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Abstract

The classical approach to the modeling of discrete time competing risks consists of fitting
multinomial logit models where parameters are estimated using maximum likelihood theory.
Since the effects of covariates are specific to the target events, the resulting models contain
a large number of parameters, even if there are only few predictor variables. Due to the
large number of parameters classical maximum likelihood estimates tend to deteriorate or do
even not exist. Regularization techniques might be used to overcome these problems. This
article explores the use of two different regularization techniques, namely penalized likelihood
estimation methods and random forests, for modeling time discrete competing risks using
both, extensive simulation studies and studies on real data. The simulation results as well
as the application on three real world data sets show that the novel approaches perform very
well and distinctly outperform the classical (unpenalized) maximum likelihood approach.

Keywords: Competing Risks, Event History Models, Discrete Survival, Prediction, Penalized
Likelihood, Random Forests, Survival Forests.

1 Introduction

In survival analysis often the prediction of a specific event is of interest. The predicted event

may, for example, be death, diagnosis of a certain disease, the recurrence of cancer, birth of a

child, time of failure for an electric device or getting a job after a time of unemployment. In

many applications, however, there is more than one possible event type that can occur. In a

clinical or epidemiological study the cause of death or the occurrence of different diseases may

be of interest. When predicting the time of birth one might want to differentiate between live

births and stillbirths, and in labor market studies it is often of interest whether employment is

permanent or temporary. The modeling of event times in the presence of multiple events is usually

referred to as competing risks modeling. The literature on competing risks mostly deals with the

case where time is measured as a continuous variable (see, Beyersmann et al.; 2012; Putter et al.;

2007; Kalbfleisch and Prentice; 2011; Kleinbaum and Klein; 2005). In some cases, however, time

is measured on a discrete scale, for example, in weeks, months or years. As an example, assume

that a yearly screening is performed in order to detect a disease at an early stage. If a disease

is detected at a screening visit, it is most likely not possible to specify the exact onset of the

disease; instead a time interval enclosing disease onset is specified, which may be the time period

between two consecutive screening visits. In other cases the time to the occurrence of a specific
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event is intrinsically discrete, meaning that the discrete time variable is not a coarsened version

of an underlying continuous time variable. This is the case when considering time to graduation

or dropping out of university with time measured in semesters. When time is discrete, classical

survival and competing risks models for continuous time become inappropriate (Andersen et al.;

1993), and one has to apply special approaches for discrete time. The standard approach to

the modeling of time discrete competing risks consists of fitting a multinomial logit model which

links an individual’s covariates to the risk for observing a specific event. However, the use of the

multinomial model for the prediction of time discrete competing risks is restricted to applications

with few predictor variables since maximum likelihood estimates deteriorate quickly resulting

in inaccurate predictions, or estimates may even not exist. Recently, penalized versions of the

multinomial logit model have been used in the context of time discrete competing risks. They can

be applied in settings with a large number of predictors possibly including interaction terms (Möst

et al.; 2014). Penalization-based approaches like that of Möst et al. (2014) might be promising

for the development of accurate prediction models. However, parametric specifications may be

too restrictive in the presence of complex data settings with non-linear effects and interactions of

higher order. Alternative procedures, such as random forests (Breiman; 2001), have been shown

to yield high prediction performance in various applications. Recently, a tree-based approach was

proposed by Schmid et al. (2013) for modeling discrete survival times. This approach makes use

of the fact that the likelihood of a time discrete survival model is equivalent to that of a regression

model for binary outcome data. An extension of this approach to the competing risks case with

multiple event types is also considered as a second promising alternative to classical maximum

likelihood models, which are currently in use.

The paper is structured as follows: Section 2 gives an overview of the classical and the novel

methods for modeling time discrete competing risks. In the first part of this section we outline

the standard approach which makes use of the fact that likelihood estimation for time discrete

competing risks can be embedded into the framework of classical multivariate generalized linear

models (GLMs). Subsequently, we introduce two alternative promising modeling strategies which

have the advantage that they can be applied even if the number of parameters to be estimated

exceeds the number of observations. The first approach is based on penalized maximum likelihood

estimation, while the second approach makes use of random forest methodology. In Section 3 we

show the results of extensive simulation studies, in which prediction ability of the two modeling

approaches is assessed and compared to the classical approach. In Section 4 we compare the

methods by using three real world datasets. A summary and discussion of our results are given

in Section 5.

2 Competing Risks Models for Discrete Time

Let time be divided into intervals [a0, a1), . . . , [ak−1, ak), [ak,∞) and let t ∈ {1, . . . , q} with q =

k+1 denote the failure within interval [at−1, at). In a competing risks analysis one usually models

the so-called cause-specific hazard functions. The discrete cause-specific hazard function for event

type r ∈ {1, . . . ,m} of an observation with covariates xi is defined as

λr(t|xi) = P (Ti = t, Ri = r|Ti ≥ t,xi).
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The discrete cause-specific hazards describe the probability for failure at t from a specific event

type, provided that the observation is still under risk prior to t. The overall hazard function

describes the probability of failing from any of the m event types at time point t, again, provided

that the observation is still under risk prior to t. It is computed from the sum of cause-specific

hazards as

λ(t|xi) = P (Ti = t|Ti ≥ t,xi) =
m∑

r=1

λr(t|xi). (1)

The discrete survival function is the probability of surviving the first t time intervals:

S(t|xi) = P (Ti > t|xi) =
t∏

s=1

(1− λ(s|xi)). (2)

For the unconditional probability for failure from event type r at time interval t, in presence of

all other event types, one obtains

P (Ti = t, Ri = r|xi) = λr(t|xi)
t−1∏

s=1

(1− λ(s|xi)) (3)

= λr(t|xi)S(t− 1|xi). (4)

Estimation

Let Ci be a random variable for the time interval at which observation i is censored. In practical

applications only min(Ti, Ci), the minimum of failure and censoring time, is observed. Often it is

helpful to define an indicator variable δi which indicates whether an event was observed for i (then

δi = 1) or not (δi = 0). Here we assume that censoring occurs at the end of the time interval.

Then δi is defined as

δi =

{
1, Ti ≤ Ci
0, Ti > Ci.

Under the assumption of random censoring, that is Ti and Ci are assumed to be conditionally

independent, the likelihood contribution of observation i is given by

Li = P (Ti = ti, Ri = ri|xi)δiP (Ti > ti|xi)1−δiP (Ci ≥ ti|xi)δiP (Ci = ti|xi)1−δi . (5)

In the case of non-informative censoring (non-informative in the sense of Kalbfleisch and Prentice;

2011), the latter two factors in (5) that describe the censoring process, can be ignored, and the

likelihood reduces to

Li = λri(ti|xi)δi(1− λ(ti|xi))1−δi
ti−1∏

s=1

(1− λ(s|xi)). (6)
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In order to show that this likelihood corresponds to the likelihood of a multinomial response model,

we introduce indicator variables for the transition to the next time interval. These are defined as

yitr =

{
1, if event type r occurs at time interval t, given t is reached

0, otherwise,

and

yit0 =

{
1, if no event occurs at time interval t, given t is reached

0, otherwise.

From this definition it directly follows that yit0 = 1−yit1−. . .−yitm. Let y>it = (yit0, yit1, . . . , yitm), t =

1, . . . , ti be the response vector of observation i. Using the indicator variables, the likelihood con-

tribution (6) for observation i can be rewritten as

Li =

ti∏

s=1

{
m∏

k=1

λk(s|xi)yisk}{1− λ(s|xi)}yis0 , (7)

which corresponds to the likelihood of a multinomial response model with observations yi1, . . . ,yiti .

Accordingly, the response yit is multinomially distributed with yit ∼M(1, λ0(t|xi), . . ., λm(t|xi)),
where λ0(t|xi) = 1−∑m

k=1 λk(t|xi)) denotes the probability of survival of the t-th interval. The

corresponding log-likelihood contribution for observation i is thus given by

li =

ti∑

s=1

{
m∑

k=1

{yisk log λk(s|xi)}+ yis0 log (1−
m∑

k=1

λk(s|xi))
}
,

and the total log-likelihood is obtained by the sum of likelihood contributions for all observations

i = 1, . . . , n:

l =
n∑

i=1

li =
n∑

i=1

ti∑

s=1

{
m∑

k=1

{yisk log λk(s|xi)}+ yis0 log (1−
m∑

k=1

λk(s|xi))
}
.

Usually the cause-specific hazards are modeled via the multinomial model given by

λr(t|xi) =
exp(ηitr)

1 +
∑m
k=1 exp(ηitk)

, (8)

with ηitr = γ0tr +x>i γr. Maximum likelihood estimates can then be obtained by using statistical

software for multinomial models with an appropriate design matrix. The design matrix is com-

posed of
∑n
i=1 ti observations with corresponding design variables, yielding a blown-up design.

The ti observations and design variables for person i are given by




yi1
...

yiti


 ,




Zi1
...

Ziti


 (9)
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with

Zit =




0 · · · 0 1 0 · · · 0 0 · · · 0 xTi 0 · · · 0
...

... 0
. . .

...
...

... 0
. . .

...
...

...
...

. . . 0
...

...
...

. . . 0

0 · · · 0 0 · · · 0 1 0 · · · 0 0 · · · 0 xTi




and corresponding parameter vector β> = (γ011, . . . , γ01m, γ021, . . . , γ0qm,γ
>
1 , . . . ,γ

>
m).

2.1 Penalized Likelihood Models

Penalized maximum likelihood estimation uses a penalized version of the likelihood by including a

penalty term. Let β> = (γ>0 ,γ
>) be the parameter vector with γ>0 = (γ011, . . . , γ01m, γ021, . . . , γ0qm)

containing the baseline parameters and γ> = (γ>1 , . . . ,γ
>
m) containing the covariate effects. A

penalized version of the log-likelihood derived from (7) is defined by

lζ1,ζ2(γ0,γ) = l(γ0,γ)− Jζ1,ζ2(γ0,γ).

The first term, l(γ0,γ), denotes the ordinary log-likelihood and the second term is a penalty

term that includes the tuning parameters ζ1 and ζ2. The penalty that is used,

Jζ1,ζ2(γ0,γ) = ζ1J1(γ0) + ζ2J2(γ), (10)

is split into two parts, ζ1J1(γ0) and ζ2J2(γ). The first part, ζ1J1(γ0), represents a penalization

of the baseline parameters γ0 and is chosen as

ζ1J1(γ0) = ζ1

m∑

k=1

q∑

t=2

(γ0tk − γ0,t−1,k)2. (11)

It smoothes the baseline hazards over time by penalizing the differences between coefficients of

adjacent time intervals, with the tuning parameter ζ1 controlling the amount of penalization. The

second part of the penalty term, ζ2J2(γ), regularizes the estimates of the explanatory variables.

The simplest choice is a ridge type penalty given by

ζ2J2(γ) = ζ2

m∑

r=1

p∑

j=1

γ2rj . (12)

The penalty stabilizes estimates but no regression coefficients are set exactly to zero. Thus no

variables are selected. Ridge type estimators for generalized linear models were investigated by

Nyquist (1991) and Segerstedt (1992), the extension to multinomial responses was considered by

Zahid and Tutz (2013).

More promising candidates that enforce variable selection are lasso type penalty terms (Tib-

shirani; 1996). However, simple lasso penalties, which consist in replacing γ2rj in (12) by |γrj |,
select parameters but not variables. Better penalty terms that enforce true variable selection

penalize all the parameters that are linked to one variable simultaneously. Therefore, we consider

the penalty proposed by Tutz et al. (2015), which was recently extended to the modeling of time
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discrete competing risks (Möst et al.; 2014). It has the form

ζ2J2(γ) = ζ2

p∑

j=1

φj ||γ•j ||2, (13)

where γ>•j = (γ1j , . . . , γmj) comprises all parameters related to the j-th variable, φj is an (adaptive)

weight which adjusts the penalty levels on parameter vectors γ>•j for their dimension, and ||u||2 =√
u>u denotes the L2-norm. The penalty (13) enforces true variable selection, meaning that all

parameters which are related to the same variable are simultaneously shrunk toward zero. Its use

yields sparse models which are easy to interpret. The penalty is closely related to the grouped

lasso penalty (Yuan and Lin; 2006; Meier et al.; 2008), but in contrast to the original group lasso,

the grouping of parameters arises from the multivariate response model, not from the predictors.

2.2 Prediction with Random Forests

The random forest method, introduced by Breiman (2001), is an ensemble of classification or

regression trees. By aggregating several unstable trees a stable classification rule is built which

has the advantage that the association between the predictors and the response is modeled in a

highly flexible way. It has been shown that random forests have a much better prediction accuracy

than single trees. Random forests incorporate complex interaction patterns between predictors

and can also be applied to high-dimensional data where the predictor space is higher than the

number of observations. This makes random forests especially suitable for complex genetic data

that include hundreds or thousands of variables measured on a comparably small number of

individuals. For detailed information on random forest methodology, we refer the reader to the

existing literature (see, e.g., Boulesteix et al.; 2012; Strobl et al.; 2009, for an overview).

Several tree-based approaches have been developed to model survival times and their advan-

tages over (semi-)parametric methods have been extensively discussed (see Bou-Hamad et al.;

2011, for an overview). Here we use the concept of Schmid et al. (2013) who make use of the

fact that the likelihood of a time discrete survival model is equivalent to the likelihood of a re-

gression model for binary outcome data (this follows directly from Eq. (7) in the special case of

m = 2). This equivalence allows one to apply tree construction methods for binary outcomes.

Analogously, the likelihood equivalence of a time discrete competing risks model and of a regres-

sion model for multinomially distributed outcomes, which was shown earlier in this section, allows

to apply tree-based approaches for multicategory outcomes. The input data for observation i is

given by 


0 1 x>i
0 2 x>i
...

...
...

0 ti − 1 x>i
ri ti x>i



. (14)

Note that the time variable t has to be supplied to the software either as an ordered factor variable

or as a metric variable, to only allow for splits at value c that yield partitions {t ≤ c} and {t > c}.
After having fit a tree using input data of form (14), tree predictions can be obtained by computing

the class proportions in the terminal nodes.

Instead of using single trees, in this article we make use of the random forest method, in which
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a prediction is obtained by averaging over tree predictions. The proposed random forest approach

to the modeling of time discrete competing risks has the advantage that it does not require a

modification of the standard random forest algorithm, so any available random forest software

can be used. The results presented in this paper were obtained using the random forest version

of Hothorn et al. (2006), in which an unbiased split selection is implemented.

3 Simulation Studies

The data for the time discrete competing risks analysis were simulated by use of the multinomial

logit model. The number of competing risks was always set to m = 3. Simulation studies were

conducted with n = 100 and three different choices for the number of time intervals: q ∈ {5, 10, 20}.
The simulations were performed for two settings. Case 1 (“low-dimensional”) denotes the setting

where more observations are available than parameters in a multinomial logit model, and maximum

likelihood estimates exist. In our studies we compare the performance of unpenalized multinomial

logit models to that of penalized multinomial logit models and random forests. The second

setting is denoted by Case 2 (“high-dimensional”), and describes the setting where the number

of parameters is larger than the number of observations. For this setting, maximum likelihood

estimates do not exist and unpenalized multinomial logit models cannot be fit. We use these

studies to investigate if the considered regularization techniques give reasonable predictions in

settings where traditional approaches cannot be applied anymore. For this purpose, we compare

the considered regularization techniques to a null model which does not include any covariates.

For Case 1 we generated 100 datasets and 50 for Case 2. For both settings, six different

scenarios that differ in the complexity of the data structure were simulated. These are described

in the following.

3.1 Simulation Scenarios

Data was simulated for different scenarios that differ in

• the presence/absence of correlations between predictor variables,

• the inclusion of time-varying predictor effects in the linear predictor ηitr of the multinomial

logit model given in Eq. (8),

• the inclusion of non-linear predictor effects in ηitr,

• the inclusion of interaction terms in ηitr.

Table 1 gives an overview of the complexity of data in the six scenarios. In Scenario 1 all

predictor variables were uncorrelated and had time-constant and linear effects and no interaction

terms were included. For Scenarios 2-5 the data structure was more complex: exactly one of the

“complexity components” (i.e., correlated predictor variables, time-varying predictor effects, non-

linear predictor effects or interactions) was present in each scenario (see Table 1). Data structure

was most complex in Scenario 6 where all the “complexity components” are present.

3.2 Data Generation

For Case 1 (low-dimensional setting), the number of predictor variables was set to p = 8. Variables

X1, X3, X5, X7 were drawn from Bin(1, 0.4), and X2, X4, X6, X8 were drawn from a multivariate
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Scenario Correlated Time-varying Non-linear Interacting
predictors predictor effects predictor effects predictors

1 – – – –
2 X – – –
3 – X – –
4 – – X –
5 – – – X
6 X X X X

Table 1: Overview of the complexity of data (in terms of predictor variable correlations or the
inclusion of time-varying effects, non-linear effects or interaction terms in the linear predictor) in
the different scenarios.

normal distribution with mean µ>1 = (0, 0, 0, 0) and covariance matrix

Σ1 =




1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1



,

with ρ specifying the correlation between metric predictor variables. The parameter ρ was set to

0 for scenarios without any correlations, and to 0.8 for scenarios with correlations.

For Case 2 (high-dimensional setting), the number of predictor variables was set to p = 500.

All predictor variables were drawn from a multivariate normal distribution with mean µ>2 =

(0, 0, . . . , 0) ∈ R500 and block diagonal covariance matrix

Σ2 =




A1 0 . . . 0

0 A2 . . . 0
... 0

. . .
...

0 . . . 0 A100



,

with

Aj =




1 aj aj aj aj

aj 1 aj aj aj

aj aj 1 aj aj

aj aj aj 1 aj

aj aj aj aj 1




for j = 1, . . . , 100. For scenarios without any correlations, the off-diagonal elements aj were set

to 0 for j = 1, . . . , 100. For scenarios which include correlated predictors, aj were independently

drawn from the set {0.1, 0.2, 0.4, 0.6, 0.8} for j = 1, . . . , 100, accounting for a positive correlation

within each block of five predictor variables and no correlation between the blocks. Strong cor-

relations among a set of variables is typical, for example, in microarray data where genes highly

correlate due to their spatial proximity in the genome.

Cause-specific hazards

The cause-specific hazards λr(t|·), r ∈ {1, 2, 3} were modeled via the multinomial logit model given

in Eq. (8). However, more generally we will allow the parameter vector to depend on time. Thus,
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γtr was specified depending on the considered scenario.

In Case 1 the predictors X1, . . . , X4 had an effect, while the other predictors X5, . . . , X8 had no

effect. In Scenarios 1 and 2 including no interaction terms, time-varying or non-linear terms, the

parameter vector for covariates x> = (x1, x2, . . . , x8) is simply given by γtr = γr = (γr1, . . . , γr8)>,

for r ∈ {1, 2, 3}. In all other scenarios the parameter vector depends on time, or includes some

additional terms which account for non-linear associations or interactions.

In all scenarios the coefficients γtr5, . . . , γtr8 of the non-influential predictor variablesX5, . . . , X8

were always set to zero. In scenarios with time-constant predictor effects, γr2 and γr4 related to the

metric predictor variablesX2 andX4, were randomly drawn from the setMmet = {0.2, 0.4, 0.6, 0.8, 1},
and coefficients γr1, γr3 for the binary predictor variables X1 and X3, were randomly drawn from

Mbin = {−1,−0.5, 0.5, 1} (cf. Table A1). In Scenarios 3 and 6 (scenarios with time-varying

effects), the effect γtr1 of the binary predictor variable X1 was specified as a functional in t. The

effects of all other predictors did not depend on time (i.e., γtrj = γrj , j ∈ {2, 3, . . . , 8}). For

influential predictors X1, X2, X3, X4, these were drawn from the set Mmet and Mbin, respectively,

and for non-influential predictors X5, X6, X7, X8, they were set to zero. The linear predictor ηitr

was extended by an interaction term between predictor variables X3 and X4 in Scenarios 5 and

6, and by a quadratic term for X2 in Scenarios 4 and 6. Detailed information are given in the

appendix.

In Case 2 only the first 20 of 500 predictor variables had an effect. In addition, predictor

variables X21, X22, X23 had an effect in Scenarios 5 and 6, in which interaction terms related to

these predictor variables were included. Coefficients γtr,21, . . . , γtr,500 related to X21, . . . , X500,

were set to zero in all scenarios. The coefficients γtr1, . . . , γtr,20 related to X1, . . . , X20, always

took a different value than zero for at least one r ∈ {1, 2, 3}. As with Case 1, coefficient values

were randomly drawn from a set of appropriate values if the effect of a variable was constant over

time (see Table A1 for details). For scenarios including variables with time-varying effects, the

effects of X1, . . . , X10 were modeled as a functional in t for some r ∈ {1, 2, 3} (see Table A2). In

Scenarios 5 and 6 several interaction terms of different forms were included in the linear predictor,

and in Scenario 4 and 6 quadratic terms for variables X3, . . . , X20 were integrated. Details are

given in the appendix.

For both, Case 1 and Case 2, the cause-specific baseline hazard functions γ0tr for r = 1, 2, 3

were defined as follows:

γ0t1 = a1t+ b1,

γ0t2 = a2
1√
t

+ b2,

γ0t3 =





a3, t ∈ {1, 5, 9, 13, . . .}
a3 + 1.5, t ∈ {2, 4, 6, 8, . . .}
a3 + 3, t ∈ {3, 7, 11, 15, . . .}.

For the cause-specific hazard function of the first event type, a linear function in t was imposed

which gives a constant difference between baseline values of adjacent time intervals. For the second

event type the difference between baseline values of adjacent time intervals was smaller for later

time intervals, and for the third event type the baseline hazard function was periodic and repeats

over four time intervals mimicking a seasonal effect. Values for a1, b1, a2, b2 and a3 were chosen

such that at each time interval a reasonable number of individuals failed from any event type
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(Table A3).

Failure times

Failure times and the type of failure or censoring were generated using a sequential approach: a

multinomial experiment was performed successively for each time interval until either failure from

an event or censoring occurred. The algorithm which describes the generation of failure times is

outlined in the following.

For an observation i, we start with t = 1 and repeat the following steps until t > q, or until

the algorithm is stopped at an earlier stage.

1. A multinomial experiment is performed with yit = (yit0, yit1, yit2, yit3) ∼M(1, 1−∑3
k=1 λk(t|xi),

λ1(t|xi), λ2(t|xi), λ3(t|xi)). Independent of this process, a realization cit is drawn from

Bin(1, π), where the parameter π controls the amount of censoring.

2. For yit0 = 1 ∧ cit = 0, neither an event nor censoring occurs at time interval t. In this case

the individual reaches the next time interval t + 1, and one proceeds with the first step.

Otherwise the observation time for individual i ends at t. Then event type r ∈ {1, 2, 3} is

observed at t if yitr = 1, and censoring occurs at t if yit0 = 1.

This simulation process was repeated for i = 1 . . . , n. It is noteworthy that in our simulations the

parameter π did not depend on covariates xi. We chose a value for π which yielded a moderate

amount of censoring (20 – 30%).

3.3 Application to Simulated Data

When building prediction models we made use of all covariates X1, . . . , Xp, with p = 8 for Case 1

and p = 500 for Case 2. Penalized and unpenalized multinomial logit models were modeled using

a linear predictor of form ηitr = γ0tr+x>i γr, with x>i = (xi1, xi2, . . . , xip) and γ>r = (γr1, . . . , γrp).

By using a linear predictor of this form, one does not account for non-linear relationships, time-

dependent predictor effects and interactions. However, non-linear effects, time-varying effects and

interactions are present in the data generated according to Scenarios 3 - 6. For these scenarios

the penalized and unpenalized multinomial logit models are thus misspecified, while for Scenarios

1 and 2 the models are correctly specified.

In contrast to these models, random forests are non-parametric and do not require any spec-

ification of the underlying structure. Random forests employ several parameters that have to be

specified, such as the number of predictors randomly drawn for a split (mtry) or the size of a tree.

Since the random forest approach for modeling discrete time competing risks, which was described

in Section 2.2, has not been tested, we used different tree sizes in our studies to investigate if pre-

diction performance is affected by the size of trees. Tree size was controlled by making restrictions

on the minimum number of observations in a node. Other random forest parameters were specified

as proposed by Strobl et al. (2007) to guarantee an unbiased tree construction (Table A4).

Considered prediction models

The models that were considered in our studies are outlined in the following.

• Traditional approach: Two standard multinomial logit models were considered which differ

in the baseline hazard. For the first model (“GLM”) a coefficient for each time interval was
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estimated, while for the second model (“GLM sm.”) the baseline hazard was smoothed by

use of the penalty (11).

• Penalized maximum likelihood : Two penalized multinomial logit models with smoothed

baseline hazard were fit. One model (“Lasso”) uses penalty (13) which enforces true variable

selection, while the other (“Ridge”) makes use of penalty (12).

• Random forests: Five random forest models were tested that differ in the size of the trees.

These models are referred to as “RF a, b”, with a denoting the value for the minimum number

of observations that is required in a node, and b denoting the value for the minimum number

of observations that is required in a node in order to split the node into two daughter nodes.

Values (a, b) were chosen as (0, 0), (5, 20), (10, 20), (10, 40), (20, 60).

Parameter tuning

The parameters ζ1 and ζ2 in (10), which determine the strength of the penalization for the pe-

nalized likelihood models, and the parameter mtry which denotes the number of randomly drawn

variables for a split in random forests, were chosen by 5-fold cross-validation. Due to the data blow

up, a modification of the classical cross-validation procedure was used, in which all ti data entries

from the same observation i were attributed to the same cross-validation fold. For penalized like-

lihood models, the combination of ζ1 and ζ2 values from a two-dimensional grid of possible values

was chosen that yielded the smallest cross-validated predictive deviance. Similarly, the parameter

mtry in the random forest model was chosen from a grid of appropriate values.

3.4 Prediction Accuracy

The models described in the previous section were fit on a training set and evaluated on an

independent test set of size nT = 1000, that follows the same distribution as the training set. Pre-

diction accuracy was evaluated by using the predictive deviance which measures the discrepancy

between independent data and the model fit. Models with smaller predictive deviances have higher

accuracy in predicting future data than models with larger predictive deviances. The predictive

deviance evaluated for the test set T := {(tTi , δTi , rTi ,xTi ), i = 1, . . . , nT }, is given by

D(T ) = −2

nT∑

i=1

tTi∑

s=1

{
m∑

k=1

yTisk log λ̂k(s|xTi ) + yTis0 log (1−
m∑

k=1

λ̂k(s|xTi ))

}
,

where yis0 and yisk are indicator variables for the transition to the next time interval (cf. Section

2), and λ̂r(t|·) are the hazards for event types r = 1, . . . ,m, which are estimated from the training

data.

The predictive deviance, however, is an unbounded measure. Thus we also considered the

corresponding R2 coefficient which is defined by

R2 =
1− exp((

∑nT
i=1 t

T
i )−1(D −D0))

1− exp(−(
∑nT
i=1 t

T
i )−1D0)

, (15)

where D0 corresponds to the predictive deviance obtained from the null model that does not use

any covariates. In our studies we considered a null model with smoothed baseline hazard via
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applying penalty (11). The R2 coefficient takes value 1 for a perfect prediction accuracy, and is 0

for a model which does not give better predictions than the null model (Nagelkerke; 1991).

3.5 Results

Case 1

Figure 1 shows the performance of all considered methods. Prediction performance was mea-

sured in terms of R2 for the different scenarios and for a different number of time intervals

(q ∈ {5, 10, 20}). The penalized multinomial logit models, Lasso and Ridge, always showed the

best performance. They significantly outperformed the penalized multinomial logit models, GLM

and GLM sm., in all considered scenarios. In Scenario 4 with q = 20, the traditional multinomial

logit models did not have any predictive ability at all. The penalized models, in contrast, still

performed well. Lasso was often slightly better than Ridge, however, the difference was marginal.

Both, GLM and GLM sm., had almost the same performance; obviously penalizing the baseline

hazard did not result in better predictions.

There were large differences in performance between prediction models by random forests that

differ in the size of trees: RF 0, 0 always had worst performance, and was very often not better

than the null model. While RF 0, 0 had consistently the worst performance, there was no clear

winner among the other four random forest prediction models. Which model performed best, was

not only specific to the considered scenario, but also to the number of time intervals. Smaller

tree sizes were especially of advantage for larger numbers of time intervals: for q = 5, prediction

performance of RF 5, 20, RF 10, 20 and RF 10, 40 was clearly better than that of RF 20, 60, but

for q = 20, RF 20, 60 outperformed the other two random forests.Compared to GLM and GLM

sm. the random forest models (except for RF 0, 0) often had comparable performance. In the

most complex scenario (Scenario 6 ) the best random forest models significantly outperformed the

traditional models.

Note that in Scenario 6 all parametric models (GLM, GLM sm., Lasso, Ridge) were poorly

specified, as the linear predictor did not reflect true relationships. Although true relationships

were not well captured, Lasso and Ridge did not have worse prediction performance than the non-

parametric models by random forests. More precisely, the best random forest models had very

similar performance. In all other scenarios the penalized multinomial logit models showed better

prediction performance than the models based on random forests. It was somewhat surprising

that Lasso and Ridge consistently outperformed random forest models, in particular because the

linear predictors in Lasso and Ridge models were not specified correctly in most of the scenarios

(Scenarios 3 - 6 ).

Case 2

The results for Case 2 are shown in Figure 2. Note that – as previously stated – results for GLM

and GLM sm. are not shown because maximum likelihood estimates do not exist. For Case 2 the

performance of penalized multinomial logit models depends highly on the penalty that was used.

Ridge models did not have any predictive ability, which is seen from the corresponding distributions

of R2 lying around or below zero. The poor performance of Ridge has a specific reason. In

these high-dimensional settings almost all of the predictors were completely unassociated with

the occurrence of event types. Since Ridge shrinks the parameter coefficients of noise predictors

toward zero but without explicitly removing noise predictors from the model, the performance

12
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Figure 1: Comparison of methods in terms of prediction accuracy measured by R2 coefficient for
Case 1, for 100 simulated datasets with n = 100. Values close or below zero (red line) indicate
that the respective model does not perform better than the null model, i.e., has no predictive
ability. A smoothed baseline hazard was considered for the null model.

13



Data No. event
types

No. indi-
viduals

No. co-
variates

No. time
intervals

Censoring
(in %)

m n p q
Bone Marrow Transplan-
tation Data

2 137 11 8 39

Hodgkin’s Disease Data 2 865 6 8 51
Bladder Cancer Data 2 304 1386 10 62

Table 2: Overview of real datasets (as used for the analysis).

suffers. This is a severe disadvantage if there are many predictors without any effect. In contrast,

Lasso enforces variable selection and removes noise predictors from the model with the effect that

prediction is much better.

The results obtained with the random forest method are in line with those for Case 1. RF 0,

0 had poor performance and should not be used for prediction purposes. The other four random

forest models showed better performance. However, in some of the scenarios they did not have

any predictive ability, either. Moreover, Lasso always clearly outperformed the considered random

forest models. Even though the linear predictor did not capture the true association in Scenarios

3 - 6, Lasso performed much better than the non-parametric models by random forests.

4 Real Data Studies

The proposed methods were tested and compared to the traditional maximum likelihood approach

based on three publicly available real world datasets from the medical field. Table 2 gives a

rough overview of the datasets. The first two datasets reflect low-dimensional settings, in which

unpenalized multinomial logit models can be applied, while the last dataset includes so many

predictors that maximum likelihood estimates do not exist and is used to investigate the practical

utility of the proposed regularization techniques.

In the following we give a brief description of the datasets. A description of the covariates can

be found in the appendix.

4.1 Data

Bone Marrow Transplantation Data

The Bone Marrow Transplantation Data includes n = 137 acute leukemia patients who have re-

ceived a bone marrow transplant. Bone marrow transplantation was considered to have failed if

either leukemia returns (relapse) or if the patient dies while being in remission (treatment-related

death). These are the two competing events that were considered for the analysis. Patient-

related as well as donor-related factors are expected to play a role in the patients’ recovery

process. A total of 11 patient- and donor-related variables were documented which may help

in predicting the two events. Neither relapse nor death was observed for 39% of the patients.

Time was originally given in months from transplantation. For performing a competing risks

analysis with discrete time, due to stability reasons time was coarsened into the 8 time inter-

vals [0, 0.25], (0.25, 0.5], (0.5, 1], (1, 2], (2, 3], (3, 4], (4, 5], (5, 7.5], with the numbers corresponding to

years from transplantation. The dataset is provided in Appendix C of the textbook of Klein and

Moeschberger (2005) and is also part of the R package KMsurv. For a detailed description of the
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Figure 2: Comparison of methods in terms of prediction accuracy measured by R2 coefficient for
Case 2, for 50 simulated datasets with n = 100. Values close or below zero (red line) indicate that
the respective model does not perform better than the null model, i.e., has no predictive ability.
A smoothed baseline hazard was considered for the null model.
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study, we refer the reader to Klein and Moeschberger (2005) and Copelan et al. (1991).

Hodgkin’s Disease Data

The Hodgkin’s Disease Data comprises information on n = 865 patients with stage I or II Hodgkin’s

disease recorded in the years 1968 to 1986 at the Princess Margaret Hospital (Petersen et al.;

2004). The two event types which we considered, were relapse and death without preceding

relapse. For half of the patients neither type of event was observed giving a high amount of

censored observations. Six covariates were included in the analysis. For stability reasons time was

coarsened to 4 year intervals. Due to the small number of observed events or censoring for later

follow-up times, the last interval was extended and comprised all individuals whose failure time is

beyond 28 years. This gave us a total of 8 time intervals. The dataset is publicly available under

http://www.uhnresearch.ca/labs/hill/People_Pintilie.htm and is also integrated in the R

package randomForestSRC.

Bladder Cancer Data

In a retrospective multicenter study Dyrskjøt et al. (2007) validated previously reported gene sig-

natures for predicting progression in bladder cancer patients. Biological material was taken from

bladder cancer patients who were operated in the years 1987 to 2000 in hospitals in Denmark,

Sweden, Spain, France and England. Information on 1381 preprocessed microarray features was

extracted. In addition, there was information on five clinical covariates. The analysis presented

here was restricted to n = 304 patients with non muscle-invasive tumors (stage pTa and pT1

tumors), for whom clinical important covariates (age, sex, tumor stage, grade) and genetic infor-

mation were available. Here the two competing events “death from bladder cancer” and “death

from another or unknown reason” were considered. The amount of censoring was very high in

this dataset (62% in the considered patient population). Follow-up time was originally given in

months from sampling visit. We coarsened it to one year intervals. Information from years 10 to

the maximal follow-up time of 15 after sampling visit were aggregated to one time interval due

to the sparse number of observed events or censored individuals for later follow-up times. The

Bladder Cancer Data is publicly available from the Gene Expression Omnibus (GEO) database

(series accession no. GSE5479).

4.2 Application to Real Data

We applied the prediction models outlined in Section 3.3 to the three real datasets. Penalized and

unpenalized multinomial logit models were modeled using a linear predictor of form ηitr = γ0tr +

x>i γr, with covariate vector x>i = (xi1, xi2, . . . , xip) and coefficient vector γ>r = (γr1, . . . , γrp).

Thus effects are assumed to be constant over time, and no interaction terms or non-linear terms

are assumed.

We fit random forest models in addition to those described in 3.3, if there were indications

that the parameters a and b controlling tree size were not appropriate. For the Hodgkin’s Disease

Data, for example, we also considered models with smaller tree sizes (RF 40, 200; RF 40, 300

and RF 40, 400), since there was a tendency that these might perform better. It is noteworthy

that prediction error will be biased downwards when fitting several random forest models with

different tree sizes and choosing the best one. Thus in practical applications one should tune
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Figure 3: Comparison of methods for the Bone Marrow Transplantation Data (left panel), the
Hodgkin’s Disease Data (middle panel) and the Bladder Cancer Data (right panel). Prediction
accuracy measured in terms of the R2 coefficient in combination with 50 repetitions of 5-fold
cross-validation. Values close or below zero (red line) indicate that the respective model does not
perform better than the null model, i.e., has no predictive ability. A smoothed baseline hazard
was considered for the null model.

the parameters that control the size of trees. Here we did not tune these parameters because we

wanted to investigate the influence of tree size on prediction performance.

To study prediction performance of the methods on real datasets, we computed the R2 as

defined in (15), in combination with cross-validation. This was done as follows: a real dataset was

split into 5 parts, while ensuring that data entries from the same observation were attributed to

the same cross-validation fold. Each part of the data was used once as test set, while the other

parts were used as training data. Prediction models were fit using the training observations and

the models’ prediction performance was evaluated using the respective test observations.

The parameters ζ1 and ζ2 in Eq. (10) for penalized multinomial logit models and mtry for

random forests were chosen through nested cross-validation. More precisely, within each training

step of the cross-validation procedure we chose values for the parameters which minimized the

cross-validated predictive deviance, as has already been described in Section 3.3. Since the models’

performance depends highly on the partition of the data into the five folds, we used 50 random

partitions. This resulted in 250 values for the R2.

4.3 Results

Figure 3 shows the predictive performance of the considered prediction models for the Bone

Marrow Transplantation Data (left panel), for the Hodgkin’s Disease Data (middle panel) and

for the Bladder Cancer Data (right panel).

The results are in line with those obtained for simulated data. Penalized multinomial logit

models were among the best methods for the three considered datasets. For the Bone Marrow

Transplantation Data, Lasso and Ridge clearly outperformed the unpenalized models. The random

forest models, RF 5, 20 and RF 10, 20, however, had comparable performance.

For the Hodgkin’s Disease Data, the traditional models performed well. This is possibly related

to the small number of parameters to be estimated and the large sample size (p = 2; n = 865;

m = 2). The penalized multinomial models had almost the same performance. The random forest
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approach had competitive performance if very high values for the parameters controlling tree size

were chosen.

Traditional models could not be estimated for the Bladder Cancer Data. For this dataset

penalized multinomial logit models and random forests with small tree sizes (RF 40, 100, RF 100,

200, and RF 200, 500) performed better than the null model. Random forest models with larger

tree size, in contrast, did not have any predictive ability. Ridge performed better than Lasso which

might be attributable to a possibly large number of genes with small effects.

5 Conclusion

The classical approach to the modeling of competing risks with discrete duration time is to fit a

multinomial logit model. However, the amount of parameters increases rapidly when the number

of predictor variables grows, as multinomial logit models employ several coefficients for each ex-

planatory variable. Therefore, maximum likelihood estimates tend to deteriorate quickly which

leads to a worsening in prediction performance. In some cases maximum likelihood estimates do

even not exist. This motivates the development of alternative approaches to the modeling of time

discrete competing risks.

This paper investigates the use of alternative approaches that are based on regularization

techniques. As regularization techniques we considered penalized maximum likelihood models

with ridge- and lasso type penalties and the non-parametric random forest method using the

random forest version of Hothorn et al. (2006). While penalized maximum likelihood models have

already been used for modeling competing risks, the random forest approach to the modeling of

time discrete competing risks has not been described before. It has the advantage that it does not

require a modification of the standard random forest algorithm, so any available random forest

software can be used.

The prediction performance of the considered methods was investigated through simulation

studies and three real data applications. Our studies show that regularization-based models give

more accurate predictions than unpenalized multinomial logit models in many settings. Penalized

multinomial logit models overall had the best performance. In all our studies the performance of

these models was at least as good as the performance of unpenalized multinomial logit models.

Predictive abilities of random forest models highly depended on the size of the trees. If trees

were grown without employing stopping criteria, the resulting random forest models had poor

performance, and very often did not have any predictive ability. In practical applications one

should thus tune parameters that control the size of trees. Compared to the penalized multinomial

logit models, the random forest models had sometimes equal but never better performance.

We conclude from our results that regularization-based parametric approaches considered here,

are promising tools for prediction purposes in a competing risks settings with discrete time. In

particular, penalized multinomial logit models have shown the best performance, and our results

suggest that they give accurate predictions even in cases of model misspecifications.
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We thank Wolfgang Pößnecker for technical assistance and for providing us with an implementation

of the Lasso approach for discrete time competing risks models.

18



References

Andersen, P. K., Gill, R. D. and Keiding, N. (1993). Statistical models based on counting processes,
Springer, New York.

Beyersmann, J., Allignol, A. and Schumacher, M. (2012). Competing risks and multistate models
with R, Springer.

Bou-Hamad, I., Larocque, D., Ben-Ameur, H. et al. (2011). A review of survival trees, Statistics
Surveys 5: 44–71.

Boulesteix, A.-L., Janitza, S., Kruppa, J. and König, I. R. (2012). Overview of random forest
methodology and practical guidance with emphasis on computational biology and bioinformat-
ics, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2(6): 493–507.

Breiman, L. (2001). Random forests, Machine Learning 45(1): 5–32.

Copelan, E. A., Biggs, J. C., Thompson, J. M., Crilley, P., Szer, J., Klein, J. P., Kapoor, N., Avalos,
B. R., Cunningham, I. and Atkinson, K. (1991). Treatment for acute myelocytic leukemia with
allogeneic bone marrow transplantation following preparation with BuCy2, Blood 78(3): 838–
843.

Dyrskjøt, L., Zieger, K., Real, F. X., Malats, N., Carrato, A., Hurst, C., Kotwal, S., Knowles,
M., Malmström, P.-U., de la Torre, M. et al. (2007). Gene expression signatures predict out-
come in non–muscle-invasive bladder carcinoma: a multicenter validation study, Clinical Cancer
Research 13(12): 3545–3551.

Hothorn, T., Hornik, K. and Zeileis, A. (2006). Unbiased recursive partitioning: A conditional
inference framework, Journal of Computational and Graphical Statistics 15(3): 651–674.

Kalbfleisch, J. D. and Prentice, R. L. (2011). The statistical analysis of failure time data, Vol.
360, John Wiley & Sons.

Klein, J. and Moeschberger, M. (2005). Survival analysis: Techniques for censored and truncated
data, Springer.

Kleinbaum, D. G. and Klein, M. (2005). Survival analysis, Springer.
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A Simulation Studies

A.1 Case 1

Time-varying effects

In the presence of time-varying effects the linear predictor ηitr in the multinomial model

λr(t|xi) =
exp(ηitr)

1 +
∑m
k=1 exp(ηitk)

can be formulated as

ηitr = γ0tr + x>γtr,

with time-varying covariate weights γ>tr = (γtr1, . . . , γtr8) for predictor variables X1, . . . , X8. For

Scenarios 3 and 6 the effect of the binary predictor variable X1 on the cause-specific hazards for

event types r = 1, 2, 3 was modeled as

γt11 = 2

(
t

q

)2

,

γt21 = −2
t

q
,

γt31 = 4I(t >
⌈q

2

⌉
).

The effects for all other predictor variables are time-constant and the corresponding coefficients

were independently drawn from the sets {0.2, 0.4, 0.6, 0.8, 1} (for metric variables) and {−1,−0.5, 0.5, 1}
(for binary variables).

Non-linear effects

For Scenarios 4 and 6, besides the linear term, a quadratic term for the metric predictor variable

X2 was included in the linear predictor ηitr for event types r = 1 and r = 3. The corresponding

coefficients for the quadratic terms were 0.2 and 0.6, respectively.

Interactions

For Scenarios 5 and 6 an additional (time-constant) interaction term between the binary predictor

variable X3 and the metric predictor variable X4 was included in the linear predictor ηitr. The

interaction term for r = 1 was 1.5, for r = 2 it was −1 and for r = 3 it was 0.5.

A.2 Case 2

Time-varying effects

For Scenarios 3 and 6 time-varying parameter vectors γ>tr = (γtr1, . . . , γtr,500) were defined. Table

A2 gives an overview of the parameters.

Non-linear effects

For Scenarios 4 and 6, besides the linear term, quadratic terms were included in the linear

predictor. For r = 1 and predictor variables X6, . . . , X10, the coefficients for the quadratic terms
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Case Event Type Coefficients Effect / Effect set
1 r ∈ {1, 2, 3} γr1, γr3 {−1,−0.5, 0.5, 1}

γr2, γr4 {0.2, 0.4, 0.6, 0.8, 1}
γr5, . . . , γr8 0

2 r = 1 γ11, . . . , γ1,10 {0.6, 0.8, 1, 2}
γ1,11, . . . , γ1,500 0

r = 2 γ21, . . . , γ2,20 {−2,−1, 1}
γ2,21, . . . , γ2,500 0

r = 3 γ31, . . . , γ35 {−2, 2}
γ36, . . . , γ3,500 0

Table A1: Parameters specified for Case 2 Scenarios 1, 2, 4, 5 which include no time-varying
predictor effects.

were 0.5, 0.5,−0.5,−0.5 and −0.5. For r = 2 and predictor variables X11, . . . , X20, the values were

−0.5,−0.5,−0.5,−0.5,−0.5, 0.5, 0.5, 0.5, 0.5, 0.5, and for r = 3 and predictor variables X3, X4, X5,

values were −0.5, 0.5 and 0.5.

Interactions

For Scenarios 5 and 6 additional (time-constant) interaction terms between two or three variables

were included in the linear predictor. Interaction effects were modeled for (i) variables, all with

(main) effects, (ii) variables, both, with effect and without effect, and (iii) variables, all without

any effect. Note that (main) effects were present for variables X1, . . . , X20, and were defined as

described in Table A2. For Scenarios 5 and 6 the following interaction terms were included:

• For r = 1:

γ1,18:19 x18 x19 := 0.5 x18 x19,

γ1,20:21 x20 x21 := −1 x20 x21,

γ1,22:23 x22 x23 := −0.5 x22 x23.

• For r = 2:

γ2,6:7:8 x6 x7 x8 := 2 x6 x7 x8,

γ2,9:10:11 x9 x10 x11 := −2 x9 x10 x11,

γ2,12:13:14 x12 x13 x14 := −2 x12 x13 x14.

• For r = 3:

γ3,3:4 x3 I(x4 > 0) := 1 x3 I(x4 > 0),

γ3,5:6 x5 I(x6 > 0) := −1 x5 I(x6 > 0),

γ3,7:8 x7 I(x8 > 0) := −1 x7 I(x8 > 0).
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Event Type Coefficient Effect / Effect set

r = 1 γt11
2
q t

γt12
2
q (q − t+ 1)

γt13 − 2
q t

γt14 − 2
q (q − t+ 1)

γt15 −2 + 4I(t ≥ q
2 )

γt16 = γ16 {0.6, 0.8, 1, 2}
...

...
γt1,10 = γ1,10 {0.6, 0.8, 1, 2}
γt1,11 = γ1,11 0
...

...
γt1,500 = γ1,500 0

r = 2 γt21
2√
q

√
t

γt22
2√
q

√
q − t+ 1

γt23
−2√
q

√
t

γt24
−2√
q

√
q − t+ 1

γt25
2
q2 t

2

γt26
2
q2 (q − t+ 1)2

γt27
−2
q2 t

2

γt28
−2
q2 (q − t+ 1)2

γt29 −2I(t ≥ q
2 )

γt2,10 −2I(t < q
2 )

γt2,11 = γ2,11 {−2,−1, 1}
...

...
γt2,20 = γ2,20 {−2,−1, 1}
γt2,21 = γ2,21 0
...

...
γt2,500 = γ2,500 0

r = 3 γt31 2I(t ≥ q
2 )

γt32 2I(t < q
2 )

γt33 = γ33 {−2, 2}
...

...
γt35 = γ35 {−2, 2}
γt36 = γ36 0
...

...
γt3,500 = γ3,500 0





Time-varying effects

}
Time-constant effects

}
No effect





Time-varying effects

}
Time-constant effects

}
No effect

}
Time-varying effects

}
Time-constant effects

}
No effect

Table A2: Case 2 : Parameters specified for Scenarios 3 and 6, both including time-varying
predictor effects.
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A.3 Baseline Hazards

Cause-specific baseline hazard functions γ0tr for r = 1, 2, 3 were defined as follows:

γ0t1 = a1t+ b1,

γ0t2 = a2
1√
t

+ b2,

γ0t3 =





a3, t ∈ {1, 5, 9, 13, . . .}
a3 + 1.5, t ∈ {2, 4, 6, 8, . . .}
a3 + 3, t ∈ {3, 7, 11, 15, . . .},

with a1, b1, a2, b2 and a3 given in Table A3.

Setting q a1 b1 a2 b2 a3

Case 1 5 5.5 1
5−1 −5.5− b2 −11

√
5√

5−1 −11− a1 −5

(low-dimensional) 10 5 1
10−1 −5− b2 −9

√
10√

10−1 −10− a1 −5.5

20 6 1
20−1 −6− b2 −9

√
20√

20−1 −11− a1 −6.5

Case 2 5 7 1
5−1 −7− b2 −14

√
5√

5−1 −14− a1 −6

(high-dimensional) 10 9 1
10−1 −8− b2 −16

√
10√

10−1 −16− a1 −7

20 12 1
20−1 −8− b2 −20

√
20√

20−1 −20− a1 −7.5

Table A3: Parameter values specified for the baseline hazard functions.

A.4 Random Forests Parameters

Details on the parameters passed to the cforest function from R package party are given in Table

A4.

Parameter Value Default #

ntree 500 yes
mtry determined via cross-validation no
replace FALSE yes
teststat “quad” yes
testtype “Univ” yes
mincriterion 0 no
minsplit {0, 20, 40, 60} no
minbucket {0, 5, 10, 20} no

Table A4: Parameters passed to cforest or cforest control. # Default settings in party version
1.0-10.
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B Dataset Descriptions

Brief descriptions of the variables for the Bone Marrow Transplantation Data, the Hodgkin’s

Disease Data and the Bladder Cancer Data are given in Tables A5 – A7.

Variable Description
Event type 1: treatment-related death

2: relapse
Time time since transplantation
Disease group ALL

AML (low risk)
AML (high risk)

Patient’s age age of patients (range: [7, 52])
Donor’s age age of the patient’s donor (range: [2, 56])
Patient’s sex patient’s gender
Donor’s sex gender of the patient’s donor
Patient’s CMV status positive / negative
Donor’s CMV status positive / negative
Waiting time to transplant waiting time in months from diagnosis (range: [0.8, 87.2])
FAB classification Grade 4 or 5 and AML / otherwise
Hospital the hospital where transplantation took place:

Ohio State University Hospitals (Columbus)
Alferd Hospital (Melbourne)
St. Vincent’s Hospital (Sydney)
Hahnemann University (Philadelphia)

MTX used as graft-versus-
host-prophylactic

yes / no

Table A5: Description of variables for the Bone Marrow Transplantation Data.

Variable Description
Event type 1: death

2: relapse
Time time since diagnosis
Treatment the treatment a person received, which is ei-

ther radiation or radiation in combination
with chemotherapy

Age person’s age (range: [15.6, 90])
Sex person’s gender
Size of mediastinum involvement either no involvement, of small size or of large

size
Extranodal disease has the disease spread? (yes / no)
Clinical stage clinical stage of lymphoma, either stage I or

stage II

Table A6: Description of variables for the Hodgkin’s Disease Data.
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Variable Description
Event type 1: death from bladder cancer

2: death from other or unknown reason
Time time after sampling visit
Treatment received treatment, which is either one of instillations of

Bacillus Calmette-Guerin (BCG) or mitomycin-C
Age person’s age (range: [27, 95])
Sex person’s gender
Clinical stage clinical stage of tumor which is either pTa or pT1

Grade PUNLMP, low, high
Seq. 1 Microarray measurement 1
...

...
Seq. 1381 Microarray measurement 1381

Table A7: Description of variables for the Bladder Cancer Data.
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