayesian inference using accurate, deter-
ministic approximations to the marginal posterior den-
sity for the hyperparameters and the marginal posterior
densities for the latent variables is provided in a fully
automated way. The INLA computational approach com-
bines Laplace approximations and numerical integration
in a very efficient manner. Three types of approximation
are available: Gaussian, full Laplace, or simplified Laplace
approximation. Each of these approaches has different
features varying in accuracy and computational cost. In
this article, we used the full Laplace approximation for
the numerically inaccessible integrals of the posterior
marginal density as this approximation is supposed to be
the most accurate [37,52].
Using the INLA approach it is also possible to challenge

the model itself. For example, a set of competing GLMMs
can be assessed through cross-validation in a reason-
able time without reanalyzing the model after omission
of observation yij. Hence, within the INLA framework,
GLMMs can be fitted at low computational cost, giving
access to various predictive measures for model compar-
ison. Additionally, this approach facilitates the validation
of distributional assumptions concerning the model being
studied.
Details on how to use the open-source software inla

can be found in the manual offered by Martino and
Rue [38] or [53], and on the website www.r-inla.org.
The inla-program, written in C and bundled within
an R-interface [39] called R-INLA, can be down-
loaded from the webpage for Windows, MAC and
Linux, or simply by typing the following command line
within R source("http://www.math.ntnu.no/
inla/givemeINLA.R"). Accordingly, R-INLA per-
mits model specification and post-processing of results
directly in R. All analyses in this paper were run using the
R-INLA package built in October 2011.

Methods for model assessment and comparison
Diagnostic checking of the model against the data com-
pletes the model building process. The aim of diagnostic
checking is to compare the data with the fitted model
in such a way that it is possible to detect any system-
atic discrepancies. Forms of model assessment common
in both frequentist and Bayesian methods involve mea-
suring the goodness-of-fit to evaluate whether the chosen
final model provides an adequate fit to the longitudinal

http://www.math.ntnu.no/inla/givemeINLA.R
http://www.math.ntnu.no/inla/givemeINLA.R
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data and to firmly establish the model’s credibility (model
assessment). For example, we can check whether a spe-
cific random effect at a certain grouping level is war-
ranted or whether it can be eliminated. To identify model
deficiencies and facilitate model comparison and model
selection, several Bayesian tools recently proposed by var-
ious authors are available. These tools can be applied to
addressing the issue of predictive performance of a model,
or to identify model deficiencies and to detect possible
outliers or surprising observations yij that do not fit the
given model and may require further attention. Addi-
tionally, methods for model comparison should provide
information about which model performs best.

Deviance information criterion (DIC)
Appropriate statistical selection of the best model from a
collection of hierarchical GLMMs is problematic mainly
because of ambiguity in the “size” of such models arising
from the shrinking of their random effects towards a com-
mon value. To address this problem, Spiegelhalter et al.
[30] suggest DIC as a generalization of the Akaike infor-
mation criterion (AIC) which can be used as a Bayesian
approach for model comparison and to assess the ade-
quacy of hierarchical models. DIC compares the global
performance and predictive accuracy of different alterna-
tive models accounting for model complexity. Like AIC,
the basic idea of DIC is a trade-off between model fit and
model complexity. Models with more parameters tend to
fit the data better than models with less parameters. How-
ever, a larger set of parameters makes the model more
complex with the danger of overfitting. Hence, model
selection should account for both goodness-of-fit and
complexity of the model. The smaller the DIC the bet-
ter the trade-off between model fit and complexity. The
model with the smallest DIC is considered to be themodel
that would best predict a replicate data set of the same
structure as that currently observed. DIC is based on the
posterior distribution of the Bayesian deviance statistic,

D(θ) = −2 log f (y|θ)+ 2 log h(y) , (3)

where f (y|θ) is the likelihood function for the observed
data vector y given the parameter vector θ , and h(y) is
some standardizing function of the data (thus not hav-
ing an impact on model selection). In this approach, the
fit of a model is summarized by the posterior expectation
of the deviance D̄ = E θ |y[D], while the complexity of a
model is captured by the effective number of free param-
eters pD, which is typically less than the total number of
parameters. For non-hierarchical models, pD should be
approximately the true number of parameters. pD can be
thought of as the “posteriori mean of the deviance” minus
the “deviance evaluated at the posterior means”

pD = E θ |y[D]−D(E θ |y[ θ ] ) = D(θ)− D(θ̄ ).

DIC is then defined as

DIC = 2 D̄ − D(θ̄ ) = D(θ̄ )+ 2 pD
= D̄ + pD, (4)

DIC is scale-free. Because of the standardizing func-
tion h(y) in (3), DIC values have no intrinsic meaning,
and only differences in DIC across candidate models are
meaningful. The question of what constitutes a notewor-
thy difference in DIC between two candidate models has
not yet received a satisfactory answer. Differences of 3 to 5
are normally being thought of as the smallest that are still
noteworthy [49,50].
Spiegelhalter et al. [30] and Plummer [54] discuss some

limitations of DIC: Although widely used, DIC lacks a
clear theoretical foundation. It can be shown that DIC
is an approximation of a penalized loss function based
on the deviance, with a penalty from a cross-validation
argument. However, this approximation is valid only when
the effective number of parameters in the model is much
smaller than the number of independent observations.
The ratio pd/n may be used as an indicator of the validity
of DIC. In disease mapping or random effects models for
longitudinal data this assumption often does not hold and
therefore DIC under-penalizes more complex models.

Computational details DIC is simple to calculate using
MCMC simulation and is routinely implemented in Win-
BUGS [55-58]. With the INLA approach, both compo-
nents of DIC, pD and D̄, can be computed by setting
the option dic = TRUE in the control.compute
statement within the inla(.)-call. For further details
see [37].

Conditional predictive ordinate (CPO)
As a device for detecting possible outliers or surpris-
ing observations yij within a posited model and therefore
checking the model fit, the conditional predictive ordinate
(CPO) for each observation can be computed [59]. To be
more precise, this predictive quantity given by

CPOij = π(yij|y−ij) (5)

constitutes the position of the observed value yij within
the leave-one-out cross-validatory posterior predictive
distribution evaluated at the observed value yij. A small
value of CPOij indicates an observation yij that is unlikely
under the model fit without the observation in question,
i.e. ’surprising’ in the light of the prior knowledge and the
other observations [60]. Accordingly, this observation is
not expected under the cross-validation posterior predic-
tive distribution of the current model. CPO measure is
discussed among others by Gelfand et al. [32], Congdon
[61] and Gilks et al. [48]. Since for discrete data CPOij can
be used to estimate the probability of observing yij in the
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future when y−ij is already observed, it can be interpreted
easily.

Computational details Examination of model perfor-
mance at the level of the individual observation can pro-
vide added insight into discovering the reasons for poor
global performance. For each observation yij of the model,
we use the value of the cross-validation predictive density
at the observed data points as a local discrepancy mea-
sure. A plot for CPOij versus ij can be used informally as
a diagnostic tool to reveal surprising observations. With
MCMC sampling, calculating the CPO predictive quan-
tity requires refitting the model by single case omission.
With inla, CPO can be returned for each observation at
low computational cost without rerunning the analysis by
using the option cpo = TRUE. However, in practice, the
assumptions behind the numerical computation might fail
for some observations. For these points, the CPO values
have to be re-computed manually. That is, yij is removed
from the model and simply refitted only computing the
posterior marginals for the linear predictor for this obser-
vation. (As the results from fitting the whole model can
be used to improve e.g. initial values, this process allows a
more efficient implementation). For further reading refer
to [51].

Proper scoring rules as a toolbox for the assessment of
prognostic performance
Besides model choice criteria such as DIC, CPO or graph-
ical techniques, the comparison and ranking of differ-
ent competing models can be based on proper scoring
rules which were proposed by Gneiting and Raftery [33]
for assessing the quality of probabilistic forecasts (see
[34-36,62] for more details). Scoring rules provide a suit-
able summary measure for the evaluation of probabilistic
forecasts, by assigning a numerical score based on the
posterior predictive distribution P and on the event y
that materializes. We take scoring rules to be negatively
oriented penalties that a forecaster wishes to minimize:
Specifically, if the forecaster quotes the predictive dis-
tribution P and y is the observed value, the penalty is
s(P, y). We write s(P,Q) for the expected value of s(P,Y ),
when Y ∼ Q. Models with smaller score values should
be preferred to models with larger values. Additionally,
propriety is an essential property of a scoring rule that
encourages honest and coherent predictions. Gneiting
and Raftery [33] contend that the goal of probabilistic
forecasting is to maximize the sharpness of the predictive
distributions subject to calibration. Calibration refers to
the statistical consistency between the probabilistic fore-
casts and the observations y, and is a joint property of
the predictive distributions and the actual observation y.
Sharpness refers to the concentration of the predictive dis-
tribution, and is a property of the forecast only [28,29,63].

Hence, in the context of model comparison, scoring rules
provide a diagnostic approach to assessing the predictive
performance of a model.
The most prominent example of strictly proper scoring

rules is the logarithmic score [64] which is defined as

LSij = − log(πyij) , (6)

where πyij = Pr(Yij = yij | y−ij) indicates the cross-
validated leave-one-out predictive probability mass at the
observed value yij, i = 1, . . . ,N , j = 1, . . . , ni. The sub-
script −ij in y−ij denotes that for patient i observation
j is removed. Concerning logarithmic score values, the
following relationship holds:

LSij = − log(CPOij).

Gneiting and Raftery [33] proposed ranking compet-
ing forecast procedures (i.e. competing models) on the
basis of their mean scores, e.g. LS = (

∑N
i=1 ni)−1 ∑

i,j LSij,
and not by graphical methods such as boxplots. The
difference in the mean scores can be considered since
only the mean scores are still proper. Therefore, we want
to compare the mean scores of two rival models by
using a formal significance test to assess if score differ-
ences are statistically significant on a certain level. The
pairedMonte Carlo permutation test [65,66] based on the
observation-level scores provides a convenient approach,
as unlike the paired t-test it does not require distribu-
tional assumptions (e.g. normality of individual scores) or
trust in asymptotic behavior. Permutation tests compare
the observed score values, suitably summarized in a test
statistic, with randomly permutated score values, which
can be viewed as samples under the null hypothesis H0 of
no difference.

Computational details To calculate the scores in the
MCMC setting, a leave-one-out cross-validation ap-
proach using the posterior predictive distribution is the
gold standard, obtained by reanalyzing the data with-
out a suspect statistical unit. However, full and exact
cross-validation is extremely time-consuming in practice
and often generally infeasible within an MCMC analysis.
Marshall and Spiegelhalter [67] proposed the “full-data
mixed approach” (ghost sampling) generating full ’ghost’
sets of random effects for each unit without repeatedly fit-
ting the model with one particular observation removed
(for more details also compare [68] or [69]).
As alternative to MCMC, the INLA approach can be

applied to compute omnibus predictive performancemea-
sures such as the mean cross-validated logarithmic score
of different competing models. Using inla, the quanti-
ties needed for calculating these score values are available
as by-product of the main computations when setting the
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option cpo = TRUE in the control.compute state-
ment within the inla(.)-call [37,38,51].

Probability integral transform (PIT)
Unusually small values of CPO indicate surprising obser-
vations. However, what is meant by ’small’ has to be
calibrated to the level of the Gaussian field in order to
compare CPO values. One possible calibration procedure
is to compute the probability integral transform (PIT)
proposed by Dawid [27]. In the univariate case, PIT is a
tool for assessing calibration and therefore evaluates the
adequacy of a single model.
The PIT value for each single observation is defined as

PITij = Pr (ynewij ≤ yij|y−ij) , (7)

with y−ij being the observation vector with the ijth com-
ponent omitted, and is simply the value that the pre-
dictive cumulative distribution function (CDF) attains
at the observation yij. This procedure is performed in
cross-validation mode meaning that in each step of the
validation process the ensuing leave-one-out posterior
predictive distribution is calculated.
Unusually large or small values of PITij indicate pos-

sible outliers or surprising observations not supported
by the model under consideration. If the observation is
drawn from the predictive distribution, which is an ideal
and desirable situation, and the predictive distribution is
continuous, the PIT has a uniform distribution on the
unit interval [ 0, 1]. To evaluate whether a data vector y
seems to come from a specific distribution, i.e. to check
calibration empirically, a histogram of all PIT values can
be plotted and checked for uniformity [28,29,33]. A his-
togram of the PITs far from the uniform might indicate a
questionable model and hint at reasons for forecast fail-
ures and model deficiencies. U-shaped histograms indi-
cate under-dispersed predictive distributions, inverse-U
shaped histograms point at over-dispersion, and skewed
histograms occur when central tendencies are biased.
In the case of count data, the predictive distribution is
discrete resulting in PIT values no longer being uni-
form under the null hypothesis of an ideal forecast. To
overcome this problem, several authors suggest a “non-
randomized” version of PIT values (see [28] formore tech-
nical details). Hence, an adjusted PIT can be used instead,
defined as

PITij = Pr (ynewij < yij|y−ij)+0.5·Pr (ynewij = yij|y−ij) , (8)

These adjusted PIT values can be interpreted in exactly
the same way as in applications with continuous outcome
data. However, when using PIT as a diagnostic tool it has
to be considered that PIT does not take into account the
sharpness of the density forecast, as opposed to proper
scoring rules providing a combined assessment of both
calibration and sharpness simultaneously.

Computational details In the MCMC setting, nonran-
domized PIT values for count outcomes are cumbersome
and rather time consuming because of the leave-one out
cross-validation approach. To reduce the computational
burden, the INLA approach can be applied to compute
PITij, i = 1, . . . ,N , j = 1, . . . , ni.

Motivating example: vertigo phase III dose-finding study
(BEMED trial)
Study synopsis The BEMED trial (Medical treatment
of Menière’s disease with Betahistine; EudraCT No.:
2005-000752-32; BMBF177zfyGT; Trial Registration: Cur-
rent Controlled Trials ISRCTN44359668) is an ongo-
ing investigator-initiated, multi-center, national, random-
ized, double-blind, placebo-controlled, clinical trial with
a parallel group design. This dose-finding phase III trial
recruiting patients from several dizziness units through-
out Germany comprises three arms: therapy with high
dose betahistine-dihydrochloride (3 × 48 mg per day)
vs. a low dose (2 × 24 mg per day) vs. placebo. Total
treatment time will be nine months with a three month
follow-up. The objective of this study is to evaluate the
effects of betahistine in high-dosage vs. low-dosage vs.
placebo on the occurrence of vertigo attacks. The study
was approved by the local ethics committee and is per-
formed in accordance with the International Conference
on Harmonization Guidelines for Good Clinical Prac-
tice, as well as with the Declaration of Helsinki. Written
informed consent was obtained frompatients whomet the
study inclusion criteria.

Design aspects and statistical analyses A sample size of
n = 138 patients in total (46 in each group) to be ana-
lyzed was considered necessary. The total treatment time
will be nine months with a three month follow-up. The
primary efficacy outcome is the number of vertigo attacks
in the three treatment arms during the last three months
of the 9 month treatment period. The primary efficacy
analysis is nonparametric and will be performed accord-
ing to the ITT principle. The closed testing procedure is
used to avoid adjusting the significance level. Sensitivity
analyses will be performed using a longitudinal approach
to quantify patient profiles and the ’speed of efficacy’, i.e.,
how quickly reduction in attack frequency is achieved in
the three treatment groups. For the prospectively speci-
fied SAP, it has to be decided which candidate set of mixed
effects models proposed at the beginning of the Methods
Section seems appropriate for analyzing the counts.

Informed model choice The decision on the models for
sensitivity and ancillary analyses and handling of infor-
mative missing data of the large phase III BEMED trial is
based on data from a pre-study with a comparable study
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population, comparable intervention, and same definition
of primary outcome (frequency of vertigo attacks).

Results
Application to clinical trial data
Vertigo pre-study: data andmodeling details
To demonstrate the applicability of the Bayesian tool-
box within the GLMM framework, we used real life
longitudinal count data from an open, non-masked,
exploratory trial conducted by the dizziness unit, Depart-
ment of Neurology, UniversityHospitalMunich, Germany
[70]. 112 patients between the ages of 18 and 80 years
with Menière’s disease received either a low dosage of
betahistine-dihydrochloride, i.e. 16 or 24 mg tid, or a
higher dosage of 48 mg tid for at least 12 months. 50
patients were in the low dosage group (coded as zero)
and 62 in the high dosage group (coded as one). Both
treatment groups did not differ with respect to patient
characteristics at baseline measurement (ti1 ≡ t1 = 0,
for all i = 1, . . . , 112). In particular, there was no signif-
icant difference in the number of attacks at baseline (see
[70] for more details). The full dosage was given from
the beginning of the treatment. Since the major aim of
the treatment of Menière’s disease is reducing the attack
frequency, the efficacy outcome variable was the number
of vertigo attacks per month during a 3-month period,
i.e. during a period of 3 months preceding treatment and
then every 3 months for up to 12 months. Follow-up
examination every 3 months showed that the mean num-
ber of attacks per month decreased in both groups over
time, and was significantly lower in the high-dosage than
in the low dosage group; the longer the treatment, the
greater the difference between the two treatment groups.
Longitudinal data are displayed in Figure 1. Moderate ver-
tical differences between the individual profiles could be
identified.
We consider a count outcome variable, yij, which in

our example represents the number of vertigo attacks per
months for the ith patient measured at time tij ≡ tj =
0, 3, 6, 9, 12, for j = 1, 2, 3, 4, 5. To account for between-
patient variability we introduced patient-level random
intercepts as well as patient-specific slopes, and then fitted
main effects and interaction models:

ηij = (β0 + b0i)+ β1 timej + β2 dosagei · timej model (I)

ηij = (β0 + b0i)+ (β1 + b1i)timej + β2 dosagei · timej model (IS)

The main effect for a treatment group, defined by
dosagei, was left out of the systematic part since treat-
ment effect was expected to happen slowly with time
and not in a way that a strong effect is established after
a short time and stays stable for the duration of the
longitudinal observation.

We considered flexible models allowing for overdisper-
sion and zero-inflation, respectively. Hence, both formod-
els of type (I) and (IS), we investigated four different types
of GLMM by changing the distributional assumption:

a) Poisson model for yij ∼ Poi(μij). Poisson GLMM
was used as the “reference model” as this
distributional assumption is often the default choice.

b) Zero-inflated Poisson (ZIP) model, which will
explain the mean attack frequency and the
zero-inflation probability (i.e. assuming an excess of
zero observations).

c) Negative Binomial (NB) model, as a robust
alternative to accommodate substantial extra
variation or overdispersion.

d) Normal mixed effects model (NMM), for
arcsinh-transformed outcome “attack frequency” as
an alternative modeling strategy to accomplish
stabilization of variance.

All models included patient-specific random intercepts
b0i|σ−2

b ∼iid N (0, σ 2
b ), while the need for patient-

specific slopes associated with time was investigated for
all candidate models. Therefore, for the latter type of
GLMM, correlated patient-specific intercepts and slopes
being zero mean bivariate normal were assumed, i.e.
(b0i, b1i)T|Q ∼iid N2(0,Q−1). For models of type (I), a
Gamma prior was assigned to the precision σ−2

b . Accord-
ing to Fong et al. [40], for models of type (IS) we assumed
Q to follow a Wishart2(r,R−1)-distribution with Q = I2.
In general, independent zero-mean Gaussian priors with
fixed small precisions were assigned to each component
of the population-level parameter vector β . As the accu-
racy of the simplified Laplace approximation is often not
sufficient for the computation of predictive measures [52],
the full Laplace approximation was chosen in the follow-
ing application, in combination with the so-called GRID
integration strategy for numerically exploring the approx-
imative posterior marginal densities (for more details
concerning this issue see [37]).

Vertigo pre-study: analysis results
In Table 1 INLA summaries for the vector of population-
level parameters (fixed effects) are described. Addition-
ally, 95% credible intervals are reported. These 95%
equal-tail intervals correspond to the 2.5% and 97.5% per-
centiles of the corresponding posterior distribution and
enable assessment of whether, e.g., time profiles of the pri-
mary efficacy outcome variable differ in both treatment
groups (dosage∗time).We conclude that posterior esti-
mates for models of type (I) and of type (IS), respectively,
agree between differing distributional assumptions.
In Figure 1B) and C), the conditional mean estimates of

the number of attacks depending upon fixed effects for
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A) Original data
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C) Poisson, IS
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Figure 1 Trajectory plots for vertigo data. Effect of betahistine-dihydrochloride on the frequency of attacks of vertigo in a total of 112 Menière’s
disease patients; 2 treatment groups: “low-dosage” (50 patients) vs. “high-dosage” (62 patients). A) individual trajectories for vertigo data. B) and C)
display the conditional posterior mean trajectories of the number of attacks depending upon fixed and random effects after fitting a Poisson GLMM
(I: model with random intercepts. IS: model with random intercepts and slopes). The same color is used to indicate observations and model-based
estimates for the same patient.

time, interaction for treatment group and time, and ran-
dom effects are visualized by means of trajectory plots,
assuming a Poisson (IS) GLMM. Furthermore, Figure 2
illustrates the approximated posterior marginals for the
most important fixed effects by comparing INLA results
with those obtained using the MCMC approach (see
Appendix A3).
However, our key scientific problem was to quantify

the goodness of competing models in terms of prediction

accuracy. The question to be answered was how structural
differences concerning random effects or distributional
assumptions affect the performance of a posited model.
Calibration check was performed by PIT histograms serv-
ing as an informal tool for discordancy diagnostics (see
Figure 3). In contrast to NB GLMM and arcsinh NMM,
which seem to be sufficiently well calibrated for type (I)-
models, the Poisson (I) and the ZIP (I) model were slightly
U-shaped, indicating a worse predictive performance for

Table 1 INLA summaries for estimatedposterior means of population-level parameters (togetherwith 2.5% and 97.5%
posterior quantiles) using full Laplace approximations

Parameter
Model

Intercept time dosage∗time
Poisson, I 1.366 (1.123, 1.603) -0.051 (-0.063, -0.038) -0.130 (-0.150, -0.109)

Poisson, IS 1.638 (1.432, 1.837) -0.189 (-0.275, -0.107) -0.173 (-0.288, -0.061)

ZIP, I 1.375 (1.121, 1.620) -0.049 (-0.062, -0.036) -0.115 (-0.137, -0.093)

ZIP, IS 1.628 (1.421, 1.830) -0.209 (-0.302, -0.119) -0.198 (-0.323, -0.075)

NB, I 1.447 (1.193, 1.695) -0.069 (-0.090, -0.050) -0.127 (-0.156, -0.098)

NB, IS 1.642 (1.433, 1.840) -0.190 (-0.289, -0.101) -0.168 (-0.289, -0.049)

arcsinh∗ , I 2.056 (1.853, 2.259) -0.067 (-0.084, -0.051) -0.074 (-0.096, -0.052)

arcsinh∗ , IS 2.055 (1.854, 2.255) -0.068 (-0.114, -0.022) -0.073 (-0.134, -0.012)

∗ INLA posterior means and 95% credibility intervals for arcsinh-transformed outcome modeled as continuous response with Gaussian error terms.
I: model with random intercept, IS: model with random intercept and slope associated with time.
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Figure 2 Vertigo data: INLA vs. MCMC approach. Bayesian inference for fixed effects (Poisson random slope model): comparison of samples from
a long MCMC chain (�) with the posterior marginals computed with the Laplace approximation (—) obtained by using INLA. The vertical blue line
shows the posterior mean.

higher columns at the right-hand end of the histograms.
Visual assessment of PIT histograms for type (IS)-models
revealed noticeable deviations from uniformity due to
miscalibration of density forecasts.
Additionally, competing random slope models did not

clearly outperform each other. The difference between
negative binomial and Poisson was marginal because of
a small degree of overdispersion: e.g. the hyperparameter
k was estimated to be rather large for the NB (I) model

with random intercepts, with a posterior mean of 7.03,
95% credible interval [ 4.65, 10.36]. For the NB (IS) model,
the posterior estimates for k were even larger (data not
shown). Likewise, there was no convincing evidence for
zero-inflation (e.g. the posteriormean for zero-probability
hyperparameter π0 was estimated to be 0.09, 95% credi-
ble interval [0.05, 0.14], for ZIP (I). For model type ZIP
(IS), the posterior mean for π0 was even less). Modeling
the arcsinh-transformed outcome by means of an NMM
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Figure 3 Vertigo data: PIT histograms for all candidate models. U-shaped histograms indicate under-dispersed predictive distributions, hump
or inverse-U shaped histograms point at overdispersion, and skewed histograms occur when central tendencies are biased. Dashed gray lines show
the histogram height corresponding to perfect calibration.
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has several computational advantages, and the PIT values
seemed reasonably close to uniform for model type (I),
hence yielding fairly correct forecasts. Nevertheless, this
does not take the sharpness of the density forecasts into
account, as opposed to proper scoring rules.
Table 2 enables a comparison of LS and DIC for all

eight types of GLMM (the lowest mean score and DIC is
printed in bold face). The Poisson (IS) model was ranked
best in the leave-one-out predictive assessment by the log-
arithmic score. A permutation test was applied to decide
whether the difference in mean log scores was signifi-
cant on a 5% level. More exactly, we used the Poisson
(IS) model emerging with the lowest LS as the reference
model and tested in a pairwise manner. The last column
of Table 2 depicts Monte Carlo p-values based on permu-
tation tests (9999 permutations) for comparison of LS for
the Poisson (IS) GLMM with LS if the remaining compet-
ing models are chosen for data analysis. n.a. means that a
permutation test is not applicable because of backtrans-
formation of LS obtained within the arcsinh-NMM (see
Appendix A2 for further details).
The Poisson (IS) model and the negative binomial

(IS) counterpart do not differ significantly with respect
to their mean cross-validated logarithmic scores. The
same holds for the ZIP (IS) alternative. Ranking these
models by means of their DIC value (disregarding
NMM types) revealed that they are very close to each
other.
In summary, there was no evidence of considerable

over-dispersion and excess of zeros. Inclusion of a zero-
inflation component is apparently not necessary for these
pre-study data. Applying mean log score and DIC to rank
all eight models considered so far suggests that random
intercept models are inferior to random intercept and
slope models.
Hence, we are inclined to believe that a Poisson random

intercept and slopemodel is suitable for these longitudinal
count response data.

SAP for BEMED trial: selection of candidatemodels
After detailed analyses of the pre-study data described
above, we will present these results in the SAP and choose
a negative binomial model with random intercepts as
well as random slopes as a robust candidate to conduct
sensitivity analyses for the efficacy data of the BEMED
trial. Accordingly, this proposedmodeling strategy will be
determined in the SAP.

Simulation study
Sampling details
In the last section, a prediction-oriented Bayesian toolbox
was applied to real-life clinical count data. It is also impor-
tant to investigate whether these tools help to evaluate
different model alternatives and whether the model com-
parisons are valid. To assess the discriminatory power as
well as the properties of DIC and mean logarithmic score
in the longitudinal count response situation, a simulation
study was carried out. Following the real data structure of
our clinical trial about patients with vertigo attacks, a par-
allel group design was assumed with four measurements
occurring at times t = (t1, t2, t3, t4) = 0, 1, 2, 3 (exactly
balanced design) for all subjects. There are two groups
each of size n, with different fixed time slopes, parame-
terized by β1 = −0.3 and β2 = −0.5, but equal starting
points at time t1 = 0. To be more detailed, we considered
repeated count outcomes to follow a negative binomial
distribution, conditioned on the random effects. Accord-
ingly, the true sampling model is Yij|μi ∼iid NB(k, pi),
i = 1, . . . , 2n, j = 1, . . . , 4. To account for patient-specific
variability, a random intercept ai was introduced, so the
model can be summarized as

logμij = α + ai + tij[ β2Gi + β1(1 − Gi) ] ,

with ai|σ−2
a ∼ N (0, σ 2

a ), and Gi representing the placebo
and the verum group, respectively. The standard deviation

Table 2 Posteriormean of the deviance (D̄), deviance of themean (D(θ̄ )), effective number of parameters (pD) asmeasure
of model complexity, DIC value, andmean of logarithmic scores (LS)

Model D̄ D(θ̄ ) pD DIC LS p-value‡

Poisson, I 2034 1931 103 2137 2.046 < 0.0001

Poisson, IS 1633 1463 170 1803 1.641 ref.

ZIP, I 2020 1917 103 2123 2.018 < 0.0001

ZIP, IS 1637 1467 170 1807 1.644 0.5797

NB, I 2006 1903 103 2109 1.932 < 0.0001

NB, IS 1659 1489 170 1829 1.665 0.6841

arcsinh, I 994∗ 886∗ 108∗ 1102∗ 1.967 n.a.

arcsinh, IS 834∗ 636∗ 198∗ 1032∗ 1.960 n.a.

∗ Comparison of DIC for NMMs is not applicable because of different arcsinh-transformed outcomes.
‡ Monte-Carlo permutation test for paired individual logarithmic scores.
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of the random intercept was set to σa = 0.3 and the
population intercept fixed at α = 3. The following candi-
date GLMMs are ranked by DIC as well as evaluated with
respect to their forecasting capability:

• negative binomial (true data generating distribution),
• Poisson,
• zero-inflated Poisson,
• zero-inflated negative binomial,
• NMM for arcsinh-transformed count outcome.

The ZIP and ZINB model were chosen to investigate
whether the zero-inflated component improves the model
performance. To define simulation scenarios we varied
the sampling size (n, numbers per group) and the degree
of over-dispersion as follows: n = 20, 50, 100 and k =
0.5, 1, 5, 10, 20, 50. By combining the possible values of
the sample size and the overdispersion parameter k, we
therefore obtain count data for 18 different simulation
scenarios which can be analyzed for all five rival models
described above. Each model scenario provided r = 100
simulation runs to assess the variability of results.
All analyses were performed using the INLA approach.

To get reliable results and to enhance the accuracy of
Bayesian predictive measures (i.e. DIC and logarithmic
CPO values), the full Laplace approximation in combi-
nation with the so-called GRID integration scheme was
chosen as the strategy for deterministic approximation of
the latent Gaussian field and the posterior marginals of
the hyperparameters. For more details of estimation pro-
cedure, the reader is referred to [37,51] and the Additional
files 1 and 2 (Supplementary Material).
When working with small data sets, the prior distri-

bution can become influential in the posterior results,
especially with respect to the spread of the posterior dis-
tribution, even if non-informative settings are chosen.
This can particularly be an issue with prior distributions
on the variance components. Therefore, for prior spec-
ification we followed the procedure outlined in [40] so
as not to favor one modeling strategy over another. We
assumed a marginal Cauchy distribution for the patient-
specific intercept ai. A 95% range of [−0.6, 0.6] for ai
gives a prior σ−2

a ∼ Ga(0.5, 0.001115), and hence, inte-
gration over σ−2

a gives the marginal distribution of ai as
t1(0, 0.00223, 1).

Simulation results
Figure 4 depicts boxplots for different simulation sce-
narios if count response data {y(r)ij }, i = 1, . . . , 2n; j =
1, . . . , 4; r = 1, . . . , 100, are analyzed by choosing a Pois-
son GLMM, i.e. a wrong modeling strategy in the case
of high overdispersion. Both DIC as a measure of model
selection and mean of logarithmic score (LS(r), r =
1, . . . , 100) were calculated for all 100 runs. The striking

feature of these plots is that for all 6 setups, DIC and LS
discriminate strongly between the wrong model and the
true negative binomial model generating the counts. If a
Poisson model is chosen for data with a considerably high
amount of overdispersion (small k), higher score values
are assigned to the predictive distribution. DIC is clearly
influenced by the sample size because of the deviance
measure depending on the likelihood, whereas for LS the
number of sampling units does not impact scaling of the
mean of the scores.
Based on these simulations, we conclude that DIC and

LS provide a suitable measure for ranking and evaluating
model alternatives defined by different error distributions
or variance structures.
For all three sample size situations (i.e. 40, 100, 200

units in total), Figure 5 reveals the difference in mean log
scores for the true negative binomial GLMM compared
with the following model alternatives: Poisson (neglect-
ing over-dispersion), zero-inflation (assuming an excess
of zeros) and a Gaussian response model after arcsinh-
transformation of the counts yij. The inadequacy of the
Poisson model in terms of probabilistic forecasting is evi-
dent in the case of high overdispersion, denoted by the
parameter k. If k → ∞, LS of the “wrong” Poisson model
approximates the mean log score of the true NB model.
Furthermore, Table 3 reports the area underneath the

receiver operating curve (AUC) as a summary measure
for LS(r), r = 1, . . . , 100, of the true NB model and a
competing model alternative, as displayed in Figure 5.
For each combination of k (degree of overdispersion) and
n (sample size) the discriminatory power of the mean
log score was investigated. Perfect discrimination corre-
sponds to an AUC value of 1 while random discrimination
corresponds to an AUC value of 0.5. The AUC can be
interpreted as being equal to the probability that LS of
the wrong model exceeds that of the true NB model, i.e.
the probability that the wrong model has a lower predic-
tive performance compared with the true data generating
distribution. Accordingly, it is the probability that test
results from a randomly selected pair of LS(r) values for
the wrong model and the true NB model are correctly
ordered, namely Pr(LS(r,wrong) > LS(r

′,true)
), r �= r′.

An AUC near 1 indicates that mean log score perfectly
discriminates between the true NB model and a compet-
ing (wrong) model adopted for a particular scenario. Since
the true data generating distribution was negative bino-
mial without an excess of zeros, the ZINB model did not
perform worse than the true NB model and is suitable
for prediction in almost the same manner, resulting in
an AUC value of approximately 0.5 for all scenarios. For
small k, the NB models clearly outperforms the compet-
ing (zero-inflated) Poisson models that do not account for
overdispersion. Analyzing negative binomial data with an
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Figure 4 Simulation study: Discriminatory power of DIC and LS for different scenarios (100 runs per scenario). Data generating process:
longitudinal, negative binomial counts with subject-specific intercept (balanced design); modeling strategy: Poisson GLMMwith random intercept;
number of subjects per group: n = 20, 50, 100; degree of overdispersion: k = 0.5, 1, 5, 10, 20, 50.As k → ∞, the degree of overdispersion decreases
and the negative binomial converges to a Poisson distribution. Hence, DIC and LS decline. Note that the range of DIC increases in the case of a larger
sample size.

arcsinh NMM as an alternative to accomplish variance-
stabilization, the AUC is lower than that of a wrong
Poisson model. However, if k → ∞ and the amount
of overdispersion goes down, the choice of an NMM for
arcsinh-transformed counts results in AUC clearly larger
than 0.5. Hence, the quality of observation-level predic-
tions of the NMM is worse than that of the (zero-inflated)
Poisson. If the negative binomial converges in distribution
to the Poisson, the arcsinh-transformation of the count
outcome is no longer appropriate.

Discussion
We have discussed Bayesian strategies for model evalu-
ation of GLMMs for longitudinal count data and used
integrated nested Laplace approximations to do the cal-
culations. We especially looked at tools such as the DIC,
logarithmic score, and PIT. These techniques for model
assessment are implemented in the package R-INLA

which can easily be used in R and aim to score the mod-
els with respect to their appropriateness explaining the
observed data. Therefore, a very practical toolbox is at the
hand for statisticians. It must be noted that other instru-
ments such as pivotal quantities [71] or different proper
scoring rules [28] can be used if the calculations are done
with MCMCmethods (e.g. using WinBUGS [55,72]).
We applied this toolbox to the typical task of a clini-

cal trial statistician of making decisions for pre-specified
sensitivity analyses or the efficacy analysis in a statisti-
cal analysis plan. Data from a former trial were used as
pilot data for an ongoing phase III trial. Our interest was
to give some insight and guidance in the most important
aspect of deciding on a final SAP. The main task consisted
of deciding which GLMM should be used for longitudinal
count data. To this end, we performed a Bayesian analy-
sis of the pilot data with different models and employed
a prediction-based approach to derive statements on
model fit.
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Figure 5 Simulation study: Variability of mean LS within different simulation scenarios. Variability of mean logarithmic score LS
(r)

for true
negative binomial (NB) compared with arcsinh, (zero-inflated) Poisson and zero-inflated NB model (r = 1, . . . , 100 iterations per scenario). Sample
size: n = 20, 50, 100 subjects per group; k = 0.5, 1, 5, 10, 20, 50determines the amount of overdispersion. Each row is a different value of k (amount

of overdispersion), and each plot shows the mean LS
(r)

for each competing model. The column of panels on the right has the largest sample size n;
the top row exhibits the results for highly overdispersed counts (k = 0.5).



Adrion and Mansmann BMCMedical ResearchMethodology 2012, 12:137 Page 17 of 22
http://www.biomedcentral.com/1471-2288/12/137

Table 3 Area under the curve (AUC) for comparison of

mean logarithmic score LS
(r)

of true vs. wrongmodeling
strategy (r = 1, . . . , 100 iterations per simulation scenario)

k, degree of AUC

overdispersion
Model

n = 20 n = 50 n = 100

0.5 Poi 1 1 1

0.5 ZIP 1 1 1

0.5 arcsinh 0.796 0.781 0.953

0.5 ZINB 0.498 0.498 0.499

1 Poi 1 1 1

1 ZIP 1 1 1

1 arcsinh 0.683 0.831 0.883

1 ZINB 0.497 0.501 0.499

5 Poi 0.999 1 1

5 ZIP 0.999 1 1

5 arcsinh 0.673 0.796 0.877

5 ZINB 0.526 0.513 0.509

10 Poi 0.903 0.988 1

10 ZIP 0.909 0.990 1

10 arcsinh 0.733 0.826 0.913

10 ZINB 0.562 0.526 0.515

20 Poi 0.675 0.831 0.920

20 ZIP 0.686 0.837 0.925

20 arcsinh 0.773 0.902 0.966

20 ZINB 0.628 0.564 0.548

50 Poi 0.526 0.567 0.644

50 ZIP 0.548 0.582 0.658

50 arcsinh 0.799 0.914 0.985

50 ZINB 0.742 0.667 0.512

True model: negative binomial GLMM; competing modeling strategies: Poisson,
ZIP, NMM for arcsinh-transformed counts, ZINB. Sample size: n = 20, 50, 100
patients per group; degree of overdispersion: k = 0.5, 1, 5, 10, 20, 50. AUC can be
interpreted as a summary measure for the goodness of discrimination between
the true negative binomial model generating the longitudinal data and rival
models which should be taken into consideration in practice. For k → ∞, the
difference between a negative binomial and the alternative Poisson model
dissolves because of convergence in distribution; therefore, AUC→ 0.5 and
both model alternatives approximate with respect to their forecasting ability.

We next discuss four important aspects of this pro-
cess: prior distributions, normality assumption for ran-
dom effects, Bayesian model evaluation, and modeling of
clinical trial data.

Prior distributions
Bayesian analysis needs a specification of prior distri-
butions. However, when fitting a GLMM in a Bayesian
setting, specifying prior distributions is not straightfor-
ward; this is particularly true for variance components.
Fong et al. [40] pointed out that the priors for variance

components should be chosen carefully. To quantify the
sensitivity of the posterior distributions with respect to
changes in the priors for the random effects precision
parameters, Roos & Held [73] discuss a measure based on
the so-called Hellinger distance for GLMMs with binary
outcome but not for count data. Adapting their approach
to count data is a topic for future research. In this study,
we followed advice from the literature: in the case of neg-
ative binomial models, estimation of the posterior mean
of the dispersion parameter can be affected when a vague
prior specification is used to characterize the gamma
hyper-parameter. To circumvent the problem of distort-
ing posterior inferences, e.g. Lord et al. [74] recommend
a non-vague prior distribution for the dispersion parame-
ter tominimize the risk of amis-estimated posteriormean
and to obtain stable and valid results. This issue is par-
ticularly relevant for data characterized by a small sample
size in combination with low sample mean values. The
situation is quite complex and the only practical way to
handle this issue is a careful simulation study to investi-
gate whether changing priorswould influence the decision
on the relevant model. The material provided in the Web
Supplement may help a statistician set up such simulation
studies.

Gaussian random effects
Throughout our article the distribution of random effects
was assumed to be Gaussian. One reason was that
Bayesian inference was based on the INLA approach.
Within the INLA methodology an extension to non-
Gaussian random effects is not straightforward due to
the central role of the latent Gaussian field. The main
challenge in applying INLA to latent models is that the
approach depends heavily on the latent Gaussian prior
assumption to work properly. For further details on this
issue see [75]. Recently, Martins & Rue [75] proposed an
extension that allows INLA to be applied to models where
some independent components of the latent field have
a so-called “near-Gaussian” prior distribution. All in all,
the assumption of Gaussian distributed random effects
that is usually taken for granted may be subject to criti-
cism, and there are a number of situations in which this
might not be a realistic assumption. From a theoretical
point of view, this normality assumption may be dropped
in favour of other symmetric but heavier-tailed densities,
such as the Student t-distribution which allows to iden-
tify and accommodate for outliers both on the level of the
within-group errors but also at the level of random effects
[76]. Further research is needed to investigate the impact
of inappropriate distributional assumptions, i.e. to under-
stand its influence not only on posterior inference, but
also on several Bayesian instruments which are applied for
model evaluation.
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Bayesianmodel evaluation
The INLA approach for approximate fully Bayesian infer-
ence on the class of latent Gaussian models provides
an attractive and convenient alternative to an infer-
ence scheme based on sampling-based methods such as
MCMC, and avoids its computational burden. By taking
advantage of the properties of latent Gaussian models,
INLA outperforms MCMC schemes in terms of both
accuracy and speed. Bayesian approaches naturally lead
to posterior predictive distributions, from which any
desired functional can readily be computed. We earlier
discussed Bayesian methods for assessing probabilistic
forecasts via proper scoring rules serving as a loss func-
tion. These scores can be used for an omnibus evaluation
of both sharpness and calibration of predictive distri-
butions and provide a usable instrument for assessing
the validity of different competing, non-nested model-
ing strategies. It should also be noted that there is a
variety of proper scoring rules with a unique and well-
defined underlying decision problemwhich can be applied
in a given situation as well. According to Gneiting [62]
there are many options and considerations in choosing
a specific scoring function, and there is a need for the-
oretically principled guidance. In this article, we have
focused on the logarithmic score which is easily calcu-
lated and available from INLA. The mean logarithmic
score was competitive for the simulated negative bino-
mial data, and most importantly, it was able to identify
the correct model as the one best suited for predic-
tion, namely the true model generating the data emerged
with the smallest LS. In contrast to proper scoring rules,
PIT histograms allow evaluation of the predictive qual-
ity of a model with respect to calibration only, neglect-
ing sharpness. Furthermore, the DIC was applied as a
common model selection criteria that takes into account
goodness of fit while penalizing models for overfitting.
Despite its computational simplicity, DIC does have sev-
eral drawbacks, particularly tending to under-penalize
complex hierarchical models. Likewise, DIC is not suit-
able for comparing a model for transformed outcome
with competing models for data on the original scale.
Accordingly, predictive checks should be preferred to
rank different non-nested GLMMs alternatives. Never-
theless, the question of what constitutes a noteworthy
difference in DIC or mean scores to distinguish between
competing model types has not yet received a satisfactory
answer. For Bayes factors, calibration scales have been
proposed, but no credible scale has been proposed for
the difference in DIC or the difference in mean scores
[54]. In conclusion, we recommend using several instru-
ments for model evaluation to gain further insight into
different aspects of a statistical model, such as forecasting
ability, combined assessment of calibration and sharp-
ness, and comparison of features of the model-based

posterior predictive distribution to equivalent features of
the observed data.

Modeling of clinical trial data
In the clinical trial setting, Bayesian instruments based on
the INLA approach can be applied as decision support
to pre-specify a suitable final model for sensitivity analy-
ses. Provided that adequate pilot data exist, an appropriate
modeling strategy is developed using prior information
obtained from a trial in an earlier phase. Sensitivity
analyses are important to investigate the effects of devia-
tions from a statistical model and its underlying assump-
tions. Furthermore, it is necessary to assess in what way
the (posterior) inference depends on extreme observa-
tions and on unverifiable model assumptions. Altogether,
situation-specific robustness of the proposed analyses
must be checked carefully.

Conclusions
The statistical model must be specified in the SAP before
acquiring the real trial data. Similar independent data (for
example, from patients treated with the standard treat-
ment) may serve as a basis for decision-making. The
analyses proposed in the SAP have to be appropriate
and should rely on a minimum of assumptions [77,78].
Sensitivity analyses help to assess whether, for example,
results from simple testing procedures applied to the pri-
mary efficacy analysis agree with the results obtained
by additional, more complex analyses. These analyses
may consider more complex settings for individual-level
parameters, or different distributional forms of individual
inhomogeneity. By studying agreement between different
strategies via sensitivity analyses in the statistical report,
such as simple tests for the primary analysis together with
modeling approaches for sensitivity analyses, it is possi-
ble to explore robustness and accurate estimation of the
treatment effects.
We look at the situation when there are various pos-

sible analyses of a given hypothesis (in our case: no
treatment×time interaction), all of which have different
distributional assumptions (specified by different assump-
tions in terms of the random effects structure and
corresponding distributional assumptions). In this case,
robustness would come from different analyses, with dif-
ferent assumptions, showing substantial agreement. On
the first look, there is no ordering that would allow us to
declare one analysis better than another by virtue of rely-
ing on a specific distributional assumption. On a second
look, the logarithmic score, the DIC, and the PIT provide
scores to establish such an ordering.
We concentrated on justifying the distributional

assumptions in the count response situation, that is,
checking deviations from the assumptions regarding the
stochastic part of the hierarchical model, since there
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was no evidence for specific prognostic factors or fac-
tors for baseline adjustment, which would improve the
precision of the results when considered in the model.
We also explored the effect of random effects structures
that include subject-specific intercepts and/or slopes.
The simulation could also demonstrate how much power
would be lost if we chose a more general model (NB
distribution, random intercept and random slope) com-
pared with a simple model (Poisson distribution, random
intercept, no random slope) when the simple model is
true.
However, the Bayesian toolbox used is all-purpose and

can be applied to detect other more complex forms of
misspecification as well, such as non-Gaussian distributed
random effects [75], alternative functional relationships
in the population-mean structure, random effects pre-
cisions depending on a binary covariate (e.g. treatment
group), alternative prior distributions or different hyper-
prior parameter values. Finally, part of the sensitivity
analyses of the trial data may also be checking whether the
modeling assumptions for the primary efficacy analysis
are reasonable or not.

Appendix
A1. Variance stabilizing transformation for negative
binomial outcome
Assuming a random variable Y ∼ NB(k, p) using
the notation as described before. In the limit, if dis-
persion parameter k moves to infinity, then E μ[Y ]=
Var μ[Y ]= μ and negative binomial NB(k, p) converges
to Poi(μ) in a distributional matter. Hence, variance of
Y ∼ NB(k, p) can be described as a function of μ, i.e.
Var μ[Y ]= μ(μ/k + 1) := v(μ), for μ ≥ 0.
Searching for an asymptotic variance-stabilizing func-

tion means searching for a function T : R → R with the
following property

Var μ[T(Y )]≈ const := c. (9)

The transformation T is assumed to be strictly monotone,
and without loss of generality it is assumed to be strictly
increasing. Transformations satisfying (9) do not neces-
sarily exist; but if they do exist, they are unique [79]. Using
Taylor approximation

T(Yμ) ≈ T(μ)+ T ′(μ) · (Yμ − μ)

we can write

Var μ[ T(Y ) ] ≈ Var μ[ T(μ)+ T ′(μ) · (Y − μ) ]

= (T ′(μ))2 · Var μ[Y − μ]

= (T ′(μ))2 · v(μ).

The goal is to find a real-valued, measurable transfor-
mation T such that 1 = Var μ[ T(Y ) ]≈ (T ′(μ))2 · v(μ).
This produces

Lemma. Let Yμ be a family of random variables with
mean E μ[Y ]= μ and variance Var μ[Y ]= v(μ). Then
the asymptotic variance-stabilizing transformation for Y
is given by

T(y) =
∫ y

−∞
1√
v(u)

∂u,

achieving that Var μ[ T(Y ) ] is independent from μ.
�

Hence, according to this Lemma the asymptotic
variance-stabilizing transformation for a negative bino-
mial distribution is given by

T(y) =
∫ y

0

1√
v(u)

∂u =
∫ y

0

1√
u(z u + 1)

∂u

= arcsinh(√z y)/
√
z

(10)

where z ≡ 1/k represents an overdispersion parame-
ter which is defined by specifying NB(k, p). For z → 0
(i.e. k → ∞),

arcsinh(
√
(z y))/

√
z −→ √

z.

Therefore, the variance stabilizing transformation for
Poisson distribution is

√
z. See [79,80] for a more detailed

derivation.

A2. Backcalculation of themean logarithmic score for
arcsinh-transformed outcome to the original count scale
If count data exhibit overdispersionwith respect to a Pois-
son model a Normal mixed effects model (NMM) for
arcsinh-transformed count response can be performed
to accomplish stabilization of variance. However, this
involves that the predictive performancemeasures such as
the proper scoring rules are not computed on the original
scale. In this section, we detail the calculation of a “correc-
tion term” needed to back-transform the mean log score
for the arcsinh NMM to the mean log score within the
original count scale. Note that only themean of log scores
can be back-transformed, not the log score values of the
observational level.
Let φ be the probability density for Y in R, and ψ

be the probability density of Z in R, with z = g(y) =
arcsinh(y) = log(y + √

y2 + 1), g−1(z) = exp(z)−exp(−z)
2 ,

with the derivation g′(y) = 1√
1+y2

.
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Suppose we have computed themean log score, denoted
as mean(LS) | arcsinh. Using the substitution y = g−1(z) and
dy =[ g−1]′ (z) dz, the following equations hold:

mean(LS) | original

=E
[− log(φ(Y ))

]
=

∫ ∞

−∞
[− logφ(Y )] ·φ(Y ) dy (11)

=
∫ ∞

−∞
[− logφ(g−1(z))] ·φ(g−1(z))·[ g−1]′ (z) dz

=
∫ ∞

−∞
[− logφ(g−1(z))

] · φ(g
−1(z))

g′[ g−1(z)]
dz

=
∫ ∞

−∞
[− log

{
ψ(z) · g′[ g−1(z)]

}]
ψ(z) dz

=E
[− logψ(Z)

]
︸ ︷︷ ︸
mean(LS) | arcsinh

− E
[
log{g′[ g−1(Z)] } ]

where [ g−1]′ (z) = 1
g ′[g−1(z)] and ψ(z) = φ(g−1(z))

g ′[g−1(z)] . Hence,
the correcting subtrahend required to convert the mean
log score for the arcsinh NMM to the original scale results
from

E
[
log{g′[ g−1(Z)] } ]

.

This is simply the empirical sample mean of a cer-
tain transformation of the materialized and the arcsinh-
transformed counts, respectively. After backcalculation
the mean log score for the arcsinh NMM can be com-
pared with themean log scores of othermodel alternatives
assessing their forecasting capability.

A3. Vertigo data: comparison of INLA andMCMC
Figure 2 illustrates the approximated posterior marginals
for the fixed effects (posterior marginal distribution for
intercept and hyperparameters not shown). The dotted
curve with overlaid histogram is the posterior marginal
density resulting from a MCMC run based on 1000 (near
independent) samples; the output was constructed with
the built-in MCMC-sampler (more precisely the “one-
blockMCMC-sampler” described in [81, chapter 4]) avail-
able within the inla program). Apparently, the Laplace
approximation gives an accurate fit indicating thatMCMC
and INLA provide comparable posterior estimates in this
longitudinal setting.

Additional files

Additional file 1: Web-based SupplementaryMaterial. This document
contains further technical details concerning the INLA approach.
Furthermore, chunks of R code to illustrate the use of the R package
R-INLA are provided.

Additional file 2: R file to generate NB GLMMdata used in the
simulation study. R function make.negbin.rfc(.) creates a data set
with longitudinal counts (data generating process used: negative binomial
random intercept models for varying degrees of overdispersion and
sample sizes).

Competing interests
The authors declare that they have no competing interests.

Authors contributions
The authors’ responsibilities were as follows: CA (guarantor) did the statistical
analysis, designed the simulation study and wrote the first draft of the
manuscript. UM reviewed and critiqued the manuscript and made substantial
contributions to subsequent drafts. All authors checked and approved the
final version of the manuscript.

Acknowledgements
This work was supported by the LMUinnovativ research priority project, Munich
Center of Health Sciences (MC-Health) of the LMU. Access to the vertigo data
was kindly facilitated by Prof. Michael Strupp, Department of Neurology and
German Dizziness Center (IFBLMU), Campus Grosshadern. We are grateful to
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