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Abstract

The paper analyzes a dynamic model of rational strategic learning in a network.

It complements existing literature by providing a detailed picture of short-run dy-

namics in a game of strategic experimentation where agents are located in a social

network. We show that the delay in information transmission caused by incomplete

network structures may induce players to increase own experimentation efforts. As

a consequence a complete network can fail to be optimal even if there are no costs

for links. This means that in the design of networks there exists a trade-off between

the speed of learning and accuracy.
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“Some people will never learn anything, for this reason, because they understand

everything too soon.” Alexander Pope

1 Introduction

The experience of others plays an important role when individuals have to take decisions

about alternatives that they cannot perfectly evaluate themselves. For example, in situa-

tions of product choice, a person will base his or her decision on own past experiences, ask

friends and coworkers about their opinions, and additionally collect information via other

sources as for instance, customer reviews on the internet. One way to model learning situ-

ations where people have to take decisions under uncertainty is by so called bandit models

(see e.g., Bolton & Harris, 1999 or Keller, Rady and Cripps, 2005 [KRC, hereafter]). The

idea of these models is that players have to choose between different options (different

arms of a bandit machine) under imperfect knowledge of their relative advantage, that

is, the outcomes of the arms are uncertain. By playing repeatedly, the agents can learn

about the type of the arm, however, this learning or experimentation is costly as future

payoffs are discounted. Such bandit models can provide a framework to discuss different

(economic) situations as e.g., specific problems of product choice, research or innovation.

So far, most models of strategic experimentation assume that agents interact with

everyone else in society. That is, each agent can observe or communicate with the same

set of other individuals and as actions and payoffs are publicly observable, a common

belief about the state of the world prevails. This assumption will be relaxed by letting

agents interact directly only with a subset of agents that is determined by the structure

of connections in a (social) network. This extension of the model is thought to better

reflect interaction patterns in reality, where without doubt the structure of relationships

in shaping beliefs and opinions plays an important role. Empirical work in economics

highlights the impact of network structures in labor markets (e.g., regarding informa-

tion about job vacancies (see e.g., Calvo-Armengol and Jackson, 2004)) or finds evidence

of the importance of interaction patterns in learning about a new technology (see e.g.,

Conley and Udry, 2010). Learning and innovation are influenced by the structures of

communication and information exchange between different sources. In the field of re-

search, workshops and conferences bring together researchers from dispersed geographical

regions and different fields of specialization to enable exchange of ideas. Similarly, inno-

vation plays an important role for firms to secure competitiveness, and the structure of
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information exchange between subsidiaries of multinational organizations might be a key

to success. For example, Nobel and Birkinshaw (1998) analyze communication patterns

between subsidiaries of multinational corporations in international R&D operations and

find that innovation is associated with comparatively high levels of communication within

the firm and outside. Teece (1994) emphasizes the importance of organizational structures

that enable an easy flow of communication between business units and guarantee a high

speed of learning.

The aim of our model is to provide insight into how the structure of relations influences

the evolution of beliefs, decisions and incentives of rational agents who need to acquire

information. More precisely, we consider a dynamic model of strategic learning in which

individuals can generate own information (through experimentation) and obtain infor-

mation through interaction (observation and verifiable message exchange) with others.

The interaction possibilities are determined by specific social interaction structures. As a

basis for the model, a discrete time version of the exponential bandit model by KRC as

in Heidhues, Rady and Strack (2012) [HRS hereafter] will be used. In this model agents

can choose between a safe option and a risky option. The payoff of the risky alternative

depends on the state of the world which can be either good (i.e., generate higher payoffs

than the safe option) or bad. Agents base their decision on their belief, i.e., the probabil-

ity attached to the good state of the world and their beliefs depend on their observations

and hence the interaction structure. This interaction structure will be fixed and imposed

on the agents before the game starts.

First, we characterize symmetric equilibria in Markovian strategies of the strategic ex-

perimentation game in three different network structures, the complete network, the ring

and the star network. Further, experimentation intensities in equilibrium are compared

across these structures. It is shown that in a network structure in which agents learn from

unobserved players (neighbors of neighbors) with a delay, players increase their experi-

mentation intensity or effort to compensate for the slightly worse possibility to learn from

others. Depending on the structure and the belief, agents are able to fully outweigh this

loss and thereby keep expected utilities unaltered compared to interaction in a complete

network. The agents’ strategies depend on their beliefs and there exists an upper cut-off

belief above which agents experiment with full intensity and a lower cut-off below which

experimentation ceases. These cut-off beliefs depend on the network structure as well as

time and take into account whether agents still expect information that was generated by

unobserved individuals to arrive. Specialization, where one player does not experiment

while others do, arises in networks where agents are not symmetric with respect to their
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position as in the star network. While for some beliefs specialization can be beneficial for

society, it is detrimental to welfare for others.

The obtained results offer insights into the incentives that drive the behavior of rational

agents. Taking research or innovation as examples, a welfare analysis of the model provides

insights which might be relevant to government authorities or companies for structuring

and subsidizing research projects. Objectives of decision makers can be manifold as

for instance, cost minimization, utility maximization, the maximization of the speed of

learning through fast information transmission or completeness (that is, more precise or

accurate learning which implies that the probability of mistakenly abandoning a good

risky arm is minimized). Interestingly, even if there are no costs for links there exists an

interval of beliefs for which the complete network does not generate highest payoffs. As

part of a welfare comparison, we observe a trade-off between interaction structures that

enable a fast speed of learning and structures in which learning is more precise. How this

trade-off is resolved depends on the discount factor.

In strategic experimentation models, where agents can observe the outcomes and ac-

tions of others, strong incentives to free-ride on the experimentation effort of others exist

and prevent the socially optimal outcome (see e.g., Bolton and Harris, 1999 or KRC).

Bimpikis and Drakopoulos (2014) show that (full) efficiency can be obtained in the model

of KRC if information is aggregated and released with an optimal delay. As we will see, a

network structure also causes time lags in the information transmission that can increase

experimentation efforts and mitigate free-riding. The structure of the model further al-

lows us to analyze the results in the context of organizational design thereby offering

insights about optimal organization or communication structures.

The paper contributes to the theory of rational strategic learning in networks and

aims to fill the gap between static models and dynamic models that focus on long-run

results and conditions for complete learning. Due to the complexity that network set-

tings can create, attention was often restricted to the behavior of myopic or boundedly

rational agents to ensure tractability.1 In a recent contribution Sadler (2014) analyzes a

strategic experimentation problem as in Bolton and Harris (1999) in a network setting

with boundedly rational agents. In this model, each player assumes that her neighbors

have the same belief as she does and players do not learn anything from the actions of

neighbors (and consequently agents do not draw inferences about actions or outcomes of

neighbors of neighbors).

1See e.g. Jackson (2008), Chapter 8 or Goyal (2009), Chapter 5 for different types of learning models

in a network setting.
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In the field of rational learning, there are several examples of Bayesian learning models

focusing on asymptotic long-run results and conditions for complete learning or conver-

gence of actions or payoffs (see e.g. Gale and Kariv, 2003, Acemoglu and Ozdaglar, 2011,

Rosenberg, Solan and Vieille, 2009, Acemoglu, Bimpikis and Ozdaglar, 2014). These re-

sults, however, offer little insight into how social relations shape incentives in early stages

of the learning process.

The paper most closely related to our model is Bramoullé and Kranton (2007) [BK

hereafter] who investigate a public goods game in a network and are able to draw con-

clusions about short run effects in a static framework. The authors show that networks

can lead to specialization and that this specialization can have welfare benefits, features

that are confirmed within our framework. One difference between the model of BK and

our model is that in games of strategic experimentation only informational externalities

are present and no payoff externalities. Moreover, in BK’s framework an agent’s effort

is a substitute for the effort of neighbors but not neighbors of neighbors meaning that

they focus on local public goods and most importantly, BK consider a static setting. As

learning, innovation and research have a dynamic character, a dynamic perspective might

be better suited to analyze these processes. Such a perspective yields additional insights

concerning the updating rules agents use, the effects of different beliefs within a society

that are a consequence of asymmetric positions, and the impact of network structures on

the speed and accuracy of learning.

The paper is structured as follows: Section 2 introduces the basic model. In Section

3 the complete network is analyzed to set up a benchmark case for future comparison.

Section 4 analyzes a simple incomplete interaction structure, namely a ring, to see how

spatial structures change the problem at hand. In Section 5, the star network as the

simplest irregular network is considered, before a welfare analysis is conducted in Section 6.

Section 7 contains a discussion and conclusion. All proofs are relegated to the Appendix.

2 Model

First, we describe the underlying bandit model. After that, main concepts of the network

structure are outlined and the timing and information structure are specified. With the

help of a short example we briefly show how a network structure affects updating rules.

Finally, strategies as well as the equilibrium concept are discussed.
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2.1 A two-armed bandit model

The model is based on the two-armed exponential bandit model as described by KRC or

more specifically the discrete time version thereof by HRS. There are agents i ∈ N and we

denote the cardinality of N by n. Time is discrete, t = 1, 2, ... and players discount future

payoffs by a common discount factor δ ∈ (0, 1). Agents can decide how much effort to

invest in each of two projects, which correspond to two different arms of a bandit machine.

The safe arm yields a fixed deterministic payoff normalized to 0. The second arm is risky

(denoted by R) with an uncertain payoff Xi(t).

The distribution of the risky payoffs is independent across players and time and only

depends on the state of the world, which is either good (θ = 1) or bad (θ = 0). If it is

bad, then R yields a low payoff XL, if it is good, then it yields either a high payoff XH or

a low payoff XL, where XL < 0 < XH . The probability of receiving a high payoff is zero if

the arm is bad and P (XH |θ = 1) = π > 0 if it is good. Consequently, the first high payoff

realization (also called a breakthrough) perfectly reveals that the risky arm is good. The

conditional expectation E[Xi(t)|θ] of the risky payoff in any given period is denoted by

Eθ and additionally to the fact that E0 < 0 we assume that E1 > 0, which means that it

is optimal for the players to use the risky arm if θ = 1 and the safe arm if θ = 0.

Players hold a belief about the risky arm being good, and it is assumed that everyone

starts with a common prior. The belief, denoted by p, depends on the arrival of a break-

through and is therefore a random variable. The agents influence each other only through

the impact of their action on the belief of others, meaning there are only informational ex-

ternalities and no payoff externalities. In the model of HRS and KRC, all players interact

with everyone else in the society and hence all agents hold a common posterior belief. This

will no longer be true in our model, where players interact only with a subset of society.

A player’s belief about the risky arm being good depends on whether she learns about a

breakthrough or not. Once an agent learns about a breakthrough, her uncertainty about

the type of the arm is fully resolved and the posterior belief jumps to 1. As long as agents

experiment without learning about a breakthrough, they update their belief according to

Bayes’ rule and the belief about the risky project being good decreases. Players are said

to experiment if they use the risky arm before knowing its type.

2.2 Introducing a network structure

Given a set of nodes N (representing individuals), a network or graph g is an n × n in-

teraction matrix that represents the relationships in the society. The typical element is
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denoted by gij ∈ {0, 1}. If gij = 1, a link between i and j exists and implies that these two

individuals can interact with each other, i.e., exchange information about actions and out-

comes. The matrix is symmetric (gij = gji), meaning links are undirected, and always has

1 on the main diagonal (every individual can observe his or her own actions and outcomes,

i.e., gii = 1 for all i). The structure of relations is assumed to be common knowledge.

If a link between two individuals exists, those agents are considered as neighbors. The

neighborhood of agent i is denoted by Ni and defined as Ni(g) = {j 6= i : gij = 1}. The

number of direct neighbors, #Ni, is called the degree di of agent i. Subsequently a fixed

interaction structure g will be assumed. The game is analyzed in three different network

structures: the complete network2 as a benchmark case; the ring, an incomplete but reg-

ular3 structure; and the star network with one player in the center and all other n − 1

players only connected to the central player (see Figure 1).
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Figure 1: Network structures for n = 6.

2.3 Actions, information structure and timing

Agents are endowed with one unit of (perfectly divisible) effort each time period t = 1, 2, ...

that can be allocated between the two projects. The experimentation effort φi(t) ∈ [0, 1]

corresponds to the fraction of the unit resource that is allocated to the risky arm and

1 − φi(t) is allocated to the safe arm. That is, we write φi(t) = 1 if the agent uses

the risky arm exclusively and φi(t) = 0 if the safe arm is used exclusively. To provide a

distinction between information generated in the first and in the second round of the game

we will also denote first round experimentation effort by αi ∈ [0, 1], that is φi(1) = αi,

and second round experimentation effort by βi ∈ [0, 1]. Here βi is the experimentation

effort conditional on not having observed a breakthrough in the first round.

The game can be divided into two stages. In the first stage, which consists of periods

2A complete network is a network in which every agent is connected to everyone else.
3Regular networks are networks where all players have the same number of neighbors, i.e. di = dj for

all i, j ∈ N.
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1 and 2, agents can experiment and transmit information. In the second stage starting

from t = 3, they cannot experiment anymore but still exchange information about what

they observed. More precisely, for t ≥ 3 we have φi(t) = 0 if agent i did not learn

about a success up to time t and φi(t) = 1 otherwise. Restricting the time horizon for

experimentation to two periods is sufficient to capture the dynamic perspective relevant

to the learning process. Further, it reflects the assumption that agents cannot engage in

possibly infinitely long experimentation; research funds for example, are typically granted

over a period of a few years. Information that reaches agents later is still relevant as

they can switch back from the safe to the risky option in case they learn or know this is

optimal.

The timing is as follows: agents start in t = 1 with a common prior belief p(1).

Each agent chooses an experimentation intensity or effort for the first round αi ∈ [0, 1],

determining whether the risky or safe option is chosen. At the end of the first round players

observe their own outcomes as well as actions and outcomes of their neighbors and update

their prior accordingly to pi(2). Those agents who have not observed a success choose

βi ∈ [0, 1] for the second round, observe outcomes and actions in their neighborhood and

exchange verifiable reports about previous experiments by unobserved agents, i.e., in t = 2

agent i knows αh as well as Xh(1) for all agents h ∈ Nj\Ni where j ∈ Ni.
4 From t = 3

onwards agents cannot experiment anymore, but still exchange reports.

Formally, agent i’s information at a given point in time consists of

Ii(t) = {Hi(t), ri(t)},

where

Hi(t) = {φi(1), Xi(1), ..., φi(t), Xi(t)}

is the complete history of actions and outcomes for agent i up to time t and ri(t) =

(ri(1), ..., ri(t)) is the history of reports agent i received. Each element ri(t) is a vector

that contains for each agent j ∈ Ni the history Hj(t) up to this point in time as well as

the reports j received up to t− 1, i.e., rj(t− 1).

The main difference between complete and incomplete network structures lies in the

fact that as soon as the network is incomplete at least some of the agents do not possess

4Reports are assumed to be verifiable so that agents have no possibility to lie. If agents are allowed to

freely choose any message, they may find it optimal to report a breakthrough although there was none in

order to induce additional experiments. See HRS for a strategic experimentation game in which payoffs

are privately observed and agents can exchange cheap talk messages.
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complete information about (past) actions and payoffs of others. Consequently, when

interacting with their neighbors, agents obtain information from them about (past) actions

and payoffs of unobserved agents and use this information to make inferences about the

true state of the world. In the complete network the probability that agent i observes

a breakthrough is equal to the probability that there is a breakthrough. In incomplete

networks the probability of learning about a breakthrough at a given point in time depends

on the entire structure of relations, and information about a breakthrough will travel along

the paths in the network. This implies that players will not necessarily hold a common

belief about the state of the world. We will illustrate the impact of the network structure

on the updating of beliefs with the help of a short example.

1 2 3

Figure 2: The star network, n = 3.

Example 1 There are three agents i = 1, 2, 3, whose connections can be described

by the following interaction matrix (see Figure 2)

g =


1 1 0

1 1 1

0 1 1

 .

As g2j = 1 for all j ∈ N, agent 2 has complete information and can observe all actions

and payoffs at any point in time. The other two agents only observe agent 2 and their

own actions and payoffs, and they receive information through agent 2. When agents

experiment, they either generate a breakthrough or not. In our example a successful

discovery by agent 2 immediately reveals to everyone that the risky arm is good. If agent

1 has a breakthrough, only 1 and 2 know about it. However, agent 2 informs agent 3

about the breakthrough so that agent 3 knows about it one period later. As long as there

is no breakthrough, all agents update their beliefs depending on how many unsuccessful

experiments they learn about. If the risky arm is good, the probability that player i

observes a breakthrough if she experiments with intensity φi(t) is given by φi(t)π. Taking

the experimentation effort of others into account, player 2 updates her belief according to

p2(t+ 1) =

p2(t)
3∏
i=1

(1− φi(t)π)

p2(t)
3∏
i=1

(1− φi(t)π) + 1− p2(t)
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if no breakthrough occurs, where
3∏
i=1

(1 − φi(t)π) reflects the experiments conducted by

2 and her neighbors. The numerator is the probability of not observing a breakthrough

at a good risky arm and the denominator gives the total probability of not observing a

breakthrough. In case of a breakthrough the posterior jumps to 1. Player 1 updates her

belief according to

p1(t+ 1) =

p1(t)
2∏
i=1

(1− φi(t)π)(1− φ3(t− 1)π)

p1(t)
2∏
i=1

(1− φi(t)π)(1− φ3(t− 1)π) + 1− p1(t)
,

if there is no breakthrough. At time t agent 1 observes the outcome of her own experi-

ment, as well as agent 2’s experiment. While agent 1 does not observe agent 3’s current

experiment she gets informed about the experiment performed in t− 1, which is captured

by the term (1− φ3(t− 1)π). Agent 3’s belief at time t is derived analogously.

In the example player 1 and player 3 are only connected via player 2. In general, more

complex interaction structures (for example, large irregular structures with overlapping

neighborhoods) are possible, so that the computations agents have to make are getting

considerably more complicated. How many experiments agents learn about and hence the

updating of beliefs, depends on time and on location.

2.4 Strategies and equilibrium concept

At t = 1, 2 players are restricted to (pure) Markovian strategies in that φi(t) can depend

on the belief pi(t) and time t only. For t ≥ 3, behavior is restricted as already described in

Section 2.3. In round t, agent i obtains a payoff of φi(t)Xi(t) and player i’s total expected

(normalized and discounted) payoff is given by

(1− δ)E

[
∞∑
t=1

δt−1φi(t)Xi(t)

]
, (1)

where the expectation is taken with respect to pi(t) and φi(t). The reason why the sum

over all payoffs goes from 1 to ∞ (and not only until 2) is that agents are allowed to

switch to the risky arm if information about a breakthrough reaches them at a later date

(see Section 2.3). The solution concept is Markov perfect equilibrium. In what follows we

restrict attention to equilibria in which agents who are symmetric with respect to their

position in a network use symmetric strategies.
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3 The Single Agent and the Complete Network

Before we analyze the generation and diffusion of information in incomplete networks we

first explain how the experimentation problem is solved by a single agent. After that,

we look at the model with n agents, where each individual can observe everyone else.

Expressed in terms of networks this corresponds to the empty and the complete network.

3.1 The single agent problem

This section outlines the results that are obtained if a single agent faces the two armed

bandit problem described above. For a single player posterior beliefs are determined by

Bayes’ rule according to

pi(t+ 1) =
pi(t)(1− φi(t)π)

1− pi(t)φi(t)π
(2)

if she does not observe a breakthrough. The posterior jumps to 1 after a success. The

single agent’s maximization problem for two rounds of experimentation is

max
αi,βi∈[0,1]

U(p(1), αi, βi),

where

U(p(1), αi, βi) = αi[(1− δ)Ep(1) + δE1p(1)π] +

δ(1− p(1)αiπ)βi[(1− δ)Ep(2) + δE1p(2)π], (3)

with Ep = E1p+ (1− p)E0 and p(2) given by (2). In expression (3) the first part, αi(1−
δ)Ep(1), is the expected and normalized current payoff the agent obtains at t = 1 by

exerting effort αi. A good risky arm generates a payoff of E1, while a bad risky arm

gives E0. The remaining terms represent the discounted expected continuation payoff.

The continuation payoff depends on the occurrence of a breakthrough and is E1 with

the probability αip(1)π that the risky arm is good and a breakthrough occurs. After

a breakthrough the agent knows that the risky arm dominates the safe arm and hence

she will continue to play risky forever. If the agent does not observe a success she can

experiment one more time in t = 2. The probability of not observing a breakthrough

consists of the probability that the risky arm is bad, 1− p(1), and the probability that it

is good, but the agent nevertheless did not have a breakthrough, p(1)(1− αiπ). As there

are only two rounds of experimentation, the agents’ continuation payoff after a second

unsuccessful experiment is zero forever.
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The agent solves

max
αi,βi∈[0,1]

U(p(1), αi, βi),

where U(p(1), αi, βi) is given by (3). Replacing p(2) by p(1)(1−αiπ)
1−αip(1)π

in (3) we can see that

the objective function is linear in both choice variables αi and βi. This implies that

the solution to the maximization problem is located on the boundaries of the [0, 1] ×
[0, 1] square. Actually, for the case considered here only three points for (α, β), namely

(0, 0), (1, 0) and (1, 1), can be optimal. It is easy to show that it is never optimal for an

agent to delay experimenting, that is, to play (0, 1). The reason for this is simply that

future payoffs are discounted, which implies that if an agent wants to experiment, then

it is optimal to do so earlier rather than later. Which strategy is optimal depends on

p(1) and can be easily found by comparing expected utilities for each pair of actions. The

action profile (0, 0) is optimal for any p(1) smaller than

pa =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + δE1π
, (4)

where a stands for autarky. As long as p(1) ≥ pa, the expected payoff from experimenting

is positive which means that the risky arm is preferred. If an agent experiments without

success her belief declines and as expected payoffs are increasing in beliefs, per period

payoffs from experimenting also decrease over time if there is no breakthrough. Agents

stop experimenting at a belief pa > 0, which means that it is possible that they abandon

the risky project although it is good. The cut-off belief pa decreases in δ, which means

that as agents are getting more patient, complete learning becomes more likely. That is,

the final posterior belief is smaller and hence the probability of mistakenly switching from

the risky to the safe arm although the risky arm is good, decreases. Finally, the prior

belief above which it is optimal to experiment in both rounds is

p(1) =
(1− δ)|E0|

(1− δ)|E0|+ E1[1− δ − π + δπ(2− π)]
,

for which the corresponding posterior after one failed experiment equals pa. Figure 3

depicts the relationship between belief and optimal experimentation effort.

Each round a single agent either uses the safe arm exclusively or the risky arm exclu-

sively, and her actions only depend on the belief in the given round, that is, in t = 1, 2

φai (t) =

{
1 for p(t) ≥ pa,

0 otherwise.

The single agent’s strategy does not depend on time t for two reasons. First, even though

experimentation is not possible for t ≥ 3, agents can still use the risky arm (and obtain
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1

1pa

φai (t)

pi(t)

Figure 3: Optimal experimentation effort of a single agent (π = 0.2, δ = 0.9, E1 = 1,

E0 = −1 and pa ≈ 0.26).

high payoffs) in case this is known to be optimal (i.e., the game does not end after t = 2).

Second, for a single agent all payoff-relevant information is captured by the current belief.

We will see that time only matters when agents still expect information that was generated

by unobserved agents to reach them at a later date.

3.2 Strategic experimentation in a complete network

Let us now consider agents interacting strategically in a complete network. Each player

maximizes her expected utility over αi and βi given her belief and the strategies of the

other players, α−i, β−i. We denote
n∏
i=1

(1− αiπ) by α̃ and
n∏
i=1

(1− βiπ) by β̃. Each player

solves

max
αi,βi∈[0,1]

U(p(1), αi, βi, α−i, β−i)

where

U(p(1), αi, βi, α−i, β−i) = αi(1− δ)Ep(1) + δE1p(1)(1− α̃) +

δ (1− p(1)(1− α̃))
(
βi(1− δ)Ep(2) + δE1p(2)(1− β̃)

)
(5)

and

p(2) =
p(1)α̃

p(1)α̃ + 1− p(1)
.

The difference to the problem of a single agent is that the continuation payoff of agent i

now also depends on the actions of the other players. Proposition 1 describes the optimal

experimentation effort in a symmetric equilibrium.
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Proposition 1. In a symmetric equilibrium in a complete network with n agents, the

common strategy in t = 1, 2 is given by

φc(t) =


1 for p(t) ∈ [pc, 1],

1
π
− 1

π

(
(1−δ)|E0|
δE1πp(t)

− (1−δ)(|E0|+E1)
δE1π

) 1
n−1

for p(t) ∈ (pa, pc),

0 for p(t) ∈ [0, pa],

(6)

where

pc =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + δE1π(1− π)n−1
.

We can see that there exists an interval of beliefs such that in a symmetric equilibrium

players want to simultaneously use both arms. In this interval αc is chosen such that

agents are indifferent between the risky and the safe arm. There now exists an upper

cut-off belief, pc, which is the belief above which agent i experiments with intensity 1

even if all others also experiment with full intensity. Starting from pc agents decrease

their experimentation intensity as the belief decreases, up to the point where φc(t) = 0,

which holds for any belief below pa. Figure 4 depicts the equilibrium strategy.5

1

1p̄cpa

φc(t)

p(t)

Figure 4: Equilibrium experimentation effort in a complete network (π = 0.2, δ = 0.9,

n = 12, E1 = 1, E0 = −1, pa ≈ 0.26 and p̄c ≈ 0.46).

Several features of the equilibrium experimentation strategy are worth noting. First,

there is at most one round in which agents simultaneously want to use both arms. In fact,

n failed experiments from p̄c generate a posterior belief below pa, and the effort φc(p(t))

5Note that depending on the parameters of the model the relationship between effort and belief can

be convex, concave or both. Effort is, however, monotonically increasing in the agents’ belief.
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of beliefs p(t) ∈ (pa, p̄c) causes the posterior to fall below the single agent cut-off if there

is no success. Second, as in the single agent case, agents do not have an incentive to delay

any experiments. This implies that in case βc > 0, we know that αc = 1. Third, the upper

cut-off pc is increasing in n, whereas the lower threshold is given by pa. Social optimality

requires experimentation beyond the single agent cut-off since agents benefit from each

other’s experimentation effort. However, agents do not experiment below pa and even

stop experimenting with full intensity earlier with an increasing number of agents, which

is a particularly stark manifestation of the free-riding effect (see HRS or KRC).

4 The Ring Network

Having set up the complete network as the benchmark case, we now turn to the strategic

experimentation problem when agents are located on a ring. In the ring network every

agent has two direct neighbors. As players are symmetric there again exists a symmetric

equilibrium. Individuals experiment and communicate, i.e., exchange messages about

observations made in their neighborhood as well as messages received from their neighbors.

The underlying structure is illustrated in Figure 1b for n = 6 and implies that agent 1 is

informed about the outcomes of the experiments of agent 3 with one period delay through

communication with agent 2 and so on.

In the ring network we have to distinguish between an even and an odd number of

players, as this determines how much information arrives in the last round where new

information reaches agent i. As the results are similar in both cases we will only discuss

the case where n is odd here. Expected payoffs for a given prior and strategy profile are

U(p(1), αi, βi, α−i, β−i) = αi(1− δ)Ep(1) + δE1p(1)[1− (1− αjπ)2(1− αiπ)]

+δ[1− p(1) + p(1)(1− αjπ)2(1− αiπ)]u(p(2));

as we are solving for symmetric equilibria, we are assuming here that all agents j 6= i use

the same strategy. The term

u(p(2)) = βi(1− δ)Ep(2) + δE1p(2)[1− (1− βjπ)2(1− βiπ)(1− αjπ)2]

+δ[1− p(2) + p(2)(1− βjπ)2(1− βiπ)(1− αjπ)2]u(p(3)),

as well as u(p(3)), u(p(4)) and so on, is determined by the information about past ex-

periments traveling through the network. That is, with the probability that at least one

experiment agent i learns about in period 1 is successful, p(1)[1 − (1 − αjπ)2(1 − αiπ)],

she expects to get a continuation payoff of E1 from the next period onwards. These are
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the two experiments of the neighbors as well as the own experiment. In case all these

experiments were unsuccessful, in the next round she and her neighbors can again exper-

iment and further there is the chance that neighbors of neighbors had a breakthrough in

the first round about which agent i will learn now. In u(p(2)), the factor (1 − αjπ)2 in

1 − (1 − βπj )2(1 − βπi )(1 − απj )2 represents the experiments of neighbors of neighbors in

t = 1, (1 − βjπ)2 the two experiments of the direct neighbors in t = 2, and 1 − βiπ the

own experiment in t = 2.

Figure 5 illustrates how the game evolves for n = 4. At the beginning the agents start

with a prior belief p(1), choose their optimal experimentation intensity α and receive the

expected payoff for this round. Then the agent either knows that the state of the world

is good if there was a breakthrough in her neighborhood, or she chooses her optimal

experimentation intensity β based on her updated belief p(2). The difference between the

first and the second period is that in t = 2 the agent does not only observe her own and

her neighbors’ experiments, but also receives information about the outcome of the first

round experiment of the unobserved agent. In the round afterwards experimenting is no

longer possible. However, there still might arrive information about a breakthrough of

the unobserved agents. This process continues until all information has reached agent i

which takes the longer the more players there are.

α

β

t = 1

t = 2

t = 3

t = 4

(1− δ)Ep(2)

0

0

(1− δ)Ep(1)

E1

E1

E1

p(1)[1− (1− αiπ)(1− αjπ)2] 1− p(1) + p(1)(1− αiπ)(1− αjπ)2

p(2)[1− (1− βiπ)(1− βjπ)2(1− αjπ)]

p(3)βjπ

1− p(2) + p(2)(1− βiπ)(1− βjπ)2(1− αjπ)

1− p(3)βjπ

Figure 5: The strategic experimentation game in a ring network, n = 4.

In contrast to the complete network, it is important to highlight that first period and

second period equilibrium cut-offs will be distinct. This can be ascribed to the fact that

after one round of experimentation, information is traveling through the network and

agents anticipate that this information will reach them. Apart from this, the problem
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is similar to the complete network. Expected payoffs are again linear in αi and βi and

best responses and equilibrium cut-offs can be found by the same arguments as in the

previous section. In order to analyze the equilibrium behavior of the agents we introduce

the expressions Ir1 and Ir2 . I
r
1 represents the difference in expected payoffs of action profiles

(1, 0) and (0, 0) for symmetric actions of the other players. This means that Ir1 > 0 implies

that payoffs from experimenting are higher than payoffs from not experimenting in t = 1

and at Ir1 = 0 agents are indifferent. Ir2 refers to the difference in expected payoffs between

(1, 1) and (1, 0). The expressions for the Ir1 , I
r
2 and equilibrium cut-off beliefs can be found

in the Appendix. Proposition 2 summarizes the main points.

Proposition 2. In a symmetric equilibrium in a ring network with an odd number of

players, each player chooses the following action: at t = 1

• αr = 1 for p(1) ∈ [pr(1), 1],

• αr = 0 for p(1) ∈ [0, pa],

• αr ∈ (0, 1) is defined uniquely by the root of Ir1 on [0, 1] for p(1) ∈ (pa, pr(1)).

At t = 2,

• βr = 1 for p(2) ∈ [pr(2), 1],

• βr = 0 for p(2) ∈ [0, pr(2)],

• βr ∈ (0, 1) is defined uniquely by the root of Ir2 on [0, 1] for p(2) ∈ (pr(2), pr(2)).

As can be seen in Proposition 2 the lower cut-off below which experimentation ceases

in the first period, is equal to the single agent cut-off. The upper equilibrium cut-off in the

ring differs from the one in the complete network and it is easy to verify that pr(1) < pc

with the difference pc − pr(1) monotonically increasing in n. This difference increases in

the number of players because information needs longer to be transmitted and agents in

the ring might experiment themselves instead of waiting for information of unobserved

players. In addition, we have pr(2) > pr(1) and the differences between pr(1) and pr(2)

(as well as between pa and pr(2)) stem from the two experiments of the neighbors of

neighbors that agent i learns about in the second round. Comparing the second round

cut-off in the ring, p̄r(2), to the upper cut-off of the complete network, we can see that

the difference between pr(2) and pc is positive for small n. However, as n increases this

difference decreases and turns negative such that for a larger number of agents pr(2) < pc.
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The longer agents have to wait for information, the more likely they will find it optimal

to experiment themselves in the meantime.

We are interested in the difference between a complete network and the ring in terms

of experimentation effort in equilibrium. Proposition 3 below shows that in the ring

network the number of experiments is never smaller than in the complete network. In

t = 1 it is easy to show that for high priors in both networks all agents experiment, for

very pessimistic priors no one experiments and for intermediate values where agents use

both options, the experimentation intensity is higher in the ring. This shows that agents

compensate a worse possibility to learn from others through increased own effort. Figure

6 illustrates this finding.

1

1p̄cp̄r(1)pa

α

p(1)

Figure 6: Equilibrium experimentation effort in a ring network (dashed line) and complete

network (solid line) at t = 1 (π = 0.2, δ = 0.9, n = 12, E1 = 1, E0 = −1, pa ≈ 0.26,

p̄c ≈ 0.46 and p̄r(1) ≈ 0.34).

If all first round experiments fail, beliefs in the two networks in the second round

are different as agents are already more pessimistic in the complete network. Taking the

difference in posterior beliefs into account, it can be shown that the number of second

round experiments in the ring and the complete network will either be the same, or that

experimentation intensities will be higher in the ring. In order to be able to compare

efforts in t = 2 across different networks, we express beliefs in terms of pc(2). This means

that we make use of the fact that in equilibrium the relationship between posterior beliefs
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in the two networks after one round of failed experimentation is given by

pc(2) =
pr(2)(1− π)n−3

pr(2)(1− π)n−3 + 1− pr(2)
.

Proposition 3. Experimentation intensities in the ring network are at least as high as

in the complete network. More precisely,

αr > αc

αr = αc
for p(1) ∈ (pa, pc),

for p(1) ∈ [0, pa] ∪ [pc, 1]

and
βr > βc

βr = βc
for pc(2) ∈ (p̃r(2), pc),

for pc(2) ∈ [0, p̃r(2)] ∪ [pc, 1]

where

p̃r(2) =
pr(2)(1− π)n−3

pr(2)(1− π)n−3 + 1− pr(2)
< pa.

The first thing we note about Proposition 3 is that agents in the ring network exert

higher effort than agents in the complete network on certain intervals of beliefs. Further,

agents in the ring network experiment in t = 2 at beliefs for which the posterior after n

failed experiments is already below pa. If information arrives with delay, agents might

be better off experimenting themselves instead of waiting for information generated by

others. However, as this information will eventually reach them, the final posterior belief

in the ring network can be more pessimistic than in the complete network. That is,

the probability of mistakenly abandoning a good risky project decreases and learning

is more accurate. This is in line with the finding of Bimpikis and Drakopoulos (2014)

that delaying information revelation might increase the amount of experimentation. The

speed of learning, measured by the number of time periods until information has traveled

to every node in the network, decreases due to the incomplete network structure. However,

free-riding is reduced as players increase their effort over certain intervals of beliefs.

The analysis of the ring network shows that agents adjust their experimentation effort

in equilibrium when information arrives with a delay. To obtain a better understanding

of the role of different interaction structures, we now turn to the star network to explore

the impact of asymmetric positions. We will see that the irregular structure of the star

network has interesting consequences for experimentation efforts (as well as payoffs) in

equilibrium.
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5 The Star Network

In the star network one player, called the hub, is located in the center and has a link to

each of the other n − 1 players. The players at exterior positions, also called peripheral

players, are only connected to the hub. Players are no longer symmetric and hence an

equilibrium in which all players use the same strategy does not exist. In Proposition

4 below we construct an equilibrium where peripheral players use symmetric strategies

and the hub exerts less effort than agents in a symmetric equilibrium in the complete

network. More precisely, the hub exerts full effort until pc and for beliefs below does not

experiment at all. The peripheral players on the other hand use higher effort compared to

the complete network. Proposition 4 describes the structure of the equilibrium where Is1

and Is2 are the respective counterparts to Ir1 and Ir2 for the peripheral players in the star

network. The expressions for the various cut-offs beliefs as well as Is1 and Is2 can again be

found in the Appendix.

Proposition 4. An equilibrium of the strategic experimentation game in the star net-

work where peripheral agents use symmetric strategies can be described as follows. The

experimentation intensity at t = 1, 2 for the hub satisfies

φh(t) =

{
1 for p(t) ∈ [pc, 1],

0 otherwise.

For the peripheral players equilibrium actions in the first round are

• αs = 1 for p(1) ∈ [ps(1), 1],

• αs = 0 for p(1) ∈ [0, pa],

• αs ∈ (0, 1) is defined uniquely for p(1) ∈ (pa, ps(1)) by the root of Is1 on [0, 1].

Second round experimentation intensities are

• βs = 1 for p(2) ∈ [ps(2), 1],

• βs = 0 for p(2) ∈ [0, ps(2)],

• βs ∈ (0, 1) is defined uniquely for p(2) ∈ (ps(2), ps(2)) by the root of Is2 on [0, 1].

Agents are now no longer in symmetric positions and the hub faces a different problem

than the peripheral players. In particular, the central player is completely informed about

all experiments like in a complete network. Hence, it is optimal for him to experiment
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with full intensity for any belief above p̄c. For beliefs between (pa, p̄c) the central player

would follow the complete network equilibrium path if the peripheral players did so as

well. If the peripheral players exert lower effort, that is if αs < αc, the hub finds it

optimal to increase his effort compared to the complete network. On the other hand, if

αs > αc, the best response for the hub is not to experiment at all. As it can be shown

that p̄s(1) < p̄c, we know that in the interval [p̄s(1), p̄c) the hub does not experiment. We

can then show that, if the hub does not experiment at all for beliefs below p̄c, the best

response for the peripheral players in (pa, p̄c) is to exert higher effort than in the complete

network, that is, αs > αc. For priors above or below the interval (pa, p̄c) there will be full

or no experimentation, respectively. This is illustrated in Figure 7.

1

1p̄cp̄s(1)pa

α

p(1)

Figure 7: Equilibrium experimentation effort of the peripheral players in the star network

(bold dotted line), the central player in the star network (dashed line) and in a complete

network (solid line) at t = 1 (π = 0.2, δ = 0.9, n = 12, E1 = 1, E0 = −1, pa ≈ 0.26,

p̄c ≈ 0.46 and p̄s(1) ≈ 0.42).

Remark 1. For some values of the parameters there exists a second equilibrium in which

the peripheral players use symmetric strategies. In this equilibrium the hub exerts full

effort for beliefs p(1) ∈ [pa, ps(1))∪ [pc, 1] and no effort for p(1) ∈ [0, pa)∪ [ps(1), pc). This

means that the effort of the hub is non-monotonic in the belief. The peripheral agents

exert full effort for beliefs above ps(1). For any belief in [pa, ps(1)) their experimentation

intensity is lower than the experimentation intensity that would make the hub indifferent,
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that is, αs < αc. The second equilibrium only exists if n is small and δ and π are large.

For this reason we will subsequently restrict attention to the equilibrium of Proposition 4.

Whether there will be more experiments in the star or the complete network depends

on the possibility of the peripheral agents to counterbalance the decreased experimentation

intensity of the hub. In the equilibrium described in Proposition 4 the experimentation

effort of the hub is below or equal to the effort level of the peripheral players, that is

αh + βh ≤ αs + βs.

As will be shown in Proposition 5, except for a combination of parameter values where

n is small and δ and π are rather large, overall experimentation intensities in the star

network are higher or equal to experimentation effort in the complete network.

Proposition 5. Comparing effort in the complete network and the star network we obtain

(n− 1)αs + αh = nαc for all p(1) ∈ [0, pa] ∪ [pc, 1]

and

(n− 1)βs + βh = nβc for all pc(2) ∈ [0, p̃s(2)] ∪ [pc, 1]

where

p̃s(2) =
ps(2)(1− π)n−2

ps(2)(1− π)n−2 + 1− ps(2)
< pa.

For p(1) ∈ (pa, pc) there exists a strict subset Sn(p(1)) of [0, 1]2 such that

(n− 1)αs + αh > nαc if and only if (δ, π) ∈ Sn(p(1)).

Moreover, λ(Sn(p(1))) → 1 as n → ∞ with λ denoting the Lebesgue measure on R2.

Similarly, for pc(2) ∈ (p̃s(2), pc) there exists a strict subset Sn(p(2)) of [0, 1]2 such that

(n− 1)βs + βh > nβc if and only if (δ, π) ∈ Sn(p(2))

and λ(Sn(p(2)))→ 1 as n→∞.

The first part of Proposition 5 states the intervals of beliefs in which experimentation

effort in equilibrium in the complete network is equal to the star network, because there is

either no experimentation or all agents exert full effort. For beliefs outside these intervals

(that is, p(1) ∈ (pa, p̄c)) and pc(2) ∈ (p̃s(2), pc) we know that φh(t) = 0. The region

Sn(p(1)) is then defined as all combinations of δ and π for which total effort in t = 1

in the complete network is strictly smaller than in the star network. By analyzing this

expression (see Appendix) numerically, one can see that the value for δ below which
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(n− 1)αs ≥ nαc is in general “quite close” to 1. For example, for n = 3, (n− 1)αs ≥ nαc

as long as δ ≤ 8
9

even if π takes values arbitrarily close to 1. As n increases, the threshold

value for δ increases and already for relatively small n (n = 6) δ ≤ 0.99 suffices to

guarantee that (n − 1)αs ≥ nαc again assuming values of π close to 1. The lower π, the

higher is δ below which (n− 1)αs ≥ nαc.

The total experimentation intensity in the interval where agents use both arms is

higher in the star network except for a combination of parameter values with high δ, high

π and small n. That is, unless agents are very patient, effort in the star is higher even

though the hub does not experiment. This indicates that the peripheral agents increase

own efforts accordingly to outweigh the missing experimentation of the hub as well as the

payoff disadvantage that arises from delayed information transmission. The higher δ, the

closer are αs and αc and consequently the more likely is (n−1)αs < nαc. If the number of

players is small, more weight is placed on the hub and it is more difficult for the peripheral

players to compensate for the missing experiment of the central player.

We now turn to a comparison of experimentation intensities in the ring and the star

network. As the number of agents increases, more information arrives with a greater

number of time lags in the ring. In the star network on the other hand, the delay does

not change if the number of players changes. Restricting attention to intervals of beliefs

in which neither φr(t) = φs(t) = 0 nor φr(t) = φs(t) = 1, we show in Proposition 6 below

that for small n, experimentation intensities in the star network are no smaller than those

in the ring while for a large number of players it depends on δ and π.

Proposition 6. Comparing φs(t) to φr(t) for all p(t) from the interval in which at least

in one of the two networks agents are indifferent between experimenting and using the safe

option (that is, Irt = 0, or Ist = 0, or both), we have for t = 1, 2 that

(i) there exists nt ∈ N such that for all n < nt, φ
s(t) ≥ φr(t) for all (δ, π) ∈ [0, 1]2 and

(ii) as n→∞ the region of (δ, π) in which φs(t) ≥ φr(t) is a strict subset of [0, 1]2.

The first point of Proposition 6 tells us that for a small number of players efforts in

the star are greater (in the interval of beliefs where agents use both arms) or equal to

effort in the ring. For a larger number of agents, this is no longer true in general. Part

(ii) of the proposition says that as n becomes large, the region for which effort in the

star network is higher becomes a strict subset of [0, 1]2. As a consequence of part (ii) and

the fact that φr(t) and φs(t) intersect only at one belief (e.g., in t = 1 at pa), we can
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also conclude that there exists some finite natural number such that for all n above this

number there exists a non-empty set of parameters (δ, π) for which φs(t) < φr(t).

Figure 8: Equilibrium experimentation effort in t = 1 in the ring network compared to

the star network for n → ∞. In the light region (denoted by F1(α)) αs ≥ αr and in the

dark region αs < αr.

From Proposition 6 we can infer that the effect of incomplete network structures on

experimentation intensities heavily depends on the discount factor δ and the success rate

π. Suppose in both networks all agents experiment with full intensity at time t = 1. Then,

at the end of this round, peripheral agents in the star network learn about one experiment

fewer than agents in the ring network. For δ close to 1 this does not matter to these agents

as they are almost perfectly patient and it makes little difference to them at which point

in time information arrives. On the other hand, the closer δ is to zero, the more agents

in the star network care about this missing experiment, making them increase own effort.

Figure 8 shows the region in which αs > αr for n → ∞. In the light region we have

αs ≥ αr and vice versa in the dark region. For example, we can see that αr ≥ αs only if π

is not too large. If the probability of a breakthrough is low, it is relatively more likely that

agents will learn about a breakthrough later in the ring than in the star network. Thus,

agents in the ring increase their experimentation effort to balance this effect. Note that

Proposition 6 does not tell us in which network total effort is higher, which matters in the

interval where the hub does not experiment. Similarly to the complete network, in case

we have φs(t) ≥ φr(t), there will be a combination of parameter values for which total

experimentation effort is higher in the ring network, because peripheral players cannot

compensate for the missing experiment of the hub.
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Before turning to the question which network generates the highest welfare among the

three structures considered, let us briefly repeat the main findings of the previous sections.

First, we showed that agents increase own effort if information arrives with delay as it

is better for them to experiment themselves instead of waiting for information generated

by others. Second, in irregular structures there can be specialization where some agents

experiment while others free-ride. Experimenting agents increase their effort to outweigh

the missing experiments as well as the delay in the arrival of information.

6 Welfare Analysis

In the preceding sections it was shown that effort exerted in equilibrium varies with

the interaction structure. In this section we want to analyze the implications of these

differences for expected payoffs in equilibrium. Assuming that it is costly to establish

a communication or interaction structure, we are now interested in which of the three

networks would be chosen (before the agents engage in the experimentation game) by a

social planner that aims to maximize welfare given the strategic behavior of the players.

There are fixed costs k ≥ 0 per link that have to be paid ex ante. The total number

of links in network g depends on the network structure and is n(n− 1)/2 in the complete

network, n in the ring and n− 1 in the star network. The main criterion to measure the

performance of different structures are equilibrium payoffs. The explicit expressions for

expected equilibrium payoffs in the different networks as well as all technical details of the

subsequent analysis can be found in Appendix B. Welfare is defined as the total expected

payoff in equilibrium minus total costs for building the infrastructure. For the complete

network this is

W c(p(1)) = nU c(p(1))− n(n− 1)

2
k.

For the other networks it is defined in an analogous way, that is W r(p(1)) = nU r(p(1))−nk
and W s(p(1)) = (n− 1)U s(p(1)) +Uh(p(1))− (n− 1)k. A network g ∈ {c, r, s} is optimal

for a given prior belief p(1) and set of parameters (δ, π, k, n) if and only if

W g(p(1)) ≥ W g′(p(1)), for all g′ ∈ {c, r, s}.

We write g � g′ if network g generates strictly higher welfare than network g′ and g ∼ g′

if W g(p(1)) = W g′(p(1)).

Proposition 7 below states which network is optimal when k = 0 and the prior belief

p(1) is such that in case all experiments in t = 1 fail, there are no experiments in t = 2,
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that is, p(2) ≤ pg(2) for all g.6 For simplicity of exposition, in the subsequent analysis

we impose E1 = 1 and E0 = −1. Note that we do not include the empty network in

our analysis, which would of course be optimal for very pessimistic priors or high costs.

Without the empty network, clearly, the star network is optimal for sufficiently high costs.

What is more interesting, however, is that the star network is strictly preferred to the

complete network over a certain interval of priors even if links do not incur any costs.

Proposition 7. The following conditions determine which network is optimal for k = 0

and for p(1) such that in case all experiments in t = 1 fail, p(2) ≤ pg(2) for all g :

(i) For p(1) ∈ [0, pa] : c ∼ r ∼ s;

(ii) for p(1) ∈ (pa, ps(1)] : s � c, r and the relation between c and r is given in (iii);

(iii) c ∼ r for p(1) ∈ [0, pr(1)] and c � r for p(1) ∈ (p̄r(1), 1];

(iv) for p(1) ∈ (ps(1), pc] : c � s if and only if

(1−δ)(2p(1)−1)+δp(1)[(1−π)n−1[1+δ(n−1)]+(1−δ)(n−1)(1−π)−n(1−αcπ)n] > 0.

(v) For p(1) ∈ (pc(1), 1]: c � r, s.

For p(1) ∈ (pa, ps(1)] the complete network is never optimal even if costs for links

are zero. This result is somewhat surprising as one might think that it is optimal to

have as many links as possible if they are costless to allow a fast flow of information.

However, in this interval of beliefs the star network is strictly optimal for two reasons.

First, average expected payoffs in the star (where the hub does not experiment) are

higher than in the complete network or the ring, because the hub does not bear the

costs of experimentation but receives the informational benefits. Second, up to ps(1)

the peripheral players can increase their experimentation effort so as to fully compensate

for both the lack of experimentation of the hub as well as the delay in the information

transmission. Up to this threshold, therefore, welfare in the star network is strictly higher

than in the ring or complete network. At some belief above this threshold this result is

reversed and the missing experiment of the central player implies that average expected

payoffs are lower in the star network than in the other networks. Corollary 1 summarizes

this result.

Corollary 1. Specialization in the star network, where αh = 0 and αs > 0, can be

beneficial as well as detrimental to overall welfare.

Another interesting observation can be made by comparing the complete network

to the ring. As pointed out in Section 4, for beliefs in the interval (pa, p̄r(1)] agents

6Appendix B contains a generalization to two rounds of experimenting as well as complete description

of the case n = 4 for any cost level k ≥ 0.
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exert higher effort in the ring network than in the complete network. More precisely,

agents increase their effort to exactly offset the payoff disadvantage resulting from a

slower speed of learning (measured as the number of time periods until all information

has reached every node in the network). This means that expected payoffs in the ring and

the complete network are identical for beliefs in which the players in the ring use interior

experimentation intensities. If all agents in both networks experiment with full intensity

agents learn faster in the complete network and are better off. This implies that, as stated

in Corollary 2 below, there exists a trade-off between network structures that enable a

high speed of learning and structures in which the final posterior in case all experiments

were unsuccessful is more pessimistic.

Corollary 2. In the selection of the optimal network structure there exists a trade-off

between structures associated with high speed of learning, and structures that lead to higher

accuracy of learning.

This trade-off is also apparent when looking at a situation where some agents exper-

iment in t = 2 after a round of failed experimentation in t = 1. It is possible that in

equilibrium in t = 2 only the peripheral players in the star experiment. This situation

can be used to illustrate how the discount factor δ influences which network is optimal.

One main advantage of the complete network compared to incomplete structures lies in

the speed of learning, making it increasingly attractive the stronger future payoffs are dis-

counted. In the interval of beliefs in which only the peripheral players experiment in both

rounds, whereas all agents in other networks experiment only in t = 1, it can be shown

that for high values of the discount factor δ close to 1, the star network is always preferred

(see Appendix B). On the other hand, for δ close to 0, the complete network is preferred

for k = 0. This comparison stresses again the existing trade-off between faster learning

and more complete learning. How this trade-off is resolved depends on the discount factor.

In the course of this section we observed that whether a certain network is optimal,

depends on the agents’ possibility to increase their experimentation effort in order to com-

pensate for the disadvantage of delayed information exchange in incomplete structures.

For costs of links equal to zero, c can only be optimal for prior beliefs p(1) such that

αs = αr = 1, as otherwise agents can increase their experimentation effort in order to

outweigh the delayed arrival of information. At some belief in the interval (ps(1), pc(1)]

the peripheral players in the star can no longer compensate for the nonexperimenting

hub and total experimentation effort is lower than optimal. Generally, as long as players

can increase their efforts to ensure that expected equilibrium payoffs are the same as in

other network structures, only the number of links determines which network is optimal.
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Figure 9: Optimal networks for k = 0, n = 4 and p(1) such that p(2) ≤ pg(2) for all g if

all experiments in t = 1 fail, for different intervals of the prior. The dotted line between

p̄s(1) and p̄c(1) indicates the belief at which peripheral players in the star network can

no longer compensate for the missing experiment of the hub and the delay in information

transmission by increasing own effort.

In the star network an additional effect comes into play, namely the payoff advantage of

the non-experimenting hub, which explains why even for zero costs the star is strictly

preferred for low priors. Figure 9 graphically illustrates for n = 4 which of the three

networks is optimal on different intervals of priors.

Our analysis confirms two results of BK. First, it shows that under certain circum-

stances specialization (that is, some agents exert effort while others free-ride) might benefit

society, and second, welfare can be higher in incomplete interaction structures. However,

we can also show the opposite effect, namely that for certain beliefs specialization can

have a negative impact on overall welfare.

As mentioned in the introduction, network structures can also be interpreted as or-

ganizational structures that determine the flow of information within an organization.

When deciding on the optimal organizational structure (for example, centralized vs. de-

centralized structures), decision-makers might pursue various objectives. For instance, if

the objective is to minimize the costs of information transmission, a centralized structure

such as the star network is optimal. Centralization enables a comparatively fast flow of

information at lowest possible costs. From the perspective of the management of a firm

centralization additionally offers the advantage that a central authority can accumulate

and disseminate information.

Interestingly, we show that a fast flow of information does not necessarily maximize

welfare even if information can be distributed to all players immediately at no cost. How-

ever, what needs be stressed in this context is that the star network is strictly optimal for

low prior beliefs only because of specialization. This implies that asymmetric equilibria in

the complete (or ring) network will most likely generate higher welfare than the symmet-

ric one (see KRC or Bramoullè, Kranton, D’Amours, 2014). Thus, it is not clear whether
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the star is still strictly preferred once agents in the complete network are allowed to use

asymmetric strategies. However, if we compare the symmetric equilibrium in the ring

network to the complete network we see that for beliefs where agents in the ring network

balance the delay in information transmission by increasing effort, expected equilibrium

payoffs are identical. This contradicts the findings of Teece (1994) that innovation has to

be associated with a fast transmission of information.

6.1 Numerical example

In this section we present numerical results that complement the preceding analytical

discussion. While up to this point we focused on the role of the prior, we now want

to obtain a better understanding of the role of different parameters. In our numerical

example we show which network is optimal in a (π, δ)-grid given fixed values of the other

parameters.

Figure 10 illustrates the results. It shows which network is optimal for E0 = −1 and

E1 = 1. The results are calculated for π ∈ [0.01, 0.99] and δ ∈ [0.01, 0.99] both in steps

of 0.01. In the white region no network is strictly optimal as in this region there is no

experimentation (that is, we have indifference). Light grey areas indicate all combinations

of δ and π in which the ring network is optimal, dark grey represents optimality of the

star network, and black means that the complete network is optimal. The three panels

on the left display the results for n = 5, while those on the right have n = 25. In the first

row p(1) = 0.45 and k = 0, in the second row the prior belief is increased to p(1) = 0.96

while k = 0, and in the last row we look at p(1) = 0.96 for costs k = 0.001.

In Figure 10a we see that for low values of δ and π no network is strictly optimal,

as no agent experiments. For medium values of δ, e.g., δ = 0.4, we have indifference for

low values of π and the star network dominates for high π. As δ and π increase, the star

network is less often optimal and expected welfare is highest in the complete network.

More precisely, in 10a the complete network is optimal in 37.4% of the cases, the star

in 17.6%, the ring network in 7.4% and in 37.6% of the cases we have indifference. If

we increase n to 25 (see Figure 10b) the ring network is never optimal and the complete

network is optimal for values of the parameters where for n = 5 the star is optimal. The

percentages change to 61.2% for the complete network, 1.3% for the star and 37.5% for

indifference.

In Figures 10c and 10d agents are very optimistic and experiment for sure. That is,

there is no region of indifference. As expected, the complete network is optimal in this
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(a) p(1) = 0.45, k = 0, n = 5.
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(b) p(1) = 0.45, k = 0, n = 25.
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(c) p(1) = 0.96, k = 0, n = 5.
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(d) p(1) = 0.96, k = 0, n = 25.
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(e) p(1) = 0.96, k = 0.001, n = 5.
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(f) p(1) = 0.96, k = 0.001, n = 25.

Figure 10: Optimal networks for E0 = −1 and E1 = 1.

30



case for a large combination of parameters (92.4% in 10c and 97.6% in 10d). However,

for intermediate values of π there exists an area in which the star network or the ring

generate higher welfare. Increasing the number of players to n = 25 shifts the region in

which the star network dominates to the left, that is, to lower values of π. Moreover, the

ring network is never optimal.

In the last row in Figures 10e and 10f we introduce positive costs for links. Naturally,

the region in which the complete network is optimal shrinks for n = 5 and completely

disappears for n = 25. In fact, for n = 25 and k ≥ 0.001 the complete network is

suboptimal for all δ, π, and p(1). Moreover, as soon as k > 0, there is no combination of

parameters in which agents are indifferent between different network structures.

7 Discussion

In the preceding sections we analyzed a game of strategic experimentation in three dif-

ferent network structures. First, as a benchmark the complete network was considered.

Second, the ring network was analyzed and we showed that relative to the complete net-

work agents increase their effort when information arrives with a delay. Consequently, for

a given prior belief the total amount of experimentation in a ring is higher or equal to the

amount of experimentation in a complete network. Agents increase their experimentation

effort to exactly balance the payoff disadvantage resulting from the delay in information

transmission. Third, by analyzing the strategic experimentation game in the star network

we showed that the hub experiments with full intensity up to a threshold belief and then

stops completely. Although the peripheral players increase their effort relative to the

complete network in the interval where the hub stops “too early”, they are not always

able to fully compensate for the non-experimenting hub. Depending on the belief this

specialization in the star network can be beneficial as well as detrimental for society.

Generally, there exists a trade-off between faster learning and more accurate learning.

Different network structures have different effects on the outcome of the experimentation

game and consequently on welfare. While the star network minimizes the costs for links,

the complete network maximizes the speed of learning. In which of the three networks

learning will be most accurate depends on the prior belief as well as the parameters of

the model. Even though our model differs in several features we confirm the finding of

BK that equilibria in the star are specialized. Compared to the static framework of BK

the dynamic perspective allows us to show how cut-off beliefs depend on the network

structure. Further, agents hold different posterior beliefs depending on their position. We
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find like Bimpikis and Drakopoulos (2014) that if information arrives with delay, effort

might increase and free-riding decrease.

Our analysis showed that it is possible to investigate details of rational learning pro-

cesses in a network without being restricted to focus on asymptotic results or introduce

some form of myopia or bounded rationality. Nevertheless, the model considered here cap-

tures very particular learning situations due to its special structure with fully revealing

breakthroughs. This implies that our results cannot be easily generalized to other payoff

generating processes. Another shortcoming of the analysis is the restriction to symmetric

equilibria which may not be without loss of generality.7

Despite the complexity network structures can create, we showed that they affect the

behavior of agents in an intuitive way. This offers some suggestions as to how equilibrium

outcomes and strategies could be characterized in other settings (e.g., for other payoff

generating processes) as well. Further, the network structures considered in this paper

can be understood as specific monitoring structures, and it would be possible to analyze

the strategic experimentation game for monitoring structures which are not derived from

networks. What should be clear, however, is that the empty and the complete network are

two opposite ends of the spectrum. Consequently, for symmetric monitoring structures

we expect the main conclusions of the network case to remain valid. Of course, it would

be desirable to obtain a generalization of the results for irregular structures as well, which

seems to be considerably more involved and will most likely imply specialization as in the

star network.

7See KRC or Bramoullè, Kranton and D’Amours (2014).
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A Appendix

Proof of Proposition 1. The objective function is linear in the choice variables and

either (αci , 0) or (1, βci ) is optimal where αci ,β
c
i ∈ [0, 1]. That is, an optimal strategy

can never require that agents choose interior experimentation intensities in both rounds.

Comparing expected payoffs for αci at (0, 0) and (1, 0) we find that agent i is indifferent

between experimenting in the first round and not experimenting as long as

Ic1 = (1− δ)Ep(1) + δE1p(1)π(1− αjπ)

equals zero. If Ic1 > 0 it is optimal to choose αc = 1 and if Ic1 < 0 the safe arm is optimal.

From Ic1 we can derive the optimal experimentation effort in a symmetric equilibrium with

no experimentation at t = 2 as

αc =
1

π
− 1

π

(
(1− δ)|E0|
δE1πp(t)

− (1− δ)(|E0|+ E1)

δE1π

) 1
n−1

which has αc = 0 as optimal solution for beliefs p(1) below pa and αc = 1 for any beliefs

p(1) above pc. The optimal experimentation intensity βc can be found along the same

lines by comparing utilities from (1, 0) and (1, 1). The agent is indifferent if

Ic2 = (1− δ)Ep(2) + δE1p(2)π(1− βjπ)

equals zero. This expression is the same as Ic1 with β instead of α and p(2) instead of

p(1). It can be shown that βc > 0 implies αc = 1. Thus, in a symmetric equilibrium,

φci(t) =


1 for p(t) ∈ [pc, 1),

1
π
− 1

π

(
(1−δ)|E0|
δE1πp(t)

− (1−δ)(|E0|+E1)
δE1π

) 1
n−1

for p(t) ∈ (pa, pc),

0 for p(t) ∈ [0, pa],

for all i ∈ N . The strategy profile αci = βci = 1 is optimal for any prior belief p(1) above

(1− δ)|E0|
(1− δ)|E0|+ E1(1− π)n[1− δ + δπ(1− π)n−1]

,

which is updated to a posterior p(2) = pc after n failed experiments. �

Proof of Proposition 2. The cut-off beliefs and corresponding intensities can be

found by solving for αr at which

Ir1 = (1− δ)Ep(1) + δE1p(1)π

(1− αrπ)2 − [1− (1− αrπ)2]

n−1
2
−1∑

t=1

δt(1− αrπ)2t
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equals zero. Ir1 is the difference in expected utility between action profiles (0, 0) and (1, 0).

If Ir1 = 0 agents are indifferent between experimenting and not experimenting. The lower

cut-off belief below which αr = 0 is given by pr(1) = pa, while the belief above which

αr = 1 is

pr(1) =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + δE1π
[
(1− π)2 − π(2− π)

∑n−1
2
−1

t=1 δt(1− π)2t
] .

In between these two cut-offs agents use interior intensities that are increasing in the

belief. In contrast to the complete network an explicit simple expression for αr cannot be

derived from the above equation. A discussion of this expression together with a proof

that the root on [0, 1] exists and is unique can be found below. If αri = 1 for all i, beliefs

in t = 2 are given by

pr(2) =
p(1)(1− π)3

p(1)(1− π)3 + 1− p(1)
.

Taking into account that information is still traveling along the paths in the network,

similar to one round we define

Ir2 = (1− δ)Epr(2) + δE1p
r(2)π(1− π)2(1− βrπ)2 − δE1p

r(2)πB,

where

B = δ
n−3
2 (1− π)n(1− βrπ)n−3[1− (1− βrπ)2]

+[1− (1− π)2(1− βrπ)2]

n−5
2∑
t=1

δt(1− π)2t(1− βrπ)2t.

Now Ir2 = 0 implies indifference between (1, 0) and (1, 1) given the other players’ strategies.

From this we can derive βr which attains its lower bound 0 at

pr(2) =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + δE1π
[
(1− π)2 − π(2− π)

∑n−5
2

t=1 δ
t(1− π)2t

] ,
and its upper bound 1 at

pr(2) =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + δE1πD
,

where D = (1− π)4 − δ n−3
2 (1− π)2n−3π(2− π)− [1− (1− π)4]

∑n−5
2

t=1 δ
t(1− π)4t.

Existence and uniqueness of αr, βr : The expression for α can be found by analyzing

Ir1 = 0 and for β we have Ir2 = 0. Ir1 = 0 can be rewritten as

(1− δ)Ep(1)
δE1p(1)π

+ (1− απ)2 − [1− (1− απ)2]

n−1
2
−1∑

t=1

δt(1− απ)2t = 0, (A.7)
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where the expression on the l.h.s is a polynomial of order n−1 in α. To show that the root

on [0, 1] is unique, it is enough to show that (A.7) is strictly monotonically decreasing for

α ∈ [0, 1]. We rewrite Ir1 = 0 as

0 = (1− απ)2 − δ(1− απ)2 − δ2(1− απ)4 − ....− δ
n−1
2
−1(1− απ)n−3 +

δ(1− απ)4 + δ2(1− απ)6 + ....+ δ
n−1
2
−1(1− απ)n−1 +

(1− δ)Ep(1)
δE1p(1)π

= (1− δ)
[
(1− απ)2 + δ(1− απ)4 + δ2(1− απ)6 + ....+ δ

n−1
2
−2(1− απ)n−3

]
−

δ
n−1
2
−1(1− απ)n−1 +

(1− δ)Ep(1)
δE1p(1)π

.

Taking the derivative w.r.t. α we obtain

(1− δ)[−2π(1− απ)− 4δπ(1− απ)3 − ...]− (n− 1)δ
n−1
2
−1π(1− απ)n−2,

which is clearly negative for α ∈ [0, 1]. A similar analysis can be carried out for β. �

Proof of Proposition 3. The proof proceeds in two steps and separates the problem

in t = 1 from the one in t = 2. If p(1) ≥ pc, all agents experiment with intensity 1 and if

p(1) ≤ pa, no agent experiments. For p(1) ∈ (pa, pc) optimal experimentation intensities

are higher in the ring. For beliefs in [pr(1), pc) agents in the ring play with full intensity

while players in the complete network have effort levels below 1. The difference pc−pr(1)

is given by

(1− π)2

(
[1− (1− π)n−3]− δπ(2− π)

1− δ n−3
2 (1− π)n−3

1− δ(1− π)2

)
.

For beliefs in (pa, pr(1)) we know that in equilibrium Ir1 = 0 and Ic1 = 0. As prior beliefs

are assumed to be identical it follows that

(1− αcπ)n−1 − (1− αrπ)2

(
1− δ + δ

n−1
2 (1− αrπ)n−3[1− (1− αrπ)2]

1− δ(1− αrπ)2

)
= 0.

The equality holds for αr = αc = 0 and in case we set αr = αc = α this term is

monotonically decreasing in α and negative for any α > 0. Consequently, for the equality

to hold we need

αr > αc.

Further, the term is decreasing in n and consequently the difference αr − αc increases in

n.

In t = 2 it has to be shown that for any prior p(1) ≥ pc (which implies αr = αc = 1),

the second round experimentation intensity in the ring, βr, is at least as high as its
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counterpart in the complete network, βc. A direct comparison is not possible, as agents

hold different posteriors. The posterior in the complete network after one round of failed

experimentation is given by

pc(2) =
p(1)(1− π)n

p(1)(1− π)n + 1− p(1)
,

and the posterior in the ring is given by

pr(2) =
p(1)(1− π)3

p(1)(1− π)3 + 1− p(1)
.

Let us first consider the beliefs for which efforts are the same in both networks. If pc(2) ≥
pc we know that pr(2) > pr(2) and βc = βr = 1. On the other hand if pr(2) ≤ pr(2),

then pc(2) < pa and βc = βr = 0. This implies that experimentation intensities in the two

networks are the same for any pc(2) ∈ [0, p̃r(2)] ∪ [pc, 1], where

p̃r(2) =
pr(2)(1− π)n−3

pr(2)(1− π)n−3 + 1− pr(2)
.

For βr and βc that maximize the agents’ utility in the corresponding network in the

interval where agents use both arms, the corresponding beliefs are given by

pr(2) = (1− δ)|E0|/{(1− δ)[|E0|+ E1] + δE1π[(1− π)2(1− βrπ)2

−δ
n−3
2 (1− π)n(1− βrπ)n−3βrπ(2− βrπ)

−[1− (1− π)2(1− βrπ)2]

n−1
2
−2∑

t=1

δt(1− π)2t(1− βrπ)2t]} (A.8)

for the ring and

pc(2) =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + δE1π(1− βcπ)n−1
(A.9)

for the complete network. Further,

pc(2) =
pr(2)(1− π)n−3

pr(2)(1− π)n−3 + 1− pr(2)
. (A.10)

Replacing pr(2) in Equation (A.10) by (A.8) and then solving for (A.9) = (A.10) implies

that

0 = (1− βcπ)n−1(1− π)3 − (1− δ)[1− (1− π)3]

−δπ[(1− π)2(1− βrπ)2 − δ
n−3
2 (1− π)n(1− βrπ)n−3βrπ(2− βrπ)

−[1− (1− π)2(1− βrπ)2]

n−1
2
−2∑

t=1

δt(1− π)2t(1− βrπ)2t]
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which only holds if

βr > βc.

�

Proof of Proposition 4. Let us start by considering the central player. Com-

paring expected utility from experimenting with intensity αh to not experimenting at

all, it follows that using the risky arm is optimal for the hub as long as (1 − δ)Ep(1) +

δE1pπ(1 − αsπ)n−1 ≥ 0. The cut-off belief above which an experimentation intensity

of 1 is optimal for the hub is given by ph = pc, and the lower cut-off by ph = pa.

If (1 − δ)Ep(1) + δE1pπ(1 − αsπ)n−1 = 0, then αs is given by (6). This implies that

the hub is indifferent between experimenting and not experimenting on the interval

[pa, pc] if the peripheral players choose αs = αc. If αs > αc for a given belief then

(1 − δ)Ep(1) + δE1pπ(1 − αsπ)n−1 < 0 and consequently the hub stops experimenting

immediately. On the other hand if αs < αc, then (1− δ)Ep + δE1pπ(1−αsπ)n−1 > 0 and

the hub will exclusively use the risky option.

Peripheral players are symmetric and receive all their information from the hub. In

t = 1 they are indifferent between the risky and the safe arm as long as Is1 = 0, where

Is1 = (1− δ)Ep(1) + δE1p(1)π(1− αhπ)(1− δ + δ(1− αsπ)n−2).

From this we can derive αs and the corresponding cut-off beliefs ps(1) = pa, and

ps(1) =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + E1δπ(1− αhπ)(1− δ + δ(1− π)n−2)
.

Existence and uniqueness of αs can be easily verified by analyzing the expression Is1 . The

minimum of this function is at 1
π

which implies that there is only one root on [0, 1] due to

the parabolic shape of the function. In the first round it can be shown that ph = pa =ps(1)

and ps(1) < ph = pc, where the last inequality holds for all αh ∈ [0, 1]. Consequently, we

can see that in the interval [ps(1), ph), the peripheral players experiment with an effort

level that violates the indifference condition of the hub (i.e., αs > αc) which implies

that the central player will stop experimenting immediately for any belief slightly below

ph = pc. For beliefs in (pa, ps(1)), if the hub does not experiment, the experimentation

intensity of the peripheral players is higher than it would be in a symmetric equilibrium

in the complete network. Consequently, the hub does not experiment in this region either.

More precisely, from comparing Is1 and Ic1 we obtain that αs > αc for all αh ∈ [0, αc].

Let us turn to the problem in t = 2. As before, an optimal strategy requires either

(αsi , 0) or (1, βsi ). After a first round where p(1) ∈ [pc, 1] and hence αh = αs = 1, the

posterior beliefs of the agents are ps(2) = p(1)(1−π)2
p(1)(1−π)2+1−p(1) for the peripheral players and
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ph(2) = ps(2)(1−π)n−2

ps(2)(1−π)n−2+1−ps(2) for the hub. Not only do agents now hold different beliefs, also

the upper and lower cut-offs for the peripheral players are different due to the first round

information that will still reach them. In the second round experimentation intensities of

the peripheral players can be derived from

Is2 = (1− δ)Eps(2) + δE1p
s(2)π(1− π)n−2(1− βhπ)(1− δ + δ(1− βsπ)n−2)

where, by imposing Is2 = 0, we obtain

ps(2) =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + E1δπ(1− π)n−2(1− βhπ)(1− δ + δ(1− π)n−2))

and

ps(2) =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + E1δπ(1− π)n−2
.

We have ph(2) = pc > ps(2) > pa = ph. Further ps(2) > pc for βh = 1. For βh ∈ [0, 1)

the ordering of ps(2) and pc depends on the relative magnitude of δ and π as well as on

n. Now we want to show that it is still optimal that either all agents choose effort level

1 (for high beliefs), effort level 0 (for pessimistic beliefs) or the peripheral players choose

βs ∈ (0, 1) while the hub does not experiment. If agents in the complete network and the

peripheral players have the same β as optimal effort level, then their beliefs are less than

n−2 failed experiments apart from each other. This means that if the distance (measured

in experiments) is n− 2, the belief and effort level of the peripheral players is higher than

for the complete network in the interval where agents use both arms. Then it is optimal

for the hub to stop experimenting completely below pc. For beliefs slightly below pc, the

peripheral players still experiment with full intensity whereas the hub wants to lower his

intensity and hence chooses βh = 0. It is straightforward to show that

ps(2)(1− π)n−2

ps(2)(1− π)n−2 + 1− ps(2)
< pc.

Note that existence and uniqueness of βs can be shown by analyzing the expression Is2

based on the same arguments as for αs. �

Proof of Proposition 5. The proof consists of two parts. Part 1 is for beliefs such

that in case all experiments in t = 1 fail, there will be no experimentation in t = 2. Part

2 describes the proof for beliefs where agents experiment in t = 1, 2. First, we know that

for prior beliefs in [0, pa] and [pc, 1] the first round experimentation intensity is the same

in both networks. Hence, the interesting interval in the first round is (pa, pc) in which the

hub does not experiment. Therefore, nαc has to be compared to (n− 1)αs. Note that we

have in this interval along the equilibrium path

pc(1) =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + δE1π(1− αcπ)n−1
,
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for the complete network and

ps(1) =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + δE1π(1− δ + δ(1− αsπ)n−2)
,

for the star. This implies that for a given fixed belief the relation between αc and αs can

be found through these expressions and is given by

αc =
1

π
− 1

π
(1− δ + δ(1− αsπ)n−2)

1
n−1 .

Now the difference between n−1
n
αs − αc can be defined as

Γn(δ, π, p(1)) := 1− δ −
(

1− n− 1

n
αsπ

)n−1
+ δ(1− αsπ)n−2.

Based on the expression for Γn(δ, π, p(1)) we can then define the region Sn(p(1)) ⊂ [0, 1]2

for p(1) ∈ (pa, p̄c) as

Sn(p(1)) := {δ, π ∈ [0, 1]2 : Γn(δ, π, p(1)) > 0}.

That is, Sn(p(1)) is the set of all combinations of δ and π for which nαc < (n − 1)αs.

Clearly, Γn(δ, π, p(1))→ 1−δ > 0 as n→∞ for all δ, π ∈ [0, 1]2 and hence λ(Sn(p(1))→ 1

as n→∞.
If agents experiment as well in t = 2 a similar argument as above can be used with

additionally making use of the fact that pc(2) = ps(2)(1−π)2
ps(2)(1−π)2+1−ps(2) . That is, setting

pc(2) =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + δE1π(1− βcπ)n−1
,

it can be solved for ps(2), which has to be equal to

(1− δ)|E0|
(1− δ)[|E0|+ E1] + δE1π(1− π)n−2(1− δ + δ(1− βsπ)n−2)

.

Expressing βc in terms of βs, to find out whether βc ≤ n−1
n
βs we analyze

Γn(δ, π, p(2)) := 1− δ −
(

1− n− 1

n
βsπ

)n−1
+ δ(1− βsπ)n−2) +

(1− δ)[1− (1− π)n−2]

δπ(1− π)n−2
,

by the same arguments as for Γn(δ, π, p(1)). Γn(δ, π, p(2)) is equivalent to Γn(δ, π, p(1))

up to replacing αs by βs and adding a positive constant. Sn(p(2)) ⊂ [0, 1]2 can be defined

in an analogous way for pc(2) ∈ (p̃s(2), p̄c) as

Sn(p(2)) = {δ, π ∈ [0, 1]2 : Γn(δ, π, p(2)) > 0}.

�
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Proof of Proposition 6. We start the proof by defining Fn,1(α), which is derived

by considering the difference between Is1 and Ir1 and imposing αr = αs = α, i.e.,

Fn,1(α) := {δ, π ∈ [0, 1]2 : Ir1 − Is1 ≥ 0},

where Ir1 − Is1 for αr = αs = α is given by

[1− δ(1−απ)2][δ− 1− δ(1−απ)n−2 + (1−απ)2]− [1− (1−απ)2]δ
n−1
2 (1− (1−απ)n−1)].

This means Fn,1(α) represents all combinations of δ and π such that the stated inequality

is satisfied, which in turn implies αs ≥ αr along the equilibrium path. For proving part

(i) of the proposition it is easy to verify that for small n (e.g., n = 3) the inequality is

satisfied for all δ, π ∈ [0, 1]. This suffices to conclude that there exists some finite n1 ∈ N
such that for all n < n1 we have Fn,1(α) = [0, 1]2. For the second part we explore the

behavior of Fn,1(α) in the limit as n→∞ and obtain

F1(α) := {δ, π ∈ [0, 1]2 : [1− δ(1− απ)2][δ − 1 + (1− απ)2] ≥ 0},

where it can be shown that the inequality fails to hold for some values of δ and π implying

that F1(α) is a strict subset of [0, 1]2.

If agents experiment in t = 2 as well, we proceed in an analogous way replacing Is1

and Ir1 with Is2 and Ir2 and additionally making use of the fact that

pr(2) =
ps(2)(1− π)

ps(2)(1− π) + 1− ps(2)
.

�

B Welfare Analysis

Before we start comparing welfare in the three networks for different beliefs, we state per

capita expected equilibrium payoffs for each network. In the complete network we have

U c(p(1)) = αc(1− δ)Ep(1) − δ(1− δ)|E0|(1− p(1))βc

+δE1p(1)[1− (1− αcπ)n[1− δ − βc(1− δ) + δ(1− βcπ)n]].

For the ring we have

U r(p(1)) = αr(1− δ)Ep(1) − δ(1− δ)|E0|(1− p(1))βr + δ(1− δ)βrE1p(1)(1− αrπ)3

+δE1p(1)[1− (1− αrπ)3 + δ(1− αrπ)3[1− (1− βrπ)3(1− αrπ)2]]

+p(1)E1(1− αrπ)(1− βrπ)[1− (1− βrπ)2(1− αrπ)2]×
n−1
2∑
t=3

δt(1− αrπ)2(t−1)(1− βrπ)2(t−1)

+δ
n+1
2 p(1)E1(1− αrπ)n(1− βrπ)n−2[1− (1− βrπ)2].
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For the peripheral players and the hub in the star network, we have

U s(p(1)) = αs(1− δ)Ep(1) + δE1p(1)[1− (1− αsπ)(1− αhπ)]

+δ(1− p(1) + p(1)(1− αsπ)(1− αhπ))[βs(1− δ)Ep(2)
+δE1p(2)[1− (1− αsπ)n−2(1− βsπ)(1− βhπ)[1− δ + δ(1− βsπ)n−2]],

and

Uh(p(1)) =

αh(1− δ)Ep(1) + δE1p(1)[1− (1− αsπ)n−1(1− αhπ)]

+δ(1− p(1) + p(1)(1− αsπ)n−1(1− αhπ))[βh(1− δ)Eph(2)
+δE1p

h(2)[1− (1− βsπ)n−1(1− βhπ)]],

respectively. The expressions for the respective α and β can be found in Propositions 1,

2 and 4.

Proof of Proposition 7. Part (i) is obvious as for p(1) ∈ [0, pa] no one experiments

in any network and hence expected payoffs are zero for all networks.

To show (ii) we compare W c(p(1)) with W s(p(1)) making use of the fact that in the

relevant interval Ic1 = 0 and Is1 = 0 and further

1− δ + δ(1− αsπ)n−2 = (1− αcπ)n−1.

The result then follows from the fact that αs > αc in equilibrium.

For (iii) we obtain the following. By comparing W c(p(1)) and W r(p(1)) for p(1) ∈
[0, p̄r(1)] it is straightforward to show that c ∼ r, as in this interval Ic1 = 0 and Ir1 = 0.

c � r for p(1) ∈ (p̄r(1), 1] follows from discounting, i.e., the fact that δ < 1.

For (iv), the condition

(1−δ)(2p(1)−1)+δp(1)[(1−π)n−1[1+δ(n−1)]+(1−δ)(n−1)(1−π)−n(1−αcπ)n] > 0.

is derived from W c(p(1)) − W s(p(1)). That is, if this inequality is satisfied, we have

W c(p(1))−W s(p(1)) > 0 for p(1) ∈ (p̄s(1), p̄c(1)).

Finally, a comparison of W c(p(1)) and W s(p(1)) for the case when all agents in both

networks experiment with full intensity, shows that due to discounting, expected payoffs

are higher in the complete network, which proves part (v). �

Network optimality for arbitrary costs. In Proposition 7 we set k = 0 and did

not consider experimentation in t = 2. We will now discuss network optimality for any

arbitrary k ≥ 0 allowing experimentation in t = 2. As before payoffs are compared for

different intervals of the prior. We use the cut-off beliefs in order to specify intervals
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for p(1) such that within each interval equilibrium actions do not change and hence a

comparison across different structures is possible. More precisely, ordering the cut-offs

accordingly (e.g., pa, ps(1), pr(1), pc) we separate the [0, 1] interval into M + 1 subsections

that are defined by the cut-off beliefs. Each interval is denoted by τm, where m =

0, ...,M, so that τ0 denotes the interval [0, pa] and so on. Lemma 1 states how to explicitly

calculate welfare for different beliefs in the three networks and derive conditions on the

cost parameter k. In particular, the terms Kτm
g,g′ represent indifference conditions where

k = Kτm
g,g′ implies that W g(p(1)) = W g′(p(1)) in the given interval so that the social

planner is indifferent between network g and g′.

Lemma 1. The following conditions characterize optimal networks: For a given τm

• c is preferred to s and r if k < min{Kτm
c,r , K

τm
c,s }

• s is preferred to c and r if k > max{Kτm
c,s , K

τm
r,s },

• r is preferred to c and s if max{Kτm
c,s , K

τm
r,s } > k > min{Kτm

c,r , K
τm
c,s },

where {τm}Mm=0 specifies the relevant interval for p(1) and Kτm
g,g′ represents the cost level k

for which W g(p(1)) = W g′(p(1)) in the interval τm.

Proof of Lemma 1. First, we derive our intervals of interest and denote them

for convenience by τ0, τ1, .... We have τ0 = [0, pa], τ1 = (pa,min{pr(1), ps(1)}], τ2 =

(min{pr(1), ps(1)},max{pr(1), ps(1)}] and τ3 = (max{pr(1), ps(1)}, pc]. If agents experi-

ment in t = 2 as well, the intervals are defined in a similar way taking the difference in

posterior beliefs into account. Based on second round cut-offs, pa, pr(2), ps(2), pr(2), ps(2)

and pc, we can derive the corresponding intervals for prior beliefs. Given the expressions

for equilibrium payoffs and the definition of welfare above, we then calculate for every

possible pair of networks g and g′ and every interval {τm}Mm=0 , the cost level k for which

the equality W g(p(1)) = W g′(p(1)) is satisfied. We denote the cost level k such that that

W c(p(1)) = W s(p(1)) at τ0 by Kτ0
c,s. This means that at k = Kτ0

c,s we obtain indifference

between c and s. These values can be calculated for every interval and every network.

�

B.1 Example: Optimal networks for four players

To provide a better understanding of the conditions determining which network is optimal,

we provide here the details for n = 4. First, we analyze which network is optimal for an

interval of prior beliefs such that there will be at most one round of experimentation in

42



each network. That is, the posterior belief after the first round is for every agent in every

network below the lower cut-off: p(2) ≤ pg(2), for all g.

Part (1) - Optimal networks, One Round. The following conditions characterize

optimal networks:

• p(1) ∈ [0, ps(1)] : s is preferred to r and c for all k ≥ 0;

• p(1) ∈ (ps(1), pr(1)] : c is optimal only if k = 0. s is optimal if k ≥ Kτ1
s,r, and r if

k ≤ Kτ1
s,r, where

Kτ1
s,r = (1− δ)(1− 2p(1))

(
3− 4

π

)
+ δp(1)(1− π)[(2− π)(2− 3δπ) + π2];

• p(1) ∈ (pr(1), pc] : c is optimal for k ≤ Kτ2
c,r, with

Kτ2
c,r = 2(1− δ)(1− 2p(1))

(
1− 1

π

)
+ 2δp(1)(1− π)3(1− δπ),

s for k ≥ Kτ2
r,s, where

Kτ2
r,s = (1− δ)(2p(1)− 1) + δp(1)π(1− π)[3(2− π)(1− δ) + 4δ(1− π)2],

and r for Kτ2
c,r ≥ k ≥ Kτ2

r,s;

• p(1) ∈ (pc, 1] and p(2) ≤ pg(2), for all g ∈ G : c is optimal for k ≤ Kτ3
c,r, where

Kτ3
c,r = δp(1)π(1− π)2(1− δ)(2− 2π),

s for k ≥ Kτ3
s,r,

Kτ3
s,r = δp(1)π(1− π)2(1− δ)(2 + π),

and r for Kτ3
s,r ≥ k ≥ Kτ3

c,r.

Proof. In the proof we compare payoffs for different beliefs and networks. For p(1) ∈
[0, pa], payoffs are zero. Consequently, the structure with the lowest costs, i.e., the star

network, is optimal. For p(1) ∈ (pa, ps(1)], optimal experimentation intensities are αh = 0,

αr, αc ∈ (0, 1) and αs ∈ (0, 1]. For the complete network we obtain

W c = 4αc(1− δ)(2p(1)− 1) + 4δp(1)[1− (1− αcπ)4]− 6k,

where we know that in this interval of beliefs (1 − δ)(2p(1) − 1) + δp(1)π(1 − αcπ)3 = 0

by Ic1 = 0 which implies that

W c = 4δp(1)[1− (1− αcπ)3]− 6k.
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Further, we obtain W r = 4δp(1)[1− (1−αrπ)2(1− δαrπ)]− 4k, and W s = δp(1)[1− (1−
αsπ)3 + 3δαsπ(2 − αsπ)] − 3k. Further we know from Is1 , Ir1 and Ic1 that (1 − αrπ)2(1 −
δαrπ) = (1 − αcπ)3 = 1 − δαsπ(2 − αsπ). This implies that W c − W r = −2k, and

W r − W s = δp(1)[(1 − αsπ)3 − (1 − αrπ)2(1 − δαrπ)] − k, where the term in square

brackets is negative as αs > αr. Further, W c −W s ≤ W r −W s for k ≥ 0.

For p(1) ∈ [ps(1), pr(1)) peripheral players exert full effort, while in the other networks

the agents exert effort below 1. This changes welfare in the star network and leaves the

ring and the complete network unaltered. As the ring is still (weakly) preferred to the

complete network for k ≥ 0 we restrict attention to the condition under which r � s.

From W r −W s, where

W s = 3(1− δ)(2p(1)− 1) + δp(1)[4− (1− π)3 − 3(1− π)[1− δπ(2− π)]]− 3k,

and further from Is1 = 0 we have that (1−αrπ)2(1− δαrπ) = (1−δ)(1−2p(1))
δp1π

. It follows that

for k ≤ Kτ1
s,r the ring is optimal and for k ≥ Kτ1

s,r, the star. Kτ1
s,r becomes positive in the

interval [ps(1), pr(1)).

For p(1) ∈ (pr(1), pc], the comparison with the ring network changes, where now we

have W r = 4(1 − δ)(2p(1) − 1) + 4δp(1)[1 − (1 − π)3(1 − δπ)] − 4k. From W c −W r we

obtain Kτ2
c,r, which equals zero at pr(1) and is above zero at pc for all δ, π ∈ (0, 1). By

finding k such that the difference between W r−W s = 0 we derive Kτ2
r,s and the difference

between W c and W s yields

Kτ2
c,s = δp(1)(1− π)

[
1

3
(1− π)2 + 1− δπ(2− π)

]
+ (1− δ)(1− 2p(1))

(
1− 4

3π

)
.

The complete network is optimal if k ≤ min{Kτ2
c,s, K

τ2
c,r}, where the minimum of the two is

given by Kτ2
c,r in the interval of interest. This can be seen by analyzing Kτ2

c,r−Kτ2
c,s, which is

negative at the interval boundaries pr(1) and pc. As Kτ2
c,r−Kτ2

c,s is linear in p(1) this implies

that it is negative for all p(1) ∈ [pr(1), pc]. The star is optimal if k ≥ max{Kτ2
c,s, K

τ2
r,s}

where Kτ2
r,s is the maximum in this interval and consequently the ring is optimal for

Kτ2
r,s ≥ k ≥ Kτ2

c,r. K
τ2
c,r equals zero at pr(1) and is positive at pc for all δ, π ∈ [0, 1].

For p(1) ∈ (pc, 1] and p(2) ≤ pg(2) for all g in all networks, all agents experiment

one time with full effort. We obtain Kτ3
c,r from W c −W r, Kτ3

r,s from W r −W s and Kτ3
r,s >

δp(1)π(1−π)2(2−π) > Kτ3
c,r, where δp(1)π(1−π)2(2−π) = Kτ3

c,s is obtained from W c−W s.

�

Part (2) - Optimal networks, Two Rounds. For two rounds of experimentation,

that is, αg = 1, for all g and βg > 0 for at least one g we have for
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• pc(2) ∈ [0, pa], pr(2) ∈ [0, pr(2)], ps(2) ∈ (ps(2), ps(2)] : c is optimal if k ≤
min{Kτ4

c,r, K
τ4
c,s}, where Kτ4

c,r = Kτ3
c,r,

Kτ4
c,s = δ(1− π)2p(1)

[
(1− δ)

(
1− 1

π

)
− (1− π)2

(
δ

3
+ 1− δ

3
(1− βsπ)3

)]
+δ(1− δ) 1

π
(1− p(1)),

and βs from Proposition (4). s is optimal for k ≥ max{Kτ4
c,s, K

τ4
r,s}, where

Kτ4
r,s = δ(1− π)2p(1)

[
(1− π)[(1− δ)(1− π)− 4(1− δπ)] + 3

(
1− 1

π

)
(1− δ)

]
+3δ

1

π
(1− δ)(1− p(1)) + δ2p(1)(1− π)4(1− βsπ)3,

and r for max{Kτ4
c,s, K

τ4
r,s} ≥ k ≥ min{C3, K

τ4
c,s};

• pc(2) ∈ [0, pc], pr(2) ∈ (pr(2), pr(2)], ps(2) ∈ (ps(2), ps(2)] : s � c, r for all k ≥ 0.

• pc(2) ∈ (pa, pc], pr(2) ∈ (pr(2), pr(2)], ps(2) ∈ (ps(2), 1] : c is never optimal as soon

as k ≥ 0. s is optimal if k ≥ Kτ6
r,s, where

Kτ6
r,s = δ2p(1)(1− π)5[(1− π)2 + 3− 3δπ(2− π)]

+δ(1− δ)(1− p(1)− p(1)(1− π)3)

(
3− 4

π

)
+ δ(1− δ)p(1)π(1− π)3,

and r is optimal for k ≤ Kτ6
r,s.

• pc(2) ∈ (pa, pc], pr(2) ∈ (pr(2), 1], ps(2) ∈ (ps(2), 1] : c � s, r for k ≤ min{Kτ7
c,r, K

τ7
c,s},

where

Kτ7
c,r = 2δ

[
p(1)(1− π)7δ(1− δπ) + (1− δ)

(
1− 1

π

)
[1− p(1)− p(1)(1− π)4]

]
,

and

Kτ7
c,s = δ

[
(1− δ)

(
4
3π
− 1
)

(p(1)(1− π)4 − 1 + p(1))

+δp(1)(1− π)5[1− δπ(2− π) + 1
3
(1− π)2]

]
,

s for k ≥ max{Kτ7
c,s, K

τ7
r,s}, where Kτ7

r,s is given by

δ2p(1)(1− π)5π[3(2− π)(1− δ) + 4δ(1− π)2]]δ(1− δ)(1− p(1)− p(1)(1− π)4),

and the ring if max{Kτ7
c,s, K

τ7
r,s} ≥ k ≥ min{Kτ7

c,r, K
τ7
c,s};

• pc(2) ∈ (pc, 1], pr(2) ∈ (pr(2), 1], ps(2) ∈ (ps(2), 1] : c is optimal for k ≤ Kτ8
c,r =

δ2p(1)π(1−π)6(1−δ)(2−2π), s is optimal for k ≥ Kτ8
r,s = δ2p(1)π(1−π)6(1−δ)(2+π),

and r for Kτ8
r,s ≥ c ≥ Kτ8

c,r.

Proof. The proof is analogous to the proof for one round, simply taking the differences

in posterior beliefs into account. Details are available upon request. �
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