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Abstract

Several variable selection procedures are available for continuous time-to-
event data. However, if time is measured in a discrete way and therefore
many ties occur models for continuous time are inadequate. We propose
penalized likelihood methods that perform efficient variable selection in
discrete survival modeling with explicit modeling of the heterogeneity in
the population. The method is based on a combination of ridge and lasso
type penalties that are tailored to the case of discrete survival. The per-
formance is studied in simulation studies and an application to the birth
of the first child.

Keywords: Variable selection, discrete survival, heterogeneity.

1 Introduction

In many applications time is measured on a discrete scale, for example, in days,
months or weeks. One can consider the measurement as a discretized version of
the underlying continuous time, but discrete time often is the natural way how
observations are collected. For example, a natural measure for the time it takes
a couple to conceive is the number of menstrual cycles, which is a truly discrete
response, see Scheike and Jensen (1997) for an application of discrete survival
models to model fertility.

Discrete survival models were already considered in the seminal paper of Cox
(1972). The logistic model was later investigated by Thompson (1977) whereas
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Prentice and Gloeckler (1978) focussed on the grouped Cox model. The repre-
sentation of hazard models as binary Bernoulli trials was propagated by Brown
(1975) and Laird and Olivier (1981). Extensions to more flexible models with
nonparametric components were proposed, for example, by Fahrmeir (1994),
Fahrmeir and Knorr-Held (1997), Fahrmeir and Kneib (2011), Tutz and Pritscher
(1996) and Kauermann et al. (2005).

The basic discrete survival model does not account for heterogeneity in the
population and is frequently too simple. The explicit modeling of heterogeneity
in the form of frailty models was considered by Ham and Rea Jr (1987) when
modeling unemployment duration. Scheike and Jensen (1997) used the clog-log
model and, for convenience, assumed a gamma distributed heterogeneity compo-
nent. Vermunt (1996) proposed a modified log linear model, which is restricted
to categorical covariates, Land et al. (2001) extended the model to allow for met-
ric covariates. Misspecified mixing distributions were investigated by Baker and
Melino (2000) and, more recently, by Nicoletti and Rondinelli (2010). Nicoletti
and Rondinelli (2010) found in their simulations that ignoring heterogeneity yields
attenuated covariate coefficients for time invariant covariates. For covariates that
vary over time attenuation was very weak.

When modeling the effects of covariates on duration one wants to iden-
tify those variables that actually have an effect. In particular, when many
explanatory variables are available, the restriction to the relevant variables is
important because simple maximum likelihood estimates typically do not exist
in high-dimensional settings. Apart from simple forward, backward and for-
ward/backward procedures not much is available to select variables in discrete
survival models.

In the present paper, variable selection for discrete survival models with a
frailty component models is obtained by using appropriately designed penalties
to account for the special features of discrete survival. In Section 2 the frame-
work of discrete survival is briefly considered. In Section 3 we use regularization
techniques to enforce variable selection. In Section 4 the results of a simulation
study are presented and in Section 5 the method is applied to real data.

2 Discrete Hazard Models Including Heterogeneity

2.1 Basic Models

Let time take values from {1, . . . , k}. If it results from intervals one has k underly-
ing intervals [a0, a1), [a1, a2), . . . . . . , [aq−1, aq), [aq,∞), where q = k− 1. Discrete
time T ∈ {1, . . . , k} means that T = t is observed if failure occurs within the
interval [at−1, at).

The main tool in modeling survival data is the hazard function. In discrete
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time it has the form

λ(t|x) = P (T = t|T ≥ t,x), t = 1, . . . , q,

which is the conditional probability for failure in interval [at−1, at) given the
interval is reached. The corresponding survivor function is

S(t|x) = P (T > t|x) =
t∏

i=1

(1− λ(i|x)).

Models for discrete survival given covariates x have the form

λ(t|x) = h(γ0t + xTγ). (1)

where h(.) is a fixed response function, which is assumed to be strictly monoton-
ically increasing. The parameters γ0t represent the baseline hazard, which is the
same for all individuals. The contribution of the predictors is captured by the
term xTγ, where xT = (x1, . . . , xp) is a vector of predictors and γT = (γ1, . . . , γp)
are the weights. The most prominent discrete survival model is the continuation
ratio model

λ(t|x) =
exp(γ0t + xTγ)

1 + exp(γ0t + xTγ)
,

which uses the logistic distribution function h(η) = exp(η)/(1 + exp(η)). An
alternative widely used model is the grouped proportional odds model

λ(t|x) = 1− exp(− exp(γ0t + xTγ)),

which uses the Gompertz distribution h(η) = 1−exp(− exp(η)) as response func-
tion. The name refers to its derivation as a grouped version of Cox’s proportional
hazard model.

The model (1) includes an unspecified baseline hazard, which is assumed to
be the same for all observations. This is frequently too strict an assumption
because it ignores heterogeneity among individuals. Therefore we will consider
the extended model, which includes potential heterogeneity. The corresponding
basic frailty model for the ith observation has the form

λ(t|x, bi) = h(bi + γ0t + xTγ), (2)

where bi is a random effect that is assumed to follow a fixed mixture distribution
with density p(.), typically the normal distribution.

2.2 Estimation with Censoring

When modeling survival data censoring has to be taken into account. In the case
of right censoring, which is considered here, for censored data it is only known
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that T exceeds a certain value but the exact value is not known. Let Ci denote
the censoring time and Ti the exact failure time for observation i. In random
censoring it is assumed that Ti and Ci are independent random variables. The
observed time is given by ti = min(Ti, Ci) as the minimum of survival time Ti
and censoring time Ci. It is often useful to introduce an indicator variable for
censoring given by

δi =

{
1 if Ti ≤ Ci,
0 if Ti > Ci,

where it is implicitly assumed that censoring occurs at the end of the interval.
Under random censoring the probability of observing (ti, δi) is given by

P (ti, δi|xi, bi) = P (Ti = ti)
δiP (Ti > ti)

1−δiP (Ci ≥ ti)
δiP (Ci = ti)

1−δi .

It should be noted that the probability is defined given the random effect bi,
which is suppressed on the right hand side of the equation. In the simple survival
model without heterogeneity bi is omitted and the probability is P (ti, δi|xi).

If one assumes that the censoring contributions do not depend on the parame-
ters that determine the survival time (non-informative in the sense of Kalbfleisch
and Prentice, 2002), one can separate the factor ci = P (Ci ≥ ti)

δiP (Ci = ti)
1−δi

to obtain the simpler form

P (ti, δi|xi, bi) = ciP (Ti = ti)
δiP (Ti > ti)

1−δi .

An important tool in discrete survival is that the probability and therefore the
corresponding likelihood can be rewritten by using sequences of binary data. By
defining for a non-censored observation (δi = 1) the sequence (yi1, . . . , yiti) =
(0, . . . , 0, 1) and for a censored (δi = 0) the sequence (yi1, . . . , yiti) = (0, . . . , 0),
the probability (omitting ci) can be written as

P (ti, δi|xi, bi) =

ti∏

s=1

λ(s|xi, bi)yis(1− λ(s|xi, bi))1−yis .

For the model without heterogeneity the random effect bi is omitted and the
corresponding log-likelihood is that of a binary response model, where λ(s|xi)
is the probability of the binary response, transition to the next category or not,
and the corresponding linear predictor for λ(s|xi) is given by γ0s + xTγ. By
construction of an appropriate design matrix estimation methods and software
for binary response models can be used. Early references for the embedding
into the framework of binary regression are Brown (1975) and Laird and Olivier
(1981), see also Fahrmeir and Tutz (2001).

In the frailty model the unconditional probability is given by

P (ti, δi|xi) =

∫
P (ti, δi|xi, bi)p(bi)dbi (3)
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and therefore by

P (ti, δi|xi) =

∫
P (Ti = ti)

δiP (Ti > ti)
1−δip(bi)dbi.

One obtains

P (ti, δi|xi) =

∫ ti∏

s=1

λ(s|xi)yis(1− λ(s|xi))1−yisp(bi)dbi

This is the unconditional probability of a random effects model for structured
binary data. Estimation can be based on integration techniques, in particular
Gauss-Hermite integration can be used, see Hinde (1982), Anderson and Aitkin
(1985). A procedure that may reduce the number of quadrature points is the
adaptive Gauss-Hermite quadrature (Liu and Pierce, 1994, Pinheiro and Bates,
1995 Hartzel et al., 2001). An alternative way to estimate random effects models
is penalized quasi-likelihood estimation, which uses the Laplace approximation
(Breslow and Clayton, 1993). Simpler estimates can be obtained under specific
assumptions. Scheike and Jensen (1997) used the grouped proportional hazard
model and assumed for mathematical convenience that exp(bi) is gamma dis-
tributed with mean 1. Then the probabilities for failure in t have an explicit
form.

3 Variable Selection by Regularization

While several procedures for variable selection are available in the case of con-
tinuous time, in particular for the Cox model (Therneau and Grambsch, 2000,
Goeman, 2010, Simon et al., 2011), discrete survival has been somewhat ne-
glected.

In the following we consider variable selection for the general model

λ(t|xit, zit, bi) = h(γ0t + xTitγ + zTitbi), (4)

with explanatory variables xit, zit, which can vary over time, and random effect
vector bi. The model with random intercepts uses zit = 1. More general, in zit
also components from xit can be included so that some predictors have subjects-
specific slopes. For the distribution p(·) of the random effect it is assumed that
bi ∼ IN(0,Q(ρ)), where ρ is a vector of unknown parameters that specifies the
covariance matrix.

With the parameters that determine the baseline hazard collected in γT0 =
(γ01, . . . , γ0k), the likelihood for the frailty model has the form

l(γ0,γ,ρ) =
n∑

i=1

log

(∫ ti∏

s=1

λ(s|xit, zit, bi)yis(1− λ(s|xit, zit, bi))1−yisp(bi)dbi

)
.

(5)
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With yTi = (yi1, . . . , yiti) and f(yi|γ0,γ,ρ) =
∏ti

s=1 λ(s|xit, zit, bi)yis(1 −
λ(s|xit, zit, bi))1−yis one obtains the simpler form

l(γ0,γ,ρ) =
n∑

i=1

log

(∫
f(yi|γ0,γ,ρ)p(bi)dbi

)
,

which is the log-likelihood of a specific random effects model for binary responses.
Along the lines of Breslow and Clayton (1993) one can derive the approximation

lapp(γ0,γ,ρ, b) =
n∑

i=1

log(f(yi|γ0,γ,ρ))− 1

2
bTQb(ρ)−1b,

where bT = (bT1 , . . . , b
T
n ) collects all the random effects and Qb denotes the block-

diagonal covariance matrixQb(ρ) = diag(Q(ρ), . . . ,Q(ρ)). Based on the concept
of penalized quasi-likelihood (PQL) as suggested by Breslow and Clayton (1993),
Lin and Breslow (1996) and Breslow and Lin (1995) maximization of the log-
likelihood lapp(.) can be obtained by maximizing the log-likelihood separately with
respect to the parameters γ0,γ, b and ρ. Given an estimate ρ̂ one maximizes the
profile log-likelihood lapp(γ0,γ, ρ̂, b) and separately the random effects parameter
ρ. For details of the algorithm see also Wolfinger and O’Connell (1993), Littell
et al. (1996) and Vonesh (1996).

Variable selection in generalized linear models can be obtained by use of pe-
nalized log-likelihood concepts. In the famous lasso the log-likelihood is replaced
by a penalized log-likelihood that includes a penalty term of the form λ

∑p
i=1 |γi|,

see Tibshirani (1996), Park and Hastie (2007) and Zou (2006). As shown by
Groll and Tutz (2014), for simple binary random effects models the inclusion of
a lasso penalty can be used within the framework of penalized quasi-likelihood
yielding selection procedures for random effects models. Groll and Tutz (2014)
gave a detailed algorithm which is based on an approximate EM-method.

Although estimation in discrete survival analysis can be embedded into a
framework for binary responses direct use of the method cannot be recommended.
A specific feature of discrete survival models is that it contains the baseline hazard
specified by the parameters in γ0. Even if one has only a moderate number of
time intervals (or correspondingly discrete time points) estimation of the baseline
hazard will be very unstable. Therefore one has to include an additional penalty
term. The penalized approximate log-likelihood that is used has the form

lp(γ0,γ,ρ, b) =
n∑

i=1

log(f(yi|γ0,γ,ρ))− 1

2
bTQb(ρ)−1b− λ

p∑

i=1

|γi| − λsPen(γ0).

The lasso penalty term λ
∑p

i=1 |γi| enforces variable selection with the strength of
selection determined by the size of λ. For λ = 0, no selection is obtained whereas
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for λ → ∞ all predictors are excluded from the model. The additional penalty
term λsPen(γ0) is chosen to obtain smooth estimates of the baseline hazard. We
consider two choices. One is the ridge type penalty, which is given by

Pen(γ0) =

q∑

t=1

γ2
0t.

For λs > 0 it stabilizes estimates. In particular it prevents parameters γi to
deteriorate, which is bound to happen for small to moderate sample sizes. A more
elaborate penalty term is used after expanding the baseline hazard as a sum of
basis functions. We used the expansion γ0t =

∑m
s=1 αsφs(t), where φ1(.), . . . , φm(.)

are B-splines of order q on an equally spaced grid. For the definition of B-splines
see, for example, Dierckx (1993). The corresponding penalty that is used within
the framework of penalized splines (P-splines; Eilers and Marx, 1996) is

Pen(γ0) =
m∑

j=d+1

(∆dγ0j)
2,

where ∆ is the difference operator, operating on adjacent B-spline coefficients,
that is, ∆γ0j = γ0j − γ0,j−1,∆

2γ0j = ∆(γ0j − γ0,j−1) = γ0,j − 2γ0,j−1 + γ0,j+2.
The penalty has the effect that the parameters are estimated smoothly with the
degree of smoothness determined by the tuning parameter λs. If a penalty of
order d is used and the degree of the B-spline is higher than d, for large values
of λ the fit will approach a polynomial of degree d− 1.

By including an additional term that ensures that the baseline hazard param-
eters are estimable one obtains an additional tuning parameter. In addition to λ
one has to select a value of λs. But in simulations we found that in general it is
not worthwhile to select both parameters by cross-validation (though especially
in very high-dimensional settings performance could be further improved, if also
λs is selected on a grid of possible values). While some care should be taken to
select λ, which determines the performance of the selection procedure, it suffices
to choose a small value for λs. In the application we chose λs = 0.1 and in
our simulations we chose λs ∈ {0.01, 0.05, 0.1, 0.5, 1}, depending on the choice of
model parameters. Note here that in general for the ridge type penalty higher
values of λs had to be chosen than for the expansion in basis functions.

4 Simulation Study

The underlying model is a random intercept logit model for discrete survival data
with predictor

ηit = γ0t +

p∑

j=1

xijγj + bi, i = 1, . . . , n, t = 1, . . . , q.
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Figure 1: Shape of the discrete baseline function γ01, . . . , γ0q

The baseline hazard is specified by γ0t = 2ξt−2.3, where ξt = fΓ(t−2) with fΓ(t)
denoting the density of a Gamma distribution Γ(ζ, θ). Shape and scale parameter
were chosen as ζ = 5, θ = 1. This results in a baseline function with a moderate
hump. It is shown in Figure 1.

The linear effects are given by γ1 = −4, γ2 = −4, γ3 = −4, γ4 = 6, γ5 = 6 and
γj = 0, j = 6, . . . , 500. We chose the settings p = 5, 50, 100, 500. For j = 1, . . . , p
the vectors xTi = (xi1, . . . , xip) were drawn independently with components fol-
lowing a uniform distribution within the interval [0, 1]. The number of clusters
was set to n = 100 and the random effects were specified by bi ∼ N(0, σ2

b ) with
σb ∈ {0, 1, 2}. The censoring probabilities were chosen as πcens ∈ {0.05, 0.2}.
Finally, for each subject i = 1, . . . , 100, we conduct the following simulation
scheme.
For t = 1, . . . , q:

(a) simulate a binary response variable by yit ∼ B(1, λ(t|xi));

(b) (b1) if yit = 1 stop and set Ti = t;

(b2) else, draw a censoring random variable C ∼ B(1, πcens); if C = 1 stop
and set Ti = t, else set t = t+ 1;

All parameters and interval boundaries have been chosen such that the discrete
distribution of the number of repeated measurements Ti (which represents the
event or censoring time, respectively) is comparatively balanced.

In the following we use the glmmLasso algorithm (Groll and Tutz, 2014) for
two different fitting approaches: in the first approach (denoted by glmmLassodis)
we fit the model directly, using a small ridge penalty on the parameters γ0t, t =
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1, . . . , k and by specifying suitable design matrices. The second approach (de-
noted by glmmLassosmooth) fits a GLMM together with a smooth baseline haz-
ard based on penalized B-spline expansion (Eilers and Marx, 1996). For both
L1-regularized approaches the optimal tuning parameter λ has been determined
using the Bayesian Information Criterion (BIC, see Schwarz, 1978).

Fitting of the model can be obtained by various functions. After constructing
the appropriate design matrix, the R-functions glmmPQL (Venables and Ripley,
2002), glmmML (Broström, 2009) and glmer (Bates and Maechler, 2010) are able
to fit the model. The glmmPQL routine is provided by the MASS library. It operates
by iteratively calling the R-function lme from the nlme library and returns the
fitted lme model object for the working model at convergence. For more details
about the lme function, see Pinheiro and Bates (2000). The glmmML function
is available in the glmmML package (Broström, 2009) and features two different
methods of approximating the integrals in the log-likelihood function, Laplace
and Gauss-Hermite, whereas for the first method the results coincide with the
results of the glmmPQL routine. Unfortunately, for both functions no model testing
methods are available, thus no subset selection procedures can be performed.

Fitting of Frailty Models with Variable Selection

With the focus on variable selection one can use the glmer function from the lme4
package (Bates and Maechler, 2010), which provides model testing based on an
analysis of deviance. We use forward subset selection in order to perform variable
selection and compare the results with our glmmLasso algorithm, implemented in
the corresponding R-package glmmLasso (Groll, 2011). We restrict consideration
to forward procedures because forward/backward procedures imply huge compu-
tational costs. It should be mentioned that the glmer function also features two
different methods of approximating the integrals in the log-likelihood function,
Laplace and adaptive Gauss-Hermite. We focused on the former and call the
corresponding forward selection procedure glmer-select.

An alternative that fits GLMM together with a smooth baseline hazard is
provided by the gamm4 function in the corresponding package gamm4 (Wood and
Scheipl, 2013). As the function also provides model testing based on an analysis
of deviance, one can use forward subset selection in order to obtain variable
selection. The corresponding procedure is called gamm4-select.

Fitting of Basic Model with Variable Selection

A function that is able to fit the model without random effects after specification
of an appropriate design matrix is the glmnet function from the corresponding
package glmnet (Friedman et al., 2010). The function allows to fit an ordi-
nary GLM with Lasso regularization, and therefore selection of variables, but
no random effects can be incorporated. Hence, in the method called glmnet no
estimates for the random effects variance σ2

b are available.
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A similar Lasso-based regularization approach was provided by Goeman
(2010) and is implemented in the package penalized (Goeman, 2011). The func-
tion is also designed for ordinary GLMs and again, no estimates for the random
effects variance σ2

b are available. It is simply called goeman.
Finally, a GLM together with a smooth baseline hazard can be fitted by use

of the gam function in the R-package mgcv (Wood, 2006). Similar to gamm4, the
function also provides model testing based on an analysis of deviance and one
can use forward subset selection. The method is called gam-select.

Evaluation of Performance

The performance of estimators was evaluated separately for the structural com-
ponents and the variance. By averaging across 50 training data sets we con-
sider mean squared errors for γ0 = (γ01, . . . , γ0k)

T , γ and σb given by mse0 :=
||γ0− γ̂0||2, mseγ := ||γ− γ̂||2, mseσb := (σb− σ̂b)2. The means of these quantities
are presented in Tables 1 to 3 together with the corresponding standard errors
in brackets. The results for varying proportions of censoring are rather similar.
Therefore we give the results for the low censoring case (πcens = 0.05) only.

It is seen that in terms of mse0 the two versions of glmmLasso perform very
well (except for single outliers in the p = 500 settings: here the performance
could be considerably improved, if also λs would be selected on a grid of pos-
sible values). Among the three methods that do not account for heterogeneity
gam-select works best for small p, but glmnet outperforms the others for larger
p. Both methods that fit frailty models, i.e. glmer-select and gamm4-select,
show nonsatisfying results with respect to all considered performance measures,
with some exceptions in the p = 5 scenarios. Note that we do not present the
gam-select and gamm4-select results for p = 500, because the methods were
quite slow1 and anyhow the results were not satisfactory.

In terms of mseγ , which is more important since it refers to the estimation of
variable effects, the picture is very similar, with the exception of goeman, which
now is among the best performers, but showed very bad results for mse0. The
comparison with the procedure glmmLassodis is visualized in Figures 2 and 3.
It shows that the bad performance of the procedures that fit frailty models is
mainly due to dab fits in some data sets. The estimation procedures are rather
unstable so that for some data sets the performance deteriorates. In contrast,
the methods that ignore the frailty are more stable. The exception are the lasso
based procedures, which are stable and show good performance. Overall it is seen
that all methods suffer if the model contains a heterogeneity component.

In terms of mseσb (Table 3), the glmmLasso versions provide very good results
if no or only a small random component is in the model, but underestimate the
heterogeneity in the case σb = 2.

1On a MacBook Pro with 2.5 GHz Intel Core i5 processor the methods managed about 10
simulation runs per week.
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Additional information on the performance of the algorithm was collected
in falseneg (f.n.), the mean over all 50 simulations of the number of variables
γj, j = 1, 2, 3, 4, 5, that were not selected and in falsepos (f.p.), the mean over all
50 simulations of the number of variables γj, j = 6, . . . , p, that were selected. In
addition, we give the number of simulation runs, where the fitting procedure did
not converge (or produced MSE-results bigger than 106; denoted by “n.c.”), see
Table 4. In terms of false positives and negatives none of the other procedures
comes close to the performance of the lasso based fits. goeman and gam-select

have very large false positive rates, glmnet shows very large false negative rates.
The frailty models have too large false positive rates although false negative rates
are low. Their performance is comparable to that of gam-select. It is surprising
that also in cases with frailty in the data generating models the performance is
only slightly better than for gam-select, which ignores the heterogeneity. But
it should be noted that gam-select did not converge in several scenarios, in
particular in the high censoring rate setting the number of failed fits is larger
than for the models that include heterogeneity.

Finally, in order to make the different approaches comparable with respect to
computational efficiency, we present results of the average computational times
(in minutes; including the determination of the tuning parameter for the L1-
regularized approaches and including the forward selection procedure for glmer,
gamm4 and gam), exemplarily for σb = 0 and πcens = 0.2 in Table 5. It is seen that
for all forward selection procedures the computational time is disproportionally
increasing with the number of noise variables in comparison to the other methods.

glmer-select gamm4-select glmnet goeman gam-select glmmLassodis glmmLassosmooth
σb p mse0 mse0 mse0 mse0 mse0 mse0 mse0
0 5 618.47 (1674.29) 42.72 (151.20) 39.75 (50.83) 815.30 (657.87) 18.83 (30.31) 13.75 (10.71) 10.10 (10.32)
0 50 1319.15 (2127.41) 13272.82 (52518.12) 40.65 (48.85) 742.62 (689.83) 167.58 (460.30) 34.20 (75.87) 17.17 (20.57)
0 100 5540.79 (6907.83) 118966.60 (221940.20) 38.37 (47.78) 710.52 (629.62) 144.86 (251.92) 106.70 (161.11) 74.35 (145.34)
0 500 - (-) - (-) 35.94 (50.58) 628.08 (577.70) - (-) 139.01 (206.04) 347.70 (1409.34)
1 5 896.18 (2738.33) 334.98 (1889.53) 37.70 (57.11) 825.18 (829.33) 19.03 (33.75) 19.72 (35.50) 11.50 (11.95)
1 50 3447.94 (9975.25) 29597.94 (150606.60) 43.05 (65.74) 662.65 (552.47) 99.19 (242.47) 75.05 (150.14) 38.60 (55.22)
1 100 23559.33 (86306.28) 109559.10 (245934.90) 31.38 (54.13) 668.47 (616.66) 125.88 (177.88) 88.27 (147.48) 77.95 (124.79)
1 500 - (-) - (-) 24.86 (50.41) 650.64 (754.18) - (-) 132.41 (201.37) 105.67 (147.98)
2 5 552.59 (1326.73) 118.20 (667.26) 28.62 (59.42) 762.90 (802.95) 20.15 (26.89) 23.92 (19.88) 17.20 (23.43)
2 50 2432.41 (4937.37) 369.62 (1088.57) 32.53 (61.42) 566.27 (497.25) 107.94 (240.01) 54.81 (77.12) 31.64 (33.14)
2 100 5200.14 (7926.65) 128396.50 (244808.80) 29.51 (59.98) 589.93 (555.21) 269.84 (559.60) 82.42 (87.24) 80.68 (111.01)
2 500 - (-) - (-) 27.34 (58.56) 532.20 (463.00) - (-) 134.90 (295.95) 71.60 (93.96)

Table 1: Results for mse0 for glmmLasso and alternative approaches (standard

errors in brackets) with low censoring rate (πcens = 0.05)

5 Application

In the following we will illustrate the proposed method on a real data set that is
based on Germany’s current panel analysis of intimate relationships and family
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glmer-select gamm4-select glmnet goeman gam-select glmmLassodis glmmLassosmooth
σb p mseγ mseγ mseγ mseγ mseγ mseγ mseγ
0 5 450.52 (1782.90) 55.64 (251.93) 77.86 (36.04) 45.28 (25.74) 15.19 (20.69) 5.81 (5.76) 6.73 (6.25)
0 50 6217.44 (21150.96) 23582.23 (52518.12) 83.19 (30.97) 52.25 (23.39) 148.84 (451.86) 15.30 (18.50) 13.87 (14.16)
0 100 11682.99 (13842.38) 125906.90 (157816.40) 84.04 (28.98) 54.94 (21.74) 224.83 (379.39) 27.10 (29.92) 25.27 (24.51)
0 500 - (-) - (-) 97.86 (18.14) 68.12 (13.63) - (-) 50.05 (25.72) 106.96 (357.44)
1 5 574.02 (1935.87) 48.19 (240.37) 78.13 (39.08) 55.69 (24.75) 16.72 (24.19) 7.46 (10.94) 6.05 (4.32)
1 50 4699.25 (8465.54) 14033.57 (70491.35) 87.37 (30.34) 59.93 (22.37) 91.81 (205.29) 26.49 (23.79) 24.84 (35.66)
1 100 4443.44 (163900.60) 122569.00 (195076.30) 94.37 (23.68) 62.52 (19.58) 117.87 (101.59) 31.30 (28.56) 41.63 (50.31)
1 500 - (-) - (-) 104.17 (14.24) 74.94 (12.39) - (-) 55.82 (29.12) 76.95 (104.04)
2 5 269.12 (904.73) 88.27 (322.12) 101.60 (20.44) 79.20 (19.93) 36.36 (24.95) 29.10 (17.57) 27.20 (16.78)
2 50 2894.16 (4972.34) 135.90 (335.34) 104.00 (17.07) 85.50 (13.38) 52.43 (45.95) 43.39 (22.91) 39.30 (22.63)
2 100 8534.39 (12730.98) 156636.10 (219303.00) 107.25 (15.59) 86.65 (12.84) 198.69 (419.13) 50.79 (24.68) 45.21 (24.68)
2 500 - (-) - (-) 108.80 (10.40) 92.57 (10.80) - (-) 77.06 (25.48) 74.47 (25.50)

Table 2: Results for mseγ for glmmLasso and alternative approaches (standard

errors in brackets) with low censoring rate (πcens = 0.05)
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Figure 2: Boxplots of log(mseγ(·)/mseγ(glmmLassodis)) for glmmLasso and al-

ternative approaches for low censoring rate (πcens = 0.05, σb = 0)

dynamics (pairfam), release 4.0 (Nauck et al., 2013). The panel was started
in 2008 and contains about 12.000 randomly chosen respondents from the birth
cohorts 1971-73, 1981-83 and 1991-93. Pairfam follows the cohort approach,
that is, the main focus is on an anchor person of a certain birth cohort, who
provides detailed information, orientations and attitudes (mainly with regard to
their family plans) of both partners in interviews that are conducted yearly. A
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Figure 3: Boxplots of log(mseγ(·)/mseγ(glmmLassodis)) for glmmLasso and al-

ternative approaches for low censoring rate (πcens = 0.05, σb = 2)

glmer-select gamm4-select glmmLassodis glmmLassosmooth
σb p mseσb mseσb mseσb mseσb
0 5 22.93 (91.79) .80 (1.86) .12 (.19) .17 (.27)
0 50 91.37 (179.33) 1003.398 (3985.08) .15 (.22) .15 (.29)
0 100 244.83 (251.55) 1458.40 (5951.23) .11 (.15) .14 (.29)
0 500 - (-) - (-) .20 (.28) .09 (.01)
1 5 23.47 (81.63) .48 (1.21) .43 (.20) .43 (.17)
1 50 119.75 (189.64) 464.56 (3275.09) .34 (.18) .47 (.13)
1 100 299.95 (308.86) 864.78 (3780.48) .47 (.12) .46 (.12)
1 500 - (-) - (-) .31 (.19) .48 (.06)
2 5 18.10 (63.14) 1.12 (1.11) 2.49 (.79) 2.39 (.81)
2 50 118.84 (175.74) 8.40 (26.64) 2.17 (.95) 2.82 (.46)
2 100 212.45 (207.96) 1563.27 (8162.37) 2.88 (.13) 2.88 (.14)
2 500 - (-) - (-) 2.58 (.53) 2.89 (.03)

Table 3: Results for mseσb for glmmLasso and alternative approaches (standard

errors in brackets) with low censoring rate (πcens = 0.05)

detailed description of the study can be found in Huinink et al. (2011).
The present data set was created by Jasmin Abedieh during her master thesis,

in order to analyze the relationship between the transition into parenthood and
the leisure behavior of the parents. It consists of a sample of 1238 observations
stemming from 690 anchor women living in Germany, who have participated in
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glmer-select gamm4-select glmnet goeman gam-select glmmLassodis glmmLassosmooth
σb p n.c. f.p. f.n. n.c. f.p. f.n. n.c. f.p. f.n. n.c. f.p. f.n. n.c. f.p. f.n. n.c. f.p. f.n. n.c. f.p. f.n.
0 5 0 0 0.06 0 0 0.16 1 0 1.96 1 0 0.18 0 0 0.44 0 0 0 0 0 0.04
0 50 1 3.69 0.12 1 3.27 0.14 1 1.18 2.02 2 4.31 0.25 1 4.33 0.20 0 0.98 0.26 0 0.72 0.14
0 100 24 5.12 0.23 4 5.72 0.17 1 2.61 1.96 0 5.74 0.28 29 6.10 0.10 0 1.96 0.52 0 1.26 0.34
0 500 - - - - - - 1 1.04 2.69 0 8.60 0.44 50 - - 0 1.80 1.80 0 2.74 1.40
1 5 0 0 0.06 0 0 0.16 0 0 2.16 2 0 0.25 0 0 0.44 0 0 0.12 0 0 0.04
1 50 1 3.96 0.16 0 4.82 0.16 0 1.62 2.32 2 5.50 0.27 1 4.53 0.16 0 1.26 0.78 0 1.26 0.50
1 100 14 5.89 0.39 2 11.52 0.21 0 0.76 2.60 2 6.54 0.31 26 6.58 0.25 0 2.04 0.70 0 1.92 0.56
1 500 - - - - - - 0 0.76 3.14 1 9.65 0.55 50 - - 0 2.88 1.92 0 3.36 1.54
2 5 0 0 0.30 0 0 0.28 0 0 3.04 0 0 0.80 0 0 0.70 0 0 0.58 0 0 0.44
2 50 0 4.24 0.46 0 4.08 0.36 0 0.44 3.20 0 2.30 0.98 0 5.12 0.44 0 1.42 1.26 0 0.78 1.14
2 100 15 7.29 0.54 6 12.80 0.45 0 0.74 3.58 0 3.74 1.06 23 7.56 0.44 0 1.52 1.60 0 1.86 1.20
2 500 - - - - - - 0 0.56 3.62 1 7.82 1.51 50 - - 0 2.84 1.94 0 1.64 2.72

Table 4: Number of simulation runs, where the fitting procedures did not con-

verge (n.c.) together with false positives (f.p.) and false negatives (f.n.) for

glmmLasso and alternative approaches for low censoring rate (πcens = 0.05)

glmer-select gamm4-select glmnet goeman gam-select glmmLassodis glmmLassosmooth
σb p mseα mseα mseα mseα mseα mseα mseα
0 5 0.85 0.51 0.11 0.16 0.02 1.30 1.4
0 50 33.92 31.26 0.19 0.31 0.62 1.27 1.65
0 100 116.59 140.09 0.24 0.39 1.49 1.75 1.75
0 500 > 300 > 300 0.37 1.11 - 25.49 24.96

Table 5: Results for average computational times (in minutes) for glmmLasso

and alternative approaches with high censoring rate (πcens = 0.2)

at least two of the first four pairfam waves and who fulfill the following criteria:

• they live in a relationship;

• their date of birth is available;

• both partners are generative, heterosexual, childless and not pregnant at
the time of the interview.

In addition to several control variables explanatory variables that describe the
leisure behavior of the women are included. A detailed description of all con-
sidered covariates is given in Table 6. The data set originally contained some
missing values, which have been imputed by a simple last value carried forward
method2. Since the empirical distributions of the variables reldur and leisure
are quite skewed we have transformed them via the third square-root (which is
similar to taking the logarithm).

2Also multiple imputation techniques have been used, which are implemented in the soft-
ware R e.g. in the packages mi (Gelman et al., 2013) and mice (van Buuren and Groothuis-
Oudshoorn, 2013). As in the work of Abedieh it was shown that all different imputation tech-
niques lead to almost indistinguishable results, our analysis is based on the data set obtained
via the last value carried forward method. For a very helpful description of the MICE-technique
together with illustrative examples, see van Buuren and Groothuis-Oudshoorn (2011).
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Variable Description

child a dummy (∈ {0, 1}) indicating, if the woman gave birth to
her first child within the regarded interval (or is currently pregnant);

age age (in years) of the anchor woman;
page age (in years) of the male partner;
sat6 degree of live satisfaction (∈ {0, 1, ..., 10}) of the anchor woman;
reldur duration of the relationship (in months);
relstat status of relationship (categorical with three levels:

“living apart together”, “cohabit”, “married”);
yeduc years of education (∈ [8, 20]) of the anchor woman;
pyeduc years of education (∈ [8, 20]) of the male partner;
casprim employment status of the anchor woman (categorical with

five levels: “in education”, “full-time employed”,
“part-time employed”, “non-working”, “other”);

pcasprim employment status of the male partner (categorical — see casprim);
siblings number of siblings of the anchor woman
hlt7 average sleep length of the anchor woman (in hours)
leisure (approx.) yearly leisure time of the anchor woman (in hours)

spent for the following five major categories: 1) bar/cafe/restaurant;
2) sport; 3) internet/tv; 4) meet friends; 5) discotheque;

leisure.partner relative proportion (∈ [0, 1]) of leisure that the partner
spends together with the anchor woman

holiday time of the anchor woman (in weeks) spent for holiday

Table 6: Description of covariates for the pairfam data: response (top), control

(middle) and leisure variables (bottom).

For each of the anchor women from the two age groups [24; 30] and [34; 40]
it is known if she has given birth to her first child within the year between two
interview dates; altogether, 137 events are observed. We consider years as the
unit in our discrete-survival model starting with 24 years, which is the age of
the youngest woman in the sample. The baseline hazard, which corresponds to
the effect of age, is certainly non-linear. Therefore, it is included in the form of
a penalized smooth effect, which should be able to model the observation gap
within ages. Similarly, we allow for a non-linear effect of their male partner’s
age, simply by including higher potencies of this covariate. For the categorical
variables relstat, casprim and pcasprim the reference levels “living apart together”
and “non-working”, respectively, are chosen. It should be noted that all variables
can vary over time an are included as time-varying. Including random intercepts
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bi for heteroscedastic baseline hazards, the following model is fitted:

λ(t|xit, bi) = h

(
f0(age) + siblingsit β1 + sat6it β2 + relstat.cohabit β3

+relstat.marriedit β4 + yeducit β5 + pyeducit β6

+casprim.educit β7 + casprim.fulltimeit β8

+casprim.parttimeit β9 + casprim.otherit β10

+pcasprim.educit β11 + pcasprim.fulltimeit β12 (6)

+pcasprim.parttimeit β13 + pcasprim.otherit β14

+pageit β15 + page2
it β16 + page3

it β17

+page4
it β18 + (reldur

(1/3)
it ) β19 + (leisure(1/3))it β20

+leisure.partnerit β21 + hlt7it β22 + holidayit β23 + bi

)
,

In principle the model can be fitted by gam, gamm4 and glmmLasso, but for gamm4
there was a warning message saying that the procedure did not converge. In
addition, the variance of the random effect was absurdly large (6.38). Therefore,
we do not give the fitted values for this procedure. Due to the presence of
categorical covariates, we abstained from performing forward subset selection for
gam and instead refitted the model containing only those covariates that turned
out to be significant in a first fit of the full model (α = 0.01). To demonstrate
the difference between AIC and BIC with regard to model sparsity, we used
both criteria to select the tuning parameter λ in glmmLasso. The additional
tuning parameter controlling the smoothness of the baseline hazard has been
fixed to λs = 0.1. The results of the estimation of fixed effects and the level of
heterogeneity σ̂b are given in Table 7 and the corresponding coefficient built-ups
(though before performing the final Fisher scoring re-estimation step implemented
in the glmmLasso function) are illustrated in Figure 4.

All used approaches include the status of the relationship, with higher hazard
rates obtained for stronger forms of the relationship. With gam and glmmLasso

with AIC also the time spent for holidays was found to have a positive effect.
When using glmmLasso with AIC in addition the employment status of the women
was found to be influential, with all categories having a positive effect on the
transition into motherhood when compared to the reference level “non-working”.
The effect is strongest for women with a full-time job. The fitting of models
that account for heterogeneity support that the frailty should be included in the
model.
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gam glmmLassosmooth (AIC) glmmLassosmooth (BIC)

intercept -3.24 (0.43) -1.43 (3.94) -1.40 (3.92)
page - - -
page2 - - -
page3 - - -
page4 - - -
hlt7 - - -
sat6 - - -

reldur(1/3) - - -
siblings - - -
relstat:cohab 1.03 (0.30) 0.50 (0.15) 0.52 (0.15)
relstat:married 1.95 (0.32) 0.81 (0.14) 0.82 (0.13)
yeduc - - -
pyeduc - -0.21 (0.10) -

leisure(1/3) - - -
leisure.partner - - -
holiday 0.18 (0.08) 0.21 (0.09) -
casprim:educ - 0.39 (0.46) -
casprim:fulltime - 0.74 (0.50) -
casprim:parttime - 0.38 (0.26) -
casprim:other - 0.17 (0.21) -
pcasprim:educ - - -
pcasprim:fulltime - - -
pcasprim:parttime - - -
pcasprim:other - - -
σ̂b - 0.53 0.53

Table 7: Estimated linear effects and standard deviation of the random intercept

for the pairfam data with gam and glmmLasso (standard errors in brackets).
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Figure 4: Coefficient built-ups for glmmLasso for the pairfam data (before

running the final Fisher scoring re-estimation step); the optimal value of the

penalty parameter λ with AIC/BIC is shown by the two dashed vertical lines.
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In Figure 5 the estimates of the smoothed baseline hazard in terms of the
variable “age” are shown. While for gam and gamm4 straigth lines are fitted, the
results of glmmLasso of manifest the typical non-linear and bell-shaped course
with a maximum in the mid-twenties (grey line: AIC, black line: BIC).
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Figure 5: Estimates of the smoothed baseline hazard in terms of “age” for gam

(left)and glmmLasso (right; grey line: AIC, black line: BIC) for the pairfam data.

6 Concluding Remarks

Procedures for efficient variable selection in discrete survival modeling including
heterogeneity have been proposed that are based on a combination of ridge and
lasso type penalties. The performance of the procedures was studied in simulation
studies and an application to the birth of the first child. It turned out that the
procedures yield stable estimates in cases where methods that do not include
variable selection typically fail because of the complexity of the fitting task.

More precisely, the simulations have shown that also simple forward, backward
and forward/backward procedures are clearly outperformed, regardless of whether
the heterogeneity was accounted for in the fitting approaches or not. These simple
attempts to variable selection only work well when few covariates are present. For
a large number of covariates they are very time-consuming and either produce
high false positive rates or exorbitant MSEs and hence, are not useful.

Lasso-based regularization approaches designed for ordinary GLMs and there-
fore ignoring heterogeneity, such as the glmnet and the penalized R-packages,
performed unexpectedly well, even in scenarios with frailty in the data gener-
ating models. This is somewhat surprising as it has been shown that both the
hazard rates (see for example Heckman and Singer, 1984) and the effects of the
observed covariates (see for example Lancaster, 1990, Van den Berg, 2001) tend
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to be biased, if unobserved heterogeneity is disregarded. However, glmnet pro-
duces clearly higher false negative rates than our proposed lasso approach, which
includes heterogeneity, whereas the penalized package has problems to fit the
baseline hazard. In summary, our proposed lasso approach represents a strong
competitor for efficient variable selection in discrete survival modeling including
heterogeneity.

As in several applications the influence of some covariates may change over
time, a worthy extension could be to adapt the proposed variable selection pro-
cedures to models including time-varying effects. In these models, more sophisti-
cated problems of model selection arise, as one has to determine which covariates
should be included in the model, or, which of the covariates included have a
time-varying effect. So a future objective is to develop penalization approaches
for variable selection in discrete survival frailty models with time-varying coef-
ficients, such that single varying effects are either included, are included in the
form of a constant effect or are totally excluded. The main challenge is the con-
struction of appropriate penalty terms that are able to distinguish between these
effects.

Acknowledgements

This article uses data from the German family panel pairfam, coordinated by
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