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First molecular evidence of bovine
hemoplasma species (Mycoplasma spp.) in
water buffalo and dairy cattle herds in
Cuba
Adrian Alberto Díaz-Sánchez1,2, Belkis Corona-González1, Marina L. Meli2, Dasiel Obregón Álvarez3,
Ernesto Vega Cañizares1, Osvaldo Fonseca Rodríguez1,4,5, Evelyn Lobo Rivero1 and Regina Hofmann-Lehmann2*

Abstract

Background: Hemotropic mycoplasmas (aka hemoplasmas) are small bacteria which cause infectious anemia in
several mammalian species including humans. Information on hemoplasma infections in Cuban bovines remains
scarce and no studies applying molecular methods have been performed so far. The aim of the present study was
to utilize real-time PCR and sequence analysis to investigate dairy cattle and buffalo from Cuba for the presence of
bovine hemoplasma species.

Results: A total of 80 blood samples from 39 buffalo and 41 dairy cattle were investigated for the presence of
Mycoplasma wenyonii and “Candidatus Mycoplasma haemobos” using two species-specific real-time TaqMan PCR
assays. PCR results revealed overall 53 (66.2%; 95% CI: 55.3–75.7%) positive animals for M. wenyonii and 33 (41.2%;
95% CI: 31.1–52.2%) for “Ca. M. haemobos”; the latter were all co-infections with M. wenyonii. The sample
prevalences were similar in cattle and buffalo. Based on the sequence analysis of the nearly full-length 16S rRNA
gene from two cattle and two buffalo, the presence of M. wenyonii and “Ca. M. haemobos” was confirmed.
Statistical analysis revealed that buffalo and cattle one year of age or older were more frequently infected with
M. wenyonii or “Ca. M. haemobos” than younger animals. PCR-positivity was not associated with anemia; however,
the infection stage was unknown (acute infection versus chronic carriers).

Conclusions: The high occurrence of bovine hemoplasma infections in buffalo and dairy cattle may have a
significant impact on Cuban livestock production. To the best of our knowledge, this is the first molecular evidence
of bovine hemoplasma species infection in dairy cattle and buffalo from Cuba and the Caribbean.

Keywords: Hemotropic mycoplasma, Mycoplasma wenyonii, “Candidatus Mycoplasma haemobos”, Real-time PCR,
16S rRNA

Background
Hemotropic mycoplasmas or hemoplasmas are small
epierythrocytic gram-negative bacteria, which can only
survive by parasitism of erythrocytes and cause infec-
tious anemia in several mammalian species including
humans [1, 2]. Hemoplasmas were originally classified as
members of the two genera of order Rickettsiales,

namely Eperythrozoon and Haemobartonella. Some years
ago, these organisms have been reclassified as members
of the genus Mycoplasma based on strong phylogenetic
evidence of their 16S rRNA sequences and morpho-
logical similarity [3, 4].
In cattle, two distinct hemotropic Mycoplasma species

have been identified to date: Mycoplasma wenyonii (Mw:
formerly Eperythrozoon wenyonii) [5] and a provisional
species “Candidatus Mycoplasma haemobos” (CMh:
synonym “Candidatus M. haemobovis”) [6, 7]. Clinical
signs of hemoplasma infection in cattle include anemia,
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transient fever, lymphadenopathy, anorexia, weight loss
and decreased milk production; in most animals, how-
ever, infection remains subclinical [8]. The epidemiology
of bovine hemotropic mycoplasmas is still poorly under-
stood, and the possible transmission routes may include
by vectors such as fleas, hard ticks and mosquitoes, or
by direct contact with contaminated blood [9, 10].
Mycoplasma wenyonii was first described by Adler et

al. [5] in a splenectomized calf; since then it has been re-
ported throughout the world [1]. In Cuba, M. wenyonii
was first reported in cattle by Pino et al. [11]; however
we cannot be certain that M. wenyonii was the species
truly detected since molecular techniques were not avail-
able at the time. As part of the original report, splenec-
tomized calves were inoculated with the agent and it
was determined that anemia could be induced under ex-
perimental conditions [12]. Despite the first report oc-
curring 30 years ago, the agent has since neither been
reported in Cuba nor in any other Caribbean country
[13]. The second bovine hemoplasma species, “Ca. M.
haemobos” has been reported more recently for the first
time using molecular methods such as polymerase chain
reaction (PCR) and DNA sequencing techniques in cat-
tle from several countries around the world, including
the Americas mainland [6, 14–17].
Hemoplasmas have never been cultured in vitro. A

tentative diagnosis may be based on cytological examin-
ation of erythrocytes on Giemsa stained blood smears by
microscopy. However, this method has a low analytical
sensitivity and specificity because the organism resem-
bles Howell-Jolly bodies or background debris and other
artifacts, and the bacterial loads are very low during
chronic infection leaving detection by microscopy nearly
impossible [18]. The development of PCR based
methods led to assays with increased sensitivity and spe-
cificity for the identification of bovine hemoplasma spe-
cies; these methods represent the useful diagnostic
methods of choice nowadays [14, 19].
To the best of our knowledge, molecular detection of

bovine hemoplasmas has never been reported to date in
the Caribbean countries. Thus, the aim of the present
study was to utilize molecular biological techniques,
namely real-time PCR and sequence analysis, to investi-
gate the presence of bovine hemoplasma species in cattle
and buffalo from Cuba.

Results
A total of 80 blood samples were collected from two cat-
tle (Bos taurus) and two water buffalo (Bubalus bubalis)
herds in the Mayabeque Province of Cuba (Fig. 1) and
investigated for bovine hemoplasmas using molecular
assays. Information concerning sex, age, tick infestation,
management system and hematocrit of all animals was
obtained (Table 1). In all 80 total nucleic acid (TNA)

samples extracted from the blood samples, a sufficient
amount of DNA was present as determined by GAPDH
PCR (Ct value < 22). All extraction and non-template
controls were PCR-negative; all positive controls tested
PCR-positive. Overall, 53 of the 80 tested animals
(66.2%; 95% CI: 55.3–75.7%) from either cattle or buffalo
were PCR-positive for bovine hemoplasmas. All 53
PCR-positive animals were positive for M. wenyonii
(overall sample prevalence of M. wenyonii 66.2%; 95% CI:
55.3–75.7%) and 33 of 80 were positive for “Ca. M. hae-
mobos” (overall sample prevalence of “Ca. M. haemobos”
41.2%; 95% CI: 31.1–52.2%). Among the PCR-positive ani-
mals, 33 were co-infected with M. wenyonii and “Ca. M.
haemobos”; 18 tested positive for M. wenyonii only and
none of these animals was positive only for “Ca. M.
haemobos”.
Among the 41 dairy cattle, 26 (63.4%; 95% CI: 48.0–

76.4%) and 18 (43.9%; 95% CI: 29.8–59.0%) animals showed
PCR-positive results for M. wenyonii and “Ca. M. haemo-
bos”, respectively. Co-infections were detected in 18 of 41
(43.9%; 95% CI: 29.8–59.0%) cattle blood samples analyzed,
8 tested positive for M. wenyonii only and none were
positive only for “Ca. M. haemobos”. Out of 39 buffalo, 27
(69.2%; 95% CI: 53.5–81.4%) and 15 (38.5%; 95% CI:
24.9–54.2%) animals showed PCR-positive results for
M. wenyonii and “Ca. M. haemobos”, respectively.
Co-infections were detected in 15 of 39 (38.5%; 95% CI:
24.9–54.2%) buffalo blood samples analyzed, 12 tested
positive for M. wenyonii only and none were positive only
for “Ca. M. haemobos”. There was no significant differ-
ence in the total hemoplasma prevalence or in the per-
centage of single or dual positive samples in cattle
compared to buffalo.
The hemoplasma-infected cattle and buffalo did not

exhibit any clinical signs attributable to hemoplasmosis,
such as pale mucous membranes, transient fever, lymph-
adenopathy, anorexia, weight loss or decreased milk pro-
duction. No statistically significant differences in packed
cell volume (PCV) values were found between infected
(range 19–42%, average 34.07 ± 5.02) and uninfected
(range 27–45%, average 37.08 ± 4.40) buffalo (Mann
Whitney U-test, U = 299, P = 0.072), as well as infected
(range 23–36%, average 28.65 ± 3.68) and uninfected
(range 20–42%, average 28.67 ± 6.88) cattle (Mann
Whitney U-test, U = 297.5, P = 0.634). Moreover, in-
fected buffalo and cattle were not more frequently
anemic than non-infected animals (Tables 2, 3). Animals
that were one-year-old or older were significantly more
frequently infected with M. wenyonii or “Ca. M. haemo-
bos” compared to animals less than one year of age
(Fisher’s exact test, P < 0.05); this was the case for both
cattle and buffalo (for details see Tables 2, 3). There was
no association between sex of the animals and bovine
hemoplasma species prevalence (data not shown). All
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studied animals originated from pastureland; the dairy
cattle herds were maintained under a semi-intensive
management system, while the buffalo herds were reared
under an extensive system.
All ticks collected from dairy cattle and buffalo were iden-

tified as Rhipicephalus microplus, which is known as the cat-
tle tick. A total of 129 (92 females and 37 males) and 148 (96
females and 52 males) adult ticks were collected from cattle
and buffalo, respectively. Parasitism by at least one tick was
detected in 27 of 41 (65.9%; 95% CI: 49.4–79.9%) cattle and
17 of 39 (43.6%; 95% CI: 27.8–60.4%) buffalo. An indirect as-
sociation between “Ca. M. haemobos” infection prevalence
and tick-infestation was observed in buffalo only: buffalo
without tick infestation were significantly more frequently
infected with “Ca. M. haemobos” than buffalo with ticks
(Fisher’s exact test, P < 0.0001; for details see Table 2).
Identification of hemoplasma species was further demon-

strated based on sequence analysis of the nearly full-length
16S rRNA gene sequence of four hemoplasma-positive
samples (two buffalo samples; two cow samples). Two

Table 1 Sample characteristics

Variable No. of animals

Species

Cattle 41

Buffalo 39

Sex

Female 74

Male 6

Age

< 1 year 41

1–3 years 39

Tick infestation

Yes 44

No 36

Management system

Semi-extensive 41

Extensive 39

Fig. 1 Map of the study area. a Island of Cuba. b Location of the farms where the sample collection was conducted in the municipalities of
Güines and San José de las Lajas, Mayabeque Province. Scale-bar: 40 km
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sequences designated as BovMw31 and BufMw03
(GenBank: MG948624 and MG948626, respectively)
were 99% identical to each other and exhibited > 99%
identity with M. wenyonii strain Massachusetts
(GenBank: CP003703). While the two other sequences
designated BovCMhbos61 and BufCMhbos01 (GenBank:
MG948628 and MG948631, respectively) were 99% identi-
cal to each other and exhibited > 99% identity with those
of “Ca. M. haemobos” clones 307 and 311 derived from
infected cows in Switzerland (GenBank: EF616467
and EF616468, respectively).
A phylogenetic tree based on the nearly full-length

16S rRNA gene sequences confirmed the close evolu-
tionary relationship between the M. wenyonii Cuban iso-
lates (BovMw31 and BufMw03) with other isolates from
China and the USA (Fig. 2), and clustered into the clade
of M. wenyonii. The Cuban isolates of “Ca. M. haemo-
bos” identified in the present study (BovCMhbos61 and

BufCMhbos01) branched with previous reported isolates
from China, Japan, Germany and Switzerland, which
formed a separate cluster from M. wenyonii group, to-
gether with M. haemocanis and M. haemofelis as previ-
ously described [14].

Discussion
To our knowledge, the present study provides the first
molecular evidence for the occurrence of hemotropic
mycoplasmas infections in dairy cattle and buffalo in
Cuba, and throughout the Caribbean region. A relatively
high prevalence of bovine hemoplasma infections was
detected by real-time PCR in the studied buffalo and
dairy cattle herds. The infection with M. wenyonii was
predominant in both host species, whereas “Ca. M. hae-
mobos” was detected with a lower frequency, and always
as a co-infection with M. wenyonii. Hofmann-Lehmann
et al. [7] were the first to report hemoplasma infections

Table 2 Distribution of variables identified with M. wenyonii and “Ca. M. haemobos” infections in buffalo herds in Mayabeque
Province, Cuba

Variable qPCR M. wenyonii OR 95% CI P-value qPCR “Ca. M. haemobos” OR 95% CI P-value

Positive
(n = 27)

Negative
(n = 12)

Positive
(n = 15)

Negative
(n = 24)

Hematocrit

< 30 4 (15%) 1 (9%) 1.913 0.25–25.3 >0.9999 2 (13%) 3 (13%) 1.08 0.17–5.85 >0.9999

30–50 23 (85%) 11 (91%) 13 (87%) 21 (88%)

Age

< 1 year 9 (33%) 11 (91%) 0.045 0.004–0.3 0.0012 0 (0%) 20 (83%) 0 0–0.077 <0.0001

1–3 years 18 (67%) 1 (9%) 15 (100%) 4 (17%)

Ticks

No 18 (67%) 4 (33%) 4.0 0.89–14.0 0.082 15 (100%) 7 (29%) ∞ 7.48–∞ <0.0001

Yes 9 (33%) 8 (67%) 0 (0%) 17 (71%)

Abbreviations: OR, odds ratio; 95% CI, 95% confidence interval
Significant P-values (Fisher’s exact test: P < 0.05) are indicated in bold

Table 3 Distribution of variables identified with M. wenyonii and “Ca. M. haemobos” infections in dairy cattle herds in Mayabeque
Province, Cuba

Variable qPCR M. wenyonii OR 95% CI P-value qPCR “Ca. M. haemobos” OR 95% CI P-value

Positive
(n = 26)

Negative
(n = 15)

Positive
(n = 18)

Negative
(n = 23)

Hematocrit

< 24 1 (4%) 4 (27%) 0.11 0.009–0.86 0.0514 1 (6%) 4 (17%) 0.42 0.02–2.08 0.3629

24–47 25 (96%) 11 (73%) 17 (94%) 19 (83%)

Age

< 1 year 9 (35%) 12 (80%) 0.13 0.035–0.58 0.0088 5 (28%) 16 (70%) 0.17 0.04–0.62 0.0122

1–3 years 17 (65%) 3 (20%) 13 (72%) 7 (30%)

Ticks

No 11 (42%) 3 (20%) 2.93 0.67–11.3 0.1860 9 (50%) 15 (65%) 0.53 0.14–1.82 0.3583

Yes 15 (58%) 12 (80%) 9 (50%) 8 (35%)

Abbreviations: OR, odds ratio; 95% CI, 95% confidence interval
Significant P-values (Fisher’s exact test: P < 0.05) are indicated in bold

Díaz-Sánchez et al. Parasites & Vectors           (2019) 12:78 Page 4 of 9



in cattle that underwent concurrent infections with
other vector-borne pathogens, during an outbreak of
fatal hemolytic anemia in a Swiss cattle herd. In a
follow-up study, Meli et al. [14] described in Swiss cattle
a higher prevalence of M. wenyonii (63.5%) compared to
“Ca. M. haemobos” (49.6%) and 42.9% of co-infections.
Early studies in Japanese cattle by Tagawa et al. [6] re-

ported lower prevalences (PCR-positive) at 21.8 and
16.7% of the animals for M. wenyonii and “Ca. M. hae-
mobos”, respectively, whereas 5.1% of these were in-
fected with both hemoplasma species. Later, in an
epidemiological survey carried out in different regions of
Japan, Tagawa et al. [20] reported that the prevalence
rates were 38.5% for M. wenyonii and 39.1% for “Ca. M.
haemobos”, with an overall prevalence of 64.7% for all
bovine hemoplasma infections. A high infection rate of
“Ca. M. haemobos” (41.7%) has also been reported in
cattle and buffalo from tropical China [15]. In Brazil,
epidemiological surveys performed by Girotto et al. [16]
and Witter et al. [21] reported prevalence rates for “Ca.
M. haemobos” in dairy cattle of 60.9 and 64.2%, respect-
ively. Hence, our findings suggest that these pathogens
are widespread in cattle and buffalo herds in Cuba, with
similar patterns to other regions around the world.
Although the geographical difference in the bovine

hemoplasma species infection rates has not been thor-
oughly investigated, it may be related to various factors
including the activity of arthropod vectors for hemo-
plasma transmission, the age and sex of the bovine spe-
cies, as well as the animal husbandry practice. In Cuba,

livestock is maintained under three major management
practices: intensive, semi-intensive and extensive sys-
tems. In the sampled farms dairy cattle herds were main-
tained under a semi-intensive management system,
while buffalo herds were reared solely under an exten-
sive system. Ybanez et al. [22] described that pastured
livestock have a higher risk of exposure to blood-sucking
arthropods that are capable of transmitting hemoplasma
infections compared to stabled animals. So far, the epi-
demiological data on M. wenyonii and “Ca. M. haemo-
bos” in the Caribbean region are scarce or inexistent,
with only a few studies in Cuba conducted almost 30
years ago. A similar situation is found in the Americas
mainland, whereby some studies conducted in northern
and southern Brazil have reported similar infection rates
as in Europe and Asia [16, 21, 23]. As such, further in-
vestigation is necessary to document prevalence rates in
cattle and buffalo herds in Cuba and across the
Caribbean.
In the present study, the average PCV values of the

studied animals were comparable to those described
for healthy dairy cattle and buffalo. A slightly de-
crease in the PCV values according to the reference
values for each host species was observed in some
hemoplasma-infected (one cattle and four buffalo)
and non-infected (four cattle and one buffalo) ani-
mals. However, the hemoplasma-infected dairy cattle
and buffalo did not appear to be clinically affected
and no significant association was observed between
the hemoplasma PCR-positivity and the occurrence of

Fig. 2 Phylogenetic analysis of M. wenyonii and “Ca. M. haemobos” isolates from dairy cattle and buffalo. The analysis was based on a nearly-full
length 16S rRNA gene sequence comparison. The phylogenetic tree was constructed using the maximum likelihood (ML) method based on the
Tamura 3-parameter model, and the numbers above the internal nodes indicate the percentages of 1000 bootstrap replicates that supported the
branch. Mycoplasma pneumoniae (NR113659) was used as outgroup. GenBank accession numbers are shown in parentheses. The M. wenyonii
(BovMw31, BufMw03) and “Ca. M. haemobos” (BovCMhbos61, BufCMhbos01) samples identified in the present study are indicated in bold
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anemia. The decrease in the PCV values derives from
anemia, which might be in younger animals due to
the elimination of the fetal erythrocytes that can
cause significant reductions in the levels of these
blood cells in animals with ages between three and
four months old [24]. Besides this, it has been observed
that dairy cattle and buffalo can present variations in the
PCV levels depending on age, breeding region, nutritional
and sanitary management [25]. As none of the infected
dairy cattle or buffalo showed clinical manifestations of se-
vere anemia, hematological parameters were not subjected
to in-depth investigation.
In the present study, dairy cattle and buffalo that were

one-year-old and older showed a higher risk of bovine
hemoplasma infection than those less than one-year-old.
In agreement with our findings, Tagawa et al. [20] re-
ported a higher prevalence of M. wenyonii infections in
Japanese cattle from one to three years of age compared
with younger animals. In addition, Congli et al. [26] re-
ported in China that cattle from two to four years of age
were most susceptible to M. wenyonii infections com-
pared with younger and older animals. A similar obser-
vation was reported by Girotto et al. [16], who detected
in southern Brazil that female cattle above two-years-old
presented a higher prevalence rate of “Ca. M. haemobos”
infections. These results are consistent with the fact that
most two-year-old dairy cattle and buffalo that have
been put out to pasture stay longer in the herd and have
experienced their first pregnancy and delivery. The in-
creased risk of contact with potential vectors in the pas-
ture, as well as pregnancy-induced immune depression,
may have contributed to the higher prevalence of ob-
served infections [20].
In the present study, both domestic bovine species

were found infested with R. microplus tick species, al-
though a higher prevalence and infestation level was
found in cattle than in buffalo. Sajid et al. [27] de-
scribed that the higher host susceptibility for tick in-
festation found in cattle than in buffalo is due to the
thinner skin and dry habitat of the cattle as compared
to thicker skin and swampy habitats of the buffalo. In
the present study, a surprising result was that a lack
of tick infestation in buffalo was associated with a
higher prevalence of “Ca. M. haemobos” infection; it
was noted that only younger buffalo were found
tick-infested. Reasons for higher infestation in youn-
ger animals include (i) less developed immune system
that has yet to be challenged by exposure to tick in-
festation and (ii) softer skin and tissue, facilitating
easy penetration of mouth parts of ticks into the body
of the host [28]. Mohd Hasan et al. [29] reported the first
molecular evidence of the presence of M. wenyonii in R.
microplus ticks collected from Malaysian cattle. In
addition, Hornok et al. [30] and Song et al. [9] reported

the potential role of blood-sucking flies, lice and mosqui-
toes as mechanical vectors of bovine hemoplasmas, as
well as the transplacental transmission mode.
Considering that the only tick species identified in the

present study infesting dairy cattle and buffalo was R.
microplus, which is widely distributed in the Cuban
mainland, and the resistance of buffalo to tick infest-
ation, we think that other vectors or transmission modes
could be involved in the occurrence of M. wenyonii and
“Ca. M. haemobos” in the studied region; however, this
observation needs further investigation.

Conclusions
The present study constitutes the first molecular evi-
dence of M. wenyonii and “Ca. M. haemobos” infections
in Cuban dairy cattle and buffalo. Our results indicate a
wide distribution of bovine hemoplasma infections
among dairy cattle and buffalo herds in the studied re-
gion. No obvious anemia was observed in infected ani-
mals; however, their infection stage (acute infection
versus carrier) was unknown. Infected animals probably
remain chronic carriers. Our study provides new infor-
mation on the biodiversity of vector-borne pathogens in
dairy cattle and buffalo population in Cuba. However, it
is impossible to evaluate the infection rate epidemiologi-
cally, because a limited number of samples were investi-
gated. Further studies are required to clarify the
pathogenicity and epidemiology, as well as to assess the
impact that these two bovine hemoplasmas have on the
livestock industry in Cuba.

Methods
Aim and design of the study
The aim of this study was to investigate for the first time
the presence of bovine hemoplasma species in cattle and
buffalo from Cuba using molecular techniques. For this
purpose, blood samples were collected from two cattle
(Bos taurus) and two water buffalo (Bubalus bubalis)
herds.

Collection of blood samples and DNA extraction
A total of 80 field blood samples were collected on four
farms in the Mayabeque Province of Cuba from March
to May, 2014 (Fig. 1). The studied farms were small,
low-income and family-owned operations that func-
tioned as dairy farms.
For all the animals, blood samples were collected by jugu-

lar venopuncture using 10 ml vacutainer collecting tubes
containing EDTA (BD Vacutainer®, Becton Dickinson Vacu-
tainer Systems, Franklin Lakes, NJ, USA). The hematocrit
was assessed by microcentrifugation from each blood sam-
ple in a Jouan Hema-C microhematocrit centrifuge
(Hawksley and Sons, Ltd, Sussex, UK; 18,600× g, 5 min);
the value was determined with a DAMON/IEC hematocrit
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reader (Damon/IEC Division, Needham Heights, MA,
USA). The remaining EDTA blood samples were stored at
-20 °C prior to nucleic acid extraction. TNA was extracted
from 100 μl of blood using a DNeasy Blood and Tissue Kit
(Qiagen, Valencia, CA, USA) according to the manufac-
turer’s instructions. The concentration and purity of the
TNA was determined by measuring absorbance at 260 and
230 nm using a Colibri Microvolume Spectrophotometer
(Titertek-Berthold, Pforzheim, Germany), and TNA was
stored at -20 °C until use for qPCR analysis.

Collection of tick samples from cattle and buffalo
An average of ten adult tick specimens were collected
from different body parts (ears, head, neck, pectoral, in-
guinal and tail) of each infested animal, and stored in
polypropylene tubes containing isopropyl alcohol. Ticks
collected from cattle and buffalo were taxonomic identi-
fied to the species level based on the dichotomous key
of Barros-Battesti et al. [31]. In the parasitized animals,
the tick infestation level was measured subjectively
based on the observation of adult tick specimens on the
cattle and buffalo, and sorted into two infestation levels
(absent/low or moderate/high) according to Labruna et
al. [32]. All ticks included in the study were engorged
ticks collected directly from infested cattle and buffalo.
Therefore, the ticks were not analyzed for the presence
of bovine hemoplasmas, since the presence of hemoplas-
mas in engorged ticks may have resulted from feeding
on the animals and cannot directly be related to a vector
potential of the ticks.

Real-time PCR assays
The presence of M. wenyonii and “Ca. M. haemobos” DNA
was detected using species-specific real-time TaqMan PCR
assays based on 16S rRNA genes previously described by
Meli et al. [14]. The presence of amplifiable DNA and the
absence of PCR inhibitors were confirmed by the successful
amplification of the bovine glyceraldehyde-3-phosphate de-
hydrogenase gene (GAPDH) on all samples [33]. The
primers and probes were custom-synthesized at a commer-
cial source (Microsynth, Balgach, Switzerland) and partly
modified from the original publications (Table 4). For
real-time quantitative assays, 5 μl of the extracted genomic
DNA template was combined with 900 nM of each oligo-
nucleotide primer and 250 nM of the corresponding probe
in a total reaction volume of 20 μl, using 10 μl of 2× Taq-
Man Universal PCR Master Mix (Thermo Fisher Scientific,
Reinach, Switzerland),) and 0.25 μl (0.5 U) of uracyl DNA
N-glycosylase (Roche Diagnostics, Mannheim, Germany)
per reaction. TaqMan PCR reactions were mixed in 96-well
optical plates (Applied Biosystems, Thermo Fisher
Scientific). The PCR samples were subjected to 45 cy-
cles of amplification in an ABI 7500 Fast Real-Time
PCR System (Applied Biosystems, Thermo Fisher
Scientific) under the following conditions: 50 °C for 2
min (uracil N-deglycosylase digest), 95 °C for 10 min
(AmpliTaq Gold pre-activation), and then 45 cycles of
95 °C for 15 s and 60 °C for 1 min. The ABI 7500
Fast Real-Time PCR system provided a cycle by cycle
measurement of the fluorescence emission from each
reaction. For each batch of samples, a negative con-
trol (RNase-free water) and positive controls (M.

Table 4 Primers and probes used in this study for the real-time TaqMan PCR assays, and sequence analysis of M. wenyonii and “Ca.
M. haemobos” from dairy cattle and buffalo

Target Primer/Probe Sequence (5'-3') Amplicon
length (bp)

Reference

Bovine GAPDH GAPDH.463f GGCGTGAACCACGAGAAGTATAA 120 Modified from Leutenegger et al. [33]

GAPDH.582r CCCTCCACGATGCCAAAGT

GAPDH.489p ATTO550-AYACCCTCAAGATTGTCAGCAATGCCTCCT-BHQ-2

M. wenyonii MwenyoniiF CCACGTGAACGATGAAGGTCTT 119 Modified from Meli et al. [14]

MwenyoniiR GGCACATAGTTAGCTGTCACTTATTCAA

Mwen_P 6-FAM-AGTACCATCAAGGCGYGCTCATTTCCTAG-BHQ-1

MycWen15fa ACACATGCAAGTCGAACGAG 1360 This study

MycWen1374ra ATTGAATGTGGTTTTGACTAGTACTTT

“Ca. M. haemobos” Mwen_short.forw CCATGTGAACGATGAAGGTCTTT 90 Modified from Meli et al. [14]

Mwen_short.rev AGTTTGCTGTCACTTATTCATGAGGTA

Mwen_short.p YY-CTA1TCA1GTTRTTA1TCCCTCA1TAA-BHQ-1

MHBforwa GAATTAATGCTGATGGTATGCCTAA 1393 Meli et al. [14]

MHBreva CCAATCAGAATGTTCACTCTAGATGC
aPrimers used for the sequencing reactions
Abbreviations: BHQ, black hole quencher; 6-FAM, 6-carboxyfluorescein; YY, Yakima yellow; A1, 2-aminopurin: internal modification to increase melting temperature
in substitution of the minor groove binder (used in the original publication)
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wenyonii and “Ca. M. haemobos” synthetic DNA,
GeneArt String DNA; Thermo Fisher Scientific) were
included.

Sequencing and phylogenetic analysis of the 16S rRNA
gene
For sequence analysis, the near full-length 16S rRNA
genes of M. wenyonii- and “Ca. M. haemobos”-positive
samples were amplified using the primer sets shown in
Table 4. The samples for sequencing were randomly
chosen among the PCR-positive samples. For both path-
ogens, 5 μl of extracted TNA were included in a total
volume of 50 μl containing 10 μl of 5× Phusion HF buf-
fer (Finnzymes, Espoo, Finland), 500 nM each primer,
200 nM each deoxynucleoside triphosphate (dNTP) (Sig-
ma-Aldrich, Buchs, Switzerland), and 1 U Phusion DNA
Polymerase (Finnzymes). Amplification was performed
using a T-personal 48 thermal cycler (Biometra GmbH,
Göttingen, Germany) under the following conditions: an
initial denaturation step at 98 °C for 3 min; 35 cycles of
98 °C for 10 s, 60 °C for 30 s and 72 °C for 30 s; and a
final extension step at 72 °C for 10 min. PCR products
were subjected to electrophoresis in a 1.5% agarose
gel (100V, 40 min), pre-stained with gel red and visu-
alized under ultraviolet light. PCR products were
purified with the QIAquick Gel Extraction Kit
(Qiagen) according to the manufacturer’s instructions,
and submitted for direct sequencing at a commercial
lab (Microsynth, Balgach, Switzerland). Sequences
were identified by checking the specified sequence
against existing sequences using the BLASTn search
program (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi).
For phylogenetic and molecular evolutionary analysis,

the sequences were aligned with known hemoplasma se-
quences from GenBank using ClustalW [34] and manu-
ally adjusted when necessary. Only nucleotides that were
available for all included sequences were used in the
phylogenetic analysis. A bootstrap phylogenetic tree was
inferred to determinate the relationship of the detected
bovine species to know hemoplasma species. The tree
was created by the neighbor-joining method [35] using a
distance matrix corrected for nucleotide substitutions
based on the Tamura 3-parameter model. The data set
was resampled 1000 times to generate bootstrap values.
Phylogenetic and molecular evolutionary analyses were
conducted using MEGA v.7.0.14 [36].

Statistical analysis
The association between a PCR-positive samples to M.
wenyonii and “Ca. M. haemobos” and variables such as
age, presence of ticks and anemia, were analyzed using
Fisher’s exact test. The prevalence rates were calculated
with 95% confidence intervals (CI). PCV was analyzed
using references values described for each bovine

species, and was used as parameter of anemia for dairy
cattle (PCV < 24% indicates anemia, reference range:
24–46%) [37] and buffalo (PCV < 30% indicates anemia,
reference range: 30–50%) [38]. The age of the animals
was also analyzed as a categorical variable with animals
classified as ≤ 1-year-old and > 1 and < 3 years-old.
None of the studied animals was older than 3 years old.
In addition, quantitative variables, such as age and
hematocrit, were analyzed by the Mann-Whitney U-test.
Statistical analyses were performed using the software
Jamovi 0.8.1.10 (Jamovi project, 2017). Differences were
considered statistically as significant if P < 0.05.

Nucleotide sequence accession numbers
The nucleotide sequences have been submitted to the
GenBank database under the accession numbers
MG948624, MG948626, MG948628 and MG948631.

Abbreviations
16S rRNA: 16 Svedberg ribosomal ribonucleic acid; 6-FAM: 6-
carboxyfluorescein; A*: 2-aminopurin; BHQ: black hole quencher;
CI: confidence interval; GAPDH: glyceraldehyde-3-phosphate dehydrogenase
gene; PR: prevalence ratio; YY: Yakima yellow
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