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Abstract

To perform model selection in the context of multivariable regression, automated vari-
able selection procedures such as backward elimination are commonly employed. However,
these procedures are known to be highly unstable. Their stability can be investigated using
bootstrap-based procedures: the idea is to perform model selection on a high number of boot-
strap samples successively and to examine the obtained models, for instance in terms of the
inclusion of specific predictor variables. However, from the literature such bootstrap-based
procedures are known to yield misleading results in some cases. In this paper we aim to thor-
oughly investigate a particular important facet of these problems. More precisely, we assess
the behaviour of regression models—with automated variable selection procedure based on
the likelihood ratio test—fitted on bootstrap samples drawn with replacement and on subsam-
ples drawn without replacement with respect to the number and type of included predictor
variables. Our study includes both extensive simulations and a real data example from the
NHANES study. The results indicate that models derived from bootstrap samples include
more predictor variables than models fitted on original samples and that categorical predictor
variables with many categories are preferentially selected over categorical predictor variables
with fewer categories and over metric predictor variables. We conclude that using bootstrap
samples to select variables for multivariable regression models may lead to overly complex
models with a preferential selection of categorical predictor variables with many categories.
We suggest the use of subsamples instead of bootstrap samples to bypass these drawbacks.

∗Corresponding author. Email: susanne.rospleszcz@lmu.de.
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1 Introduction

In biometrical applications, multivariable regression is commonly used to model the association
between an outcome and candidate predictor variables or to provide a simple interpretable predic-
tion model for the outcome. Selection of the appropriate predictor variables is of key importance.
Neglecting to include a predictor variable with a strong effect on the outcome obviously leads to
a suboptimal model, while incorporating too many variables can result in serious overfitting and
negatively affect model interpretability as well as prediction accuracy. To address this issue, auto-
mated selection procedures such as stepwise or backward elimination have been suggested. These
methods, based either on a test procedure such as the likelihood ratio test (LR-test) or another
selection criterion such as the Akaike Information Criterion (AIC), are now widely employed in
biometrical applications. However, they are known to be highly unstable in the sense that a small
change in the data might lead to a substantially different model (Sauerbrei et al.; 2011).

In the two last decades, the use of resampling methods has been propagated for stability
investigations in this context (Altman and Andersen; 1989; Royston and Sauerbrei; 2003). Non-
parametric bootstrapping, i.e. drawing with replacement from the original sample and thereby
generating new data sets of the same size as the original one, is a method widely used for this
purpose. Bootstrap-based procedures may allow approximate inference such as, for example, the
derivation of confidence intervals in situations where parametric procedures do not exist or are
computationally unfeasible.

The use of bootstrap-based methods has been proposed for model stability investigations in the
context of automated selection methods such as, for instance, backward elimination (Sauerbrei
and Schumacher; 1992; Austin and Tu; 2004). The considered variable selection procedure is
applied to a large number of bootstrap samples successively as if they were the original sample.
The inclusion frequencies over all bootstrap samples can then be calculated for each predictor
variable. This percentage of inclusion can be used to assess the importance of the respective
variable (Gong; 1982; Chen and George; 1985; Sauerbrei and Schumacher; 1992; Sauerbrei et al.;
2011). This method has been employed in numerous biomedical applications to investigate the
stability of models (Halabi et al.; 2003; Ette; 1997) as well as for validation (Motzer et al.; 1999)
and for the selection of predictor variables for prognostic models (Bruneel et al.; 2010; Heymans
et al.; 2007).

However, it has been reported in various contexts within the biometrical field (Bollen and
Stine; 1992; Wagenmakers et al.; 2004; Binder and Schumacher; 2008) that the distributions of
test statistics derived from bootstrap samples differ from the distributions of test statistics derived
from original samples; see Janitza et al. (2014) for a recent overview and theoretical considerations
substantiating these ideas. Yet, to date the practical impact of these problems in bootstrap-based
model selection procedures for multivariable regression is largely unknown.

In this context, the objective of the present paper is to compare regression models selected
through a backward elimination procedure using the p-value of the LR-test as an elimination
criterion, applied to original samples, bootstrap samples drawn with replacement and subsam-
ples drawn without replacement, respectively. Note that similar results are expected using other
variants of variable selection, as suggested both by theory (Janitza et al.; 2014) and preliminary
empirical results. We aim to identify differences between models derived from the different types
of samples with regard to the number and type of included variables. For this purpose we perform
extensive simulation studies under different settings and illustrate our findings using real data
from the 2007 cycle of the NHANES study (National Center for Health Statistics; 2012). All
calculations are carried out using R 3.0.1 (R Core Team; 2012).

2 Theoretical rationale

2.1 The bootstrap method

Let xi = (xi1, . . . , xip)> be independent realizations of p predictor variables for an individual
i and let yi be the corresponding observed value of the response variable. The n realizations
zi := (xi, yi), i = 1, . . . , n are assumed to have been drawn from an unknown joint distribution
F . The resulting data set Z = (z1, . . . , zn)> is referred to as the original sample throughout
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this paper. A bootstrap sample Z∗ = (z∗1 , . . . , z
∗
n)> is generated by drawing n observations

with replacement from the original sample Z and can thus contain duplicated observations. The
estimate θ̂ computed from the original sample and the bootstrap estimate θ̂∗ computed from the
bootstrap sample Z∗ are estimators for θ, the parameter of interest. By repeating the bootstrap
sampling and estimation of the parameter of interest B times, one obtains bootstrap samples
Z∗1, . . . , Z∗B and corresponding bootstrap estimates θ̂∗1, . . . , θ̂∗B . The bootstrap estimates can
be used, for example, to derive confidence intervals for θ or to approximate the whole distribution
of θ̂. However, this procedure fails if the considered “parameter” of interest is a test statistic or a
p-value. This is briefly motivated in the next section for the LR-test statistic. Readers are referred
to Janitza et al. (2014) for more details.

2.2 The LR-test statistic

Let β = (β1, . . . , βp)> be the vector of length p that reflects the true unknown effects of xi1, . . . , xip
on the response variable via the so-called linear predictor ηi = β0 + β1xi1 + · · ·+ βpxip. One can
test a hypothesis of the form

H0 : Cβ = ζ against H1 : Cβ 6= ζ (1)

where C is a matrix of rank s ≤ p and ζ is a fixed vector (see e.g. Tutz (2012)). In the simplest
case one can test if the j-th parameter in β is equal to zero, i.e. H0 : βj = 0. In this case the
matrix C reduces to a row matrix C = (0, . . . , 0, 1, 0, . . . , 0) with the j-th entry taking the value
1 and all other entries taking value 0. In this case, the vector ζ takes the value 0.

If L1 denotes the likelihood of the model where β is estimated without any constraint and L0

denotes the likelihood of the (sub)model with the constraint that Cβ = ζ, the LR-test statistic
for testing the hypothesis (1) is given by

Λ = −2(log(L0)− log(L1)).

According to Wilks’ theorem (Wilks; 1938) the LR-test statistic asymptotically follows a χ2(s)-
distribution with s = rank(C) degrees of freedom. The asymptotic expectation and variance of
the LR-test statistic Λ are given by

aE[Λ] = s+ δ, aVar[Λ] = 2s+ 4δ, (2)

respectively, where δ represents the noncentrality parameter of the distribution, which reflects the
extent to which the null hypothesis is false. If the null hypothesis holds true, the noncentrality
parameter δ equals 0 and the asymptotic expectation and variance of Λ with respect to the
underlying general population are given by aE[Λ] = s and aVar[Λ] = 2s.

2.3 Computing the LR-test statistic for bootstrap samples

Bollen and Stine (1992) report that the distribution of the test statistic Λ∗ computed from a
bootstrap sample Z∗ deviates from the distribution of the test statistic Λ computed from the
original sample, leading to an increased α-level when deriving the p-value from the comparison of
Λ∗ to a central χ2(s)- distribution. This is due to the fact that for the bootstrap sample the null
hypothesis does not hold, as the sample does not come from the theoretical distribution F but
from the empirical distribution F̂ . Drawing bootstrap samples from the original sample amounts
to drawing from a population where H0 is not true (Bollen and Stine; 1992).

Following Bollen and Stine (1992), the discrepancy between the expected values and variances
of Λ and Λ∗ depends on the degrees of freedom of the LR-test, with increasing degrees of freedom
leading to a stronger discrepancy between the distributions.

For the LR-test statistic the degrees of freedom are given by the difference of the degrees of
freedom of the two models that are compared by the test. The degrees of freedom of a model are the
number of model parameters that can be varied freely. A model that includes p parameters, where
we assume for the moment that one parameter describes the effect of a metric or a binary predictor
variable, plus an intercept has (n − p − 1) degrees of freedom, with n denoting the sample size.
In the following we will use the term categorical predictor variable to denote a nominal or ordinal
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predictor variable with at least three categories, while predictor variables with two categories
are simply termed binary. Categorical predictor variables are usually dummy-coded such that a
categorical variable with k > 2 categories is represented by k − 1 binary variables. Usually one
of the k levels of the categorical variable is considered as a reference category. For each of the
remaining categories, a binary variable is created that indicates whether the predictor variable
takes this level or not. Hence, k− 1 binary variables are needed to represent the information of k
possible categories in this coding scheme. Consequently, if a categorical predictor variable with k
categories enters a linear regression model, it consumes k − 1 degrees of freedom.

Accordingly, when testing the submodel which includes only the intercept against a model
including, for instance, a 3-category predictor variable, the null distribution has s = 2 degrees
of freedom. If we test the submodel against the model including a 7-category predictor variable
we have s = 6 degrees of freedom. We expect a higher false positive rate for LR tests performed
on bootstrap samples for a test on the inclusion of a 7-category predictor variable than for a
test on the inclusion of a 3-category predictor variable. That is because, according to Bollen and
Stine (1992), the discrepancy between the distributions of Λ and Λ∗ rises with increasing degrees
of freedom. The practical impact on the results of model selection procedures in the context of
multivariable regression, however, is completely unknown to date. The purpose of this paper is to
systematically investigate these consequences in a quantitative manner.

Before considering multivariable regression models in Sections 3 and 4, however, we first per-
form a simple simulation to examine the distribution of the LR-test statistics under H0 with
varying degrees of freedom and compare the original distributions to the distributions on boot-
strap samples for different types of predictors. We generate n = 1000 independent observations
of a standard normally distributed response variable Y and a binary predictor variable, as well
as categorical predictor variables with 3, 4, 5, 6 and 7 categories which are all independent of Y
(i.e., the null hypothesis is true) and independent of each other. For each predictor variable in
turn, a LR-test is conducted for the linear submodel containing only an intercept (null hypothe-
sis) and the linear model containing an intercept and the considered binary or categorical variable
(alternative hypothesis). Subsequently, a bootstrap sample is drawn from the simulated data set
and the LR-tests described above are conducted again based on this bootstrap sample. The whole
procedure (data generation, bootstrapping and performing LR-tests) is repeated 10000 times to
obtain reliable approximations of the distributions of interest, resulting in a total of 10000 LR-test
statistics computed from original samples and 10000 LR-test statistics computed from bootstrap
samples for each type of predictor variable. Figure 1 shows the corresponding empirical distri-
butions of the LR-test statistic for original samples (solid lines) and bootstrap samples (dashed
lines).

These results corroborate the considerations outlined above. The distribution of the LR-test
statistic on bootstrap samples is increasingly distorted with increasing degrees of freedom, i.e., in
our case with an increasing number of categories. To assess the impact of this distortion on type
I error, we calculate the empirical α-levels (i.e., the percentage of LR-test statistics out of the
10000 samples that exceed the critical value of the χ2-distribution with the respective degrees of
freedom) from the derived empirical distributions. Table 1 shows to which extent the discrepancy
between the distributions of Λ and Λ∗ leads to a type I error for increasing degrees of freedom,
when the LR-tests are performed at the 5% level. For the categorical predictor variable with 3
categories, α amounts to 22.3% and for the categorical predictor variable with 7 categories, α
increases to 39.3%. The latter means that H0 is falsely rejected in almost 40% of the cases when
performing the LR-test on a bootstrap sample under the null hypothesis at a nominal level of 5%.

2.4 Bootstrap inclusion frequencies

In automated iterative variable selection methods such as backward elimination, forward selection
or stepwise selection, the LR-test is often used at each step to select variables to be included
in or excluded from the model (see e.g. Sauerbrei et al. (2011)). In this paper we focus on the
backward elimination procedure. It consists of starting with the full model, i.e, that which includes
all predictor variables, and eliminating at each step the variable yielding the largest p-value from
the LR-test. This process is iterated until no predictor yields a p-value larger than the threshold
fixed by the user (5% in our paper). This procedure outputs a submodel that most often includes
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Figure 1: Distribution of LR-test statistic for the comparison of the linear regression model with
only the intercept to the model including intercept and one categorical predictor variable, for
original samples (solid lines) and bootstrap samples (dashed lines).

fewer predictor variables than the full model. Note that throughout this paper we always assume
that a categorical predictor variable is included or eliminated from the model as a whole. This
is done by performing a global test that tests if the effect of at least one of the dummy variables
significantly differs from 0.

If the procedure is repeated for a large number of bootstrap samples, one can compute the so-
called bootstrap inclusion frequency for each predictor variable, i.e., the proportion of bootstrap
samples for which this variable is included in the submodel selected by the automated procedure.
Readers are referred to Sauerbrei et al. (2011) for more details on this approach.

The distortion between the null-distribution of the LR-test statistic for original samples and
for bootstrap samples displayed in Figure 1 is expected to affect the results of the automated
selection procedure outlined above. More precisely, (i) the models selected based on bootstrap
samples are expected to be more complex, i.e. include more predictor variables, and (ii) under
the null hypothesis that no predictor variable has an effect on the response, predictor variables
with many categories are expected to be preferentially selected over binary or metric predictor
variables.

In Section 3 we present an extensive simulation study to provide empirical evidence for these
conjectures; we further assess their practical impact on multivariable model selection based on
bootstrap samples in a quantitative manner. More precisely, we simulate data under different
settings and perform backward elimination based on the original samples, bootstrap samples
(drawing with replacement) and subsamples (drawing without replacement) successively.
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Table 1: Empirical α-levels when performing the LR-test on 10000 original samples and bootstrap
samples.

critical value of central χ2-distribution for α = 5%

df=1 df=2 df=3 df=4 df=5 df=6
3.84 5.99 7.81 9.49 11.07 12.59

corresponding α
5.46 5.06 4.83 5.23 4.85 4.87

in original samples (in %)
corresponding α

16.91 22.31 27.18 31.97 35.33 39.28
in bootstrap samples (in %)

3 Simulation design

For each simulation setting a total of 5000 original i. i. d. samples are drawn from the considered
distribution. Subsequently, one bootstrap sample is drawn with replacement and one subsample
including approximately 63.2% of the original sample is drawn without replacement from each
of these original samples. The value 63.2% is chosen to obtain the same number of unique data
points in the subsample and (on average) in the bootstrap sample. A regression model is fitted to
each of the original samples, bootstrap samples and subsamples by backward elimination, based
on the LR-test with a threshold of 5%. After backward elimination, the percentage of resulting
models (out of 5000) that include a specific predictor variable and the distribution of the number
of selected predictor variables (over 5000 models) are derived successively for the original samples,
bootstrap samples and subsamples.

In the remainder of this section we describe all simulation settings in detail. In our main sim-
ulation we set up a series of linear regression models which include several uncorrelated predictor
variables with varying effects (no effect, strong effect, moderate effect). This simulation setting
will be examined in detail and is described in subsection 3.1. In three subsequent analyses we
explore if results are comparable when (i) predictor variables are mutually correlated (subsec-
tion 3.2), (ii) sample size is reduced (subsection 3.3) and (iii) the response variable is a censored
time-to-event in a multivariable Cox proportional hazard model (Cox; 1972) (subsection 3.4).

3.1 Main simulation

We simulate and analyze data from three underlying linear regression models which differ in
the size of predictor effects. In our main simulation design each sample comprises n = 1000
observations, which corresponds to “asymptotic settings”, and a total of 17 mutually independent
predictor variables. The 17 predictor variables consist of five metric variables X1, . . . , X5 , two
binary predictors X6, X7, and 10 categorical predictors X8, . . . , X17. Metric variables are sampled
from a standard normal distribution, binary predictor variables are sampled from a Bernoulli
distribution with probability p = 0.5 and categorical predictors are sampled from a multinomial
distribution with values in {1, . . . , k}—where k denotes the number of categories of the predictor
variable—and equal probabilities for all k categories. We have two predictor variables for each
k ∈ {3, 4, 5, 6, 7}, yielding a total of 10 categorical predictor variables. Categorical variables
are dummy-coded using the first category as a reference category. For example, the 3-category
predictor variable X8 is coded as two dummy variables X82

and X83
which take value 1 if X8 = 2

or X8 = 3, respectively, and 0 otherwise.
The regression coefficients reflecting the effects of the predictor variables are shown in Table

2. The null model, in which no predictor variable has any effect on the response, is denoted by
Null-LM-n1000. For the first model with non-zero effects, which is denoted by LM1-n1000, the
effects are stronger than for the second model: an effect of 0.2 is assumed for three of the five
metric variables. For the informative 4-category predictor variable X10, the coefficients of two of
four categories are set to 0.2. The coefficients for three of the six categories of the informative
6-category predictor variable X14 are set to 0.1. The same predictor variables that have an effect
in model LM1-n1000 also have an effect in the second model with non-zero effects, LM2-n1000,
with the difference that effects are now smaller for the categorical predictor variables.
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Table 2: Effects of (uncorrelated) predictor variables for the linear models Null-LM-n1000, LM1-
n1000 and LM2-n1000 with n = 1000. For categorical predictor variables with k categories, effects
for the corresponding (k − 1) dummy variables are shown.

Predictor Scale Effect(s)
Null-LM-n1000 LM1-n1000 LM2-n1000

X1 metric 0 0.2 0.01
X2 metric 0 0.2 0.02
X3 metric 0 0.2 0.03
X4 metric 0 0 0
X5 metric 0 0 0
X6 binary 0 0 0
X7 binary 0 0 0

categorical with
X8 3 categories 0, 0 0, 0 0, 0
X9 3 categories 0, 0 0, 0 0, 0
X10 4 categories 0, 0, 0 0.2, 0.2 ,0 0.08, 0.08, 0
X11 4 categories 0, 0, 0 0, 0, 0 0, 0, 0
X12 5 categories 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0
X13 5 categories 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0
X14 6 categories 0, 0, 0, 0, 0 0.1, 0.1, 0.1, 0, 0 0.04, 0.04, 0.04, 0, 0
X15 6 categories 0, 0, 0, 0, 0 0, 0, 0, 0, 0 0, 0, 0, 0, 0
X16 7 categories 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0
X17 7 categories 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0

With x = (x1, . . . , x7, x82 , x83 , . . . , x177)> now also including dummy-coded variables derived
from the multicategorical predictor variables, the response variable is generated according to the
linear model

y = x>β + ε, (3)

where β is the vector of predictor effects given in Table 2 and ε ∼ N(0, 1) is the error term.

3.2 Variant 1: Correlated predictors

Additional simulations are conducted with mutually dependent predictor variables. More pre-
cisely, the simulated data sets now include five pairs of predictor variables: one binary vari-
able and one categorical variable with five categories. The four first pairs of predictor variables
(X1, X6), (X2, X7), (X3, X8), (X4, X9) are pairwise dependent, while X5 and X10 are independent.

Pairs of mutually dependent binary and 5-category variables are generated using the ordsample
function from the R-package GenOrd (Barbiero and Ferrari; 2012). This function first generates
correlated metric variables using the multivariate standard normal distribution with an appropri-
ate covariance matrix and subsequently categorizes the resulting metric variables into categorical
variables with an ordering in the categories. In our case we have two correlated variables where one
metric variable is categorized into 5 ordered categories and the other into 2 categories. The Spear-
man correlation between the binary and the ordered categorical variable is used in the following
to quantify the strength of the correlation between the two variables.

Effect sizes for the underlying models are displayed in Table 3. The effect sizes for the model
with informative predictor variables and with the same Spearman correlation ρ among all corre-
lated variable pairs are set up in such a way that for the first correlated pair of predictor variables
(X1, X6), both variables have an effect. For the second pair (X2, X7) only the binary variable X2

has an effect and for the third pair (X3, X8) only the categorical variable X8 has an effect. For
the fourth pair (X4, X9), neither of the variables has an effect. The fifth pair (X5, X10) consists
of two uncorrelated predictor variables with non-zero effects: the effect of the binary variable is
set to 0.1 and two of the five categories of the 5-category variable have a regression coefficient of
0.1; see Table 3. We set the correlation coefficient ρ to ρ = 0.3, 0.5, 0.7, successively. The term
corr(ρ)-Null-LM-n1000 (with ρ taking values 0.3, 0.5, 0.7) refers to the linear model, in which no
predictor variable has an effect, while corr(ρ)-LM-n1000 refers to the models with informative
predictor variables.
The response variable is generated according to Eq. (3) with x = (x1, . . . , x5, x62

, x63
, x64

, x65
, x72

, . . . , x105
)>.
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Table 3: Effects of correlated predictor variables for the linear regression models with n = 1000 and
Spearman correlation of ρ ∈ {0.3, 0.5, 0.7}. For categorical predictor variables with 5 categories
regression coefficients for 4 dummy variables are shown.

Predictor Scale correlated to Effect(s)
corr(ρ)-Null-LM-n1000 corr(ρ)-LM-n1000

X1 binary X6 0 0.1
X2 binary X7 0 0.1
X3 binary X8 0 0
X4 binary X9 0 0
X5 binary - 0 0.1

categorical with
X6 5 categories X1 0, 0, 0, 0 0.1, 0.1, 0, 0
X7 5 categories X2 0, 0, 0, 0 0, 0, 0, 0
X8 5 categories X3 0, 0, 0, 0 0.1, 0.1, 0, 0
X9 5 categories X4 0, 0, 0, 0 0, 0, 0, 0
X10 5 categories - 0, 0, 0, 0 0.1, 0.1, 0, 0

Table 4: Effects of the three predictor variables for the linear regression models Null-LM-n100,
LM1-n100 and LM2-n100, with n = 100.

Predictor Scale Effect(s)
Null-LM-n100 LM1-n100 LM2-n100

X1 binary 0 0.1 0.05
categorical with

X2 4 categories 0 0.1, 0.1, 0 0.05, 0.05, 0
X3 7 categories 0 0.1, 0.1, 0, 0, 0, 0 0.05, 0.05, 0, 0, 0, 0

3.3 Variant 2: Smaller sample size

We now consider three linear regression settings with independent predictor variables but a smaller
sample size of n = 100. The three considered settings differ in the effects of the predictor vari-
ables. Considering the smaller sample size, the number of predictor variables is set to only three
instead of 17. The binary variable X1 is drawn from a Bernoulli distribution with p = 0.5. The
categorical predictor variables are drawn from multinomial distributions with equal probabilities
for all categories and values in {1, . . . , 4} for the 4-category variable X2 and values in {1, . . . , 7}
for the 7-category variable X3.

The effects of the predictor variables are presented in Table 4. The first model (termed Null-
LM-n100) is a null model, in which none of the three predictor variables has an effect. In the
other two models, LM1-n100 and LM2-n100, all three predictor variables have an effect which is
larger in LM1-n100 than in LM2-n100 for all three variables. The response variable is generated
according to Eq. (3) with x = (x1, x22

, x23
, x24

, x32
, x33

, . . . , x37
)>.

3.4 Variant 3: Survival response

In an additional study we again consider uncorrelated predictor variables with the same effects
as in the main simulation setting (presented in Table 2) and sample size n = 1000, but with a
censored time-to-event as the response variable. Times-to-event are simulated according to the
Cox proportional hazard model where the hazard is described by

h(t|x) = h0(t) exp (x>β), (4)

where h0(t) is the baseline hazard and β is the vector of regression coefficients representing the
effects of the predictor variables X1, . . . , X17 (some of them dummy-coded) on time-to-event; see
Table 2. The survival function is given by

S(t|x) = exp

(
−
∫ t

0

h(u|x)du

)
. (5)

For the generation of times-to-event a constant baseline hazard of 0.025 is assumed. The censoring
process is considered to be independent of the predictor variables and a constant censoring hazard
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of 0.05 is chosen. As with the linear regression setting described within the main simulation design,
the settings with a survival response are referred to as Null-Cox-n1000, Cox1-n1000 and Cox2-
n1000 (see Table 2). Multivariable Cox regression is used in place of multivariable linear regression
for the analyses, also including backward elimination based on the LR-test with a threshold of
5%.

4 Results

4.1 Simulation studies

In this section we first describe the results for the main simulation design (linear regression settings
with uncorrelated predictor variables and a large sample size of n = 1000) and point out the
differences observed in the additional studies with correlations between binary and categorical
predictors (Variant 1), a reduced sample size (Variant 2) and a time-to-event as response (Variant
3).

4.1.1 Main simulation design

Model complexity
First we look at the model complexity in terms of the total number of predictor variables being
included in a model. Figure 2 depicts the total numbers of included predictor variables for the
three analyzed models. For all models, the range of the number of included predictor variables is
wider for bootstrap samples than for original samples or subsamples. It is clear that on average
with the bootstrap more predictors are included in a model. For Null-LM-n1000, many of the
models of original samples and subsamples (about 40% of models) yield the true model, which
includes no predictor variable at all. In contrast, very few models on bootstrap samples yield the
true model. Many of the bootstrap models (about 20%) include four predictor variables. There
are even bootstrap models that include up to 12 of the 17 predictor variables. For original samples,
in contrast, not more than 5 predictor variables are ever chosen in a model.
A similar behavior of the bootstrap towards overly complex models – including too many predic-
tor variables – is observed for models where some of the predictor variables are associated with
the response. For LM1-n1000, the true model includes 5 predictor variables. Around 30% of the
models derived from original samples or subsamples include exactly that number of predictors and
are thus of the same complexity. Another 52% of the models from original samples and 60% of
the models from subsamples include fewer predictor variables. On bootstrap samples in contrast,
only about 10% of the models include 5 or fewer predictor variables. The remaining 90% of the
models include 6 to 15, with the most common number being 7. The tendency toward too complex
models for the bootstrap can also be observed for LM2-n1000 (lower panel in Figure 2). These
findings are a direct consequence of the theoretical considerations on the increased α level when
performing tests on a bootstrap sample, leading to a higher inclusion of predictor variables that
are actually not of importance.

Type of predictor variables in a model
Figure 3 displays the results for Null-LM-n1000, the model in which none of the predictor variables
has an effect. Depicted are the mean inclusion frequencies for all predictors; the “metric” inclusion
frequency is averaged over the five metric predictors, and the “binary” is the average of the two
binary predictors. There is a systematic preference for categorical predictor variables on bootstrap
samples when compared to metric or binary variables. In addition, among the categorical predictor
variables there is a clear preference for those with many categories. Inclusion frequencies rise
distinctly with the predictor variable’s number of categories. While metric and binary predictor
variables are included with a frequency of around 17.5%, categorical predictor variables with three
categories are included in 23.4% of the models. This percentage increases approximately linearly
with an increasing number of categories of the categorical variable. A categorical predictor variable
with seven categories is included in 43.3% of the models. Notably, this effect cannot be observed
for original samples or subsamples. The inclusion frequency in models derived on original samples
and subsamples averages about 5% for every predictor variable and does not systematically vary
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Figure 2: Percentage of models including displayed number of predictor variables in original,
subsamples and bootstrap samples: 5000 models, n = 1000.

between the different variable types.
This result corroborates our considerations from the section Theoretical rationale. As expected,
given the true model where no predictor variable has an effect on the response, categorical predictor
variables with many categories are preferentially selected in bootstrap samples compared to binary
or metric predictor variables.

Results for LM1-n1000 are displayed in Table 5. In general inclusion frequencies for variables
with a non-zero effect are similar for original samples and subsamples, but tend to be smaller for
subsamples. This finding of smaller inclusion frequencies for subsamples can be explained by the
lower power of the LR-test to detect these effects, as the sample size of the subsamples is smaller
than that of original samples. Again, for original samples or subsamples no preference for any
particular type of predictor can be observed. For bootstrap samples in contrast we again observe a
preferential selection of categorical predictors without any effect over metric and binary predictors
without effect, as well as over categorical predictors with fewer categories and no effect. When
considering inclusion frequencies for predictors with effect one can see that the metric predictors
with a large effect of 0.2 are included in nearly all models, irrespective of whether derived from
original samples, bootstrap samples or subsamples. For categorical predictors with effect there
are differences among the sampling approaches. However, all sampling approaches come to the
same conclusion regarding the relative importance of the predictors according to their inclusion
frequencies: the most important predictors are the metric predictors X1, X2, X3. After that the 4-
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Figure 3: Null-LM-n1000: average inclusion frequencies over 5000 models for predictor variables
in original samples, subsamples and bootstrap samples.

category predictor X10 is the fourth most important predictor and finally the predictor X14 with 6
categories is the predictor among the informative predictors which is least important. Considering
the relative sizes of the inclusion frequencies of the two categorical informative predictors, it can
be seen that for the bootstrap scheme the discrepancy between the inclusion frequency of the
informative 4-category predictor is much closer to the inclusion frequency of the (less important)
6-category predictor. This finding is attributable to the preference for categorical predictors with
many categories: the less important predictor (X14) with more categories is preferred over the
more important predictor (X10) with fewer categories. However, here the difference in effects of the
two predictors is large enough to ensure that the more important predictor with fewer categories
indeed receives a higher inclusion frequency in bootstrap samples. This is however not the case
for LM2-n1000, in which predictor effects are smaller (Table 6). For this model the consequences
of the preferential selection are much worse than for LM1-n1000. On bootstrap samples, the
categorical variable X14 with six categories is included almost as often (in 39.9% of the models)
as the variable X10 with four categories (in 40.7% of the models), though the 4-category variable
is actually more strongly associated with the response than the 6-category variable. Even more
problematic may be the finding that both the 4-category and the 6-category variable are less
frequently included in models derived from bootstrap samples than variables X16 and X17 with
seven categories and no effect. This is not the case for LM1-n1000, and is attributable to the
smaller effect sizes in LM2-n1000, which lead to the overriding of effect size by the number of
categories. For this model with weaker effects, bootstrap inclusion frequencies give completely
misleading conclusions regarding the importance of predictors.

4.1.2 Variant 1: Correlated predictors

We now turn to the case of pairwise correlated binary and 5-category predictor variables. Again,
the mean number of included variables is always substantially higher when models are derived
from bootstrap samples (data not shown). In the following we focus on the type of predictor
variables included in the models and if this is influenced by strong correlations among predictors
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Table 5: LM1-n1000: Inclusion frequencies of variables in 5000 models from original samples,
subsamples and bootstrap samples of size n = 1000.

Predictor Scale Effect(s) Inclusion Freq. (in %)
original sample subsample bootstrap sample

X1 metric 0.2 100 99.82 99.98
X2 metric 0.2 100 99.86 99.88
X3 metric 0.2 100 99.86 99.86
X4 metric 0 5.36 5.74 18.00
X5 metric 0 5.30 5.86 17.80
X6 binary 0 5.54 5.48 17.58
X7 binary 0 5.34 5.36 18.06

categorical with
X8 3 categories 0, 0 5.46 5.36 23.28
X9 3 categories 0, 0 5.04 5.26 23.48
X10 4 categories 0.2, 0.2, 0 76.22 55.58 76.90
X11 4 categories 0, 0, 0 5.56 5.54 28.66
X12 5 categories 0, 0, 0, 0 5.46 6.04 33.64
X13 5 categories 0, 0, 0, 0 5.28 5.72 33.46
X14 6 categories 0.1, 0.1, 0.1, 0, 0 19.54 14.62 52.62
X15 6 categories 0, 0, 0, 0, 0 5.20 5.68 38.40
X16 7 categories 0, 0, 0, 0, 0, 0 5.78 5.86 43.06
X17 7 categories 0, 0, 0, 0, 0, 0 5.66 5.62 42.66

Table 6: LM2-n1000: Inclusion frequencies of predictor variables in 5000 models from original
samples, subsamples and bootstrap samples of size n = 1000. For categorical predictor variables
with k categories effect sizes for (k − 1) dummy variables are shown.

Predictor Scale Effect(s) Inclusion Freq. (in %)
original sample subsample bootstrap sample

X1 metric 0.01 6.24 5.74 17.92
X2 metric 0.02 10.18 9.10 21.50
X3 metric 0.03 14.94 11.90 25.74
X4 metric 0 5.28 5.54 17.84
X5 metric 0 5.20 5.78 17.88
X6 binary 0 5.38 5.28 17.54
X7 binary 0 5.26 5.38 17.86

categorical with
X8 3 categories 0, 0 5.36 5.26 23.00
X9 3 categories 0, 0 4.8 5.28 23.80
X10 4 categories 0.08, 0.08, 0 16.06 12.04 39.86
X11 4 categories 0, 0, 0 5.56 5.5 28.36
X12 5 categories 0, 0, 0, 0 5.42 5.84 33.62
X13 5 categories 0, 0, 0, 0 5.30 5.72 33.22
X14 6 categories 0.04, 0.04, 0.04, 0, 0 7.50 6.90 40.74
X15 6 categories 0, 0, 0, 0, 0 5.22 5.48 38.48
X16 7 categories 0, 0, 0, 0, 0, 0 5.58 6.08 43.36
X17 7 categories 0, 0, 0, 0, 0, 0 5.64 5.42 42.94

12



Table 7: corr(ρ)-LM-n1000 with ρ ∈ {0.3, 0.5, 0.7}: Inclusion frequencies of predictor variables in
5000 models from original samples, subsamples and bootstrap samples of size n = 1000.

Pred. Scale correla- Effect(s) Inclusion Frequency (in %)
ted to original sample subsample bootstrap sample

corr 0.3 / 0.5 / 0.7 corr 0.3 / 0.5 / 0.7 corr 0.3 / 0.5 / 0.7
X1 binary X6 0.1 30.82 / 27.66 / 21.56 20.86 / 18.56 / 15.06 37.94 / 35.60 / 29.86
X2 binary X7 0.1 35.56 / 34.46 / 31.62 24.52 / 23.70 / 22.84 40.62 / 38.14 / 34.00
X3 binary X8 0 5.46 / 5.52 / 5.96 5.18 / 5.18 / 5.70 18.18 / 18.04 / 17.64
X4 binary X9 0 5.10 / 4.62 / 4.96 4.78 / 5.02 / 5.16 17.22 / 17.80 / 17.56
X5 binary - 0.1 34.66 / 34.52 / 33.96 23.24 / 23.14 / 23.28 39.18 / 39.70 / 38.88

categorical with
X6 5 categories X1 0.1, 0.1, 0, 0 20.86 / 22.04 / 22.92 14.36 / 15.22 / 16.10 47.86 / 49.62 / 49.82
X7 5 categories X2 0, 0, 0, 0 5.86 / 7.28 / 8.92 5.62 / 6.76 / 8.40 34.18 / 36.04 / 38.40
X8 5 categories X3 0.1, 0.1, 0, 0 20.42 / 20.48 / 20.86 13.96 / 14.04 / 14.08 46.26 / 47.88 / 49.86
X9 5 categories X4 0, 0, 0, 0 5.64 / 5.76 / 5.56 5.52 / 5.66 / 5.60 32.72 / 33.62 / 34.84
X10 5 categories - 0.1, 0.1, 0, 0 21.06 / 20.96 / 21.04 14.90 / 14.96 / 15.06 48.00 / 47.54 / 47.88

of different scales.
The results for the null model are comparable to those obtained for Null-LM-n1000 and are

shown in the appendix. Results for models corr(0.3)-LM-n1000, corr(0.5)-LM-n1000 and corr(0.7)-
LM-n1000 are shown in Table 7. In these models, both the binary variable and the 5-category
variable in the first pair of variables (X1, X6) have an effect. For the second pair (X2, X7) only
the binary predictor variable has an effect and for the third pair (X3, X8) only the categorical
predictor variable has an effect. For the fourth pair (X4, X9), neither variable has an effect.
The remaining—independent—predictor variables X5 (binary) and X10 (5-category) both have an
effect on the response. The results of our studies illustrate that the presence of correlations among
predictor variables of different scales intensifies the problem of preferential selection of categorical
predictor variables for bootstrap samples. We first look at the results for the model corr(0.3)-
LM-n1000, in which correlations among binary and categorical predictor variables are moderate.
When looking at the correlated pair (X2, X7) for which only the binary predictor variable X2

has an effect, it is obvious that the inclusion frequency is higher for the truly informative binary
predictor variable X2 than for the dependent (non-informative) categorical predictor variable X7.
This is also the case when deriving inclusion frequencies from bootstrap samples, but here the
difference in inclusion frequencies between the informative and the non-informative predictor is
smaller, giving a worse discrimination. If we now look at the model corr(0.7)-LM-n1000 which
has a higher dependence value, however, we can see that the non-informative 5-category predictor
variable X7 now has a higher inclusion frequency than the binary variable X2 when using bootstrap
samples.

This is attributable to the preferential selection of categorical predictor variables in combination
with the spurious effect that is induced by the high association with another variable (here X2)
which has an effect on the response. This was however not the case when the dependence between
the predictor variables was lower (ρ = 0.5 or ρ = 0.3). Here the spurious effect of X7 was not high
enough to select the categorical variable X7 more often into bootstrap models than the binary
variable X2 .

When looking at inclusion frequencies in original samples and in subsamples it is noticeable
that the inclusion frequencies of mutually dependent binary and categorical predictor variables
get closer to each other with rising correlations. This behavior would be expected because if
two variables are highly correlated, both of them contain almost the same information and are
therefore interchangeable. However, this is not observed for bootstrap samples, probably because
the preference for categorical predictor variables prevents the inclusion frequencies of dependent
predictor variables from getting closer.

4.1.3 Variant 2: Smaller sample size

The results for Null-LM-n100 are shown in Table 8. Overall, the results are comparable with
the results for models with larger sample sizes in the sense of model complexity and preference
for categorical predictor variables in bootstrap samples. However, here original samples and
subsamples show a very small preference of the 4-category predictor variable X2 over the binary
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predictor variable X1 and a preference of the 7-category predictor variable X3 over the binary and
the 4-category predictor variables, though none of the predictors has an effect. This difference
in inclusion frequencies – though very marginal – can also be observed for much higher numbers
of original samples or subsamples, respectively, indicating that it is not due to randomness. One
possible explanation for the different inclusion frequencies in original samples and in subsamples
might be that the sample size of n = 100 is not sufficiently large to guarantee the reliability of
asymptotic theory. This is also supported by the fact that in none of our other simulations (all
with a much larger sample size of n = 1000) such an effect is observed.

Table 8: Null-LM-n100: Inclusion frequencies of predictor variables in 5000 models from original
samples, subsamples and bootstrap samples of size n = 100.

Predictor Scale Effect(s) Inclusion Freq. (in %)
original sample subsample bootstrap sample

X1 binary 0 5.32 5.84 20.54
categorical with

X2 4 categories 0, 0, 0 5.94 6.88 32.70
X3 7 categories 0, 0, 0, 0, 0, 0 6.74 7.88 45.60

Results for models LM1-n100 and LM2-n100 are presented in the appendix and are consistent
with the results for models with larger sample sizes.

4.1.4 Variant 3: Survival response

The results for the analyses of Cox regression models are consistent with those for the linear
regression models from the main simulation and are thus only briefly summarized here. Detailed
results are given in the appendix. Models selected based on bootstrap samples contain on average
more predictor variables in total than models selected based on original samples or subsamples.
This is apparent for the null model (Null-Cox-n1000) as well as for the two models with informative
predictors (Cox1-n1000 and Cox2-n1000). In addition, for the latter two models a clear preference
for categorical predictor variables in bootstrap sample-based models, resulting in systematically
too high inclusion frequencies, can be observed, as with the linear regression setting. In some
cases this systematic preferential selection even overrides the advantage of predictor variables
with effect over predictor variables without effect. A preferential selection of categorical predictor
variables over metric and binary predictor variables and over categorical predictor variables with
fewer categories is thus not specific to the linear regression model but is also present for other
models such as the Cox model.

4.2 Real data study

We also use a real data set to more deeply investigate the findings of our simulation studies. We
consider data from the 2007-2008 cycle of the National Health and Nutrition Examination Sur-
vey (NHANES) (National Center for Health Statistics; 2012) which is maintained by the Centers
for Disease Control and Prevention. NHANES is designed as a series of cross-sectional surveys
and uses a stratified multistage sampling method to obtain a representative sample of the US
population. The data are freely available from the institution’s homepage or from the Interuni-
versity Consortium for Political and Social Research (ICPSR; 2012). We analyze the level of
high-sensitive C-reactive protein (CRP) as response variable, a plasma protein involved in the
acute phase response during inflammatory states (Black et al.; 2004). The considered data set
comprises a total of n = 1914 subjects. Table 5 in the appendix shows descriptive statistics for
the predictor variables from the NHANES data set considered in our application. A more detailed
description of the predictor variables is given in the appendix.

The backward elimination procedure based on the LR-test used in the simulations is employed
again here for model selection in the linear regression framework for (i) the original data set,
(ii) 5000 bootstrap samples drawn with replacement, and (iii) 5000 subsamples drawn without
replacement. Since the true data generating process is unknown it is not possible to compare
the results obtained from bootstrap samples to those from several original samples. Instead we
compare the results of bootstrap samples to the results of subsamples, since we have evidence
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Table 9: Inclusion frequencies for predictor variables in the NHANES linear regression model for
5000 subsamples and 5000 bootstrap samples.

Predictor Scale Inclusion Freq. (in %)
subsample bootstrap sample

age metric 30.12 51.08
alcohol metric 0.00 4.88
BMI metric 99.98 99.90
BPdias metric 7.46 22.36
BPsys metric 20.12 45.38
cholesterol metric 4.46 21.56
waistcircum metric 6.98 17.06
WBCcount metric 100.00 99.96
100cig binary 12.36 28.68
AcuteIllness binary 82.58 87.10
asthma binary 6.46 17.94
chronicBronchitis binary 0.68 11.96
diabetes binary 9.24 35.60
heartFailure binary 0.08 4.02
heavyDrinker binary 0.48 5.84
sex binary 72.54 71.12
stroke binary 17.86 30.86

categorical with
country of birth 4 categories 0.48 16.70
depression screening 4 categories 7.60 45.98
education 5 categories 2.28 31.26
HealthStatus 5 categories 41.56 69.50
medicalPlaceToGo 5 categories 0.02 7.56
race 5 categories 39.62 73.78
sleepTrouble 5 categories 12.46 41.20
ToothCond 5 categories 32.86 68.72
wakeUp 5 categories 38.26 68.38
marital status 6 categories 51.98 74.90
income 12 categories 46.00 87.52

from our simulation studies that backward elimination can reliably recover the true ordering of
predictor variables. For the original sample, our backward elimination procedure yields the model
CRP ∼ WBCcount + BPSys+ age+ BMI + race + ToothCond + wakeUp + income + sex +
AcuteIllness.

Figure 4 depicts the percentage of models that included a specific number of predictor variables.
The results are very similar to those of the simulation studies. On average more predictor variables
are included in models when using the bootstrap approach than with subsampling. However, as
noted in the preceding section, due to the smaller statistical power with subsampling one tends
to select fewer predictor variables than for the original sample. This property is evident when we
examine the model obtained from the original sample, which includes 10 predictors. Examination
of Figure 4 shows that there are only few subsampling models which include 10 or more predictor
variables and conversely, for the bootstrap there are only few models which have 10 or fewer
predictor variables. This indicates that for this data set models selected from bootstrap samples
may be too complex.

We now further investigate the type of included predictor variables for the two sampling ap-
proaches. A special focus is laid on cases where binary or categorical predictors show different
inclusion frequencies in bootstrap samples and subsamples. Inclusion frequencies for subsample
and bootstrap sample-based models of the NHANES data set are displayed in Table 9. In gen-
eral the inclusion frequency for a variable for bootstrap samples is higher than its counterpart
for subsamples for all predictor variables. There are a few cases in which binary predictor vari-
ables yield higher inclusion frequencies than a categorical predictor variable for subsamples but
the categorical predictor variable is more frequently included than the binary for the bootstrap
samples.

For example, the inclusion frequency for the binary variable stroke is 17.86% for subsamples.
Inclusion frequencies for the categorical variables depression screening (k = 4) and sleep trouble
(k = 5) are lower, with 7.60% and 12.46%, respectively. Since in our simulation studies inclusion
frequencies obtained by subsampling have been shown to reliably reflect the relative importance
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Figure 4: Linear regression model for NHANES data: percentage of models (of 5000) against
number of included predictor variables in subsamples (gray) and bootstrap samples (black). n =
1914.

of predictors, we therefore assume that the variable stroke is more strongly associated with CRP
than the variables depression screening (k = 4) and sleep trouble (k = 5). For bootstrap samples,
however, the inclusion frequency for stroke is 30.86% (which is higher than that for the subsamples,
as one would expect) but the inclusion frequencies for depression screening (k = 4) and sleep
trouble (k = 5) are even higher, with 45.98% and 41.2%, respectively. In other words, if the
importances of these variables were to be assessed based on bootstrap samples, the association
between predictor variables depression screening (k = 4) and sleep trouble (k = 5) and the response
would be incorrectly estimated to be higher than the association between the predictor variable
stroke and the response.

This also occurs for the binary variable 100cigarettes, which describes whether the proband
has smoked at least 100 cigarettes in his/her life. For subsamples, the inclusion frequency for this
variable is 12.36%. This exceeds the inclusion frequency for depression screening (k = 4), which
is 7.60%. For bootstrap samples, the variable 100cigarettes is included in 28.68% of the models,
which is less than the inclusion frequency of 45.98% for depression screening (k = 4). Again, the
importance of depression screening is (likely incorrectly) estimated to be higher when bootstrap
inclusion frequencies are used. We note that none of the variables stroke, 100cigarettes, sleep
trouble (k =5) or depression screening (k = 4) are selected for the model on the original data set.

Our results also indicate that the preferential selection of categorical predictor variables for
bootstrap samples might be present even for stronger true effect sizes. Two further examples which
indicate a preferential selection of a categorical predictor variable over a binary predictor variable
can be seen with the variables sex and marital status (k = 6), and sex and race (k = 5). For
subsamples, the binary variable sex is included in 72.54% of the models, which suggests a rather
strong effect of sex on CRP in our sample. The variable is also selected in the model derived from
the original data set. This inclusion frequency is higher than those of the categorical variables
marital status (k = 6, 51.98%) and race (k = 5, 39.62%). However, for bootstrap samples the
opposite occurs: the inclusion frequencies for the two categorical variables are slightly higher than
the inclusion frequency for sex (74.9% and 73.78% vs 71.12%).

Furthermore, the binary variable acute illness has an inclusion frequency of 82.58% for sub-
samples. After the metric variables BMI and white blood cell count, acute illness has the highest
inclusion frequency of all variables for subsamples. We would therefore assume that the true effect
of acute illness on CRP is substantial. However, for bootstrap samples, the inclusion frequency
of 87.10% of acute illness is slightly exceeded by the inclusion frequency of 87.52% of the cate-
gorical variable income (k =12). Income has an inclusion frequency of only 46% for subsamples,
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suggesting that its true effect on CRP is considerably smaller than the effect of acute illness. Nev-
ertheless income (k =12) is preferentially selected, showing the highest overall inclusion frequency
for bootstrap samples. It is worth noting that income is the categorical variable with the most
categories (k = 12) in this analysis.

It is important to note that in the present analysis there is no case where a categorical predictor
variable shows a higher inclusion frequency than a metric or binary predictor variable for the
subsamples, but is less frequently included than the metric or binary variable on bootstrap samples.
Overall, these findings obtained from the real data application are in line with those obtained from
the simulation studies. They illustrate that the effect of categorical predictor variables might be
considerably overestimated when performing model selection on bootstrap samples, and that this
issue is of high practical relevance.

5 Discussion

In this paper we performed extensive simulations to compare multivariable regression models
selected from (nonparametric) bootstrap samples to those selected from original samples and sub-
samples, using backward elimination based on LR-test with linear and Cox regression models as
examples. Theoretical considerations of the distribution of the LR-test statistic computed from
bootstrap samples suggest that models selected from bootstrap samples include a higher number
of predictor variables and that categorical variables are preferentially selected with preferential
selection increasing with the number of categories. These conjectures were confirmed and quanti-
tatively assessed in our simulation study, which also further demonstrated that these mechanisms
can have a substantial impact on practical results.

The number of categories may even override the effect size, especially in the case of small
effect sizes, so that in some settings non-informative categorical predictor variables are selected
on average more often than informative binary or metric predictor variables. This also became
manifest in the analysis of a real data set from the NHANES study. Binary predictor variables
which received higher inclusion frequencies than categorical predictor variables for models based
on subsamples were often excluded in favor of categorical predictor variables with many categories
when model selection was conducted on bootstrap samples.

We emphasize that this problem only occurs if candidate predictor variables include cate-
gorical predictors with different numbers of categories or categorical predictors together with
metric/binary predictors. If the variable selection procedure is applied to a set of metric and
binary predictor variables only, no preferential selection is observed. Furthermore, in our analyses
categorical predictor variables were entered as a whole in the model based on a global LR-test, the
null hypothesis being that the coefficients of all the dummy variables derived from this variable
are zero. As an alternative procedure, the dummy variables of categorical predictors could be
tested separately. This would not lead to the here described preferential selection of categorical
predictor variables, but yield a multiple testing problem instead. We also want to stress that we
did not analyze the predictive abilities of models when these are derived from a bootstrap sample.
This should be examined in future research.

We considered a backward elimination procedure based on the LR-test, but other methods
such as forward or stepwise selection are applicable as well. In principle, they are also affected by
the bias investigated in our paper. Moreover, there exists a wide range of selection criteria like
AIC, BIC or the Wald test that can be used in automated variable selection procedures. From
preliminary analyses (data not shown) we strongly expect similar behaviour when using these
criteria, however, it remains to be investigated in future studies how the choice of the selection
procedure and criterion affects results.

All our investigations were performed in a low-dimensional setting, i.e., in cases where the
sample size greatly exceeds the number of predictor variables. Consequences of variable selection
on bootstrap samples for high-dimensional data, for instance a mixture of clinical and genetic risk
factors, remain to be investigated.

For specific applications, solutions to avoid the overcomplexity of models derived from boot-
strap samples have already been suggested. Bollen and Stine (1992) proposed a corrected test
statistic for bootstrapping in structural equation models and Steck and Jaakkola (2003) suggested
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a bias correction term to avoid the overcomplexity in graphical models. However, neither of these
are directly applicable to the problem of preferential selection of categorical predictor variables
considered here. However, we can corroborate the findings of Strobl et al. (2007) that subsampling
might be a promising solution, since the preferential selection of categorical predictor variables
does not occur for subsamples. In all of our simulation settings original samples and subsamples
had identical inclusion frequency patterns with regard to the type of predictor variable included.
This is due to the fact that the original properties of the LR statistic are maintained if the sub-
sample is drawn without replacement. As the subsample is a proper subset of the original sample,
it is valid to assume that both the subsample and the original sample have been drawn from the
same underlying population where H0 holds. Therefore, the distribution of the LR statistic for
subsamples is the same as in original samples under the null hypothesis. As a consequence, the
LR-test does not favor categorical predictor variables with many categories under the null hypoth-
esis, which states that no predictor variable is associated with the response. If the possibility of
drawing reasonably sized subsamples exists for a data set to be analyzed, subsampling presents a
simple but effective alternative to the biases introduced by bootstrapping.
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Appendix

Table 10: corr(ρ)-Null-LM-n1000 with ρ ∈ {0.3, 0.5, 0.7}: Inclusion frequencies of predictor vari-
ables in 5000 models from original samples, subsamples and bootstrap samples of size n = 1000.

Predictor Scale correla- Effect(s) Inclusion Frequency (in %)
ted to original sample subsample bootstrap sample

corr 0.3 / 0.5 / 0.7 corr 0.3 / 0.5 / 0.7 corr 0.3 / 0.5 / 0.7
X1 binary X6 0 5.04 / 4.90 / 4.70 5.44 / 5.58 / 5.24 17.66 / 17.72 / 17.34
X2 binary X7 0 4.82 / 4.92 / 4.70 4.66 / 4.74 / 4.28 16.74 / 16.90 / 18.08
X3 binary X8 0 5.54 / 5.04 / 4.68 5.26 / 4.76 / 5.22 17.78 / 18.06 / 17.54
X4 binary X9 0 4.84 / 4.44 / 4.80 4.70 / 5.02 / 4.78 17.08 / 17.14 / 17.48
X5 binary - 0 5.16 / 5.14 / 5.24 5.56 / 5.56 / 5.66 17.12 / 17.40 / 17.06

categorical with
X6 5 categories X1 0, 0, 0, 0 5.18 / 5.70 / 5.56 5.06 / 5.88 / 6.10 33.24 / 33.90 / 35.10
X7 5 categories X2 0, 0, 0, 0 5.20 / 5.40 / 5.76 4.96 / 5.70 / 5.60 33.88 / 35.24 / 35.50
X8 5 categories X3 0, 0, 0, 0 5.46 / 5.26 / 5.26 5.08 / 5.26 / 5.76 33.72 / 33.58 / 35.04
X9 5 categories X4 0, 0, 0, 0 5.30 / 5.66 / 5.42 5.24 / 5.54 / 5.60 32.68 / 33.76 / 34.54
X10 5 categories - 0, 0, 0, 0 5.02 / 4.98 / 5.02 5.12 / 5.34 / 5.36 31.82 / 31.78 / 31.88
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Figure 5: Percentage of models including displayed number of predictor variables in original,
subsamples and bootstrap samples: 5000 models, n = 100.
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Table 11: Null-LM-n100: Inclusion frequencies of predictor variables in 5000 models from original
samples, subsamples and bootstrap samples of size n = 100.

Predictor Scale Effect(s) Inclusion Freq. (in %)
original sample subsample bootstrap sample

X1 binary 0 5.32 5.84 20.54
categorical with

X2 4 categories 0, 0, 0 5.94 6.88 32.70
X3 7 categories 0, 0, 0, 0, 0, 0 6.74 7.88 45.60

Table 12: LM1-n100: Inclusion frequencies of predictor variables in 5000 models from original
samples, subsamples and bootstrap samples of size n = 100.

Predictor Scale Effect(s) Inclusion Freq. (in %)
original sample subsample bootstrap sample

X1 binary 0.1 8.58 7.74 22.82
categorical with

X2 4 categories 0.1, 0.1, 0 8.04 8.18 34.12
X3 7 categories 0.1, 0.1, 0, 0, 0, 0 7.36 8.82 47.06

Table 13: LM2-n100: Inclusion frequencies of predictor variables in 5000 models from original
samples, subsamples and bootstrap samples of size n = 100.

Predictor Scale Effect(s) Inclusion Freq. (in %)
original sample subsample bootstrap sample

X1 binary 0.05 6.36 6.24 20.92
categorical with

X2 4 categories 0.05, 0.05, 0 6.20 7.10 33.04
X3 7 categories 0.05, 0.05, 0, 0, 0, 0 7.02 8.30 46.10
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Figure 6: Percentage of Cox models including displayed number of predictor variables in original,
subsamples and bootstrap samples: 5000 models, n = 1000.

21



Table 14: Null-Cox-n1000: Inclusion frequencies of predictor variables in 5000 models from original
samples, subsamples and bootstrap samples of size n = 1000.

Predictor Scale Effect(s) Inclusion Freq. (in %)
original sample subsample bootstrap sample

X1 metric 0 5.62 5.24 18.12
X2 metric 0 5.28 5.24 18.14
X3 metric 0 4.90 5.12 18.92
X4 metric 0 4.78 5.22 17.20
X5 metric 0 5.18 5.26 18.22
X6 binary 0 5.34 5.3 18.58
X7 binary 0 5.72 5.88 18.98

categorical with
X8 3 categories 0, 0 4.90 5.30 24.448
X9 3 categories 0, 0 4.76 5.30 25.32
X10 4 categories 0, 0.2, 0 5.58 5.28 32.54
X11 4 categories 0, 0, 0 4.50 5.34 30.36
X12 5 categories 0, 0, 0, 0 6.04 5.88 36.60
X13 5 categories 0, 0, 0, 0 5.60 6.06 35.46
X14 6 categories 0, 0, 0, 0, 0 5.04 5.76 41.08
X15 6 categories 0, 0, 0, 0, 0 5.20 6.02 40.52
X16 7 categories 0, 0, 0, 0, 0, 0 5.76 6.26 44.52
X17 7 categories 0, 0, 0, 0, 0, 0 5.20 5.52 45.26

Table 15: Cox1-n1000: Inclusion frequencies of predictor variables in 5000 models from original
samples, subsamples and bootstrap samples of size n = 1000.

Predictor Scale Effect(s) Inclusion Freq. (in %)
original sample subsample bootstrap sample

X1 metric 0.2 86.88 67.72 77.46
X2 metric 0.2 85.52 66.44 77.54
X3 metric 0.2 85.80 67.60 77.90
X4 metric 0 5.08 5.5 17.76
X5 metric 0 5.14 5.5 18.34
X6 binary 0 5.54 5.76 19.18
X7 binary 0 4.82 5.24 18.36

categorical with
X8 3 categories 0, 0 5.66 6.36 26.28
X9 3 categories 0, 0 5.20 5.26 24.60
X10 4 categories 0.2, 0.2, 0 22.78 15.82 45.76
X11 4 categories 0, 0, 0 5.74 5.86 31.92
X12 5 categories 0, 0, 0, 0 6.04 7.04 37.10
X13 5 categories 0, 0, 0, 0 4.86 5.92 35.92
X14 6 categories 0.1, 0.1, 0.1, 0, 0 9.46 8.70 44.58
X15 6 categories 0, 0, 0, 0, 0 5.78 6.04 41.06
X16 7 categories 0, 0, 0, 0, 0, 0 6.10 7.42 46.04
X17 7 categories 0, 0, 0, 0, 0, 0 6.02 6.36 45.34
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Table 16: Cox2-n1000: Inclusion frequencies of predictor variables in 5000 models from original
samples, subsamples and bootstrap samples of size n = 1000. For categorical predictor variables
with k categories effect sizes for (k − 1) dummy variables are shown.

Predictor Scale Effect(s) Inclusion Freq. (in %)
original sample subsample bootstrap sample

X1 metric 0.01 5.32 5.72 18.12
X2 metric 0.02 6.82 6.60 19.66
X3 metric 0.03 8.84 7.94 20.78
X4 metric 0 4.82 5.32 18.78
X5 metric 0 5.46 5.44 17.58
X6 binary 0 5.58 5.46 19.18
X7 binary 0 5.34 5.34 18.98

categorical with
X8 3 categories 0, 0 4.92 5.24 25.24
X9 3 categories 0, 0 4.84 5.22 25.08
X10 4 categories 0.08, 0.08, 0 8.92 8.06 35.60
X11 4 categories 0, 0, 0 5.88 6.12 31.12
X12 5 categories 0, 0, 0, 0 5.18 5.82 35.36
X13 5 categories 0, 0, 0, 0 5.20 5.76 35.70
X14 6 categories 0.04, 0.04, 0.04, 0, 0 6.38 7.12 42.76
X15 6 categories 0, 0, 0, 0, 0 5.44 6.40 42.42
X16 7 categories 0, 0, 0, 0, 0, 0 5.40 6.10 46.36
X17 7 categories 0, 0, 0, 0, 0, 0 5.74 6.74 45.94
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Table 17: NHANES: Original interview question or description of selected variables

Abbreviation Interview question / description Values

race
Recode of reported race and ethnicity information

Mexican American
Other Hispanic
Non-Hispanic White
Non-Hispanic Black
Other Race - Including Multi-Racial

country of birth In what country (were you/was SP) born?

50 US States or Washington, DC
Mexico
Other Spanish Speaking Country
Other Non-Spanish Speaking Country

education
What is the highest grade or level of school (you
have/SP has) completed or the highest degree (you
have/she/he has) received?

less than 9th
up to 11th
high school
some college
graduate

marital status Marital staus

married
widowed
divorced
separated
never married
living with partner

HealthStatus Would you say (your/SP’s) health in general is . . .

excellent
very good
good
fair
poor

depression screening
Over the last 2 weeks, how often have you been bothered
by the following problems: little interest or pleasure in
doing things? Would you say...

not at all
several days
over half the days
nearly every day

ToothCond
Now I have some questions about the condition of your
teeth and gums. How would you describe the condition
of (your/SP?s) teeth? Would you say . . .

excellent
very good
good
fair
poor

sleepTrouble
In the past month, how often did (you/SP) have trouble
falling asleep?

never
rarely
sometimes
often
almost always

wakeUp
In the past month, how often did (you/SP) wake up
during the night and had trouble getting back to sleep?

never
rarely
sometimes
often
almost always

medicalPlaceToGo
What kind of place (do you/does SP) go to most often:
is it a clinic, doctor’s office, emergency room, or some
other place?

clinic
doctor’s office
hospital emergency
hospital outpatient
other

income

Total household income (reported as a range value in
dollars)

under $5k
$5k - under $10k
$10k - under $15k
$15k - under $20k
$20k - under $25k
$25k - under $35k
$35k - under $45k
$45k - under $55k
$55k - under $65k
$65k - under $75k
$75k - under $100k
over $100k

AcuteIllness

Did (you/SP) have a head cold or chest cold that started
during the last 30 days? or Did (you/SP) have flu,
pneumonia, or ear infections that started during those
30 days? or Did (you/SP) have a stomach or intestinal
illness with vomiting or diarrhea that started during
those 30 days?

no
yes

100cig
Have you/Has SP smoked at least 100 cigarettes in
(your/his/her) entire life?

yes
no

diabetes
(Other than during pregnancy, (have you/has SP)/(Have
you/Has SP)) ever been told by a doctor or health
professional that (you have/(he/she/SP) has) diabetes
or sugar diabetes?

yes
no

Continued on next page
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Continued from previous page

asthma
Has a doctor or other health professional ever told
(you/SP) that (you/she/he) have/has asthma?

yes
no

heartFailure
Has a doctor or other health professional ever told
(you/SP) that (you/she/he) had congestive heart
failure?

yes
no

stroke
Has a doctor or other health professional ever told
(you/SP) that (you/she/he) had a stroke?

yes
no

chronicBronchitis
Has a doctor or other health professional ever told
(you/SP) that (you/she/he) had chronic bronchitis?

yes
no

heavyDrinker
Was there ever a time or times in (your/SP’s) life when
(you/he/she) drank 5 or more drinks of any kind of
alcoholic beverage almost every day?

yes
no

Overall (n = 1914)

race Mexican American 277 (14%)
Other Hispanic 195 (10%)
Non-Hispanic White 1005 (53%)
Non-Hispanic Black 370 (19%)
Other 67 ( 4%)

country of birth US 1559 (81%)
MEX 138 ( 7%)
other spanish-speaking 135 ( 7%)
other non-spanish-speaking 82 ( 4%)

education less than 9th 179 ( 9%)
up to 11th 304 (16%)
high school 480 (25%)
some college 541 (28%)
graduate 410 (21%)

marital status married 1091 (57%)
widowed 117 ( 6%)
divorced 252 (13%)
separated 70 ( 4%)
never married 253 (13%)
living with partner 131 ( 7%)

HealthStatus excellent 198 (10%)
very good 565 (30%)
good 722 (38%)
fair 346 (18%)
poor 83 ( 4%)

depression screening not at all 1403 (73%)
several days 345 (18%)
over half the days 87 ( 5%)
nearly every day 79 ( 4%)

ToothCond excellent 267 (14%)
very good 337 (18%)
good 625 (33%)
fair 404 (21%)
poor 281 (15%)

sleepTrouble never 742 (39%)
rarely 397 (21%)
sometimes 419 (22%)
often 215 (11%)
almost always 141 ( 7%)

wakeUp never 665 (35%)
rarely 373 (19%)
sometimes 467 (24%)
often 252 (13%)
almost always 157 ( 8%)

medicalPlaceToGo clinic 384 (20%)
doctor’s office 1396 (73%)
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Overall (n = 1914)

hospital emergency 71 ( 4%)
hospital outpatient 32 ( 2%)
other 31 ( 2%)

income under $5k 33 ( 2%)
$5k - under $10k 69 ( 4%)
$10k - under $15k 125 ( 7%)
$15k - under $20k 139 ( 7%)
$20k - under $25k 160 ( 8%)
$25k - under $35k 246 (13%)
$35k - under $45k 184 (10%)
$45k - under $55k 176 ( 9%)
$55k - under $65k 129 ( 7%)
$65k - under $75k 134 ( 7%)
$75k - under $100k 206 (11%)
over $100k 313 (16%)

sex male 967 (51%)
female 947 (49%)

AcuteIllness no 1437 (75%)
yes 477 (25%)

100cig yes 984 (51%)
no 930 (49%)

diabetes yes 260 (14%)
no 1654 (86%)

asthma yes 287 (15%)
no 1627 (85%)

heartFailure yes 52 ( 3%)
no 1862 (97%)

stroke yes 63 ( 3%)
no 1851 (97%)

chronicBronchitis yes 142 ( 7%)
no 1772 (93%)

heavyDrinker yes 317 (17%)
no 1597 (83%)

waistcircum in cm Mean ± SD — Median 100.4± 16.37|99.4
Cholesterol in md/dl 196.9± 41.59|193.0
WBCcount in (1k cells/µl) 7.3± 2.88|6.9
BPsys in mmHg 124.4± 18.62|122.0
BPdias in mmHg 71.2± 11.84|72.0
age in years 50.0± 16.68|50.0
BMI in kg/m2 29.3± 6.66|28.3
alcohol in units 3.9± 20.18|2.0
CRP in mg/dl 0.4± 0.61|0.2
Table 18: NHANES sample: Characteristics of n = 1914 participants for con-
sidered predictor variables and response variable CRP.
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