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Abstract

In CUB models the uncertainty of choice is explicitly modelled as a Com-
bination of discrete Uniform and shifted Binomial random variables. The
basic concept to model the response as a mixture of a deliberate choice of
a response category and an uncertainty component that is represented by
a uniform distribution on the response categories is extended to a much
wider class of models. The deliberate choice can in particular be deter-
mined by classical ordinal response models as the cumulative and adjacent
categories model. Then one obtains the traditional and flexible models
as special cases when the uncertainty component is irrelevant. It is shown
that the effect of explanatory variables is underestimated if the uncertainty
component is neglected in a cumulative type mixture model. Visualization
tools for the effects of variables are proposed and the modelling strategies
are evaluated by use of real data sets. It is demonstrated that the extended
class of models frequently yields better fit than classical ordinal response
models without an uncertainty component.

Keywords: Ordinal responses, rating analysis, CUP model, CUB model

1 Introduction

In many applications the responses are measured on an ordinal scale and given in
categories. There is a considerable amount of literature devoted to the adequate
modelling of such ordered categorical data. In particular the seminal paper of
McCullagh (1980) stimulated research to find parametric models which should
be both parsimonious and well fitted to real data. Overviews on recent research
are found, for example, in Agresti (2010), Agresti (2013) and Tutz (2012).

Ordered categorical responses typically come in two forms, as grouped contin-
uous variables and assessed ordinal categorical variables (Anderson, 1984). The
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first type is a mere categorized version of a continuous variable, which in prin-
ciple can be observed itself. The second type of ordered variable arises when an
assessor processes an unknown amount of information, leading to the judgement
of the grade of the ordered categorical scale. This sort of variable is found, for
example, in preference or evaluation studies and the assessment of pain.

With the focus on ordinal variables generated by judgements, a mixture type
model that accounts for the psychological process of human choices has been
introduced by Piccolo (2003) and developed in a series of papers by D’Elia and
Piccolo (2005), Iannario and Piccolo (2010), Manisera and Zuccolotto (2014).

The basic concept of these so-called CUB models is that the choice of a re-
sponse category is determined by a mixture of feeling and uncertainty. Feeling
refers to the deliberate choice of a response category determined by the pref-
erences of a person while uncertainty refers to the inherent individual’s indeci-
sion. The first component is modelled by a binomial distribution, the latter by
a discrete uniform distribution across response categories. These components,
effectively parameterized in a parsimonious manner, allow CUB models to be ex-
tremely flexible for capturing the different shapes of ordinal data distributions; in
addition, the parameters to be estimated are immediately related to the concept
of uncertainty (indecision, fuzziness) and feeling (attraction, preference), which
improves the simplicity of the interpretation and makes the comparison among
subgroups easier. An introduction and overview was given by Iannario and Pic-
colo (2012) whereas several generalizations in different fields have been obtained
to include objects’ covariates multilevel data (Iannario, 2012a), and data surveys
with shelter effects (Iannario, 2012b).

Alternative approaches to finite mixtures for ordinal data have been advanced
by Wedel and DeSarbo (1995); Greene and Hensher (2003); Grün and Leisch
(2008); Breen and Luijkx (2010), among others. These authors propose convex
combinations of probability distributions belonging to the same class of models
and assume the existence of subgroups whose responses should be differently
modelled.

In the present paper the mixture approach is extended to include more tradi-
tional models for the modelling of preferences by including an uncertainty com-
ponent. We consider distributions in which the preference part is determined
by a cumulative or adjacent categories model, which yields more flexible models.
The paper is organized as follows: in the next section we consider uncertainty
as a relevant component quite often present in human choices; thus CUB mod-
els are briefly reviewed and a new class of models (called CUP) is introduced.
For both of them a non-parametric measure of heterogeneity may help to under-
stand the weights and the effect of introducing uncertainty in the mixture. In
Section 3 a deeper discussion is given concerning the effects of the uncertainty
component in the interpretation of the model whereas Section 4 deals with the
problem of model selection by adequate fitting measures. Section 5 presents some
empirical evidence on data sets of different scientific fields and compares stan-
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dard approaches with mixtures that include an uncertainty component. Some
concluding remarks and an appendix devoted to estimation problems end the
paper.

2 Modelling Uncertainty by Mixtures

In the following we first sketch the CUB model, which is an abbreviation for
Combination of discrete Uniform and shifted Binomial random variables. Then
we consider an extended class that contains the CUB as well as standard models
for ordinal data as special cases.

2.1 The CUB Model

Let in a regression model the response of an individual Ri given explanatory
variables zi,xi take values from ordered categories {1, . . . , k}. Then, the mixture
distribution denoted as CUB as considered, for example, by Iannario and Piccolo
(2012) has been defined for each subject by

Pr(Ri = r|zi,xi) = πi br(ξi) + (1− πi) pUr r ∈ {1, . . . , k}, (1)

where the two components of the mixture are specified in the following way. The
first component is a shifted binomial distribution given by

br(ξi) =

(
k − 1

r − 1

)
ξk−ri (1− ξi)r−1, r ∈ {1, . . . , k}.

It is a simple binomial distribution determined by the parameter ξ but shifted so
that the support is {1, . . . , k} instead of the usual support that includes zero. The
component represents the preferences for specific categories, which is captured by
the parameter ξi.

The second component is a uniform distribution across the response cate-
gories,

pUr = 1/k, r ∈ {1, . . . , k}.
It represents the additional uncertainty arising from factors like amount of time
devoted to the response, fatigue, partial understanding, etc. It is explicitly mod-
elled as the indecision component related to the nature of human choices. Iannario
and Piccolo (2012) discuss extensively the logical foundations and psychological
motivations of the mixture.

In CUB models the parameters πi and ξi are linked to the covariates (zTi ,x
T
i )

by the logit links

logit (πi) = zTi β ; logit (ξi) = xTi γ ; i = 1, 2, . . . , n . (2)

In fact, alternative link functions representing a one-to-one mapping Rp ↔ [0, 1]
between parameters and covariates are also legitimate. It should be noted that,
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given the parameterization (1), the covariates in zi and xi may coincide, overlap
or be completely different.

The two components, preference/feeling represented by the binomial model,
and uncertainty represented by the uniform model, are combined in a mixture
with weights πi, 1−πi. The interpretation is that each interviewee has a propensity
to adhere to a meditated choice (represented by the first component) and to a
totally random decision (represented by the uniform distribution) and πi, 1− πi
are just the weights for those propensities. Thus, the quantity 1−πi is interpreted
as a measure of uncertainty whereas πi is seen as a measure of adherence to the
structured choice.

In the following we briefly investigate the uncertainty component, which is
at the core of this paper. It is strongly related to heterogeneity and the related
effects on the variability of the distribution. For simplicity we drop the index i for
the individual. The first effect of the mixture is that for π < 1 the distribution of
the CUB model is more spread out than the distribution of the binomial model.
This can be seen by considering that the variance of the distribution of a CUB
model is

var(R) = (k − 1)

[
π ξ (1− ξ) {π (k − 1)− (k − 2)} + (1− π)

3π (k − 1) + (k + 1)

12

]
.

It is immediate to show that var(R) is monotonically increasing in a linear way
with respect to 1− π only for ξ = 1/2 (a symmetric CUB distribution) whereas
it has a minimum for π = 1 (a shifted binomial model) and a relative maximum
for π = 0 (a discrete uniform model). In fact, the absolute maximum of the
parabolic shape happens at

π =
(1− 6 ξ + 6 ξ2) (k − 2)

3 (2 ξ − 1)2 (k − 1)
, if ξ 6= 1/2 .

As a consequence, as shown in the left panel of Figure 1, although variance
generally increases with uncertainty one cannot conclude that π is strictly related
to this aspect of variability.

On the other side, according to the results of Iannario (2012c, pp.169-170;181),
the normalized Gini heterogeneity index increases with uncertainty. It is defined
for any discrete distribution (pr, r = 1, 2, . . . , k) by G = (1−∑k

r=1 p
2
r) k/(k− 1).

For the CUB model one obtains

GCUB = 1− π2 (1−GBIN),

where GBIN is the Gini index computed for the distribution of the binomial
component. From this last result, one can derive that for π < 1 the Gini index for
the mixture model is larger than the Gini index for the binomial model: GCUB >
GBIN , that is, the heterogeneity of the mixture is greater than that of the binomial
component, and heterogeneity is increased if the uniform component can not
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Figure 1: Variance and Gini heterogeneity measures for CUB models as func-

tions of 1− π

be neglected. Differently from the variance, the Gini index is monotonically
increasing with uncertainty as measured by (1 − π) for any given ξ, and this
confirms that one should interpret the π parameter as an inverse heterogeneity
measure. The behaviour of GCUB with respect to the uncertainty (1 − π) is
depicted in the right panel of Figure 1.

Some difficulties arise when the responses are more complex and do not follow
a definite pattern as implied by the binomial component (which requires a single
mode, for instance). Thus, it seems attractive to extend the standard models for
ordinal models by including an uncertainty component, which is the added value
of the CUB models framework.

2.2 An Extended Class of Models

In the CUB model the choice of a binomial distribution and a uniform distribution
is mostly based on simplicity criteria although the binomial may be interpreted
as a counting process of selection among the k categories and the uniform dis-
tribution may be introduced as the most extreme and uninformative case among
all discrete alternatives. In a wider class of models proposed here the rather
restrictive binomial model is replaced by more flexible ordinal models while the
uniform distribution as an uninformative distribution is retained. The general
mixture model we consider has the form

P (Ri = r|xi) = πiPM(Yi = r|xi) + (1− πi)PU(Ui = r), (3)

where Ri represents the observed response and Yi, Ui are the unobserved random
variables taking values from {1, . . . , k}. The distribution of Yi is determined by
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PM(Yi = r|xi), which can be any ordinal model M, whereas PU(Ui = r) = 1/k
represents the uniform distribution.

For the specification of the latent variable Yi one can use models that are in
common use in ordinal regression, in particular, cumulative type and adjacent
categories type models, which have already been considered by McCullagh (1980).
The cumulative model has the general form

P (Yi ≤ r|xi) = F (γ0r + xTi γ), r = 1, . . . , k − 1,

where F (.) is a cumulative distribution function and −∞ = γ00 < γ01 < · · · <
γ0k = ∞. This model is obtained by assuming that a latent regression model
Ỹi = −xTi γ + ε holds, where ε is a noise variable with distribution function F .
If we consider the link between the observable categories and the latent variable
given by

Yi = r ⇔ γ0,r−1 < Ỹi ≤ γ0r, r = 1, 2, . . . , k

it is straightforward to derive the model.
The most widely used model from this class of models is the cumulative logit

model, which uses the logistic distribution F (.) It is also called proportional odds
model and has the form

log

(
P (Yi ≤ r|xi)
P (Yi > r|xi)

)
= γ0r + xTi γ, r = 1, . . . , k − 1.

An alternative choice is the adjacent categories model given by

P (Yi = r + 1|Yi ∈ {r, r + 1},xi) = F (γ0r + xTi γ), r = 1, . . . , k − 1.

The specific model that uses the logistic distribution is the adjacent categories
logit model

log

(
P (Yi = r + 1|xi)
P (Yi = r|xi)

)
= γ0r + xTi γ, r = 1, . . . , k − 1.

Also sequential models or other ordinal models could be useful. For a discussion
of these classes of ordinal models, see, for example, Tutz (2012).

We refer to the general model (3) as a CUP model for the Combination of
Uniform and Preference structures. Of course, the CUB model is a special case
that uses the binomial distribution in the preference part. The use of models like
the cumulative or adjacent categories model is attractive because it adds flex-
ibility to the model. For example, the probability distribution of the binomial
model is strictly unimodal, in contrast to the cumulative and the adjacent cate-
gories model, which allow for all forms of distributions by including the flexible
intercepts γ01, . . . , γ0k. Moreover, cumulative and adjacent categories models are
the most widely used models for ordinal data, but an additional uncertainty com-
ponent seems not to have been used for these models before. As will be shown
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parameter estimates are biased if the uncertainty component is ignored. In the
following we will use the abbreviations CUP(c) and CUP(a) if the structural re-
sponse model in the mixture is the cumulative or the adjacent categories model,
respectively.

In both models, the effect of the explanatory variables in the model that
specifies preference is contained in the linear predictors, which have the form
ηir = γ0r + xTi γ. Therefore, the specification of the linear predictor replaces
the assumption logit (ξi) = xTi γ, which specifies the dependence of CUB model
parameters on covariates. The dependence of the uncertainty component on
covariates is modelled in the same way as in CUB models, namely by logit(πi) =
zTi β, where zi can be identical to xi.

For CUB models the link between the uncertainty component and hetero-
geneity measured by the Gini index was systematically investigated by Iannario
(2012c). A similar link holds for the CUP model. The Gini index for any mixture
model is given by GMIX = π2GM + 1 − π2, where M denotes the ordinal model
used in the mixture and the mixture model itself is given by (3). The maximal
heterogeneity is obtained for the uniform distribution, that is, GUNI = 1. Thus
the Gini index can also be given by

GMIX = GUNI − π2(1−GM).

Considered as a function with argument π it decreases quadratically with increas-
ing probability π from the maximal value to GM . Therefore, the mixture model
has an heterogeneity index between the uniform model and model M, but for
π < 1 is larger than the Gini index for the model M. That means, in the mixture
model the probabilities of response categories are more evenly distributed than
in model M. By assuming a mixture the basic ordinal model M is shrunk toward
the uniform model.

For illustration Figure 2 shows the Gini index as a function of the weight of
the uncertainty component 1− π. The underlying model is a simple cumulative
model with ten categories and a binary predictor with coefficient γ. It is seen that
the Gini index increases with growing uncertainty (1−π). The increase is strong
for strong effects of the predictor and weak if the predictor is less influential.

When considering the effect of uncertainty on the variance it can not be
recommended to examine the variance of Y ∈ {1, . . . , k} itself if one takes the
ordinal scale level of Y seriously. Therefore, we consider the variances of the
binary variables Yr = I(Y ≤ r), r = 1, . . . , k, which are explicitly modelled within
the cumulative model framework. Figure 3 shows the cumulative probabilities
P (Y ≤ r) (left panel) and the variances of the corresponding variables Yr (right
panel) for an example with 10 categories. For increasing uncertainty 1 − π the
cumulative probabilities tend to lie on a straight line. However, the effect on the
variances is different. The curves are not monotone and as the uncertainty grows
the variance decreases for categories smaller than 3 but increases for categories
greater than 3.
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Figure 2: Gini heterogeneity measures for CUP models as functions of 1− π
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Figure 3: Cumulative probabilities and variances for CUP models with ten

categories

2.3 Estimation

In mixture models, estimation issues can be pursued by exploiting the EM algo-
rithm as proposed by Dempster et al. (1977) and used with special reference to
mixtures by McLachlan and Peel (2000). In this context, estimation and tests
are obtained by asymptotically efficient procedures based on maximum likeli-
hood methods. For readability we give the used EM algorithm in the appendix.
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Specific results for CUB models were given by Piccolo (2006).

3 Effect Strength in Mixture Models

If the response is affected by an additional random component that is modelled by
a uniform distribution within the mixture framework, the effects of explanatory
variables will differ from the effects found by the fitting of a traditional response
model. For simplicity we consider in the following the binary logit model. In
this case the cumulative and the sequential models are equivalent. Then the
probability of response category 1, denoted by p(x) = P (Y = 1|x), is given by

p(x) = πpM(x) + (1− π)/2,

where pM(x) = exp(γ0 + xTγ)/(1 + exp(γ0 + xTγ)) denotes the probability of
the logit model. If π < 1, that is, in the presence of the uncertainty component,
one obtains

|p(x)− 0.5| = |πpM(x) + (1−π)/2− 0.5| = π |pM(x)− 0.5| < |pM(x)− 0.5|. (4)

That means the true probabilities p(x) are closer to 0.5 than the probabilities in
the structured component pM(x). This shrinkage toward 0.5 means that the effect
strength γ tends to be underestimated if the uncertainty component is ignored.
More concrete, equation (4) shows that the distance between the probability p(x)
of the data generating process and 0.5 is equal to π|pM(x)− 0.5|. Therefore, the
distance reduces by the factor π. It is essential that the reduction is proportional
to the distance between the probability and 0.5. That means that a value pM(x1)
that is farer away from 0.5 changes stronger than a value pM(x1) that is closer
to 0.5. The consequence is that one observes a weaker effect strength in the
mixture model than is present in the model M. In the simplest case one has a
binary explanatory variable x ∈ {0, 1}. Then both models M and the mixture
model are saturated and one can compute the parameter β for the model M
and the corresponding parameter β̃ that is found when using probabilities p(x).
Because |p(x)−0.5| = π|pM(x)−0.5| the increase (or decrease) from p(0) to p(1)
is always larger than the increase (or decrease) from pM(0) to pM(1). Therefore,
one obtains |β̃| < |β|. The case of binary explanatory variables is not interesting
by itself, but the tendency to underestimate the effect strengths holds in the
general case.

Before considering the effect in the general model with ordered categories it
should be noted that the inclusion of an uncertainty component has one other
effect. Since the probability p(x) of the data generating process is closer to 0.5
than the probability pM(x) also the variance is larger than in the logit model
M. Therefore, the inclusion of a uniform component is one way of modelling
overdispersion.
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For ordinal models with k > 2 and a cumulative logit model one gets similar
results for the cumulative probability pr(x) = P (Y ≤ r|x), which is given by

pr(x) = πpM,r(x) + (1− π)r/k,

where pM,r(x) = exp(γ0r + xTγ)/(1 + exp(γ0r + xTγ)) specifies a binary logit
model. That means one obtains a shrinkage toward r/k. It is easily derived
that now |pr(x) − r/k| = π|pM,r(x) − r/k| with the same consequence as in
the binary model, namely that the effect strength γ tends to be underestimated
if the mixture component is neglected. What differs from the binary model is
that one does not necessarily model overdispersion. Of course, for k even and
r = k/2 one has the same effect as in the binary model considered previously:
one has stronger variability than assumed in the model M and therefore models
overdispersion. But this has not to hold for all values of r. For example, if
k = 10, one obtains for r = 1 shrinkage toward 0.1. If pM,r(x) is larger than
0.1, then the shrinkage toward 0.1 means that the variance is smaller than in
the model without a uniform mixture component. Therefore, in terms of the
cumulative probabilities one might model underdispersion in the sense that the
mixture model allows to model smaller variance than the pure model with π = 1.

Although estimation procedures will be considered later, we consider a small
example to illustrate the shrinkage effect. Table 1 shows data that have been
analysed previously by Mehta et al. (1984). For patients with acute rheumatoid
arthritis a new agent was compared with an active control. Each patient was
evaluated on a five-point assessment scale ranging from ”much improved” to
”much worse.” Table 2 shows the corresponding estimates for the mixture model
with a cumulative logit model as the structuring component CUP(c) and the
simple cumulative logit model. It is seen that the effect strength is 0.291 for
the cumulative model but 0.394 for the cumulative mixture model. Thus if the
mixture component is omitted one obtains a weaker effect of treatment. The
difference between effect strengths is rather large because the uniform distribution
is included with the rather large probability 0.294.

Table 1: Clinical trial of a new agent and an active control (Mehta et al., 1984)

.
Global Assessment

Drug Much Improvement No Worse Much
Improvement Change Worse

New agent 24 37 21 19 6
Active control 11 51 22 21 7

To further investigate the bias of the estimate if the mixture component is
neglected we give the results of a small simulation study. Let the data be gener-
ated from a mixture model with the cumulative model in the mixture given by
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Table 2: Model fits for arthritis data with explanatory variable drug; fitted

models are mixture with a cumulative model (CUP(c)) and a simple cumulative

model without uncertainty

CUP(c) Cumulative Model

Intercept:1 -1.945 -1.802
Intercept:2 0.371 0.115
Intercept:3 1.385 1.008
Intercept:4 7.668 2.631

drug 0.394 0.291

Prob(uniform) 0.294 0

the model fitted for the clinical trial data. We use the thresholds given in Table
2 with effect strength 0.5 and vary the probability 1− π, that is, the probability
of uncertainty in the mixture. The left panel of Figure 4 shows the estimated
parameters when a cumulative CUP model is fitted. The true parameter value is
included as a horizontal line. It is seen that the estimates are almost unbiased. Of
course, a small bias is not surprising for an ML estimate with finite sample size.
Overall the estimation works well with increasing variability if the uncertainty
component gets stronger. The results change dramatically if one fits a cumulative
model and therefore ignores the uncertainty component (right panel of Figure 4).
It is seen that the true parameter is strongly underestimated with the bias getting
stronger with increasing importance of the uncertainty component.
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Figure 4: Simulation with the data generating model being a cumulative mix-

ture model; left panel shows the parameter estimates when a cumulative mixture

model is fitted, right panel shows the estimates if a simple cumulative model is

fitted.

The main point of the illustrations is that when the data generating model is a
mixture model of the form considered here one tends to underestimate the effects
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of explanatory variables. The effect is similar to what is found in binary (and
ordinal) random intercept models. Let repeated measurements on individual i be
given by yi1, . . . , yim, yit ∈ {0, 1} with covariates xi. Then the random intercept
model assumes P (yit = 1|xi, bi) = h(bi + xTi γ), where h(.) is a response function
and bi is a subject-specific random effect, typically assumed to be normally dis-
tributed, bi ∼ N(0, σ2

b). The parameter γ contains the conditional effect of the
explanatory variable given the random effect bi. If one considers the marginal
model P (yit = 1|xit) =

∫
P (yit = 1|xit, bi)p(bi)dbi, effects tend to be weaker, see,

for example, Caffo et al. (2007). Because the models are non-linear the omis-
sion of the random effects yields estimates of parameters that are closer to zero
than the actual parameters. Marginal effects are attenuated as compared to the
conditional effects.

Interpretation of the parameters in the mixture model is not so straightfor-
ward but effects can be interpreted in a similar way as conditional effects in
random effects models. Let us consider the proportional odds model for the
structured response in the mixture model. Let C denote the latent class; C = 1
denotes that the choice made by the individual is deliberate and determined by
the proportional odds model M; C = 0 means that the choice is made in ran-
dom mode, determined by the uniform distribution. The mixture is determined
by the weights π, 1 − π. Then the parameters of the proportional odds model
determine the response given C = 1, that is, P (Y ≤ r|x, C = 1) = pM(x) =
exp(γ0r +xTγ)/(1 + exp(γ0r +xTγ)). If one compares two individuals that differ
in the variable x by one unit one obtains for the cumulative odds given C = 1

P (Y ≤ r|x+ 1, C = 1)/P (Y > 0|x+ 1, C = 1)

P (Y ≤ r|x,C = 1)/P (Y > 0|x,C = 1)
= exp(γ).

Thus the parameter contains the effect of explanatory variable x given both
individuals make a deliberate choice, that is, C = 1. In that sense the effect is
conditional on the action mode C = 1. Given this action mode the interpretation
is the same as in the common proportional odds models. Ignoring the uncertainty
component yields attenuated effects.

4 An Illustrative Example

To illustrate the effects in a cumulative CUP we consider data from the Survey on
Household Income and Wealth (SHIW) by the Bank of Italy, for earlier use of the
data see (Gambacorta and Iannario, 2013). In the analysis presented in Table 3
the response is the happiness index indicating the overall life well-being measured
on a Likert Scale from 1 (very unhappy) to 10 (very happy). As covariates the
following factors were chosen: the marital status, the place of living, the general
degree of confidence in other people (1 to 10), the atmosphere the interview took
place in (1 (low) to 10 (high)), the citizenship and the age. The respondents were
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also asked about their assessment if the household income is sufficient to see the
family through to the end of the month rated from 1 (with great difficulty) to
5 (very easily). The analysis is based on a subset with 3816 respondents of the
SHIW of 2010. We fitted a cumulative CUP model with explanatory variables in
the cumulative part as well as in the logistic model that determines the mixture
probability. In addition we fitted a simple cumulative model without a mixture
component and the CUB model. The standard errors of the coefficients are
obtained by 500 non-parametric bootstrap samples (Efron and Tibshirani, 1994).
The results are given in Table 3.

Covariates CUP(c) Cumulative CUB

est. BS.se est. se est. BS.se
Constant (β0) 0.375 0.146 0.419 0.460
Marital status: Single 0.579 0.182 0.604 0.214
Marital status: Separated 0.866 0.192 1.224 0.256
Marital status: Widow 0.954 0.177 1.261 0.212
Living: Centre of Italy 0.809 0.171 1.039 0.177
Living: South of Italy 0.425 0.132 0.487 0.156
Confidence in people 0.092 0.024 0.097 0.025
Interview atmosphere -0.162 0.028 -0.185 0.054
Marital status: Single 1.208 0.173 0.356 0.089 0.460 0.066
Marital status: Separated 1.340 0.178 0.276 0.108 0.509 0.066
Marital status: Widow 1.442 0.168 0.327 0.085 0.567 0.057
Living: Centre of Italy -0.585 0.140 -0.762 0.075 -0.240 0.050
Living: South of Italy 0.347 0.127 -0.087 0.068 0.124 0.047
Confidence in people -0.107 0.044 -0.080 0.012 -0.041 0.012
Income sufficient -0.301 0.050 -0.094 0.024 -0.110 0.017
Interview atmosphere -0.277 0.044 -0.092 0.020 -0.094 0.014
Citizenship: Foreign 0.845 0.368 0.243 0.153 0.342 0.123
Age (centered) 0.019 0.005 0.004 0.002 0.006 0.002

Probability(uniform) 0.464 0 0.458

Table 3: Parameter estimates and standard errors based on bootstrap for the

SHIW study.

It is seen that the uncertainty component is very strong with 1 − π̄ = 0.458
for the CUB model and 1− π̄ = 0.464 for the cumulative mixture model, where
π̄ = 1/n

∑n
i=1 1/(1 + e−z

T
i β) is the mean value over all the probabilities of the

observations. In the following tables 1 − π̄ is always denoted by Prob(uniform).
As in the previous example it is seen that the estimated effects in the cumulative
model part of the mixture model are much stronger than the effects found in the
simple cumulative model. We only included effects that have been found to be
influential in previous studies (Gambacorta and Iannario (2013)) and do not give
the threshold parameters.

A tool that has also been used for CUB models is the visualization of effects
of explanatory variables that are included in the preference part of the model and
also determine the uncertainty. However, alternative specifications are needed to
link the effects on the preference part with the effects on uncertainty. Therefore,
a specific form of the cumulative logistic model that determines the preference
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component of the mixture has to be used. A form of the model that allows for
easy interpretation of the effects on the response is

P (Y ≤ r|x)

P (Y > r|x)
= exp(γ0r) exp(xTγ) = eγ0r(eγ1)x1 . . . (eγp)xp , r = 1, . . . , k − 1.

That means that the odds of preferring categories {1, . . . , r} over categories {r+
1, . . . , k} are modified by the factor eγj if the jth variable is increase by one
unit. It is important that the factor is the same for all categories and therefore
characterizes the effect of the covariates in a unique way. This is essentially
the proportional odds assumption that gives the model its name, see McCullagh
(1980) for an extensive discussion of the proportional odds property. Since eγj

contains the effect of the preference part it can be used to visualize the effect
together with the uncertainty, which is contained in the model logit(π) = zTβ. In
Figure 5 the factor eγj is plotted against the strength of the uncertainty 1−πj for
the explanatory variables marital status and area of living. To obtain a scale for
the uncertainty the other variables are set to fixed values, in particular, confidence
and atmosphere are set to category 1, income to 3 and all other variables to zero.
Since in the cumulative model large values of exp(xTγ) indicate preference for
low response categories, large values indicate unhappiness. It is seen from Figure
5 that the marital status ”widow” corresponds to high values of unhappiness
and high certainty (small 1 − πj). In contrast, the status ”married” indicates
happiness but a large amount of uncertainty in the response. From the plot for the
variable area it is seen that the people living in the north have large uncertainty
and medium happiness whereas people from the south tend to categories that
indicate unhappiness with a middle level of uncertainty.
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Figure 5: Effects of the categorical covariates marital status (left) and area of

living (right) in the structure and uncertainty component
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5 Comparison of Models

In this section we consider the usefulness of including the uncertainty component
in the traditional cumulative models and also compare CUP and CUB proposals
by use of real data sets. First we briefly discuss criteria for the comparison of
models.

5.1 Criteria

Comparison of models is not straightforward since in general the models are not
nested. But even for nested models, for example, when comparing a cumulative
mixture model and a pure cumulative model, one can not simply use likelihood
ratio tests because one is at the boundary of the parameter space. So one cannot
expect the likelihood ratio tests to have the usual χ2

(1)-distribution, compare

Böhning et al. (1994).
Alternative are information criteria as the AIC and BIC given by

AIC = −2l(θ̂) + 2m ; BIC = −2l(θ̂) +mlog(n),

where m is the number of model parameters, n is the number of observations and
l(θ̂) is the log-likelihood function computed at the maximum of the estimated
parameter vector θ. Information criteria are in common use in mixture models
although no strong foundation seems available. Leroux (1992) gave some justifi-
cation for the use of information criteria but it refers to very special cases only.
Therefore alternative ways to compare models seem warranted.

A more data driven strategy is the evaluation of the predictive performance. In
particular we will consider the deviance as a measure of the discrepancy between
data and fit. For the multinomially distributed response one can distinguish
two cases. One can group all observations for a fixed value of the explanatory
variables obtaining the distribution rTi = (ri1, . . . , rik) ∼ M(ni,pi), i = 1, . . . , N ,
where N is the number of distinct values of the explanatory variables, ni is the
number of observations for the i-th value of the explanatory variables. The true
underlying probabilities are pTi = (pi1, . . . , pik) and the corresponding estimates
without assuming a model are the relative frequencies (fi1, . . . , fik). Then the
deviance for the multinomial distribution has the general form

D = 2
N∑

i=1

ni

k∑

r=1

fir log

(
fir
p̂ir

)
.

In this grouped form it uses that ni observations are available for a fixed value
of the explanatory variable and for GLMs asymptotic distributions are available
for (ni/N → λi ∈ (0, 1)) (Fahrmeir and Tutz (2001)). If one does not group
data, but works with single observations one uses rTi ∼ M(1,pi), i = 1, . . . , n and

15



obtains the form

D = 2
n∑

i=1

k∑

l=1

ril log

(
ril
p̂il

)
= −2

n∑

i=1

log(p̂iRi
),

where Ri denotes the observation in the categories, that is, Ri ∈ {1, . . . , k}.
In both forms, grouped or un-grouped, the deviance measures the discrepancy

between data and fit. It can be as a predictive measure. Let the data be split
into a learning set and a validation set. The model is fitted on the learning set
and then one computes the deviance for all the observations in the validation set
(R

(V )
i ,x

(V )
i ), i = 1, . . . , nV . In the un-grouped form one obtains for the averaged

deviance

D/nV = −2

nV∑

i=1

log(p̂
iR

(V )
i

)/nv,

where p̂il is the estimated probability of category l at value x
(V )
i . It is also known

as the logarithmic score. A criticism of scores like the logarithmic score is that
the predictive distribution p̂ is only evaluated at the value of the observation.
Therefore, it takes not the whole predictive distribution into account. In the
case of an ordinal response measures that make use of the whole predictive dis-
tribution can be derived from the continuous ranked probability score approach
discussed by Gneiting and Raftery (2007). For categorical responses one obtains
the averaged value

LRPS/nV =

nV∑

i=1

∑

r

(p̂i(r)− I(Ri ≤ r))2/nv, (5)

where p̂i(r) = p̂i1 + · · ·+ p̂ir is the estimated cumulative probability at value x
(V )
i

and I(.) is the indicator function. It is a sum over quadratic (or Brier) scores for
binary data and takes the closeness between the whole estimated distribution and
the observed value into account. For a discussion of measures for the closeness
of data and fit see also, with the focus on categorical data, Tutz (2012), Chapter
15.

5.2 Empirical Studies

The models that are used in the applications are

- the cumulative model (without uncertainty),

- CUP(c): the cumulative model with uncertainty component,

- the adjacent categories model model (without uncertainty),

- CUP(a): the adjacent categories with uncertainty component,

- CUB: the binomial with uncertainty component.
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Income and Wealth

For the Survey on Household Income and Wealth (SHIW) considered in the pre-
vious section the performance measures for selected models are given given in
Table 4. It is seen that the cumulative mixture model performs best in terms of
AIC, BIC, deviance and logScore. The ranked score is the same for CUP(c) and
CUP(a). The relevance of the mixture component is underlined by the strong
reduction of AIC; the value of the AIC for the mixture model (16218) is much
smaller than the AIC for the simple cumulative model (16472). The same reduc-
tion is found when an uncertainty component is included in the adjacent cate-
gories model. For the ranked score the performance of all models is very similar.
Therefore, in this application the cumulative mixture model with a substantial
amount of uncertainty is to be preferred.

Covariates CUP(c) Cumulative CUP(a) Adjacent CUB

Probability(uniform) 0.464 0 0.491 0 0.458
Deviance 16164 16434 16185 16497 16311
AIC 16218 16472 16239 16535 16349
BIC 16387 16591 16408 16654 16467
logScore 4.250 4.307 4.256 4.323 4.284
RankedScore 1.306 1.310 1.306 1.311 1.307

Table 4: Results for the SHIW study

PLUS Study

In the Participation, Labour and Unemployment Survey (PLUS) carried out by
ISFOL (Institute for training of workers, Ministry of Labour and Welfare, Italy),
the participants were asked to rate their probability to reach the age of 75. They
chose a value between 0 for a impossible event and 100 for a certain event. Because
of rounding effects ordered categories instead of the observed continuous values
are to be preferred as suggested by Iannario and Piccolo (2010): see Table 5. The
data consists of 20,184 individuals from the survey wave of 2006 and includes
several more covariates such as gender (1: female, 0: male), age, marital status
(widowed, divorced, married/single) and employment status (1: worker, 0: no-
worker). Table 6 shows the results with all of the explanatory variables. In
this application the uncertainty component is rather weak (1 − π̄ = 0.100 for
the cumulative mixture model, 0.099 for the adjacent categories mixture model
and 0.137 for the CUB). Nevertheless the inclusion of the uncertainty component
reduces the AIC and the BIC distinctly. It is seen that the cumulative and
the adjacent categories mixture models perform better than the models without
uncertainty and the CUB with regard to all performance measures.
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Category Expressed probability Interpretation of the perception

1 0.00 ≤ Pr(S) ≤ 0.05 Impossible/Almost Impossible
2 0.05 < Pr(S) ≤ 0.25 Low
3 0.25 < Pr(S) ≤ 0.45 Moderately Low
4 0.45 < Pr(S) ≤ 0.55 About Fifty/Fifty
5 0.55 < Pr(S) ≤ 0.75 Moderately High
6 0.75 < Pr(S) ≤ 0.95 High
7 0.95 < Pr(S) ≤ 1.00 Sure/Almost Sure

Table 5: Qualitative assessment of subjective survival probabilities Pr(S)

Covariates CUP(c) Cumulative CUP(a) Adjacent CUB

est. BS.se est. se est. BS.se est. se est. BS.se
Intercept(β0) 1.811 0.085 1.823 0.082 1.511 0.078
Female 0.046 0.083 0.092 0.085 0.032 0.080
Age -1.064 0.144 -1.044 0.132 -1.310 0.125
Age2 2.713 0.344 2.550 0.334 2.534 0.350
Female 0.128 0.030 0.105 0.027 0.082 0.016 0.038 0.011 0.104 0.024
Divorced 0.308 0.103 0.276 0.079 0.159 0.052 0.100 0.032 0.246 0.076
Widowed 0.360 0.139 0.412 0.114 0.192 0.073 0.179 0.044 0.290 0.108
Work -0.074 0.032 -0.049 0.028 -0.031 0.018 -0.013 0.012 -0.047 0.025
Age -0.242 0.037 -0.085 0.033 -0.098 0.021 0.026 0.015 -0.226 0.033
Age2 -0.716 0.099 -0.925 0.092 -0.426 0.056 -0.458 0.040 -0.559 0.085

Prob(uniform) 0.100 0 0.099 0 0.137

Deviance 59601 59729 59612 59716 60381
AIC 59633 59753 59644 59740 60403
BIC 59759 59847 59771 59835 60490
logScore 2.9545 2.9592 2.9551 2.9585 2.9927
RankedScore 0.6726 0.6734 0.6727 0.6733 0.6757

Table 6: Results for the PLUS study

Allbus

In the German General Social Survey ALLBUS data on behavior, attitudes and
social structure in Germany are collected. 3480 persons answered the question-
naire in 2012. In the present study the respondents rated their trust in the health
care system on a scale from 1 (not at all) to 7 (very much). In addition they give
their assessment of the own state of health from 1 (very good) to 5 (poor) and
their overall life satisfaction from 0 (very unhappy) to 10 (very happy). Other
covariates are the responders age, net income (in 1000 Euros) and citizenship.
The variable region specify if the interview took place in the former east part of
Germany.
Table 7 shows the results for CUB and the CUP model using a cumulative model
or an adjacent category model for the preference structure. It is again found that
the inclusion of uncertainty reduces AIC and BIC strongly. Among the models
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with an uncertainty component there is not much difference in terms of AIC and
BIC, BIC even favors the CUB. While the logscore profits from the inclusion of
uncertainty the ranked score is very similar for all models.

Covariates CUP(c) Cumulative CUP(a) Adjacent CUB

est. BS.se est. se est. BS.se est. se est. BS.se
Intercept(β0) 4.976 0.895 3.461 0.615 3.663 0.461
Poor Health -1.051 0.222 -0.701 0.168 -0.749 0.144
German 1.116 0.236 0.850 0.162 0.598 0.135 0.321 0.072 0.542 0.111
Income 0.058 0.047 0.005 0.020 0.030 0.024 0.015 0.008 0.031 0.016
Age (centred) -0.007 0.047 0.005 0.002 -0.004 0.001 -0.002 0.001 -0.004 0.001
Region: East -0.372 0.093 -0.318 0.071 -0.208 0.050 -0.125 0.029 -0.190 0.042
Life Satisfaction -0.193 0.034 -0.168 0.019 -0.104 0.021 -0.061 0.008 -0.092 0.015

Prob(uniform) 0.122 0 0.172 0 0.164

Deviance 9925 9976 9928 9990 9942
AIC 9951 9998 9954 10012 9958
BIC 10029 10064 10032 10078 10005
logScore 3.380 3.389 3.381 3.394 3.383
RankedScore 0.751 0.752 0.751 0.752 0.751

Table 7: Model results for the Allbus data

6 Concluding Remarks

It has been shown that the basic concept to include an uncertainty component
in the model, as has been done in CUB models before, can be extended to the
familiar classes of ordinal models yielding models that show better fit and better
performance in terms of AIC, BIC and prognostic measures. If the uncertainty
component is neglected the strength of the explanatory variables tends to be
underestimated. An advantage of the models is that the effects of covariates can
be easily visualized.
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Appendix: Estimation

For simplicity, estimation of the mixture model is considered for the general case
of m mixture components. Thus, the mass function of observation R given x has
the form

f(r|x) =
m∑

j=1

πjfj(r|x,γj), (6)

m∑

j=1

πj = 1 and 0 ≤ πj ≤ 1,

where fj(r|x,γj) represents the density and πj the mixing proportion of the jth
component of the mixture. In the CUP model (3) one has only two components,
m = 2, and the parameters γ1,γ2 are reduced to only one parameter, namely
γ1 = γ. The second component is the uniform distribution, which is fixed and
does not depend on covariates.

For given data ri|xi, i = 1, . . . , n, and collecting all parameters in the param-
eter θ, the log-likelihood to be maximized is

l(θ) =
n∑

i=1

log

(
m∑

j=1

πjfj(ri|xi,γj)
)
.

Direct maximization of the log-likelihood is time-consuming and to obtain stable
solutions starting values near the true values are required. A better way is to
consider it as a problem with incomplete data and obtain estimates by using the
EM algorithm. Therefore, let zij denote the unknown mixture components that
indicate whether ri belongs to component j

zij =

{
1, observation ri is from the jth mixture component
0, otherwise.

If the observation ri is from the jth mixture component the vector zTi =
(zi1, . . . , zim) = (. . . , 0, 1, 0, . . . ) contains only zeros, but one at the j-th posi-
tion. One gets for one particular observation ri

f(ri|zij = 1,xi,θ) = fj(ri|xi,γj) =
m∏

l=1

fl(ri|xi,γl)zil .

Since zTi is multinomially distributed with probability vector πT = (π1, . . . , πm)
the complete density for ri, zi is

f(ri, zi|xi,θ) = f(ri|zi,xi,θ)f(zi|θ) =
m∏

j=1

fj(ri|xi,γj)zij
m∏

j=1

π
zij
j
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yielding the complete log-likelihood

lc(θ) =
n∑

i=1

log(f(ri, zi|xi,θ)) =
n∑

i=1

m∑

j=1

zij (log(πj) + log(fj(ri|xi,γj)) .

The EM algorithm treats zij as missing data and maximizes the log-likelihood
iteratively by using an expectation and a maximization step. During the E-step
the conditional expectation of the complete log-likelihood given the observed data
r and the current estimate θ(s),

M(θ|θ(s)) = E(lc(θ)|r,θ(s))
has to be computed. Because lc(θ) is linear in the unobservable data zij, it is only
necessary to estimate the current conditional expectation of zij. From Bayes’s
theorem follows

E(zij|y,θ) = f(zij = 1|ri,xi,θ)

= f(ri|zij = 1,xi,θ)f(zij = 1|xi,θ)/f(ri|xi,θ)

= πjfj(ri|xi,θ)/f(ri|xi,θ)

= πjfj(ri|xi,θ)/
m∑

l=1

πlfl(ri|xi,θ) = ẑij.

This is the posterior probability that the observation ri belongs to the j−th
component of the mixture. For the s-th iteration one obtains

M(θ|θ(s)) =
n∑

i=1

m∑

j=1

ẑ
(s)
ij (log(πj) + log(fj(ri|xi,γj))

=
n∑

i=1

m∑

j=1

ẑ
(s)
ij log(πj)

︸ ︷︷ ︸
M1

+
n∑

i=1

m∑

j=1

ẑ
(s)
ij log(fj(ri|xi,γj)

︸ ︷︷ ︸
M2

.

Thus, for given θ(s) one computes in the E-step the weights ẑ
(s)
ij and in the M-step

maximizes M(θ|θ(s)) (or rather M1 and M2), which yields the new estimates

π
(s+1)
j =

1

n

n∑

i=1

ẑ
(s)
ij and γ

(s+1)
j = argmaxγj

n∑

i=1

ẑ
(s)
ij log(fj(ri|xi,γj)).

The E- and M-steps are repeated alternatingly until the difference L(θ(s+1)) −
L(θ(s)) is small enough to assume convergence. Computation of γ

(s+1)
j can be

based on familiar maximization tools, because one maximizes a weighted log-
likelihood with known weights. In the case where only intercepts are component-
specific, the derivatives are very similar to the score function used in a Gauss-
Hermite quadrature and a similar EM algorithm applies with an additional cal-
culation of the mixing distribution {π1, . . . , πm} (see Aitkin (1999)).
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Dempster et al. (1977) showed that under weak conditions the EM algorithm
finds a local maximum of the likelihood function L(θ). Hence it is sensible to use
different start values θ(0) to find the solution of the maximization problem.

The log-likelihood of models with categorical response as proposed in the
previous section is computed over the sum of k categories. For the M-step of the
mixture of j categorical models follows

M(θ|θ(s)) =
n∑

i=1

m∑

j=1

ẑ
(s)
ij

(
log(πj) +

k∑

r=1

log(fj(r|xi,γj)
)
,

where ẑ
(s)
ij = π

(s)
j

∑k
r=1 fj(r|xi,θ(s))/

∑m
l=1 π

(s)
l

∑k
r=1 fl(r|xi,θ(s)).

It is also possible to include covariates to determine the probability that observa-
tion i belongs to mixture component j according to characteristics of observation
i. In this case πj is replaced by

πij = 1/(1 + e−z
T
i βj).

Thus M1 is the weighted log-likelihood of a multinomial logit model. M1 and
M2 are maximized separately and provide the estimates. While in model (6)
πj is constant for all observations, now the πij vary depending on individual
characteristics which gives the model more flexibility.
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