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Abstract

The latitudinal diversity gradient (LDGQ) is one of the most widely studied patterns in ecology,
yet no consensus has been reached about its underlying causes. We argue that the reasons are
the verbal nature of existing hypotheses, the failure to mechanistically link interacting
ecological and evolutionary processes to the LDG, and the fact that empirical patterns are
often consistent with multiple explanations. To address this issue, we synthesize current LDG
hypotheses, uncovering their eco-evolutionary mechanisms, hidden assumptions, and
commonalities. Furthermore, we propose mechanistic eco-evolutionary modeling and an
inferential approach that makes use of geographic, phylogenetic, and trait-based patterns to

assess the relative importance of different processes for generating the LDG.

State of the art and calls for novel mechanistic approaches

The increase in species diversity from the poles to the equator, commonly referred to as the
latitudinal diversity gradient (LDG), is one of the most pervasive [1, 2] and widely debated
biological patterns, with at least 26 listed hypotheses associated with it [3-5]. These
hypotheses can be classified into three higher-level categories related to latitudinal variation
in ecological limits (See Glossary), diversification rates, and time for species accumulation
(Table 1). Empirical evidence seems compatible with many of these hypotheses. For example,
species richness is correlated with purported proxies for ecological limits such as net primary
productivity [6-8], diversification rate can vary latitudinally due to gradients in temperature
[9, 10], and diversity is greatest in regions where diversification has occurred over a longer
period [11-13]. These and similar studies have improved our understanding of the LDG and
macroevolutionary patterns in general, but the diffuse support for different hypotheses reveals

a lack of consensus and points to challenges in testing and evaluating these hypotheses.
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We argue that reconciling the causes of the LDG requires moving beyond verbal chains of
logic, which are inherently prone to error with respect to how assumptions result in their
predicted effect [14], and towards a more formal and mechanistic framework. Verbal
hypotheses often contain hidden assumptions that go untested and lack specificity with
respect to the mechanistic underpinning of relevant ecological and evolutionary processes.
Verbal hypotheses also tend to focus on a single driver to predict just one or a few patterns
related to that driver. Consequently, these predictions alone may not be sufficient to
distinguish competing hypotheses [15, 16]. A more explicit description of the processes
underlying all hypotheses will generate a wider range of predictions which can be used to
disentangle possibly non-mutually exclusive hypotheses and evaluate the relative importance

of these processes.

We, therefore, call for a transformation in the way biologists think about and study the LDG.
The classification of hypotheses (Table 1) is an important first step, but it does not resolve the
difficulty of identifying and quantifying the relative strength of the processes underlying the
LDG. We propose moving towards a mechanistic framework, founded on key processes that
describe how individual organisms interact with their biotic and abiotic environments, and
how these interactions scale up to result in the LDG and other secondary biodiversity
patterns. Ultimately, revealing the nature of these eco-evolutionary processes will yield

more insight than continuing to argue about non-mutually exclusive LDG hypotheses.

Examining the LDG through the lens of mechanistic macroecology

Key processes across levels of biological organization
We recognize four key processes, as defined by [17], that necessarily underpin the LDG and
thus should be included as components of any LDG model that aims to capture variation in

species richness, abundance, and composition over a spatially and temporally variable
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environment: 1) selection, 2) ecological drift, 3) dispersal, and 4) speciation. Selection, drift,
and dispersal can all influence the birth, death, and movement of individuals over small
spatial and temporal scales. Selection (sensus [17]) encompasses any process that results in
the differential survival and reproduction of individuals, based on how environmental
filtering [18] and biotic interactions select for specific traits. Ecological drift manifests itself
via stochastic variation in the births and deaths of individuals. Dispersal of individuals is
influenced by the spatial structure of the landscape as well as individual dispersal capabilities
and can lead to species colonizing new regions. Each of these individual-level ecological and
microevolutionary processes is propagated throughout higher levels of biological
organization, resulting in discrete patterns at the level of populations, species, and

communities (Figure 1).

Over longer timescales, environmental conditions have fluctuated with glacial/interglacial
oscillations, cooler and warmer periods in Earth’s history, orogenic events, volcanic activity,
and shifts in tectonic plates, all of which can affect diversity dynamics [19-21]. At these
spatial and temporal scales selection, ecological drift, and dispersal determine where species
or even whole clades are able to persist geographically and how traits evolve. Species that
become poorly adapted to the environment or that are poor competitors for resources are
expected to have low fitness and ultimately go extinct, reflecting critical eco-evolutionary
feedbacks [22, 23]. Speciation becomes especially relevant with increasing temporal and
spatial scales. The details of how speciation occurs are complex and the critical question in a
LDG context becomes how and why speciation mode or rate varies along geographic
gradients. All of the processes described above necessarily interact with each other and with
the spatiotemporal environment, resulting in the broad range of geographic and phylogenetic
biodiversity patterns that we observe today. As highlighted below, these processes can help us

compare and disentangle LDG hypotheses.
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Classical LDG hypotheses revisited

Characterizing LDG hypotheses based on the key processes described above helps to clarify
the internal logic of those hypotheses, and highlights how they differ. All hypotheses invoke
an explicit driver or condition that varies latitudinally (Figure 1), but considering the
processes related to this driver, often below the level of biological organization at which the
hypothesis was formulated, can reveal previously unrecognized assumptions and predictions.
Below we discuss four examples, chosen to represent hypotheses invoking variation in limits,
rates, and time. These examples may also serve as a guide for better understanding other

hypotheses.

The more individuals hypothesis

The “more individuals hypothesis” invokes latitudinal variation in ecological limits and a
positive relationship between the number of species and resource availability [24]. If
resources are finite and a zero-sum constraint on the total amount of biomass or individuals
applies, any increase in diversity over time results in a decrease in average biomass or
abundance per species. Extinction rates will thus be diversity-dependent and richness will be
regulated around some equilibrial value that scales with the total number of individuals that
can be supported [24, 25]. This hypothesis implicitly invokes interspecific competition and
the resultant allocation of resources across species (Table 1). The argument does not invoke
selection (Fig. 1) and can be applied equally to ecologically neutral or non-neutral species. An
important and unstated assumption is that the response of the biota to environmental change is

fast enough that richness is at equilibrium across the latitudinal gradient.

The seasonality hypothesis



154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

The seasonality hypothesis argues that the within-year environmental stability of the tropics
results in either greater diversification rates or higher ecological limits via increased niche
packing (Table 1 and Fig. 1). The first argument suggests that in the less seasonal tropics,
organisms experience a smaller range of conditions and hence evolve narrower thermal niches
compared to the temperate zone. The idea that “mountain passes are higher in the tropics”
[26] suggests that dispersal barriers were effectively greater there, increasing the chance of
population divergence and allopatric speciation [27, 28]. Selection thus dictates the
environmental conditions that a species can tolerate, but it is speciation rate that varies with
latitude and ultimately generates the LDG. The second version of the seasonality hypothesis
suggests that stability-driven specialization promotes intense niche packing, and hence more
species can coexist in the tropics [29, 30]. Species are then hypothesized to evolve narrower
resource breadths rather than narrow thermal niches, assuming that resources are limited and
that diversity actually emerges from niche packing [29] (Table 1, Figure 1). Implicit in both
hypotheses is a performance tradeoff between specialists and generalists, such that specialists

evolve and outcompete generalists in aseasonal environments.

The temperature-dependent speciation rates hypothesis

The hypothesis that higher temperature elevates evolutionary rates has been used to explain
global diversity patterns in both land and sea [31, 32]. One version of the hypothesis [33]
follows from the metabolic theory of ecology [34], stating that temperature positively affects
all biological rates including mutation rates, which can lead to speciation and ultimately
diversity accumulation. This assumes that speciation rates directly follow from mutation rates,
which may be problematic if other factors (e.g. existence of geographic barriers, assortative
mating) are limiting speciation. The hypothesis makes no specific predictions regarding
selection or dispersal. Importantly, this hypothesis could be invoked in either an equilibrium

or non-equilibrium world. In a non-equilibrium world, speciation rates alone could explain
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variation in richness between regions if all regions were similarly old, and extinction rates
were equal across regions [10]. In an equilibrium world, increased speciation rates in the
tropics can lead to higher equilibrium richness, as in Hubbell [35] neutral model of

biodiversity.

The tropical niche conservatism hypothesis

The tropical niche conservatism hypothesis [36, 37] states that diversity is higher in the
tropics because of the infrequency of colonisations of the cooler temperate zone by a tropical
ancestor due to strongly conserved thermal niches and tropical origins of most taxa, and hence
the longer time available for diversification in the tropics. The hypothesis assumes that,
barring major disturbances or climatic shifts, species richness will continue to increase
unbounded over time [37]. This hypothesis has only ever been formulated at the species level,
and yet it inherently implies a particular set of rules by which individuals interact with the
environment and each other. Selection by the environment is by definition strong, with
individuals unable to survive and reproduce under conditions different from their optima, and
evolution of a new optimum is rare. Less obvious are the implications of the hypothesis for
resource competition between individuals. Unbounded, or diversity-independent,
diversification is only possible in the absence of an overarching zero-sum constraint [25]. The
absence of such a constraint implies that while the population size of a species might be
affected by the fit between the environment and environmental performance traits, it is
independent of the population sizes of potential competitors and of interspecific competition

more broadly.

The utility of a mechanistic framework
The examples presented above illustrate three insights gained by adopting a generalized eco-

evolutionary framework. First, many of the fundamental rules by which organisms are
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assumed to interact with each other and with their environment will be qualitatively similar
regardless of LDG hypothesis. For example, individual survival and reproduction must be
functions of how well adapted the individuals are to their environment relative to their intra-
and interspecific competitors. Second, latitudinal differences in ecological limits,
diversification rates, and time for diversification may emerge via different mechanisms
integrated into the same framework. For example, diversification rates may be higher due to
the temperature-dependence of mutation rates [9, 38] or due to the increased reproductive
isolation in aseasonal environments [27, 39]. Third, although each hypothesis invokes a
primary driver or process, we have shown that these hypotheses also make unstated
assumptions about other processes and mechanisms which need to be considered in concert to
fully understand the emergence of the LDG and other macroecological and macroevolutionary

patterns.

Mechanistic eco-evolutionary models as a quantitative tool for

understanding LDG patterns

The mechanistic framing of processes that underpin the LDG naturally facilitates the
translation from heuristic thinking to mechanistic eco-evolutionary models (Box 1). We
believe that building these models will be essential to making progress on the LDG and
biodiversity patterns in general because they allow quantitative analyses and predictions of
the various secondary patterns. Secondary patterns are key for more powerful inference about
the origin of species richness patterns. Below we provide concrete examples of components of
a mechanistic LDG model and associated patterns followed by a discussion about how to use

such a model for inference with the available data.

Mechanistic models for studying the LDG
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The spatiotemporal environmental template

The basic driver of an LDG model is the spatiotemporal environmental template. It can be
viewed as the theater in which the eco-evolutionary play unfolds, and the spatiotemporal
variation in that template (Earth’s climatic, geologic, and tectonic history) may be as critical
to emergent diversity patterns as the mechanisms and processes governing how organisms
interact and evolve [40-42]. Explaining the LDG with eco-evolutionary simulation models,
therefore, benefits from suitable paleoenvironmental reconstructions [43] and the integration

of global data sets on continental topography and paleoshorelines [44, 45].

Trait-based local population dynamics

Traits are essential for individual survival and reproduction (fitness) and mechanistic models
that include interactions of organismal traits and the abiotic and biotic environment, below the
level of species (i.e. at the individual, population or metapopulational level), is thus
appropriate. Local population dynamics can, for example be assumed to be trait-dependent
[46, 47]. One set of traits might determine an organism’s fitness dictated by the abiotic
environment, a different set of traits may influence relative fitness associated with the suite of
potential competitors present at any point in time [48]. Such a modeling approach requires
making basic assumptions that facilitate the link between environmental conditions, available
resources, and ecological interactions, and population dynamics then emerge from those

assumptions.

Spatial and eco-evolutionary metacommunity dynamics

For modeling eco-evolutionary metacommunity dynamics, trait-based models need to be
implemented in a larger spatial context, allowing individuals to disperse over geographically
relevant extents. Metacommunity dynamics will arise from eco-evolutionary feedbacks

between dispersing individuals and recipient communities within the context of the
10
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spatiotemporal template [49]. Evolutionary dynamics result from natural selection by both
abiotic and biotic conditions, ecological drift, dispersal, and speciation. Speciation can be
modeled using a phenomenological approach or more complex allele-based models in which
phenotypic trait variability is completely or partially heritable and the accumulation of genetic
incompatibilities may drive differentiation of daughter species (Box 2). Each of these
modeling components is necessary for capturing the suite of processes invoked by LDG
hypotheses (Box 1), they can be modeled with varying degrees of complexity and they come

with a set of low-level assumptions that need to be clearly stated (Box 2).

Understanding patterns and inferring processes

Above we have shown that a mechanistic mindset is useful to better understand the internal
logic and consequences of the different hypotheses, as well as the interactions among them. In
addition, a mechanistic model can clarify the biodiversity patterns expected under different
combinations of spatiotemporal environmental templates, biotic interactions, and other eco-
evolutionary rules [e.g. 16, 48, 50]. This ability to simulate very different worldviews of how
the LDG arises (e.g., “ecological limits”, “niche conservatism”, etc.) within the same

comparative framework is a critical element of our approach as different types of processes

modeled with varying degrees of mechanistic detail can be explored and contrasted.

Ultimately, we need mechanistic models to understand the details of the emerging eco-
evolutionary patterns at a sufficient resolution to be able to quantitatively confront them with
data. The more secondary patterns (e.g. phylogenies, species ranges, distributions of
abundance or functional traits) that can be modeled, the greater the diagnostic power of the
model for exploring parameter space and for inferring the strength and interactions of
different processes. The examination of these patterns will also point to the type of data that

will be most valuable for reliable inference of a given process [51].
11
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While we believe that confronting different model scenarios with multiple observed patterns
(described in Box 3) is the only way to make progress in understanding the LDG, we realize
that substantial conceptual, statistical, and computational challenges are associated with this
task [52]. The complexity of the suggested models often makes it difficult to understand the
consequences of the underlying assumptions. Ways of overcoming such challenges are to
build on known ecological models (e.g. Lotka-Volterra equations) and evolutionary theory
(e.g. Adaptive Dynamics theory) that has been studied extensively. The models should also be
built and analyzed in a sequential manner of increased complexity to shed light on the
consequences of the key model assumptions and their interactions. While it is not our aim to
detail these and other methodological challenges here, we nevertheless highlight two basic
inferential approaches that seem particularly promising. First, qualitative matching of multiple
patterns gives an indication of whether the modeled processes can produce the patterns that
we observe [15, 25, 41, 53]. Pattern matching is conceptually straightforward and easily
allows combining the LDG with multiple observed secondary patterns to compare alternative
model or parameter choices. Second, models like the ones suggested above can be fitted to a
range of patterns in data using simulation-based methods such as Approximate Bayesian
Computation [54-57] or synthetic likelihood [58, 59]. Regardless of which inferential
approach is used, any empirical patterns that a model is unable to reproduce can be instructive

in the iterative process of model improvement.

Concluding remarks

Progress in understanding the processes that underlie LDG patterns and associated diversity
patterns has been slow (see also Outstanding Questions). We repeat calls for a transition in
biodiversity research, translating verbal models into a unified mechanistic framework that can

be implemented in quantitative computer simulations [52, 53, 60]. In such a framework,
12
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researchers can focus on measuring and inferring the ecological and evolutionary processes
that govern the interaction of organisms with each other and their environment in time and
space, which must ultimately underpin the LDG. By applying this framework, hidden
assumptions in current hypotheses are exposed, revealing how the hypotheses relate to each
other and how they might be distinguished (Table 1, Figure 1). More importantly, this
framework is a roadmap for flexible eco-evolutionary simulation models (Box 1-2) that can
generate a rich set of empirical patterns from the same underlying processes. We believe that
this ability to produce multiple diagnostic patterns will be crucial for inference (Box 3), and
ultimately for converting the available data into new knowledge about macroecology and
macroevolution. Challenges associated with model construction and the way models are
confronted with data will arise, but such challenges are inherent and inevitable to all sciences
that deal with complex systems. We are confident that, with time, these challenges can be
addressed, and models combining realistic spatiotemporal environmental templates with trait
based eco-evolutionary implementation under an iterative procedure of model design,
evaluation and improvement, will advance our understanding and quantitative inference of the

processes underlying the LDG.
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