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The analysis of panel data is often concerned with effects of time-related

changes. Dealing with data on individuals, the variation of some dependent

variable one is interested in can be associated to differences in the specific ages

of the individuals, the different birth-cohorts they belong to, and changes in the

period of observation. Because of the the Age-Period-Cohort Identification prob-

lem it is, however, in general not possible to estimate distinct effects for each of

the three covariates.

This thesis provides an approach for analyzing such data in the additive mixed

model framework. Estimating two smooth effects, the age-effect and the cohort-

or period-effect, and additionally an interaction surface of both it can be argued

that the model takes all three time-related changes into account.

This modeling approach is illustrated by an application on german socio-economic

data regarding subjective well-being over the life span and various graphics for

an evaluation of such models are presented in this context.
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1 Introduction

1.1 Well-Being over the Life Span

The level of subjective well-being of individuals as well as its average in societies

is a matter of great public, political, and scientific interest. This relevance arises

from its direct connection to, respectively dependency on the individual’s degree

of happiness and satisfaction.

There exist many theories about influencing factors on subjective well-being.

From a psychologists perspective there are generally three groups of influencing

factors: the extent of fulfilled needs and suppressed discomfort, the satisfaction

with the activities someone is engaged in, and personal and genetic predispositions

(Diener et al. (2009)). Most empirical studies (often also done by sociologists or

economists) monitor effects that can in some way be assigned to one of those

three areas.

A question that arises when being concerned with subjective well-being is how it

changes over the life span. Aging can be seen as a process of physiological and

cognitive deterioration what suggests that the subjective well-being of individuals

decreases during life. Otherwise it is possible that personal aims and needs change

over time or adapt to the personal circumstances and are therefore easier fulfilled

than in young ages, what would lead to a higher amount of well-being during

later stages in one’s life.

Empirical evidence on the effect of aging on well-being leads to the insight that

there exists in general no linear development over the life-span. But the findings

of previous studies diverge, some assume a U-shaped trend while others argue for

the opposite, an inverse U-shape. It seems therefore reasonable to fit the age-effect

on well-being in a non-parametric way and avoid to make a-priori assumptions

regarding the structure of connection in this way (Wunder et al. (2013)).

1.2 Age-Period-Cohort Identification Problem

The relation of age, period and cohort to dependent factors is a matter of in-

terest in many scientific disciplines such as epidemiology, psychology, sociology,

economics and others. Especially when dealing with temporarily ordered (panel)
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data - measurements on individuals or groups of individuals repeated along a

time dimension - the question arises how changes in those three time-related ar-

eas cohere with the factor of interest. In an Age-Period-Cohort (APC) analysis it

is therefore necessary to consider three possible effects: Age-effects are variations

of the dependent factor associated with different age-groups. Theoretical reasons

can be found in biological and social processes over the lifespan, also referred to

as aging. Period-effects are changes due to time-specific events or developments

that have effects on all age groups simultaneously. And Cohort-effects are vari-

ations across groups born in the same time. Those groups experience historical

and social events at same ages and share a collective environment.

Addressing the well-being over the life span, period effects could arise from eco-

nomical or political conditions and specific events accompanying the survey year

while cohort effects can describe e.g. the employment situation at the cohorts

transition from education into to the labour market. Controlling for such period

and cohort effects is necessary when being interested in the relation of age and

well-being since neglecting them would result in biased estimates of the age effect.

The statistical modeling of such structures though features an identification prob-

lem. It results from the fact that the factors age, period and cohort are linearly

connected. The relationship is (age)+(cohort) = (period). In a regression model

with age, period and cohort as covariates this leads to a collinearity problem and

it is not possible to identify distinct effects of them. Clayton and Schifflers (1987)

describe this identification problem as a general scientific one, that can not be

solved through methodological achievements because the available information

just does not allow to distinguish between the three effects. However it is still

possible to get insights into the structure of the available data by analyzing it in

a reasonable and systematic way.

There exist several approaches to deal with such datasets, it is for example pos-

sible to impose a linear constraint on at least one of the three influencing factors,

a common practice is to define a-priori that two different values of age, period

or cohort are estimated with the numerically same effect (Mason et al. (1973),

Kupper et al. (1985)). The choice of such a constraint can be made either based

on theoretical considerations or by looking at the data but is always somewhat

arbitrary and has to be made very carefully. Rodgers (1982) shows by using ar-

tificial data that a wrong constraint (in the sense of determining two parameters

being the same while they are not the same in the generated data) - even if it

is not unreasonable (the two parameters are not that different) - leads to major

effects on the estimates of the other parameters. It is not necessarily possible to

detect such a more or less poor selection of the APC constraint and consequently

invalid parameter estimates through measures of the model fit.
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Another way of dealing with the APC problem is trying to identify specific vari-

ables lying behind the period or cohort effects and include them explicitly as

covariates into the model. Instead of modeling a period effect it is for example

possible to include economic indicators like the unemployment rate and the gross

national product and additionally dummy variables for specific events that are

assumed to have an influence on the target variable. The cohort effect could be

replaced by a persons life expectancy at birth, alternatively it can be argued that

the cohort effects are captured by other covariates (e.g. a cohort specific exhibi-

tion to harmful life circumstances by health variables, and cohort effects on the

labor market by unemployment rates).

Of course it is disputable which factors have to be included and if the combination

of covariates is adequately describing the desired effect. If not, the estimates of

age and the other factor are biased as well.

Both of those approaches can lead to insights into the structure of APC effects

on some dependent factors but the made assumptions are quite strong and have

major effects on the results of the analysis, while one can never be sure if they

are really valid. Especially when considering also the possibility of interactions

between the age, period and cohort effects - it is for example possible that a

specific event (period effect) can have dissimilar effects on different cohorts - it

gets really difficult to judge the quality and informative value of such models.

In Biometrics (especially in the area of disease incidence and mortality data),

there exists another popular approach of dealing with the APC problem that

is referred to as Holford’s-parametrization (Holford (1983)). The procedure is

to partition the age, period and cohort effects each into two orthogonal compo-

nents, one for their overall linear trend and the second representing deviations

from this linear trend (the curvature effects). It is the then possible to estimate

each curvature effect and certain linear combinations of the linear effects (Jiang

and Carriere (2014) show that the curvature effects can also be estimated with

penalized cubic regression splines). Holford’s parametrization enables insights

into the APC effect structure on some dependent variables but does not allow to

estimate a distinct effect of each of the three predictor variables and considers no

interactions between them.

An inherent feature of the APC structure is that the marginal effect of one of the

three variables is automatically part of the interaction space of the two others

while their marginal effects are also expressed in this interaction. Using tensor-

product splines over a B-spline base Heuer (1997) estimates the APC effects in

the framework of Holford’s parametrization by an interaction of age and period

effects (API -model) and compares the performance of this model with the classic

Holford’s APC-model including all three predictor variables on some simulated
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data including age-period interactions. The API-model represents the data struc-

ture considerably better than the classic APC-model, which is heavily biased if

there exist interactions between age and period in the data. Therefore this ap-

proach of estimating the APC-structure through an interaction surface of two

covariates is very promising, nevertheless it did not gain a big popularity yet.

This thesis will again present such an approach, embed it into the framework

of additive mixed models and apply it on socio-economic data from Germany

regarding subjective well-being over the life-span.
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2 Theoretical Considerations and

Basics

2.1 Flexible Smoothing with Splines and Penalties

There are many tasks in which a linear dependence of the response (dependent)

on the predictor (influencing) variables is not reasonable. It is possible to include

covariates as higher degree polynomials into a Linear Model and estimate non-

linear relations in that way, but this procedure needs a-priori informations about

the structure of the connection between the response and predictor variable be-

cause the specified degree of the polynomial determines the shape of the relation.

Modeling non-linear effects without such a-priori knowledge is the aim of non-

parametric regression. It allows an automatic and data driven estimation of a

flexible relationship. The general form of such a smoothing model is

y =
s∑

z=1

fz(xz) + ε

with fz(·) being a smooth function of the (continuos) covariate xz. This covariate

can also be a multivariate variable, in the bivariate case fz(·) is then a surface

instead of a curve. Basically the estimation of such models needs to solve two

tasks: the smooth functions need to be represented in some way and the extent

of smoothness has to be determined (Wood (2006a)). In the following the ap-

proach of smoothing with penalized splines (p-splines, Eilers and Marx (1996)) is

described, at first in the case of a single univariate and afterwards for a bivariate

variable. Section 2.2 presents a way to embed such single splines or surfaces into

a general regression framework.

2.1.1 Univariate

The idea of (univariate) smoothing with a B-spline base is to construct a curve/spline

from piecewise polynomials, which are linked smoothly at some predefined m

knots. Those knots are often placed equidistant in the range [a, b] of the covari-

ate z. The degree l of the polynomials has to be chosen a priori.
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At every point z ∈ [a, b] the B-spline base consists of (l + 1) (positive) polyno-

mial pieces and the resulting function (defined as the weighted sum of the basis

functions Bj, see Equation 2.1) is, in particular, at the knots - where two basis

functions join - (l−1)-times continuously differentiable. Therefore it is reasonable

to use cubic splines (l = 3) because the resulting spline f(z) is then overall two-

times continuously differentiable, what is an often claimed smoothness criteria.

Furthermore it can be seen that every basis function is positive on l+ 2 adjacent

knots, everywhere else it is 0. It is necessary to add 2l knots outside the range

of z (l at each side) to have the described properties even at the boarders of the

predictor variables range fulfilled. Therefore it can be seen that the dimension

(the amount of basis functions) of the B-spline base is d = m + l − 1. A last

feature of the B-spline base is that the sum of all basis functions at some point

z ∈ [a, b] is
∑d

j=1Bj(z) = 1. To illustrate these features Figure 2.1 shows a cubic

B-spline base over 9 knots.

Figure 2.1: Cubic B-spline base, m = 9 (Fahrmeier et al. (2013), p. 428)

With a B-spline base specified like this, the smooth curve f(z) is then constructed

as

f(z) =
d∑

j=1

Bj(z)γj (2.1)

and so the aim of the regression is to estimate the vector γ. The estimated γ̂j

values are the amplitude for the scaling of the j-th basis function.

Looking at Equation 2.1 it is easy to see that the estimation of the polynomial
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spline is in fact a linear model estimation with the design matrix

Z =


B1(z1) · · · Bd(z1)

...
...

B1(zn) · · · Bd(zn)

 .

With this B-Spline base there is a mathematically reasonable representation of a

smooth function established, the second task is now to determine the amount of

smoothness of this spline in a data driven way.

This amount of smoothness or roughness is mainly controlled by the number of

knots, or basis functions, provided to the estimation. Too many knots will result

in a too close interpolation of the data points and therefore overfitting, while too

few knots do not allow the fitted curve to represent accurately the real under-

lying structure of relation. Eilers and Marx (1996) introduce penalized splines

(p-splines) to deal with the tradeoff between fit and “wiggliness” of the estimated

function, which are now a well established and widespread tool for nonparametric

regression via spline smoothing.

The general idea is allowing the function to be fitted with a sufficiently large

number of knots m what ensures the estimation to cover even very complex func-

tions. At the same time a penalty term is introduced to prevent overfitting. It is

straightforward to use derivatives as measure for the “wiggliness” of a function.

Using the second derivative is particularly interesting in the context of p-splines

on a cubic spline-base, since it exists over the whole range of the function and

measures the curvature of the spline function. The penalty term is then con-

structed as

λ

∫
(f ′′(z))2dz.

Following Fahrmeier et al. (2013)(p. 430/434) the first derivative for a single

spline of the B-spline base of degree l is

∂

∂z
Bl

j(z) = l ·
(

1

kj − kj−1
Bl−1

j−1(z)− 1

kj−1 − kj+1−l
Bl−1

j (z)

)
.

The derivative of the whole polynomial spline is then

∂

∂z

∑
j

γjB
l
j(z) = l ·

∑
j

γj − γj−1
kj − kj−l

Bl−1
j−1(z), (2.2)

and can therefore be expressed through the differences of adjacent basis coeffi-

cients and B-spline functions of one lower degree. Consequently the estimation

of the coefficient vector γ leads automatically to the derivative of the spline.
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Eilers and Marx (1996) propose to use just the squared sum of the (k-th or-

der, k ≥ 2) differences of adjacent B-spline coefficients as penalty term, since

the mathematical quest is less complex than using the explicit derivations and

the resulting difference penalty approximates the integrated square of the k-th

derivative well.

The combination of this penalty term and the constructed B-spline base of one

covariate leads to the following penalized sum of squares minimization criteria

for fixed λ > 0:

PLS(γ) =
n∑

i=1

(
yi −

d∑
j=1

γjBj(zi)

)2

+ λ

d∑
j=k+1

(∆kγj)
2, (2.3)

with
∑d

j=k+1(∆
kγj)

2 equals γ′Kkγ = γ′D′kDkγ and Dk being the k-th order dif-

ference matrix defined as Dk = D1Dk−1 with

D1 =


−1 1

−1 1
. . . . . .

−1 1

 .

To minimize the penalized sum of squares and consequently achieve the estimation

of γ̂, the derivative with respect to γ needs to be calculated and set to zero:

PLS(γ) = (y − Zγ)′(y − Zγ) + λγ′Kγ

= y′y − 2γ′Z ′y + γ′(Z ′Z + λK)γ (2.4)

∂

∂γ
PLS(γ) = −2Z ′y + 2(Z ′Z + λK)γ

!
= 0

⇒ γ̂ = (Z ′Z + λK)−1Z ′y. (2.5)

Looking at Equation 2.3 helps to see how the smoothing parameter λ determines

the estimation of the spline function. For λ → 0 we get an unpenalized spline

estimation over a B-spline base and therefore just an interpolation of the data

points through a spline of order m (with λ = 0 Equation 2.4 is exactly the least

squares estimator of an unpenalized linear model).

For λ → ∞ the fitted function gets a polynomial of degree k − 1 if the degree

of the basis functions l ≥ k (in the case of second order differences and a cubic

spline base the result is a straight line). For such large λ’s γ is estimated by

minimizing the ∆kγj’s. In the case of first order differences this equals mini-

mizing ∆1γj = γj − γj−1, over all j. Therefore all parameters are estimated as

equal and the first derivation of the whole polynomial spline (Equation 2.2) is
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zero. For higher order differences the corresponding higher order derivatives of

the polynomial spline get zero (Fahrmeier et al. (2013), p. 435).

As a consequence, the problem of a data-driven selection of smoothness corre-

sponds to the estimation of λ from the data. Methods for this estimation are

divided into two groups, the first searches for the best λ, which minimizes the

prediction error of the model, by looking at the changes of criteria like the Akaike’s

information criterion (AIC) or (generalized) cross-validation (G-/CV) for differ-

ent λ (Eilers and Marx, 1996).

The other group reparametrizes the p-spline model as a mixed model, estimates

it via (Restricted) Maximum Likelihood, and the optimal smoothing parameter

λ̂ results then from the mixed model’s variance parameters (see Appendix I of

this thesis, or alternatively Fahrmeier et al. (2004)).

2.1.2 Bivariate

The non-parametric modeling of a bivariate covariate in the spline framework,

that corresponds to modeling the interaction of two univariate covariates, can be

achieved analogously to the univariate case through the use of a so called tensor

product base. This bivariate basis consists in fact just of all pairwise products of

the two bases from the univariate smooths. The result is the explanation of the

response variable y through a two-dimensional surface f(z1, z2). Like above the

univariate bases of z1 and z2 would consist of the basis functions B
(1)
j (z1), j =

1, ..., d1 and B
(2)
r (z2), r = 1, ..., d2 and the bivariate TP-basis is then constructed

from the univariate basis functions as Bjr(z1, z2) = B
(1)
j (z1) ·B(2)

r (z2). Again the

smoothing spline surface is then modeled by

f(z1, z2) =

d1∑
j=1

d2∑
r=1

γjrBjr(z1, z2). (2.6)

Note that the number of basis spline functions and therefore to be estimated pa-

rameters increased from in the univariate case d1 respectively d2 to d1d2, hence

a big amount of data spread over the whole monitored area is needed to get a

meaningful estimate. Consequently it is practically not possible to model multi-

variate covariates with dimensions bigger than 2 through a single spline function,

the curse of dimensionality takes effect. Further, even in the bivariate case, it

is necessary to confine the analysis on the subarea of [min(z1), ...,max(z1)] ×
[min(z2), ...,max(z2)] where realizations in data in fact occur.

Again the model can be seen as a conventional linear model with the rows of the
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design matrix Z being:

zi = (B11(zi1, zi2), ..., Bd11(zi1, zi2), ..., B1d2(zi1, zi,2), ..., Bd1d2(zi1, zi2)); i = 1, ..., n

and the corresponding vector of regression coefficients

γ = (γ11, ..., γd11, ..., γ1d2 , ..., γd1d2)
′.

The penalty required for choosing aan appropriate number of knots while prevent-

ing overfitting can again be constructed by means of (spatial) adjacent regression

coefficients. It is for example possible to use the squared differences between γjk

and the regression coefficients of the four nearest (in direction of the coordinate

axis) neighbors through

γ′Kγ = γ′ [Id2 ⊗Kz1
1 +Kz2

1 ⊗ Id1 ] γ,

with⊗ denoting the Kronecker product of two matrices, Id being the d-dimensional

identity matrix and Kz1
1 , K

z2
1 being univariate penalty matrices consisting of

the squared first-order difference matrices: Kz1
1 = Dz1

1
′Dz1

1 , respectively Kz2
1 =

Dz2
1
′Dz2

1 (see Fahrmeier et al. (2013), p. 508).

Again it is possible to use higher order differences as penalty, Kz1
k1

and Kz2
k2

include

then the squared k1-/k2-th order difference matrices Dz1
k1

/Dz2
k2

and (k1 + k2) · 2
adjacent regression coefficients are considered for smoothing.

A two-dimensional penalized regression spline surface can therefore be expressed

in a similar form than a one-dimensional and hence be estimated in equal ways.

2.2 Mixed Model Regression

A linear mixed model (LMM) (see e.g. Fahrmeier et al. (2013), Chapter 7) is the

extension of the classical linear model (where the effect parameters β are assumed

to be unknown but be fixed)

y = Xβ + ε, ε ∼ N(0, Iσ2), (2.7)

with (group or individual specific) random effects (whose parameters b are as-

sumed to be realizations from a probability distribution) to

y = Xβ + Ub+ ε, (2.8)
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with (
b

ε

)
∼ N

((
0

0

)
,

(
G 0

0 R

))
. (2.9)

X and U are the design matrices of the fixed and the random effects, the (un-

known) covariance matrices G and R for the fixed/random effect vectors are

positive definite and β and b are independent.

The distribution 2.9 is the conventional assumption of Gaussian distributed ran-

dom effects and error terms which is not necessarily needed, however it enables

likelihood estimation of the unknown parameters in G and R. In a simple case

it is possible to assume the error terms ε being i.i.d. N(0, σ2) distributed, what

would lead to the covariance matrix R = σ2I. Alternatively it is possible to

specify further correlation (e.g. the assumption of autoregressive errors) through

a corresponding covariance matrix for the errors.

Such mixed models are useful for modeling of grouped data arising e.g. from lon-

gitudinal, repeated measures, or clustered data because they enable to take the

correlation structure of the response variable resulting from those group struc-

tures into account. Applying models without random effects on such datasets

leads to wrong standard errors and therefore also wrong confidence intervals and

tests: Through combining the residual vector and the random effects into a single

non-independent variable-variance residual vector e = Ub+ε (e.g. Wood (2006a),

p. 287) it is possible to rewrite the mixed model Equation 2.8 into

y = Xβ + e (2.10)

with

e ∼ N(0, V ); with V = UGU ′ +R. (2.11)

Fitting a classical linear model (Equation 2.7) to grouped data makes therefore a

wrong assumption about the covariance of the error terms, however the resulting

fixed effects parameter estimates are unbiased (because the expected values of e

and ε are 0, respectively).

Estimation of mixed models can be achieved via (restricted) maximum likelihood

estimation (Fahrmeier et al. (2013), p. 371-374): For known covariance matrices

R, G and V = UGU ′ +R, β can be estimated by generalized least squares as

β̂ = (X ′V −1X)−1X ′V −1y

and under normality assumption the conditional mean of b given the data y is

the estimator of b:

b̂ = GU ′V −1(y −Xβ̂).
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In general the parameters υ in R, G, and V are unknown and need to be estimated

before the matrices can plugged into the estimators of β and b. This can be

done either by Maximum-Likelihood or restricted Maximum-Likelihood (REML)

estimation. In the first case the maximization of the profile-log-likelihood lP (υ)

lP (υ) = −1

2
{log|V (υ)|+ (y −Xβ̂(υ))′V (υ)−1(y −Xβ̂(υ))},

β̂ = (X ′V (υ)−1X)−1X ′V (υ)−1y,

with respect to υ leads to the estimation of υ̂ML.

For REML estimation the marginal -log-likelihood lR(υ) = log(
∫
L(β, υ)dβ)

lR(υ) = lP (υ)− 1

2
log|X ′V (υ)−1X|

has to be maximized and leads to υ̂REML.

The mixed model approach can be generalized for non-normal regression set-

tings through connecting the conditional mean of y with an appropriate response

function h(·) to the linear predictor:

E (y | b) = h(Xβ + Ub).

As already stated in Section 2.1 p-splines and mixed models are closely related.

It is possible reformulate p-splines as a mixed model by dividing them into a fixed

and a random effects part (see Appendix I). With this in mind it is possible to

construct the semiparametric or additive mixed model (see e.g. Wood (2006b) or

Ruppert et al. (2003)) of the form:

y = Xβ + fz(xz) + ...+ Ub+ ε,

with β and b being coefficients of parametric fixed and random effects, X and U

their design matrices and the fz(xz) being non-parametric (uni- or multivariate)

smooth functions of covariates. Reformulating those splines as mixed models and

adding their fixed and random effects to the matrices X and U , respectively, one

obtains a large mixed model whose (commonly REML) estimation also provides

the smoothing parameters λ in case of modeling the smooth functions fz(·) by

p-splines.
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3 Analysis of the SOEP-Data

3.1 SOEP-Data and some Descriptive Statistics

The German Socio-Economic Panel Study (SOEP) is a longitudinal study that

started in 1984 and is surveying more than 20000 adult (age: 16+) people out

of about 11000 households annually. As long as they stay in the panel (par-

ticipation is voluntarly), the surveyed people are every year the same. Besides

socio-economic data like income, labor participation, family status and members

of the household the study rises also data on health and subjective well-being/life

satisfaction. A detailed description of the SOEP can be found in Wagner et al.

(2007).

For the analysis of the data, some editing is necessary: the first two years of

every interviewed person are excluded because of panel-/learning effects, also the

survey years 1990 and 1993 have to be excluded because of some missing health

indicators. Because of too few observations all person-years with an age > 90 are

not considered for the analysis. The whole dataset consists then out of 252406

observed person-years resulting out of the monitoring of altogether 33251 persons

in the period between 1986 and 2007. Observed cohorts vary between 1900 and

1987, and the ages of the interviewed persons are between 18 and 90.

On average there is data out of 7.59 interviews per person available, with median

being 6.

5 10 15 20

Person−specific Time of Participation 
(mean=7,59)

1 5

Figure 3.1: Boxplot of the Person-specific Time of Participation in SOEP-data
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The subjective well-being is measured through the question “How satisfied are

you with your life, all things considered?”, with possible answers on a eleven

point scale ranging from zero (completely unsatisfied) to ten (completely satis-

fied). The mean of this well-being score is 6.9, median 7 and modus 8:

Subjective Well−Being SOEP

Subjective Well−Being

D
en

si
ty

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

Figure 3.2: Histogram of the Subjective Well-Being in SOEP

Addressing the age and cohort structure within the 22 years’ observation period

it is obvious that it is only possible to look at specific age segments for each

cohort that are determined by:

Age | Cohort = [max{18, (1986− Cohort)}; min{90, (2007− Cohort)}], (3.1)

with Cohort ∈ [1900, 1987].

3.2 Modeling Approach of this Thesis

Like already stated in Section 1.2 the approach of this thesis is to model the

relation of age and subjective well-being in the SOEP-data in a non-parametric

way, regarding the special APC-structure by estimating a spline (interaction)

surface of the age and the cohort or alternatively the period effect. The use of

age and cohort leads to a surface which is more intuitive to interpret since the

sum of age and cohort equals the period and therefore possible effect structures

that are orthogonal to the main diagonal (with age and cohort being analogously

scaled) can be seen as period effects (all data points on such a line are obtained in
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the same year). However the results of an age-cohort and age-period interaction

model should be the same (except for negligible differences due to the numerical

calculation/estimation of the effects), since the interaction space includes in both

times the third variable completely.

Instead of just estimating the interaction surface of the two covariates it is

also possible to look at their marginal effects and the interaction surface, since

the marginal effects are nested within the interaction (Wood (2006b), or Wood

(2006a), p. 202-204). Therefore this model explains the same amount of vari-

ance in data and provides the same well-being predictions for all combinations

of the covariates but offers additionally the marginal effect splines, which can

then be compared with the results of other studies just estimating the marginal

effect of age. The interaction surface can be interpreted as the deviation from

the marginal effects for given values of the two covariates.

Such a model of the form

yi = fx(xi) + fz(zi) + fzx(xi, zi) + εi

is referred to as ANOVA-decomposition model and for its estimation some iden-

tifiability conditions have to be imposed. They have to exclude the linear depen-

dence of the basis/coefficients of the interaction surface (fzx(x, z))from the bases

of the single terms (fx(x) and fz(z)) (see Wood (2006a), p. 202-204).

Besides estimating the APC-effects it is of course necessary to control for several

(socio-economic) covariates that are supposed to have an effect on the subjec-

tive well-being of individuals, whereby this work follows the previous of Wunder

et al. (2013) and therefore includes linear effects for the time of education, family

status, two indicators of the current health situation, weighted netto income, na-

tionality, living in eastern or western Germany, gender, and a possible drop out

of the panel study in the next or in two respectively three years.

The model is then a generalized additive mixed model or a semi-parametric model

(since it includes parametric and non parametric predictor variables) and the

model equation can be written as

yit = x′itβ+f(ait)+f(ci)+f(ait, ci)+ εit; i = 1, ..., n; t ∈ Ti ⊂ {1, ..., T}, (3.2)

with yit being the well-being of individual i at time t, xit its socio-economic co-

variates and the f(·), the smooths of the age (of individual i at time t), the

cohort (of individual i) and the interaction surface of both. Additionally there is

an independent random error εit included. Non-parametric modeling of the age,

respectively cohort effect is done with p-splines on a cubic B-spline base with 15

equidistant knots each, the interaction on a 15 × 15 tensor product base. The
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parameter estimates are achieved by restricted Maximum-Likelihood (REML) es-

timation.

It would also be possible to include further random effects into the mixed model,

e.g. a person specific random intercept to adjust the estimates of the variances

for the repeated measurements on the n individuals. Yet, it requires a lot of

computational power to estimate those random effect (with big n). As described

in Section 2.2 ignoring such random effects leads to unbiased estimates of the

regression coefficients β̂ but a biased estimation of the variance structure. When

being mainly interested in the conditional means of the response variable and

not in confidence intervals or testing, it is therefore possible to ignore the random

effects (the authors’ analysis on a subsample of the SOEP-data consisting of 5000

people provides evidence for that, since the resulting estimated coefficients and

smooth functions of the models with and without a random intercept are quite

similar).

After estimating this interaction model it is - besides looking at the interaction

surface and the marginal effects - possible to gain (visual) insights into the ef-

fects of age, period and cohort through plotting predictions of combinations of

covariates. When e.g. being interested in potential period effects it is possible to

choose different fixed birth cohorts and plot their specific well-being trend over

the panel’s observation period, through predicting the well-being score for fixed

cohorts and the specific ages of the cohort during the SOEP’s period of record.

Computation in this thesis is done with R, version 3.0.1 (R Core Team (2013)),

for estimating the model the packages mgcv (Wood (2014)) and for the overall

heatplots containing the marginal age and cohort effects and their interaction

ggplot2 (Wickham (2009)) are used.

3.3 Model Evaluation

The estimation of the model described in Equation 3.2 provides directly four out-

comes for evaluation: the marginal splines for age and cohort, their interaction

surface and a table of the fixed effects for the socio-economic covariates. The lat-

ter can be found in Appendix II and shows in summary effects one would expect:

A higher income, a longer education, employment and living in western Germany

are generally affecting the subjective well-being in a positive way, while being of

bad health, unmarried or unemployed results in a decrease of life satisfaction.

However the main focus of this study lies on meaningful evidence regarding APC-

effects on well-being. Therefore the estimates of the smooth age and cohort (in-

teraction) effects are of main interest. The resulting marginal age- and cohort

splines can be found in Figure 3.3, respectively 3.4 and the interaction surface

19



in Figure 3.5. In the one dimensional plots the continuous lines correspond to

the estimated effects, while the dotted lines represent bounds of two (most likely

biased) standard errors each, above and beyond the estimated smooth. The in-

teraction effect is represented by a heat map including contours to specify the

effect size. Looking at the second part of the table in Appendix II, it can be

seen that the age spline is estimated with about 8 degrees of freedom (df) and

the cohort spline with about three df. That shows that a penalization takes place

during the estimation of the effects, since the upper limits of possible df are 14

for the age- (number of knots k = 15− 1 df for the centering constraint) and 15

for the cohort spline. The interaction surface is estimated with about 50 df, with

a possible maximum of 15 · 15 − 1 = 224. This is exactly the aim of penalized

spline regression, instead of just interpolating the data through a function with

a predefined amount of degrees of freedom (and consequently a somewhat pre-

defined form of the polynomial), a smooth function is estimated with respect to

the structure of the observed data.

Describing the marginal age effect (Figure 3.3) specifically, the spline shows an

analogue shape as in the analysis of Wunder et al. (2013). During the life-span

there exist three different episodes of well-being development: the first one holds

about 35 years and ranges from the age of 18 to 53 with a steady decline of

altogether about 0.9 points on the life-satisfaction scale. Afterwards there is a

approx. 12 years lasting increase of the average well-being score apparent (overall

∼ 0.4 points). With an age of about sixty-five a decline in life-satisfaction starts

again, which lasts until the end of peoples life.

Wunder et al. (2013) present some possible theoretical reasons for this develop-

ment of life-satisfaction: the first episode is predominately affected by not entirely

fulfilled aspirations and the impression of faster-passing time with advancing age.

In the second there is an adaption of the life situation and risen a satisfaction with

the financial situation, material needs and social contacts conceivable. Further the

anticipation of retirement can be a reason for a tendentially increasing subjective

well-being. Altogether those reasons seem to outweigh the general deterioration

of living conditions theoretically taking place during the same time. The decline

in life-satisfaction in the third period of life could be explained through a dete-

rioration of health that is not fully captured by the rather fragmentary health

covariates and several other processes and situations not controlled for in the

regression model (e.g. losses in the social environment, etc.).

The marginal cohort spline (Figure 3.4) shows a general decline in the average

subjective well-being across the cohorts until 1960 and afterwards a rather con-

stant, maybe slight upward trend. Looking at the shape, not the exact width of

the standard errors, they increase towards the the years 1900, respectively 1987.
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Figure 3.3: Marginal Age Spline
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Figure 3.4: Marginal Cohort Spline
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Figure 3.5: Age-Cohort Interaction Surface

This is a result from the decreasing sample size in those areas. Equation 3.1 shows

that this SOEP dataset can e.g. for the cohort 1905 only contain data of peo-

ple with an age ascending from 81 to 90 during the observation period between

1986 and 1995 ((period) = (age) + (cohort)). That leads to less person-years

being available for this cohort than for cohorts whose members could be observed

during the whole period of the panel. This spline estimate and all further plots

containing predictions/estimations for the outer cohort values should therefore

be interpreted with care in the corresponding areas.

Figure 3.5 presents the estimated interaction surface of age and cohort. Note that

the black dots mark the region where data occur and a reasonable interpretation

of the findings should be confined to this area. With a range of [−0.27, 0.29 ]

the interaction effect is not that big. Its structure appears to be pretty constant

for combinations of the age and cohort variables belonging to the same period,

there are a just a few changes in the effect size for single or a few combinations of

specific adjacent age and cohort values. Furthermore it seems like the marginal

effects of age and cohort are properly expressed through the univariate splines,

the interaction surface features neither persistent vertical nor horizontal forms.

Therefore it is plausible to assume that the interaction surface mainly expresses

period effects on well-being. The mean of profile curves computed over the whole

area of the surface in direction of simultaneously increasing age and cohort values

can cautiously be interpreted as a general period effect on well-being (Figure 3.6).
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Figure 3.7: Effects of Age, Cohort and Interaction on Well-Being
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With the estimated effects of age, cohort and their interaction it is possible to

compute their combined expected effects for different combinations of values.

Figure 3.7 shows that prediction for the whole observation area of the SOEP

dataset. Depending on Age, Period and Cohort the lowest values (an effect of

about −0.5) of life satisfaction were observed for people between about 45 and

55 of the approximate birth cohorts 1950 to 1940. In this area the first minimal

turning point of the age spline accumulates with the relatively low well-being

scores of the later cohorts and the generally low satisfaction in the observation

periods around 1995. In the bottom right area of the plot the relatively high

satisfaction levels of early cohorts compensate the negative connection between

live satisfaction and old age to some extent. The shape of the interaction surface

can be spotted over the whole observation area, with generally higher well-being

values in the early and late observation periods and in the upper left area of the

plot the high satisfaction values in early stages of life exceed the relatively low

satisfaction levels of the late cohorts.

Another way of analyzing the APC effect structure is to predict the effects over

the observation time for fixed cohorts. Thereby it is possible to plot the well-being

either against period (Figure 3.8) or age (Figure 3.9). Note that the resulting

curves are in fact the same, only their location on the x-axis is changing and they

are in some way compressed/stretched by the scale of the axis.

The cohort specific effect is part of those curves as an additive linear factor, while

the appendant age and age-cohort interaction effects determine the form of the

curve. They can be seen as cross sections of the surface shown in Figure 3.7

parallel to the x-axis. Therefore such curves show the estimates of the well-being

effects in the panels’ observation time for chosen combinations of age and cohort

values.
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Figure 3.8: Cohort-specific Pred. of Age and Cohort-Interaction Effects I
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Figure 3.9: Cohort-specific Pred. of Age and Cohort-Interaction Effects II
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4 Conclusion

This thesis introduced an additive mixed model approach for the analysis of

panel data on individuals, regarding the estimation of effects for the time-related

changes in age, period and cohort. It was applied on data of the German socio-

economic panel with focus on the development of subjective well-being over the

lifespan. Additionally to fixed effects for several socio-economic covariates, non-

parametric effects of age and cohort are modeled to obtain estimates for their

relations to well-being. Furthermore an interaction surface for age and cohort is

included into the model, whereby in particular period effects are captured.

It can be assumed that the obtained age and cohort curves are appropriately

describing their relations to life-satisfaction, while the interaction surface can

be inspected for period related changes. Additionally to the obtained marginal

splines and the interaction surface it is possible to create - based on the estimates

- somehow descriptive plots for combinations of different covariate values, that

allow a further explorative analysis of the effects.

To sum up, such a model features two main advantages over other approaches of

analyzing Age-Period-Cohort data: Firstly, its flexible estimation via penalized

splines guarantees a data-based investigation of the effects, instead of defining

their form a priori. And secondly, the incorporation of the interaction surface

ensures the capture of all three time-related changes in data. Of course there

results no distinct estimate of the period effect (its only possible to interpret the

interaction surface in some way as a period effect), but this can also be seen as

an advantage: The model has the flexibility to not just estimate a general period

effect for all age-groups, but also considers changes in the dependent variable for

specific combinations of age and cohort values during the observation time.

Identification of the marginal and interaction effects is possible, however it does

also require to include some technical constraints. The exact (non-technical)

assumptions accompanying them could be a matter of further research.

Computation can be easily achieved with the mgcv -package in R but also done

with any other software for mixed-model estimation.

Altogether the presented approach offers a reasonable and practicable way to look

at the impact of age, period and cohort changes in panel data, what makes many

other applications in empirical research possible.
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Appendix I: Penalized Splines in

Mixed Model Formulation

Formulating p-splines as a mixed models enables firstly to determine the smooth-

ing parameter λ by estimation of the variance parameters of the mixed model,

and secondly embedding them into the additive mixed model framework. The

following procedure for this reformulation is also described by e.g. Wood (2004),

Ruppert et al. (2003), or Fahrmeier et al. (2013):

A smooth term with parameter vector β, associated model matrix X and penalty

matrix S is estimated by minimization of the penalized sum of squares

PLS =‖ y −Xβ ‖2 +λβ′Sβ

with respect to β.

To ensure identifiability in models with more than one smooth covariate it is nec-

essary to impose a constraint (e.g. the smooth sums over the covariates values

up to zero). Such a constraint can be expressed through some constraint matrix

C with Cβ = 0 .

This constraint can be included into the PLS criterion by forming the QR de-

composition QR = CT , defining Z to be Q without its first nc columns, with nc

being the number of rows of C and writing β = Zβz:

PLS =‖ y −XZβz ‖2 +λβT
z Z

TSZβz.

With the spectral decomposition of ZTSZ = UDUT , with D a diagonal matrix

containing the eigenvalues in a decreasing order the PLS can be rewritten as:

PLS =‖ y −XZUβu ‖2 +λβT
uDβu,

with βu = UTβz.

As a result of its construction, the penalty matrix S is generally rank deficient

and therefore the last few elements on the leading diagonal of D are zero. Let D+

being the smallest possible sub matrix of D containing all positive eigenvalues.

Partition βu into βT
u = [bTu , b

T
F ] so that βT

uDβu = bTuD
+bu and XZU into [Xu, XF ]
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in a similar manner. With b =
√
D+bu and XR = Xu(

√
D+)−1 the PLS get:

PLS =‖ y −XFβF −XRb ‖2 +λbT b

Now minimizing the PLS equals estimating a mixed model of the form:

y = XFβF +XRb+ ε, ε ∼ N(0, Iσ2), b ∼ N(0, Iτ 2),

with λ = σ2/τ 2 being connected to the variance parameters of the random ef-

fects and the error terms. It is then straightforward to get λ̂ = σ̂2/τ̂ 2 from

REML estimation and therefore the reformulation of the penalized splines en-

ables a simultaneous estimation of the regression coefficients and the smoothness

parameter.

28



Appendix II: Coefficients

Resulting coefficients of the Age-Cohort Interaction Model (Equation 3.2). Esti-

mated in R with the bam-function of the mgcv package:
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