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Summary

Tumour immunotherapy, and particularly immue check-
point inhibitors, have resulted in considerable response
rates in patients with metastatic cancer. However, most
of these approaches are limited to immunogenic tumours.
Based on its ability to stimulate cytotoxic T cells, inter-
leukin-2 (IL-2) has been used to treat patients with
metastatic melanoma and metastatic kidney cancer. Clin-
ical efficacy achieved through high doses is countered by
severe adverse effects on vascular endothelial cells and
various organs, a short in vivo half-life, and the stimulation
of regulatory T cells that counteract antitumour immune
responses. Accumulating evidence suggests that IL-2 re-
ceptor β (CD122)-biased IL-2 formulations address the
shortcomings of IL-2 cancer immunotherapy. This knowl-
edge stems from studies using CD122-biased IL-2/anti-
IL-2 antibody complexes (IL-2 complexes), which pref-
erentially stimulate CD8+ T cells, while interaction with
regulatory T cells and vascular endothelial cells is dis-
favoured by the anti-IL-2 antibody used. CD122-biased
IL-2 complexes, when assessed in different mouse cancer
models, cause stronger antitumour effects and significant-
ly less adverse effects than high-dose IL-2. A recently
developed and characterised anti-human IL-2 antibody,
termed NARA1, forms human CD122-biased IL-2 com-
plexes. Alternative strategies based on this concept, such
as site-directed pegylation and mutation of IL-2, have also
been pursued. Moreover, recent data have shown that a
combination of CD122-biased IL-2 formulations with im-
mune checkpoint inhibitors, antigen-specific immunother-
apy and epigenetic modifying drugs results in synergistic
anti-cancer effects in various tumour models. Thus,
CD122-biased IL-2 approaches constitute a novel class of
immunotherapy for metastatic cancer that has the poten-
tial to complement and increase the efficacy of other anti-
tumour strategies.

Keywords: IL-2, cytokine, immunotherapy, tumour, can-
cer, melanoma, renal cell carcinoma

Introduction

Cancer is a major health problem of our time. With an es-
timated 8.8 million deaths globally in 2015, cancer is the
second leading cause of death worldwide [1]. Moreover,

the economic impact of cancer in 2010 was estimated at
about 1.16 trillion US dollars, further emphasising the ur-
gency and importance of fighting this disease. Whereas lo-
calised cancer can often be cured using surgery and ra-
diation, metastatic disease, where cancer cells spread to
distant sites of the body, is often incurable. The current
treatment options for metastatic cancer include, in addition
to the aforementioned approaches, chemotherapy, agents
targeting cancer-associated pathways, angiogenesis in-
hibitors and tumour immunotherapy. In fact, the recent im-
pact of immune checkpoint inhibitors on advanced cancer
has firmly established the importance of tumour im-
munotherapy in the treatment of metastatic disease [2].

However, stimulation of the immune system to fight cancer
is not a new concept. In the late 19th century, the New
York surgeon William Coley injected cancer patients in-
tratumourally with bacterial extracts, with the aim of elic-
iting an antitumour immune response [3]. Yet almost a
century separates Coley's initial clinical trial from the dis-
covery of tumour antigens and the use of the first mole-
cularly defined immunotherapies, including interleukin-2
(IL-2), for metastatic disease [4, 5]. In 2010, the use of a
monoclonal antibody (mAb) blocking the immune check-
point cytotoxic T lymphocyte-associated antigen 4 (CT-
LA-4) was reported to show a significant improvement in
the overall survival of patients with metastatic melanoma
[6], leading the field towards the research and development
of immune checkpoint inhibitors. While the clinical use of
immune checkpoint inhibitors and the science behind them
are transforming tumour immunotherapy and immunology
[2], IL-2-based immunotherapy does provide some advan-
tages that justify renewed interest in this approach against
advanced cancer.

IL-2 immunotherapy

IL-2 was discovered, purified and molecularly charac-
terised between 1976 and 1983 [7–9]. A small cytokine of
15.5–16 kDa consisting of four α-helices, IL-2 is a mem-
ber of the common cytokine receptor γ chain (γc) that al-
so includes IL-4, IL-7, IL-9, IL-15 and IL-21 [10]. In
the early 1990s, IL-2 was the first immunotherapy used
and approved in metastatic melanoma and metastatic renal
cell carcinoma. In these indications, high-dose IL-2 ther-
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apy results in an overall response rate of 15-17% and in
about 5-10% durable and complete disease remission [5].
A course of high-dose IL-2 therapy consists of two cycles
of 600,000–720,000 international units/kg, given every 8
hours for up to 12-15 doses per cycle, and further cours-
es of treatment are repeated every 2 months if tolerated by
the patient [11]. Therapeutic response rates can increase to
30-70% when IL-2 is combined with adoptive T cell trans-
fer together with nonmyeloablative conditioning or with
cancer vaccines.

Despite these promising outcomes, IL-2-based approaches
have not been widely adopted. The reasons for this include
the short half-life of IL-2, which makes its administration
to patients inefficient, its dose-dependent, toxic adverse ef-
fects on the vasculature and other organs, and its stimula-
tion of regulatory T (Treg) cells that dampen antitumour
immune responses [12, 13]. A previously held conviction
paralleled the adverse effects of IL-2 with its antitumour
activities. It was thought that IL-2 activated cytotoxic T
cells and natural killer (NK) cells to attack cancerous cells
but, simultaneously, the same cells released vaso-active
substances, including tumour necrosis factor (TNF), that
resulted in vascular (or capillary) leak syndrome (VLS)
[14–19]. However, in 2010 we were able to demonstrate
that IL-2-mediated toxicity and VLS was the result of a
two-step process, whereby, firstly IL-2 binds to and dam-
ages endothelial cells, and in a second phase, IL-2-acti-
vated T and NK cells release pro-inflammatory cytokines
including TNF [20]. The association of IL-2 with endothe-
lial cells is facilitated by the expression of IL-2 receptor α
(IL-2Rα, also called CD25) on endothelial cells, the levels
of which further increase upon IL-2 immunotherapy in vi-
vo, whereas the antitumour activity of IL-2 is independent
of CD25 but requires cells expressing IL-2Rβ (also termed
CD122) and γc [20]. These findings opened up the possibil-
ity of using modified IL-2 approaches, such as CD122-bi-
ased IL-2/anti-IL-2 monoclonal antibody complexes (IL-2
complexes; see below) [13, 21–23] and IL-2 muteins [24].
Our 2010 Krieg et al. report also motivated Charych and
colleagues [25] to PEGylate IL-2 with the aim of biasing
IL-2 to preferentially bind to CD122 [26]. These approach-
es are based on the differential expression of IL-2R sub-
units, as discussed in the next chapter.

IL-2 approaches biased to different IL-2 recep-
tors

IL-2Rs include dimeric IL-2Rs consisting of CD122 and
γc, or trimeric IL-2Rs made of CD122, γc and CD25 [12,
13]. The CD122–γc heterodimer mediates signal transduc-
tion. Conversely, CD25 by itself can serve as a non-sig-
nalling, low-affinity IL-2R, with a dissociation constant
(Kd) of about 10–8 M. Upon association with CD25, thus
forming the trimeric IL-2R, the binding property of the
dimeric CD122–γc IL-2R increases from intermediate (Kd

about 10–9 M) to high affinity (Kd about 10–10 M to 10–11

M) [13]. Thus, the principal function of CD25 appears to
be to increase the affinity of the IL-2R. However, CD25
can also exert other functions. CD25 is prominently ex-
pressed on Treg cells, where the excess of CD25 could
serve as a sink, thereby taking IL-2 away from effector T
cells [27, 28]. Moreover, as mentioned above, endothelial
cells express CD25, maybe to sense IL-2 signals during in-

flammation, thereby locally increasing the leakiness of the
vasculature to allow influx of leukocytes and to concen-
trate IL-2 molecules on their surface for transiting T cells
[20, 28].

In the context of cancer immunotherapy, IL-2 formulations
that allow IL-2 binding to the dimeric CD122–γc IL-2R but
disfavour the association of IL-2 with CD25 (thus termed
CD122-biased) could be advantageous. Strategies to obtain
CD122-biased IL-2 formulations that have been pursued
include, to name but a few, (i) CD122-directed IL-2 com-
plexes, in which the anti-IL-2 mAb covers the CD25-bind-
ing site (fig. 1A–C), (ii) IL-2 muteins with a mutation
at the CD25-binding site, (iii) IL-2 carrying polyethylene
glycol (PEG) groups at the CD25-binding site and (iv) a
fusion protein of IL-2 and CD25. PEGylation requires ex-
clusive targeting of the IL-2 residues involved in CD25 in-
teraction, which so far has not been achieved. Thus, PE-
Gylation of accessible lysine (K) residues of human IL-2,
as in NKTR-214 [26], will also target epitopes that are in-
volved in CD122–γc binding [13]. A CD25–IL-2 fusion
protein consists of two functional parts that interact with
each other with low affinity (10–8 M), unlike the CD25 mi-
mobody NARA1 (see below). IL-2 muteins have the ad-
vantage of consisting of only one molecule, but they are
considerably immunogenic and have a short half-life [13].
Conversely, CD122-directed IL-2 complexes are made of
natural (i.e. non-immunogenic) IL-2 bound by a high-
affinity mAb. While natural IL-2 has a short in vivo half-
life, measured in minutes, due to rapid renal clearance,
CD122-directed IL-2 complexes have an in vivo half-life
of days [21, 23]. The increased in vivo half-life is the result
of the association of the small (15.5-16 kDa) IL-2 with
an antibody of 150 kDa [23], and this principle also ap-
plies to other cytokines, including IL-1β, IL-3, IL-4, IL-6,
IL-7, IL-15, interferon-γ, and granulocyte colony-stimu-
lating factor [22, 30–38]. IL-2 complexes, in comparison
to complexes made of most other cytokines, are particu-
lar because, depending on the anti-IL-2 mAb used, they
preferentially stimulate either CD122high cells expressing
CD122–γc dimeric IL-2Rs or CD25high cells carrying
trimeric IL-2Rs. This principle, first described in 2006
[22], states that CD122-biased IL-2 complexes (e.g. mouse
IL-2/S4B6 complexes or human IL-2/NARA1 complexes)
preferentially stimulate CD122high cells, including antigen-
experienced (memory) CD8+ T cells and NK cells. Con-
versely, CD25-biased IL-2 complexes (e.g. mouse IL-2/
JES6-1 complexes or human IL-2/5344 complexes) se-
lectively activate CD25high cells such as thymus-derived
CD25high Treg cells [12, 13, 19]. Mechanistically, mAbs
that form CD122-biased IL-2 complexes bind to and cover
IL-2 epitopes that usually interact with CD25, whereas
mAbs that form CD25-biased IL-2 complexes associate
with and temporally obstruct IL-2 epitopes that interact
with CD122 and γc [13].

CD122-directed IL-2 complexes have been shown in sev-
eral preclinical cancer models to exert superior antitumour
responses compared to IL-2, either as a monotherapy or in
combination with other immune stimulating agents, can-
cer vaccines and epigenetic modifying agents [20, 21, 24,
39–42]. Cancer types where CD122-biased IL-2 formu-
lations have shown efficacy include melanoma (B16F10
and Tyr::N-RasQ61K Ink4a–/– mice), lung carcinoma (Lewis
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lung carcinoma), colon carcinoma (MC38), prostate carci-
noma (TRAMP-C1), sarcoma (MCA-205) and leukaemia
(BCL1) [20, 21, 24, 39–43] (fig. 1D–F). As for epigenetic
modification, a combination of IL-2/NARA1 complexes
with an inhibitor of enhancer of zeste homologue 2 (EZH2)
was particularly advantageous. Thus, systemic or tumour-
intrinsic EZH2 inhibition in different mouse models of
melanoma was able to reverse the features of adaptive re-
sistance to tumour immunotherapy such as silencing of im-
munogenicity and antigen presentation, as well as upregu-
lation of programmed death ligand 1 (PD-L1, also known
as CD274) on melanoma cells [42]. Recently, a monoclon-
al anti-human IL-2 antibody, termed NARA1, has been
generated and characterised. It forms CD122-directed hu-
man IL-2 complexes and is suitable for clinical develop-
ment [21]. Because it mimics CD25's binding to the CD25
epitope of human IL-2, NARA1 was also dubbed a CD25
mimobody. However, unlike CD25, NARA1 binds with
high affinity (10–9 M) to IL-2. Similar to their mouse ana-
logues, IL-2/NARA1 complexes preferentially stimulate

CD8+ T cells and NK cells while sparing Treg cells and en-
dothelial cells, and show strong efficacy in several mouse
tumour models [21] (fig. 1D–F).

CD122-biased IL-2 therapies currently in development are
listed in table 1.

Concluding remarks

As CD122-biased IL-2 formulations are being tested in pa-
tients, the first clinical data are becoming available, in-
cluding potential advantages and disadvantages [13, 44,
45]. Due to its different but proven mode of action, IL-2
immunotherapy could complement many anti-cancer ap-
proaches, including immune checkpoint inhibitors, adop-
tive cell transfer regimens and vaccination, as well as
strategies that are not considered typical immunotherapies
(such as epigenetic modifying agents), to name a few.
In adoptive cell transfer approaches, CD122-biased IL-2
complexes could help to rescue T cells that have been

Figure 1: IL-2 complexes stimulate potent antitumour CD8+ T cell responses. (A–B) IL-2 activates CD25high CD4+ Treg and CD122high

CD8+ T cells, whereas CD122-biased IL-2 complexes (such as IL-2/NARA1 complexes) preferentially stimulate CD122high CD8+ T cells. (C)
NARA1 binds with 10-fold higher affinity than CD25 to the CD25 epitope of IL-2. (D–F) IL-2/NARA1 complexes elicit potent antitumour re-
sponses in Tyr::N-RasQ61K Ink4a–/– mice (that spontaneously develop melanoma; ref [29]) (D) as well as in the cutaneous (E) and pulmonary
B16F10 mouse melanoma models (F). Adapted from refs [12, 21].

Table 1: CD122-biased IL-2 therapies in development.
Human IL-2 (hIL-2)-based formulations that have been reported to show an IL-2 receptor β (CD122) bias, i.e. preference of CD122 over IL-2 receptor α (CD25) binding, are list-
ed according to their state of development.

Product
(Company)

CD122 bias Description Status Ref.

NKTR-214
(Nektar)

+ hIL-2 PEGylated on lysine (K) residues, resulting in up to 11
PEGs per hIL-2 (6 on average), of which 6 are in or adjacent to
the CD25 epitope (thus resulting in CD122 bias), and 3-4 are
in or adjacent to the CD122 epitope (thus favouring CD25
bias)

6 Phase I to III studies CT, [26]

RG7461 (RO6874281)
(Roche)

++ hIL-2 carrying the mutations F42A, Y45A and L72G, located in
the CD25-binding epitope of hIL-2 and fused to a mAb target-
ing fibroblast activation protein-alpha (FAP)

4 Phase I to II studies CT, [44]

ALKS 4230
(Alkermes)

++ hIL-2–CD25 fusion protein consisting of complementary mutat-
ed hIL-2 and CD25

Phase I recruiting CT

ANV329 & ANV629
= humanised NARA1
(Anaveon)

++ Humanised NARA1 mAb binding with high affinity and affinity-
matured to the CD25 epitope of hIL-2

Pre-clinical Anaveon, [21]

CD25 = IL-2 receptor α; CD122 = IL-2 receptor β; CT = clinicaltrials.gov (accessed on Sept 4, 2018); hIL-2 = human IL-2; mAb = monoclonal antibody; PEGylated, harbouring
polyethylene glycol residues.
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strongly activated in vitro and to keep these cells alive, as
suggested by a number of preclinical studies [10, 39–41,
46]. Notably, IL-2 immunotherapy might even contribute
to turning a “cold” (i.e. poorly immunogenic) tumour into
a “hot” (i.e. immunogenic) one, e.g. by the upregulation
of PD-L1 on cancer cells [45]. However, to date, we do
not know how these different processes will best benefit
from CD122-biased IL-2 complexes, or whether IL-2 sig-
nals will be required in the tumour and the tumour mi-
croenvironment, and/or in secondary lymphoid organs. Fu-
ture preclinical and clinical studies will shed light on these
open questions on the biology and use of IL-2 and biased
IL-2 formulations.
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