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Abstract

Objective

The present study aims to investigate whether a newly developed fast fMRI called MREG

(magnetic resonance encephalography) measures metabolic changes related to interictal

epileptic discharges (IED). For this purpose BOLD changes are correlated with the IED dis-

tribution and variability.

Methods

Patients with focal epilepsy underwent EEG-MREG using a 64 channel cap. IED voltage

maps were generated using 32 and 64 channels and compared regarding their correspon-

dence to the BOLD response. The extents of IEDs (defined as number of channels with

>50% of maximum IED negativity) were correlated with the extents of positive and negative

BOLD responses. Differences in inter-spike variability were investigated between interictal

epileptic discharges (IED) sets with and without concordant positive or negative BOLD

responses.

Results

17 patients showed 32 separate IED types. In 50% of IED types the BOLD changes could

be confirmed by another independent imaging method. The IED extent significantly corre-

lated with the positive BOLD extent (p = 0.04). In 6 patients the 64-channel EEG voltage

maps better reflected the positive or negative BOLD response than the 32-channel EEG; in

all others no difference was seen. Inter-spike variability was significantly lower in IED sets

with than without concordant positive or negative BOLD responses (with p = 0.04).
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Significance

Higher density EEG and fast fMRI seem to improve the value of EEG-fMRI in epilepsy. The

correlation of positive BOLD and IED extent could suggest that widespread BOLD

responses reflect the IED network. Inter-spike variability influences the likelihood to find IED

concordant positive or negative BOLD responses, which is why single IED analysis may be

promising.

Introduction

Patients with focal refractory epilepsy profit from identifying brain regions which generate epi-

leptic spikes and seizures. A better understanding of this epileptic focus and associated spike

networks will allow to identify candidates for epilepsy surgery and other treatments such as

intracranial stimulation [1,2]. For presurgical evaluation of patients with pharmaco-resistant

epilepsy a variety of diagnostic imaging tools are available, but despite extensive investigations,

it is not always possible to accurately identify epileptic structures [3,4]. EEG-fMRI is a recent,

valuable method that combines the good temporal resolution of EEG and the good spatial reso-

lution of fMRI. It defines the irritative zone by studying the brain’s hemodynamic changes

related to IEDs [5,6]. In focal epilepsy it has already been shown that the BOLD response local-

izes brain areas responsible for IEDs [7,8] and a good correlation between the BOLD response

and the epileptic lesions could be seen [9,10]. Furthermore, the position of the positive BOLD

response within the resected area was related to a good postoperative outcome [11]. EEG-fMRI

resulted in additional clinical information in patients formerly rejected for epilepsy surgery

[12,13]. Based on this new information some patients were surgically reevaluated and success-

fully operated [12,13].

Nonetheless fMRI is still not widely used in clinical practice. Up to 30% of EEG-fMRI stud-

ies are negative not showing any BOLD response [8]. Additionally BOLD responses are often

hard to interpret and widespread or multifocal. While negative studies can be partly explained

by a lack of epileptic spikes during the measurement or a bad signal-to-noise ratio, widespread

BOLD responses are harder to interpret. Increased noise generated by technical artifacts, erro-

neous hemodynamic response functions (HRF) or improper statistical methods are partly

made responsible [14]. An often discussed issue in this context is the thresholding of fMRI data

as it influences the sensitivity of the method. Given that IEDs tend to rapidly propagate, wide-

spread BOLD responses are in addition often regarded as propagated activity. Studies using

fMRI combined with continuous EEG source imaging and those investigating early BOLD

responses support this hypothesis [15–17].

In recent years fast fMRI sequences have been developed. The thereby achieved high tempo-

ral resolution increases signal to noise ratio and sensitivity of fMRI as well as the possibilities

for investigating the time course of the BOLD response. In particular, a fast fMRI sequence

called Magnetic Resonance Encephalography (MREG) [18,19] uses undersampled, single-shot

k-space trajectories and a 32-channel receiver coil to acquire a 3D whole brain fMRI data with

a temporal resolution of 100 ms and a spatial resolution of 4–5 mm. A former study could

already demonstrate the higher sensitivity of MREG compared to the classical EPI method in

patients with focal epilepsy [20]. IED related BOLD responses had higher t-values and better

concordance with the EEG topography. Nevertheless some patients showed widespread BOLD

responses, which were unclear in nature. The present study aims to improve understanding of

the BOLD responses observed with MREG in patients with focal epilepsy. It first investigates
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whether widespread and multifocal positive or negative BOLD responses might be partly the

result of large inter-spike variability when averaging IEDs for the analysis and then correlates

the EEG IED extent with the associated positive and negative BOLD extent. Lastly, it explores

the influence of EEG resolution on the interpretation of the positive and negative BOLD

responses. All analyses aim to test the hypothesis that widespread BOLD in MREG do not

reflect artifacts or unspecific metabolic changes but highlight structures within the epileptic

spike generating network.

Methods

Patients with focal epilepsy who stayed at the Epilepsy Centre Freiburg in the context of further

diagnostic or treatment and met the following criteria were included in this study:

1. Minimum age of 6 years

2. > 3 IEDs in 20 minutes on EEG outside the scanner

3. No contraindications for MRI scanning

Clinical data were collected from the patient records. All patients gave written informed

consent. On behalf of the minors written informed consent was given from the guardians. The

study was approved by the Research Ethics Committee of the University Medical Center

Freiburg.

Data acquisition

EEG was continuously recorded inside the MRI scanner with an MR-compatible EEG-system

(Brainproducts Co., Munich, Germany). 64 Ag/AgCl electrodes were placed on the patients

head using an electrode cap (Easycap, Herrsching, Germany) with FCz as reference electrode.

Electrode impedance was kept below 10 kO. Electrode cables and the patients head were immo-

bilized with foam pads. Recording and storage of the EEG signal was carried out with the pro-

gram `Brain Vision Recorder´ (Brainproducts Co., Munich, Germany). Data was transmitted

via an optic fiber cable from an amplifier (5 kHz sampling rate, 0.016–250Hz band-pass filter)

to a computer located outside the scanner room.

MREG recordings were continuously acquired during resting state using a 3 T (Tesla) scan-

ner (Trio Tim, Siemens Healthcare, Erlangen, Germany). First an anatomical 3D, T1-weighted

dataset (MPRAGE: TR = 2200ms, TE = 2.15ms, FOV = 256mm, 256×256 matrix, 160 sagittal

slices, 1mm slice thickness) was performed for co-registration with functional images. MREG

acquisitions were conducted for at least 20 minutes and up to 40 minutes, depending on patient

compliance (TR = 100ms, TE = 20ms, FOV = 192mm, 64 × 64 × 64 matrix, flip angle = 15°,

12800 to 25600 volumes (time points), 32-channel head receiver coil). Electrocardiogram

(ECG) and respiration were recorded simultaneously during the scan.

EEG processing

Brain Vision Analyser software (Brainproducts, Munich, Germany) was used for offline artifact

correction and EEG filtering. Gradient artifact and pulse artifact were removed by average

artifact subtraction [21], followed by Independent Component Analysis [22,23]. IEDs were

marked using a bipolar montage (double banana) by a board certified neurophysiologist (JJ)

according to spatial distribution and morphology so that different types of discharges in one

patient were analyzed separately. Timing with respect to the ECG was used to exclude IED-like

residual pulse artifacts.
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Processing of MREG Data

First the MREG images were reconstructed from the raw data of the multiple receiver coils

[19]. The fMRI images were motion corrected (coregistration with the first volume using

MCFLIRT) and smoothed (Gaussian kernel, FWHM = 6mm) using FSL software (FMRIB`s

Software library) [24]. Statistical analysis using the general linear model was performed using

the software fMRIstat [25]. Cardio-respiratory regressors, motion parameters and the scanner

drift were included as confounds in the model. To account for the high temporal resolution of

MREG a 5th-order autoregressive (AR) was used to model the noise term in the general linear

model (GLM) [20]. To account for possibly different HRF delays, four different HRFs were

used with peak times at 3, 5, 7 and 9 seconds after the event [26]. For each voxel the highest

absolute t-value among those four was taken to generate a single combined map. Responses

were rated as significant if at least 7 contiguous voxels were present with |t|> 3.5 (p = 0.05, cor-

rected for multiple comparisons at the cluster level [25] and an additional Bonferroni correc-

tion due to the 4 analyses).

Further analysis

For further EEG analysis the ASA software (ANT Software BV, Enschede, Netherlands) was

used. Spike peak correction was performed to automatically move the manual markings to the

time of highest negativity. All marked IEDs within one IED set were averaged and EEG voltage

maps were generated using a common average montage.

Validation of MREG by other established imaging methods. For validation of MREG an

experienced neuro-radiologist (IM) visually compared the detected positive or negative BOLD

responses to structural lesions in magnetic resonance (MRI) and statistically significant meta-

bolic areas in positron emission tomography (PET) and single photon emission computed

tomography (SPECT).

Correlation between IED and BOLD extent. IED extent was measured in the 64-channel

EEG voltage map by identifying the electrode with the highest negativity (in μV) and all other

electrodes which showed at least 50% of this negativity (Fig 1). The included electrodes were

counted and the resulting number taken as IED extent. The total extent of BOLD volume mea-

sured as the entire region of activated voxels in cm³ as well as the total number of BOLD clus-

ters was determined using MREG data and then both separately correlated with the IED extent

using a Spearman Correlation (Table 1). This was performed for positive and negative BOLD

responses separately.

Influence of inter-spike variability on BOLD response. Rather than averaged IEDs,

every single spike of one IED set was considered here. The IED variability across spikes was

quantified by correlating the individual spatial topographies (using the 64-channel EEG) of

each IED with the previously generated average spatial topography across all IEDs of a given

set. Coefficient of correlation was computed with MATLAB. The mean correlation across all

IEDs was then used as a measure of variability. The higher the mean correlation the more simi-

lar are the single spikes of one IED set. A value of 1 would therefore indicate that all individual

maps are identical and correlate perfectly with the average map, while a lower score indicates a

higher variability across maps (Fig 1). It was then investigated whether there was a difference

in this variability score between IED sets with concordant positive or negative BOLD

responses, and IED sets without concordant positive or negative BOLD responses. Both groups

were compared with a t-test (level of significance α<0.05).

Comparison 32/64-channel EEG. The before generated EEG voltage maps were examined

for correspondence of irritative zone and positive or negative BOLD responses (positive and

negative). This analysis was performed using the original 64-channel EEG voltage maps as well

Fast fMRI in Epilepsy
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Fig 1. Exemplary illustration of the usedmethods. (A) Determination of IED extent. The red circle indicates the IED with the highest negativity, the blue
circle indicates IEDs with at least 50% of this negativity and the green circle indicates IEDs that did not meet the inclusion criteria. (B) Representation of
possible inter-spike variability within one IED set.

doi:10.1371/journal.pone.0140537.g001
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Table 1. IED and BOLD extent.

Patient Spiketype Electrode with
maximum spike
negativity

Electrodes with � 50% of
maximum spike negativity

Number of
involved
electrodes

Positive
BOLD
volume in
cm³

Number of
positive BOLD
clusters

Cluster with
max T-
value

1 Spike 1 TP10 TP8, FT8, FT6, T8, CP6 5 3928 18 308

Spike 2 F8 FP2, AF8, F6, FT8, T8 5 3688 17 2079

2 Spike 1 FP2 FP1, AF4, AF8, FZ, F2, F4, F6, CPz 8 4684 24 3781

3 Spike 1 C4 FC6 1 1783 17 446

Spike 2 F3 FP1, AF7, AF3, F7, F5, F1, F2, F4,
FT9, TP7, P3, O1

12 4065 8 2961

4 Spike 1 FP2 FP1, F3, F4, 3 1643 8 427

Spike 2 C1 FP1, AF7, AF3, F7, F5, F3, FT7,
FC5, FC3, FC1, C5, C3, Cz, CP2,
CPz, CP1, CP3, Pz

3 3740 31 327

Spike 3 FP2 FP1, F4 2 2152 15 898

5 n.a.

6 Spike 1 C3 C5, C1, CP3, FC1, FC3 5 744 16 59

Spike 2 TP9 FT9, FT7, FC5, CP5 4 8879 28 8107

Spike 3 FT7 FT9, FC5, T7, C5, TP9, TP7, CP5,
POz, TP10

9 2285 17 1152

Spike 4 C5 T7, C3, FT9, FT7, FC5, FC3, F7,
AF7, TP7, CP5, CP3

11 7156 21 6687

7 Spike 1 T7 FT9, FT7, TP9 3 2382 18 823

8 Spike 1 FP2 FP1, F3, C3 3 741 18 114

Spike 2 POz TP10, CP6, CP2, CP1, CP5, TP9,
FC5, FC6

8 1453 14 319

9 Spike 1 F3 C3 1 2320 22 1084

Spike 2 POz TP9, TP10, CP5, CP1, CP2,CP6,
FC6, FC5

8 3313 20 2017

Spike 3 TP9 TP10, CP6, CP5, CP2, FC5, FC6,
Poz

7 358 10 154

10 Spike 1 F7 AF7, AF3, F5, F3, FC3, FC5, FT7,
FT9

8 2020 25 12

Spike 2 TP9 FT9, FT7, T7, TP7, P7 5 3118 40 25

Spike 3 TP10 T8, TP8, 2 2110 28 795

11 Spike 1 T8 TP10, CP6, P8, C6, FT10, FT8, FC6,
F8, Oz, O2

10 1920 36 725

12 Spike 1 FT9 AF4, AF7, FPz, FP2, F7, F5, F3, FT7 8 3970 37 270

Spike 2 FP1 F3, F4, C3, C4 4 278 15 52

13 n.a.

14 Spike 1 AF7 FP1, FPz, FP2, AF3, AF4, F7, F5,
F3, F1, FZ, F2, F4, FT9, FT7, FC5,
FC3, FC1, FC2,

18 11264 71 2859

15 Spike 1 FT10 FT8, FC6, FC4, F8, F6, F4, AF4,
FP2, T8, C6

10 8401 28 5567

Spike 2 TP9 FT9, TP7,T7, P7, P5, P3 6 12966 19 12537

Spike 3 P4 P2, P6, CP2, PO4 4 0 0 0

16 Spike 1 FPz FP1, FP2, AF7, AF3 4 1602 19 187

Spike 2 F2 FP1, FP2, AF7, AF3, AF4, AF8, F7,
F5, F3, F1, Fz, F4, F6, F8, FT7, FC5,
FC3, FC1, FC2, FC4, FC6, FT8, C5

23 1681 12 558

(Continued)
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as a conventional 32-channel electrode subset (Fig 2). Included electrodes in the 32-channel

EEG were Fp1, Fp2, Fz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Cz, C3, C4, T7, T8, CP1, CP2, CP5,

CP6, TP 9, TP 10, Pz, P3, P4, P7, P8, POz, Oz, O1, O2. Additionally included in the 64-channel

EEG were the electrodes FPz, AF3, AF4, AF7, AF8, F1, F2, F5, F6, FC3, FC4, FT7, FT8, FT9,

FT10, C1, C2, C5, C6, CPz, CP3, CP4, TP7, TP8, P1, P2, P5, P6, PO3, PO4, PO7, PO8. For

each IED set, both voltage maps were visually compared to evaluate which one better repre-

sents the irritative zone as well as which one better reflects the area of the positive or negative

BOLD response using the following criteria:

- Between both montages the noise level was compared. Data was considered as noisy if

more than 10% of EEG channels showed artifacts or unidentifiable wave forms at the time

of the IED, or if EEG and dipole maps were unable to identify one clear dipole

- The electrode with the highest negativity was classified as IED origin. Positive or negative

BOLD responses were rated as concordant when this highest negativity and the highest

BOLD were located in the same brain lobe

- The extent and location of EEG IED spread, namely those channels in which a negative

peak was visible at the time of the IEDs, were visually compared with the positive or nega-

tive BOLD extent and location

Results

17 patients could be included in the study. Patient age was between 9 and 71 years (mean age:

27.3years). All clinical information on patients is summarized in Table 2. 15 patients showed

IEDs and 32 IED sets were identified. Patient 5 and patient 13 did not show any IEDs during

MREG. In all 32 IED sets, positive as well as negative BOLD responses could be identified.

Validation of MREG by other established imaging methods

In 12 (24 IED sets) patients a clear lesion in the MRI could be found. FDG-PET studies were

conducted in 9 patients but visual assessment of FDG PET identified regions of focal hypome-

tabolism in only 7 patients. Ictal SPECT was conducted in one patient and a region of focal

hyperperfusion could be identified. Topographic correlation between positive BOLD response

and MRI lesion was found in 10 /12 patients. Positive BOLD responses were concordant with

PET results in 5/7 patients and with ictal SPECT results in 1 patient. One example with concor-

dant positive BOLD responses and PET results is displayed in Fig 3.

Table 1. (Continued)

Patient Spiketype Electrode with
maximum spike
negativity

Electrodes with � 50% of
maximum spike negativity

Number of
involved
electrodes

Positive
BOLD
volume in
cm³

Number of
positive BOLD
clusters

Cluster with
max T-
value

17 Spike 1 F5 FP1, FP2, AF7, AF3, AF4, F3, F1,
F2, FC5, FC3, FC1, C3, Cz, CP3

14 2883 16 1554

Spike 2 FT9 FP1, FPz, FP2, AF7, AF3, F7, F3,
FT7

8 3825 24 1378

AF, anteriofrontal; C, central; CP, centroparietal; F, frontal; FC, frontocentral; FP, frontoparietal; FT, frontotemporal; n.a., not available; O, occipital; P,

parietal; PO, parietooccipital; T, temporal; TP, temporoparietal; z, central

doi:10.1371/journal.pone.0140537.t001
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Fig 2. Example 1 for better representation of the BOLD-topography with 64 electrodes. 27-year-old patient (patient 6, study 3) with left structural frontal
lobe epilepsy. The patient underwent a previous operation with frontal resection, which showed a FCD type 2a. No seizure freedom could be achieved
through operation. This is a typical example for the superiority of the 64-channel-EEG. The 32-channel EEG reveals a left temporoparietal IED area (A). The
64-channel EEG shows that left frontotemporal regions are as well included in the IED area (B.) The extensive positive BOLD response on the left hand side
exactly reflects the IED distribution from temporoparietal to frontotemporal as shown in the 64-channel EEG. The white arrow indicates the relevant positive
BOLD response (C andD). (E) shows different IEDs of one IED set.

doi:10.1371/journal.pone.0140537.g002
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Correlation between IED extent on scalp EEG and BOLD extent

The more widespread the IED area the more voxels were covered by positive BOLD (R: 0.36,

p = 0.04) (Fig 4). No correlation was found between the IED extent the number of positive

BOLD clusters (R: 0.09, p = 0.6) and the volume (R: 0.28, p = 0.1) or the number of negative

BOLD clusters (R: 0.05, p = 0.8). Results are listed in detail in Table 1. We also computed the

Table 2. Clinical information.

Patient Age m/f Age of
onset

Epilepsy
classification

Seizure
types

Inter-ictal EEG MRI PET/SPECT AED Surgery
outcome

1 36 m 7 y Structural TLE CPS F+T right MTS right n.a. LTG
LCM

n.a

2 26 m 7 y Structural TLE CPS FT
bilateral > FT
left

Hypothalamic
hamartoma

PET: discrete
hypometabolism P,
T right

LEV
OXC
LCM

Seedtherapy:
not seizure free

3 17 f 16 y Structural TLE CPS T + TP right; T
left

Unclear mass in
the left superior T
gyrus

n.a. OXC n.a.

4 17 m 13 y Unclear SPS/CPS
GTCS

PO bilateral Normal PET: discrete
hypometabolism P
left

LTG
OXC

n.a.

5 27 f 16 y FLE of unclear
origin

CPS/
GTCS

F bilateral Normal PET: normal LTG
LEV

n.a.

6 27 m 11 y Structural FLE SPS/CPS
GTCS

FC, FT left Surgical cavity left
F

PET: extensive
hypometabolism TP
left

LEV
OXC

surgery: not
seizure free

7 12 m 9 y Structural FLE CPS F bilateral; T
left

Cavernoma F right n.a. none n.a. (surgery)
out?

8 9 m 4 y Structural FLE SPS/CPS
GTCS

FC bilateral T
bilateral

Extensive right
polymicrogyria

PET:
hypometabolism F,
P left

LEV
VPA

n.a.

9 28 f 11 y FLE of unclear
origin

SPS/CPS
GTCS

FP-FC right TP
right

Unclear lesion
right, F including
insular cortex

PET/SPECT:
hypometabolism F
right

LTG
LCM

surgery: not
seizure free

10 71 m 70 y Structural TLE CPS T pole right Cystic tumor mesio
temporal left

n.a. VPA n.a. surgery?

11 31 f 31 y TLE of unclear
origin

CPS T right n.a. n.a. OXC n.a.

12 60 m 40 y unclear CPS T bilateral F
bilateral

Defect/gliosis T
pole left

PET: hypo
metabolism T left

OXC n.a.

13 13 m 3 y Structural TLE CPS/
GTCS

CP bilateral T
bilateral

MTS left and gliosis
TP

n.a. VPA
LEV

n.a.

14 23 m n.a. unclear SPS/CPS
GTCS

T right > T left F
left O right

abnormal gyration
O right

n.a. LTG
CLO

n.a.

15 39 f 23 y TLE of unclear
origin

CPS T bilateral Hippocampus
malrotation left

PET: normal LTG n.a.

16 13 f 7 y unclear CPS/
GTCS

FC bilateral; F
left

FCD medial-basal
right

PET: normal CAB
VPA

n.a.

17 15 m 12 y unclear SPS/CPS
GTCS

FC bilateral P
left

n.a. PET:
hypometabolism F
left

LTG n.a.

AED, anti epileptic drug; C, central; CAB, carbamazepine; CLO, clobazam; CPS, complex partial seizure; f, female; F, frontal; FC, frontocentral; FLE,

frontal lobe epilepsy; FP, frontopolar; FT, frontotemporal;GTCS, generalized tonic clonic seizure; LCM, lacosamide; LEV, levetiracetam; LTG, lamotrigine;

m, male; MTS, mesial temporal sclerosis; n.a., not available; O, occipital; OXC, oxcarbazepine; P, parietal; SPS, simple partial seizure; T, temporal; TLE,

temporal lobe epilepsy; TP, temporoparietal; VPA, valproate acid; y, year

doi:10.1371/journal.pone.0140537.t002
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correlation between the IED extent and the volume of the cluster with peak T-value [27,28].

No significant correlation was found with the cluster volume with peak negative T-value (R:

0.29, p = 0.1), although a trend could be detected with the cluster volume with peak positive T-

value (R: 0.34, p = 0.06).

Influence of IED variability on BOLD concordance

Overall the coefficients of correlation of variability varied between 0.12 and 1. For the 25 IED

sets with concordant positive or negative BOLD responses, variability between the single spikes

within one IED set showed a mean value of 0.71 (SD: +/-0.27). Variability of the 7 IED sets

without a concordant positive or negative BOLD response showed a mean value of 0.48 (SD:

+/-0.16). Inter-spike variability was significantly higher for IED sets without than with concor-

dant BOLD responses (p = 0.04). An example for different spikes of one IED set is shown in

Fig 2.

Comparison 32/64-channel EEG

For the 64-channel EEG, correlation between positive BOLD response and IED topography

could be found in 19 IED sets and a correlation with a negative BOLD response in 7 IED sets.

For the 32-channel EEG, correlation between positive BOLD response and IED topography

Fig 3. Example for correlation between PET and positive BOLD response. 26 year old patient (patient 2)
with structural epilepsy. PET shows a discrete temporal and parietal hypometabolism. The strongest positive
BOLD response in MREG is located temporal on the right hand side and therefore shows a good correlation
with PET.

doi:10.1371/journal.pone.0140537.g003
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Fig 4. Representation of the positive correlation between IED and BOLD extent. The x-axis shows the in
the IED extent included number of electrodes. The y-axis once shows the volume of positive BOLD
responses (A) and once the number of positive BOLD clusters (B) in MREG. Patient 8, study 1 reveals a
restricted frontal IED area in the EEG (C), concordant to the left focal positive BOLD response in MREG (E).
Only few other clusters are visible, all of them focal. In comparison, patient 16, study 2 reveals a widespread
IED area in the EEG (D) with the highest negativity over F2 and multiple, widespread BOLD clusters in MREG
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could be found in 18 IED sets and a correlation with a negative BOLD response in 7 IED sets.

In 16 IED sets visual localization was better in the 64- than the 32-channel EEG. In all remain-

ing IED sets no difference between the two EEGmontages could be found. Reason for the supe-

riority of the 64-channel EEG was the location or spread of IEDs in temporal brain areas which

are not well covered by the 32-channel EEG, or whenever IEDs had their highest negativity

over electrodes not represented in the 32-channel EEG. In a few cases a larger number of elec-

trodes lead to more noise in terms of unclear, widespread and multifocal dipoles within the

dipole maps and an impeded identification of the IED area. Out of the 16 IED sets profiting

from high resolution EEG, in four improved concordance with the strongest positive and in 2

with the negative BOLD change (examples Figs 2 and 5) were observed. Only in one IED set

the 32-channel EEG better reflected the negative BOLD response. Reason for the superiority of

the 64-channel EEG was at all times the location or spread of the BOLD response in temporal

brain areas. All results are depicted in detail in Table 3. BOLD-topographies of all patients can

be found in the supporting information (S1–S4 Figs).

Discussion

In all patients and IED sets positive as well as negative BOLD responses were found with

MREG. This study therefore could confirm the high sensitivity of MREG for the occurrence of

BOLD responses, as has already been shown previously [20]. However, as MREG is a newly

developed method, the observed BOLD needs further verification, which we could provide in

this study by demonstrating a correlation between extent of scalp IEDs and positive BOLD

responses. Moreover higher density EEG suggested a clearer correlation between EEG IED

voltage maps and areas showing increased BOLD. Last but not least evidence suggests that

large spike variability of IEDs generated over the same brain area might be an important reason

for discordant BOLD effects.

Correlation between BOLD response and other diagnostic measures

In 83% of the patients (10/12 patients) a correlation between the lesion found in MRI and the

positive BOLD response existed. Other studies showed similar results, with 61.5–85% [9,10].

We could achieve such a high correlation even though our patient collective was very heteroge-

neous in comparison to the other studies. We included all patients with focal epilepsy regard-

less of their underlying pathology, among them many patients with epilepsy of unknown

etiology or lesions with unclear epileptogenicity. For the latter we would not necessarily expect

a correlation between positive BOLD and lesion. Correlation between PET and positive BOLD

was found in 71% of the patients (5/7 patients). This is consistent with other studies with sensi-

tivities of 73%-100% [12,29,30]. The two patients in our study without concordance of any IED

type and PET were as well the only ones with normal MRI. Overall, in 10 patients the positive

BOLD response could be confirmed by at least one other diagnostic in addition to EEG. The

comparison between EEG-MREG and other methods therefore supports the hypothesis that

positive BOLD responses in fact represent the irritative zone and epileptogenic areas just as the

other methods do.

(F). However, the BOLD response located at the front is concordant to the most negative IED area over F2
and the MRI results.

doi:10.1371/journal.pone.0140537.g004
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Correlation between IED and BOLD extent

Our study statistically revealed a direct connection between the extent of the IED as calculated

from the scalp EEG and positive BOLD extent. Focal IEDs correlated with focal positive BOLD

responses while widespread IEDs correlated with widespread positive BOLD responses. Two

Fig 5. Example 2 for better representation of the BOLD-topography with 64 electrodes. 71-year-old patient (patient 10, study 3) with structural temporal
lobe epilepsy. Another example for the predominance of the 64-channel-EEG. The 32-channel EEG reveals a temporoparietal IED area (A). The 64-channel
EEG shows that the IED area as well spreads into frontotemporal regions (B). The positive BOLD response on the right hand side represents the IED
distribution from temporoparietal to frontal regions as shown in the 64-channel EEG. The white arrow indicates the relevant positive BOLD response (C and
D).

doi:10.1371/journal.pone.0140537.g005
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other recently published studies came to the same conclusion, one by only visually estimating

this connection without calculating it [31] and the other one by comparing the measured

BOLD volume related to focal spikes with widespread bilateral synchronous discharges in fron-

tal lobe epilepsy [32]. This finding could suggest that widespread positive BOLD responses are

not simply artifact or unspecific reactions, but probably correctly reflect the broad network of

Table 3. Detailed representation of BOLD effects and comparison between 32/64 channel EEG.

positive BOLD negative BOLD

Spike topography 32 electrodes Comparison 32/64 64 electrodes 32 electrodes Comparison 32/64 64 electrodes

1 TP right + = + − −

T right + = + − −

2 Fp right + = + + = +

3 CP right − − − −

F left + = + − −

4 Fp right + = + − −

C left − − + = +

Fp right + = + − −

5 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

6 C left + = + − −

TP left + = + − −

FT left + < + − −

C left + = + − −

7 T left − − − −

8 Fp right + = + − −

PO central + = + − −

9 F left − − + = +

PO central − − + = +

TP left + = + − −

10 F left − − − −

TP left + = + − −

TP right − < + − −

11 FT right + < + − −

12 FT left − − + > −

Fp left − − + = +

13 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

14 F left − − − < +

15 FT right − − + < +

TP left + = + − −

P rigth − − − −

16 Fp central + < + − −

F right + = + − −

17 F left − − − −

FT left − − − −

Summary 18 4 (0/4) 19 7 3 (1/2) 7

C, central; CP, centroparietal; F, frontal; FC, frontocentral; FP, frontoparietal; FT, frontotemporal; n.a., not available; P, parietal; PO, parietooccipital; T,

temporal; TP, temporoparietal; +, concordance between BOLD and spike topography; -, no concordance between BOLD and spike topography; <,

predominance of the 64-channel-EEG; >, predominance of the 32-channel EEG; = or free field, there was no difference between the 32- and the

64-channel map.

doi:10.1371/journal.pone.0140537.t003
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propagating IEDs. Studies with continuous EEG source localization have been able to support

this assumption [15,16]. By gaining information regarding the time course of the IEDs, differ-

ent BOLD responses could be related to different parts of the IED network and maybe even

areas of seizure onset or propagation.

This information is increasingly relevant for fast fMRI sequences like MREG, for two rea-

sons. First, increased sensitivity of the sequence might lead to more extensive BOLD responses

that require interpretation, second, the high temporal resolution might provide the possibility

to analyze time courses of widespread BOLD changes. The first consideration is supported by

Gonzalez and colleagues [33] who indicated that BOLD responses to a presumably focal task

might actually be present in the entire brain, and may be detected given a sufficiently sensitive

acquisition whereby it becomes increasingly unclear which brain areas are important. It also

poses the question whether thresholds defined and validated for classical fMRI apply for

MREG as well or if they reveal too many unspecific BOLD responses. It nevertheless appears

that the often widespread positive BOLD regions observed with MREG seem to represent epi-

leptic networks. Whether they are clinically relevant for diagnostic purposes will have to be fur-

ther evaluated in studies involving the postsurgical outcome or results of intracranial EEGs, as

already performed for classical fMRI [12,34]. MREG as well provides the possibility to investi-

gate the temporal development of the BOLD response. With its high temporal resolution, it

becomes possible to track the precise onset of the BOLD response for each individual IED. A

detailed analysis and interpretation of this time course of the BOLD response could allow a dif-

ferentiation between IED generation and propagation. It will however be necessary to develop

new analysis methods to really profit from the newly gained temporal resolution. Until then

analyzing the BOLD with the highest t-value can be used to find a focal source, as was done for

clinical correlations in the present study.

Spike variability

Another open question in EEG-fMRI interpretation is the lack of concordant BOLD responses

in cases with sufficient IEDs during the measurement [35]. Our results suggest that inter-spike

variability might be the reason for these negative studies. It is of course important to correctly

mark IEDs, preselect congruent IEDs and define different IED sets, to ensure a successful EEG-

fMRI analysis. However, to clearly identify IEDs in the EEG poses a challenge even to experi-

enced epileptologists, and even very similar looking IEDs may have different degrees of vari-

ability, as revealed in this study. Therefore the visual identification of IEDs in this study is

error-prone and has its limitations. An approach, to guarantee that all similar IEDs of one IED

set are detected and all unclear IEDs are excluded, could be the application of `consensus´

IEDs or templates [13,36], with the former defined as being marked with high agreement by

two independent experts. Also other forms of detecting IEDs are possible. One alternative

method uses ICA to separate IEDs from the EEG background [37]. Another recently published

study applied a spike sorting algorithm to classify the before visually identified events and

hereby achieved a higher rate of correspondence between IED classes and BOLD response

[38]. Another issue lies in the definition of IED extent on the EEG. Scalp EEG amplitudes are

reference dependent; we used an average reference and a 50% amplitude threshold relative to

the maximum spike peak to define the IED extent, but absolute voltage quantifications would

also be possible when projecting the scalp topography to an infinity reference [39]. MREG also

promises a different solution to the problem of inter-spike variability, as the high sensitivity of

the method may allow the analysis of single IEDs generated over the same brain regions

[20,40]. The future might therefore be to look at maps of a number of single IEDs and get an
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even more detailed picture of the different brain regions involved in the irritative zone with an

emphasis on reproducible activation patterns.

Comparison 32/64-channel EEG

In 50% of the IED sets the 64-channel EEG outperformed the 32-channel EEG. This is in agree-

ment with previous studies [41,42] that have proven the advantage of high density EEG in

spike source localization. In 37% of the cases in which the 64-channel EEG improved interpre-

tation of the IED localization it also outperformed the 32-channel EEG in reflecting the area of

positive or negative BOLD response. One main reason for the superiority of the 64-channel

EEG were IEDs originating in temporal regions, which are not well covered by the 32-channel

EEG. Other studies could show that in patients with temporal lobe epilepsy a large number of

spikes will be missed whenever EEGs with a low number of electrodes are used [43]. Further-

more it could lead to a shift of the spikefield to more dorsal regions if the inferior chain of elec-

trodes is missing [44]. Therefore a high density EEG should be chosen especially for patients

with suspected temporal lobe epilepsy, or at least the additional temporal electrodes should be

added to the classical 10–20 electrode arrangement. Another reason for the superiority of the

64-channel EEG in better depicting the irritative zone was whenever IEDs had their highest

negativity over electrodes not represented in the 32-channel EEG. However this never led to a

better reflection of the positive or negative BOLD response as the IED area normally involved

more than one electrode and therefore only changed marginally. This result also reflects the

fact that most of the time positive or negative BOLD responses in our study were not very

focal. When comparing EEG and BOLD response a high spatial resolution in areas already cov-

ered by electrodes therefore seems less profitable. Nevertheless in EEG-fMRI a high spatial res-

olution becomes important when using detailed source localization methods whose results can

then be compared with the location of the strongest BOLD [34,45]. However, a larger number

of electrodes can also lead to more noise [41]. This could be observed in our study in a few

cases as well. The irritative zone then seemed to be more widespread and its localization was

impeded. But overall a clear superiority of the 64-channel EEG was evident.

A correlation between BOLD responses and EEG revealed a sensitivity of 81.2% (26/32 IED

sets) with 19 IED sets showing a positive and 7 a negative BOLD response in the area of IED

onset. The sensitivity is similar to former EEG-fMRI and MREG studies [7,8,13,20]. Even if

some correlation between spike localization and negative BOLD was found, the predominant

correlation was found with positive BOLD responses. A large majority of negative BOLD

responses were found in distant areas, some of them showing large overlap with the default

mode regions [46]. This has been previously described for EEG-fMRI in epilepsy and is

increasingly found when using MREG [20]. Therefore it is likely that not all negative BOLD is

directly representing the irritative zone, some of it however might be relevant as some studies

on the time course of the hemodynamic response demonstrated that some negative responses

after the spikes are preceded by positive responses prior to the spike in the same brain region

[17]. Additionally, BOLD changes in white matter and CSF are generally attributed to physio-

logical noise, which greatly affects fMRI data. Fast acquisitions such as MREG may however

allow the development of new methods for physiological noise correction, which may alleviate

this problem in the future.

Methodological limitations

In this study we didn’t directly compare conventional fMRI with MREG, as already investi-

gated in a previous study [20]. Conclusions related to the performance of higher density EEG
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and the relationship of IED extents seen in EEG and fMRI are therefore made in relation to fast

fMRI, but could very well apply to conventional fMRI as well.

It still remains open which HRF to use for EEG-fMRI analysis. There is evidence that HRFs

not always follow the same time series and that differences exist between patients, age or brain

areas [47,48]. HRFs following focal epileptic spikes may differ from the standard HRF, a

canonical HRF which follows short auditory stimuli [49]. This variability of HRFs in epilepsy

patients could also be shown by other studies [50,51]. For statistical analysis we therefore used

multiple HRFs as it has been shown that this can increase the sensitivity of EEG-fMRI in epi-

lepsy [26]. Thereby even BOLD responses can be detected that strongly differ from the stan-

dard canonical HRF [49]. A recently published study using MREG defined a subject-specific

HRF model which improved model accuracy and led to increased t-values and a larger size of

activation foci [52].

MREG with its high temporal resolution and increased sensitivity may also be more vulner-

able to false positive activations originating from noise. The 1st-order autoregressive model

normally used in EPI resulted in false activations including all brain areas [20]. A 5th-order

autoregressive model was therefore selected. The determination of the most suitable model

however is still a part of research [53].

Conclusion

EEG-MREG proved to be a valuable and sensitive tool for diagnostics in epilepsy and might be

able to identify network structures of IEDs. While EEG alone can only show widespread IED

activity, EEG-MREG opens the opportunity to have better localization of epileptic activity even

in deep brain structures. Brain regions with the strongest positive BOLD effect show a good

correlation with the IED focus, lesion and results from other neuroimaging methods. High

inter-spike variability seems to impede good correlations between positive or negative BOLD

and IED topography. To avoid this phenomenon in the future averaged IED analysis might be

replaced by single IED analysis possible due to the increased sensitivity of MREG. In the next

step MREG results should be evaluated in the context of intracranial EEG recordings and post-

surgical outcome for further validation.

Supporting Information

S1 Fig. BOLD-topographies of patient number 1 to patient number 6 Spike 1.

(TIF)

S2 Fig. BOLD-topographies of patient number 6 spike 2 to patient number 10.

(TIF)

S3 Fig. BOLD-topographies of patient number 11 to patient number 17 spike 1.

(TIF)

S4 Fig. BOLD-topography of patient number 17 spike 2.

(TIF)
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