
Ludwig-Maximilians-Universität München

Institut für Statistik

Efficient Computation of Unconditional
Error Rate Estimators for Learning
Algorithms and an Application to a
Biomedical Data Set

Master Thesis

Norbert Krautenbacher

31.03.2014

Advisor:

Dr. rer. nat. Mathias Fuchs

Referee:

Prof. Dr. rer. nat. HDR Anne-Laure Boulesteix

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/211696893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

We derive an unbiased variance estimator for re-sampling procedures using the

fact that those procedures are incomplete U-statistics. Our approach is based

on careful examination of the combinatorics governing the covariances between

re-sampling iterations. We establish such an unbiased variance estimator for the

special case of K-Fold cross-validation. This estimator exists as soon as new ob-

servations are added to the original sample, and we specify how many additional

observations are necessary. Thus we make re-sampling procedures comparable.

We make no assumptions on the underlying distribution and we take the co-

variances between re-sampling iterations into account. Beyond that we show an

approach to find a re-sampling design with minimal variance for a fixed size of

learning sets. We empirically show the existence of designs with smaller vari-

ance than repeated cross-validation. We systemically compare with the complete

U-statistic, the leave-p-out estimator. Our examination is completed by an ap-

plication to micro-array data.

1



Acknowledgments

This master thesis would not have been completed without the help of my ad-

visor, Dr. rer. nat. Mathias Fuchs. I am deeply grateful for his guidance,

encouragement and supervision during the past half year. I would also like to

thank Prof. Dr. rer. nat. HDR Anne-Laure Boulesteix for giving additional

advice and for help in organisational affairs. At last, I am grateful to all of those

who supported me in any aspect during the completion of this work.

2



Statutory declaration

I declare that I have authored this thesis independently, that I have not used

other than the declared sources or resources, and that I have explicitly marked

all material which has been quoted either literally or by content from the used

sources.

Ort, Datum Norbert Krautenbacher München, 31.03.2014

3



Contents

1 Introduction 1

1.1 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Common problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 CV-like procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 K-Fold Cross-validation (CV) . . . . . . . . . . . . . . . . 9

1.3.2 Leave-p-out cross-validation (LpO) . . . . . . . . . . . . . 13

1.3.3 Computational aspects . . . . . . . . . . . . . . . . . . . . 15

1.4 U -Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Incomplete U -statistics . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Error Rate Estimation by U-Statistics 23

2.1 CV-like procedures seen as (incomplete) U -statistics . . . . . . . . 23

2.1.1 ∆̂eLpO seen as a complete U -statistic . . . . . . . . . . . . 23

2.1.2 CV and CV-like procedures seen as an incomplete U -statistic 26

2.2 Variance of a CV-like procedure . . . . . . . . . . . . . . . . . . . 27

2.2.1 Properties and preliminary work . . . . . . . . . . . . . . . 27

2.2.2 Variance formula for a CV-like procedure . . . . . . . . . . 36

2.2.3 Estimation of the variance of a CV-like procedure . . . . . 45

2.2.4 Variance of LpO . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Variance of cross-validation . . . . . . . . . . . . . . . . . . . . . 50

2.3.1 Variance of 2-Fold cross-validation . . . . . . . . . . . . . 51

2.3.2 Variance of K-Fold cross-validation . . . . . . . . . . . . . 55

i



2.3.3 Aspects of Estimating the variance of cross-validation . . . 58

2.4 Minimization of a CV-like procedure’s variance . . . . . . . . . . 59

2.4.1 Expression of the variance for identifying a minimum vari-

ance design . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4.2 Problem of finding Minimum variance designs for a fixed

size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.5 Convergence in probability of the incomplete to the complete U -

statistic under random subsampling, given the data . . . . . . . . 63

3 Application on data 66

3.1 Application on an artificial example . . . . . . . . . . . . . . . . . 66

3.1.1 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.2 Estimation of the regular parameter components of the

variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.3 Comparison of 6-Fold cross-validation and LpO . . . . . . 71

3.1.4 Design with smaller variance than l-Fold-K-Fold CV . . . 74

3.2 Application on a micro-array data set . . . . . . . . . . . . . . . . 76

3.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.2 Set-up and used learning algorithm . . . . . . . . . . . . . 78

3.2.3 Computation of the variance of CV . . . . . . . . . . . . . 78

4 Summary 79

A Further proofs and equations 80

A.1 Mistake in proof of theorem 1 of Lee (1990), Chapter 4.3.1 . . . . 80

A.2 Reformulation of definition of τ
(i)
d , i = 1, . . . , 4 . . . . . . . . . . . 81

B Matrices for learning set designs 83

C Code 87

D R Session Info 88

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

ii



Chapter 1

Introduction

This work is concerned with benchmarking in supervised learning. In particular,

we consider the goal of comparing two candidate algorithms. There are several

well-known procedures used in practice. The most famous one may be K-Fold

cross-validation. In that case, however, practitioners often have to face the prob-

lem of high variances of the procedure. In this work we will deal with that issue

by considering the theoretical aspects of such a procedure. We will especially

investigate its variance and the estimator of this quantity.

In this chapter, in particular, we will at first give a general theoretical framework

by Section 1.1. After that we will state the issues about the use of cross-validation

and corresponding testing procedures by Section 1.2.

Section 1.3 will then explicitly describe the re-sampling procedures K-Fold cross-

validation and the minimum-variance estimator leave-p-out. Both procedures

will be important in the context of this work. In the last two sections of this

chapter, 1.4 and 1.5, we will focus on the theoretical principles. In particular,

we will treat complete and incomplete U-statistics. In fact, the introduced re-

sampling procedures — we will call them “CV-like procedures” — are incomplete

U-statistics. We will show this in Chapter 2 (Section 2.1).

Sections 2.2, 2.3 and 2.4 will give the main results of this work: we will apply

the theory of (incomplete) U-statistics on CV-like procedures. We will train our

sights on the variance of these procedures and will derive this quantity.

Let n be the total sample size and g be the learning set size. Then we will

1



consider the requirement that n ≥ 2g + 2. Under this condition we will derive

an unbiased estimator for this variance which is empirically estimable. Section

2.4 eventually will examine how, for a fixed number of learning sets, one could

find a procedure which has minimum variance. This problem particularly has

relevance for practice. Section 2.5 will show aspects about the convergence of an

incomplete U -statistic to the complete U-statistic under random subsampling.

Chapter 3 contains two examples of an application on data. The first (Section

3.1) will be an artificial data example. On the basis of this we will empirically

show the existence of a CV-like procedure which has smaller variance than re-

peated cross-validation. At last, Section 3.2 will deal with a real data problem

in which we will estimate our variance estimator for 5-Fold cross-validation.

1.1 Theoretical Framework

This chapter formalizes some basic issues in machine learning or benchmarking.

Thereby we will be able to investigate the comparison of the error rate estima-

tors of two binary classification algorithms in further chapters. The following

definitions and notations are similar in Fuchs et al. (2013).

In Statistical Learning we at first suppose that our data arose from an unknown

distribution P (or sometimes referred to as “data generating process”):

Let P(Z) be a family of probability measures on Z. In our case of supervised

learning, Z = X × Y , where X = Rr−1 corresponds to a predictor space with

r − 1 (r ∈ N) being a fixed number of predictors, and Y ⊂ R to the response

space. Therefore, P ∈ P(X × Y), and P is supposed to be defined on the stan-

dard Lebesgue σ-algebra. However, P is not required to be absolutely continuous

with respect to Lebesgue measure since in binary classification we receive a dis-

crete marginal distribution in Y .

We suppose a given sample in Z×n = (X × Y)×n of size n. Let zi := (xi, yi),

i = 1, . . . , n, then

{z1, . . . , zn} ∼ P⊗n,

2



where xi ∈ X and yi ∈ Y .

Let g ∈ N be the learning sample size, and therefore g ≤ n. We will denote a

learning sample of size g shortly by L, i.e. L := {z1, . . . , zg} = {(x1, y1), . . . , (xg, yg)}.

Remark 1. Throughout this work every set can be seen as unordered as long

as it is not particularly specified as ordered.

In the following, we will define a general model or learning algorithm for binary

classification on which we will focus in this work.

Definition 1. A prediction model f , specifically a binary classification algorithm

or classifier is defined as a measurable map:

f : (X × Y)×g ×X → Y ,

(L,xg+1) 7→ y,
(1.1.1)

where f is symmetric in the first g arguments. These correspond to the learning

arguments L = {z1, . . . , zg} and here y ∈ Y = {0, 1}.

Alternatively, f can be viewed as

f : (X × Y )g →Map(X, Y )

but we will not take this point of view.

Our goal is to compare several candidate algorithms f1, . . . , fk, where k is the

number of candidate algorithms. Hence, a measure of performance of an algo-

rithm is required. Therefore, it is useful to look at the discrepancy between the

true response y and the value predicted by our model fi, i ∈ {1, . . . , k}, denoted

by ŷ. In general, this discrepancy can be measured by the loss

L : Y × Y → R,

(y, ŷ) 7→ l

3



In case of a binary classifier, l can be chosen such that l ∈ {0, 1} holds and we

can specify the loss function as

L(y, ŷ) = 1y 6=ŷ (1.1.2)

The (mean) measure of performance which is our main object of interest is defined

by the expectation of the loss (1.1.2). Thus it is the expected value of prediction

error or, in our case of binary classification, the expected misclassification rate.

Definition 2. The measure of performance is defined by the prediction error or

(in classification) as unconditional error rate:

ef : = EP⊗(g+1)L(f(L,xg+1), yg+1)

= EP⊗(g+1)1f(L,xg+1)6=yg+1

= P⊗(g+1)(“f is mistaken”)

(1.1.3)

We can term (1.1.3) as unconditional because the error rate is not conditional

on the learning data L any more, since we look at the joint expectation of the

error rate. In the following, we will nonetheless shortly use the expression “error

rate”, since we only will refer to the unconditional error rate from now on.

In practice, the first problem one is confronted with, is how to estimate this error

rate ef for a candidate algorithm f . On a sample of size of n ≥ g + 1 there are

many obvious unbiased estimators of ef .

Before formulating an estimator of ef , we will define some terms, which we will

use throughout this work.

Definition 3. We define S(n,m) as the set of all permutations {S(1), . . . , S(m)}

of size m chosen from {1, . . . , n}, i.e.

S(n,m) := {s ∈Map({1, . . . ,m}, {1, . . . n}) | s is injective} (1.1.4)

Definition 4. Let Sm be the set of all possible permutations of the set {1, . . . ,m},

4



i.e. the special case of Definition 3 that

Sm := S(m,m)
0 = {s ∈Map({1, . . . ,m}, {1, . . .m}) | s is bijective} (1.1.5)

This set is usually called the symmetric group Sm.

Definition 5. Let S(n,m)
0 be the set of all unordered subsets {S(1), . . . , S(m)} of

size m chosen from {1, . . . , n} without regard to the order of the sets’ elements,

i.e.

S(n,m) := {S | S ⊂ {1, . . . , n}, |S| = m} (1.1.6)

Lemma 1. |Sm| = m!, |S(n,m)| =
(
n
m

)
·m! and |S(n,m)

0 | =
(
n
m

)
.

Proof. Elementary combinatorics, can be proved by complete induction.

With the definitions above, we can define a term which will be useful for describ-

ing error rate estimators.

Definition 6. Let us call a pair (S; a) an evaluation tuple, where S is an un-

ordered subset of {1, . . . , n} of size g, i.e. S ∈ S(n,g)
0 , and a ∈ {1, . . . , n} \ S.

Then, let T (n,g) denote the collection of all evaluation tuples. For any non-empty

collection of evaluation tuples, denoted by T ∗ ⊂ T (n,g), we will see S∗ as the

corresponding collection of all sets S contained in T ∗.

Our motivation for introducing this notion is that such a pair unambiguously

identifies a summand for a procedure which forward we will call CV-like pro-

cedure. Any evaluation tuple defines a value y = f(LS; xa) ∈ Y , where LS :=

{(xi, yi) : i ∈ S}. So S∗ ⊂ S(n,g)
0 corresponds to the collection of sets which

contains the indices of the learning data sets and {1, . . . , n} \ S to the indices of

the test set applied per learning set S.

Let now T ∗ ⊂ T (n,g) be a non-empty collection of evaluation tuples. Then we

can formulate an estimator of ef for a binary classifier by writing

5



êf (T
∗) : =

1

|T ∗|
∑

(S;a)∈T ∗

L (f(LS,xa), ya)

=
1

|T ∗|
∑

(S;a)∈T ∗

1f(LS ,xa)6=ya)

(1.1.7)

This estimator has the following property.

Lemma 2. êf (T ∗) is an unbiased estimator of ef , i.e. EP⊗(g+1) êf (T ∗) = ef .

Proof.

EP⊗(g+1) êf (T
∗) = EP⊗(g+1)

 1

|T ∗|
∑

(S;a)∈T ∗

L (f(LS,xa), ya)


=

1

|T ∗|
· |T ∗| · EP⊗(g+1)L (f(LS,xa), ya)

(1.1.3)
= ef

Remark 2. In a certain sense, all unbiased estimators are of this form (Halmos,

1946).

The comparison of several, say k, algorithms or unconditional error rates is in the

frame of this work. Therefore, we devise our null hypothesis of interest, which is

the equality of the candidate algorithms or its error rates:

H0 : ef1 = ef2 = · · · = efk

Therefore we test against the alternative hypothesis

H1 : ∃i, j ∈ {1, . . . , k} : efi 6= efj

Since in this work the focus is merely on the comparison of two algorithms, we

6



can simplify our hypotheses as follows:

H0 : ef1 = ef2 vs. H1 : ef1 6= ef2

⇐⇒ H0 : ∆e := ef1 − ef2 = 0 vs. H1 : ∆e 6= 0
(1.1.8)

Here and during this work, we investigate the difference of two unconditional

error rates ∆e rather than just the unconditional error rate ef of Equation (1.1.3)

itself. Therefore, we explicitly formulate this estimator:

∆e = ef1 − ef2

= EP⊗(g+1)

(
L(f1(LS,xa), ya)− L(f2(LS,xa), ya)

) (1.1.9)

Thus, we can extend the estimator êf of Equation (1.1.7) by the estimator of the

difference of two unconditional error rates ∆̂e:

∆̂e(T ∗) =
1

|T ∗|
∑

(S;a)∈T ∗

[
L(f1(LS,xa), ya)

− L(f2(LS,xa), ya)
]

=
1

|T ∗|
∑

(S;a)∈T

Γ(S; a),

(1.1.10)

where we let Γ(S; a) := L(f1(LS,xa), ya)− L(f2(LS,xa), ya).

One could also use a definition of Γ where every summand has its own loss

function, i.e. L1(f1(LS,xa), ya) − L2(f2(LS,xa), ya). Then, the case of a single

classifier is treated simultaneously since we could set L2 := 0.

Equation (1.1.10) should be seen as an equality of two quantities, not as an

algorithm for computation of its left-hand side. In Section 1.3.3, we will rewrite

the unconditional error rate estimators in a way that will be more useful for

practical computation: in Equation (1.3.3) one specific learning set may be used

for fitting several times, which is unnecessarily of higher computational cost.

The next section will investigate the general problem of testing the equality of

7



two error rates. It will describe the functionality as well as disadvantages of a

common method for error rate estimation.

1.2 Common problem

Until now, the basic expressions of Machine Learning required for this work, have

been defined. On the other hand the main object of interest – the unconditional

error rate – and the hypothesis we have to test for has been introduced. In this

chapter, we will discuss how our hypothesis can be investigated and which prob-

lems are entailed.

Having a look at Hypothesis (1.1.8) clearly shows that we test for the equality

of two means or, if its difference equals zero. If we – for the sake of simplicity

– assumed that our two groups each followed a normal distribution with un-

known variance, and we could additionally assume that the observations are all

independent of each other, then the general assumptions for a paired t-test (or

one-sample-t-test) would hold. The last aspect can in a t-test setting only be

accomplished if the subsets in our set T ∗ do not overlap, i.e. are disjoint. As

a matter of fact, this assumption would also be necessary for a non-parametric

counterpart such as the Mann-Whitney U-test.

Thus, we would (randomly) draw non-overlapping evaluation tuples, each of size

g + 1. We would apply our algorithms to each of those sets in order to derive a

prediction rule. Then we could estimate the error rate for each of the prediction

rules. There are at most bn/(n− g)c independent realizations of estimators of

∆e. In case one took test sets of size bigger than n−g, one would get even fewer

independent realizations. Using only independent realizations would result in

an inefficient estimation of the unconditional error rate — unless we had a huge

data set at hand — and doesn’t allow for an application to small sample sizes.

For instance, biomedical data sets often do not exceed a sample size of n = 400.

If we assume that our algorithm f should use at least g = 50 learn arguments,

we will get only
⌊

400
51

⌋
= 7 independent realizations of estimators of ∆e.

8



Therefore, in practice, prediction errors or error rates usually are estimated by

procedures in which evaluation tuples necessarily overlap. These are commonly

called “re-sampling” procedures, which we will describe in the following section.

1.3 CV-like procedures

According to the issue described in the previous section, a more efficient use of

data has to be applied in order to get an appropriate tool for error rate estimation.

Definition 7. During this work we will refer to estimators like ∆̂e(T ∗) given

by (1.1.10) as to CV-like procedures, where the structure of set T ∗ may vary.

1.3.1 K-Fold Cross-validation (CV)

A common and well-known computer-intensive re-sampling method is K-Fold

cross-validation (CV) (Hastie et al. (2001), for instance). In CV we consider

learning subsets of size g such that our data is split into K := bn/(n− g)c equal-

sized parts. In this subsection we will assume that n is divisible by n− g so that

K = n/(n− g) ∈ N. The model is fitted to the g learning arguments, i.e. to

K − 1 parts. The prediction error of the fitted model can be calculated by using

the remaining part of size n− g as validation part, i.e. as test sample. Applying

the same procedure on every part leads to K estimates and by calculating the

average of estimates we get the CV estimate of the unconditional error rate which

we will formally express with the aid of Definition 6. Note that g is necessarily

at least n/2. We will show that the CV-estimate is a CV-like procedure. This

justifies the term “CV-like”.

Let SCV ⊂ S(n,g)
0 be a collection of sets of learning set indices, occurring in

K-fold cross-validation. So in CV-like procedures, the set {1, . . . , n} is split in

9



K = n/(n− g) parts so that we get

SCV = {{1, . . . , n} \ {1, . . . , n− g},

{1, . . . , n} \ {(n− g) + 1, . . . , 2 · (n− g)},

{1, . . . , n} \ {2 · (n− g) + 1, . . . , 3 · (n− g)},

. . . ,

{1, . . . , n} \ {( n

n− g
− 1)(n− g) + 1︸ ︷︷ ︸

=g+1

, . . . ,
n

n− g
· (n− g)︸ ︷︷ ︸
=n

}},

(1.3.1)

then

TCV := {(S; a) | S ∈ SCV , a ∈ {1, . . . , n} \ S}, (1.3.2)

i.e.

TCV = {({1, . . . , n} \ {1, . . . , n− g}; 1),

({1, . . . , n} \ {1, . . . , n− g}; 2),

. . . ,

({1, . . . , n} \ {1, . . . , n− g};n− g),

({1, . . . , n} \ {(n− g) + 1, . . . , 2 · (n− g)};n− g + 1),

({1, . . . , n} \ {(n− g) + 1, . . . , 2 · (n− g)};n− g + 2),

. . .

({1, . . . , n} \ {(n− g) + 1, . . . , 2 · (n− g)}; 2 · (n− g)),

({1, . . . , n} \ {2 · (n− g) + 1, . . . , 3 · (n− g)}; 2 · (n− g) + 1),

. . . ,

. . . ,

({1, . . . , n} \ {(g + 1, . . . , n)};n)}

Then the CV estimate of the unconditional error rate is

∆̂eCV :=
1

|TCV |
∑

(S;a)∈TCV

Γ(S; a)
(1.1.10)

= ∆̂e(TCV ), (1.3.3)

10



which simply is substituting the set TCV into (1.1.10).

Therefore we have shown that ordinary cross-validation is just a special case of a

CV-like procedure. There are many different possibilities of CV for fixed g and

n.

Lemma 3. Provided that K ∈ N, the number of ways to partition a set for

K-Fold cross-validation for a fixed g and a fixed n is exactly

n!

K!
·
(( n

K

)
!
)−K

(1.3.4)

Proof. The number of possibilities is equal to the number of ways to partition

a set {1, . . . , n} into K = n/(n − g) non-empty subsets, where the size of the

subsets is fixed and equal to n− g = n/K.

Thus there are
(

n
n/K

)
ways for the first partition,

(
n−n/K
n/K

)
for the second,

(
n−2·n/K
n/K

)
for the third, and so forth. Taking into account that the order of the partitions

does not matter, we get

1

K!
·
(
n
n
K

)
·
(
n− n

K
n
K

)
·
(
n− 2 · n

K
n
K

)
· · ·
(
n−K · n

K
+ 1

n
K

)
=

1

K!
·
(
n
n
K

)
·
(
n− n

K
n
K

)
·
(
n− 2 · n

K
n
K

)
· · ·

· · ·
(
n− (K − 2) · n

K
n
K

)
·
(

n
K
n
K

)

=
1

K!
·
K−2∏
i=0

(
n− i · n

K
n
K

)

=
1

K!
·
K−2∏
i=0

(
n− i · n

K

)
!(

n
K

)
! ·
(
n− i · n

K
− n

K

)
!

=
1

K!
·
K−2∏
i=0

(
n− i · n

K

)
!(

n
K

)
! ·
(
n− (i+ 1) · n

K

)
!

=
1

K!
·

∏K−2
i=0

(
n− i · n

K

)
!∏K−1

i=1

(
n
K

)
! ·
(
n− i · n

K

)
!

11



=
1

K!
·

∏K−2
i=0

(
n− i · n

K

)
!(∏K−1

i=1

(
n
K

)
!
)
· (n−(K−1)· n

K )!

n!
·
(∏K−2

i=0

(
n− i · n

K

)
!
)

=
n!

K! ·
((

n
K

)
!
)(K−1) ·

(
n
K

)
!

=
n!

K!
·
(( n

K

)
!
)−K

For instance, for a sample size of n = 100 and K = 5 there are 100!
5!
·
((

100
5

)
!
)−5

=

9.12× 1063 ways of how to partition the set for 5-Fold cross-validation.

Definition 8. For any T ∗ ⊂ T (n,g), we will in general call |T ∗| the size of the

CV-like procedure ∆̂e(T ∗).

Lemma 4. Cross-validation, i.e. ∆̂eCV , is a CV-like procedure of size |TCV | = n.

Proof. From (1.3.1), it is clear that |SCV | = n/(n− g). For every S ∈ SCV
as part of an evaluation tuple for CV, there are |{1, . . . , n} \ S| = n − g test

observations.

Thus |TCV | = |SCV | · |{1, . . . , n} \ S| = n/(n− g) · (n− g) = n.

CV obviously leads to overlaps in learning and test sets, so it uses dependent

instead of independent realizations. In addition, our null distribution, i.e. the

distribution of our test statistic when H0 : ∆e = 0 is true, is unknown. It is

pointed out in Fuchs et al. (2013) that there are neither exact nor asymptoti-

cally exact test procedures for testing our hypothesis available.

In general, a common problem of CV-like procedures like CV in practice is that

such estimators have a large variance. An essential question that we have to

answer in order to get an accurate estimate for the unconditional error rate is:

What can we say about the variance of CV-like error rate estimates?

12



There is vast literature to answer this question. In general, if correlations among

our dependent realizations are ignored, the true variance of the unconditional er-

ror rate tends to be underestimated. This is illustrated in Bengio and Grandvalet

(2003).

The question of what we can actually say about the variance of a CV-like pro-

cedure, is also treated in Bengio and Grandvalet (2003). According to Theorem

1 of that work, there exists no universal unbiased estimator of the variance of

K-Fold cross-validation. Since we cannot find an unbiased estimator of the vari-

ance, we have to ask our question of interest in a different way: Can we pick a

CV-like procedure with minimum variance?

In Chapter 2, we will show that for a fixed g, there actually is a CV-like proce-

dure with minimal variance, the leave-p-out estimator. This will turn out to be

the unique minimum-variance unbiased estimator (MVUE). Before investigating

this estimator from a more theoretical view, we will introduce it in the following

section as one type of CV-like procedure.

1.3.2 Leave-p-out cross-validation (LpO)

In this section, we will introduce a further CV-like method, which will be of par-

ticular importance in further chapters. Let us investigate a CV-like procedure

which takes all possible subsets of our sample of size g + 1 into account. This

corresponds to a CV-like procedure of maximum size |T (n,g)| in fact. This pro-

cedure has been introduced in several works and is sometimes called leave-p-out

cross-validation (Shao, 1993), where p = n− g.

Again, by analogy to the previous chapter, we recall the error rate difference

estimator (1.1.10), derived in Section 1.1. Then we can formalize the procedure

described above.

Let

TLpO := T (n,g) (1.3.5)

13



and substitute TLpO into (1.1.10). So, ∆̂eLpO := ∆̂e(TLpO).

Definition 9. We will refer to the CV-like procedure ∆̂eLpO as to leave-p-out

cross-validation (LpO).

Now LpO has been introduced as a further CV-like procedure. Since the col-

lection of sets of learning indices for CV is a sub-collection of those for LpO

(SCV ⊂ S(n,g)
0 ), it is obvious that the LpO procedure contains more summands

(meaning iterations, cf. Definition 11) than the CV procedure. In fact, LpO is

not realizable in practice. However some incomplete versions of LpO are appli-

cable, which we will see in Chapter 2.

Lemma 5. LpO, i.e. ∆̂eLpO, is equal to the CV-like procedure of maximum size

|TLpO| =
(
n

g

)
· (n− g) =

(
n

g + 1

)
· (g + 1).

Proof. Since TLpO = T (n,g), the collection of sets of indices for learning is S(n,g)
0 .

According to Lemma 1, |S(n,g)
0 | =

(
n
g

)
. For every S ∈ S(n,g)

0 in an evaluation

tuple for LpO, there are |{1, . . . , n} \ S| = n− g test observations.

Thus

|TLpO| = |S(n,g)
0 | · |{1, . . . , n} \ S|

=

(
n

g

)
· (n− g)

=
n!

g!(n− g)!
· (n− g)

=
n!

(g + 1)!(n− g − 1)!
· (g + 1)

=

(
n

g + 1

)
· (g + 1)

The fact, that LpO is the unique CV-like procedure of maximum size, which we

will see later by Conclusion 3 (Chapter 2), completes the proof.

The next section will deal with some issues which are important for practical

computation.

14



1.3.3 Computational aspects

In this section we will sum up some aspects which are useful in practical com-

putation of the unconditional error rate for CV-like procedures.

Suppose an algorithm is fitted by a learning set with indices S. In practice we

will consider to evaluate always by all possible remaining test observations of

{1, . . . , n} \ S.

Definition 10. We call a design T ∗ ⊂ TLpO a test-complete-design, if the fol-

lowing holds:

(S; a) ∈ T ∗, b ∈ {1, . . . , n} \ S ⇒ (S; b) ∈ T ∗.

In a test-complete-design T ∗, there are exactly n− g evaluation tuples for every

S ∈ S∗. This fact is clear, since the test set size is always 1 and in a test-

complete-design |{1, . . . , n} \ S| = n− g.

Conclusion 1. For any test-complete-design T ∗ ⊂ TLpO the size of ∆̂e(T ∗) is

exactly

|T ∗| = |S∗| · |{1, . . . , n} \ S| = |S∗| · (n− g), (1.3.6)

where S ∈ S∗.

Lemma 6. Let T ∗ ⊂ TLpO. Then we can rewrite the estimator of the uncondi-

tional error rate of (1.1.10) for the case of a test-complete-design by

∆̂e(T ∗) = |S∗|−1
∑
S∈S∗

(n− g)−1
∑

a∈{1,...,n}\S

Γ(S; a) (1.3.7)

Proof.

∆̂e(T ∗) = |T ∗|−1
∑

(S;a)∈T

Γ(S; a)

= |T ∗|−1
∑
S∈S∗

∑
a∈{1,...,n}\S

Γ(S; a)

15



= |T ∗|−1 · (n− g)
∑
S∈S∗

(n− g)−1
∑

a∈{1,...,n}\S

Γ(S; a)

= |S∗|−1
∑
S∈S∗

(n− g)−1
∑

a∈{1,...,n}\S

Γ(S; a)

In Equation (1.3.7) the algorithms f1 and f2 have to be fitted only once for each

learning set. Thus, this is the form of the unconditional error rate we will use in

practice.

Thus, in view of the computational aspect, the number of how often our algo-

rithms has to be fitted is important, rather then the size of the CV-like procedure.

Definition 11. We will refer to |S∗| as to the number of iterations of ∆̂e(T ∗).

Let us therefore compare the computational cost of the introduced CV-like pro-

cedures.

Conclusion 2. Conclusion 1 implies that the number of iterations of cross-

validation is |SCV | = n/(n− g) and the number of iterations of LpO is |SLpO| =(
n
g

)
.

So, in order to get an idea of the difference in computational costs of CV and

LpO, we will evaluate the factor of how many more iterations for LpO are required

compared to CV:

|SLpO|
|SCV |

=

(
n
g

)
n
n−g

=
(n− g) · n!

n · g! · (n− g)!
=

(n− 1)!

g! · (n− g − 1)!
=

(
n− 1

g

)

So, our algorithms have to be trained
(
n−1
g

)
times more for a LpO estimation

compared to a CV estimation. This fact shows that we cannot compute a com-

plete LpO procedure in practice.

For instance, for a sample size of n = 100, we have to train our algorithms 5

times for 5-Fold cross-validation, i.e. for g = 80. Computing the LpO takes(
99
80

)
= 1.07× 1020 times more iterations than CV.

16



The goal of the work is to develop a CV-like procedure whose computational

cost is not much higher compared to CV, but whose variance is much smaller.

Therefore we have to look at the theoretical aspects of LpO at first. The following

section is an introduction to the theory of U -statistics which we will use in

Chapter 2 to see CV-like procedures from a specific point of view.

1.4 U-Statistics

The theory of U -statistics has been introduced by Hoeffding (1948), although

some properties of U -statistics had been established already by Halmos (1946).

In this chapter we will introduce U -statistics and its properties. The following

description of the theory of U -statistics and its properties are based on Hoeffding

(1948) which contributes the basic results of U -statistics, and on Ferguson (2005)

which refers to Hoeffding (1948).

1.4.1 Definitions

At first we will define some terms which will be required to establish some prop-

erties of a U -statistic.

Let P(Ω) be a family of probability measures on Ω = Rr. Let Θ be a parameter

of a statistical model, which can be defined by a map as follows

Θ : R→ P

For the following definitions, however, it is more convenient to think of a param-

eter as a map

Θ : P → R

Now suppose that for a sample size m that there exists an unbiased estimator of

Θ(P ) for any P ∈ P(Ω):

17



Let z1, . . . , zm be realizations of Z1, . . . ,Zm
i.i.d.∼ P⊗m. Then there exists a mea-

surable function Φ(z1, . . . , zm) (Φ : Zm → R) such that ∀P ∈ P(Ω):

Θ(P ) = EP⊗mΦ(Z1, . . . ,Zm)

=

∫
. . .

∫
Φ(z1, . . . , zm)dP (z1) . . . dP (zm).

(1.4.1)

Definition 12. We call a parameter of the form (1.4.1) a regular parameter. The

minimal m allowing this property is called the degree of Θ(P ).

The degree of Θ(P ), however, is very difficult to determine in practice!

The function Φ in general is not necessarily supposed to be symmetric in its ar-

guments. However, when Φ is an unbiased estimator of Θ(P ), we can symmetrize

Φ by applying the average of Φ to all permutations of arguments. Then

Φ0(z1, . . . , zm) :=
1

m!

∑
S∈Sm

Φ(zS(1), . . . , zS(m)) (1.4.2)

where Sm is the symmetric group (s. Definition (4)).

Φ0 is now symmetric in its arguments, still unbiased and

EP⊗m(Φ0(z1, . . . , zm)) = EP⊗m(Φ(z1, . . . , zm)) (1.4.3)

holds.

The two ways of the definition of a U -statistic are given by Hoeffding (1948).

Definition 13 (U -statistic, Hoeffding (1948)). Let z1, . . . , zn be a sample of n

realizations of Z1, . . . ,Zn
i.i.d.∼ P⊗n and Φ a function of m(≤ n) vector arguments.

Then

Un = Un(Φ) :=
1

|S(n,m)|
∑

S∈S(n,m)

Φ(ZS(1), . . . ,ZS(m)), (1.4.4)

where S(n,m) is the set of all permutations {S(1), . . . , S(m)} of size m chosen

from {1, . . . , n} (s. Definition 3).

Any such statistic is called a U-statistic. Sometimes we will refer to this form as

18



to a U -statistic with non-symmetrized kernel Φ.

Note that therefore
∣∣S(n,m)

∣∣ =
(
n
m

)
·m! = n!

(n−m)!
.

Definition 14 (U -statistic for a symmetric kernel, Hoeffding (1948)). For a

symmetric kernel Φ0, the U -statistic is

Un = Un(Φ0) :=
1

|S(n,m)
0 |

∑
S∈S(n,m)

0

Φ0(ZS(1), . . . ,ZS(m)) (1.4.5)

where S(n,m)
0 is the set of all unordered subsets {S(1), . . . , S(m)} of size m chosen

from {1, . . . , n} without regard to the order of the sets’ elements (s. Definition

5).

The versions above clearly lead to the same value:

Un(Φ0)
(1.4.5)

=
1

|S(n,m)
0 |

∑
S∈S(n,m)

0

Φ0(ZS(1), . . . ,ZS(m))

(1.4.2)
=

1

|S(n,m)
0 |

∑
S∈S(n,m)

0

1

m!

∑
S∈Sm

Φ(ZS(1), . . . ,ZS(m))

=
1

|S(n,m)|
∑

S∈S(n,m)

Φ(ZS(1), . . . ,ZS(m))

(1.4.4)
= Un(Φ)

Note that the version in Definition 14 of Un contains m! times more summands

than the version in Definition 13 does, since
∣∣∣S(n,m)

0

∣∣∣ =
(
n
m

)
= n!

m!·(n−m)!
.

We will give a short and simple example for a U -statistic:

Example 1. Let Φ be the identity function, i.e. Φ(Z×1) = Z×1. Then the

corresponding U -statistic is the sample mean:

Un(Φ) =
1

|S(n,1)|
∑

S∈S(n,1)
Φ(Z×1

S(1)) =
1

n

n∑
i=1

Z×1
i

19



1.4.2 Properties

In this section we will introduce essential properties of U -statistics which we

will need for testing our null hypothesis of equal error rates between learning

algorithms.

Clearly, if Θ(P ) = EP⊗mΦ(Z1, . . . ,Zm) <∞ ∀P ∈ P(Ω), then Un is an unbiased

estimate of Θ(P ).

The following property is particularly essential in the context of this work and

has already been proved by Halmos (1946) for the univariate case and is shown

in Hoeffding (1948) for the multivariate case:

“[. . . ] [Un] is the only unbiased estimate [. . . ] [over P(Ω)] which is symmetric

in [. . . ] [z1, . . . , zn], and [. . . ] [Un] has the least variance among all unbiased

estimates [. . . ] [over P(Ω)].” (Hoeffding (1948))

So — stated by a single expression — Un is unique MVUE.

Since we want to obtain a test procedure, we will have a look at the properties

of Un with respect to its asymptotic distribution.

Theorem 1. According to Hoeffding (1948) the variance of a U -statistic is

V(Un) =

(
n

m

)−1 m∑
d=1

(
m

d

)(
n−m
m− d

)
ζ2
d (1.4.6)

where

ζ2
d = V(E(z1, . . . , zd,Zd+1, . . . ,Zm)︸ ︷︷ ︸

=:Φd0

) = V(Φd
0(Z1, . . . ,Zd)), (1.4.7)

so that ζ2
m = V(Φ0(Z1, . . . ,Zm)) and we define ζ2

0 := 0.

Hoeffding shows a further property of the quantities ζ2
d :

Lemma 7 (Hoeffding (1948), Th. 5.1). The quantities ζ2
d , 1, . . . ,m satisfy

0 ≤ ζd1
d1

≤ ζd2
d2

(1.4.8)

20



if 1 ≤ d1 ≤ d2 ≤ m.

We will refer to quantities ζ2
d as to Hoeffding quantities ζ2

d .

Moreover, in Hoeffding (1948) the following property is shown:

Theorem 2. If ζ2
m <∞ then

√
n(Un −Θ)

D→ N (0,m2 · ζ2
1 ) (1.4.9)

Assuming that ζ2
1 6= 0, in standardized form we get:

√
n
Un −Θ√
m2 · ζ2

1

D→ N (0, 1) (1.4.10)

Thus, Un is approximately normally distributed. So, in theory, a test procedure

can be applied, since an asymptotically exact test exists. In practice, a consistent

variance estimator of Un, i.e. of the asymptotic variance 1
n
·m2·ζ2

1 , has to be found.

In Chapter 2, we will show how the theory of U -statistics can be embedded in

the context of machine learning.

1.5 Incomplete U-statistics

In the previous section, the theory of U -statistics has been introduced. In both

versions of a U -statistic we have seen that the amount of summands is quite

large so that computation might get excessive if m and n get large. This com-

putational cost is especially high if the computation includes a machine learning

algorithm in the associated kernel. However, methods for reducing the number

of summands have been developed by maintaining the properties of a U -statistic

approximately. Lee (1990), for instance, describes designs and properties of so-

called incomplete U-statistics.

In the following we will introduce the basic concept of incomplete U -statistics.

The descriptions are based on Lee (1990), Chapter 4.3.

21



Definition 15. An incomplete U-statistic is one of the form

U∗n =
1

|S∗|
∑
S∈S∗

Φ0(ZS(1), . . . ,ZS(m)) (1.5.1)

where S∗ ⊂ S(n,m)
0 .

The set S∗ is called the design of the incomplete U -statistic. We aim for choosing

S∗ in such a way that the variance V(U∗n) is minimized, for a fixed |S∗|.

Clearly, subsetting S∗ = S(n,m)
0 into (1.5.1) corresponds to the special case that

U∗n = Un by Equation (1.4.5). Consequently, since Un has minimum variance,

∀S∗ ⊂ S(n,m)
0 : V(U∗n) ≥ V(Un)

However, the goal of using an incomplete U -statistic is to make the estimate U∗n

asymptotically efficient by choosing S∗ such that |S∗| � |S(n,m)
0 |.

There are three specific theorems in Lee (1990) which will particularly be essential

for accomplishing that goal for finding a CV-like procedure with small variance

in Chapter 2:

Theorem 1 of Lee (1990), Chapter 4.3.1 states that the variance of an incomplete

U -statistic exceeds that of a complete one by the variance of the difference of

both statistics, in particular by a positive number.

Theorem 2 of that chapter shows that the variance of an incomplete U -statistic

is a linear combination of very few covariances.

Theorem 3 of that chapter derives the relation between the overlap sizes of two

sets and n(S), the number of m-subsets in the design D, which contain the set S.

The theorem derives an alternative, much less intuitive in terms of more explicit

combinatorial quantities, called Bν .

22



Chapter 2

Error Rate Estimation by

U-Statistics

In this chapter we will make theoretical considerations of CV-like procedures and

especially of their variance. We will derive this variance and thus also have the

variance of CV. After that, we will investigate an approach of minimizing this

variance. At the end of this chapter, we will treat the convergence in probability

of the incomplete to the complete U -statistic under random subsampling.

2.1 CV-like procedures seen as (incomplete) U-

statistics

This section will show the relationship of CV-like procedures and U -statistics.

We will figure out that every CV-like procedure, in fact, is an incomplete U -

statistic or, in the special case of LpO, even is a complete one.

2.1.1 ∆̂eLpO seen as a complete U-statistic

Lemma 8. The CV-like procedure LpO, i.e. ∆̂e(TLpO) is a U -statistic of degree

at most g + 1.

Proof. The family of probability measures on Ω in Section 1.4 in our context

23



corresponds to P(X ×Y) with X = Rr−1 and Y ⊂ R. In Chapter 1.1 we defined

Z = X × Y and zi = (x1, y1) (i = 1, . . . , n), where xi ∈ X and yi ∈ Y . We used

the z/Z-notation already in Chapter 1.4 for the random variables or realizations

of random variables distributed like P . This notation has been used, since it is

directly applicable.

The application of U -statistics of Hoeffding (1948) only is justified accurately, if

a further issue is taken into account, which is pointed out in Fuchs et al. (2013):

according to the definitions in Hoeffding (1948) described in 1.4.1, Ω = Rr.

However, as X × Y ⊂ Rr only holds, we identify P with its push-forward image

i∗(P ) under the inclusion map i : X ×Y → Rr. Thus, P can be viewed as being

supported on Rr and thus Hoeffding (1948) can be applied adequately. In the

following, the classifier f of Definition 1 also will be viewed as a measurable map

on Rrg+r−1 since f : (X × Y)×g ×X → Rrg+r−1 with respect to i∗(P ).

In Chapter 1.1 we defined the unconditional error rate (1.1.3). Therefore we can

∆e also write as

∫
. . .

∫ (
L(f1(LS,xa), yg+1)− L(f2(LS,xa), yg+1)︸ ︷︷ ︸

=Γ(S;a)

)
dP (z1) . . . dP (zg+1)

where Γ : (X × Y)g+1 → R. Thus, ∆e is a regular parameter of degree g + 1.

Again, strictly speaking, it is suggested in Fuchs et al. (2013) that Γ may be

viewed as being defined on Rr(g+1) instead of (X ×Y)g+1 like f was extended to

Rrg+r−1.

Assumption 1. The degree of Θ = ∆e is exactly g + 1.

In particular, this assumption contains the non-degeneracy of Θ.

Now we can draw the following conclusion.

Conclusion 3. ∆̂e(TLpO) is the unique minimum-variance unbiased estimator

of ∆e.

By now, it is shown how the LpO can be seen as a U -statistic. In order to be

able to get an asymptotically exact test, we can apply the property of asymptotic

24



normality of a U -statistic, shown by (1.4.10):

Let v̂(n) be a consistent variance estimator of ∆̂e. Then

(∆̂e−∆e)v̂(n)−1/2 D→ N (0, 1) (2.1.1)

for n→∞ and as long as g remains fixed and we assume that σ2
1 6= 0.

Attentive readers will have recognized that the size or number of summands of

∆̂e(TLpO) neither corresponds to the number of summands of a symmetric kernel

of a U -statistic, introduced by Definition 14, nor to the number of summands of

a non-symmetric kernel of a U -statistic, introduced by Definition 13. The reason

is that the kernel Γ(S; a) is neither symmetric nor “completely non-symmetric”.

We can illustrate this fact from the direction of either the view of a symmetric

or a non-symmetric kernel:

Γ(S; a) is symmetric in |S| = g arguments. Thus we would set up a U -statistic

by
(
n
g

)
summands. Since for every of those summands there are |{1, . . . , n}\S| =

n − g possible ways of adding the g + 1 argument (or the test observation a),

there are
(
n
g

)
· (n− g) = |TLpO| summands.

We can also compute ∆̂e(TLpO) by the non-symmetric kernel so that there are(
n
g+1

)
· (g + 1)! summands for setting up a U -statistic. However, we do not

necessarily have to take the g! permutations in the g symmetric arguments into

account. Thus we only need
(
n
g+1

)
·(g+1)!/g! =

(
n
g+1

)
·(g+1) = |TLpO| summands.

In analogy to (1.4.2) we can symmetrize our kernel Γ:

Definition 16. Let Γ0 be a map

Γ0 : S(n,g+1)
0 → R

{1, . . . , g + 1} 7→ Γ0({1, . . . , g + 1})
(2.1.2)

and Γ0 := 1
g+1

∑g+1
i=1 Γ({1, . . . , g + 1} \ {i}; i), where i ∈ {1, . . . , g + 1}.

25



Note that Γ0 is the leave-one-out variant of the kernel Γ.

Lemma 9. Γ0 is symmetric in its g + 1 arguments.

Proof. Follows from (1.4.2) and the following fact: Γ is already symmetric in g

arguments and thus it suffices to consider only cyclic permutations.

2.1.2 CV and CV-like procedures seen as an incomplete

U-statistic

In Chapter 1, we have already seen that the computation of a LpO estimator

in practice is not realizable, as the number of iterations needed is too large.

Therefore, let us put CV-like procedures with less iterations into the context of

U -statistics.

Lemma 10. Every CV-like procedure ∆̂e(T ∗), T ∗ ⊂ TLpO is an incomplete

U -statistic.

Proof. Follows from Definition 15 and Lemma 8.

Knowing this fact, we can take advantage of the already developed theory of

(incomplete) U -statistics in the literature.

Conclusion 4. CV is an incomplete U -statistic.

So, the most common CV-like procedure corresponds to an incomplete U -statistic.

Thus, all conclusions we will make in the following sections can be applied to CV

as well. Therefore, we will still be able to compare CV-like procedures among

themselves.

The next section will investigate the variance of a CV-like procedure by using

some theory about incomplete U -statistics. Note that the theory about the

variance of an incomplete U -statistic, as well as minimum variance designs for a

fixed design size have already been developed by Lee (1990), Chapter 4. However,

26



the problem of U -statistics with symmetric kernels are treated there only and

thus it is not directly applicable on CV-like procedures.

2.2 Variance of a CV-like procedure

In this section, we derive the variance of CV-like procedures and investigate its

properties including the variance of CV and LpO estimators. The found results

will be required for minimizing the variance and thus finding a CV-like procedure

whose variance is minimal related to a fixed size of the design.

We especially will take advantage of Theorems 1 and 2 of Chapter 4.3.1 of Lee

(1990) and apply these on CV-like procedures. We will see that leaving out a large

proportion of summands of ∆̂eLpO still will not expand the variance excessively.

The reason for that is the dependency between the terms.

2.2.1 Properties and preliminary work

The following theorem generalizes Theorem 1 of Lee (1990), Chapter 4.3.1 to

U -statistics with a non-symmetric kernel and thus to CV-like procedures.

Theorem 3. Let ∆̂e(T ∗) be a CV-like procedure based on a fixed design T ∗ ⊂

TLpO and ∆̂eLpO = ∆̂e(TLpO) be the leave-p-out estimator.

V(∆̂e(T ∗))− V(∆̂eLpO) = V
(

∆̂e(T ∗)− ∆̂eLpO

)
≥ 0 (2.2.1)

Proof. Since

V(∆̂e(T ∗)− ∆̂eLpO) = V(∆̂e(T ∗))− 2Cov(∆̂e(T ∗), ∆̂eLpO) + V(∆̂eLpO),

(2.2.1) holds if and only if Cov(∆̂e(T ∗), ∆̂eLpO) = V(∆̂eLpO).

Thus it suffices to show this equation.

We will take advantage of the fact that Cov(Γ(S; a), ∆̂eLpO) is the same for every

27



(S; a) ∈ TLpO:

V∆̂eLpO = Cov(∆̂eLpO, ∆̂eLpO)

= Cov(|TLpO|−1
∑

(S;a)∈TLpO

Γ(S; a), ∆̂eLpO)

= |TLpO|−1
∑

(S;a)∈TLpO

Cov(Γ(S; a), ∆̂eLpO)

= |TLpO|−1 · |TLpO| · Cov(Γ(S; a), ∆̂eLpO)

= |T ∗|−1 · |T ∗| · Cov(Γ(S; a), ∆̂eLpO)

= |T ∗|−1
∑

(S;a)∈T ∗

Cov(Γ(S; a), ∆̂eLpO)

= Cov(∆̂e(T ∗), ∆̂eLpO)

The proof differs from the one of Lee (1990) not only because we generalize his

theorem, but also because he does a mistake in his proof. He assumes that the

covariances of an incomplete U -statistic and a kernel are all equal, for each set

of the design. This property, however, is not valid in general. We prove this fact

in Section A.1 of the appendix.

From the equation we can conclude that the LpO procedure or the complete

U -statistic in general always is a more efficient estimation than any other CV-

like procedure or an incomplete U -statistic. We also recognize that the variance

of a CV-like procedure (or an incomplete U -statistic) can be expressed by the

sum of two terms. The first term is the variance of the LpO procedure ∆̂eLpO

(or complete U -statistic Un), which we cannot avoid. The second one, we can

consider as a penalty component: it inflates the variance of ∆̂e(T ∗) (or V(U∗n))

and — in addition — is again a variance.

In order to generalize Theorem 2 of Lee (1990), Chapter 4.3.1 to CV-like proce-

dures we have to do some preliminary work at first, by stating some definitions

and lemmas.

28



Let us recall formula (1.4.6) of Subsection 1.4.2, which is the variance of a U -

statistic in general:

V(Un) =

(
n

m

)−1 m∑
d=1

(
m

d

)(
n−m
m− d

)
· ζ2

d

In our case of evaluation tuples let ζ2
d = V(Φd

0(Z1, . . . ,Zd)) be called σ2
d, which

corresponds to the special case of ζ2
d , where Φ0 = Γ0 (and Γd0 is defined analogous

to Φd
0). According to Theorem 2 of Lee (1990), Chapter 1, we can also write

σ2
d = Cov

(
Γ0({1, . . . , g + 1}), Γ0({1, . . . , d, g + 2, . . . , 2g + 2− d}

)
. (2.2.2)

It is shown in Fuchs et al. (2013) that σ2
d is a regular parameter of degree at most

2g + 2. Thus σ2
d is estimable by a U -statistic.

Conclusion 5. The variance of the LpO estimator is a regular parameter of

degree at most 2g + 2 and is given by

V(∆̂eLpO) =

(
n

g + 1

)−1 g+1∑
d=1

(
g + 1

d

)(
n− g − 1

g + 1− d

)
· σ2

d. (2.2.3)

We will have a closer look at the variance or covariance σ2
d, since the variance of

CV-like procedures in general depends on this parameter (s. Theorem 6).

Assumption 2. Throughout this work, we will assume that σ2
1 6= 0.

In order to be able to express the variance of a CV-like procedure in a clear and

structured way, we will make the following definition.

Definition 17. Consider the pairs of evaluation tuples in T ∗ ⊂ TLpO that have

d elements in common and let us denote such a pair by (S; a), (S ′; a′) ∈ T ∗.

For the overlapping size d let

f
(1)
d be the number of those pairs, where a /∈ S ′ and a′ /∈ S and a 6= a′,

f
(2)
d be the number of pairs, where either a ∈ S ′ and a′ /∈ S or a /∈ S ′ and a′ ∈ S,

f
(3)
d be the number of pairs, where a ∈ S ′ and a′ ∈ S and

29



f
(4)
d be the number of pairs, where a = a′ (and thus a /∈ S ′ and a′ /∈ S).

For each of the four cases, let us define τ
(i)
d := Cov(Γ(S; a),Γ(S ′; a′)), i = 1, . . . , 4

for the particular (S; a) and (S ′; a′) of each case.

Let (S; a) contain the entries {1, . . . , g + 1} and let (S ′; a′) contain the entries

{g + 2, . . . , 2g + 2− d}. Then, for an overlapping size d, we get

τ
(1)
d = Cov(Γ({1, . . . , g}; g + 1),Γ({1, . . . , d, g + 2, . . . , 2g + 1− d}; 2g + 2− d)),

τ
(2)
d = Cov(Γ({2, . . . , g + 1}; 1),Γ({1, . . . , d, g + 2, . . . , 2g + 1− d}; 2g + 2− d)),

τ
(3)
d = Cov(Γ({2, . . . , g + 1}; 1),Γ({1, 3, . . . , d, g + 2, . . . , 2g + 2− d}; 2)),

τ
(4)
d = Cov(Γ({2, . . . , g + 1}; 1),Γ({2, . . . , d, g + 2, . . . , 2g + 2− d}; 1)).

Note that such a pair can consist of two identical evaluation tuples. These

definitions for τ
(i)
d i = 1, . . . , 4 are intuitive but problematic for implementation

in case of d = 1, 2 and d = g + 1. We therefore reformulate those definitions in

the appendix A.2 and will use those definitions also in the implementation and

application on the data set.

Lemma 11. For any (S, a), (S ′, a′) ⊂ TLpO and overlapping size d there are four

possible values for its covariances:

Cov(Γ(S; a),Γ(S ′; a′)) =



τ
(1)
d if a /∈ S ′ and a′ /∈ S and a 6= a′

τ
(2)
d if either a ∈ S ′ and a′ /∈ S or a /∈ S ′ and a′ ∈ S

τ
(3)
d if a ∈ S ′ and a′ ∈ S

τ
(4)
d if a = a′.

Proof. s. Figure 2.1.

The lemma shows the difficulty of viewing the covariances of our special kernel Γ

which is neither symmetric nor “completely non-symmetric”. It shows the spe-

cial problematic that for a fixed overlap size d, the covariance is not just always

the same, as it would be for a symmetric kernel. However, we detected a fine

structure, i.e. the covariances for a fixed d may not all be the same, but take

30



S

S'

a

a'

(a) Case 1

S

S'

a

a'

(b) Case 2

S

S'

a

a'

(c) Case 3

S

S'

a

a'

(d) Case 4

Figure 2.1: Cov(Γ(S; a),Γ(S′; a′)) only depends on which of the four cases describes
the overlap pattern. Here: example for d = 5

one of four values. Thus note there is an enormous number of possible pairs

of covariances which we can subsume to only 4(g + 1) covariances. Actually it

will turn out (s. Lemma 12) that there are exactly 4g+1 non-zero quantities τ
(i)
d .

Lemma 12. In the special cases of d = 0 as well as d = g + k, k ≥ 2 none of

the four overlap cases occurs and all values for τ
(i)
d , i = 1, . . . , 4 are 0. In case of

d = 1, the third case will not occur. In case of d = g + 1 neither overlap case 1

nor case 2 will occur.

Therefore let us make the following definitions.

Definition 18. Let τ
(i)
0 := 0 for i = 1, . . . , 4, τ

(3)
1 := 0, τ

(1)
g+1 := 0, τ

(2)
g+1 := 0 and

31



τ
(i)
g+k := 0 for i = 1, . . . , 4 for all k ≥ 2.

The following theorem will show how the variance σ2
d exactly decomposes into

the four covariances τ
(i)
d , i = 1, . . . , 4.

Theorem 4. For any d ∈ {0, . . . , g + 1}

σ2
d = (g + 1)−2

(
(g + 1− d)2 · τ (1)

d + (g + 1− d) · d · 2 · τ (2)
d

+ (d2 − d) · τ (3)
d + d · τ (4)

d

) (2.2.4)

Proof. Let us define Γd1(k) := Γ({1, . . . , g+1}\{k}; k) and Γd2(l) := Γ({1, . . . , d, g+

2, . . . , 2g + 2− d} \ {l}; l).

Then

σ2
d = Cov

(
Γ0({1, . . . , g + 1}), Γ0({1, . . . , d, g + 2, . . . , 2g + 2− d}

)
= Cov

( 1

g + 1

∑
k∈{1,...,g+1}

Γd1(k),
1

g + 1

∑
l∈{1,...,d,g+2,...,2g+2−d}

Γd2(l)
)

=
1

(g + 1)2

∑
k∈{1,...,g+1}

∑
l∈{1,...,d,g+2,...,2g+2−d}

Cov(Γd1(k),Γd2(l))

=
1

(g + 1)2
·


∑

k∈{d+1,...,g+1}

∑
l∈{g+2,...,2g+2−d}

Cov(Γd1(k),Γd2(l))︸ ︷︷ ︸
(# occurrences of case 1) · τ (1)d

+
∑

k∈{d+1,...,g+1}

∑
l∈{1,...,d}

Cov(Γd1(k),Γd2(l)) +
∑

k∈{1,...,d}

∑
l∈{g+2,...,2g+2−d}

Cov(Γd1(k),Γd2(l))︸ ︷︷ ︸
(# occurrences of case 2) · τ (2)d

+
∑

k∈{1,...,d}

∑
l∈{1,...,d}\{k}

Cov(Γd1(k),Γd2(l))︸ ︷︷ ︸
(# occurrences of case 3) · τ (3)d

+
∑

k,l∈{1,...,d},i=l

Cov(Γd1(k),Γd2(l))︸ ︷︷ ︸
(# occurrences of case 4) · τ (4)d


32



figure 2.2
= (g + 1)−2

(
(g + 1− d)2 · τ (1)

d + (g + 1− d) · d · 2 · τ (2)
d

+ (d2 − d) · τ (3)
d + d · τ (4)

d

)

The following example illustrates that the fine structure of τ
(i)
d , i = 1, . . . , 4

wouldn’t exist, if we plugged in a symmetric kernel.

Example 2. If, for the sake of illustration, we subset a symmetric kernel, i.e. we

considered Γ0 instead of Γ, all τ
(i)
d would be equal for i = 1, . . . , 4. This would

hold, since the 4 overlap cases wouldn’t differ. Then τ
(i)
d = σ2

d and

(2.2.4) = (g + 1)−2
(

(g + 1− d)2 · σ2
d + (g + 1− d) · d · 2 · σ2

d

+ (d2 − d) · σ2
d + d · σ2

d

)
= (g + 1)−2 ·

(
(g + 1)2 − 2gd− 2d+ d2 + 2gd+ 2d− 2d2 + d2 − d+ d

)
· σ2

d

= σ2
d,

as it should.

Yet we have investigated the structure of possible covariances between two ker-

nels. Therefore we will be able to express the variance of a CV-like procedure by

these covariances. We have recognized that the high number of covariance terms

of this variance is tangible — concretely, that many of those variances are the

same.

Before we will develop the specific formula of the covariance in the next sec-

tion, we need some important properties about the estimation of covariances

τ
(i)
d , i = 1, . . . , 4.

Assumption 3. Θ2 is a kernel of degree 2g + 2

Theorem 5. a) τ
(1)
d is a regular parameter, associated to the kernel

Γ({1, . . . , g}; g + 1) · Γ({1, . . . , d, g + 2, . . . , 2g + 1− d}; 2g + 2− d))

−Γ({1, . . . , g}; g + 1) · Γ({g + 2, . . . , 2g + 1}; 2g + 2)

33



1 d g+1

1
d

g+
1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

i

j

Figure 2.2: Illustration of the decomposition of σ2
d into four summands, each being

a product of τ
(i)
d , i = 1, . . . , 4 and a specific pre-factor. Example for d = 4, g = 9:

consider a square, where one side corresponds to the indices {1, . . . , g + 1} of the first
kernel and the other side to the indices {1, . . . , d, g + 2, . . . , 2g + 2− d} of the second
kernel.
The (g + 1)2 = 100 summands which σ2

d decomposes into distribute as follows: τ
(1)
d

occurs (g + 1− d)2 = 36 times (cyan), τ
(2)
d occurs (g + 1− d) · d · 2 = 48 times (blue),

τ
(3)
d occurs d2 − d = 12 times (red) and τ

(4)
d occurs d = 4 times. (orange)

34



and thus is estimable by a U -statistic.

b) Likewise τ
(i)
d is a regular parameter for i = 2, 3, 4

Proof. For any i ∈ {1, . . . , 4} we can write

τ
(i)
d = Cov(Γ(S; a),Γ(S ′; a′))

= E(Γ(S; a) · Γ(S ′; a′))︸ ︷︷ ︸
=: λ

(i)
d

−E(Γ(S; a)) · E(Γ(S ′; a′))︸ ︷︷ ︸
= Θ2

where S, S ′, a, a′ are chosen according to one of the 4 cases (as in Lemma 11).

Then

Θ2 = E(Γ({1, . . . , g}; g + 1)) · E(Γ({g + 2, . . . , 2g + 1}; 2g + 2))

=

∫
. . .

∫
Γ({1, . . . , g}; g + 1)

· Γ({g + 2, . . . , 2g + 1}; 2g + 2)dP (z1) . . . dP (z2g+2).

Thus Θ2 is a regular parameter of degree at most 2g+2. That is why we already

assumed that the degree of Θ2 is exactly 2g + 2.

Further for i = 1

λ
(1)
d = E(Γ({1, . . . , g}; g + 1) · Γ({1, . . . , d, g + 2, . . . , 2g + 1− d}; 2g + 2− d)))

=

∫
. . .

∫
Γ({1, . . . , g}; g + 1)

· Γ({1, . . . , d, g + 2, . . . , 2g + 1− d}; 2g + 2− d))dP (z1) . . . dP (z2g+2−d).

Thus λ
(1)
d is a regular parameter of degree at most 2g + 2− d.

It can be shown analogically for i = 2, 3, 4 in b) that also λ
(2)
d , λ

(3)
d , λ

(4)
d are

regular parameters of degree at most 2g + 2− d.

Since linear combinations of regular parameters again are regular parameters

(Hoeffding (1948), p.295), τ
(i)
d = λ

(i)
d − Θ2, i = 1, . . . , 4 are regular parameters

and thus estimable by U -statistics.

35



Remark 3. A further property of the quantities τ
(1)
d , d = 1, . . . , g can be shown:

they can be identified as Hoeffding quantities ζ2
d and thus are positive and the

inequality analogous to (1.4.8) holds, i.e.

0 ≤
τ

(1)
d1

d1

≤
τ

(1)
d2

d2

(2.2.5)

if 1 ≤ d1 ≤ d2 ≤ m. We will go without a proof, since we will not make use of

this property in this work.

This preliminary work finally allows us to state the variance formula of a general

CV-like procedure.

2.2.2 Variance formula for a CV-like procedure

Theorem 6. Let T ∗ ⊂ TLpO and ∆̂e(T ∗) be the corresponding CV-like pro-

cedure. Then its variance can — by the use of Definition 17 — be formulated

by

V(∆̂e(T ∗)) = |T ∗|−2
g+1∑
d=1

4∑
i=1

f
(i)
d · τ

(i)
d (2.2.6)

Proof. We have shown by Lemma 11 that the covariance of two kernels Γ(S; a)

and Γ(S ′; a′) decomposes to four summands and is independent of the design

T ∗. Consequently and by analogy to the proof of Theorem 2 of Chapter 4.3.1

of Lee (1990) and by including Definition 17, we get:

V(∆̂e(T ∗)) = Cov(∆̂e(T ∗), ∆̂e(T ∗))

= |T ∗|−2
∑

(S;a)∈T ∗

∑
(S′;a′)∈T ∗

Cov(Γ(S; a),Γ(S ′; a′))

= |T ∗|−2
g+1∑
d=1

4∑
i=1

f
(i)
d · τ

(i)
d

Since τ
(i)
d , i = 1, . . . , 4 are regular parameters of degree at most 2g+2, the linear

36



combination V(∆̂e(T ∗)) is regular parameter of degree at most 2g+ 2. Thus we

can draw the following conclusion about its estimator.

Conclusion 6. There is an unbiased estimator for V(∆̂e(T ∗)), if n ≥ 2g + 2.

Let us investigate formula (2.2.6) of Theorem 6. According to Theorem 2 of Lee

(1990), Chapter 4.3.1, the four summands
∑4

i=1 f
(i)
d · τ

(i)
d could be subsumed to

only one fd and to σ2
d, if the kernel was symmetric. In fact, in that case

V(∆̂e(T ∗)) = Cov(∆̂e(T ∗), ∆̂e(T ∗))

= |T ∗|−2
∑

(S;a)∈T ∗

∑
(S′;a′)∈T ∗

Cov(Γ(S; a),Γ(S ′; a′))

= |T ∗|−2
g+1∑
d=1

Cov
(

Γ0({1, . . . , g + 1}),

Γ0({1, . . . , d, g + 2, . . . , 2g + 2− d}
)

= |T ∗|−2
g+1∑
d=1

fd · σ2
d

where fd is the number of pairs of sets in T ∗ that have d elements in common.

Therefore, we might be interested in the following question: Is there a way to

rewrite V(∆̂e(T ∗)) such that we only have to establish a number of pairs of sets

with d elements in common, independently of overlap case i = 1, . . . , 4?

We will investigate such a way for a particular class of collection of designs — the

test-complete designs. We introduced these designs by Definition 10 in Section

1.3.3.

Definition 19. Let NL be the learn-incidence-matrix of a design T ∗ ⊂ TLpO,

which is defined by NL := (nLij)n×|S∗|, where

nLij =

1 if index i is in set j

0 otherwise.

(2.2.7)

37



Let us denote the number of elements a pair of S ⊂ S∗ and S ′ ⊂ S∗ has in

common by c. Thus c =
∑

i n
L
ij · nLij

′
, which is the j,j′ element of NLTNL.

Definition 20. Let fLc be the number of pairs of learning sets in the design that

have c elements in common. Thus fLc is the number of elements of NLTNL equal

to c.

For instance, a design of learning sets with index sets S∗ = {{1, 2, 3, 4}, {3, 4, 5, 6}, {1, 2, 5, 6}}

with n = 6 and g = 4 can be represented as

NL =



1 1 0 1

1 0 1

1 1 0

1 1 0

0 1 1

n 0 1 1


Definition 21. In analogy to Definition 19, letNEval be the evaluation-incidence-

matrix, which is defined by NEval := (nEvalij )n×|T ∗|, where

nEvalij =


1 if i ∈ Sj

β if i = aj

0 otherwise.

(2.2.8)

The number of elements a pair of Evaluation tuples (S, a) ∈ T ∗ and (S ′, a′) ∈ T ∗

has in common will still be denoted by d. Thus d =
∑

i 1nEvalij ∈{β,1} · 1nEvalij
′∈{β,1}.

The overlap case can be established from the values of NEvalTNEval. For com-

paring a pair (S, a) and (S ′, a′),
∑

i n
Eval
ij · nEvalij

′
is the scalar product of two

columns of NEval. The scalar product can have four different values depending

on the overlap case:

38



� In overlap case 1, the scalar product consists of d summands of 1 · 1 = 1,

all other summands equal 0.

� In overlap case 2, the scalar product consists of d−1 summands of 1 ·1 = 1

and one of 1 · β = β, all other summands equal 0.

� In overlap case 3, the scalar product consists of d−2 summands of 1 ·1 = 1

and two of 1 · β = β, all other summands equal 0.

� In overlap case 4, the scalar product consists of d−1 summands of 1 ·1 = 1

and one of β · β = β2, all other summands equal 0.

Conclusion 7.

∑
i

nEvalij · nEvalij

′
=



d for overlap case 1

β + d− 1 for overlap case 2

2β + d− 2 for overlap case 3

β2 + d− 1 for overlap case 4,

(2.2.9)

so that the number f
(i)
d of pairs of sets in the design T ∗ that have d elements

in common for overlap case i ∈ {1, . . . , 4} is established by counting the corre-

sponding values in NEvalTNEval.

Remark 4. We can express c by d by seeing c as a function

c = c(d) =



d in case 1

d− 1 in case 2

d− 2 in case 3

d− 1 in case 4

(2.2.10)

By the use of the incidence matrices and restricting ourselves to the class test-

complete-designs, we can rewrite formula (2.2.6) in the desired form, in which

we discovered a fine structure.

39



Corollary 1. Let T ∗ ⊂ TLpO be a test-complete design.

Then

V(∆̂e(T ∗)) = |T ∗|−2
g∑
c=0

fLc · ξc (2.2.11)

where

ξc := (n− 2g + c) · (n− 2g + c− 1) · τ (1)
d=c

+ 2 · (g − c) · (n− 2g + c) · τ (2)
d=c+1

+ (g − c)2 · τ (3)
d=c+2

+ (n− 2g + c) · τ (4)
d=c+1

which can be reformulated as follows:

V(∆̂e(T ∗)) = |T ∗|−2

[
g∑
d=1

fLd · (n− 2g + d) · (n− 2g + d− 1) · τ (1)
d

+

g∑
d=1

fLd−1 · (g − d+ 1) · (n− 2g + d− 1) · τ (2)
d

+

g+1∑
d=2

fLd−2 · (g − d+ 2)2 · τ (3)
d

+

g+1∑
d=1

fLd−1 · (n− 2g + d− 1) · τ (4)
d

]
.

(2.2.12)

Proof.

V(∆̂e(T ∗)) = |T ∗|−2
∑

(S;a)∈T ∗

∑
(S′;a′)∈T ∗

Cov(Γ(S; a),Γ(S ′; a′))

(1.3.7)
= |T ∗|−2 ·

(
|S∗|−2

∑
S∈S∗

∑
S′∈S∗

(|T ∗| − |S∗|)−2
∑

a∈{1,...,n}\S

∑
a′∈{1,...,n}\S′

Cov(Γ(S; a),Γ(S ′; a′))
)

= |T ∗|−2
∑
S∈S∗

∑
S′∈S∗

( ∑
a∈{1,...,n}\S

∑
a′∈{1,...,n}\S′

Cov(Γ(S; a),Γ(S ′; a′))
)

40



Lemma 11
= |T ∗|−2

∑
S∈S∗

∑
S′∈S∗

( ∑
a/∈S′,a′ /∈S,a6=a′

Cov(Γ(S; a),Γ(S ′; a′))︸ ︷︷ ︸
(# occurrences of case 1) · τ (1)d=c

+
∑

a∈S′,a′ /∈S

Cov(Γ(S; a),Γ(S ′; a′)) +
∑

a/∈S′,a′∈S

Cov(Γ(S; a),Γ(S ′; a′))︸ ︷︷ ︸
(# occurrences of case 2) · τ (2)d=c+1

+
∑

a∈S′,a′∈S

Cov(Γ(S; a),Γ(S ′; a′))︸ ︷︷ ︸
(# occurrences of case 3) · τ (3)d=c+2

+
∑
a=a′

Cov(Γ(S; a),Γ(S ′; a′))︸ ︷︷ ︸
(# occurrences of case 4) · τ (4)d=c+1

)

= |T ∗|−2
g∑
c=0

fLc ·
(

((n− 2g + c)2 − (n− 2g + c)) · τ (1)
d=c

+ 2 · (g − c) · (n− 2g + c) · τ (2)
d=c+1

+ (g − c)2 · τ (3)
d=c+2

+ (n− 2g + c) · τ (4)
d=c+1

)
= |T ∗|−2

g∑
c=0

fLc · ξc

So, the quantities τ
(i)
d , i = 1, . . . , 4 always occur as τ

(1)
d=c, τ

(2)
d=c+1, τ

(3)
d=c+2 and

τ
(4)
d=c+1. This fact and the number of the occurrences for each quantity can par-

ticularly be established by looking at the values of NEvalTNEval. In particular

one hast to look at a pair of sets of learn indices S and S ′, which we will denote

by NEval
S

T
NEval
S′ :

41



At first we will have a look at the pair S, S ′ in the learn-incidence-matrix:

NL =



S S ′

1 . . . 1 0 . . .

...
...

...
...

. . . 1 0 . . .

. . . 1 1 . . .

...
...

...
...

g . . . 1 1 . . .

. . . 0 1 . . .

...
...

...
...

. . . 0 1 . . .

. . . 0 0 . . .

...
...

...
...

n . . . 0 0 . . .


Then the evaluation-incidence-matrices for S and S ′ are:

NEval
S =



1 1 1 . . . 1 1

...
...

...
...

...

g 1 1 . . . 1 1

β 0 . . . 0 0

0 β . . . 0 0

...
...

. . .
...

...

0 0 . . . β 0

n 0 0 . . . 0 β



, NEval
S′ =



β 0 . . . 0 0 . . . 0

0 β . . . 0 0 . . . 0

...
...

. . . 0
...

...
...

0 0 . . . β 0 . . . 0

1 1 . . . 1 1 . . . 1

...
...

...
...

...
...

...

1 1 . . . 1 1 . . . 1

0 0 . . . 0 β . . . 0

...
...

. . . 0
...

. . .
...

0 0 . . . 0 0 . . . β


42



Thus

NEval
S

T
NEval
S′ =



1 g − c n− g

2β + c . . . 2β + c β + c β + c . . . . . . β + c

...
...

...
...

...

2β + c . . . 2β + c β + c β + c . . . . . . β + c

β + c . . . β + c β2 + c c . . . . . . c

...
... c β2 + c c

...

...
...

...
. . . . . . . . .

...

β + c . . . β + c c . . . c β2 + c c

β + c . . . β + c c . . . . . . c β2 + c


Applying function c = c(d) from Remark 4 to conclusion 7 lets us establish the

number of occurrences of each overlap case and thus justifies the second last

equal sign and completes the proof.

Example 3. Let us for a moment just formally suppose that all τ
(i)
d are equal,

say σ2, which are all the same for any d. We will do this in order to see that the

number of summands is correct.

Then Equation (2.2.11) can be simplified to

V(∆̂e(T ∗)) = σ2

as it should, since

V(∆̂e(T ∗)) = |T ∗|−2
∑

(S;a)∈T ∗

∑
(S′;a′)∈T ∗

Cov(Γ(S; a),Γ(S ′; a′))

= Cov(Γ(S; a),Γ(S ′; a′))

= σ2,

if Cov(Γ(S; a),Γ(S ′; a′)) are all the same.

43



Proof. We will use the fact that ξc = (n − g)2 · σ2 if all τ
(i)
d = σ2, because

NEval
S

T
NEval
S′ is of dimension (n− g)× (n− g).

By Definition 20, fLc is the number of elements of NLTNL equal to c. Since

each element of NLTNL equals a value of {1, . . . , g} and NLTNL has dimension

|S∗| × |S∗|,

g∑
c=0

fLc = |S∗|2 (2.2.13)

Then we have

V(∆̂e(T ∗)) = |T ∗|−2

g∑
c=0

fLc · ξc

= |T ∗|−2

g∑
c=0

fLc · (n− g)2 · σ2

= |T ∗|−2 · (n− g)2 · σ2

g∑
c=0

fLc ·︸ ︷︷ ︸
(2.2.13)

= |S∗|2

= (|S∗| · (n− g))−2 · (n− g)2 · σ2 · |S∗|2

= σ2

Lemma 13. ξc is a regular parameter of degree at most and, by assumption,

exactly 2g + 2 and thus estimable by a U -statistic.

Proof. Since τ
(i)
d , i = 1, . . . , 4 are regular parameters, ξc is a linear combination

of regular parameters and thus a regular parameter.

Remark 5. For a test-complete design

f
(1)
d = fLd · (n− 2g + d) · (n− 2g + d− 1) (2.2.14)

f
(2)
d = fLd−1 · 2 · (g − d+ 1) · (n− 2g + d− 1) (2.2.15)

f
(3)
d = fLd−2 · (g − d+ 2)2 (2.2.16)

44



f
(4)
d = fLd−1 · (n− 2g + d− 1) (2.2.17)

Proof. Clear from Theorem 6 and Corollary 1.

2.2.3 Estimation of the variance of a CV-like procedure

By Corollary 1 we have found a form of a CV-like procedure’s variance, which

is estimable, since all components (fLc and pre-factors) are computable and

τ
(1)
d , τ

(2)
d , τ

(3)
d and τ

(4)
d are regular parameters and estimable by U -statistics.

We can concretely estimate τ
(i)
d by applying Theorem 5 and the corresponding

proof:

τ̂
(i)
d = λ̂

(i)
d − Θ̂2 (2.2.18)

where

Θ̂2 = |TLpO,Θ2 |−2
∑

|{S∪{a}}∩{S′∪{a′}}=∅

Γ(S; a) · Γ(S ′; a′) (2.2.19)

where TLpO,Θ2 := {(S; a), (S ′, a′) : {S ∪ {a}} ∩ {S ′ ∪ {a′}} = ∅}

and, using Definition 17,

λ̂
(1)
d = |T

LpO,λ
(1)
d
|−2

∑
a/∈S′∧a′ /∈S∧a6=a′

Γ(S; a) · Γ(S ′; a′),

λ̂
(2)
d = |T

LpO,λ
(2)
d
|−2

∑
(a/∈S′∧a′∈S)∨(a∈S′∧a′ /∈S)

Γ(S; a) · Γ(S ′; a′),

λ̂
(3)
d = |T

LpO,λ
(3)
d
|−2

∑
a∈S′∧a′∈S

Γ(S; a) · Γ(S ′; a′),

λ̂
(4)
d = |T

LpO,λ
(4)
d
|−2
∑
a=a′

Γ(S; a) · Γ(S ′; a′)

(2.2.20)

where

T
LpO,λ

(1)
d

:= {(S; a), (S ′, a′) : a /∈ S ′ ∧ a′ /∈ S ∧ a 6= a′}

45



T
LpO,λ

(2)
d

:= {(S; a), (S ′, a′) : (a /∈ S ′ ∧ a′ ∈ S) ∨ (a ∈ S ′ ∧ a′ /∈ S)}

T
LpO,λ

(3)
d

:= {(S; a), (S ′, a′) : a ∈ S ′ ∧ a′ ∈ S}

T
LpO,λ

(4)
d

:= {(S; a), (S ′, a′) : a = a′}

One can check that Equation (2.2.18) holds.

Lemma 14. Let T ∗ ⊂ TLpO be a test-complete-design. Then the unique

minimum-variance unbiased estimator of V(∆̂e(T ∗)) can by formulated by

̂V(∆̂e(T ∗)) = |T ∗|−2
g∑
c=0

fLc · ξ̂c (2.2.21)

where

ξ̂c := ((n− 2g + c)2 − (n− 2g + c)) · τ̂ (1)
d=c

+ 2 · (g − c) · (n− 2g + c) · τ̂ (2)
d=c+1

+ (g − c)2 · τ̂ (3)
d=c+2

+ (n− 2g + c) · τ̂ (4)
d=c+1

and where τ̂
(1)
d=c, τ̂

(2)
d=c+1, τ̂

(3)
d=c+2 and τ̂

(4)
d=c+1 are given by (2.2.18)

Proof. Follows from Corollary 1 and Theorem 5.

2.2.4 Variance of LpO

For the established results above let us investigate the special case of LpO as an

example.

Lemma 15. For LpO the number of pairs of learning sets which have c elements

in common is

fLc,LpO =

(
n

g

)(
g

c

)(
n− g
g − c

)
. (2.2.22)

Proof. We consider the number of ways of choosing a pair of learning sets of size

g that have c elements in common. Then the first member of the pair of learning

46



sets can be chosen in
(
n
g

)
ways. The c elements of the second learning set which

are common with the first one can be chosen in
(
g
c

)
ways. The g − c elements

distinct from these can be chosen in
(
n−g
g−c

)
ways. Thus the number of pairs of

learning sets having c elements in common is
(
n
g

)(
g
c

)(
n−g
g−c

)
.

In the following we will show how to formulate V(∆̂e(TLpO)) by re-scaling the

coefficients in Hoeffding’s variance formula (2.2.3).

Remark 6. The variance of LpO can be written as

V(∆̂e(TLpO)) = |T ∗|−2 ·
g+1∑
d=1

fd,LpO · σ2
d (2.2.23)

where

fd,LpO = (g + 1)2

(
n

g + 1

)(
g + 1

d

)(
n− g − 1

g + 1− d

)
(2.2.24)

Proof.

V(∆̂e(TLpO))
(2.2.3)

=

(
n

g + 1

)−1 g+1∑
d=1

(
g + 1

d

)(
n− g − 1

g + 1− d

)
· σ2

d

=

(
n

g + 1

)−2

(g + 1)−2︸ ︷︷ ︸
=|T ∗|−2

g+1∑
d=1

(
n

g + 1

)
(g + 1)2

(
g + 1

d

)(
n− g − 1

g + 1− d

)
︸ ︷︷ ︸

=:fd,LpO

·σ2
d

= |T ∗|−2 ·
g+1∑
d=1

fd,LpO · σ2
d

Example 4. The variance of the LpO procedure derived by Hoeffding’s variance

of a U -statistic (2.2.3) is equal to the variance of Corollary 1, (2.2.12) for the

special case T ∗ = TLpO.

47



Proof.

V(∆̂e(TLpO))
(2.2.3)

=

(
n

g + 1

)−1 g+1∑
d=1

(
g + 1

d

)(
n− g − 1

g + 1− d

)
· σ2

d

=

(
n

g + 1

)−2

(g + 1)−2︸ ︷︷ ︸
|T ∗|−2

(
n

g + 1

)
(g + 1)2

g+1∑
d=1

(
g + 1

d

)(
n− g − 1

g + 1− d

)
· σ2

d

= |T ∗|−2

(
n

g

)
(g + 1)(n− g)

·
g+1∑
d=1

(g + 1)!

d!(g + 1− d)!
· (n− g − 1)!

(g + 1− d)!(n− 2g − 2 + d)!
· σ2

d

= |T ∗|−2

(
n

g

)
g!(n− g)!(g + 1)2

·
g+1∑
d=1

1

d!(g + 1− d)!2(n− 2g − 2 + d)!
· σ2

d

2.2.4
= |T ∗|−2

(
n

g

)
g!(n− g)!(g + 1)2

·
g+1∑
d=1

1

d!(g + 1− d)!2(n− 2g − 2 + d)!

· 1

(g + 1)2

(
(g + 1− d)2 · τ (1)

d + (g + 1− d) · d · 2 · τ (2)
d

+ (d2 − d) · τ (3)
d + d · τ (4)

d

)

τ
(1)
g+1=τ

(2)
g+1=τ

(3)
1 =0

= |T ∗|−2


g∑
d=1

(
n

g

)
g!(n− g)! · 1

d!(g − d)!2(n− 2g − 2 + d)!
· τ (1)
d︸ ︷︷ ︸

(1)

+

g∑
d=1

(
n

g

)
g!(n− g)! · 2

(d− 1)!(g + 1− d)!(g − d)(n− 2g − 2 + d)!
· τ (2)
d︸ ︷︷ ︸

(2)

+

g+1∑
d=2

(
n

g

)
g!(n− g)! · 1

(d− 2)!(g + 1− d)!2(n− 2g − 2 + d)!
· τ (3)
d︸ ︷︷ ︸

(3)

48



+

g+1∑
d=1

(
n

g

)
g!(n− g)! · 1

(d− 1)!(g + 1− d)!2(n− 2g − 2 + d)!
· τ (4)
d︸ ︷︷ ︸

(4)

= (2.2.12),

since

(1) =

g∑
d=1

(
n

g

)
g!

d!(g − d)!︸ ︷︷ ︸
=(gd)

· (n− g)!

(g − d)!(n− 2g + d)!︸ ︷︷ ︸
=(n−gg−d)

·(n− 2g + d− 1)(n− 2g + d) · τ (1)
d

=

g∑
d=1

fLd · (n− 2g + d− 1)(n− 2g + d) · τ (1)
d

(2) =

g∑
d=1

(
n

g

)
g!

(d− 1)!(g + 1− d)!︸ ︷︷ ︸
=( g

d−1)

· (n− g)!

(g − d+ 1)!(n− 2g + d− 1)!︸ ︷︷ ︸
=( n−g

g−d+1)

· 2(n− 2g + d− 1)(g − d+ 1) · τ (2)
d

=

g+1∑
d=1

fLd−1 · (g − d+ 1)(n− 2g + d− 1) · τ (2)
d

(3) =

g+1∑
d=2

(
n

g

)
g!

(d− 2)!(g − d+ 2)!︸ ︷︷ ︸
=( g

d−2)

· (n− g)!

(g − d+ 2)!(n− 2g − 2 + d)!︸ ︷︷ ︸
=( n−g

g−d+2)

·(g − d+ 2)2 · τ (3)
d

=

g+1∑
d=2

fLd−2 · (g − d+ 2)2 · τ (3)
d

(4) =

g+1∑
d=1

(
n

g

)
g!

(d− 1)!(g + 1− d)!︸ ︷︷ ︸
=( g

d−1)

· (n− g)!

(g + 1− d)!(n− 2g + d− 1)!︸ ︷︷ ︸
( n−g
g−d+1)

·(n− 2g + d− 1) · τ (4)
d

=

g+1∑
d=1

fLd−1 · (n− 2g + d− 1) · τ (4)
d

Let us view a further aspect about these two formulations of V(∆̂e(TLpO)) —

49



the distributions of fd,LpO and f
(i)
d,LpO, i = 1, . . . , 4 for the example of n = 40 for

different choices of g. According to Remark 5

f
(1)
d,LpO = fLd,LpO · (n− 2g + d) · (n− 2g + d− 1)

f
(2)
d,LpO = fLd−1,LpO · 2 · (g − d+ 1) · (n− 2g + d− 1)

f
(3)
d,LpO = fLd−2,LpO · (g − d+ 2)2

f
(4)
d,LpO = fLd−1,LpO · (n− 2g + d− 1)

Figure 2.3 shows fd,LpO for three different choices of g. fd,LpO approximately

consists of the hypergeometric expression fLd,LpO =
(
n
g

)(
g
d

)(
n−g
g−d

)
, since the other

factors are comparatively small. Since the hypergeometric distribution approx-

imately follows a normal distribution for big n, all three examples graphically

assume the shape of a normal distribution. We can establish the means by the

expected value of the hypergeometric distribution, which in our case is (g+1)2/n.

Thus in the case of g + 1 = n/2 = 20, the mean takes the value d = 10. For

n/2 > g = 10 the mean decreases to d = 3.025 for n/2 < g = 30 the mean

increases to d = 24.025.

Figure 2.4 shows f
(i)
d,LpO, i = 1, . . . , 4 for the three choices of g. Since again the

hypergeometric expression fLd,LpO =
(
n
g

)(
g
d

)(
n−g
g−d

)
exceeds the other factors by far,

all f
(i)
d,LpO are approximately normally distributed. Varying i for a fixed g barely

changes the shape but shifts the normal distribution.

2.3 Variance of cross-validation

Since there is a variance formula for a CV-like procedure, there is consequently

a variance formula for CV itself. We at first will view several ways of deriving

the variance for the special case of 2-Fold cross-validation, followed by deriving a

general formula for the variance of K-fold cross-validation. We also will establish

a special set-up, in order to make this variance estimable.

50



0.0e+00

5.0e+19

1.0e+20

1.5e+20

2.0e+20

3 6 9
d

f d

(a) n=40, g=10

0.0e+00

5.0e+23

1.0e+24

1.5e+24

0 5 10 15 20
d

f d

(b) n=40, g=19

0.0e+00

5.0e+18

1.0e+19

1.5e+19

2.0e+19

2.5e+19

0 10 20 30
d

f d

(c) n=40, g=30

Figure 2.3: Number of occurrences (fd,LpO) of σ2
d against the overlap size d for various

g and n = 40

2.3.1 Variance of 2-Fold cross-validation

Let us rehearse several ways of deriving the variance for the simple case of 2-Fold

cross-validation, so that |TCV | = n (Lemma 4) and in special case of K = 2,

g = n/2.

Variance of 2-Fold CV by the general variance formula

At first, let us derive the variance in the common way, i.e. by applying the

general formula for the variance of sums: In the following let T2CV be the set of

evaluation tuples occurring in 2-Fold cross-validation.

51



0.0e+00

2.5e+19

5.0e+19

7.5e+19

1.0e+20

3 6 9
d

f d(1
)

0e+00

1e+19

2e+19

3e+19

4e+19

3 6 9
d

f d
−1(2
)

0.0e+00

5.0e+18

1.0e+19

1.5e+19

3 6 9
d

f d
−2(3
)

0e+00
1e+18
2e+18
3e+18
4e+18
5e+18

3 6 9
d

f d
−1(4
)

(a) n=40, g=10

0e+00
1e+23
2e+23
3e+23
4e+23

0 5 10 15 20
d

f d(1
)

0e+00
1e+23
2e+23
3e+23
4e+23

0 5 10 15 20
d

f d
−1(2
)

0e+00

1e+23

2e+23

3e+23

4e+23

0 5 10 15 20
d

f d
−2(3
)

0e+00
1e+22
2e+22
3e+22
4e+22

0 5 10 15 20
d

f d
−1(4
)

(b) n=40, g=19

0e+00

5e+17

1e+18

0 10 20 30
d

f d(1
)

0e+00

1e+18

2e+18

3e+18

4e+18

0 10 20 30
d

f d
−1(2
)

0.0e+00

5.0e+18

1.0e+19

1.5e+19

0 10 20 30
d

f d
−2(3
)

0e+00

2e+17

4e+17

6e+17

0 10 20 30
d

f d
−1(4
)

(c) n=40, g=30

Figure 2.4: Number of occurrences (f
(1)
d,LpO, f

(2)
d−1,LpO, f

(3)
d−2,LpO, f

(4)
d−1,LpO) of

τ
(1)
d , τ

(2)
d , τ

(3)
d , τ

(4)
d against the overlap size d for various g and n = 40

Then

V(∆̂e(T2CV )) = V
(
|T2CV |−1

∑
(S;a)∈T2CV

Γ(S; a)
)

(1.3.7)
= V

(
|S2CV |−1

∑
S∈S2CV

(n− g)︸ ︷︷ ︸
=n−n/2

−1
∑

a∈{1,...,n}\S

Γ(S; a)
)

= V
(1

2

( 1

n/2

∑
a∈{1,...,n}\S1

Γ(S1; a) +
1

n/2

∑
b∈{1,...,n}\S2

Γ(S2; b)
))

=
1

n2

(
Cov

( ∑
a∈{1,...,n}\S1

Γ(S1; a),
∑

b∈{1,...,n}\S1

Γ(S1; b)
)

+ Cov
( ∑
a∈{1,...,n}\S2

Γ(S2; a),
∑

b∈{1,...,n}\S2

Γ(S2; b)
)

52



+ 2 · Cov
( ∑
a∈{1,...,n}\S1

Γ(S1; a),
∑

b∈{1,...,n}\S2

Γ(S2; b)
))

=
1

n2

(
2

∑
a∈{1,...,n}\S1

∑
b∈{1,...,n}\S1

Cov
(
Γ(S1; a),Γ(S1; b)

)︸ ︷︷ ︸
Lemma 11

=


τ

(1)
n/2 if a 6= b

τ
(4)
n/2+1 if a = b

+ 2
∑

a∈{1,...,n}\S1

∑
b∈{1,...,n}\S2

Cov
(
Γ(S1; a),Γ(S2; b)

)︸ ︷︷ ︸
Lemma 11

= τ
(3)
n/2+2

)

=
2

n2

(((n
2

)2

− n

2

)
· τ (1)
n/2 +

n

2
· τ (4)
n/2+1 +

(n
2

)2

· τ (3)
2

)

=

(
1

2
− 1

n

)
· τ (1)
n/2 +

1

2
· τ (3)

2 +
1

n
· τ (4)
n/2+1

Variance of 2-Fold CV by interpretation of NEvalTNEval

Let us establish this variance by a second way — by directly viewing the matrix

product NEvalTNEval for 2-Fold cross-validation and Theorem 6.

The evaluation-incidence-matrix for 2-Fold CV is

NEval
S =



1 . . . 1 β . . . 0

...
...

...
...

. . .
...

1 . . . 1 0 . . . β

β . . . 0 1 . . . 1

...
. . .

...
...

...
...

0 . . . β 1 . . . 1


=

 Jn/2 βIn/2

βIn/2 Jn/2



where IK is the k × k-identity matrix and Jk the k × k-matrix of ones.

Then

NEvalTNEval =

 n
2
Jn/2 + β2In/2 2βJn/2

2βJn/2
n
2
Jn/2 + β2In/2



53



=



β2 + n
2

n
2

. . . n
2

2β 2β . . . 2β

n
2

β2 + n
2

. . . n
2

2β 2β . . . 2β
...

...
. . . n

2

...
...

...
...

n
2

n
2

. . . β2 + n
2

2β 2β . . . 2β

2β 2β . . . 2β β2 + n
2

n
2

. . . n
2

2β 2β . . . 2β n
2

β2 + n
2

. . . n
2

...
...

...
...

...
...

. . . n
2

2β 2β . . . 2β n
2

n
2

. . . β2 + n
2


By applying conclusion 7, we just have to count the entries in order to get f

(i)
d

of every i ∈ {1, . . . , 4}. Thus

V(∆̂e(T2CV ))
(2.2.6)

= |T2CV |−2
g+1∑
d=1

4∑
i=1

f
(i)
d · τ

(i)
d

=
1

n2

(
2

((n
2

)2

− n

2

)
· τ (1)
n/2 + 2 ·

(n
2

)2

· τ (3)
n/2+2 + n · τ (4)

n/2+1

)

=

(
1

2
− 1

n

)
· τ (1)
n/2 +

1

2
· τ (3)

2 +
1

n
· τ (4)
n/2+1

Variance of 2-Fold CV by applying Corollary 1

At last let us subset the corresponding quantities into formula (2.2.11) of Corol-

lary 1. In this case, all fLc are zero except fL0 = fLn/2 = 2.

Thus

V(∆̂e(T2CV ))
(2.2.11)

= |T2CV |−2
g∑
c=0

fLc · ξc

= |T2CV |−2
g∑
c=0

fLc ·
(

((n− 2g + c)2 − (n− 2g + c)) · τ (1)
d=c

+ 2 · (g − c) · (n− 2g + c) · τ (2)
d=c+1

+ (g − c)2 · τ (3)
d=c+2

+ (n− 2g + c) · τ (4)
d=c+1

)
2CV
=

1

n2

(
fL0 ·

(((
n− 2 · n

2

)2

−
(
n− 2 · n

2

))
· τ (1)
d=0

54



+ 2 · n
2
·
(
n− 2 · n

2

)
· τ (2)
d=1

+
(n

2

)2

· τ (3)
d=2

+
(
n− 2 · n

2

)
· τ (4)
d=1

)
+ fLn/2 ·

(((
n− 2 · n

2
+
n

2

)2

−
(
n− 2 · n

2
+
n

2

))
· τ (1)
d=n/2

+ 2 ·
(n

2
− n

2

)
·
(
n− 2 · n

2
+
n

2

)
· τ (2)
d=n/2+1

+
(n

2
− n

2

)2

· τ (3)
d=n/2+2

+
(
n− 2 · n

2
+
n

2

)
· τ (4)
d=n/2+1

))

=
1

n2
·

(
fL0 ·

(
2

n

)2

· τ (3)
2 + fLn/2 ·

(((n
2

)2

−
(n

2

))
· τ (1)
n/2 +

n

2
· τ (4)
n/2+1

))

=
2

n2

(
n2

4
· τ (3)

2 +

(
n2

4
− n

2

)
· τ (1)
n/2 +

n

2
· τ (4)
n/2+1

)

=

(
1

2
− 1

n

)
· τ (1)
n/2 +

1

2
· τ (3)

2 +
1

n
· τ (4)
n/2+1

We have viewed three different ways of deriving the variance of ∆̂e(T2CV ) and

thus have shown that the variance of 2-Fold CV is

V(∆̂e(T2CV )) =

(
1

2
− 1

n

)
· τ (1)
n/2 +

1

2
· τ (3)

2 +
1

n
· τ (4)
n/2+1 (2.3.1)

2.3.2 Variance of K-Fold cross-validation

Having illustrated how the variance for 2-Fold CV looks, we will investigate the

general formula for K-Fold cross-validation.

Theorem 7. The variance of K-fold cross-validation is

V(∆̂e(TCV )) =

(
1

K
− 1

n

)
· τ (1)
n−n/K +

1

K
· τ (3)
n−2n/K+2 +

1

n
· τ (4)
n−n/K+1 (2.3.2)

55



Proof. In K-Fold CV the learn-incidence matrix is

NEval
S′ =



1 K

1 0 1 1

...
...

...

n− g 0 1
...

1 0
...

...
...

...

... 0
...

... 1
. . . 1

...
... 0

...
...

...

n 1 1 0


From the matrix follows that the overlap size in CV is

c =

g if S = S ′

n− 2(n− g) = 2g − n otherwise

Note: c = 0 only exists in 2-Fold CV and is covered by case 2g − n = 0.

Further, since the number of rows of NL is K = n/(n− g), NLTNL is a K ×K

matrix, where only the diagonal elements equal g and all off-diagonal elements

equal 2g − n. Thus

fLc =


0 if c /∈ {g, 2g − n}

K if c = g

K2 −K if c = 2g − n

Using the facts that |TCV | = n (by Lemma 4), and K = n/(n − g) ⇐⇒ g =

56



n− n/K, the variance of K-Fold CV can be derived:

V(∆̂e(TCV ))
(2.2.11)

= |TCV |−2
g∑
c=0

fLc · ξc

= |TCV |−2
g∑
c=0

fLc ·
(

((n− 2g + c)2 − (n− 2g + c)) · τ (1)
d=c

+ 2 · (g − c) · (n− 2g + c) · τ (2)
d=c+1

+ (g − c)2 · τ (3)
d=c+2

+ (n− 2g + c) · τ (4)
d=c+1

)
CV
=

1

n2

(
fLg
(
((n− 2g + g)2 − (n− 2g + g)) · τ (1)

g

+ 2 · (g − g) · (n− 2g + g) · τ (2)
g+1

+ (g − g)2 · τ (3)
g+2

+ (n− 2g + g) · τ (4)
g+1

)
+ fL2g−n

(
((n− 2g + 2g − n)2 − (n− 2g + 2g − n)) · τ (1)

2g−n

+ 2 · (g − 2g + n) · (n− 2g + 2g − n) · τ (2)
2g−n+1

+ (g − 2g + n)2 · τ (3)
2g−n+2

+ (n− 2g + 2g − n) · τ (4)
2g−n+1

))
=

1

n2

(
K

(((
n− n+

n

K

)2

−
(
n− n+

n

K

))
· τ (1)
n−n/K

+
(
n− n+

n

K

)
· τ (4)
n−n/K+1

)
+
(
K2 −K

)
·
(
n− n+

n

K

)
· τ (3)

2(n−n/K)−n+2

)
=

(
1

K
− 1

n

)
· τ (1)
n−n/K +

1

K
· τ (3)
n−2n/K+2 +

1

n
· τ (4)
n−n/K+1

Although this variance has to be much higher than the variance of LpO, this fact

doesn’t seem to be very intuitive by looking at both variances.

In Chapter 2.2.11, we claimed that there is no universal unbiased estimator for

CV, which is shown in Bengio and Grandvalet (2003). However, we just showed

57



that there is an unbiased estimator for CV, as long as we add new observations

to the sample used for CV, such that n ≥ 2g + 2.

Example 5. Let us view the special case of leave-one-out CV which corresponds

to n-Fold CV. Thus subsetting K = n into (2.3.2) results in

V(∆̂e(TnCV )) =

(
1

K
− 1

n

)
· τ (1)
n−1 +

1

n
· τ (3)
n +

1

n
· τ (4)
n

=
1

n

(
τ (3)
n + τ (4)

n

)
(2.3.3)

2.3.3 Aspects of Estimating the variance of cross-validation

In CV usually g ≥ n/2, so n ≤ 2g. So, the computation of the CV-estimator for

the given sample size n would not allow us to estimate the variance for K-Fold

CV by the formula derived in the previous section, since n ≥ 2g + 2 does not

hold here. However, we can choose the set-up differently in practice if we are

particularly interested in the variance of CV.

For the sample size n, g has to be chosen such that n ≥ 2g + 2. Then let nCV

be the sample size used in K-Fold CV. Thus, since

g ≥ K − 1

K
· nCV (2.3.4)

and

n ≥ 2g + 2, (2.3.5)

by subsetting (2.3.4) into (2.3.5) we get:

n ≥ 2

(
K − 1

K
· nCV

)
+ 2

nCV ≤
K(n− 2)

2(K − 1)
(2.3.6)

Now, since g is fixed, let us investigate the possible choices of nCV .

58



Consider the fact that (K1 − 1)/K1 > (K2 − 1)/K2 for K1 > K2, K1, K2 ∈ N.

Thus nCV is at least g + 1, which follows from (2.3.4) by subsetting K = nCV :

g =
nCV − 1

nCV
· nCV = nCV − 1

nCV = g + 1

which corresponds to leave-one-out CV.

On the other hand, the sample size for CV is at most nCV = 2g, which follows

from subsetting K = 2:

g =
2− 1

2
· nCV =

1

2
nCV

nCV = 2g

Of course, if the goal in practice for a given sample size n is to find the best

estimate, this is not the optimal set-up. We would use the whole sample size n

instead of any nCV < n for setting up a CV-like procedure. However, since we

are interested in the comparison of CV and another design, we need to estimate

both variances, which we can only estimate by a set-up where n ≥ 2g + 2.

2.4 Minimization of a CV-like procedure’s vari-

ance

In this section, aspects of finding a CV-like procedure with minimal variance for

a fixed design size will be established. Again, our investigations will be based

on Lee (1990), Chapter 4 in which methods for minimizing the variance of an

incomplete U -statistic for a fixed design size are derived. However, the methods

introduced there only relate to U -statistics with symmetric kernels. Nonetheless

we will be able to make use of them.

59



2.4.1 Expression of the variance for identifying a mini-

mum variance design

As well as Lee (1990) in Chapter 4, Theorem 3 does, we will derive one additional

formulation of the variance of an incomplete U -statistic or — in our case — a

CV-like procedure.

Theorem 8. Let T ∗ be a test-complete-design. Then

V(∆̂e(T ∗)) = |T ∗|−2
g∑

γ=0

αγB
L
γ (2.4.1)

where

αγ :=

γ∑
c=0

(−1)γ−c
(
γ

c

)
ξc,

BL
γ :=

g∑
c=γ

fLc

(
c

γ

)

Proof. The following equation can be shown (e.g. analogous to Lee (1990), p.191-

192):

fLc =

g∑
γ=c

(−1)γ−c
(
γ

c

)
BL
γ

Then

V(∆̂e(T ∗))
(2.2.11)

= |T ∗|−2
g∑
c=0

fLc · ξc

= |T ∗|−2
g∑
c=0

(
g∑
γ=c

(−1)γ−c
(
γ

c

)
BL
γ

)
· ξc

= |T ∗|−2
g∑

γ=0

(
γ∑
c=0

(−1)γ−c
(
γ

c

)
ξc

)
︸ ︷︷ ︸

=αγ

·BL
γ

= |T ∗|−2
g∑

γ=0

αγB
L
γ

60



The quantities αγ can be estimated by a U -statistic. Thus, we define α̂γ as the

associated U -statistic.

Lemma 16. BL
γ can be interpreted as follows:

For 1 ≤ γ ≤ g, let S ∈ S(n,γ)
0 and let nL(S) be the number of g-subsets in the

design of learning sets S∗ which contain S. For γ = 0 let nL(S) := |S∗| which

is justified by viewing the empty set as a subset of every learning set. Then for

0 ≤ γ ≤ g

BL
γ =

∑
(n,γ)

(
nL(S)

)2
(2.4.2)

Proof. The fact, that BL
γ =

∑
(n,γ)

(
nL(S)

)2
=
∑g

c=γ f
L
c

(
c
γ

)
for γ = 1, . . . , g can

be proved analogous to Lee (1990), p.191-192.

Thus it suffices to show that for γ = 0,

g∑
c=γ

fLc

(
c

γ

)
=
∑
(n,γ)

(
nL(S)

)2

For the left side of the equation we have

g∑
c=γ

fLc

(
c

γ

)
γ=0
=

g∑
c=0

fLc

(
c

0

)
=

g∑
c=0

fLc
(2.2.13)

= |S∗|2

For the right side of the equation we have

∑
(n,γ)

(
nL(S)

)2 γ=0
=
∑
(n,0)

|S∗|2 = |S∗|2,

since there are
(
n
0

)
= 1 ways of choosing 0 elements from n elements.

61



2.4.2 Problem of finding Minimum variance designs for a

fixed size

Our goal is to find a design T ∗ which minimizes the variance V(∆̂e(T ∗)) for

a fixed design size. So, |T ∗| is fixed. Therefore, let us take a closer look at

Equation (2.4.1) and consider the two remaining quantities αγ and BL
γ . We

recognize that αγ does not depend on the design at all, so BL
γ is the component

which minimizes the variance by an appropriate design. In addition, by Equation

(2.4.2), BL
γ > 0 for all γ.

However, minimizing all BL
γ only leads to minimum variance, if all quantities

αγ > 0.

Lemma 17. A test-complete-design T ∗ has minimum variance referring to its

size if the quantities BL
γ over all possible g-subsets of S(n,g)

0 are minimized and if

αγ > 0 for all γ ∈ {1, . . . , g}.

Proof. Follows directly from the above considerations.

In case of αγ > 0 for all γ ∈ {0, . . . , g}, ways of minimizing BL
γ could be found

in Lee (1990), Chapter 4.3.2, where the quantity Bν is the analogue to our BL
γ .

In this work, however, we will treat a data example, where the quantities αγ take

also negative values.

Our method for finding CV-like procedures with small variances will simply be as

follows: we will empirically estimate the variances V(∆̂e(T ∗)) of several CV-like

procedures of which we suspect that they have small variance.

Remark 7. Let T1,T2 ⊂ TLpO be two designs. Then for the corresponding

CV-like procedures ∆̂e(T1) and ∆̂e(T2),

E
[
min

{
̂V(∆̂e(T1)),

̂V(∆̂e(T2))

}]
6= min

{
E
(

̂V(∆̂e(T1))

)
,E
(

̂V(∆̂e(T2))

})
(2.4.3)

62



This means that by considering several CV-like procedures, their smallest unbi-

ased variance estimator is not unbiased. However, the error becomes smaller as

̂V(∆̂e(Ti)) approaches V(∆̂e(Ti)).

2.5 Convergence in probability of the incom-

plete to the complete U-statistic under ran-

dom subsampling, given the data

Before we apply the investigated theory on some data, at long last we will dis-

cuss an aspect of the numerical computation of a LpO estimator. We will deal

with the question of how many iterations for an approximate estimate of a LpO

procedure is needed to get appropriately close to the true LpO estimate. This is

especially important for the application on a data set in this work, since we would

like to estimate the regular parameters τ
(i)
d , i = 1, . . . , 4 by complete U -statistics.

This, however, is not realizable. Therefore we want to find an approximation by

drawing randomly chosen samples from {1, . . . , n} in order to set up evaluation

tuples and evaluate the kernel.

So, we are interested in the following question: how do we have to choose the

number of samples or iterations for a CV-like procedure with random design in

order to approximate LpO satisfactorily?

Therefore, let ε > 0 and T ∗ be a collection of N randomly chosen ordered

g + 1-subsets of {1, . . . , n}. For such a set we will see the first g elements as

an unordered set. So this set corresponds to the set S used for learning. The

remaining element can be seen as a, so that (S; a) ∈ T ∗ can be seen as an

evaluation tuple. The difference of an incomplete version of the LpO procedure

∆̂e(T ∗) and the LpO estimate ∆̂e(TLpO) is bounded by a pre-specified ε, which

corresponds to the tolerance:

|∆̂e(T ∗)− ∆̂e(TLpO)| ≤ ε (2.5.1)

63



We will apply Chebyshev’s inequality, for instance in Georgii (2008) (Chapter 5)

on (2.5.1). We obtain:

P(|∆̂e(T ∗)− ∆̂e(TLpO)| ≥ ε) ≤ V(∆̂e(T ∗))

N · ε2

⇐⇒ P(|∆̂e(T ∗)− ∆̂e(TLpO)| < ε) ≥ 1− V(∆̂e(T ∗))

N · ε2(
≥ 1− 1

N · ε2
) (2.5.2)

since V(∆̂e(T ∗)) ≤ 1 holds for binary classification.

Now let ε := 10−d, d ∈ N, so that d corresponds to the number of digits we want

to fix. For instance, for the size of the CV-like procedure of N = 102d+2, the prob-

ability for a deviation lower than ε = 10−d is at least 1− 1
N ·ε2 = 1− 1

102d+2×10−2d =

0.99.

Note that this estimation of this size holds irrespectively of g or n.

In Fuchs et al. (2013), it is shown by using Theorem 2 of Hoeffding (1963) that

bounding the probability of the approximation error can even be more restricted,

so that

P(|∆̂e(T ∗)− ∆̂e(TLpO)| < ε) ≥ 1− 2 exp(−ε2N/2) (2.5.3)

Then, if we want to fix d digits, the size of the CV-like procedure has to be at

most N = 102d+1 with a probability of at least 0.99:

1− 2 exp
(
−10−2d × 102d+1 · 1/2

)
= 1− 2 exp(−5) ≈ 0.99

Note that in practice we will achieve convergence against ∆̂e(TLpO) even faster

as long as we use the following set-up:

Let S∗ be a collection of N randomly chosen unordered g-subsets of {1, . . . , n}

and T ∗ be the corresponding test-complete-design. In this case one would not

only use one test observation for each iteration but use all remaining n − g

observations for testing instead. This will save computational cost and accelerate

64



convergence.

65



Chapter 3

Application on data

In this chapter, we will apply the developed theory to two data problems in

order to give a numerical illustration of estimating Θ̂, Θ̂2, τ̂
(i)
d , ξ̂c and α̂γ and

thus of getting an estimation for the variance V(∆̂e(T ∗)). For simplicity, in

both applications we took the second loss function of the kernel Γ to be zero,

since we were interested in the variance of an error rate and not necessarily in

the difference of two error rates. The first example is an illustration of how to

find a small-variance design empirically by using an artificial data set and a very

simple set-up.

The second example treats a real data problem by which we are going to inves-

tigate how the CV estimator behaves in practice.

3.1 Application on an artificial example

In this section, we will apply our theory on a very simple artificially created data

example and will show a way of finding a design with small variance in practice.

The set-up of a data set with low dimension and a prediction model with very low

computational cost allows us to estimate all required quantities for estimating

the variance by an appropriate precision.

66



3.1.1 Set-up

As data we chose a simple parabola as response variable and one predictor. For

i ∈ {1, . . . , n} we have

xi = 2 · i/n

yi = x2
i

We chose n = 80 as the number of observations. Figure 3.1 shows a scatter plot

of x vs. y.

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0
xi

y i

Figure 3.1: Scatterplot of xi vs. yi with added linear regression line

As learning set size we chose g = 10 in order for n ≥ 2g + 2 to hold and such

that we can investigate e.g. cross-validation for K = 6 and nCV = 12.

For prediction we used a simple linear model so that our kernel-function is very

quick in computation. We therefore used the fast R-function fastLmPure from

the RcppArmadillo-package for implementation. Since we want to focus on a

kernel-function which maps to values between 0 and 1, we choose the following

67



loss function

L(yi, ŷi) = arctan{(yi − ŷi)2} · 2

π
,

i.e. the squared error loss mapped to [0; 1). Thus, if we let βSij, i = 0, 1 be the

already estimated coefficients of the linear model for the j observation, trained

by LS, we can formulate the kernel as

Γ(S; a) = L(β̂S0,a + β̂S1,a · xa ; ya) (3.1.1)

By this set-up we were able to estimate the quantities of interest.

3.1.2 Estimation of the regular parameter components of

the variance

Even for this simple example the computation of the estimators λ̂
(i)
d , Θ̂ and Θ̂2 by

a U -statistic was computationally too excessive. Therefore, we estimated them

by drawing between N = 105 and N = 107 random subsets (of size g + 1, 2g + 2

or 2g+ 2−d, according to the degree of the corresponding kernel) from our data

set instead of using all possible evaluation tupels. This procedure is theoretically

justified by the inequality (2.5.3). Hence, properly speaking, we computed
̂̂
λ

(i)
d ,̂̂

Θ and
̂̂
Θ2. However, we will do without this theoretically correct notation in the

following.

Estimator Θ̂ and its variance

The parameter of interest Θ̂ = ∆̂e(TLpO) took a value of 0.0746.

For Θ̂2 we received a value of 0.0055. Then for the variance of the prediction

error estimator, trivially given by

V(Θ̂) = E(Θ̂2)−
[
E(Θ̂)

]2

, (3.1.2)

68



we had 7.8378× 10−4.

Care had to be taken with computing Θ̂2: in our case Equation (3.1.2) is equiv-

alent to

V(Θ̂(nCV )) = E
[
(Θ̂(nCV ))2

]
−
[
E(Θ̂(nCV ))

]2

Hence, E
[
(Θ̂(nCV ))2

]
is estimated by (Θ̂(nCV ))2 which is not equal to (Θ̂(n))2.

We estimated this parameter by several samples of size nCV in order to improve

the estimate. In particular, (Θ̂(nCV ))2 can be written as follows.

Let T M
LpO be the collection of all evaluation tuples containing the set of indices

M . Then

(Θ̂(nCV ))2 = |S(n,nCV )
0 |−1

∑
M∈S(n,nCV )

0

|T M
LpO|−1

∑
(S;a)∈T M

LpO

Γ(S; a)

2

(3.1.3)

After computing the estimators λ̂
(i)
d , we were able to compute the estimators τ̂

(i)
d

by (2.2.18). Table 3.1 shows the corresponding values. Figure 3.2 depicts these

estimators by scatter plots. There we can see that the estimators τ̂
(1)
d and τ̂

(4)
d

are positive and grow by d, whereas τ̂
(2)
d and τ̂

(3)
d decrease and can take negative

values. The fact that here τ̂
(1)
2 < 0 may be justified by the inaccuracy of the

estimations.

Still taking into account that our estimations might have too less accuracy, figure

3.3 testifies that the quantities τ
(1)
d divided by d indeed grow, in accordance with

the inequality (2.2.5). The remaining three quantities seem to decrease after

dividing by d.

According to Lemma 14 the variance-MVUE of a CV-like procedure is given by

(2.2.21),

̂V(∆̂e(T ∗)) = |T ∗|−2
g∑
c=0

fLc · ξ̂c

The computed required estimators ξ̂c (s. table 3.2 and figure 3.4) took both neg-

69



τ̂
(1)
d τ̂

(2)
d τ̂

(3)
d τ̂

(4)
d

d=0 0.000000 0.000000 0.000000 0.000000
d=1 0.000003 0.000035 0.000000 0.004127
d=2 -0.000008 0.000005 0.000536 0.004531
d=3 0.000009 -0.000090 0.000494 0.005073
d=4 0.000023 -0.000098 0.000408 0.005632
d=5 0.000104 -0.000119 0.000372 0.006244
d=6 0.000134 -0.000177 0.000276 0.006883
d=7 0.000188 -0.000207 0.000232 0.007534
d=8 0.000153 -0.000248 0.000168 0.008337
d=9 0.000328 -0.000282 0.000063 0.009234

d=10 0.000443 -0.000361 0.000036 0.010192
d=11 0.000000 0.000000 -0.000097 0.011273
d=12 0.000000 0.000000 0.000000 0.000000

Table 3.1: Estimators τ̂
(i)
d

ative and positive values and do not seem to decrease or increase monotonically

by d.

ξ̂c
c=0 0.014902
c=1 0.007851
c=2 0.003940
c=3 -0.002821
c=4 -0.008863
c=5 -0.008301
c=6 -0.008259
c=7 -0.005903
c=8 0.000143
c=9 0.009372

c=10 0.023431

Table 3.2: Estimators ξ̂c

Figure 3.5 confirms Lemma 7 drawn up by Hoeffding (1948): the estimators σ̂2
d

are all positive and grow after dividing by d for increasing d. We computed these

estimators by the equation above (2.2.21).

By Theorem 8, we rewrote the CV-like procedure’s variance by (2.4.1). This

form enables us to find a design for minimizing this variance in case of αγ > 0

for γ = 0, . . . , g.

The estimators α̂γ, however, take positive and also negative values (s. table 3.3).

70



0e+00

1e−04

2e−04

3e−04

4e−04

1 2 3 4 5 6 7 8 9 10
d

τ d(1
)

−3e−04

−2e−04

−1e−04

0e+00

1 2 3 4 5 6 7 8 9 10
d

τ d(2
)

0e+00

2e−04

4e−04

2 3 4 5 6 7 8 9 10 11
d

τ d(3
)

0.004

0.006

0.008

0.010

1 2 3 4 5 6 7 8 9 10 11
d

τ d(4
)

Figure 3.2: Scatter plots for the estimators τ̂
(i)
d 6= 0. The plots show that the

quantities τ
(i)
d i = 2, 3 can become negative. Thus, these quantites will not be variances.

Figure 3.6 illustrates this fact. Hence, we will not be able to find a design with

minimum variance by minimizing the terms BL
γ . However, we will consider sev-

eral designs in the next sections of this chapter. We will evaluate their variances

empirically to determine small-variance CV-like procedures.

3.1.3 Comparison of 6-Fold cross-validation and LpO

At first, let us investigate the variance in case of K-Fold-cross-validation com-

pared to the variance of the LpO estimator. We chose 6-Fold-CV so that for our

g = 10 we had nCV = 12. For CV, we estimated a variance of
̂V(∆̂e(T6CV )) =

71



0e+00

1e−05

2e−05

3e−05

4e−05

1 2 3 4 5 6 7 8 9 10
d

τ d(1
)

d

−2e−05

0e+00

2e−05

1 2 3 4 5 6 7 8 9 10
d

τ d(2
)

d

0e+00

1e−04

2e−04

2 3 4 5 6 7 8 9 10 11
d

τ d(3
)

d

0.001

0.002

0.003

0.004

1 2 3 4 5 6 7 8 9 10 11
d

τ d(4
)

d

Figure 3.3: Scatter plots for estimators τ̂
(i)
d 6= 0 divided by d. The plots show that the

quantities τ
(i)
d i = 2, 3, 4 decrease by d. Thus, the examination if those were Hoeffding

quantities ζ2
d becomes unnecessary. However, it can be confirmed that this property is

valid for the quantities τ
(i)
d , since their estimators divided by d increase.

0.001. The estimation for the variance of the LpO-estimator was computed again,

this time by the estimated quantities ξ̂c by formula (2.2.11). For nCV , this vari-

ance took a value of
̂V(∆̂e(TLpO)) = 8.2306×10−4. This result suggests that, em-

pirically, LpO has unambiguously smaller variance than K-Fold CV as it should.

The computed variance estimator using (3.1.2) resulted in smaller variance (7.8378×

10−4) of the LpO compared with the variance of the CV, as well.

72



−0.01

0.00

0.01

0.02

0 1 2 3 4 5 6 7 8 9 10
c

ξ c

Figure 3.4: Scatter plots for the estimators ξ̂c. The plot indicates how a design has to
be chosen in order to minimize the variance. Since for c = 3, . . . , 7, the ξ̂c are negative,
these overlap cases minimize the variance. Thus a small-variance design should favor
medium-sized learning overlaps over large and small sizes (since for c = 0, 1, 2, 9, 10,
the estimated quantities ξ̂c are positive and thus maximize the variance).

2e−04

4e−04

6e−04

8e−04

1 2 3 4 5 6 7 8 9 10
d

σ d2

4e−05

5e−05

6e−05

7e−05

8e−05

1 2 3 4 5 6 7 8 9 10
d

σ d2
d

Figure 3.5: Scatter plots for the estimators σ̂2
d (left figure) and σ̂2

d divided by d (right
figure). The plots show that σ2

d increases in both cases as they should, since they are
quantities ζ2

d . So we seem to have satisfactory estimators confirming the theoretical
structure.

73



α̂γ
γ =0 0.014902
γ =1 -0.007051
γ =2 0.003141
γ =3 -0.005992
γ =4 0.009563
γ =5 -0.007253
γ =6 -0.008064
γ =7 0.046343
γ =8 -0.119002
γ =9 0.237032
γ =10 -0.406962

Table 3.3: Estimators α̂γ

−0.4

−0.2

0.0

0.2

0 1 2 3 4 5 6 7 8 9 10
γ

α γ

Figure 3.6: Scatter plots for the estimators α̂γ . Generally, the signs of the quantities
seem to alternate between positive and negative.

3.1.4 Design with smaller variance than l-Fold-K-Fold CV

We now selected several designs which testified to have small variance. In the

introduction of this work, we have already pointed out the well-known problem

that K-Fold CV leads to high variance in practice. Thus, one will consider

performing CV for a fixed K several times by partitioning the sets differently

74



(usually at random). We will refer to such a procedure as to l-Fold-K-Fold CV,

where K/l ∈ N. The number of iterations or learning sets of such a design is

|S∗| = l ·K.

Set-up of |S∗| = 12, nCV = 12

We considered 2-Fold-6-Fold CV at first so that we had |S∗| = 2×6 = 12 learning

sets. We performed this kind of CV several times by partitioning each time two

cross-validation-procedures at random. For every case we estimated a variance of

9.054×10−4, computed by
̂V(∆̂e(T ∗)) = |T ∗|−2∑g

γ=0 α̂γB
L
γ according to (2.4.1).

We tried one case of manually selecting the |S∗| = 12 learning sets in a special

“pseudo-balanced” design (incidence matrix cf. appendix, table B.1). However,

the supposition that such a more “balanced” structure would lead to a lower

variance was refuted and again we got exactly the same value as above.

Set-up of |S∗| = 12, nCV = 13

We changed our set-up a little by setting n = 13 so that we were able to apply a

“formally balanced” design, which in literature is called a “Balanced Incomplete

Block Design” (BIBD, e.g. in Lee (1990)). We will give the definition of a BIBD

in line with our collection of learning sets.

Definition 22. A Balanced Incomplete Block Design in case of a learning set

design S∗ is a design in which each learning observation is contained in r learning

sets and any pair of learning observations is contained in exactly λ learning sets

of size nCV .

Such a design exists for n = 13 and |S∗| = 26, where r = 20 and λ = 15.

This fact can be checked on the basis of the incidence matrix of this design (cf.

appendix B.2).

In order to compare this design appropriately to K-Fold CV, we chose 5-Fold-

6-Fold CV for comparison, with nCV = 13. Thus the number of learning sets

(here l · K = 30) even exceeded the one of the BIBD-design of 26. Since for

75



nCV /K /∈ N, we partitioned the a set of only nCV = 12 into 6 parts at first,

and replaced the observation which was left out systematically at some positions

(collection of sets of learning indices, cf. B.3 in the appendix).

For comparison we generated a further design for this set-up: we chose randomly

g = 10 indices from {1, . . . , nCV } for every learning set. We also generated

30 learning sets. Such a CV-like procedure is sometimes called “Monte Carlo

Cross-Validation” (MCCV).

We again computed the variance of the LpO estimator for nCV = 13. Table 3.4

represents the corresponding results.

̂V(∆̂e(T ∗))
MCCV 0.000798

5-F-6-F CV 0.000762
BIBD 0.000709
LpO 0.000701

Table 3.4: Variance estimators
̂V(∆̂e(T ∗)) for different designs in case of g = 10 and

nCV = 13

The results show that the variance of the MCCV-estimator is higher then the

variance of l-Fold-K CV, as one would expect.

However, we have an interesting result for the BIBD variance estimator. It is

clearly smaller than the one for CV and is close to the variance of the unique

MVUE, the LpO!

It should be mentioned that here we neglected the fact that, by Remark 7, our

smallest variance estimator is, strictly speaking, not unbiased anymore.

3.2 Application on a micro-array data set

In this section, we will make use of the theory developed in chapter 2 by applying

it on a real data problem. We will perform K-Fold CV and estimate its unbiased

variance estimator by computing the required estimators for this procedure.

76



3.2.1 Data

We chose a data set on breast cancer by GEO (http://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE25055). The data set contains micro-array

data and some clinical variables. We focused on predicting the binary variable

“response to chemotherapy” merely by the genetic variables.

According to Hatzis et al. (2011), the patients in the data set “were those with

newly diagnosed ERBB2 (HER2 or HER2/neu)-negative breast cancer treated

with chemotherapy containing sequential taxane and anthracycline-based regi-

mens (then endocrine therapy if estrogen receptor [ER]-positive)”.

Equivalently to Hatzis et al. (2011), we split the data into estrogen receptor(ER)-

positive and ER-negative cases and used the ER-positive-reduced data set for our

analysis.

Therefore, after splitting the data set and removing the observations in which

the outcome was missing, there were n = 248 remaining observations from the

original 508 observations.

The outcome variable is binary and corresponds to the two responder groups

“pathologic complete response or minimal residual cancer burden” (RCB-0/RCB-

I, 46 observations) and “moderate or extensive residual cancer burden” (RCB-

II/III, 202 observations).

We restricted the predictor variables to those affymetrix probe set identifiers

targeting genes which coded for a protein whose identifier was contained in the

“Integrated Breast Cancer Pathway” of Wikipathways (http://wikipathways.

org/index.php/Pathway:WP1984). In this way, we reduced the predictor space

from originally high-dimensional to a medium-dimensional. The resulting num-

ber of variables was 190.

Hence, we had a data set of a satisfying number of observations and of medium-

dimensionality at hand which is suitable for a binary classification.

77

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25055
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25055
http://wikipathways.org/index.php/Pathway:WP1984
http://wikipathways.org/index.php/Pathway:WP1984


3.2.2 Set-up and used learning algorithm

For the total sample size of n = 248, we chose g = 80 and nCV = 100. Thus

n ≥ 2g + 2 holds and we had K = nCV /(nCV − g) = 5 for performing K-Fold

CV.

As a learning algorithm for classification we chose dimensionality reduction by

Partial Least Squares followed by linear discriminant analysis. For the implemen-

tation of this algorithm we chose the R-Function pls_ldaCMA from the CMA-

package. We chose this algorithm because it performs quickly and is applicable to

medium to high dimensional data. Here we used a number of iterations between

N = 5× 105 and N = 3× 106.

3.2.3 Computation of the variance of CV

For computing the variance of K-Fold CV we had to compute merely 3 instead

of all estimators for 4g + 1 quantities τ
(i)
d !

Namely, according to formula (2.3.2), we had to estimate the quantities τ
(1)
n−n/K ,

τ
(3)
n−2n/K+2 and τ

(4)
n−n/K+1. For our set-up these correspond to τ̂

(1)
80 , τ̂

(3)
62 and τ̂

(4)
81 .

We were able to compute these estimators as described in Section 3.1.2. Table

3.5 shows the corresponding computed values. We observe that the estimated

quantity τ̂
(4)
d is of enormous size compared to τ̂

(1)
d , τ̂

(3)
d .

Θ̂CV τ̂
(1)
80 τ̂

(3)
62 τ̂

(4)
81

0.240000 0.000410 0.001418 0.176980

Table 3.5: Estimations for the error rate and required quantities for the variance, for
5-Fold CV if g = 80 and nCV = 100.

The estimator for the unconditional error rate took a value of ∆̂e(TCV ) = Θ̂CV =

0.24.

By our variance formula for CV (2.3.2) we computed the variance of CV and got

V(∆̂e(TCV )) = 0.0021.

78



Chapter 4

Summary

Our main goal was to solve the following Problem: common CV-like procedures

have high variance and, in addition, there are no unbiased variance estimators

or correct test procedures available.

We considered the CV-like procedure of maximum size, the LpO, which is a com-

plete U -statistic and thus has minimal variance among all CV-like procedures,

since it is the unique MVUE. The problem is, however, that the LpO is not

realizable in practice. Hence, we pursued the goal to find a CV-like procedure

with still small variance but which is realizable in practice, i.e. contains way less

iterations than LpO.

We therefore examined the theory of incomplete U -statistics, since every CV-like

procedure is an incomplete U -statistic, in fact. We investigated the structure of

its variance and tried to find a way to minimize it.

We found a general formula for the variance of a CV-like procedure for n ≥ 2g+2

which is estimable and the estimator again is the unique MVUE. We thus found

this unbiased variance estimator for K-Fold cross-validation.

We encountered several difficulties in minimizing our established variance, but

tried to discover designs with small variance empirically.

For a specific set-up, we indeed found a design — a balanced incomplete block

design — having smaller variance than several times repeated cross-validation.

At last, we applied the established variance estimator on a real data problem

and were able to compute our unbiased variance estimator for 5-Fold CV.

79



Appendix A

Further proofs and equations

A.1 Mistake in proof of theorem 1 of Lee (1990),

Chapter 4.3.1

Let U∗n be an incomplete U -statistic based on a fixed design D ⊂ S(n,m)
0 and let

U∗n be the corresponding U -statistic. Further let S1, . . . , S|D| be the sets of the

design.

Assertion 1. The assumption of Lee (1990) that all Cov(U∗n,Φ0(Sj)) are the

same does not hold in general, i.e.

∃i,j∈{1,...,|D|} : Cov(U∗n,Φ0(Sj)) 6= Cov(U∗n,Φ0(Si)) (A.1.1)

Proof. If one assumes that

∀i,j∈{1,...,|D|} : Cov(U∗n,Φ0(Sj)) = Cov(U∗n,Φ0(Si)),

then this also holds for the special case that D = {S1, S2, S3}, where

|S1 ∩ S2| = m− 1

|S1 ∩ S3| = ∅

|S2 ∩ S3| = ∅

80



Then

Cov(U∗n,Φ0(S1)) =
1

3
·

Cov(Φ0(S1),Φ0(S1))︸ ︷︷ ︸
=ζ2m

+ Cov(Φ0(S2),Φ0(S1))︸ ︷︷ ︸
ζ2m−1

+Cov(Φ0(S3),Φ0(S1))︸ ︷︷ ︸
=ζ20=0


=

1

3
·
(
ζ2
m + ζ2

m−1

)
and

Cov(U∗n,Φ0(S3)) =
1

3
·

Cov(Φ0(S1),Φ0(S3))︸ ︷︷ ︸
=ζ20=0

+ Cov(Φ0(S2),Φ0(S3))︸ ︷︷ ︸
=ζ20=0

+Cov(Φ0(S3),Φ0(S3))︸ ︷︷ ︸
=ζ2m


=

1

3
· ζ2

m

6= Cov(U∗n,Φ0(S1)),

since in general ζ2
m−1 6= 0. This is a contradiction to the assumption above and

thus (A.1.1) is true.

A.2 Reformulation of definition of τ
(i)
d , i = 1, . . . , 4

τ
(1)
d = Cov (Γ({1, . . . , g}; g + 1), (A.2.1)

Γ({1, . . . , d} ∪ ({1, . . . , 2g + 1− d} \ {1, . . . , g + 1}); 2g + 2− d)

τ
(2)
d = Cov (Γ({1, . . . , g}; g + 1), (A.2.2)

Γ({1, . . . , d− 1, g + 1} ∪ ({1, . . . , 2g + 1− d} \ {1, . . . , g + 1}); 2g + 2− d)

τ
(3)
d = Cov (Γ({1, . . . , g}; g + 1), (A.2.3)

Γ({1, . . . , d− 2, g + 1} ∪ ({1, . . . , 2g + 2− d} \ {1, . . . , g + 1}); d− 1)

81



τ
(4)
d = Cov (Γ({1, . . . , g}; g + 1), (A.2.4)

Γ({1, . . . , d− 1} ∪ ({1, . . . , 2g + 2− d} \ {1, . . . , g + 1}); g + 1)

82



Appendix B

Matrices for learning set designs

NL =



0 1 1 1 1 1 1 0 1 1 1 1

0 1 1 1 1 1 0 1 1 1 1 1

1 0 1 1 1 1 0 1 1 1 1 1

1 0 1 1 1 1 1 0 1 1 1 1

1 1 0 1 1 1 1 1 1 0 1 1

1 1 0 1 1 1 1 1 0 1 1 1

1 1 1 0 1 1 1 1 0 1 1 1

1 1 1 0 1 1 1 1 1 0 1 1

1 1 1 1 0 1 1 1 1 1 1 0

1 1 1 1 0 1 1 1 1 1 0 1

1 1 1 1 1 0 1 1 1 1 0 1

1 1 1 1 1 0 1 1 1 1 1 0



Table B.1: Learn incidence matrix for pseudo-balanced design (g = 10, nCV = 12,
|S∗| = 12)

83



NL =



1 0 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1

1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1

1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1

0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1

0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1

1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1

0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 0

1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 0

1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1

1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1

1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1



Table B.2: Learn incidence matrix for BIBD (g = 10, nCV = 13, |S∗| = 26)

84



S∗ =



13 2 3 4 5 6 9 10 11 12

1 13 3 5 6 7 8 10 11 12

2 3 13 5 6 7 8 9 10 12

1 3 4 13 7 8 9 10 11 12

1 2 4 5 13 7 8 9 10 11

1 2 3 4 5 13 8 9 11 12

2 3 4 6 7 8 13 10 11 12

1 2 4 5 7 8 9 13 11 12

1 2 3 4 5 6 7 8 13 10

1 3 4 5 6 7 8 9 11 13

1 2 3 4 5 6 7 10 11 12

1 2 3 5 6 8 9 10 11 12

13 2 3 4 5 7 8 10 11 12

1 13 3 5 6 8 9 10 11 12

1 2 13 4 5 6 7 8 9 12

1 2 3 13 6 7 8 9 10 11

2 4 5 6 13 8 9 10 11 12

1 3 4 5 6 13 9 10 11 12

1 2 3 4 5 6 13 9 10 12

2 3 4 5 6 7 8 13 11 12

1 2 4 5 6 7 8 9 13 11

1 2 3 4 6 7 9 10 11 13

1 3 4 5 7 8 9 10 11 12

1 2 3 5 6 7 8 9 11 12

13 3 4 5 6 7 8 10 11 12

1 13 3 4 5 8 9 10 11 12

1 3 13 6 7 8 9 10 11 12

1 2 3 13 5 6 7 8 9 12

1 2 4 6 13 8 9 10 11 12

1 2 3 4 5 13 7 9 10 11


85



Table B.3: Collection of sets of learning indices for 5-Fold-6-Fold CV (as matrix,
one row corresponds to one learning set), for g = 10, nCV = 13, |S∗| = 30

86



Appendix C

Code

The attached CD-ROM contains the files and R-scripts used for the computa-

tions and figures in this work.

The code is available in the group folder of the computational molecular biology

group on IBE.

87



Appendix D

R Session Info

## ##------ Mon Mar 31 00:55:41 2014 ------##

## R version 3.0.1 (2013-05-16)

## Platform: x86_64-w64-mingw32/x64 (64-bit)

##

## locale:

## [1] LC_COLLATE=German_Germany.1252 LC_CTYPE=German_Germany.1252

## [3] LC_MONETARY=German_Germany.1252 LC_NUMERIC=C

## [5] LC_TIME=German_Germany.1252

##

## attached base packages:

## [1] grid stats graphics grDevices utils datasets methods

## [8] base

##

## other attached packages:

## [1] tikzDevice_0.7.0 filehash_2.2-2 gridExtra_0.9.1 xtable_1.7-3

## [5] ggplot2_0.9.3.1 knitr_1.5

##

## loaded via a namespace (and not attached):

## [1] colorspace_1.2-4 dichromat_2.0-0 digest_0.6.4

## [4] evaluate_0.5.1 formatR_0.10 gtable_0.1.2

## [7] highr_0.3 labeling_0.2 MASS_7.3-26

## [10] munsell_0.4.2 plyr_1.8 proto_0.3-10

## [13] RColorBrewer_1.0-5 reshape2_1.2.2 scales_0.2.3

## [16] stringr_0.6.2 tools_3.0.1

88



Bibliography

Bengio, Y. and Y. Grandvalet (2003). No unbiased estimator of the variance of

k-fold cross-validation. Journal of Machine Learning Research 5, 1089–1105.

Ferguson, T. S. (2005). U-statistics: Notes for statistics.

Fuchs, M., R. Hornung, R. d. Bin, and A.-L. Boulesteix (2013). A u-statistic

estimator for the variance of resampling-based error estimators. pp. 1–15.

Georgii, H. (2008). Stochastics: Introduction to Probability and Statistics. De

Gruyter textbook. Walter De Gruyter.

Halmos, P. R. (1946). The theory of unbiased estimation. The Annals of Math-

ematical Statistics 17 (1), 34–43.

Hastie, T., R. Tibshirani, and J. Friedman (2001). The Elements of Statistical

Learning. Springer Series in Statistics. New York and NY and USA: Springer

New York Inc.

Hatzis, C., L. Pusztai, V. Valero, D. J. Booser, L. Esserman, A. Lluch, T. Vi-

daurre, F. Holmes, E. Souchon, H. Wang, M. Martin, J. Cotrina, H. Gomez,

R. Hubbard, J. I. Chacón, J. Ferrer-Lozano, R. Dyer, M. Buxton, Y. Gong,

Y. Wu, N. Ibrahim, E. Andreopoulou, N. T. Ueno, K. Hunt, W. Yang,

A. Nazario, A. DeMichele, J. O’Shaughnessy, G. N. Hortobagyi, and W. F.

Symmans (2011). A genomic predictor of response and survival following

taxane-anthracycline chemotherapy for invasive breast cancer. JAMA 305 (18),

1873–1881.

89



Hoeffding, W. (1948). A class of statistics with asymptotically normal distribu-

tion. The Annals of Mathematical Statistics 19 (3), 293–325.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random

variables. Journal of the American Statistical Association 58 (301), 13–30.

Lee, A. J. (1990). U-statistics. Statistics. New York and NY [u.a.]: Dekker.

Shao, J. (1993). Linear model selection by cross-validation. J. of the American

Statistical Association 88, 486–494.

90


	Introduction
	Theoretical Framework
	Common problem
	CV-like procedures
	K-Fold Cross-validation (CV)
	Leave-p-out cross-validation (LpO)
	Computational aspects

	U-Statistics
	Definitions
	Properties

	Incomplete U-statistics

	Error Rate Estimation by U-Statistics
	CV-like procedures seen as (incomplete) U-statistics
	e"0362eLpO seen as a complete U-statistic
	CV and CV-like procedures seen as an incomplete U-statistic

	Variance of a CV-like procedure
	Properties and preliminary work
	Variance formula for a CV-like procedure
	Estimation of the variance of a CV-like procedure
	Variance of LpO

	Variance of cross-validation
	Variance of 2-Fold cross-validation
	Variance of K-Fold cross-validation
	Aspects of Estimating the variance of cross-validation

	Minimization of a CV-like procedure's variance
	Expression of the variance for identifying a minimum variance design
	Problem of finding Minimum variance designs for a fixed size

	Convergence in probability of the incomplete to the complete U-statistic under random subsampling, given the data

	Application on data
	Application on an artificial example
	Set-up
	Estimation of the regular parameter components of the variance
	Comparison of 6-Fold cross-validation and LpO
	Design with smaller variance than l-Fold-K-Fold CV

	Application on a micro-array data set
	Data
	Set-up and used learning algorithm
	Computation of the variance of CV


	Summary
	Further proofs and equations
	Mistake in proof of theorem 1 of lee, Chapter 4.3.1 
	Reformulation of definition of d(i),  i=1,…,4 

	Matrices for learning set designs
	Code
	R Session Info
	Bibliography


