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Abstract

Background: Somatic cell nuclear transfer (SCNT) using genetically engineered donor cells is currently the most
widely used strategy to generate tailored pig models for biomedical research. Although this approach facilitates a
similar spectrum of genetic modifications as in rodent models, the outcome in terms of live cloned piglets is quite
variable. In this study, we aimed at a comprehensive analysis of environmental and experimental factors that are
substantially influencing the efficiency of generating genetically engineered pigs. Based on a considerably large
data set from 274 SCNT experiments (in total 18,649 reconstructed embryos transferred into 193 recipients),
performed over a period of three years, we assessed the relative contribution of season, type of genetic
modification, donor cell source, number of cloning rounds, and pre-selection of cloned embryos for early
development to the cloning efficiency.

Results: 109 (56%) recipients became pregnant and 85 (78%) of them gave birth to offspring. Out of 318 cloned
piglets, 243 (76%) were alive, but only 97 (40%) were clinically healthy and showed normal development. The
proportion of stillborn piglets was 24% (75/318), and another 31% (100/318) of the cloned piglets died soon after
birth. The overall cloning efficiency, defined as the number of offspring born per SCNT embryos transferred,
including only recipients that delivered, was 3.95%. SCNT experiments performed during winter using fetal
fibroblasts or kidney cells after additive gene transfer resulted in the highest number of live and healthy offspring,
while two or more rounds of cloning and nuclear transfer experiments performed during summer decreased the
number of healthy offspring.

Conclusion: Although the effects of individual factors may be different between various laboratories, our results
and analysis strategy will help to identify and optimize the factors, which are most critical to cloning success in
programs aiming at the generation of genetically engineered pig models.
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Background
Somatic cell nuclear transfer (SCNT) has become widely
used for the generation of genetically engineered large
animals, especially since germ line competent pluripo-
tent stem cells – the key to sophisticated reverse gene-
tics in rodents – are not available in these species [1-4].
Genetic modification of pigs by SCNT facilitated gene
targeting [5-7], inducible transgene expression [8], and
the first successful examples of zinc finger nuclease me-
diated targeted gene modifications [9,10] to generate
tailored large animal models and donor animals for
xenotransplantation.
During the last decade, transgenic pigs have gained

importance in the field of biomedical research because
of major anatomical and physiological similarities with
humans [11] as well as the need for non-rodent based
studies to investigate disease mechanisms, the efficacy
and safety of new therapies, and to identify biomarkers
for companion diagnostics. Genetically tailored pig mo-
dels have already been developed to investigate cystic
fibrosis [12], diabetes mellitus [13-16], and neurodegen-
erative diseases [17] (reviewed in [18]). Multiple lines of
genetically modified pigs have also been generated for
xenotransplantation (reviewed in [19]), most notably
α1,3-galactosyl transferase knockout pigs lacking α1,3-
Gal, the major xeno-antigen [5]. SCNT has facilitated
the generation of donor pigs carrying multi-transgene
combinations designed to overcome immune rejection
and to ensure functional compatibility between xeno-
graft and recipient, e.g. regulation of blood coagulation.
Although the first successful SCNT experiments using

cultured porcine cells were performed more than a de-
cade ago [20-22], the efficiency of cloning (live offspring
per reconstructed embryos transferred to recipients) is
still low, usually ranging from 1 to 5%, and cloned ani-
mals may suffer from various developmental defects.
Genetic modification of nuclear donor cells necessarily

involves a series of procedures, such as transfection or
transduction, drug selection and extended growth in cul-
ture, which could possibly affect their ability to support
normal development.
To date, several studies have reported key factors in

the production of cloned pigs and suggested a number
of approaches to improve efficiency. However, the ma-
jority of these studies have addressed only single factors,
e.g. SCNT procedure [23-26], oocyte and embryo culture
systems [27,28], donor cell type [29,30], and the method
of genetic modification [31,32]. Combined assessment of
multiple factors and comparative analysis of their rela-
tive contribution to cloning efficiency have not yet been
performed to our knowledge.
Here, we investigate the impact of five factors on the

crucial stages of a cloning experiment and ultimately the
impact on cloning efficiency. We used a large data set
comprising three years of porcine SCNT experiments,
during which more than 300 cloned pigs were generated
using different genetically modified cell cultures. The
data contains simultaneous variations in season, type of
genetic modification (additive gene transfer vs. gene tar-
geting), donor cell source (mesenchymal stem cells,
postnatal fibroblasts, fetal fibroblasts, and kidney cells),
number of cloning rounds, and pre-selection of cloned
embryos for early development. We assessed the impact
pattern of the variable factors on pregnancy and delivery
rates as well as the numbers of born, live and healthy
offspring. Cloning efficiency was calculated as the num-
ber of cloned piglets born relative to the number of
SCNT embryos transferred to recipients that gave birth.

Results
General information
A total of 18,649 SCNT embryos were transferred into
193 recipients. The average number of embryos trans-
ferred per recipient was 97 (range: 43–216). 109 recipi-
ents (56%) became pregnant and 85 (78%) of those gave
birth to offspring. The pregnancy rate was significantly
increased when more than 100 NT embryos were trans-
ferred to a recipient. Experiments in which over 135
NT embryos were transferred resulted in the maximum
overall pregnancy rate of 79.3% (Additional file 1). Re-
cipients that became pregnant displayed no tendency for
delivering live offspring in dependence on the number of
embryos transferred (Additional file 2). Of the 318
cloned piglets born, 243 (76%) were alive, but only 97
(40%) were clinically healthy, defined as the absence
of any visible anatomical or physiological disturbance,
and showed normal development. The proportion of
stillborn piglets was 24% (75/318), and another 31%
(100/318) of the cloned piglets died soon after birth. The
major reason for early neonatal death within 2 weeks
was underweight (<1000 g) and/or weakness of unknown
causes, which was observed in several transgenic litters.
In addition, we observed malformations such as over-
sized tongue (30 cases, 9.4%), cleft palate (2 cases, 0.6%)
or atresia ani (1 case, 0.3%), abnormalities of the legs
(6 cases, 1.9%), patent urachus (1 case, 0.3%) and umbili-
cal hernia (6 cases, 1.9%). In 3 cases (0.9%), piglets sho-
wed contracted tendons in the forelegs, which improved
with increasing body weight and did not affect survival.
39 piglets (12%) were lost for other reasons (killed by
the mother or died from infection). The health status of
the remaining 7 cloned piglets could not be estimated
as they have been used for experiments immediately
after birth. The overall cloning efficiency, defined as
the number of offspring born per SCNT embryos trans-
ferred, including only recipients that delivered, was
3.95%. A detailed description of the data set is shown
in Table 1.



Table 1 Data summary

Total no. of transferred SCNT embryos 18,649

Average no. of transferred embryos per recipient 97

Range of transferred embryos per recipient 43-216

No. of different cell sources used for SCNT 41

Type of genetic modification

Additive gene transfer (no. of constructs) 142

Homologous recombination (no. of target genes) 63

Total no. of recipient pigs 193

Pregnant recipients 109 (56%)

Delivering recipients 85 (78%)

Total no. of cloned offspring 318

Live cloned pigs 243 (76%)

Healthy cloned pigs 97 (40%)
1 Mesenchymal stem cells, postnatal fibroblasts, fetal fibroblasts, and
kidney cells.
2 See Table 8 for details.
3 See Table 9 for details.

Table 2 Stratification and data distribution of the
investigated experimental factors

Factor No. of embryo
transfers (%)

Season1

- Spring 39 (20.2)

- Summer 59 (30.6)

- Autumn 58 (30.0)

- Winter 37 (19.2)

Type of genetic modification2

- de novo - AGT 57 (29.5)

- HR 48 (24.9)

- replication of transgenic pig 88 (45.6)

Donor cell source3

- MSC 36 (18.7)

- PF 24 (12.4)

- FF 51 (26.4)

- KC 82 (42.5)

Cloning rounds

- 1 time 110 (57.0)

- 2 times 62 (32.1)

- 3 times 21 (10.9)

Selection of SCNT embryos for early development4

- no selection 45 (23.3)

- selection after 1 day 13 (6.7)

- selection after 2 days 15 (7.8)

- mixed selection 120 (62.2)

Additional file 3 and Additional file 4 show in more detail the distribution in
season and embryo selection of specific SCNT configurations with respect to
genetic modification, donor cell source and number of cloning rounds.
1 Embryo transfer date.
2 AGT: additive gene transfer, HR: homologous recombination.
3 Mesenchymal stem cells (MSC), postnatal fibroblasts (PF), fetal fibroblasts
(FF), and kidney cells (KC).
4 No selection: all SCNT embryos transferred, selection for 1 day: 1-cell stage
SCNT embryos transferred, selection for 2 days: 2-cell to 4-cell stage SCNT
embryos transferred, mixed selection: mixed SCNT embryos transferred
(no selection/1 day and 1 day/2 days).
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Impact of individual factors
We assessed the influence on the cloning outcome of
five factors: the season the embryo transfer (ET) was
performed in, the type of genetic modification, the donor
cell source, the number of cloning rounds, and selection
of SCNT embryos for development before transfer to
the recipient. The stratification and distribution of each
varied factor is summarized in Table 2 (more details can be
found in Methods, Additional file 3 and Additional file 4).

Season
The seasonal influence on the assessed parameters is
presented in Table 3. Spring was used as the reference
category and statistically significant differences of results
obtained in other seasons are indicated relative to the re-
ference category. The oocyte maturation rate was highest
in spring (77.1%), slightly lower in autumn (75.8%) and
summer (74.4%), and significantly decreased in winter
(71.3%; p < 0.05). Similarly, significantly fewer pregnancies
were established in winter (1:2 chance) than in spring
(2:1 chance). In contrast, the proportion of offspring
per SCNT embryos transferred (cloning efficiency)
was highest when ET was performed in winter (5.3%),
as compared to spring (3.5%; p < 0.05). Similarly, the
average number of live cloned offspring from ET per-
formed during winter (4.3) was significantly higher than
during spring (2.6; p < 0.05). The lowest number of
healthy cloned piglets was observed if the ET was done in
summer (0.8 vs. 2.2 when ET was performed in winter).

Type of genetic modification
Genetic modifications were categorized into three clas-
ses: additive gene transfer, homologous recombination,
and replication of already existing transgenic pigs. The
effects of these classes of genetic modification on outcome
are summarized in Table 4. Homologous recombination
was used as the reference category. No significant diffe-
rence was apparent between these three classes of modifi-
cation with regard to cloning efficiency, pregnancy and
delivery rate. However, the numbers of live and healthy
cloned offspring per litter, respectively, were significantly
higher (p < 0.05) in the additive gene transfer group than
in the homologous recombination group (3.5 vs. 2.3 and
1.5 vs. 0.6, respectively).

Nuclear donor cell source
Four different cell sources – mesenchymal stem cells,
fetal fibroblasts, postnatal fibroblasts, and kidney cells –



Table 3 Seasonal variation pattern of the cloning outcome

Season Temperature (°C)1 Oocyte
maturation (%)

Chance for
pregnancy

Chance
for delivery

Cloning
efficiency (%)

No. of live
cloned piglets

No. of healthy
cloned piglets

Spring 9.6 77.1 2 4.2 3.5 2.6 1.4

Summer 18.1 74.4 1.2 3.6 3.8 3.0 0.8*

Autumn 9.2 75.8 1.8 3.1 4.0 2.6 1.4

Winter 0.1 71.3* 0.6* 3.7 5.3* 4.3* 2.2

Spring was used as the reference category. For details on the statistical analysis and definition of the cloning benchmarks listed, please see Methods.
* Statistically significant differences (p < 0.05).
1 Average temperature in Munich during the experiments.
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were used and their effect on cloning success was deter-
mined (Table 5). Mesenchymal stem cells were used as
the reference category. The fusion rate of mesenchymal
stem cells (93%) was significantly (p < 0.05) higher, while
that of postnatal fibroblasts (80%) was lower than those
of other donor cells. The pregnancy rate was highest
with fetal fibroblasts, and lowest with postnatal fibro-
blasts used as donor cells, but the differences between
donor cell sources were not statistically significant. In
contrast, the delivery rate was higher with mesenchymal
stem cells than with fetal fibroblasts and kidney cells.
The cloning efficiency was not affected by the source
of donor cells. The proportion of live and healthy
cloned offspring in the fetal fibroblast and kidney cell
groups was higher than in the mesenchymal stem cell
reference group.
Number of cloning rounds
In this data set, up to three rounds of nuclear transfer
were performed. One cloning round was used as the
reference category (Table 6). Although no statistically
significant difference was apparent in pregnancy and
delivery rates, cloning efficiency decreased significantly
(p < 0.05) with cloning round (4.4%, 3.5% and 2.9% for
one, two and three cloning rounds, respectively). The
number of live and healthy offspring after two rounds
was significantly (p < 0.05) lower than after the first clo-
ning round (2.2 vs. 3.2 and 0.5 vs. 1.7, respectively). This
effect was not seen after three rounds of SCNT.
Table 4 Variation of the cloning outcome depending on the t

Genetic modification1 Chance for
pregnancy

Chance for
delivery

HR 1 4

AGT 1.8 6.2

Replication of transgenic pigs 1 2.4

Homologous recombination (HR) was used as the reference category. For details on
see Methods.
* Statistically significant differences (p < 0.05).
1 HR: homologous recombination, AGT: additive gene transfer, Replication of transg
Selection of cloned embryos for initiation of development
The effect of selection of SCNT embryos on the cloning
outcome is shown in Table 7. As reference category, we
used the cases where no selection was performed. Preg-
nancy and delivery rates were not significantly affected
by in vitro culture of cloned embryos and selection for
early development. However, transfer of in vitro cul-
tured SCNT embryos, which had developed to 2-cell
to 4-cell stage, resulted in the highest proportion of
offspring per embryos transferred (6.8% vs. 4.5% in the
group where no selection was performed; p < 0.05).
The numbers of live and healthy offspring were not af-
fected by the pre-selection of cloned embryos for early
development.
Statistically significant effects on different phases of
development
From in vitro oocyte maturation to cloned offspring
As shown in Figure 1, the maturation of oocytes was sig-
nificantly impaired in winter (reduced by almost 6 per-
centage points as compared to spring). We found high
fusion rates to be associated with the use of mesenchy-
mal stem cells (up to 13 percentage points better than
other cell sources). Cloning efficiency and, thus, the
chance for full term development was improved when
2-cell to 4-cell embryos, selected after 2 days in vitro
culture, were transferred to the recipient. In contrast,
the cloning efficiency was negatively affected by repeated
SCNT (two rounds of cloning).
ype of genetic modification

Cloning
efficiency (%)

No. of live
cloned piglets

No. of healthy
cloned piglets

3.8 2.3 0.6

4.2 3.5* 1.5*

3.9 2.7 1.2

the statistical analysis and definition of the cloning benchmarks listed, please

enic pigs: replication of already existing transgenic pig lines.



Table 5 Variation of the cloning outcome depending on different nuclear donor cell sources

Cell source1 Fusion rate (%) Chance for
pregnancy

Chance
for delivery

Cloning
efficiency (%)

No. of live
cloned piglets

No. of healthy
cloned piglets

MSC 93.0 1.1 5.3 3.5 1.6 0.3

PF 80.2* 0.7 4.0 4.1 2.0 0.5

FF 89.1* 1.8 3.7* 4.4 3.4* 1.9*

KC 90.4* 1.3 2.9* 3.8 3.4* 1.4*

Mesenchymal stem cells (MSC) were used as the reference category. For details on the statistical analysis and definition of the cloning benchmarks listed, please
see Methods.
* Statistically significant differences (p < 0.05).
1 Mesenchymal stem cells (MSC), postnatal fibroblasts (PF), fetal fibroblasts (FF), and kidney cells (KC).
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Outcome stage of the recipients (pregnancy/delivery) and
the offspring (live/healthy)
As illustrated in Figure 2, we frequently observed preg-
nant pigs in spring (chance for pregnancy 2:1, i.e. the
probability P (pregnancy = YES) was twice as high as the
probability P (pregnancy = NO)), whereas pigs hardly be-
came pregnant in winter (1:2 chance). In addition, de-
livering recipients occurred mostly when mesenchymal
stem cells were used (superior chance for delivery of
5:1). Most noteworthy, two cloning rounds significantly
(p < 0.05) increased the risk of both, pre- and post-natal
death of cloned fetuses and offspring, respectively. Post-
natal death of offspring also frequently occurred when
the embryo transfer was performed in summer and the
piglets were therefore born in late autumn/early winter.
On the other hand, statistically significant increases in
the offspring outcome were observed for embryo trans-
fer in winter, genetic modification by additive gene trans-
fer, and the use of fetal fibroblasts or kidney cells as
nuclear donors. These experimental settings yielded on
average between one and two more live and healthy pig-
lets than the corresponding reference category.
Interestingly, we could confirm beneficial effects of

cloning in winter, using additive gene transfer, and fetal
fibroblasts or kidney cells, in an additional analysis (data
not shown), where we explicitly targeted the fraction of
early neonatal death cases out of live piglets in experi-
ments, which in principle could produce viable offspring
(indicated by at least one live piglet). Cloning in winter,
using additive gene transfer, and fetal fibroblasts or kid-
ney cells, resulted in 12 percentage points, 32 percentage
points, and >35 percentage points less early neonatal
death cases, as compared to the reference categories
Table 6 Influence of the number of cloning rounds on the clo

No. of cloning
rounds

Chance for
pregnancy

Chance
for delivery

1 1.3 3.4

2 1.0 6.8

3 3.2 1.7

One cloning round was used as the reference category. For details on the statistica
* Statistically significant differences (p < 0.05).
cloning in spring, using homologous recombination, and
mesenchymal stem cells, respectively.

Discussion
The outcome of somatic cell nuclear transfer is affected
by complex interactions between multiple factors. While
some of these are difficult to control, others – such as
choice of nuclear donor cell source – may help increase
the efficiency of cloning.
Over a period of three years, we generated more than

300 genetically modified pigs by SCNT using multiple
donor cell sources. These cells were either de novo mo-
dified by additive gene transfer or gene targeting, or
were derived from existing transgenic or knockout pig
lines. All data were collected within our routine work-
flow for the production of genetically engineered pigs
for biomedical research [18]. We used this large data set
to identify factors that affect efficiency of cloning and at
which stage they act.
We have employed robust linear models, requiring

minimal distribution assumptions adjusted to the under-
lying empirical distribution of the cloning outcome, as a
straightforward approach to determine the statistically
significant part of the network of factors affecting pig
cloning. As shown in Figures 1 and 2, network-based in-
terpretation concepts were used to model and discrimi-
nate the major genetic, environmental and experimental
factors.
The factors addressed by our study influenced the out-

come of cloning for the production of genetically modi-
fied pigs on different levels.
The season affected in vitro maturation of oocytes,

pregnancy rate, and survival of cloned piglets. Even if
ning outcome

Cloning
efficiency (%)

No. of live
cloned piglets

No. of healthy
cloned piglets

4.4 3.2 1.7

3.5* 2.2* 0.5*

2.9* 3.1 1.6

l analysis and definition of the cloning benchmarks listed, please see Methods.



Table 7 Effect of SCNT embryo selection on the cloning outcome

Selection timing1 Chance for
pregnancy

Chance
for delivery

Cloning
efficiency (%)

No. of live
cloned piglets

No. of healthy
cloned piglets

No selection 1.1 1.9 4.5 3.4 1.4

Selection for 1 day 0.9 - 4.9 4.3 1.5

Selection for 2 days 0.6 4.0 6.8* 3.2 2.0

Mixed selection 1.8 4.0 3.5 2.6 1.3

No selection was used as the reference category. For details on the statistical analysis and definition of the cloning benchmarks listed, please see Methods.
* Statistically significant differences (p < 0.05).
1 No selection: all SCNT embryos transferred; selection for 1 day: 1-cell stage SCNT embryos transferred; selection for 2 days: 2-cell to 4-cell stage SCNT embryos
transferred; mixed selection: mixed SCNT embryos transferred (no selection/1 day and 1 day/2 days)
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the domestic pig shows an estrus cycle with fertility
throughout the year, the reproductive performance in
commercial pig breeding is notably reduced in late sum-
mer and early autumn [33-35]. Bertoldo et al. [36] have
documented reduced developmental competence of oo-
cytes during this period. In our data set, the best matur-
ation rate of oocytes in vitro was observed in spring and
the worst in winter. The latter may be caused, at least in
part, by accidental exposure of oocytes to low tempera-
tures during collection and transport. Pig oocytes are
very sensitive to low temperature due to high levels of
cytoplasmic lipids [37]. During the time span between
removal from the incubator and finished embryo trans-
fer, maintenance of an optimal temperature cannot al-
ways been guaranteed. Therefore, low temperatures
might affect the developmental capability of the embryos
and could be responsible for the lower pregnancy rate
after ETs in winter, compared to ETs in spring. Never-
theless, cloning efficiency was highest when SCNT ex-
periments and ETs were performed in winter. This
finding seems to be contradictory on a first view, but it
Figure 1 The major statistical effects of the investigated factors on th
offspring. According to the results listed in Tables 3, 4, 5, 6, and 7, transitio
affected by statistically significant impact categories (purple ellipses). For ea
points (pp) and as compared to the corresponding reference. For example
only recipients that delivered) is increased by 1.8 pp in winter (from 3.5% t
mesenchymal stem cells, 2d sel.: selected embryos for initiation of develop
has to be considered that the cloning efficiency was cal-
culated only for cases in which the recipient delivered
offspring. Cases of unsuccessful transfers were not in-
cluded into the calculation. Therefore, if the embryos
survived the negative environmental influences in winter
and the recipients became pregnant, the natural high
fertility period of the recipients might provide a favo-
rable environment for embryos and fetuses to develop
to term.
Unexpectedly, the method of genetic modification had

little effect on cloning efficiency in our data set. Gene-
rally, genetic modification of donor cells requires pro-
longed in vitro culture for transfection and selection,
which could induce cellular changes leading to a de-
crease in cloning efficiency. Gene targeting by homolo-
gous recombination takes a particularly long time and
multiple cell divisions to establish single cell clones with
sufficient cell numbers for genetic analysis and nuclear
transfer [5,38-40]. In contrast, our protocol for additive
gene transfer uses pools of mixed cell clones, which
have been maintained under selection for 7 to 10 days
e development from in vitro oocyte maturation to cloned
ns between developmental stages (green rectangles) are found to be
ch impact, the gain during a certain transition is given in percentage
, the cloning efficiency (offspring out of transferred embryos, including
o 5.3%), as compared to spring, which was used as reference. MSC:
ment on day 2 (2-cell to 4-cell stage), NT: nuclear transfer.



Figure 2 The major statistical effects of the investigated factors on the outcome stage of the recipients (pregnancy/delivery) and the
offspring (live/healthy). For each impact, the gain during a certain transition is given in the respective outcome unit. For example, there are on
average 1.7 more alive piglets for cloning in winter, as compared to the reference (cloning in spring). MSC: mesenchymal stem cells, AGT:
additive gene transfer, KC: kidney cells, FF: fetal fibroblasts, NT: nuclear transfer, END: early neonatal death.
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[8,18,41]. It might therefore be expected that extended
in vitro culture of donor cells required for homologous
recombination would negatively influence the cloning ef-
ficiency, compared to cells modified by additive gene
transfer. However, our data showed no statistically sig-
nificant difference in cloning efficiency between additive
gene transfer, homologous recombination or replication
of already existing transgenic pigs. It can be hypothe-
sized that the conditions for transfection and selection
did not adversely affect the developmental potential of
donor cells, since we kept the passage numbers for
SCNT donor cells as low as possible - less than 8 pas-
sages for additive gene transfer and less than 10 passages
for gene targeting. Additionally, all wild-type primary
cell lines used in this study were karyotyped and showed
68% to 90% normal karyotypes.
Interestingly, our analysis indicated that the number of

live and healthy offspring was decreased when nuclear
donor cells had undergone homologous recombination.
However, this may – at least in part – be explained by
the fact that 65% of nuclear transfers, designed to gener-
ate gene-targeted pigs, were carried out using only 4
particular mesenchymal stem cell lines, which later on
turned out to be consistently poor in producing live
cloned offspring.
Another important aspect to be considered in the con-

text of genetic modification is the potential for lethal or
toxic effects of modifications per se. For the experiments
involving additive gene transfer this is unlikely, since live
cloned piglets expressing the transgenes were obtained
with all constructs. Nevertheless, we cannot rule out that
cloned fetuses or offspring died due to a detrimental
random integration of the construct. Of the gene tar-
geting experiments, only mutation of the X-linked
dystrophin (DMD) gene in male clones may cause a
severe phenotype. In fact, DMD mutant male piglets
showed severe muscular dystrophy already at birth, and
a proportion died shortly later [42]. For all other target
genes, the heterozygous knockout had either no specific
phenotype or a phenotype that develops later in life.
A critical factor for the establishment of genetically

engineered pig lines by SCNT is the viability of the
cloned founder animals up to sexual maturity. In our
data set, more than half of cloned pigs were stillborn
(23.6%) or died soon after birth (31.4%). Associated pa-
thological changes, such as underweight (average weight
of the cloned piglets born under 1000 g: 686.4 +/−
181.0 g; range: 375 – 973 g), which is one of the major
causes of early neonatal death, or cleft palate, contracted
tendons, or enlarged tongues, have also been observed
by other groups [43-47]. We have the impression that
the percentage of underweight piglets (among normal
weight littermates) is higher in cloned litters. However,
we cannot prove this observation by statistical data, as
the birth weights of naturally bred piglets are not rou-
tinely recorded in our facility. The average birth weight
of healthy cloned pigs was higher than that of piglets
that died in the neonatal period, or that of stillborn
piglets (1409.2 +/− 343.1 g, 974.8 +/− 394.1 g, and
1065.5 +/− 479.0 g, respectively). These abnormalities
could not be associated with any particular parameter,
like donor cell source or genetic modification, and
might be a general side effect in pig cloning. Previous
studies reported that phenotypically abnormal cloned
animals could produce normal offspring [48,49], sug-
gesting that phenotypic abnormalities of the clones
were more likely due to epigenetic rather than to ge-
netic alterations.



Kurome et al. BMC Biotechnology 2013, 13:43 Page 8 of 13
http://www.biomedcentral.com/1472-6750/13/43
In our data set, cloned piglets with enlarged tongues
were mainly observed in offspring cloned from bone
marrow derived mesenchymal stem cells, originating
from 4 different animals (25 of 30 cases). However, this
does not seem to be a general feature of mesenchymal
stem cells, since in more recent cloning experiments
with adipose tissue derived mesenchymal stem cells a
high proportion of viable offspring without malforma-
tions was obtained (T. Flisikowska and A. Schnieke,
unpublished data). Some groups reported that mesen-
chymal stem cells are superior to fibroblasts for SCNT
in pigs [50-53], although this has not been generally ob-
served [40,54,55]. Our results did not show any diffe-
rences in the cloning efficiency among the different cell
sources tested, although there was a tendency for a
higher pregnancy rate when mesenchymal stem cells
were used. The observation that the numbers of live and
healthy cloned piglets were significantly lower in the
mesenchymal stem cells group than other donor cell
sources may be due to the fact that mesenchymal stem
cells were only used for gene targeting. Thus, it cannot
be distinguished at this stage, whether the low outcome
of live and healthy piglets can be attributed to the cell
source or type of genetic modification. In addition,
different cell lines derived from the same cell source
showed a considerable degree of variation in cloning ef-
ficiency (Additional file 5).
Re-cloning by using cells from a cloned animal for NT

is a reasonable approach for the reproduction of specific
transgenic animals, for example if animals of a defined
genotype are required for an experiment or if the pheno-
type hinders natural breeding. However, the majority of
studies on re-cloning have demonstrated that additional
rounds of cloning lead to a decrease in cloning efficiency
[49,56-58]. Our data also showed that repeated cloning
rounds significantly decreased cloning efficiency (R1:
4.4%, R2: 3.5% and R3: 2.9%), and the number of live
cloned offspring in the second round was in average one
piglet less as compared to the initial cloning round. It
should be mentioned that the lowest cloning efficiency
for R3 may also be related to the high number of em-
bryos transferred in these experiments. Xing et al. [59]
recently demonstrated that reduced developmental po-
tential of pig embryos generated by multiple rounds of
cloning was associated with altered gene expression pat-
terns, and a previous report stated that the reduction of
cloning efficiency with additional rounds of cloning may
be caused by accumulation of epigenetic errors [60].
The last factor addressed by our study was in vitro cul-

ture of cloned embryos and selection for normal deve-
lopment before transfer to recipients. This is possible
since the in vitro culture systems for pig embryos have
been markedly improved within the last decade [27,28].
Indeed, culture of embryos for two days and selection of
2-cell to 4-cell stage embryos for ET resulted in the
highest proportion of offspring per SCNT embryos
transferred. This suggests that SCNT embryos, which un-
dergo normal cleavage in vitro within the expected time
frame, have a greater chance of full term development
in vivo.

Conclusion
We have investigated the influence of important experi-
mental and environmental factors on the cloning out-
come in a considerably large data set comprising over
270 porcine nuclear transfer experiments. Besides as-
sessment of the cloning efficiency, we determined the
respective steps of the cloning process from oocyte to
offspring that are most critically influenced. We ob-
served varying effects of individual factors, depending on
the combination with other chosen factors and the pa-
rameters tested. Most importantly, more live and healthy
offspring were obtained when fetal fibroblasts or kidney
cells were modified by additive gene transfer and the re-
sulting SCNT embryos were transferred in the winter
period. Although our results cannot be simply extrapo-
lated to other cloning labs, the approach used in this
study may help to identify and optimize the specific fac-
tors most critical to cloning success in programs aiming
to generate genetically engineered pigs.

Methods
Ethics statement
All animal procedures in this study were performed ac-
cording to the German Animal Welfare Act and to a
protocol approved by the Regierung von Oberbayern,
under the reference numbers (55.2.1.54-2531-26-06;
55.2.1.54-2531-77-07; 55.2.1.54-2531-78-07; 55.2.1.54-
2531-136-07; 55.2.1.54-2531-54-08; 55.2.1.54-2531-86-
10; 55.2.1.54-2532-68-11).

Generation of genetically modified pigs
Genetically modified cells derived by transfection of pri-
mary cells or established from already existing trans-
genic pig lines were used as donors. The cells derived
from transfection were genetically modified by additive
gene transfer (Table 8) or by homologous recombination
(Table 9). The latter group included bacterial artificial
chromosome (BAC) targeting [7] and the use of classical
targeting vectors [5]. The cells re-established from al-
ready existing transgenic pig lines were collected from
18 different transgenic pigs. Individual information on
all cell lines used for these analyses is shown in the
Additional file 6 and Additional file 7.
The following cell sources were used: mesenchymal

stem cells, postnatal fibroblasts, fetal fibroblasts, and kid-
ney cells. Mesenchymal stem cells, multi-potent tissue
stem cells, as well as fibroblasts and kidney cells are



Table 8 Gene constructs for additive gene transfer

Gene Promoter Coding sequence 3’-UTR/pA

hTM 8.9 kb poTM 1.9 kb huTM gene 0.3 kb boGH

CAG-Case12 1.7 kb CAG [61]§ 1.2 kb Case12a 0.6 kb raHBB [61]§

CAG-TA [8]§ 1.7 kb CAG [61]§ 1.0 kb rtTAb 0.3 kb boGH

CAG-LEA 1.7 kb CAG [61]§ 1.2 kb LEA29Yc 0.6 kb raHBB [61]§

INS-LEA [62]§ 1.5 kb po INS 1.2 kb LEA29Yc 0.3 kb boGH

INS-C94Y [16]§ 2.5 kb po INS fragment including point mutation

INS-C93S 2.5 kb po INS fragment including point mutation

INS-TK 1.5 kb po INS 1.1 kb TKc 0.3 kb boGH

COL-TK 3.6 kb po COL1A1 1.1 kb TKc 0.3 kb boGH

CFTR-LacZ CH242-248P18 3.5 kb lacZd 0.3 kb boGH

GGTA-LacZ CH242-21 F3 3.5 kb lacZd 0.3 kb boGH

TRE-RANKL [8]§ 0.3 kb TREa 0.9 kb po sRANKL 0.3 kb boGH

TRE-CTLA-4Ig [8]§ 0.3 kb TREa 1.2 kb po CTLA4-Ig 0.3 kb boGH

HAC1 [63]§ 0.6 kb CMV 0.7 kb GFP 0.3 kb SV40
§ See indicated references.
a Purchased from Evrogen, Moscow, Russia.
b Purchased from Clontech, Mountain View, CA.
c Custom-synthesized by Bio&Sell, Feucht, Germany.
d Purchased from Promega, Madison, WI.
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already known to support full term development when
used as donor cells in pig SCNT [21,23,41,53,64-67].
Briefly, mesenchymal stem cells from bone marrow were
isolated from femurs and tibias of 6 to 7 months old
Landrace x Pietrain pigs [64,68]. Fetal fibroblasts, postna-
tal fibroblasts and kidney cells originated from German
Landrace, Swabian-Hall pig and crossbreeds of them [41].
Fetal fibroblasts were isolated from fetuses at day 27 and
day 54, while postnatal fibroblast and kidney cells were
from 1 day up to 3 months old piglets. The gender of all
cell lines was male, except for one of the GGTA1−/− CD46
cell lines, which was female. Donor cells were isolated by
standard methods mainly using collagenase II or trypsin/
EDTA [41]. For details of transfection and characteriza-
tion of de novo modified cells see references [7,8,41,64].
Cells were used for SCNT at passage 6–8 after additive
gene transfer, passage 6–10 after homologous recombi-
nation, and passage 2–8 from re-established transgenic
pig lines. 48 h prior to the SCNT experiment, donor cells
were starved (0.5% FCS) for synchronization of donor cell
Table 9 Target genes for homologous recombination

Target gene Vector Modification

CFTR [7]§ CH242-248P18 (>100 kb) ATG-STOP

DMD [42]§ CH242-9G11 (>100 kb) Δ exon 52

GGTA1 CH242-21 F3 (>100 kb) ATG-STOP

APC [64]§ 12.5 kb STOP

KRAS 13.5 kb Point mutation

JAK3 13.8 kb Δ exon 2-5
§ See indicated references.
cycle at G0/G1. All SCNT experiments included in this
analysis were performed in the same laboratory by the
same operators for micro-manipulation, using in vitro ma-
tured (IVM) oocytes, as previously reported [67].
Up to three rounds of cloning (use of donor cells de-

rived from an already cloned animal for a further round
of SCNT) were performed for the generation and repli-
cation of multi-transgenic pigs. Specifically, one round
of cloning was used for generating transgenic founder
animals from transfected wild-type cells, or for replica-
ting offspring of transgenic founder pigs. The second
round of cloning involved donor cells from transgenic
cloned pigs which were transfected with an additional
construct or simply the replication of transgenic cloned
pigs. In the third round, cloning was the re-cloning of
transgenic pigs that had received an additional construct
during the second round of cloning (for the individual
information in each cell lines, see Additional file 6 and
Additional file 7).
Fused reconstructed embryos were either directly trans-

ferred to recipients on the same day (no selection), or
cultured in vitro and then selected for initiation of devel-
opment on day 1 (1-cell stage) or day 2 (2-cell to 4-cell
stage) after activation before embryo transfer.
Gilts of the breeds German Landrace, Swabian-Hall,

and crossbreeds of them were used as recipients.
Estrus was synchronized by oral administration of 4
ml Altrenogest (RegumateW) for 15 days, followed by
intramuscular injection of 750 IU ECG (IntergonanW)
and 750 IU HCG (OvogestW) 24 h and 104 h later, respec-
tively. ET was performed laparoscopically into one oviduct



d
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[69]. Pregnancy was confirmed by ultrasonographic exam-
ination on day 21, repeated every 2 – 3 weeks.

Data description
The analysis is based on data from cloning experiments,
performed in the period from April 2008 to February
2011, at the Chair for Molecular Animal Breeding and
Biotechnology in Munich, Germany. The location is situ-
ated at an altitude of 444 m, and at latitude and longi-
tude of 48°22’N and 11°49’E, respectively.
Changes in the experimental setup, described in the

previous section, included variations of the season the
ET was performed in, the type of genetic modification,
the donor cell source, the number of cloning rounds,
and selection of SCNT embryos for development before
transfer to the recipient. The stratification and distribu-
tion of each varied factor is summarized in Table 2.

1. Season: Experiments were performed covering the
whole year range, i.e. an approximately balanced
sample size in each season – spring (March-May),
summer (June-August), autumn (September-
November) and winter (December-February) – was
ensured. However, 10% more experiments were
performed in summer and autumn. The average
temperature in each season was 9.6°C, 18°C, 9.2°C,
0.1°C, respectively (http://www.dwd.de).

2. Type of genetic modification: Genetically modified
cells were derived in roughly 30% of all experiments
by additive gene transfer, in 25% of the experiments
by homologous recombination, and in most cases
(45%) established from transgenic pigs.

3. Donor cell source: Regarding the source of nuclear
donor cells, most of the experiments were
performed with kidney cells (43%), followed by fetal
fibroblasts (26%), mesenchymal stem cells (19%),
and postnatal fibroblasts (12%).

4. Number of cloning rounds: The vast majority of all
cloning experiments were carried out with one
round of cloning (57%), one third (32%) with two
rounds, and the remaining experiments (11%) with
three rounds of cloning.

5. Selection of SCNT embryos for initiation of
development: In 23% of all experiments, all SCNT
embryos were transferred to recipients on the
same day on which the nuclear transfer was
carried out (no selection for development). In
other experiments, the SCNT embryos were
cultured either 1 day (7%) or 2 days (8%) after
activation and selected for initiation of normal
development (1-cell stage on day 1, 2-cell to
4-cell stage on day 2). In most of the cases (62%)
mixed populations of SCNT embryos (no selection,
1 day culture, 2 days culture) were transferred to the
recipients. Those were not included in the analysis of
this specific factor.

Cloning benchmarks
The success of each cloning experiment was progres-
sively assessed based on the outcome of distinct evalu-
ation stages. After the cloned embryos were transferred
to the recipient, we first determined whether it became
pregnant or not.
For a sample stratum under investigation, the chance

for pregnancy is hence defined as the probability ratio

P pregnancy ¼ YESð Þ =P pregnancy ¼ NOð Þ ð1Þ
The probabilities result from the relative frequencies

of the corresponding event in the stratum.
Analogously, the chance for delivery is defined as

P delivery ¼ YESð Þ = P delivery ¼ NOð Þ ð2Þ
For delivering recipients, we counted the number of

offspring born, the number of live offspring among
them, and if there were any, the number of healthy
offspring.
In addition, we calculated for the experiments re-

sulting in at least one delivered offspring the cloning effi-
ciency as

delivered cloned offspring=SCNT embryos transferre

ð3Þ
As a benchmark for oocyte and donor cell quality, re-

spectively, we also took the oocyte maturation rate, cal-
culated as

successfully matured oocytes=oocytes entering IVM;

ð4Þ
and the fusion rate, calculated as

successfully fused karyoplast� cytoplast complexes=

complexes submitted to electrofusion;

ð5Þ
into account.

Statistical analysis
Generalized linear models [70] were computed for each
experimental factor (season, genetic modification, cell
source, cloning rounds and SCNT embryo selection) in
order to estimate its impact on each cloning outcome
stage (pregnancy and delivery rate as well as numbers
of total, live, and healthy offspring) and the cloning
efficiency.
As all explaining variables, i.e. the experimental fac-

tors, are categorial, we designed the linear predictor of
the regression models using indicator (dummy) variables

http://www.dwd.de
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[71], yielding effects with respect to the correspondingly
chosen reference category (spring for season, additive
gene transfer for genetic modification, mesenchymal stem
cells for cell source, one round for cloning rounds, and
no culture for SCNT embryo selection). This design cor-
responds to an ANOVA model [72], where the sample
mean of each stratum of the experimental factor under
investigation is tested for deviation from the sample
mean of the reference category assuming the sample
means to be t-distributed. Consequently, all p-values
reported here are t-test [73] derived, and should, thus,
be interpreted as a statistical significance measure for
equality of means, i.e. the lower the p-value, the more
significant is the difference in the means. The link func-
tion of the regression models was selected according to
the goodness of fit between the empirical distribution of
the response (outcome) variable and the corresponding
common distribution. Briefly, logistic regression was car-
ried out for the binary factors (pregnancy and delivery),
Poisson regression for the counts of live and healthy
offspring, and Gaussian regression for the cloning effi-
ciency (as well as for maturation and fusion rate).
Additional files

Additional file 1: Correlation of the number of embryos transferred
with pregnancy rate. The absolute number of embryo transfers
(left y-axis) that resulted in pregnancy of the recipient depending on the
number of embryos transferred (x-axis) is shown in black over the
number of all observations in grey. The red curve indicates the overall
pregnancy rate (right y-axis) when more than x embryos have been
transferred.

Additional file 2: Correlation of the number of embryos transferred
with the number of live piglets. The number of transferred embryos is
shown on the x-axis and the number of live piglets on the y-axis. No
visible correlation can be detected (Pearson correlation 0.2).

Additional file 3: Seasonal distribution of specific SCNT
configurations with respect to genetic modification, cell type and
cloning round. For each season on the x-axis, the bar height denotes
the total number of embryo transfers performed (as indicated on the
y-axis). The three vertical slots in each of the bars correspond to the
distribution of the respective categories of genetic modification (gen.
mod), cell type (cell.type), and cloning rounds (clon.rds). The categories
are alphanumerically encoded as denoted at the top: genetic
modification = (1 = homologous recombination (HR), 2 = additive gene
transfer (AGT), 3 = replication of transgenic pigs (replic. of tg pigs)), cell
type = (1 = mesenchymal stem cells (MSC), 2 = postnatal fibroblasts (PF),
3 = fetal fibroblasts (FF), and 4 = kidney cells (KC)), cloning rounds =
(1 = 1 round, 2 = 2rounds, 3 = 3rounds).

Additional file 4: Distribution of selected embryos derived from
specific SCNT configurations with respect to genetic modification,
cell type and cloning round. For a particular selection timing on the
x-axis, the bar height denotes the total number of embryo transfers
performed (as indicated on the y-axis). The three vertical slots in each of
the bars correspond to the distribution of the respective categories of
genetic modification (gen.mod), cell type (cell.type), and cloning rounds
(clon.rds). The categories are alphanumerically encoded as denoted at
the top: genetic modification = (1 = homologous recombination (HR),
2 = additive gene transfer (AGT), 3 = replication of transgenic pigs (replic.
of tg pigs)), cell type = (1 = mesenchymal stem cells (MSC), 2 = postnatal
fibroblasts (PF), 3 = fetal fibroblasts (FF), and 4 = kidney cells (KC)), cloning
rounds = (1 = 1 round, 2 = 2 rounds, 3 = 3 rounds). Data for mixed
selection timing not shown.

Additional file 5: Degree of variation in cloning efficiency within
cell types. The variation in cloning efficiency on the y-axis is shown
for the different cell lines within the four cell type categories (MSC:
mesenchymal stem cells, FF: fetal fibroblasts, PF: postnatal fibroblasts, and
KC: kidney cells). The numbers in brackets on the x-axis denote the
number of embryo transfers (in total and for the corresponding fraction
that delivered offspring, respectively). Details on the cell lines used can
be found in Additional file 6 and Additional file 7.

Additional file 6: List of de novo modified cell lines by additive
gene transfer or homologous recombination.

Additional file 7: List of transgenic cell lines from already existing
transgenic pig.
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