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Abstract

The analysis of the cervical mucus symptom is useful to identify the

period of maximum fertility of a woman. In this paper we analyze the

daily evolution of the cervical mucus symptom during the menstrual cycle,

based on the data collected in two prospective studies, in which the mu-

cus symptom is treated as an ordinal variable. To produce our statistical

model, we follow a non-parametric Bayesian approach. In particular, we

use the idea of non-parametric mixtures of rounded continuous kernels,

recently proposed in literature to deal with categorical functional data.

Fitting the model, we identify the typical pattern of the mucus symptom

during the menstrual cycle, i.e. a slow increase of the fertility until the

ovulation and, in the aftermath, a steep decrease to a situation less favor-

able for the fecundation. From the results, it is possible to extract useful

information to predict the beginning of the most fertile period and, in

case, to identify possible physio-pathological conditions. As a by-product

of our analysis, we are able to group the menstrual cycles based on the

differences in the daily evolution of the cervical mucus symptom. This

division may help in the identification of cycles with particular character-

istics.
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1 Introduction

The study of women fertility is relevant in many scientific fields, such as biology,

demography or medicine. In particular, much attention has been devoted to the

investigation of the women menstrual cycles, whose analysis may provide useful

information to identify, among other things, the period of maximal fertility of a

woman. This issue is strongly relevant for those couples which desire to conceive

a child or, on the contrary, to avoid conception by periodic abstinence. In this

regard, the simple knowledge of the calendar day is often not sufficient [1]. For

this reason, the researchers are interested in additional measurements, such as

basal body temperature or cervical mucus symptom, that can provide further

information on the daily fertility and may help to identify the days in which the

probability of conception is high. The woman menstrual cycle, indeed, is gov-

erned by an intense hormonal activity, which determines its characteristics and

phases. One visible effect of this hormonal activity is the different appearance

and/or sensation of the cervical mucus, whose daily observation allows to iden-

tify in a non-invasive way the different phases of the woman menstrual cycle.

Being related to the ability of human spermatozoa to move in the cervix [1],

the characteristics of the cervical mucus are strongly relevant in the context of

women fertility. Here we focus on the cervical mucus symptom and on its daily

evolution during the menstrual cycle, in order to derive a statistical model that

can support medical investigations and give new insights on the fertility issue.

With this goal in mind, we take advantage of two multi-center studies of

daily fecundability co-ordinated by Bernardo Colombo in the Department of

Statistical Sciences of the University of Padova [2, 3]. In these prospective stud-

ies, women are asked to collect information related to the consistency and the

appearance of their mucus secretion, which are later categorized on an ordinal

scale [2, 3]. The data are collected daily throughout the entire menstrual cy-

cle, and the mucus symptom peak day is identified for each cycle. This day,

in particular, is defined as the last day with best quality mucus, in terms of

sensation or appearance [2] and it is important to define the different phases of

the menstrual cycle. The mucus symptom peak day, indeed, comes immediately

before the ovulation, and, therefore, may be used to determine the end of the

fertile window [4, 5].

From a statistical point of view, the daily observed mucus score can be seen

as a categorical function of time. The categorical nature of the functional data

raises challenging issues: other studies, in the same context, do not consider
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this characteristic in order to simplify the problem, avoiding to work with a

categorical outcome. For example, Dunson and Colombo develop a model to

estimate the trajectory of the mucus consistency as a function of the time con-

sidering the observations as instances of a continuous variable [6]. In particular,

in their study, they fit a hierarchical Bayesian model to estimate this trajec-

tory. Our aim is to avoid this simplification and to analyze the trajectory of

the cervical mucus symptom preserving its categorical nature. We also avoid

to define a parametric model, preferring a non-parametric strategy. In order to

pursue our goal, an excellent starting point is represented by a recent paper by

Canale and Dunson [7]. Following a non-parametric Bayesian approach, they

introduce a technique to model counts data based on non-parametric mixtures

of rounded continuous kernels. In addition to theoretical results, they develop

an efficient Gibbs sampler for the posterior computation. A later contribution

from the same authors [8] provides an extension to cope with count functional

data. Here, we adapt these methods in order to tackle ordinal categorical func-

tional data, which are characterized by a finite support. Our adaptation allows

us to model the trajectories of the mucus symptom in the women menstrual

cycles.

In the non-parametric Bayesian framework, an important aspect of the model

building process is the choice of the prior on the space of the mixing distributions

of the rounded continuous kernels. As in the two aforementioned papers by

Canale and Dunson, here we implement a Dirichlet process [9]. Thanks to its

clustering property, as a byproduct of the analysis the trajectories of the cervical

mucus symptom are clustered in groups. From a medical point of view, this may

be useful to identify possible trajectories with peculiar characteristics, which it

is worth studying more deeply.

The present paper is organized as follows: first we introduce the two datasets

in Section 2, then we formalize the problem and describe the methods in Section

3. In particular, the statistical model used to analyze the data is presented at

the end of this section. The results are shown in Section 4 for both the datasets.

Finally, a brief discussion is presented in Section 5.

2 Daily fecundability data

In this section we report some information about the two datasets used in the

paper. Both are related to studies on women fertility and contain information

3



about the cervical mucus symptom during the menstrual cycles. The former

dataset, which is more recent and contains a larger number of observations, is

our dataset of interest. We refer to it as “Italian database”. We also extend

our analyses to a second dataset, here denoted as Paris data, to investigate the

results of our method on the same data used by Dunson and Colombo [6].

In order to be included in the study, in both cases the women must meet some

specific criteria, involving their relationship status (they must be married or in

a stable relationship), their age (only women between 18 and 40 at the entry

are considered) and several other characteristics, which refer to their individual

status (they must have at least one menses after cessation of breastfeeding,

delivery or miscarriage and they must not be taking any hormonal medication

or drug affecting fertility) and to their relation with the partner (couples mixing

incidences of unprotected and protected intercourses are excluded). Moreover,

the partner cannot be permanently infertile and both must be free from illness

causing sub-fertility.

In both studies, each woman is asked to record some data in each day of her

menstrual cycle. Here we are interested in the cervical mucus symptom, which

is classified on an ordinal scale based on characteristics such as its appearance

and the sensation that it produces. In the studies, the menstrual cycle is defined

as the interval in days between two consecutive beginnings of vaginal bleeding,

and it is characterized by a mucus peak. This information is fundamental for

our analysis, since we define the time with respect to the mucus peak day. For

this reason we use only the information of those cycles (82.9% of the total)

whose mucus peak day is recorded.

2.1 Italian database

This dataset is presented in details by Colombo and colleagues in a 2006 paper

[3]. Data are collected by four Italian centers providing natural family planning

services, namely Milan, Parma, Saluzzo and Rome, and concern 2755 menstrual

cycles of 193 women. The average age of the women is 28.3 years (standard

deviation 3.77), while the average age of their partner is 31.2 years (SD =

4.58). Among the women, 128 (52.9%) had at least one past pregnancy, while

the percentage of women with past use of hormonal contraception is 16.1% (39

subjects). Due to the absence of information on the mucus peak day, in our

analysis we discard 472 cycles, keeping the information about 2283 menstrual

cycles (82.9% of the total). For further information about the women and their
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cycles, we refer to the original paper [3]. We report, instead, the table with the

description of classes used to categorize the cervical mucus symptom (Table 1).

In particular, the scale is ordinal and it ranges from 1 to 5, where 1 represents

the least fertile status and 5 the situation most favorable for the conception.

Class Sensation Appearance
1 No sensation or dry sensation No mucus, nor any insubstantial dis-

charge
2 No longer dry sensation No substantial discharge, nor any

noticeable mucus
3 Damp sensation Thick, creamy, whitish, yellowish,

sticky, elastic mucus
4 Wet, slippery sensation –
5 Wet, slippery sensation Clear, stringy (or stretchy), fluid,

watery mucus, blood trails

Table 1: Italian database: classification of the cervical mucus symptom as de-
scribed in the original study [3]. In our paper, values equal to 0 (no information)
and outliers are treated as missing values.

2.2 Paris data

The data for the second example come from a study involving eight centers

around Europe, namely Verona, Milan, Lugano, Paris, Düsserdolf, London and

Brussels [2]. As in the aforementioned study by Dunson and Colombo [6], we

consider only the observations collected in the Paris center. They involve 104

women for a total of 787 cycles. The average age of these women is 29.3 years

(standard deviation 4.52), while their partners have an average age of 31.4 years

(SD = 5.42). Moreover, 76 out of 104 women (73.1%) had at least one pregnancy,

while 38 out of 104 (36.5) have a record of past use of hormonal contraception.

Also for this sample, due to the absence of information about the mucus peak

day, in our study we consider only a part of the available cycles (576, the 74% of

the total). As for the previous dataset, we refer to the original paper [2] to have

more information about women and menstrual cycles’ characteristics, and we

report only the description of the codification of the cervical mucus symptom

(Table 2). The scale used to measure the mucus is again ordinal, but, differently

from the Italian database, it has only 4 categories. As in the previous case, the

larger the number is, the more favorable to conception is the mucus.
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Class Sensation Appearance
1 Dry, rough and itchy feeling

or nothing felt
Nothing seen, no mucus

2 Damp feeling Nothing seen, no mucus
3 Damp feeling Mucus is thick, creamy, whitish, yel-

lowish, not stretchy/elastic, sticky
4 Wet, slippery, smooth feeling Mucus is transparent, like raw egg

white, stretchy/elastic, liquid, wa-
tery, reddish (with some blood)

Table 2: Paris data: the classification of the cervical mucus symptom provided
in the original study [2]. In our paper, values equal to 0 (no information) and
outliers are treated as missing values.

3 Non-parametric Bayesian modeling of cervical

mucus symptom trajectory

3.1 Data characteristics and formalization of the problem

Let us denote with y(t) the random process which describes the classification of

the cervical mucus symptom in a menstrual cycle. More extensively, let yc(t)

indicate the modality of the cervical mucus symptom for the c-th cycle at the

t-th day (understood as the t-th day from the mucus peak day), where c is a

natural number assuming values from 1 to C. Here, C denotes the total number

of cycles analyzed, i.e., C = 2283 for the first study, C = 576 for the second

one.

About t, here it is an integer ranging between -11 and 8. It denotes the

day of the cycle with respect to the peak of the mucus symptom. Following a

common strategy in the literature [6, 10, 11], indeed, we center the time around

this day, which can be seen as the last day of the fertile period. The choice of the

20 days interval [−11; 8], already used in this context by Dunson and Colombo

[6], is made to focus on the period of maximum fertility, and it represents a

good compromise between the need to include as much (relevant) information

as possible, and the need to prevent the inclusion of too many missing values (in

particular in those days which are far from the mucus peak). The total length

of the observed menstrual cycles varies a lot within each study, from a minimum

of 13 days to a maximum of 87 days.

Finally, y(t) can assume values in {1, 2, . . . ,K}, where K, the number of

categories used to codify the cervical mucus symptom, varies in the two studies
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(5 in the Italian database, 4 in the Paris data). In both cases, however, K

represents, due to the ordinal nature of the categories, the highest value in

terms of favorable condition for the fecundation.

3.2 Model derivation

Following the theoretical results provided by Canale and Dunson [7], we consider

y(t) as the transformation of an underlying continuous function y∗(t) through

a threshold mapping function h. Due to the flexibility of the non-parametric

Bayesian method, the values of the thresholds in h can be fixed arbitrarily. As

mentioned in the introduction, Canale and Dunson developed their method for

functional count data, i.e., for y(t) with infinite support. Here, instead, y(t) can

assume only a finite number of values ({1, 2, . . . ,K}) and therefore we need to

adapt the existing method introducing K + 1 thresholds, with the first and the

last thresholds being respectively −∞ and ∞ in order to allow y∗(t) to assume

values in R. In our model, for j = 1, . . . ,K the map function h is defined as

h(x) = j if aj ≤ x < aj+1,

where the thresholds are a0 = −∞, a1 = 2, . . . , aK−1 = K and aK = ∞. Since

y(t) = h(y∗(t)), our model is based on y∗(t), which is defined as

y∗(t) = f(t) + ε(t).

where ε(t) ∼ N(0, τ−1) denotes the error term. Here τ represents the precision

terms, and has the usual prior p(τ) ∝ τ−1. We model the functional part f(t)

using a basis spline function (hereafter, B-spline), i.e.,

f(t) = Bθ,

where B denotes the B-spline basis, associated with a large number (50) of

knots, and θ represents the basis coefficients. Taking advantage of the properties

of the Bayesian non-parametric approach, we leave the prior of θ, let say P ,

unspecified. Therefore, P is totally unknown and flexible, representing the class

of all the possible priors for θ. In our implementation, it follows a Dirichlet

process. In formula

P ∼ DP (α, P0),
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where α > 0 is a concentration parameter characterizing prior precision and

clustering, while P0 has density p0(θ|λ) ∝ exp{−0.5λθTD>Dθ}. Here, λ ∼
Ga(ν/2, ρν/2), ρ ∼ Ga(1, 1) and D is a second order difference matrix,

D =




1 −2 1 0 . . . 0

0 1 −2 1 . . . 0
...

. . .
. . .

. . .
...

0 0 . . . 1 −2 1



.

In this paper, we denote with Ga(ψ1, ψ2) a Gamma distribution with shape

parameter ψ1 and rate parameter ψ2.

The implementation of this B-splines-based methodology follows the results

of Jullion and Lambert [12], including the choice of the matrix D. Also p0(θ|λ),

here chosen as density for P0 for computational convenience, is defined in their

paper. Finally, to be more general, we also consider a prior for the concentration

parameter of the Dirichlet process, namely α ∼ Ga(1, 1).

In a more general formulation, here

f(y∗;P ) =

∫
NT (y∗;Bθ,diag(τ−1))dP (θ),

with P ∼ DP (α, P0).

3.3 Posterior computation

For posterior computation, we use an adaption of the Gibbs sampling algorithm

presented by Canale and Dunson in their paper [7], with the modifications made

to take into account the B-spline technique and the multivariate nature of the

problem. The algorithm is based on the blocked Gibbs sampler of Ishwaran

and James [13], and takes advantage of the stick-breaking representation of the

Dirichlet process. The steps are:

step 1: generate each y∗c (t) from the conditional posteriors, i.e.,

1. generate uc(t) from a uniform distribution between Φ(ayc(t);BθSc , τ
−1)

and Φ(ayc(t)+1;BθSc , τ
−1);

2. let y∗c (t) = Φ−1(uc(t);BθSc
, τ−1);
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step 2: update Sc from its multinomial conditional posterior with

Pr(Sc = h|−) =
πhp(yc|B, θh, τ)

∑C
i=1 πip(yc|B, θi, τ)

,

where p(j|B, θh, τ) = Π(aj+1|Bθh,diag(τ−1))−Π(aj |Bθh,diag(τ−1));

step 3: update the stick-breaking weights using

Vh ∼ Beta

(
1 + nh, α+

C∑

i=h+1

ni

)
,

with nj denoting the number of processes belonging to group j;

step 4: update the parameters from their conditional posterior,

θSc
|τ, λ ∼ N(τB>ySc

Vc), Vc)

τ |θ ∼ Ga(tC/2, R/2)

λ|ν, ρ ∼ Ga(ν/2 + C rank{D>D}/2, ρν/2 + U/2)

ρ|a, b, ν, λ ∼ Ga(a+ ν/2, b+ νλ/2),

where Vc = (τncB
TB + λD>D)−1, R =

∑C
i=1(yi − Bθi)T (yi − Bθi) and

U =
∑C

i=1 θ
T
i θi. For the update of α, instead, we use the result of Escobar

and West [14].

4 Results

4.1 Italian database

4.1.1 Estimate of the trajectories

We perform a MCMC algorithm to estimate the trajectories of the cervical

mucus symptom. After an initial burn-in of 3 000 iterations, the algorithm is

run 8 000 times. A graphical inspection of the parameter estimates (not shown)

seems to confirm their convergence. The final estimation of the trajectory for

each cycle corresponds to the most frequent instance among those obtained in

the MCMC process. In other words, for each cycle we look at the 8 000 estimates

and we select that which occurs with the highest frequency (modal trajectory).

In this way, we can bypass the issue of the “label switching” that affects the
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Figure 1: Italian dataset: estimation of the mucus symptom trajectories.
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approaches based on the Dirichlet process. All the cycles which share the same

modal trajectory are then clustered in the same group. It is worth noting that

this split does not perfectly correspond to that induced by the Dirichlet process,

but it is strictly related: the modal trajectory of each cycle, indeed, is probably

the modal trajectory of the group identified by the Dirichlet process to which

the cycle belong most of the times. Here, the number of clusters obtained with

our procedure and the number of clusters defined by the Dirichlet process are

equal, namely 14.

The results are shown in Figure 1. To give an idea of the variability of

the estimates, we include a 90% functional interval based on the notion of band
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depth for curve, as presented by Lòpez-Pintado and Romo [15, 16]. Very briefly,

the band depth is the proportion of times in which, for each point of the support,

a curve is inside a band delimited by the minimum and maximum values of all

the subsets (of a pre-specified cardinality) that can be formed with the other

curves. For example, using subsets of dimension 2 (as in our paper),

BD2(yi) =
(
ngB
2

)−1∑
yj ,yk∈S I(min{yj(1), yk(1)} ≤ yi(1) ≤ max{yj(1), yk(1)}, . . . ,

, . . . ,min{yj(20), yk(20)} ≤ yi(20) ≤ max{yj(20), yk(20)})

where S indicates the set of all the possible subsets of dimension 2 obtained with

the available curves (in our case B, the number of MCMC iterations, times ng,

the cardinality of the cluster) and I(·) denotes the indicator function.

The band depth allows us to introduce an order in the curves, because it is

inversely proportional to their “distance” from the median curve. We can then

follow an approach similar to that used by Sun and Genton [17] to construct

their “functional box-plots”. Here, we select the 90% of the curves with the

largest band depth, and, for each point of the support (i.e., for t in [−11; 8]),

we compute the maximum and the minimum values of these curves. The curve

with values equal to the maxima represents the upper limit, while that with the

minima the lower limit. Please note that this interval is not a proper credibility

interval for the modal curve, but it provides a useful indication of the variability

of the estimated curves insides the groups.

Moreover, for matter of comparison, we also report the results for all the

cycles, without taking into account the split in groups. Since in this case it

makes no sense to report the modal curve, we draw the curves with maximum

band depth, which is related to the median curve [17]. The 90% interval, instead,

is computed as for the groups, considering all the 8000× 2283 curves obtained

in the MCMC process.

From the analysis of Figure 1, we can clearly identify the well-known pattern

of the evolution of the fertility during the woman cycle. Starting from a situation

of scarce fertility, characterized by a dry sensation and no-mucus (class 1), all

the curves show the progression through the intermediate statuses (class 2, 3 and

4), until the situation of maximal fertility (class 5) is reached. The length of this

high-fertility window differs from group to group, but then all the trajectories

show a fast drop to less fertile classes (2 or 3) in the day immediately after the

peak.

Although the pattern described above is common, we also note some differ-
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ences among the trajectories of the mucus symptom for the different groups. We

have underlined in the introduction that this clustering, obtained as by-product

of the estimation process by our non-parametric Bayesian approach, may pro-

vide useful information about the cycles. For this reason, in the following we

briefly analyze the results from this point of view.

4.1.2 Description of the groups.

Among the groups, the trajectories of the mucus symptom differ to each other

for characteristics such as the length of the high-fertility window (from 1 day

for groups C, K, N to the 9 days for group J), the shape of the increasing

process (for example, very steep for group M, relatively gentle for group K) and

of the decreasing process (for example, for group A the less fertile class, 1, is

reached two days after the peak, while for several groups this does not happen

within the 8 days after the peak considered in our analysis). It is worth noting,

however, that the right tails of the trajectories (decreasing process) are steeper

than the left tails (increasing process) for all the groups: for example, the mucus

symptom always drops at least to class 3 the day after the peak, while to reach

class 5 it always passes through class 4.

Group L shows a modal trajectory with an unexpected shape, in which we

can recognize two peaks. If we investigate the observed cycles included in this

group, we can note that they are characterized by two peculiarities: an early

presence of fertile mucus symptom (classes 4 and 5) and a very fast drop to

the least fertile classes (1 and 2) after the peak. The latter characteristic, in

particular, differentiates the observed cycles of this group from those of groups

M and J, which also have an early presence of fertile mucus symptom. More

interestingly, we find the “two peaks shape” of the modal curve directly in part

of the observed cycles: therefore, it may be worth investigating the menstrual

cycles clustered in this group in order to identify possible physio-pathological

situations.

4.1.3 Prediction of the beginning of the most fertile window.

From a practical point of view, these results may drive to some suggestions

for those couples which want/do not want to have children: in particular, the

experience of a mucus symptom with characteristics belonging to class 4 is a

strong signal for the fast approaching of the period of maximum fertility. In

all the groups, indeed, class 4 occurs immediately before the start of the high-
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fertility window, namely one or two days before it (i.e., the mucus symptom

does not last long in class 4, but goes quickly to class 5). If we want to predict

the beginning of the high-fertility window based on the mucus symptom of class

3, instead, we must be more careful: on the one hand, in large part of the

groups, the step from class 2 to class 3 happens 3 or 4 days before the first

instance of class 5; on the other hand, there are counter-examples, like groups

G and K, where the mucus symptom stays longer in this class, and the high-

fertility window is reached only after 6 or 7 days. Moreover, we cannot really

say anything for group B and L: in the former case, the step from class 2 to

class 3 is likely before day -11, in the latter, the situation is not clear due to the

peculiar behavior of the trajectory.

4.1.4 Inclusion frequencies.

The curve used to estimate the mucus symptom trajectory for each cycle is

the modal curve, namely the most selected curve among the 8 000 estimates

obtained in the MCMC process. It may be interesting to analyze the selection

frequencies of these modal curves. The results are reported in Table 3, summa-

rized by group. Please note that in total there are 520 possible trajectories, and

therefore the chance to select randomly a curve is very small (around 10−14).

Since in our study we perform only 8 000 MCMC iterations, the situation of

maximum entropy is here represented by 8000 different estimates, each with

selection frequency 0.000125. As we can see from Table 3, the selection frequen-

cies for the modal curves obtained in our analysis are far from this case, with a

highest value of 0.706.

As we expected, the most numerous groups tend to be characterized by

high selection frequencies. The large number of cycles available within the

group, indeed, makes the estimate of the group trajectory robust, in the sense

that small perturbations in the group composition, derived from possible inclu-

sion/exclusion of some cycles in the specific MCMC iteration, do not change

the estimate of the trajectory. Conversely, in groups of small size, the inclu-

sion/exclusion of one or few cycles may modify the estimate, generating differ-

ent curves with relatively small selection frequency. This is the case of group L,

which is characterized by the lowest average selection frequencies for the modal

curves. If we look at the 8 000 estimates for the cycles belonging to this group,

indeed, we find curves slightly different from the modal one. In particular, for

the second and third most selected curves the class 1 is reached, in the right

13



Group Minimum 1st quart. Median Mean 3rd quart. Maximum
A 0.096 0.269 0.400 0.373 0.487 0.528
B 0.068 0.431 0.597 0.532 0.666 0.677
C 0.060 0.243 0.317 0.287 0.349 0.356
D 0.048 0.248 0.462 0.415 0.587 0.650
E 0.156 0.363 0.458 0.455 0.572 0.706
F 0.045 0.251 0.360 0.338 0.433 0.466
G 0.028 0.153 0.202 0.191 0.230 0.244
H 0.078 0.191 0.235 0.231 0.280 0.318
I 0.085 0.145 0.182 0.178 0.214 0.243
J 0.050 0.302 0.416 0.354 0.465 0.465
K 0.057 0.092 0.107 0.102 0.112 0.119
L 0.038 0.037 0.038 0.037 0.038 0.038
M 0.090 0.132 0.162 0.152 0.173 0.180
N 0.048 0.050 0.052 0.052 0.055 0.055

Table 3: Italian dataset: selection frequencies for the modal trajectories per
group

tails, one day earlier or later than in the modal curve. Surprisingly, the dif-

ferences do not involve the “two peak shape” described above, which seems to

be common to all the most selected estimates for the cycles belonging to this

group.

The size itself, however, cannot explain alone the average selection frequen-

cies of the modal curves of the groups. For example, we note that the selection

frequencies of the modal trajectories of groups J are generally larger than those

of group C, despite that the former group contains 65 cycles against the 286

of the latter. It is possible, indeed, that smaller groups can result more stable

because they contain observations very similar to each other. This is the case of

group J: if we look at the box-plots computed day by day (i.e., not as functional

data) on the observed cycles for each group (Figure 2), we note a very strong

homogeneity among the observations belonging to this group.

With the aim of detecting possible problematic cycles, it may be worth

deepening the analysis on the modal trajectories and their selection frequencies.

In particular, the trajectories with low selection frequency are highly relevant,

especially if they belong to groups with a large average selection frequency.

Here, as an example, we investigate the cycles with absolute minimum selection

frequency (0.028, group G) and that with minimum selection frequency in the

group D (for which the ratio minimum/average selection frequency is minimum).

The former is

14



Figure 2: Italian dataset: box-plots computed day by day on the observed cycles
for each groups. Outliers are not reported.
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t -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

y 2 3 3 5 5 5 5 2 2 2 5 5 2 2 3 2 2 2 2 2

The trajectory of the cervical mucus symptom for this cycle is peculiar, with

class 5 already reached at day -8 and an unexpected drop to class 2 between

days -4 and -2. Due to these peculiarities, it is hard for our algorithm to assign

the cycle to a specific group. It is easy to imagine that this cycle “jumps” often

among the different groups detected by the algorithm. As a consequence, very

different trajectories are estimates for this cycle during the MCMC process,

each of them very few times (low selection frequency). As a curiosity, we note

that the second and third most selected estimates among the 8 000 trajectories

obtained in the MCMC process have a shape similar to the modal trajectory of

group L.

The cycle of group D whose modal curve has minimum selection frequency,

instead, is
t -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

y na na na na na na na na 3 3 5 5 3 3 3 3 na na 2 3

In this case the issue is related to the numerous missing values in the cycle, which

also make complicated to assign the cycle to a specific group. It is worth noting

that a moderate presence of missing values does not affect the stability of the

estimates, and a comparison between number of missing values and selection

frequencies of the modal trajectories does not show any strong correspondence.

However, when the number of missing values is large (approximately more than

1/3 of the days), the problems become severe. The last cycle analyzed is an

example.

4.2 Paris data

We replicate the analysis using the same data used in the aforementioned paper

by Dunson and Colombo, introduced as “Paris data” in Section 2. Again,

we perform a MCMC algorithm, discarding the first iterations (here 4 000)

as burn-in, and then iterate the MCMC process other 8 000 times. Again,

the convergence of the parameters is checked by graphical inspection. Figure 3

report the results of our analysis, in which the estimated trajectory for each cycle

is again chosen by selecting the mode of all the different estimates obtained in

the MCMC algorithm.

In this dataset, partially due to the smaller sample size (C = 576) and the

smaller number of possible classes for the mucus symptom (K = 4), we identify

fewer clusters (groups). The characteristics of the groups are similar to those
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Figure 3: Paris data: estimation of the mucus symptom trajectories.
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Group Minimum 1st quart. Median Mean 3rd quart. Maximum
A 0.173 0.484 0.611 0.552 0.665 0.681
B 0.023 0.218 0.265 0.247 0.287 0.291
C 0.017 0.284 0.315 0.299 0.325 0.329
D 0.097 0.287 0.396 0.352 0.432 0.456
E 0.056 0.158 0.201 0.179 0.213 0.216
F 0.060 0.090 0.097 0.093 0.100 0.103
G 0.071 0.133 0.148 0.136 0.148 0.148
H 0.074 0.143 0.155 0.145 0.165 0.181

Table 4: Italian dataset: selection frequencies for the modal trajectories per
group

obtained in the Italian database: there is a gentle slope between the less fertile

status (mucus symptom class equal to 1) to the high-fertility window (class 4),

and usually a steeper decrease starting from the day immediately after the peak.

In this dataset, however, there is an example of complete symmetric trajectory

(group D). Moreover, also in group C we do not see a clear difference between

the left and the right tails of the trajectory. However, the two most numerous

groups, which jointly contain more than half cycles, show a very steep decrease

from class 4 to class 2 the day after the peak, and from class 2 to the less fertile

class after one (group B) or two (group A) additional days. Also for group E,

the status of minimum fertility is only two days after the peak. In this dataset

the most unusual group is group G, in which are included all the cycles for which

the mucus symptom is of class 3 during the eight days which follow the peak.

From a practical point of view, the different scale of measurement allows

us to use only the class 3 as possible criterion to predict the beginning of the

high-fertility window: the trajectories last on this status in almost all the cases

two days, with the exception of groups F and G, for which it lasts 3 days. More

seriously, for group E we cannot see, in the time interval considered in our

analysis, how many days the mucus symptom is of class 3. Nevertheless, this

group is relatively small (42 cycles), and, therefore, we may consider 2/3 days

after the appearance of the cervical mucus symptom of class 3 as a good point

of reference for a couple to stop/intensify the sexual intercourse according to

their desire to avoid/have a conception.

We replicate the analysis on the selection frequencies of the modal curves

for this example as well. The results, reported in Table 4, show a situation

not dissimilar to that seen in the previous dataset. In this case, we have only

one group with a large size (group A), for which the inclusion frequencies of
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the modal curves are relatively high. In this case, the homogeneity of the

observations within the groups are similar (see also Figure 4), and therefore the

group average inclusion frequency is almost proportional to the group size.

We again investigate the cycles related to the smallest selection frequencies,

obtaining results similar to those seen in the previous example. The modal

curve with minimum selection frequency,
t -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

y na na na na na 4 4 1 1 1 1 4 1 1 1 na na na na na

and that related to the smallest ratio minimum/average selection frequency,
t -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

y na na na 4 4 4 4 4 3 1 1 1 1 1 1 1 1 1 1 1

either contains several missing values or shows a peculiar shape. In particular,

in latter case, it seems that the peak day have been registered incorrectly, be-

cause the mucus symptom has class 1 at day 0 and the last day with class 4 is

t = −4.

As a final remark, we note that our results are in line with those provided

by the aforementioned paper by Dunson and Colombo. In particular, both in

their and in our study, it is possible to identify the well-known trajectory of the

cervical mucus symptom, which increases gently from a status of low fertility to

a status of high fertility, and decreases steeply after the mucus peak day.

5 Discussion

In this paper we have seen that the non-parametric Bayesian approach is suitable

to treat categorical functional data. In particular, it is a good tool to investigate

the evolution of the cervical mucus symptom during the woman menstrual cycle.

We have seen how it can be profitably used to estimate the trajectory of the

mucus symptom, to predict the beginning of the most fertile period and, in

case, to identify possible physio-pathological situations. With respect to the

latter issue, we have seen that our approach based on the computation of the

modal curves may provide, through the analysis of the selection frequencies, a

useful tool to identify cycles with peculiar characteristic. Moreover, the issue

related with the “label switching” connected with the use of a Dirichlet process

is avoided. On the other hand, our approach may be less accurate than others,

because the estimates of the trajectories are based only on a fraction of the

MCMC iterations. In the examples, we have seen that this fraction may be

very large, up to 0.702, which means that the estimates probably correspond to

those computed with any other technique, but also very small, which implies
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Figure 4: Paris data: box-plots computed day by day on the observed cycles for
each groups. Outliers are not reported.
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that the estimates of the trajectories may be influenced by the randomness of

the MCMC process. We have seen, however, that those cycles (observations)

for which the modal curves have low selection frequencies are problematic (too

many missing values) or may need further investigations (peculiar trajectories).

In the paper we have stressed the flexibility of the non-parametric Bayesian

approach. Here we have considered a simple hierarchical Bayesian model treat-

ing each cycle independently, but more complex situation may be investigated,

for example taking into account the fact that multiple cycles belong to the same

woman. Besides the flexibility of the model, an interesting and useful aspect

of this approach is related to the clustering property of the Dirichlet process.

We have seen how the split in clusters can provide useful information and allow

more specific estimates for the observed cycles (we have an estimate for each

group and not only a general one). On the negative side, we note that the sta-

tistical model is not the easiest to be explained, especially to non-statisticians.

Another weakness is the large computational effort necessary to obtain the re-

sults, in particular for the burn-in phase of the MCMC process. For theoretical

reasons, indeed, during the burn-in it is not possible to take advantage of all

the possibilities offered by the modern computational techniques, for example

the parallel computation. Nevertheless, the computational power is rapidly in-

creasing year by year, and this issue may rapidly become irrelevant.
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