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Abstract

Background: With the advent of high-throughput targeted metabolic profiling techniques, the question of how to
interpret and analyze the resulting vast amount of data becomes more and more important. In this work we
address the reconstruction of metabolic reactions from cross-sectional metabolomics data, that is without the
requirement for time-resolved measurements or specific system perturbations. Previous studies in this area mainly
focused on Pearson correlation coefficients, which however are generally incapable of distinguishing between
direct and indirect metabolic interactions.

Results: In our new approach we propose the application of a Gaussian graphical model (GGM), an undirected
probabilistic graphical model estimating the conditional dependence between variables. GGMs are based on partial
correlation coefficients, that is pairwise Pearson correlation coefficients conditioned against the correlation with all
other metabolites. We first demonstrate the general validity of the method and its advantages over regular
correlation networks with computer-simulated reaction systems. Then we estimate a GGM on data from a large
human population cohort, covering 1020 fasting blood serum samples with 151 quantified metabolites. The GGM
is much sparser than the correlation network, shows a modular structure with respect to metabolite classes, and is
stable to the choice of samples in the data set. On the example of human fatty acid metabolism, we demonstrate
for the first time that high partial correlation coefficients generally correspond to known metabolic reactions. This

examination.

data sets.

feature is evaluated both manually by investigating specific pairs of high-scoring metabolites, and then
systematically on a literature-curated model of fatty acid synthesis and degradation. Our method detects many
known reactions along with possibly novel pathway interactions, representing candidates for further experimental

Conclusions: In summary, we demonstrate strong signatures of intracellular pathways in blood serum data, and
provide a valuable tool for the unbiased reconstruction of metabolic reactions from large-scale metabolomics

Background

Metabolomics is a newly arising field aiming at the mea-
surement of all endogenous metabolites of a tissue or
body fluid under given conditions [1-3]. The resulting
metabolome of a biological system is considered to pro-
vide a readout of the integrated response of cellular
processes to genetic and environmental factors [4].
Understanding the complex biochemical interplay
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between hundreds of measured metabolite species is a
daunting task, which can be approached by combining
advanced computational methods with data from large
population-based studies. On the biochemical level,
metabolite concentrations are determined by a set of spe-
cific metabolic enzymes. Variabilities in both enzyme
activity and metabolite exchange rates - induced by a
continuous spectrum of metabolic states throughout
measured samples - give rise to characteristic patterns in
the metabolite profiles which are directly linked the
underlying biochemical reaction network [5,6]. Although
human metabolism has been extensively characterized in
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the past decades [7], the reconstruction of metabolic net-
works from such metabolite patterns is a key question in
the computational research field. Previous attempts
focused on linear metabolite associations measured by
Pearson correlation coefficients. These include studies
utilizing time-course measurements and clustering [8],
theoretical approaches relating metabolite fluctuations to
properties of the dynamical system [5] and metabolic
control analysis to derive effects of enzyme variability [6].
Other reconstruction methods rely on specific perturba-
tions of the biological system, like the induction of con-
centration pulses for certain metabolites [9].

A major drawback of correlation networks, however, is
their inability to distinguish between direct and indirect
associations. Correlation coefficients are generally high
in large-scale omics data sets, suggesting a plethora of
indirect and systemic associations. For example, tran-
scriptional coregulation amongst many genes will give
rise to indirect interaction effects in mRNA expression
data [10]. Similar effects can be observed in metabolic
systems which, in contrast to genetic networks, contain
fast biochemical reactions in an open mass- flow system.
Metabolite levels are supposed to be in quasi-steady
state compared to the time scales of upstream regula-
tory processes [11]. That is, metabolites will follow
changes in gene expression and physiological processes
on the order of minutes and hours, but will appear
unchanged on the order of seconds. These properties,
even though substantially different from mRNA expres-
sion mechanisms, also give rise to indirect, system-wide
correlations between distantly connected metabolites.

Gaussian graphical models (GGMs) circumvent indir-
ect association effects by evaluating conditional depen-
dencies in multivariate Gaussian distributions [10].
A GGM is an undirected graph in which each edge
represents the pairwise correlation between two vari-
ables conditioned against the correlations with all other
variables (also denoted as partial correlation coeffi-
cients). GGMs have a simple interpretation in terms of
linear regression techniques. When regressing two ran-
dom variables X and Y on the remaining variables in the
data set, the partial correlation coefficient between X
and Y is given by the Pearson correlation of the resi-
duals from both regressions. Intuitively speaking, we
remove the (linear) effects of all other variables on X
and Y and compare the remaining signals. If the vari-
ables are still correlated, the correlation is directly deter-
mined by the association of X and Y and not mediated
by the other variables. Partial correlations have recently
been applied to biological data sets for the inference of
association networks from mRNA expression data
[12-15], and for the elucidation of relationships between
genomic features in the human genome [16]. One pre-
vious study used second-order partial correlations of
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genetic associations to elucidate genetically determined
relations between metabolites [17].

In this manuscript we now study the capabilities of
GGMs to recover metabolic pathway reactions solely
from measured metabolite concentrations. First, we dis-
cuss the quality of the method and possible problems
and pitfalls on computer-simulated systems. We then
apply GGMs to a lipid-focused targeted metabolomics
data set of 1020 blood serum samples with 151 mea-
sured metabolites from the German population study
KORA [18,19]. The GGM is sparse in comparison to
the corresponding Pearson correlation network, displays
a modular structure with respect to different metabolite
classes, and is stable towards changes in the underlying
data set. We demonstrate that top-ranking metabolite
pairs and further densely connected subgraphs in the
GGM can indeed be attributed to known reactions in
the human fatty acid biosynthesis and degradation path-
ways. In order to systematically verify this finding, we
map partial correlation coefficients to the number of
reaction steps between all metabolite pairs based on a
literature-curated fatty acid pathway model. We observe
statistically significant discriminatory features of GGMs
to distinguish between directly and non-directly inter-
acting metabolites in the metabolic network. In addition,
low-order partial correlations turned out to be a suitable
alternative to full-order GGMs for the present dataset.
Finally, we will summarize and discuss the relevance of
GGMs for metabolomics data sets, point out limitations
of the method and suggest future steps. All metabolo-
mics data used in this study, the generated correlation
networks, model files and metabolite annotations are
available online at http://hmgu.de/cmb/ggm.

Results and Discussion

GGMs delineate direct relationships in artificial reaction
systems

Computer-simulated reaction systems are a valuable tool
for the evaluation of correlation-based measures prior to
their application to real metabolomics data sets. Pre-
vious works focused on the modeling of biological repli-
cates with intrinsic noise on the metabolite levels [5]. In
contrast, we here investigate the effects of variation of
enzymatic activity in a human population cohort. Such
variation might be genetically determined or, more
likely, be the result of distinct regulatory effects and
metabolic states between individuals. All reaction sys-
tems were implemented as ordinary differential equa-
tions with simple mass-action kinetics rate laws and
reversible Michaelis-Menten-type enzyme kinetics (see
Methods). In order to account for the above-mentioned
enzymatic variability we applied a log-normal noise
model, which has been previously described to be a rea-
sonable approximation of cellular rate parameter
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distributions [20]. The standard deviation ¢ was set to a
value of 0.2 for the underlying normal distribution (note
that the results are insensitive to the magnitude of o).
For each parameter sample we calculated the metabolite
steady state concentrations on log-scale, and subse-
quently estimated the GGM by calculating partial corre-
lation coefficients. All analyzed systems exhibit single,
unique steady states independent of the respective para-
meter values. This feature was structurally verified using
the ERNEST toolbox [21] for all networks except the
negative feedback system. For the latter one, we
employed empirical initial state sampling to ensure
monostability in the given parameter range (see Addi-
tional file 1, section 1).

The first network we analyzed consists of a linear
chain of three metabolites with different variants of
reaction reversibility (Figure 1A-C). We observe high
pairwise correlations for metabolites in mutual equili-
brium due to reversible reactions (Figure 1A). This is in
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accordance with previous findings from [6], where cor-
relation-generating mechanisms in metabolic reaction
networks were identified. Furthermore, this simple
example demonstrates how partial correlation coeffi-
cients in GGMs discriminate between directly and indir-
ectly related metabolites. If only irreversible reactions
are employed in the chain, neither regular correlation
networks nor GGMs can distinguish between direct and
indirect effects (Figure 1B). Species A is the only input
metabolite in the system, and thus completely deter-
mines the levels of both B and C. This leads to generally
high and non-distinguishable correlations between the
three metabolites. However, if we introduce exchange
reactions for all species, the GGM again correctly
describes the network connectivity (Figure 1C). Such
exchange mechanisms are likely to be present for most
intracellular metabolites, which usually participate in
multiple metabolic pathways (see e.g. KEGG PATH-
WAY online). Note that for this third case both regular
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Figure 1 Evaluation of correlation networks (CN) and Gaussian graphical models (GGM) on artificial systems. Line widths represent
relative edge weights in the respective networks (scaled to the strongest edges). A: Linear chain of three metabolites with reversible
intermediate reactions. While the standard Pearson correlation network (CN) is fully connected, implying an overall high correlation of all
metabolites, the GGM correctly discriminates between direct and indirect interactions. B: Linear chain with irreversible intermediate reactions.
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Neither CN nor GGM can distinguish direct from indirect effects, as metabolite A equally determines the levels of both B and C. C: Linear chain
with irreversible reactions and input/output reactions for each metabolite. Although the edge weights for both CN and GGM are generally lower,
the GGM now correctly predicts the network topology. D: Branched-chain first-order networks are correctly reconstructed by the GGM. E: End-
product inhibition modules. When modeled as an open system, A is decoupled from the other metabolites and reconstruction fails at this point.
Dashed lines mark enzyme inhibition interactions, larger arrows to the right indicate faster forward than backward reactions. F: Cofactor-driven
network resembling the first three reactions from the glycolysis pathway. A correlation network fails to predict the correct pathway relationships.
G: Non-linear system with a bi-molecular reaction. The GGM predicts only a only weak interaction between B and C. This is due to
counterantagonistic processes of isomerization and substrate participation in the same reaction.
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and partial correlation values are notably lower than for
the first two chain variants. In addition to linear chains,
pathway modules consisting of branched topologies with
first-order, reversible reactions are correctly recon-
structed by our method (Figure 1D). An overview of the
reconstruction accuracy of GGMs on various types of
first-order networks with different variants of reaction
reversibility can be found in Additional file 1, section 2.

Interestingly, for some reaction setups, the accuracy of
the method improves drastically with an increasing
amount of external noise. Specifically, if the metabolite
transport towards a pathway is subject to higher fluctua-
tions, the GGM edge weight difference between directly
and indirectly connected metabolites becomes larger.
For a detailed discussion of this finding we refer the
reader to Additional file 1, section 3. The second ques-
tion we addressed with artificial reaction networks was
the influence of enzyme-catalyzed reactions on GGM
estimation. Therefore we setup reaction chains with
four metabolites incorporating reversible enzymatic
reactions. Forward maximal reaction rates V,,,, were set
twice as fast as the backward reactions in order to
ensure a directed mass flow. We found that the usage of
Michaelis-Menten-type enzyme kinetics instead of mass-
action kinetics does not alter our general findings.
When forward reaction rates exceed backward reactions
by far, the GGM discrimination quality is impaired. This
is in line with the observation that purely irreversible
reactions cannot be distinguished in the mass-action
case (see above). Other specific parameters, like the
Michaelis constant Kj; , did not affect GGM calculation
(Additional file 1, section 4). Another important aspect
of enzyme-catalyzed reactions are allosteric regulation
mechanism, like end-product inhibition for instance,
which constitutes a negative feedback from the end to
the beginning of a pathway [22]. The reconstruction
results differ depending on whether exchange reactions
are included in the system for not (Figure 1E). If the
inhibitory module represents a closed system (no exter-
nal fluxes except for the first and last metabolite), the
regulatory interaction does not in influence GGM calcu-
lation. The net metabolite turnover speed might be
drastically affected, but the topological effects of this
reaction chain on the correlation structure remain
unchanged. In contrast, when exchange reactions are
introduced (second example in Figure 1E), the inhibition
decouples A from the other metabolites and the recon-
struction fails for this metabolite. Detailed results for
different strengths of the inhibitory interaction are pre-
sented in Additional file 1, section 5.

Next, we studied the influence of cofactor-driven reac-
tions on the reconstruction. Cofactors are ubiquitous
substances usually involved in the transfer of certain
molecular moieties or redox potentials [23]. We
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investigated such cofactor-coupled reactions (a) because
they introduce non-linearity in the simulated dynamical
systems, and (b) because cofactors are usually involved
in many reactions and thus generate network-wide
metabolite dependencies. We set up a network resem-
bling the first three reactions from the glycolysis path-
way. It consists of four metabolites and two energy
transfer-related cofactors, ATP and ADP, involved in
two phosphorylation reactions [24]. Again the GGM
precisely describes metabolite connectivity in the system,
whereas a regular correlation graph leads to false inter-
pretations of the network topology (Figure 1F). Cofac-
tors were modeled with input and output reactions to
the rest of the metabolic system in order to account for
the above-mentioned participation of cofactors in var-
ious reactions of the system. Again, it makes a substan-
tial difference whether such exchange reactions are
included in the model or not. Since our toy model only
represents a small part of a larger system, missing
exchange reaction for cofactors would create a false
mass conservation relation that compromises correlation
calculation. Finally, we investigated the effects of rate
laws with non-linear substrate dependencies in the
absence of cofactors. Therefore we modeled a reversible,
bimolecular split reaction with isomerization of the two
substrates (Figure 1G). An example of such a reaction
network can be found in the glycolysis pathway between
fructose-1,6-bisphosphate, glyceraldehyde-3-phosphate
and dihydroxyacetone phosphate. Our simulations
demonstrate that again a regular Pearson correlation
network cannot delineate direct from indirect relation-
ships in the pathway. The GGM only detects a weak
association between B and C. This is due to counteran-
tagonistic processes in this reaction setup: isomerization
and other reversible reactions generally induce positive
correlations, whereas coparticipation as substrates in the
same reaction induces negative correlations. Such effects
of correlation-generating mechanisms which cancel each
other out have been described before [6] and pose a
problem to all reconstruction approaches which rely on
linear dependencies.

The drawbacks of correlation-based methods dis-
cussed in this section, especially inhibitory mechanisms
with exchange reactions and antagonistic mechanism,
have to be kept in mind when attempting to reconstruct
metabolic reactions from steady state data. For the pre-
sent study, however, we assume the primarily linear
lipid pathways not to contain such problematic reaction
motifs.

A GGM inferred from a large-scale population-based data
set displays a sparse, modular and robust structure

In the following we estimated a Gaussian graphical
model using targeted metabolomics data from the
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German population study KORA [18] ("Kooperative
Gesundheitsforschung in der Region Augsburg”). We
used a subset of the data set previously evaluated in a
genome-wide association study [19], containing 1020
targeted metabolomics fasting blood serum measure-
ments with 151 quantified metabolites. The metabolite
panel includes acyl-carnitines, four classes of phospholi-
pid species, amino acids and hexoses (see Methods).
Both regular Pearson correlation coefficients and partial
correlation coefficients (inducing the GGM) were calcu-
lated on the logarithmized metabolite concentrations.
All edges corresponding to correlation values signifi-
cantly different from zero now induce the networks dis-
played in Figure 2A+B. In order to exclude correlation
effects generated by genetic variation in the study
cohort, we investigated the in influence of SNP allele
data from [19] on the GGM calculation. We found
genetic effects to be neglectable (see Additional file 2),
indicating that GGMs capture intrinsic biochemical
properties of the system.

Pearson correlation coefficients show a strong bias
towards positive values in our data set (Figure 2C); a
typical feature of high-throughput data sets, also
observed e.g. in microrarray expression data, which can
be attributed to unspecific or indirect interactions [10].
We obtain 5479 correlation values significantly different

from zero with @ =8.83.107" (o = 0.01 after Bonfer-

roni correction), yielding an absolute significance corre-
lation cutoff value of 0.1619 (see Methods). In contrast,
the GGM shows a much sparser structure with 417 sig-
nificant partial correlations after Bonferroni correction
(Figure 2D). Most values center around a partial correla-
tion coefficient of zero, whereas we observe a clear shift
towards positive significant values. Note that negative
partial correlations provide particular information that
will be discussed later in this manuscript.

The GGM displays a modular structure with respect
to the seven metabolite classes in our panel, while the
class separation in the correlation network appears
rather blurry (Figure 2E+F). We observe a clear separa-
tion of the amino acids and acyl-carnitines from all
other classes. The four groups of phospholipids (diacyl-
PCs, lyso-PCs, acyl-alkyl-PCs, and sphingomyelins) still
showed locally clustered structures, but are strongly
interwoven in the network. This is probably an effect of
the dependence of all phospholipids on a similar fatty
acid pool and, subsequently, the biosynthesis pathway
acting on this substrate pool. In order to get an objec-
tive quantification of this observation, we calculated the
group-based modularity Q on all significantly positive
GGM edges according to [25] (see Methods). The same
measure was calculated for 10> randomized GGM net-
works (random edge rewiring). For the original GGM
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we obtain a modularity of Q = 0.488, and the random
networks yield Q = 0.118 + 0.016, resulting in a highly
significant z-score of z = 23.49. Furthermore, the modu-
larity value induced by using the metabolite classes was
compared to a partitioning optimized by simulated
annealing. The optimized modularity is only slightly
higher with Q = 0.557 and the resulting partitioning is
very similar to the metabolite classes (see Additional file
3). Performing the modularity analysis with the full,
weighted partial correlation matrix produces equivalent
results (also shown in S3).

An important question for a multivariate statistical
measure such as partial correlations is the robustness
with respect to changes in the underlying data set.
Furthermore, the dependence of the measure on the
size of the data set needs to be addressed. To answer
these questions, we performed two types of perturba-
tions of our data set. First, we applied sample bootstrap-
ping with 1000 repetitions and compared the resulting
partial correlations to the original data set (Additional
file 4, Figure S1). We observe small mean differences
with low standard deviation (0.03 + 8. 2 - 10™%). This
indicates that for a large data set with n = 1020 samples,
GGMs are robust against the choice of samples. We
assume that each distinct metabolic state in the cohort
is captured by a bootstrap sample, and thus all informa-
tion required to calculate the GGM is contained. In
addition to the bootstrap analysis, we estimated partial
correlations for continuously decreasing sample sizes
(Additional file 4, Figure S2). For each data set size we
randomly picked samples from the original data set and
repeated the procedure 100 times. The analysis shows
that the GGM is stable even under decrease of the sam-
ple number. For instance, for a data set containing only
around half of the original samples (n = 530) we get a
partial correlation difference of 0.03 + 6.9 10™*. Only
when the number of samples gets close to the number
of variables (m = 151) the correlation matrix becomes
ill-conditioned and strong differences from the original
partial correlations occur. These problems of smaller
metabolomics studies could be dealt with by regulariza-
tion approaches or the usage of low-order partial corre-
lation [26]. Taken together, our results demonstrate that
the analyzed metabolomics data set is sufficient to
robustly elucidate relationships between the measured
metabolites.

Strong GGM edges represent known metabolic

pathway interactions

The next step in our analysis was the manual investiga-
tion of metabolite pairs displaying strong partial correla-
tion coefficients. Remarkably, we are able to provide
pathway explanations for most metabolite pairs in the
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Table 1 Top 20 positive GGM edge weights (i.e. partial
correlation coefficients, PCC) in our data set along with
proposed metabolic pathway explanations

Metabolite 1 Metabolite 2 PCC Comment

Val xLeu 0.821 Branched-chain amino acids
SM C18:0 SM C18:1 0.767 SCD/SCD5 desaturation
SM Cié:1 SM C181 0.765 ELOVL6
PC ae C342 PCae C36:3 0.752 2 reaction steps
SM (OH) SM (OH) 0.743 sphingolipid-specific desaturation?
C22:1 222
PCaa (342 PCaa(C362 0735 ELOVLI/ELOVL6 elongation
C10:0-carn C80-carn 0.735 pB-oxidation step
lysoPC a lysoPC a 0.731 ELOVL6 elongation
c16.0 c180
PCaa (386 PCaa C406 0709 ACOX1/3 + various ELOVLs
SM (OH) SM (OH) 0.686 sphingolipid-specific elongation?
C14:1 c1e:1
PCaa C364 PCaa (384 0672 ACOX1/3 + various ELOVLs
PCaa (321  lysoPC a 0661 C16:0/C16:1 phospholipid
c16:1 association
PCaa (385 PCaaC405 0653 various ELOVLs
PCae (343 PCae (365 0607 at least 3 reaction steps
PCaa (3655 PCaa (385 0596 ACOX1/3 + various ELOVLs
SM C24:0 SM C24:1 0.577 sphingolipid-specific desaturation?
PCae (3221  PCae (322 0574 SCD/SCD5 desaturation
SM (OH) SM C24:1 0.567 possible elongation intermediate
222
C18:1-carn C18:2-camn 0561 B-oxidation intermediate

Most metabolite pairs can be directly linked to reactions in the fatty acid
biosynthesis pathway, the -oxidation pathway or amino acid-associated
pathways.
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top 20 positive partial correlations (Table 1). In the fol-
lowing, we will specifically discuss interesting, high-scor-
ing metabolite pairs along with their responsible
enzymes in the metabolic pathways.

The highest partial correlation in the data set with { =
0.821 is found for the two branched-chain amino acids
Valine and xLeucine, where the latter compound repre-
sents both Leucine and Isoleucine (which have equal
masses and are not distinguishable by the present
method). The three metabolites are in close proximity in
the metabolic network concerning their biosynthesis and
degradation pathways. Further related amino acid pairs
that display significant partial correlations are Histidine
and Glutamine (£ = 0.383), Glycine and Serine ({ = 0.326)
as well as Threonine and Methionine ({ = 0.298).

Clear-cut signatures of the desaturation and elonga-
tion of long chain fatty acids can be seen for various
sphingomyelins and lyso-PCs (Figure 3A). For example,
SM C18:0 and SM C18:1 strongly associate with { =
0.767, most probably representing the initial A9 desa-
turation step of the polyunsaturated fatty acid biosynth-
esis pathway from C18:0 to C18:1-A9 by SCD (Steaoryl-
CoA desaturase). The similarly high partial correlation
between SM C16:1 and SM C18:1 ({ = 0.765) as well as
lysoPC a C16:1 and lysoPC a C18:1 ({ = 0.315) can be
attributed to the ELOVL6-dependent elongation from
C16:1-A 9 to C18:1-A 11. Interestingly, this reaction is
not contained in the public reaction databases but has
been previously described by [27].

metabolite.

PC aa C34:2 PC aa C36:4 C18-carn C16-carn C14-carn C12-carn
) : ) e\
lysoPC a C16:0 lysoPC a C16:1 ACADVL ™ ACADVL— ACADL
Etg&g ACADL ACADL'  ACADM
ELOVL6 iLcOo\ihS ACADL ACADN
ELovie ELovie ACOX3 ACADS _ ACADN _ ACADN
PC aa C36:2 PC aa C38:4 C4-carn C6-carn C8-carn C10-carn
lysoPC a C18:0 lysoPC a C18:1
PC ae C34:2 D
SMC16:0 SMC16:1 0 SM C16:1 SM C18:0 PC aa C34:2 PC aa C36:1
ELovie | 182
k% PC ae C36:2
ELOVL6 ELOVL6 c180
~C182
sco {
SMC18:0 SMC18:1 +, G181
: : ci8:2 : P 2
PC ae C36:3 SM C18:1 Caa C36

Figure 3 Biochemical subnetworks identified by the GGM. Line widths correspond to partial correlation coefficients. A: Elongation and
desaturation signatures, most likely mediated by ELOVL6 and SCD, for C16 and C18 fatty acids incorporated in lyso-PCs and sphingomyelins. B:
Top: Diacyl-phosphatidylcholine (PC aa) species with elongation and peroxisomal S-oxidation associations. Several combinatorial variants of side
chain compositions are possible for C36:4 and C38:4, and thus different enzymes could mediate this connection. Bottom: Alkyl-acyl-
phosphatidylcholines (PC ae) with supposedly distinct side chain composition, giving rise to a low association with a directly connected species
(C36:2). C: Recovered B-oxidation pathway from C18 down to C4. Four enzymes with overlapping substrate specificities catalyze the rate-limiting
reactions of this pathway. D: Two high-scoring triads, where metabolite pairs with a pathway distance of two constitute strong partial
correlations. This feature of partial correlations aids in the reconstruction of the network topology beyond the direct neighborhood of each




Krumsiek et al. BMC Systems Biology 2011, 5:21
http://www.biomedcentral.com/1752-0509/5/21

We identify a variety of strong GGM edges between
diacyl-PC (lecithins, PC aa) and acyl-alkyl-PC (plasmalo-
gens, PC ae) metabolite pairs (Figure 3B). For instance,
PC aa C34:2 and PC aa C36:2 associate strongly with
= 0.735, and PC aa C36:4 and PC aa C38:4 show a par-
tial correlation of £ = 0.672. While the first pair can be
precisely explained by an elongation from C16:0 to
C18:0 by ELOVLSG, different combinatorial variants
come into play for the PC aa C36:4/PC aa C38:4 pair.
Our mass-spectrometry technique only measures brutto
compositions, that is the bulk side chain carbon content
and total degree of desaturation. Depending on the
exact composition of both fatty acid residues in the
respective lipids, this association could be caused by
long-chain elongations (C14 to C16 and C16 to C18
through fatty acid synthase and ELOVLS6, respectively),
by very-long-chain elongations (C22:4 to C24:4 through
ELOVL2 or ELOVL5) and even by peroxisomal f -oxi-
dation of fatty acids (through ACOX1 or ACOX3). An
interesting situation arises for the phospholipids PC ae
C34:2, PC ae C36:3 and PC ae C36:2. From its brutto
formula the latter species could represent an intermedi-
ate step between the other two metabolites. However, it
associates poorly with both other phospholipids, which
in turn display a strong partial correlation ({ = 0.752).
This finding can be explained by distinct fatty acid side
chain compositions, showing differential incorporation
of C18:0, C18:1 and C18:2 (Figure 3B, bottom).

For the acyl-carnitine group we observe a remarkably
high partial correlation of { = 0.735 for C8-carn and
C10-carn and further acyl-carnitine pairs with a carbon
atom difference of two (Figure 3C). These associations
can be attributed to the -oxidation pathway, i.e. the
catabolic breakdown of fatty acids in the mitochondria
[23]. During this degradation process, C, units are con-
tinuously split off from the shrinking fatty acid chain.
Four acyl-CoA dehydrogenases, ACADS, ACADM and
ACADL, ACADVL, catalyze the rate limiting reactions
of B-oxidation for different fatty acid chain lengths
[28,29]. Our interpretation of acyl-carnitine correlations
as signatures of mitochondrial B-oxidation is in accor-
dance with [19], where we identified associations
between C8+C10, C12 and C4 with genetic variation in
the ACADM, ACADL and ACADS loci, respectively.

We observe several associations that were not directly
attributable to enzymatic interactions in the fatty acid
biosynthesis or degradation pathways. For instance,
lysoPC a 18:1 and lysoPC a 18:2 share a strong GGM
edge (€ = 0.543) although the Al2-desaturation step
from oleic acid to linoleic acid is known to be missing
in humans [30]. This missing reaction gives rise to the
essentiality of fatty acids in the w-6 unsaturated fatty
acid pathway. A functional explanation could be a sys-
temic equilibrium between the two fatty acids or
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remodeling processes specific for the lyso-PC metabolite
class. Further examples are high partial correlations
between the hydroxy sphingomyelins SM (OH) C22:1
and SM (OH) C22:2 (€ = 0.743) as well as the sphingo-
myelins SM C24:0 and SM C24:1 ({ = 0.577). To the
best of our knowledge, there is no evidence for such
fatty acid desaturation reactions in humans. The
detected associations might therefore represent novel
pathway interactions recovered by the Gaussian graphi-
cal model.

Negative values play a particular role in the interpreta-
tion of partial correlations coefficients. On the one
hand, they obviously occur whenever regular negative
correlations are involved. Mechanisms giving rise to
negative correlations are, for example, coparticipation in
the same reaction (cf. Figure 1E), mass conservation
relations [6] or opposing regulatory effects. It is to be
noted, however, that negative correlations are rare in
our specific metabolomics data set (cf. Figure 2C). On
the other hand, due to the mathematical properties of
partial correlation coefficients negative partial correla-
tion coefficients occur whenever two metabolites A and
B have a strong correlation with a third metabolite C,
but do not share a high correlation value with each
other. Two examples from our data set are shown in
Figure 3D. First, SM C18:0 is negatively partially corre-
lated with SM C16:1, and both of these in turn are
highly positively partially correlated with SM C18:1. The
fatty acids C16:1 and C18:0 have no direct connection
in the pathway, causing the strong negative partial cor-
relation value. A similar situation can be found for three
diacyl-PCs: PC aa C34:2 and PC aa C36:1 show a high
partial correlation with PC aa C36:2, but a negative par-
tial correlation with each other. Again, there is no possi-
ble direct reaction from a C34:2 lipid species to a C36:1
species. Not all metabolite triads in the network show
such a one-negative/two-positive motif. But if present,
they provide another step in the reconstruction of meta-
bolic pathways (beyond the direct neighborhood of each
metabolite) by detecting metabolites which are exactly
two steps apart.

Partial correlation coefficients discriminate between
directly and indirectly connected metabolites in a
literature-curated fatty acid pathway model

The analyses from the previous section strengthened our
conception that a GGM inferred from blood serum
metabolomics data represents true metabolite associa-
tions. To systematically assess how GGM edges and
pathway proximity between our lipid metabolites are
related, we generated a literature-based model of fatty
acid biosynthesis (Figure 4A). This model includes reac-
tions from the public databases BiGG (H. sapiens Recon
1) [7], the Edinburgh Human Metabolic Network [31]
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Figure 4 Fatty acid biosynthesis model and pathway distance calculation method. A: De novo synthesis of fatty acids with initial SCD-
dependent desaturations (left), and the w-3 and w-6 poly-unsaturated fatty acid pathways (middle and right). Note that we omitted the specific
positions of each double-bond since the mass-spectrometry technique in our study does not resolve positional information. B: Exemplary
distance calculation on two lyso-PCs. We projected lipid side chain compositions onto the respective fatty-acid biosynthesis reactions. Reaction
reversibility is not taken into account in our calculation, i.e. distances are always symmetric. C: If no known pathway connection between two
fatty acids exists, we assign a formal distance of infinity. D: For phospholipids that contain two fatty acid residues we need to take into account
all combinatorial variants. We here show three variants for the connection between PC aa C38:4 and PC aa C385. In these examples, PC aa C38:4
could either consist of C18:0+C20:4 or C16:0+C22:4, while PC aa C38:5 could be C18:0+C20:5 or C16:0+C22:5. The shortest possible distance, one
in this case, will be used for further calculations.

and KEGG PATHWAY [29]. We then mapped the par-
tial correlation coefficients from the KORA data set
onto the minimal number of reaction steps between
each pair of metabolites (pathway distance). Since our
metabolite panel contains fatty-acid based lipids, we
project the respective lipid compositions onto the fatty
acid biosynthesis pathway (Figure 4B-D). For the analy-
sis of acyl-carnitines we implemented a model of the

B-oxidation pathway, consisting of a linear chain of C2
degradation steps (C10—>C8—C6 etc.).

We observe a strong tendency towards significantly
positive partial correlations for a pathway distance of
one, i.e. directly connected metabolite pairs, for all five
metabolite classes (Figure 5A). In total, 86 out of 130
partial correlations (66%) for a pathway distance of one
are significantly positive. For instance, for the lyso-PC
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significance level of 0.01 with Bonferroni correction. A: Pathway distances from our consensus model against partial correlation coefficients for
the five lipid-based metabolite classes in our data set. We observe an enrichment of significant partial correlations for a pathway distance of one,
which rapidly drops for an increasing number of pathway steps. B: Comparison of partial correlation coefficients and Pearson correlation
coefficients. Pearson correlation coefficients are generally high, independent of the actual pathway distance, indicating for systemic coregulation
effects throughout the lipid metabolism. C: Wilcoxon rank sum test p-values between the partial correlation distributions of directly and
indirectly connected pairs, and sensitivity/specificity/F; values measuring the discriminatory power to distinguish direct from indirect pairs.
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class (Figure 5A) nearly all partial correlation coeffi-
cients for a pathway distance of one are above signifi-
cance level, whereas most values for a distance of two
or larger remain insignificant. Some outliers from this
observation, however, require closer inspection: First, for
some metabolite classes we observe negative partial cor-
relation values for metabolite pairs that are exactly two
steps apart in the metabolic pathway: 10 of 73 partial
correlations in the diacyl-PC class and 2 of 2 partial cor-
relations in the sphingomyelin class are significantly
negative for a distance of two. These negative values are
effects of the coregulated metabolite triads described
previously in this text. Second, we find 91 of 932
(~9:8%) unconnected metabolite pairs (pathway distance
= o) with a partial correlation above significance level.
These pairs represent potentially novel pathway predic-
tions, missing interactions in the model or effects
upstream of the metabolic network like enzyme
coregulation.

A direct comparison of both partial and Pearson cor-
relation coefficients for the diacyl-phosphatidylcholine
class is shown in Figure 5B. As described earlier in this
manuscript, we observe a general over-abundance of sig-
nificant Pearson correlations independent of the actual
pathway distance. Even for the metabolites without a
known pathway connection, 1394 of a total of 1569
Pearson correlations are significant (88.85%, over all
classes), in contrast to 131 out of 1569 for the partial
correlations (8.35%).

The significantly different correlation value distribu-
tions between directly and indirectly linked metabolites
(Figure 5A+B) barely provide a good quantification of
the actual discrimination accuracy of this feature. There-
fore we assessed the discriminative power of partial cor-
relations to tell apart direct from indirect interactions
by means of sensitivity and specificity. The sensitivity
evaluates which fraction of directly connected metabo-
lites in the pathway are recovered by significant GGM
edges, whereas the specificity states how many of the
significant edges actually represent a direct connection.
A commonly used trade off measure between sensitivity
and specificity is the F; score, which is defined as the
harmonic mean of both quantities [32] (see Methods).
Figure 5C lists sensitivity, specific city and F; for all 5
metabolite classes along with an evaluation of partial
correlation distribution differences between directly and
indirectly linked metabolites (determined by Wilcoxon’s
ranksum test). F; values over 0.75 and significant p-
values for the ranksum test indicate a strong discrimina-
tion effect of partial correlation coefficients concerning
direct vs. indirect pathway interactions. Possible reasons
for non-perfect sensitivity and specific city values will be
discussed in detail at the end of this text.

Low-order partial correlations

The data set from our present study contained enough
samples to calculate full-order partial correlations, that
is to calculate pairwise correlations conditioned against
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all other n-2 metabolites. However, previous studies
demonstrated that low-order partial correlation
approaches can already be sufficient to elucidate direct
interactions [12,16]. In order to assess how these mea-
sures perform in comparison to the full-order GGM, we
calculated first-, second- and third order partial correla-
tions using the approach developed by [12] for both
computer-simulated networks and the metabolomics
data (Additional file 5). The toy systems reveal clear
cases where low-order approaches fail, for instance in
the diamond motif displayed in Figure 1D. Surprisingly,
however, especially first-order partial correlations
worked remarkably well in discriminating direct from
indirect interactions in the real data (F; values close to
those displayed in Figure 5C). This result provides two
valuable pieces of information. First, low-order partial
correlation approaches, which require much less sam-
ples to obtain stable estimates, appear to be a suitable
alternative to GGMs for the metabolite panel used in
this study. Second, the high relative scoring of first-
order partial correlations provides insights into the cor-
relation structures in the data set. In particular, this
result indicates that the underlying metabolic pathways
are primarily composed of acyclic, linear chains, which
fits well to the fatty acid pathways dominating our mea-
sured lipid species.

Conclusions

In this paper we addressed the reconstruction of meta-
bolic pathway reactions from high-throughput targeted
metabolomics measurements. Previous reconstruction
approaches employed pairwise association measures, pri-
marily standard Pearson correlation coefficients, to infer
network topology information from metabolite profiles
[5,6,8,33]. We here demonstrated the usefulness of
Gaussian graphical models and their ability to distin-
guish direct from indirect associations by estimating the
conditional dependence between variables. GGMs are
based on partial correlation coefficients, that is the Pear-
son correlation between two metabolites corrected for
the correlations with all other metabolites.

From computer simulations of metabolic reaction net-
works we deduced a set important aspects to be consid-
ered when interpreting partial correlation coefficients in
reaction systems: (a) Metabolites in equilibrium due to
reversible reactions can readily be recovered, whereas
irreversible reactions pose a substantial problem to asso-
ciation-based reconstruction attempts (in concordance
with [6]). (b) Input and output reactions for intermedi-
ate metabolites, however, improve the reconstruction
accuracy. Such exchange reactions are likely to be pre-
sent for most naturally occurring metabolites due to
highly interconnected metabolic pathways. (c) With an
increasing amount of fluctuations on the input reaction,
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the partial correlation difference betwee