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Abstract

The random forest method is a commonly used tool for classification with high-dimensional
data that is able to rank candidate predictors through its inbuilt variable importance mea-
sures (VIMs). It can be applied to various kinds of regression problems including nominal,
metric and survival response variables. While classification and regression problems using
random forest methodology have been extensively investigated in the past, there seems to be
a lack of literature on handling ordinal regression problems, that is if response categories have
an inherent ordering. The classical random forest version of Breiman ignores the ordering
in the levels and implements standard classification trees. Or if the variable is treated like
a metric variable, regression trees are used which, however, are not appropriate for ordinal
response data. Further compounding the difficulties the currently existing VIMs for nominal
or metric responses have not proven to be appropriate for ordinal response. The random
forest version of Hothorn et al. utilizes a permutation test framework that is applicable to
problems where both predictors and response are measured on arbitrary scales. It is there-
fore a promising tool for handling ordinal regression problems. However, for this random
forest version there is also no specific VIM for ordinal response variables and the appropri-
ateness of the error-rate based VIM computed by default in the case of ordinal responses
has to date not been investigated in the literature. We performed simulation studies using
random forest based on conditional inference trees to explore whether incorporating the or-
dering information yields any improvement in prediction performance or variable selection.
We present two novel permutation VIMs that are reasonable alternatives to the currently
implemented VIM which was developed for nominal response and makes no use of the order-
ing in the levels of an ordinal response variable. Results based on simulated and real data
suggest that predictor rankings can be improved by using our new permutation VIMs that
explicitly use the ordering in the response levels in combination with the ordinal regression
trees suggested by Hothorn et al. With respect to prediction accuracy in our studies, the per-
formance of ordinal regression trees was similar to and in most settings even slightly better
than that of classification trees. An explanation for the greater performance is that in ordinal
regression trees there is a higher probability of selecting relevant variables for a split. The
codes implementing our studies and our novel permutation VIMs for the statistical software
R are available at http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_
drittmittel/janitza/index.html.
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1 Introduction

In many applications where the aim is to predict the response or to identify important predictors,

the response has an inherent ordering. Examples of ordinal responses in biomedical applications

are tumor stages I - IV, disease severity, for example from mild to moderate to severe disease

state, and artificially created scores combining several single measurements into one summary

measure, like the Apgar score, which is used to assess the health of a newborn child. Appropriate

handling of ordinal response data for class prediction as well as for feature selection is essential to

efficiently exploit the information in the data. A study concerning stroke prevention showed that

statistical efficiency was much higher when using an ordinal response such as fatal/nonfatal/no

stroke compared to a binary outcome providing only the information of whether a patient had

a stroke or not (Bath et al.; 2008). Statistical models for ordinal response data such as the

proportional odds, the continuation ratio and the adjacent category model have been investigated

extensively in the literature (see Agresti; 2002). However, these methods are not suitable for

applications where the association between predictors and the response is of a complex nature,

including higher-order interactions and correlations between predictors. Moreover, the models

rely on assumptions (such as proportional odds) that are frequently not realistic in practical

applications. Further, parameter estimation typically faces the problem of numerical instability if

the number of predictors is high compared to the number of observations.

The random forest (RF) method by Breiman (2001) is a commonly used tool in bioinformatics

and related fields for classification and regression purposes as well as for ranking candidate pre-

dictors (see Boulesteix et al.; 2012b, for a recent overview). It has been used in many applications

involving high-dimensional data. As a nonparametric method, RF can deal with nonlinearity, in-

teractions, correlated predictors and heterogeneity, which makes it especially attractive in genetic

epidemiology (Briggs et al.; 2010; Chang et al.; 2008; Liu et al.; 2011; Nicodemus et al.; 2010;

Sun et al.; 2007). The RF method can be applied for classification (in the case of a nominal

response) as well as for regression tasks (in the case of a numeric response). By using an ensemble

of classification or regression trees, respectively, one can obtain predictions and identify predictors

that are associated with the response via RF’s inbuilt variable importance measures (VIMs).

For nominal and numeric response the application of RF has been well investigated. However,

in the case of ordinal response there is no standard procedure and literature is scarce. While in

the classical RF algorithm by Breiman (2001) the ordering of a predictor is taken into account

by allowing splits only between adjacent categories, the ordering information in the response is

ignored (i.e., the response is treated as a nominal variable), and an ensemble of classification

trees is constructed. However, ignoring the ordering information results in a loss of information.

For single classification and regression trees (CART) several approaches for predicting an ordinal

response have been developed. These are based on alternative impurity measures to the Gini

index. Prominent examples are the ordinal impurity function suggested by Piccarreta (2001) and

the generalized Gini criterion introduced by Breiman et al. (1984). With these measures a higher

penalty is put on misclassification into a category that is more distant to the true class than on

misclassification into a category that is close to the true class, thus taking into account the ordinal

nature of the response. The ordered twoing criterion by Breiman et al. (1984, p. 38) is another

popular measure that does not rely on misclassification costs but rather on reducing the k-class

classification problem to k − 1 two-class classification problems where a split that divides the k

classes into two classes is only made between adjacent categories (see Breiman et al.; 1984, for
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a detailed description). Archer and Mas (2009) investigated the prediction accuracy of bagged

trees constructed through the ordered twoing method (Breiman et al.; 1984) and the ordinal im-

purity function (Piccarreta; 2001) for classifying an ordinal response. Using simulation studies

they showed that the ordered twoing method and the ordinal impurity function are reasonable

alternatives to the Gini index in tree construction. However, in their real data application these

measures did not perform better than the Gini index. Except for the study of Archer and Mas

(2009), approaches for ordinal regression problems have only been discussed for CART and we are

not aware of any study or implementation which extends these approaches to RF.

The unbiased RF version of Hothorn et al. (2006b) is based on a unified framework for condi-

tional inference and, in contrast to the classical RF version of Breiman (2001), in which certain

types of variables are favored for a split (Strobl et al.; 2007; Nicodemus; 2011; Boulesteix et al.;

2012a; Nicodemus and Malley; 2009), it provides unbiased variable selection when searching for an

optimal split (Strobl et al.; 2007; Hothorn et al.; 2006b). This RF version is a promising tool for

constructing trees with ordinal response data because, in contrast to the standard RF implemen-

tation by Breiman (2001), where splitting is based on the Gini index, it provides the possibility of

taking the ordering information into account when constructing a tree. A test statistic is computed

to assess the association between the predictors and the ordinal response and the predictor that

yields the minimal p-value is used to perform the split. For this purpose one has to attach scores

to each category of the ordinal response. These scores reflect the distances between the levels of

the response. When the response is derived from an underlying continuous variable, the scores

can be chosen as the midpoints of the intervals defining the levels. For example, when creating

categories for different smoking levels, Mantel (1963) suggested defining the scores as the average

number of cigarettes per day or week. Note that when defining scores only the relative spacing of

the scores is important, not the absolute; for example the scores 1, 2, 3 reflect the same relative

distance between categories as the scores 1, 3, 5.

A further issue which is investigated in this paper is the appropriate handling of the ordering

information in the response when computing VIMs. The variable importance (VI) for each pre-

dictor is derived from the difference in prediction performance of the single trees resulting from

the random permutation of this predictor. For numeric responses the mean squared error of the

predicted and the true values is used as the prediction performance measure to compute the VI.

For categorical responses (nominal and ordinal) the standard is to use the error rate. An appro-

priate prediction performance measure is essential for a good VIM performance, as demonstrated

by Janitza et al. (2013), who showed that in the case of two response classes which differ in their

class sizes the area under the curve is a more appropriate performance measure for computing the

VI of a predictor than the commonly used error rate.

The design of an appropriate VIM in the common case of ordinal response variables, however,

has to our knowledge never been addressed in the literature. The currently used VIM based on

the error rate as a prediction accuracy measure does not seem suitable in the case of an ordinal

response because the error rate does not differentiate between different kinds of misclassification.

A classification of a healthy person as badly ill and a classification of a healthy person as slightly ill

are regarded to be equally bad, though the latter is obviously a much better classification than the

first. In the case of an ordinal response not all misclassifications can be regarded as equally poor

and one might think about replacing the error rate by a more appropriate performance measure

when computing the VI of a predictor.

In this paper we investigate whether incorporating the ordering information contained in the
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response improves RF’s prediction performance and predictor ranking through RF. To improve

predictor ranking for ordinal responses, we investigate the use of three alternative permutation

VIMs which are based on the mean squared error, the mean absolute error and the ranked prob-

ability score, respectively, that all take the ordering information into account. While the VIM

based on the mean squared error is an established VIM that is frequently used for RF in the

context of regression problems, the latter two VIMs are novel and have not been considered else-

where. Finally we explore the impact of the choice of scores on prediction performance and on

predictor rankings. We investigate these issues using the RF version of Hothorn et al. (2006b) as

it provides an unbiased selection of predictors for an optimal split and is suitable for various kinds

of regression problems, including ordinal regression.

This article is structured as follows. In Section 2 we introduce the methods. The first part

of the methods section reviews established performance measures that can be used to assess the

ability of a classifier to predict an ordinal response. The second part starts with an introduction to

tree construction and prediction by RF based on conditional inference trees. Thereafter we outline

the concept of variable importance and introduce the two existing VIMs as well as our two novel

VIMs that we propose for predictor rankings through RF and ordinal response data. In Section 3

and 4 we present our studies on simulated and real data, respectively. In both sections we report on

the studies of prediction performance first. Here we compare the prediction performance of a RF

constructed from classification trees with that of a RF constructed from ordinal regression trees.

Subsequently we show the studies on VIM performance in which we compare the performance

of the standard error rate based VIM to those of the three alternative permutation VIMs when

computed on classification and ordinal regression trees. In Section 5 we summarize our findings

and give recommendations to applied researchers working with RF and ordinal response data.

2 Methods

2.1 Performance measures

In the following we give definitions of established performance measures that are used in our stud-

ies for two purposes: i) to evaluate the prediction performance of RF for predicting an ordinal

response and ii) for use in the proposed alternative permutation VIMs.

Error rate (ER)

The error rate for the classification of observations i = 1, . . . , n with true classes Yi into classes Ŷi

is given by

ER =
1

n

n∑

i=1

I(Ŷi 6= Yi), (1)

where I(.) denotes the indicator function. The error rate does not take the ordering of the classes

into account since it only distinguishes between a correct classification (Ŷ = Y ) and an incorrect

classification (Ŷ 6= Y ).

Mean squared error (MSE)

With the mean squared error not all misclassifications are regarded as equally bad as is the case

for the error rate. A higher penalty is put on a classification into a class which is more distant
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from the true class Y than on a classification into a class which is closer to Y . To measure the

distance between ordinal response classes we use scores s(r) ∈ R with s(1) < s(2) < . . . < s(k)

for each category r = 1, . . . , k of the response level. The distance between two categories r1 and

r2 is then computed from the difference in the corresponding scores, s(r1)− s(r2). By computing

the difference we are actually treating the ordinal response as interval scaled, which might be

problematic. However, computing differences, and by that transforming the ordinal variable to

interval scale, has the advantage that loss functions for interval scaled variables like the mean

squared error in the form

MSE =
1

n

n∑

i=1

(s(Ŷi)− s(Yi))2 (2)

might be used (see e.g. Tutz (2011) p. 474, Fürnkranz and Hüllermeier (2010), p. 134, and

Hechenbichler and Schliep (2004)). When using the simple scores s(r) = r, Eq. (2) yields
1
n

∑n
i=1 (Ŷi − Yi)2.

Mean absolute error (MAE)

The mean absolute error used for our studies on ordinal regression problems is very similar to the

mean squared error, with the difference that classification into a distant class is not penalized as

much. Using the same notation as before, the mean absolute error for ordinal regression problems

is given by

MAE =
1

n

n∑

i=1

|s(Ŷi)− s(Yi)|. (3)

For metric response Y the mean absolute error takes the form 1
n

∑n
i=1 |Ŷi − Yi| which directly

results from Eq. (3) when using the simple scores s(r) = r.

Ranked probability score (RPS)

The ranked probability score originally introduced by Epstein (1969), is a generalization of the

Brier score to multiple categories. It can be computed as the sum of Brier scores for all two-

class problems that arise when splitting the sample on all possible thresholds made between two

adjacent categories. The RPS has been shown to be particularly appropriate for the evaluation of

probability forecasts of ordinal variables (Murphy; 1970). It is defined as

RPS =
1

n

n∑

i=1

k∑

r=1

(π̂i(r)− I(Yi ≤ r))2, (4)

where k denotes the number of response classes and π̂i(r) denotes the predicted probability of

observation i belonging to classes {1, . . . , r}. The RPS measures the discrepancy between the

predicted cumulative distribution function and the true cumulative distribution function (Murphy;

1970). The predicted cumulative distribution function can be computed from class probabilities

that are predicted by a model, that is the estimated probabilities of an observation belonging to

classes r = 1, . . . , k. The true cumulative distribution function simplifies to a step function with

a step from 0 to 1 at the true value yi for observation i. A graphical illustration of the RPS is

given in Figure 1 for an observation i with observed category yi = 6. Figure 1 shows the true

cumulative distribution function (solid gray line) with step from 0 to 1 at the true value yi = 6 and

the cumulative distribution function (solid black line) that is obtained from class predictions of a
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Figure 1: Predicted (solid black line) and true (solid gray line) cumulative distribution functions
for an individual with observed category yi = 6 for two different models. Red dashed lines
indicate the difference between the predicted and the true cumulative distribution functions, that
is |π̂i(r)− I(yi ≤ r)|, for r = 1, . . . , k and yi = 6.

model. Predicted distribution functions are given for two different models. The red dashed lines

correspond to the distance between the predicted and the true cumulative distribution functions

(i.e., π̂i(r) − I(6 ≤ r)) for a specific category r. These distances are squared when computing

the RPS as in Eq. (4). The predicted cumulative distribution function in the left panel indicates

that Model 1 does not seem to be very accurate in predicting the value for observation i. Here

distances between the true and the predicted cumulative distribution functions are large and the

RPS for observation i takes the value 0.212 + 0.412 + 0.522 + 0.612 + 0.642 + (0.69− 1)2 + (0.77−
1)2 + (0.89 − 1)2 + (1 − 1)2 = 1.4254. A much better prediction is obtained when using Model

2. This model assigns the greatest probabilities for values of or around the true value yi = 6.

Accordingly, the distances between the true and the predicted cumulative distribution functions

are rather small, which is reflected by an RPS of 0.022 + 0.022 + 0.092 + 0.182 + 0.322 + (0.61 −
1)2 + (0.85− 1)2 + (0.96− 1)2 + (1− 1)2 = 0.3199. It is clear from this illustration that the RPS

is smaller (indicating a better prediction) if the predicted probabilities are concentrated near the

observed class and is minimal if the predicted probability for the observed class is 1. From its

definition it is clear that the RPS uses solely the ordering of the categories and does not require

information on the distances between categories.

2.2 Random forests and ordinal regression trees

In the following we briefly review the RF version of Hothorn et al. (2006b), which is based on a

conditional inference framework. We focus on tree construction and prediction in the case of an

ordinal response and explain the concept of the out-of-bag observations. Afterward we review two

existing VIMs (based on the error rate and the mean squared error, respectively) that have been
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invented for ranking variables for classification and regression problems, respectively. Finally we

present two alternative VIMs which we regard as promising for the special case of ordinal response.

2.2.1 Conditional inference tree construction

The RF method is a classification and regression tool that combines several decision trees. An

individual tree is fit using a random sample of observations drawn with or without replacement

from the original sample. For each split in a tree, mtry randomly drawn predictors are assessed

as candidates for splitting and the predictor that yields the best split is chosen.

In the RF version of Hothorn et al. (2006b) that we use throughout this paper, conditional

inference tests are performed for selecting the best split in an unbiased way. For each split in

a tree, each candidate predictor from the randomly drawn subset is tested for its association

with the response, yielding a p-value. The predictor with the smallest p-value is selected, and

within the selected predictor the best split is chosen. This methodology utilizes a permutation

test framework and is thus applicable to problems where both predictors and response can be

measured on arbitrary scales, including nominal, ordinal, discrete and continuous variables.

In the case of ordinal response, the response is transformed to a metric scale by attributing scores

to the levels of the response. The transformed response is then used to test the association with

candidate predictors. If s(r) ∈ R denotes the score for category r ∈ {1, 2, . . . , k} and Yi denotes

the ordinal response of observation i with covariates Xij , j = 1, . . . , p then the test statistic that

is used for testing the association between the ordinal response and a predictor variable Xj of

arbitrary scale using observations i = 1, . . . , n is defined as

Tj =

n∑

i=1

gj(Xij)s(Yi) (5)

with gj : Xj → Rpj being a non-random transformation of the predictor variable Xj from the

one-dimensional vector space to a pj-dimensional vector space. For a numeric predictor variable

the transformation is usually the identity function such that gj(Xij) = Xij and pj = 1. For a

nominal categorical predictor variable taking levels in 1, . . . ,m, gj is the unit vector of length m

with the l-th element being equal to one and pj = m. Note that in this case the test statistic Tj

itself is an m-dimensional vector, which is then mapped onto the real line, for example by taking

the component that has maximal absolute standardized value; see Hothorn et al. (2006b). For an

ordinal categorical predictor variable the class levels are transformed to a metric scale through

attributing scores – but now scores are attributed to the levels of the ordinal predictor Xj . If both

response and predictor are ordinal variables this test is also known under the name linear-by-linear

association test (Agresti; 2002).

Note that the test statistic for an ordinal response coincides with a test statistic for a nu-

meric response with values s(Y1), . . . , s(Yn). This leads to the selection of the same variables and

cutpoints in ordinal regression trees and regression trees. Though ordinal regression trees and

regression trees have the same tree structure, predictions by the trees are different because the

aggregation schemes are different, as outlined in the next section. In brief, the tree construction

of ordinal regression trees corresponds to that in regression trees, while predictions and variable

importance are obtained in the same way as for classification trees.

For detailed information on deriving p-values from test statistics of form (5) we refer the reader

to the original literature by Hothorn et al. (2006a,b). Note that notations and the formula for the
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test statistic given in this section are a special case of Hothorn et al. (2006b, p. 8). More precisely,

the formula for the test statistic arises from the special case in which the response is univariate

and all observations i = 1, . . . , n are used for deriving the test statistic (thus omitting observation

weights). Trees that are constructed based on the test statistic (5) are denoted by ordinal regression

trees to indicate that the trees were constructed by using the ordering information. Tests which

take the ordering of a variable into account have higher power compared to tests which ignore

the underlying ordering because some degrees of freedom are saved by restricting the possible

parameter space (Agresti; 2002, p. 98).

2.2.2 Prediction by random forest

A RF combines several individual decision trees to make a final prediction. For an observation

that was not used to construct the RF, each tree in the RF makes a prediction. When using

regression trees the final prediction is then the average over all tree predictions, which results in

a real-valued prediction. For ordinal responses, real-valued predictions are difficult to interpret

and there is no standard procedure how to obtain class predictions from these values. Thus the

application of regression trees for ordinal responses might not be advisable.

Classification and ordinal regression trees in contrast yield estimates for class probabilities, P̂ (Y =

r), r ∈ {1, . . . , k}. In the RF version of Hothorn et al. (2006b) P̂ (Y = r) are estimated by averaging

the tree-specific class probabilities. This is in contrast to the classical RF version of Breiman (2001)

in which predicted class probabilities are directly computed from the number of trees voting for

a class. The class probabilities can then be used to obtain class predictions. In both RF versions

the currently implemented strategy for obtaining class predictions for an ordinal response is to

classify into the most likely class:

Ŷ = r ⇔ P̂ (Y = r) = max
l=1,...,k

P̂ (Y = l).

The predicted class thus corresponds to the mode of the predicted class probability distribution.

2.2.3 Out-of-bag observations

Since each tree is built from a random sample of the data, there are some observations from the

data which were not used in its construction (“out-of-bag”). These observations are denoted by

OOB observations. In a forest each tree is built from a different sample from the original data, so

each observation is “out-of-bag” for some of the trees. The prediction for an observation can then

be obtained by using only those trees for which the observation was not used for the construction.

In this way, a classification is obtained for each observation and the error rate or a different

performance measure (like those introduced in Section 2.1 in the case of an ordinal response) can

be estimated from these predictions in an unbiased way, in the sense that the resulting estimate

reflects the performance expected on independent test data not used for training. When computing

the error rate in this way, the resulting error rate is often referred to as out-of-bag (OOB) error.

The OOB observations have not only proven useful for estimating the accuracy of a RF but

also for computing the RF’s permutation variable importance, as outlined in the following section.
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2.2.4 Variable importance measures

RF provides measures that can be used for obtaining a ranking of predictors that reflects the

importance of these variables in the prediction of the response and can, for example, be used

to select the variables with the best predictive ability. The two standard variable importance

measures (VIMs) implemented in the classical RF version of Breiman (2001) are the permutation

VIM and the Gini VIM. The latter has been shown to favor certain types of predictors (Strobl

et al.; 2007; Nicodemus and Malley; 2009; Nicodemus; 2011; Boulesteix et al.; 2012a) and therefore

its predictor rankings should be treated with caution. Here we focus on the permutation VIM,

which gives essentially unbiased rankings of the predictors.

We use a general definition of a permutation VIM which is based on an arbitrary performance

measure M (e.g., the error rate). The variable importance of variable j is defined as

V IMj =
1

ntree

ntree∑

t=1

(MPtj −Mtj), (6)

where

• ntree denotes the number of trees in the forest,

• Mtj denotes the performance of tree t when predicting all observations that are OOB for

tree t before permuting the values of predictor variable Xj ,

• MPtj denotes the performance of tree t when predicting all observations that are OOB for

tree t after randomly permuting the values of predictor variable Xj .

The idea underlying this VIM is the following: if the predictor is not associated with the

response, the permutation of its values has no influence on the classification, and thus no influence

on the performance. Then the performance of the forest is not substantially affected by the

permutation and the VI of the predictor takes a value close to zero, indicating that there is no

association between the predictor and the response. In contrast, if response and predictor are

associated, the permutation of the predictor values destroys this association. “Knocking out” this

predictor by permuting its values results in worse prediction. If the performance measure has lower

values for better prediction, the difference in performance before and after randomly permuting

the predictor takes a positive value, reflecting the high importance of this predictor.

The two established permutation VIMs for RF arise when using the error rate (for classification

trees) or the mean squared error (for regression trees) as the performance measure M in Eq. (6).

Throughout this paper we will term these measures the error rate based (permutation) VIM and

the MSE-based (permutation) VIM, respectively. These VIMs have been explored in the literature

in the context of classification and regression tasks, respectively, and are often applied in the

literature (e.g., Steidl et al.; 2010; Karamanian et al.; 2014; Harrington et al.; 2014).

In the R package party, the permutation VIM for ordinal regression trees is the error rate

based permutation VIM. However, there are no studies that have shown that the error rate is

appropriate for ordinal regression trees or that the error rate based VIM gives better rankings

than, for example, the MSE-based VIM.
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2.2.5 Novel variable importance measures

In this paper we introduce two novel VIMs which might be, in addition to the MSE-based VIM

mentioned previously, promising for ordinal response data. These VIMs are based on the per-

formance measures introduced in Section 2.1. More precisely, we propose VIMs of the form (6)

where the ranked probability score (cf. Eq. (4)) or the mean absolute error (cf. Eq. (3)) are used

as the performance measure M . These VIMs will be termed the RPS-based (permutation) VIM

and the MAE-based (permutation) VIM.

Our implementation of these two novel VIMs can be obtained from the website http://www.

ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/index.html.

Note that the implementation allows the computation of the VIMs from either ordinal regression

or classification trees, if constructed using the R package party. In addition to the RPS- and

MAE-based VIMs, an implementation of the MSE-based VIM is provided that enables one to

compute the MSE-based VIM from ordinal regression trees and from classification trees as well, a

feature which is not currently possible using the R package party.

Note that while the error rate based permutation VIM does not take the ordering information

of the response levels into account, the three other VIMs do. In our studies we investigate and

compare the performances of the four permutations VIMs.

3 Simulation studies

3.1 Data simulation

The data were simulated from a mixture of two proportional odds models. Let P (Y ≤ r|x) denote

the cumulative probability for the occurrence of a response category equal to or less than r for an

individual with covariate vector x. This probability is derived from a mixture of two proportional

odds models

P (Y ≤ r|x) = ζP1(Y ≤ r|x) + (1− ζ)P2(Y ≤ r|x), (7)

where ζ is the mixture proportion and P1(Y ≤ r|x) and P2(Y ≤ r|x) are the cumulative proba-

bilities that arise from two independent proportional odds models. The proportional odds model

for mixture component g ∈ {1, 2} has the form

Pg(Y ≤ r|x) =
exp(γ0rg + xTγg)

1 + exp(γ0rg + xTγg)
, r = 1, . . . , k, (8)

where the category-specific intercepts satisfy the condition γ01g ≤ . . . ≤ γ0kg = ∞. In contrast

to the intercepts, the coefficients γg do not vary over categories. In this case the comparison

of two individuals with respect to their cumulative odds Pg(Y ≤ r|x)/Pg(Y > r|x) for mixture

component g does not depend on the category r, giving the model its name, “proportional odds

model” (see e.g., Tutz; 2011).

In our studies, the intercepts do not differ between the two mixture components; that is

γ0r1 = γ0r2 = γ0r. The intercepts for the categories were chosen such that the difference between

the intercepts of adjacent categories is larger for more extreme categories. Concrete values for the

intercepts are provided in Table 1. The simulation setting comprises both predictors not associated

with the response (termed noise predictors) and associated predictors (termed signal predictors).
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Number of re- γ01 γ02 γ03 γ04 γ05 γ06 γ07 γ08 γ09
sponse levels
k = 3 −1.80 1.80 ∞ - - - - - -
k = 6 −4.50 −1.50 0.00 1.50 4.50 ∞ - - -
k = 9 −5.90 −3.41 −1.55 −0.31 0.31 1.55 3.41 5.90 ∞

Table 1: Intercepts for the proportional hazards model (8) with γ0rg = γ0r.

Predictors X1, X2, . . . , X15 had an effect on the cumulative odds of the first mixture component.

The first five predictors each had a large effect, with corresponding parameter coefficients γ11 =

γ12 = . . . = γ15 = 1; the second set of five predictors each had a moderate effect, with coefficients

γ16 = γ17 = . . . = γ1,10 = 0.75; and the last set of five signal predictors each had a small effect, with

coefficients γ1,11 = γ1,12 = . . . = γ1,15 = 0.5. The remaining predictors X16, X17, . . . , X65 had no

effect on the cumulative odds of the first mixture component and their respective coefficients were

zero. For the second mixture component fewer predictors had an effect but all effects were large

(coefficient of either 1 or −1). Almost all predictors which had an effect for the first component,

had an effect for the second – with the exceptions of X5, X10 and X15, which had no effect for the

second component. For predictors X5, X10, X15, X16, X17, . . . , X65 the corresponding coefficients

were set to zero, while for the other predictors the parameter coefficients were γ21 = γ22 = γ26 =

γ27 = γ2,11 = γ2,12 = 1 and γ23 = γ24 = γ28 = γ29 = γ2,13 = γ2,14 = −1. Table 2 shows the

coefficients for both mixture components. To summarize, there are predictors that have no effect

at all, predictors that have an effect for both mixture components and predictors that have an

effect for only one mixture component.

Mixture Coefficient vector
Component γT

g = (γg1, . . . , γg,65)

g = 1 (1, 1, 1, 1, 1, 0.75, 0.75, 0.75, 0.75, 0.75, 0.5, 0.5, 0.5, 0.5, 0.5, 0, 0, . . . , 0)
g = 2 (1, 1,−1,−1, 0, 1, 1, −1, −1, 0, 1, 1, −1, −1, 0, 0, 0, . . . , 0)

Table 2: Effects of predictors on the cumulative odds of the proportional hazards model (8) for
mixture components g = 1, 2.

Data was generated for sample sizes n = 200 and n = 400. Let xT
i = (xi1, xi2, . . . , xi,65)

denote the covariate vector for the observation i. For the generation of the response value yi

the cumulative probability for the occurrence of a response category equal to or less than r was

computed according to (7). Probabilities for classes r = 1, . . . , k were derived and a multinomial

experiment was performed for each observation using its response class probabilities.

For each setting (specified in the subsequent section) 100 datasets were generated.

3.1.1 Simulation settings

Various settings were simulated that differed in

• the value for the mixture proportion ζ. Settings were simulated for ζ = 0.6 (data generation

based on a mixture of two proportional odds models), ζ = 1 (data generation based on the

proportional odds model specified by mixture component g = 1) and ζ = 0 (data generation

based on the proportional odds model specified by mixture component g = 2),

• the number of ordered response levels, chosen as k = 3, k = 6 and k = 9, and,
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• the generation of predictor variables. For settings without correlations, xi, i = 1, . . . , n,

were drawn from N(0p, Ip), with Ip denoting the identity matrix of dimension (p × p) and

p denoting the number of predictors. For settings with correlations, xi, i = 1, . . . , n, were

drawn from N(0p,Σp) with block diagonal covariance matrix

Σp =




Asignal 0 0 0 0 0

0 Anoise1 0 0 0 0

0 0 Anoise2 0 0 0

0 0 0 Anoise3 0 0

0 0 0 0 Anoise4 0

0 0 0 0 0 Anoise5




.

The first block matrix Asignal ∈ R(15×15) determined the correlations among the signal

predictors X1, . . . , X15. It was defined as Asignal = (aij) with

aij =





1, i = j

0.8, i 6= j; i, j ∈ {1, 3, 6, 8, 11, 13}
0, otherwise

in this way generating uncorrelated and also strongly correlated signal predictors. The

matrices Anoisej ∈ R(10×10) for j = 1, . . . , 5 were given by

Anoisej =




1 ρj . . . ρj

ρj 1
. . .

...
...

. . .
. . . ρj

ρj . . . ρj 1



,

and determined correlations among a set of 10 noise predictor variables with ρ1 = 0.8,

ρ2 = 0.6, ρ3 = 0.4, ρ4 = 0.2 and ρ5 = 0.

3.1.2 Random forest parameter setting

Simulation studies were performed using the unbiased RF version based on conditional infer-

ence trees which is implemented in the R package party. For our studies, the setting for unbi-

ased tree construction was used as suggested by Strobl et al. (2007). In this setting no p-value

threshold is applied when selecting the optimal split (by setting the parameter mincriterion in

cforest control to zero). No other stopping criteria such as a minimum number of observations

in a terminal node or a minimum number of observations required for a node to be split were

applied. The number of randomly drawn candidate predictors mtry was set to b√pc, where p

denotes the number of predictors (here p = 65) and the number of trees was set to 1000.

3.2 Studies on prediction performance

Using the RF version based on conditional inference trees we compared two RF variants with

respect to their ability to predict an ordinal response:

1. RF ordinal. RF consisting of ordinal regression trees. Simulations were performed using
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default scores (i.e., s(r) = r, r = 1, . . . , k). Additional studies with quadratic scores s(r) =

r2, r = 1, . . . , k, were also performed.

2. RF classification. RF consisting of classification trees. The ordinal response is treated as

nominal, meaning that the information regarding the natural ordering of the levels of the

response is ignored.

Prediction performance of a RF variant was assessed using the ranked probability score (RPS; see

Eq. (4)) and the error rate (see Eq. (1)) computed for a large independent test dataset of size

n = 10000 that followed the same distribution as the training set on which the RFs were fit. Note

that the RPS and the error rate do not necessarily come to the same conclusion, meaning that the

error rate might be lower for one RF variant than for the other but its RPS is higher. Since the

error rate does not consider how “severe” a misclassification is, we consider the RPS to be a more

appropriate performance measure for evaluating a model that predicts an ordinal response. Thus

we will focus on the results that are obtained when using the RPS as the performance measure.

Results

Figure 2 shows the results of the simulation studies on the comparison of RF ordinal and RF

classification with respect to their predictive accuracy (measured in terms of RPS) for the sample

size of n = 200 (results for n = 400 are very similar and thus not shown). For a direct comparison,

we show the ratio of the RPS for RF ordinal to that for RF classification. Values of the RPS ratio

below 1 mean that the RPS is smaller for RF ordinal and thus indicate a better performance of

RF ordinal. Conversely, values above 1 mean that the RPS is larger for RF ordinal and indicate

a better performance of RF classification. For values close to 1 the performances of RF ordinal

and RF classification are comparable. In all settings the ratio of RPS is in the range [0.92; 1.04]

and thus is very close to 1, so there are no large differences between the prediction performances

of the forest types in our simulation studies. However, one can observe a trend towards better

performance of RF ordinal for a larger number of response levels. Overall, the performance is

better for RF ordinal in most of the settings, except for k = 3, in which the performance of RF

classification is better in two of six settings. Similar results were obtained when performance was

measured in terms of the error rate (results not shown). Note that the results presented here were

obtained by using equally spaced scores. The results are very similar when using quadratic scores,

which suggests that our conclusions do not depend on the specific choice of scores for RF ordinal.

3.3 Studies on variable importance

Permutation VIMs based on the different performance measures described in Section 2.2.4 were

applied to see which VIMs are most appropriate in the case of ordinal response. VIMs were

computed for RF constructed from ordinal regression trees (RF ordinal) as well as for RF using

classification trees (RF classification; see 3.2).

VIMs give a ranking of the predictors according to their association with the response. To evaluate

the quality of the rankings of the permutation VIMs, the area under the curve (AUC) was used.

Let the predictor variable indices B = {1, . . . , p} be partitioned into two disjoint sets B = B0 ∪
B1, where B0 represents the noise predictors (without any effect) and B1 represents the signal
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Figure 2: Performance ratio for RF ordinal versus RF classification for simulated data. A ratio of
the ranked probability scores (RPS) below 1 indicates a better performance of RF ordinal and a
ratio above 1 indicates a better performance of RF classification. Data was generated for n = 200
from a mixture of proportional odds models (7) with mixture proportions ζ = 0.6 (upper row),
ζ = 1 giving weight 1 to the first mixture component g = 1 (middle row), and ζ = 0 giving
weight 1 to the second mixture component g = 2 (lower row). Data was generated for k ∈ {3, 6, 9}
ordered response levels and for settings in which predictors correlate (left column) and in which
all predictors are uncorrelated (right column). Prediction performance was measured using a large
independent test dataset.
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predictors (with effect). The AUC is computed as follows:

AUC =
1

|B0| |B1|
∑

j∈B0

∑

k∈B1

I(V Ij < V Ik) + 0.5I(V Ij = V Ik) (9)

where |Bl| denotes the cardinality of Bl with l ∈ {0, 1}, and I(·) denotes the indicator function

(see, e.g., Pepe; 2004). Note that the AUC is often used for evaluating the ability of a method

(which may be for example a diagnostic test or a prediction model) to correctly discriminate

between observations with binary outcomes (often diseased versus healthy). In our studies, in

contrast, the AUC is computed considering the predictor variables X1, . . . , Xp as the units to

be predicted (as noise or signal variables) rather than the observations i = 1, . . . , n. The AUC

here corresponds to an estimate of the probability that a randomly drawn signal predictor has a

higher VI than a randomly drawn noise predictor. Thus the AUC was computed in our studies

to assess the ability of a VIM to differentiate between signal and noise predictors. In the settings

with ζ = 0.6 and ζ = 1 the predictors X1, X2, . . . , X15 are signal predictors, while in the settings

with ζ = 0 only predictors X1, X2, . . . , X4, X6, X7, . . . , X9, X11, . . . , X14 are signal predictors (see

Table 2). An AUC value of 1 means that each of these signal predictors receives a higher VI

than any noise predictor, thus indicating perfect discrimination by the VIM. An AUC value of 0.5

means that a randomly drawn signal predictor receives a higher VI than a randomly drawn noise

predictor in only half of the cases, indicating no discriminative ability by the VIM.

Results

Figures 3 - 5 show the results of our simulation studies on VIM performance for n = 200 when

using our novel proposed permutation VIMs and the two classical permutation VIMs, computed

for both RF ordinal and RF classification. Results for n = 400 are comparable and thus not

shown. Here we only show the results when using default (i.e., equally spaced) scores for tree

construction and MSE- and MAE-based VIM computation. Very similar results were obtained

when specifying quadratic scores. This suggests that specific values for the scores do not seem to

have a significant impact as long as the scores reflect the correct ordering of the levels.

In the settings with 9 response levels (Figure 3) the performances of the MSE-based VIM

and our two novel permutation VIMs are consistently better than that of the error rate based

VIM, independent of the type of trees used (ordinal regression or classification trees). Obviously,

making use of the ordering is advantageous when deriving VIs for these settings. Interestingly, in

some settings the difference is rather small and in others it is more pronounced. Similar results

are obtained for the setting with 6 response levels (Figure 4). However, the difference between

the error rate based VIM and the other VIMs is less pronounced than for the settings with a

9-category response variable. In settings in which the response has only 3 levels the differences

between the VIMs are not substantial (Figure 5), though overall our novel VIMs and the MSE-

based VIM remain superior. In our studies the three VIMs based on the RPS, MSE and MAE,

show comparable performances.

The results suggest that the performances of all VIMs can in some settings be further improved

by making use of the ordering in the construction of trees, through the application of ordinal

regression trees. If used in combination with ordinal regression trees, our novel VIMs and the MSE-

based VIM achieved the highest AUC values, or equivalently, the most accurate predictor rankings.

The worst rankings in contrast were obtained for the classical error rate based permutation VIM
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Figure 3: Performance of different VIMs for RF ordinal and RF classification: settings for a 9-
category ordinal response. VIMs are computed using the error rate (ER), the ranked probability
score (RPS), the mean squared error (MSE) and the mean absolute error (MAE). Data was
generated for n = 200 using a mixture of proportional odds models (7) with mixture proportions
ζ = 0.6 (upper row), ζ = 1 giving weight 1 to the first mixture component g = 1 (middle row),
and ζ = 0 giving weight 1 to the second mixture component g = 2 (lower row).

(which is currently in use for ordinal responses in the R package party) computed from classification

trees. This indicates that predictor rankings are worst when making no use of the ordering at all,

neither in tree construction nor in the computation of VIs.

A plausible explanation for the improvement in the ranking by using ordinal regression trees

is that in ordinal regression trees it is more likely that a predictor associated with the response is

selected for a split. A predictor that is often selected in a tree and occurs close to the root node

of the tree is likely to receive a high VI. The advantage when applying ordinal regression trees is

that the power of the statistical test to correctly detect an association between a predictor and

the ordinal response is higher. It is thus less likely that a noise predictor yields a lower p-value

just by chance and is selected for the split. Results obtained for the described simulation studies

provide evidence for this. One can, for example, inspect the trees of a forest and compute the

number of trees for which an influential predictor was chosen for the first split. If the fraction of

trees is significantly higher for the forest consisting of ordinal regression trees, this is an indication

that ordinal regression trees are more accurate in selecting predictors for a split compared to clas-

sification trees. For our simulation studies we calculated the fraction of trees where an important

predictor was selected for the first split for both RF ordinal and RF classification; the results are

displayed in Figure 6. The results confirm our hypothesis that RF ordinal is more accurate in

selecting important predictors for a split than RF classification. Since the power of a test that

takes into account the ordering increases with the number of ordered categories, the discrepancy

between RF ordinal and RF classification is most pronounced for k = 9 and least pronounced for

k = 3.
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Figure 4: Performance of different VIMs for RF ordinal and RF classification: settings for a 6-
category ordinal response. VIMs are computed using the error rate (ER), the ranked probability
score (RPS), the mean squared error (MSE) and the mean absolute error (MAE). Data was
generated for n = 200 using a mixture of proportional odds models (7) with mixture proportions
ζ = 0.6 (upper row), ζ = 1 giving weight 1 to the first mixture component g = 1 (middle row),
and ζ = 0 giving weight 1 to the second mixture component g = 2 (lower row).
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Figure 5: Performance of different VIMs for RF ordinal and RF classification: settings for a 3-
category ordinal response. VIMs are computed using the error rate (ER), the ranked probability
score (RPS), the mean squared error (MSE) and the mean absolute error (MAE). Data was
generated for n = 200 using a mixture of proportional odds models (7) with mixture proportions
ζ = 0.6 (upper row), ζ = 1 giving weight 1 to the first mixture component g = 1 (middle row),
and ζ = 0 giving weight 1 to the second mixture component g = 2 (lower row).
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Figure 6: Fraction of trees in RF ordinal and RF classification where an influential predictor
was selected for the first split. Distributions arise from 500 replications of the simulation setting
described in Section 3.2 with k = 3 response levels (left column), k = 6 (middle column) and k = 9
(right column). Data was generated for n = 200 using a mixture of proportional odds models (7)
with mixture proportions ζ = 0.6 (upper row), ζ = 1 giving weight 1 to the first mixture component
g = 1 (middle row), and ζ = 0 giving weight 1 to the second mixture component g = 2 (lower
row).
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4 Real data applications

In this section we assess the predictive accuracy of RF ordinal and RF classification based on

five publicly available real datasets with an ordinal response variable. The datasets are briefly

described in the following. Note that we did not perform a selection of the datasets depending on

the obtained results but instead report results for all datasets that we analyzed.

4.1 Data

The Very Low Birth Weight Data was analyzed by O’Shea et al. (1998) for identifying perinatal

events from sonographical and echodensity measurements. The data can be obtained from the

website http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets. In our analyses we aimed

to predict the Apgar score (a score for the physical health status of a newborn measured on a

9-point scale) from diverse factors such as medication the mother took during pregnancy, weight

and sex of the newborn and the type of delivery.

The Wine Quality Data is available from the UCI repository (http://archive.ics.uci.edu/

ml/datasets.html); see also Cortez et al. (2009) for details on the data. The response to be

predicted from physicochemical measurements (like alcohol concentration or residual sugar) was

the quality of a wine, measured on a scale from 0 (poorest quality) to 10 (highest quality). There

were no observations with the highest quality (i.e., a score of 10) or very poor quality (score from

0 - 2). Due to their small number (n = 5), we removed observations with a score of 9 from the

data.

The National Health and Nutrition Examination Survey (NHANES) is a series of cross-sectional

surveys of the US population (National Center for Health Statistics; 2012). The data can be

obtained from the institution’s homepage. We chose a subset of the data that had been previously

analyzed by Janitza et al. (2014). We considered the self-reported general health status as the

outcome variable to be predicted from demographical and health-related factors. The response is

categorized into five categories (1: excellent, 2: very good, 3: good, 4: fair, 5: poor).

The SUPPORT Study Data can be obtained from the website http://biostat.mc.vanderbilt.

edu/wiki/Main/DataSets. The considered dataset is a random sample of 1000 patients from

phases I & II of the SUPPORT (Study to Understand Prognoses and Preferences for Outcomes

and Risks of Treatment) (Knaus et al.; 1995). Several outcomes in seriously ill hospitalized adults

have been considered. We focus on the prediction of functional disability, which is categorized

into 5 ordered categories from slight to severe (see Table 3 for details).

The Mammography Experience Data was analyzed by Hosmer Jr and Lemeshow (2004)(p.

264), who studied the relationship between mammography experience (have never had a mam-

mography, have had one within the last year, last mammography greater than one year ago) and

the attitude towards mammography based on a study questionnaire. The data is part of the R

package TH.data.

For all datasets (except for the Very Low Birth Weight Data) we excluded covariates for which

more than 10% of the observations had missing values. Observations with missing values in any

of the included covariates were deleted. An overview of the number of response levels, predictor

variables and observations for the datasets (as used for our analysis) is given in Table 4. Table 3

gives an overview of the response variables considered in our analyses. Note that we had types of

responses ranging from different scoring systems (Wine Quality Data, NHANES Data and Very

Low Birth Weight Data), to categorizations of functional disability (SUPPORT Study), to the
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Data Considered Re- Levels
sponse Variable

Very Low Birth Apgar score 1 (life-threatening) (n = 33)
Weight 2 (n = 16)

3 (n = 19)
4 (n = 15)
5 (n = 25)
6 (n = 27)
7 (n = 35)
8 (n = 36)
9 (optimal physical condition) (n = 12)

Wine Quality Wine quality score# 3 (moderate quality) (n = 20)
4 (n = 163)
5 (n = 1457)
6 (n = 2198)
7 (n = 880)
8 (high quality) (n = 175)

NHANES Self-reported 1 – excellent (n = 198)
health status 2 – very good (n = 565)

3 – good (n = 722)
4 – fair (n = 346)
5 – poor (n = 83)

SUPPORT Study Functional disability 1 – patient lived 2 months, and from an interview
(taking place 2 months after study entry) there were
no signs of moderate to severe functional disability
(n = 310)
2 – patient was unable to do 4 or more activities of
daily living 2 months after study entry; if the patient
was not interviewed but the patient’s surrogate was,
the cutoff for disability was 5 or more activities (n =
104)
3 – Sickness Impact Profile total score is at least 30
2 months after study entry (n = 57)
4 – patient intubated or in coma 2 months after study
entry (n = 7)
5 – patient died before 2 months after study entry
(n = 320)

Mammography Ex- Last mammogra- 1 – never (n = 234)
perience phy visits 2 – within a year (n = 104)

3 – over a year (n = 74)

Table 3: Response variables of the five real datasets and their frequency in the analyzed data. #

There were no observations with categories 0, 1, 2, 9, 10 in the analyzed dataset.
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Data No. response levels No. predictors Sample size
k p n

Very Low Birth Weight 9 10 218
Wine Quality 6 11 1599
NHANES 5 26 1914
SUPPORT Study 5 16 798
Mammography Experience 3 5 412

Table 4: Characteristics of the five real datasets.

recentness of events, as grouped into 3 categories (Mammography Experience Data).

4.2 Studies on prediction performance

Prediction performance by RF ordinal and RF classification was assessed using 10-fold cross-

validation. The cross-validation was repeated 500 times to obtain more stable results. All RF

parameters were defined as described for the simulated data in Section 3. Default (i.e., equally

spaced) scores were used in our analysis.

The results on prediction accuracy of RF ordinal and RF classification based on the five real

datasets are shown in Figure 7. For a direct comparison of RF ordinal and RF classification we

computed the RPS ratio (left panel) and the error rate ratio (right panel). For each, values of

the ratio below 1 correspond to a better performance of RF ordinal, values above 1 indicate a

better performance of RF classification and values close to 1 mean that the performances of RF

ordinal and RF classification were comparable. The results shown in Figure 7 are in line with the

results obtained from our simulation studies in Section 3.2; overall the differences in prediction

performance are rather small. The ratios are even closer to 1 than the ratios obtained for the

simulated data (cf. Figure 2). In contrast to the simulated data, we do not observe a trend with

respect to the number of response levels. Instead, which RF variant performs better seems to

highly depend on the considered dataset as well as on which performance measure is used; when

using the RPS as the performance measure (which we consider to be more appropriate than the

error rate) for three of the datasets (Wine Quality, NHANES, Mammography Experience) an at

least marginally better accuracy was obtained by RF ordinal, while for the other two datasets

(the Very Low Birth Weight Study and the SUPPORT Study) RF classification gave slightly

more accurate predictions. In contrast, RF ordinal is for all datasets at least as good as RF

classification when the error rate is used as the performance measure.

4.3 Studies on variable importance

In addition to prediction accuracy of the two RF variants, we are interested in the performance

of the permutation VIMs when applied to real data with ordinal responses and realistic data

structures. When using real data one usually faces the problem that it is unknown which of the

variables are actually important and which are not. As we know from our investigations (not

shown), for all datasets there are at least some variables which improve response prediction since

the predictions by the constructed forests were always more accurate than the predictions by the

null model (i.e., that without covariates). If we assume that we had an additional set of variables

which were not associated with the response, we would be able to investigate and compare the

discriminative abilities of the VIMs: a well-performing VIM is expected to attribute higher VIs
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Figure 7: Performance ratio for RF ordinal versus RF classification for the five real datasets.
Values below 1 indicate a better performance of RF ordinal and values above 1 indicate a better
performance of RF classification. Prediction performance was measured by ranked probability
score (left) and error rate (right) using 10-fold cross-validation repeated for 500 random splits.

to the original (and potentially important) predictors than to the noise predictors.

We proceeded as follows:

• We augmented the original data by a set of noise predictors. This was done by duplicating the

set of original predictor variables and then randomly permuting the rows of this duplicated

predictor set. In this way we made sure that each predictor within this duplicated predictor

set was unrelated to the response variable, while preserving realistic correlation structures

within the duplicated predictor set.

• We fit RF ordinal and RF classification to this augmented data and derived the VIs using

each of the four permutation VIMs described in Sections 2.2.4 and 2.2.5.

• We computed the AUC as an estimate of the probability that a randomly drawn predictor

from the original (i.e., unpermuted) set of predictors would obtain a higher VI than a

randomly drawn predictor from the permuted set of predictors.

This process was repeated 500 times. Note that while in Section 3.3 an AUC value of 1 indicated

perfect discrimination between signal and noise predictors, here we expect that perfect discrim-

ination can already be obtained for AUC values lower than 1: since it is likely that not all of

the original variables are truly influential predictors, some of them actually should be regarded as

noise predictors instead. However, this does not pose a problem for our studies because our aim is

to compare the VIMs with respect to discriminative ability, so we are interested in the differences

in their AUC values rather than the absolute AUC values.

Figure 8 shows the AUC values over the 500 repetitions. Very marginal differences can be

observed between the VIM performance when VIs are derived from ordinal regression trees com-

pared to classification trees. The performance of a VIM seems to highly depend on the nature

of the response variable since results differ between the datasets. While for the Very Low Birth

Weight Study and for the NHANES Data all three VIMs that take into account the ordering in
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Figure 8: Performance of different VIMs for five real datasets when computed on RF ordinal (left
column) and RF classification (right column). VIMs are computed using the error rate (ER),
the ranked probability score (RPS), the mean squared error (MSE) and the mean absolute error
(MAE). Performance is measured in terms of the area under the curve (AUC), which corresponds
to the probability that a randomly drawn potentially important predictor has a higher importance
value than a randomly drawn noise predictor.

response levels have better discriminative ability than the error rate based VIM, there is hardly

any difference between the error rate based VIM and our two novel VIMs (based on the RPS

and MAE) for the other three datasets. Note that for the Wine Quality Data we obtain perfect

discrimination for all VIMs, which indicates that all variables in the original dataset are associated

with the quality of a wine. Interestingly, in these studies, compared to our two novel VIMs based

on the RPS and the MAE, the MSE-based VIM always performs worse or has equal performance

at best.

5 Discussion

The use of the ordering in the levels of an ordinal response variable in tree construction is not

supported by the classical RF version of Breiman (2001). In practice, data with ordinal responses

have often been handled using classification or regression trees. However, the former fully ignores
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the ordering and the latter assumes the response to be measured on a metric scale and yields

metric values instead of class predictions. The RF implementation of Hothorn et al. (2006b) in

contrast, allows the modeling of various kinds of regression problems, including nominal, ordinal,

numeric, and censored, as well as multivariate response variables and arbitrary measurement

scales of the covariates. It is thus promising for applications in which the response has an inherent

ordering. Moreover, this version is based on a conditional inference framework and, in contrast to

the classical RF version of Breiman (2001), implements unbiased split selection. For these reasons

we based our studies on the RF version of Hothorn et al. (2006b).

In this paper we investigated whether prediction accuracy improves when making use of the

ordering of the levels of the response variable. For this purpose, using simulated and real data,

we compared the performance of RF composed of classification trees to that of RF composed

of ordinal regression trees (i.e., trees for ordinal responses as implemented in party; Hothorn

et al.; 2006b). Our studies indicate that there are only small differences in prediction accuracy.

For 16 of 18 studies based on simulated data and for 3 of 5 studies based on real data, more

accurate class predictions were obtained for RF consisting of ordinal regression trees, suggesting

that ordinal regression trees are a reasonable alternative to classification trees if the response is

ordinal. However, the differences were only small and their practical relevance is questionable.

The choice of the scores (reflecting distances in response levels), which are required for con-

structing ordinal regression trees, did not impact the performances of the ordinal regression trees.

This indicates that our conclusions do not depend on the specific choice of the scores.

Note that in this paper we investigated the incorporation of the ordering of the response levels

when constructing trees and when computing variable importances. The ordering of the response

levels in the context of another stage could also be considered in future studies, namely when

aggregating tree predictions to obtain a final prediction of a class (see, e.g., Tutz; 2011, Section

15.9). In the context of k-nearest-neighbors it has for example been shown that such a procedure

might give more accurate predictions (Hechenbichler and Schliep; 2004).

In addition to prediction performance, we also investigated if making use of the ordering for

VIM computation leads to more accurate predictor rankings. In the presence of an ordinal response

the current RF implementation of Hothorn et al. (2006b) uses the error rate based permutation

VIM. We introduced two novel permutation VIMs for RF that are promising in settings in which

the response has an inherent ordering. Our results on simulated and on real data showed that a

VIM which makes use of the ordering in the levels of the response yields in many cases a more

accurate predictor ranking than the classical error rate based VIM, and thus should be used when

analyzing ordinal response data. Our studies suggest that by using ordinal regression trees a

further improvement in the predictor rankings might be obtained. We discovered that this is most

likely related to the fact that ordinal regression trees more often select relevant predictors for a

split than classification trees since hypothesis tests used for split selection in conditional inference

trees have higher statistical power for the detection of relevant effects if making use of the ordering

in the response levels. In data settings where the response variable is ordinal we thus strongly

recommend using a permutation VIM which makes use of the ordering in combination with ordinal

regression trees if the aim is to obtain a predictor ranking or to select important variables.

Among the VIMs that make use of the ordering, our two novel VIMs outperformed the well-

known MSE-based VIM on real data. Note that the MSE-based VIM was developed for regression

trees but had not been considered for ordinal responses to this point. While the RPS-based VIM

relies only on the ordering of the levels, the MAE- and MSE-based VIMs require the specification

24



of distances between the response levels. Though in our simulation studies different distances did

not lead to different results, we cannot be sure that this also applies to other settings. Thus we

recommend to use of the RPS-based VIM – which does not make any assumptions on the distance

between response levels – over the MAE- and MSE-based VIMs.

The R code implementing our novel VIMs is provided at the website http://www.ibe.med.

uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/index.html. The

VIMs can be applied to forest objects fitted using the function cforest from the party pack-

age. Though in our studies on VIM performance we exclusively used the RF version of Hothorn

et al. (2006b), we expect that VIMs that make use of the ordering, like the RPS-based VIM, give

more accurate rankings also when using the classical RF version of Breiman (2001).
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