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Abstract. We provide an informal overview of recent developments concern-

ing the singular local limit of nonlocal conservation laws. In particular, we
discuss some counterexamples to convergence and we highlight the role of nu-

merical viscosity in the numerical investigation of the nonlocal-to-local limit.

We also state some open questions and describe recent related progress.

1. Introduction. We consider the nonlocal conservation law

∂tu+ ∂x
[
uV (u ∗ η)

]
= 0. (1)

In the previous expression, the unknown is the function u : R+ × R → R, the
function V : R → R is Lipschitz continuous and the term u ∗ η is the convolution,
computed with respect to the space variable x only, of the solution u with the
convolution kernel η : R → R. For the time being we assume that η satisfies the
following assumptions:

η ∈ C1
c (R), η ≥ 0,

∫

R
η(x)dx = 1, (2)

but actually the regularity assumptions on η can be relaxed, as we will see in §4.
Nonlocal equations in the form (1) have been extensively studied in recent years
owing to the applications to (among others) models of sedimentation and pedestrian
and vehicular traffic, see for instance [2, 3, 5, 9, 10] and the references therein.

Consider the Cauchy problem posed by coupling (1) with the initial datum

u(0, x) = ū(x). (3)
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Existence and uniqueness results have been obtained in various frameworks by sev-
eral authors, see among others [3, 10, 11, 14].

In this note we review some recent progress in the analysis of the singular local
limit of (1), which is defined as follows. Fix a parameter ε > 0, consider the rescaled
function

ηε(x) =
1

ε
η
(x
ε

)

and note that, owing to the third condition in (2), when ε → 0+ the family ηε
converges weakly∗ in the sense of measures to the Dirac delta. By plugging ηε
into (1),(3) we arrive at the family of Cauchy problems

{
∂tuε + ∂x

[
uεV (uε ∗ ηε)

]
= 0

uε(0, x) = ū(x).
(4)

We now consider the limit ε→ 0+: since ηε converges to the Dirac delta, from the
equation at the first line of (4) we formally recover the nonlinear conservation law

∂tu+ ∂x
[
uV (u)

]
= 0. (5)

The above derivation is completely formal, and whether or not it can be rigorously
justified is the object of the following question, which was originally posed in [1].

Question 1. Does uε, solution of (4), converge (in some suitable topology) to the
entropy admissible solution of (3),(5) as ε→ 0+?

We refer to [12] for the definition of entropy admissible solution of (3),(5). In
this work we overview some recent developments concerning Question 1. The ex-
position is organized as follows: in §2 we show that, notwithstanding numerical
evidence suggesting the opposite, the answer to Question 1 is in general negative.
In §3 we discuss a possible explanation of the reason why the numerical evidence
provides the wrong intuition. Finally, in §4 we introduce Question 3, which is a
refinement of Question 1 in a more specific setting motivated by the applications
to vehicular traffic models. Question 3 is still open, but recent progress has been
recently achieved and we discuss it in §4.

2. The nonlocal-to-local limit. Question 1 was originally motivated by numeri-
cal evidence. More precisely, in [1] the authors exhibit numerical experiments where
the solution of the nonlocal Cauchy problem (4) gets closer and closer to the en-
tropy admissible solution of (3),(5) as ε → 0+, thus suggesting a positive answer
to Question 1. This was later confirmed by other numerical experiments, see for
instance [3].

Another positive partial answer to Question 1 is provided by [18, Proposition
4.1], which loosely speaking states that the answer to Question 1 is positive pro-
vided that the convolution kernel η is even (i.e. η(x) = η(−x), for every x) and the
limit solution u is smooth. The rationale underpinning [18, Proposition 4.1] is basi-
cally the following. Assume that the initial datum ū is smooth and say compactly
supported, then there is a time interval [0, T ] where the entropy admissible solution
of (3),(5) is smooth, i.e. it is a classical solution. Proposition 4.1 in [18] states that
on the interval [0, T ] the family uε converges to u, in the uniform C0 norm.

Despite the above mentioned results, the answer to Question 1 is, in general,
negative. More precisely, in [7] we exhibit three counterexamples that rule out
the possibility that the family uε solving (4) converge to the entropy admissible
solution of (3),(5). The counterexamples are completely explicit and rule out not
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only strong convergence, but also i) weak convergence and ii) the possibility of
extracting from uε a (strongly or weakly) converging subsequence. In one case we
even manage to rule out the possibility that uε converges to a distributional solution
of (3),(5), i.e. we do not need to require that the limit u is entropy admissible to
rule out convergence. The counterexamples are constructed in [7, §5.1,§5.2,§5.3]
and at the beginning of each of §5.1, §5.2 and §5.3 the basic ideas underpinning
the construction of the counterexample are overviewed. Loosely speaking the very
basic mechanism is that in each of the counterexamples we manage to single out a
property that i) is satisfied by the solution uε of (4), for every ε > 0; ii) is stable
under weak or strong convergence, i.e. it passes to the weak or strong limit; iii)
is not satisfied by the entropy admissible solution of (3),(5). The exact property
verifying conditions i), ii) and iii) is different in each counterexample: in the first one
it is the fact that the integral over R− is constant in time, in the second one the fact
that uε is identically 0 at positive values of x. Finally, in the third counterexample
we single out a functional that is constant in time when evaluated at uε(t, ·) and
strictly decreasing when evaluated at u(t, ·).

3. Numerical experiments and viscosity. We now go back to the numerical
experiments in [1], which as we have seen provide the wrong intuition concerning
Question 1. A possible explanation of the reason why the numerical evidence is not
reliable is given by the following argument.

The numerical results in [1] have been obtained by relying on a Lax-Friedrichs
type scheme. The Lax-Friedrichs scheme is a finite volume scheme which is very
commonly used to construct numerical solutions of conservation laws, see [16] for
an exhaustive discussion. The Lax-Friedrichs scheme contains a large amount of
what is called numerical viscosity : very loosely speaking, the numerical viscosity is
a collection of finite difference terms which are the numerical counterpart of some
analytical viscosity, i.e. of some second order term. In other words, the presence
of the numerical viscosity implies that the model equation for the Lax-Friedrichs
scheme for the conservation law (5) is actually the viscous conservation law

∂tu+ ∂x
[
uV (u)

]
= ν∂2

xxu, (6)

where the viscosity coefficent ν > 0 is of the same order of the space mesh, see [16].
When the Lax-Friedrichs scheme is applied to the nonlocal conservation law (1),
the presence of the numerical viscosity implies that the model equation is

∂tu+ ∂x
[
uV (u ∗ η)

]
= ν∂2

xxu. (7)

This in turn implies that in order to get some insight on the discrepancy between
the numerical evidence in [1] and the analytic counterexamples in [7] it might be
useful to consider the family of Cauchy problems1

{
∂tuε + ∂x

[
uεV (uε ∗ ηε)

]
= ν ∂2

xxuε
uε(0, ·) = ū

(8)

and pose the following “viscous counterpart” of Question 1.

Question 2. Does uε, solution of (8), converge to the solution of (3),(6) as
ε → 0+?

1Existence and uniqueness results for the Cauchy problem (8) can be obtained by combining a

fixed point argument with fairly standard parabolic estimates, see [7, §2.1]
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The answer to Question 2 is largely positive, and it is given by the following
result.

Theorem 3.1. Assume (2), fix ν > 0 and T > 0 and assume that the function
V : R→ R is Lipschitz continuous. If ū ∈ L1(R)∩L∞(R), then the solution of (8)
converge to the solution of (3),(6) strongly in L2([0, T ]× R) as ε → 0+.

The proof of Theorem 3.1 is provided in [7] and applies in greater generality to
the case of several space dimensions: we refer to [7, Theorem 1.1] for the precise
statement. Note furthermore that Theorem 3.1 was established in [4] under the
additional assumptions that the initial datum ū is regular and that V (u) = u.

We can now consider the family of Cauchy problems (8), keep the nonlocal pa-
rameter ε > 0 fixed, vary the viscosity parameter ν and consider the inviscid limit
ν → 0+. In this way we recover the inviscid nonlocal problem (4): more precisely,
[7, Proposition 1.2] states that the solutions of (8) converge to the solution of (4)
when ν → 0+. Finally, we recall that a celebrated result by Kružkov [15] states
that the solutions of (3),(6) converge to the entropy admissible solution of (3),(5)
when ν → 0+.

We now put together all the previous convergence results and we combine them
with the counterexamples mentioned in §2. We denote by uεν the solution of the
viscous nonlocal equation at the first line of (8) to stress that it depends on both
the nonlocal parameter ε and the viscosity parameter ν. We arrive at the following
diagram:

∂tuεν+∂x
[
uενV (uεν ∗ ηε)

]
=ν ∂2

xxuεν
ε→0+

−−−−−−−−−−−→
Theorem 3.1

∂tuν+∂x
[
uνV (uν)

]
=ν ∂2

xxuν

ν→0+

y [7, Proposition 1.2] ν→0+

yKružkov [15]

∂tuε + ∂x
[
uεV (uε ∗ ηε)

]
= 0

ε→0+

−−−−−−−−−−−→
False

∂tu+ ∂x
[
uV (u)

]
= 0

We can now go back to the numerical evidence erroneously suggesting a positive
answer to Question 1. A possible explanation is the following: the numerical experi-
ments were designed to test the convergence of uε to the entropy admissible solution
u. However, owing to the numerical viscosity, what the numerical experiments were
actually testing was the convergence of uεν to uν , which holds true owing to Theo-
rem 3.1. In other words, the numerical schemes were designed to provide an answer
to Question 1, but as a matter of fact they provide an answer to Question 2. Since
the two questions have opposite answers, the numerical schemes provide the wrong
intuition. This explanation is validated by recent numerical experiments collected
in [6]. In particular, in [6], we have used the Lax-Frierichs type scheme to test the
nonlocal-to-local limit from (4) to (3),(5) in the case of the counterexamples men-
tioned in §2. More precisely, we have computed the numerical solution of (4) in the
case where (4) is the same as in the counterexamples. Next, we have computed the
L1 norm (evaluated at a given positive time t > 0) of the difference between the nu-
merical solution of (4) and the numerical entropy admissible solution of (3),(5). In
Figure 1 we display some of the results concerning one of the counterexamples, more
precisely the one discussed in [7, §5.1]. The blue line refers to the L1 error between
the numerical solutions obtained by the Lax-Frierichs type scheme and strongly
suggests that the L1 error is converging to 0 as ε→ 0+, i.e. it erroneously suggests
a positive answer to Question 1. The red line refers to the L1 error between the
numerical solutions obtained by a Godunov type scheme. Godunov type schemes
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Figure 1. L1-error at t = 2, for different values of ε, comparing
the solution of (4) to the entropy admissible solution of (3),(5)
computed with Lax-Friedrichs and Godunov type schemes in the
case where (4) is the same as in [7, §5.1]. The space mesh is fixed
and it is h = 0.001

Figure 2. L1-error at t = 2, for different values of ε, between the
solutions of the nonlocal equations (4) and the entropy solution
of (3),(5) computed with Godunov and Lax Friedrichs schemes in
the case where (4) is the same as in [7, §5.2]. The space mesh h
depends on ε and the relation is ε = 1000h2. The L1 error of the
Godunov scheme is much larger for small values of ε.

for the nonlocal conservation law (1) were introduced in [5, 13] and the reason why
we used them to test the nonlocal-to-local limit is because the Godunov scheme
is known to have a smaller amount of numerical viscosity than the Lax-Friedrichs
scheme, see [17]. In the example studied in Figure 1, the numerical results obtained
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with both the Godunov and the Lax-Friedrichs scheme erroneously suggest conver-
gence in the nonlocal-to-local limit. However, in other cases there is a difference
between the two schemes. For instance, Figure 2 displays some of the numerical
results concerning the counterexample discussed in [7, §5.2]: there is a remarkable
difference between the Lax-Friedrichs and the Godunov scheme. Indeed, the nu-
merical results obtained with the Lax-Friedrichs type scheme erroneously suggest
convergence, whereas the numerical results obtained with the Godunov type scheme
are more consistent with the analytic results, which rule out convergence. This is
consistent with the fact that the Godunov scheme contains less numerical viscosity
than the Lax-Friedrichs scheme, see [17].

4. Anisotropic traffic models: total variation blow up and open ques-
tions. In recent years, several authors have been focusing on (1) in the case where
the function V is decreasing, V ′ < 0, the initial datum ū is nonnegative and the
convolution kernel η in equation (5) is completely anisotropic (i.e., it is supported
on ]−∞, 0]). This case is extremely relevant for the applications to vehicular traffic
models. Indeed, in these models u represents the density of cars (and is therefore
nonnegative) and V their speed. The function V is evaluated at u ∗ η because
the model postulates that drivers regulate their speed based on the density of cars
around them. The fact that the function V is decreasing is a classical assumption
in traffic models and takes into account the fact that drivers tend to slow down
when the traffic is congested, and conversely to speed up when the traffic is light.
If the convolution kernel is supported on the interval ]−∞, 0], then the convolution
kernel u ∗ η evaluated at the point x only depends on the value of u on the interval
[x,+∞[. In other words, choosing an anisotropic convolution kernel aims at mod-
eling the fact that drivers only look forward, not backward, and hence their speed
only depends on the downstream traffic density.

To avoid some technicalities, in the following we focus on the case

V (u) = 1− u, η = 1[−1,0], 0 ≤ ū ≤ 1, (9)

but as a matter of fact the following discussion applies to more general cases
than (9). In the previous formula, 1[−1,0] denotes the characteristic function of
the interval [−1, 0]. Note that, strictly speaking, the regularity assumptions on the
function η given in (2) are violated when η = 1[−1,0]. Notwithstanding the lack
of regularity, in [3] the authors established existence and uniqueness results for the
Cauchy problem (1),(3) and, remarkably, by exploiting the anisotropy of the ker-
nel established better a-priori estimates on the solution than those available in the
smooth case (2). In particular, they established a maximum principle: under (9),
the solution of (1),(3) satisfies 0 ≤ u ≤ 1. To complete the picture, we point out
that the counterexamples exhibited in [7] do not apply in the case (9).

Summing up, the case (9) is very relevant from the modeling viewpoint, stronger
analytic results apply and the counterexamples do not work. This yields the fol-
lowing refinement of Question 1.

Question 3. Does uε, solution of (4), converge to the entropy admissible solution
of (3),(5) as ε→ 0+, provided (9) holds true?

Question 1 is presently open and it is the object of current investigation. How-
ever, some progress have been recently achieved in [8]. Before discussing the results
in [8], we need some preliminary considerations.
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Assume (9), then, owing to the maximum principle, the solution of the Cauchy
problem (4) satisfies the uniform bound

‖uε‖L∞ ≤ 1, for every ε > 0.

This yields compactness in the weak-∗ topology and implies that we can extract
a subsequence that converges to some limit function w weakly-∗ in L∞(R+ × R).
Note however that, owing to the nonlinear nature of the problem, nothing a priori
tells us that the limit w is a distributional solution (let alone entropy admissible)
of the conservation law (3),(5). A natural strategy to establish a positive answer to
Question 2 is hence to look for compactness in some strong topology. A fairly clas-
sical argument to establish strong L1 compactness combines the Helly-Kolmogorov
Compactness Theorem with a uniform bound on the total variation, i.e. an estimate
like

TotVaruε(t, ·) ≤ C, for every t > 0, ε > 0 and for some constant C > 0. (10)

This yields the following question:

Question 4. Assume (9) and that TotVar ū is finite. Does uε, solution of (4),
satisfy the uniform bound (10)?

Before addressing Question 4 we make some preliminary remarks. First, the
semigroup of entropy admissible solutions of (3),(5) is total variation decreasing,
i.e.

TotVaru(t, ·) ≤ TotVar ū, for every t > 0, (11)

provided TotVar ū is finite. In other words, the entropy admissible solution of (3),(5)
satisfies estimate (10) with C = TotVar ū. Second, numerical experiments discussed
in [3] suggest that, under (9), the semigroup of solutions of (4) is also total varia-
tion decreasing, and hence in particular that the answer to Question 4 is positive.
Third, by combining the maximum principle with the monotonicity preserving prop-
erty established in [3] one can show that that, under (9), if the initial datum ū is
monotone, then the total variation does not increase in time, i.e. (10) is satisfied
with C = TotVar ū. In other words, we know that the answer to Question 4 is
positive provided the initial datum is monotone.

Notwithstanding the numerical evidence and the positive answer in the case
of monotone data, a counterexample constructed in [8] shows that the answer to
Question 4 is in general negative. More precisely, there is an initial datum ū such
that TotVar ū is finite and the solution of the Cauchy problem (4) satisfies

sup
ε>0

TotVaruε(t, ·) = +∞, for every t > 0,

which in particular implies that (10) cannot be true.
The fact that the answer to Question 4 is negative does not by any mean imply

that the answer to Question 3 is also negative. However, it rules out the most clas-
sical and natural strategy to achieve an hypothetical positive answer to Question 3.
Note, furthermore, that the initial datum ū in [8] has finite total variation and at-
tains values in the physical range 0 ≤ ū ≤ 1, but it is also highly oscillating and it
is unlikely to describe a realistic initial density of vehicles in some real-word appli-
cations. In principle it might be possible that, under (9), the uniform bound (10)
holds true provided ū is an initial datum with finite total variation which satisfies
some further condition making it more “realistic”. Even if this were true, however,
the counterexample in [8] would provide some useful information because it implies
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that (10) cannot be established by relying only on the maximum principle and on
the boundedness of TotVar ū. To establish (10) in the case of “realistic” initial data
one should likely rely on some more refined information on the structure of the
solution, which is in general harder to obtain.
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