
Towards a Discipline of

Performance Engineering:

Lessons Learned from Stencil

Kernel Benchmarks

Inauguraldissertation

zur

Erlangung der Würde eines Doktors der Philosophie

vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Danilo Guerrera

aus Italien

Basel, 2019

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel:

edoc.unibas.ch.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0

International License.

https://edoc.unibas.ch
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät

auf Antrag von

Prof. Em. Dr. Helmar Burkhart
Prof. Dr. Gerhard Wellein

Basel, den 13. November 2018

Prof. Dr. Martin Spiess,
Dekan

To my family, who encouraged me to pursue my

dreams and finish my dissertation.

Abstract

High performance computing systems are characterized by a high level
of complexity both on their hardware and software side. The hardware
has evolved offering a lot of compute power, at the cost of an increas-
ing effort needed to program the systems, whose software stack can be
correctly managed only by means of ad-hoc tools.

Reproducibility has always been one of the cornerstones of science,
but it is highly challenged by the complex ecosystem of software pack-
ages that run on HPC platforms, and also by some malpractices in the
description of the configurations adopted in the experiments.

In this work, we first characterize the factor that affects the repro-
ducibility of experiments in the field of high performance computing and
then we define a taxonomy of the experiments and levels of reproducibil-
ity that can be achieved, following the guidelines of a framework that is
presented.

A tool that implements said framework is described and used to con-
duct Performance Engineering experiments on kernels containing the sten-
cil (structured grids) computational pattern. Due to the trends in archi-
tectural complexity of the new compute systems and the complexity of
the software that runs on them, the gap between expected and achieved
performance is widening. Performance engineering is critical to address
such a gap, with its cycle of prediction, reproducible measurement and
optimization.

A selection of stencil kernels is first modeled and their performance
predicted through a grey box analysis and then compared against the
reproducible measurements. The prediction is then used to validate the
measured performance and vice-versa, resulting in a “Gold Standard”
that draws a path towards a discipline of performance engineering.

Contents

Contents i

1 Introduction 3
1.1 Research Questions . 6
1.2 Related Work . 6
1.3 Organization of This Work 11

I Reproducibility Challenges 13

2 Reproducibility Challenges: Hardware Complexity 15
2.1 Moore’s Law . 15
2.2 From Single Core to Multicore, Manycore, and Accelerators 19

2.2.1 Pipelining . 21
2.2.2 Out-of-Order Execution 23
2.2.3 SIMD . 23
2.2.4 Superscalarity . 25
2.2.5 Parallel Computers 25
2.2.6 Simultaneous Multi-Threading 26
2.2.7 Dynamic Frequency Scaling 27

2.3 Memory Subsystem . 27
2.3.1 Shared Memory Computers 28
2.3.2 Real Life Intermezzo 32

2.4 Network Subsystem . 33

3 Reproducibility Challenges: Software Complexity 35
3.1 Amdahl’s and Gustafson’s Laws 35
3.2 Programming Models . 38

ii CONTENTS

3.3 Compilers . 39
3.3.1 Basic Optimizations 39
3.3.2 Loop Optimizations 40

3.4 Software Stack . 42
3.4.1 Environment . 42
3.4.2 Build Process . 43

II The PROVA! Approach to Reproducible HPC Re-
search 45

4 Proposed Framework 47
4.1 Taxonomy of Experiments 50
4.2 Reproducibility Levels . 51
4.3 Goals of the PROVA! Project 52

4.3.1 Contributions to the Project 54

5 Overview of the PROVA! Tool 55
5.1 Addressing Complexity . 56

5.1.1 Implementation Phase 57
5.1.2 Compilation Phase 57
5.1.3 Execution Phase . 57

5.2 Walkthrough . 58

6 Implementation Aspects 63
6.1 Architecture . 63
6.2 Mapping of the Experiment Taxonomy 66

6.2.1 Projects . 66
6.2.2 Methods . 67

6.3 Likwid Interface . 67
6.4 Empirical Roofline . 70

III Experimental Evaluation 73

7 Parallel Stencil Codes 75
7.1 Motifs . 75
7.2 Stencils Classification . 77
7.3 Stencil TEMPlating Engineering Library 80
7.4 Stencil Compilers . 82

CONTENTS iii

7.4.1 PLUTO . 82
7.4.2 PATUS . 83

8 Performance Evaluation 85
8.1 Performance Analysis . 85

8.1.1 Performance Models 86
8.1.2 Grey Box Modeling 90

8.2 Performance Measurement 92
8.2.1 Cache Misses . 93
8.2.2 Code Structure and Parallelism 94
8.2.3 Memory Access Pattern and Data Locality 94
8.2.4 Optimization of Stencil Codes 96

9 Experimental Testbeds 99
9.1 Systems . 100

9.1.1 Validation Macro-Experiment 100
9.1.2 Performance Engineering Cycle Macro-Experiment 100
9.1.3 Emmy . 101
9.1.4 MiniHPC . 101

9.2 Problems . 107
9.2.1 Kernels Used in the Validation Macro-Experiment . 107
9.2.2 Kernels Used in the Performance Engineering Cycle 108

9.3 Methods . 109
9.3.1 Methods Used in the Validation Macro-Experiment 109
9.3.2 Methods Used in the Performance Engineering Cy-

cle Macro-Experiment 109

10 Performance Benchmarking Experiments 111
10.1 Stencil Compilers . 111

10.1.1 Metric used for Compilers Evaluation and Compar-
ison . 112

10.2 Discussion of the Results . 121
10.2.1 Validation Experiment 121
10.2.2 Performance Engineering Cycle Experiment 123

IV Conclusions & Future Work 133

11 Conclusions and Future Work 135
11.1 Contributions and Relevance to the Community 137

iv CONTENTS

11.2 Future Work . 138

Bibliography 141

Appendices 155

A Stencils Source Code 157
A.1 2d-1r-iso-const-box . 157

A.1.1 PATUS . 157
A.1.2 PLUTO . 158
A.1.3 OpenMP . 159

A.2 2d-4r-iso-const-box . 160
A.2.1 PATUS . 160
A.2.2 PLUTO . 162
A.2.3 OpenMP . 164

B Creation of a MethodType 167

C Walkthrough of STEMPEL: Kerncraft and PROVA! Interfaces 171

List of Figures 175

List of Tables 181

Listings 182

Acknowledgments

The Ph.D. is a major phase of the academic life. I am very glad and thank-
ful to Prof. Em. Dr. Helmar Burkhart for having given me the opportu-
nity to work with him on this project, for his guidance and for sharing
with me and the whole High Performance and Web Computing (HPWC)
group his passion for research.

I would like to thank also Prof. Dr. Gerhard Wellein, who hosted me
in his group at the Friedrich-Alexander-Universität Erlangen-Nürnberg
as a temporary researcher, and for accepting to act as co-referee in the
thesis committee. He has taught me a lot regarding performance engi-
neering.

I wish to thank all the members of the (wide) HPWC group: Dr.
Martin Guggisberg, for his optimism and valuable ideas and sugges-
tions, Alexander Gröflin who always had a joke ready for every situa-
tion, Robert Frank for the stimulating discussions, Bas Kin for his sup-
port (mostly on the pitch), Dominic Bosch for the inspiring conversations,
Yvonne Wegmüller who helped to solve all the administrative issues I
ever faced. A special thanks goes to Antonio Maffia, who shared with
me a long path: we started the bachelor together at the University of San-
nio, in Italy, shared a lot of good and also hard moments in this run until
the completion of the Ph.D process. Thanks for your help all over these
years.

I would like to express my gratitude to Prof. Dr. Florina Ciorba,
for accepting me in her group and always motivating me, and to all the
members of the HPC group: Ali Mohammed, Aurélien Cavelan, Ahmed
Eleliemy, and Jonas Korndörfer.

I am grateful for having met and worked with: Alexander Ugolini,
Dr. Georg Hager, Dr. Jan Eitzinger, Thomas Röl, and Julian Hammer.

2 CONTENTS

Finally, I would like to thank my parents and my brother, for their
constant support, even though during the time of the Ph.D. they have
been far away from me. I hope you can all be proud of me.

Thanks to my aunts and uncles Maria, Angelo, Antonietta, Anna, Lu-
ciano, and my cousins Sara, Joele, and Mattia, who love me and motivate
me anytime and anyway they can.

Thanks to Winnie, for staying by my side also in the awkward mo-
ments that the path I walk sometimes makes me face, I love you.

Grazie mamma e babbo, vi voglio bene!

Chapter 1

Introduction

Modern architectures are characterized by a high level of complexity, due
to the limits the producers have been facing by 2007 when the natural
scaling of the performance was provided for free by the scaling in the
frequency of the chips. Said limits forced the vendors to find a differ-
ent way to deliver performance, i.e., alternative circuits and usage of the
transistors: the switch between single core and multicore happened. The
architectures have been developing following this trend since then: accel-
erators and many-core architectures also came out. To properly exploit
these architectures, the parallelism must be present in the source code
of the applications, at a fine grain. Developers are required to know ex-
tremely good how the microprocessors work. This way they can tune
their codes and exploit the architectural features of their machines. This
kind of optimization is extremely error-prone, and performance portabil-
ity can suffer out of it.

State of the art in performance reporting in the High Performance
Computing (HPC) field is omitting details that are important to be able
to test and reuse the proposed approaches, affecting what is considered
to be a pillar of science since the 17th century: the scientific method [136].
Every scientist must be able to understand and extend the work of an-
other.

In the HPC field, we refer to the computing environment and its setup
both in terms of hardware and software configurations. Modern archi-
tectures are incredibly complex, and scientists often focus their efforts
on what they are pursuing, ignoring the importance of making their sci-
ence reproducible. We acknowledge the lack of time and the effort nec-

4 CHAPTER 1. INTRODUCTION

essary to follow good practices in conducting/doing research in com-
putational science, yet consider reproducibility to be extremely impor-
tant. We present a taxonomy of reproducibility: it is tricky to use the
terms consistently in this field since there is no universal agreement on
them [83]. Recently ACM defined the 3 Rs of the Research, and their
description is mostly overlapping our taxonomy. This work takes over
such discussion and proposes three levels of reproducibility with an ex-
planation of what they mean and what they provide if research fulfills
their constraints. Moreover, we propose a standardized way of describ-
ing an experiment, which extrapolates a minimum amount of informa-
tion needed for reproducibility purposes and a workflow to follow in or-
der to carry out an experiment and achieve reproducible results properly.
Starting from our experience and the proposed approach to reproducible
research, we implemented PROVA!, a distributed workflow and system
management tool, that helps scientists in their study allowing them to fo-
cus on their core business and taking care of its reproducibility, and then
used it in our own research on benchmarking of parallel stencil codes.
Stencil codes are an essential and widely used pattern in computational
science. The stencil computational pattern is representative of many nu-
merical codes, from PDE to multi-grid solvers, and discrete simulations,
including image filtering. Usually, the stencil computation represents a
significant part of the overall execution time of an application. There-
fore, it is crucial to achieving good performance in calculating them. Be-
cause of their low arithmetic intensity, i.e., the small number of floating
point operations per transferred data element, stencil computations typ-
ically are limited by the available bandwidth to the memory subsystem.
Thus, it is essential to efficiently use the caches, by optimizing data lo-
cality (both spatial and temporal). Bandwidth-saving schemes like cache
blocking techniques and methods to block across multiple time steps are
used to increase the arithmetic intensity. Hardware-aware programming
techniques can also help: NUMA-aware data initialization, software pre-
fetching, or cache bypassing represent a way to reduce bandwidth usage
further. All the listed concepts make the optimization of stencil codes a
tough challenge. Lately, several approaches to stencil computation have
been proposed, and several stencil compilers have been implemented.

Focusing on the problem of stencil computation we consider both
manually optimized codes and stencil compilers. When comparing the
results obtained we must acknowledge that there are many factors in-
volved that can affect the performance of a code, starting from the stencil

5

itself. Real stencil applications span in a rich domain of characteristics,
2-dimensional vs. 3-dimensional, high vs. low order, dense vs. sparse
matrices, aligned vs. staggered grids, widely varying in arithmetic in-
tensity. Another factor involved is the system used for running a code:
both the different hardware and different software environment, e.g., a
different compiler or set of flags. Performance models are, thus, required
to evaluate the expected performance of a code on a specific architecture,
thus highlighting the parameters that can affect its performance, i.e., ex-
pose the bottlenecks that limit the performance of a code on a machine.
For this purpose, we plan to interpret the performance data employing
models such as the Execution-Cache-Memory (ECM) and the Roofline
Model, evaluate how performance is affected by explicitly pinning the
threads, following different pinning strategies (core, socket, node). The
goal is to verify that modeling and execution match and to understand
how compilers and manually optimized code behave concerning a spe-
cific architecture. An important aspect resides into the solution used to
evaluate them while changing both the stencil to compute and the sys-
tem: usually the developers of a stencil compiler focus either on a partic-
ular architecture or a particular stencil (or class of stencil computations).
Using PROVA! it is possible to achieve a fair and reproducible compari-
son of the same stencil on different systems, or different stencils on both
the same and different systems. Nonetheless, it is needed to provide a
clear and standardized way of describing an architecture, to carry on
comparisons. Studying the performance of a code, verifying it empiri-
cally, while taking care of its reproducibility, strengthen and gives credi-
bility to research: the proposed framework aims to ease the road towards
a discipline of performance engineering. Furthermore, making available
the source code is a minimum pre-requisite for reproducibility, i.e., it is
necessary but not sufficient. It is crucial to have a detailed description
and provision of: dependencies, automated build process, environment,
execution scripts post-processing scripts, and secondary data generating
published figures.

Conducting research in such a way has several positive effects: first,
the author of the study remains with complete documentation of the
work. Additionally, it helps the follow-up of studies allowing to build
upon existing work and, if there are discrepancies in the case of a replica-
tion attempt by another scientist, it helps in identifying and addressing
the root of the problem.

6 CHAPTER 1. INTRODUCTION

1.1 Research Questions

• What are the factors that affect reproducibility in the context of per-
formance benchmarking experiments and how is it possible to con-
trol them, thus sharing with the scientific community trusted and
reproducible research?

• Performance models are needed to expose the bottlenecks of high
performance architectures and to verify that the code implemen-
tations exploit the available hardware feature properly. How is it
possible, to validate a performance model against a reproducible
execution and vice-versa?

• Is it possible to fairly compare different approaches to the paral-
lelization of stencil codes across different architectures?

1.2 Related Work

The Oxford English Dictionary [35] defines Reproducibility as “the ex-
tent to which consistent results are obtained when an experiment is re-
peated”. It is usually expected a scientific experiment to be reproducible,
but scientists have been bored in trying themselves to reproduce some-
one else’s work or read about it. Journals do not accept the attempt of
reproducing published findings driving to published science rarely be
tested. As described in [24], “the assumption that science must be re-
producible is implicit yet seldom tested, and in many systems, the exact
reproducibility of experimental data is unknown or has not been rigor-
ously investigated in a systematic fashion”. The meaning of the terms
reproducibility and replicability is highly discussed and questioned. In
the biology field, scientists tend to believe that the reproducibility of an
experiment coincides with the ability to replicate it. Drummond believes
that these two terms are distinct and he argues that while reproducibility
requires change, replicability avoids it [38]. In fact, according to Drum-
mond, reproducibility is related to a phenomenon that can be predicted
to recur even when there is a certain degree of variability in the experi-
mental conditions, whereas replicability describes the ability to obtain an
identical result when an experiment is performed under identical con-
ditions. As stated in [28], “the principal goal of scientific publications
is to teach new concepts, show the resulting implications of those con-
cepts in an illustration, and provide enough detail to make the work re-

1.2. RELATED WORK 7

producible”. Claerbout and Karrenbach define reproducibility in com-
putational sciences as a nametag attached to every figure caption in a
manuscript: said tag could be used to recalculate the figures from all the
data, parameters and programs.

According to Liberman [83] it is inside the human nature to wonder
whether or not an experiment would adequately work when performed
by someone else than the original scientist, following a similar recipe.
Between 1990 and 2006, people began to use terms like replication, repli-
cable, replicability, to refer to the process of completely re-running an ex-
periment, with all the permutations of new researchers, new equipment,
new subjects or other raw materials. An outlook of the terminologies
used for Reproducible Research is given by [13], trying to organize all
the words used by different research groups or communities while refer-
ring to the broad topic of reproducibility.

Science gathers knowledge about the universe, organizes and merges
it into testable laws and theories [82]. Its success and credibility are
strictly related to the willingness of the scientists to test and replicate
independently the work done by others. In order to do so, the complete
exchange of procedures, materials, and data is needed. The desirability
of reproducibility leads to the practical question of how many times an
experiment should be reproduced before publication. By using the words
of Karl Popper: “Non-reproducible single occurrences are of no signifi-
cance to science”. Reproducibility assures that the effect is not due to
chance or an experimental artifact resulting in a one-time event.

The ability of a researcher to confirm an experimental result is essen-
tial to science, inherently assuming its reproducibility. It must be noted
that there are practical limits to the reproducibility of findings. Although
this question has not been formally studied, reproducibility is likely to be
inversely proportional to the complexity of an experiment. The value and
importance of reproducibility have been demonstrated by studies show-
ing impossibility or difficulty to replicate published results [74], failed
clinical trials [104] [14].

“It is impossible to believe most of the computational results pre-
sented at conferences and in published papers today. Even mature bran-
ches of science, despite all their efforts, suffer severely from the problem
of errors in final published conclusions” [126]. Over the past few years,
various researchers have made systematic attempts to reproduce some
of the more widely cited priming experiments. Many of these attempts
have failed. A recent paper reported that only a minority of published

8 CHAPTER 1. INTRODUCTION

microarray results could be repeated [74]. In 2011, Florian Prinz and
his colleagues at Bayer HealthCare, a German pharmaceutical company,
reported in Nature Reviews Drug Discovery that they had successfully
reproduced the published results in just a quarter of 67 seminal studies
[104]. Unfortunately, such findings are consistent with those of others sci-
entists at Amgen, an American drug company, that tried to replicate 53
studies that they considered landmarks in the basic science of cancer, of-
ten co-operating closely with the original researchers to ensure that their
experimental technique matched the one used in the original study. Ac-
cording to a piece they wrote in Nature [14], a leading scientific journal,
they were able to reproduce the original results in just six cases. Such ob-
servations have even led some to question the validity of the requirement
for reproducibility in science [133].

Experimental reproducibility remains a standard and accepted crite-
rion for publication. As a consequence, researchers should endeavor to
obtain information about the reproducibility of their works. The num-
ber of times that an experiment is performed should be clearly stated in
a manuscript, and a new finding should preferably be reproduced more
times. In general, an experiment that challenges existing assumptions
is going to be inquired more cautiously than one matching the estab-
lished models and paradigms. Thus, we can argue that reproducibility
acquires greater value and importance proportionally to the importance
of the new ideas or methodologies. The availability of new tools and
technologies, the increased amount of data (Big Data Science), together
with the development of more interdisciplinary approaches and thus the
complexity of the questions being asked, contribute to making any repli-
cation effort more complicated [75]. In [100] Peng suggests to build up a
minimum standard of reproducibility, believing that methods and code
should be made available. Thus, other researchers may obtain consis-
tent results and confirm the original work. Therefore, the papers should
sufficiently describe not only the results but also the configuration of the
experiment and the chain of steps that drove to specific outcomes, start-
ing from the given input data [12, 94, 123, 125].

Nowadays researchers have the burden of publishing, catching up
on the deadlines and do not have enough time to devolve into ensuring
reproducibility. Even if a good practice with respect to the reproducibility
may slow down research in the short term, it is necessary in order to
allow previously developed methodologies to be effectively applied on
new data, or to enable the reuse of code and results for new projects.

1.2. RELATED WORK 9

Additionally, it has been proven that sharing detailed research data is
associated with an increased citation rate [102].

In the last years a movement promoting reproducible research through
tools and best practices is emerging. The tools mostly target the repro-
ducibility of the data analysis [124]. In the bioinformatics field, there are
plenty of tools that make the researcher’s life more comfortable and en-
sure reproducibility of their approach, such as Taverna [98], VisTRails [43,
117], Galaxy [50], GenePattern [108]. In our classification of reproducibil-
ity, we start from the basis, i.e., one must be able to ensure at least the
reproducibility of his work.

Reference [115] presents ten simple rules for reproducibility of com-
putational research. A researcher should keep always track of how a
result was produced, avoiding manual manipulation of the data, while
recording intermediate results in a standardized format: every detail that
may influence the execution should be noted. In computational sciences,
the critical details include names and versions of the programs used, as
well as the parameters and their values. The format can range from a
makefile to a shell script [118], to the complete workflow [50, 98, 52, 34].
Additionally one may want to use version control for the custom scripts
or his code since even a slight modification to a computer program can al-
ter its output significantly: backtracking to the code state that generated
certain results may be an endless task. Version control systems like Git or
Mercurial represent the state of the art solution for tracking the evolution
of code. Last, all the information should be published and made publicly
accessible. Most journals allow articles to be supplemented with online
material.

Opening up access to the data and software, not just the final publi-
cation, is one of the goals of the open science movement, thus allowing
to build upon existing work, either to test it or to develop new ideas.
A correct sharing of data and code, together with a manuscript, may be
beneficial. Consequently, scientists should share their artifacts, with li-
censes that if on one side protect the original author, on the other allow
fair use of their work. Besides the ethical and social challenges, there
is the practical one of how to give a comprehensive overview of one’s
work. Every scientist makes use of version control in his work: from the
Software Engineering, we can leverage the long lasting solution of using
Version Control Systems. A common feature of all types of VCS is the
ability to save several versions of a file, together with a descriptive mes-
sage, during the development phase. All the changes and messages are

10 CHAPTER 1. INTRODUCTION

stored cumulatively, avoiding the need of several copies (a homemade
strategy used before the VCSs). A description of VCS can be found in
[107].

There have been attempts by some researchers [29, 30] to measure
the extent of the problem. They focused on verifying the availability of
code and data first, and then if said code would build with reasonable
effort. Out of the 613 papers they took into account, 515 were considered
potentially reproducible, but the authors managed to run only 102 (circa
20%). It is worth noting that the authors simply attempted to run the
code, without checking either its correctness, i.e., if a code implements
what is claimed in the paper or if it produces correct output or the extent
at which the results obtained in the original study were reproducible.
An attempt to reproduce the results of a paper can be found in [129].
The authors tried to reproduce the results obtained using a model from
computational neuroscience. Few pieces of information were available:
no source code, neither as a complement to the paper nor in a publicly
accessible repository. After contacting the authors of the original study,
they could obtain the source code, only to discover that it could not be
compiled and, in any case, it would be challenging to reuse it.

Recently, an initiative towards reproducible and sustainable Compu-
tational Science has been launched in the form of a peer-reviewed jour-
nal, ReScience [114], targeting computational research. ReScience en-
courages replication of already published research, this way enabling re-
implementations to assess whether the original work can be replicated or
not.

A typical practice, usually followed by scientists, is to write down the
sequence of steps done or even implement some scripts to automate part
of the tasks of executing experiments and then analyze the results. Sev-
eral tools have been developed to help in exactly this task, focusing on
the workflow of an application, i.e., interconnection of input/output and
computation modules. As described by Maffia et al. [87], Taverna [95]
and VisTrails [117] integrate data acquisition, derivation, analysis, and
visualization as executable components throughout the scientific explo-
ration process. The evolution of the software components used in the
workflow is controlled by the organizations that design the tool. This ap-
proach is shared by other WFMS such as Kepler [86] and Knime [16], an
open-source workflow-based integration platform for data analytics. All
the tools listed are mostly oriented towards natural sciences but are not
well suited for an HPC environment. There has been an effort to adapt

1.3. ORGANIZATION OF THIS WORK 11

Taverna to the HPC context, through the OnlineHPC project [6], but the
website is not reachable since middle 2016. Pathway [101] is a tool for
designing and executing performance engineering workflows for HPC
applications. DataMill [33] is a community-based easy-to-use services-
oriented open benchmarking infrastructure for performance evaluation,
which facilitates producing robust, reliable, and reproducible results. It
provides a platform for investigating interactions and composition of
hidden factors affecting the performance measurements, such as binary
link order, process environment size, compiler generated randomized
symbol names, or group scheduler assignments. Versioning systems such
as git and GitHub are successfully applied in daily software engineer-
ing and document preparation. Sumatra [31] is a tool for managing and
tracking projects based on numerical simulation and/or analysis, with
the aim of supporting reproducible research: it can be thought of as
an automated electronic lab notebook for computational projects. Even
though versioning systems allow to share the code, its availability does
not necessarily turn into reproducibility, due to the complexity of the soft-
ware stack. PROVA! [57] overcomes this problem by taking care not only
of the code, but also of the system, meant as a combination of hardware
and software, and the metadata of an experiment (compilation flags, ex-
periment parameters and results, that are fundamental contextual infor-
mation for re-executing the experiment). Additionally, ACM has recently
defined the 3 Rs of the Research [41] and their description overlaps with
our three levels of reproducibility, first introduced in Guerrera et al. [55].
Moreover, we propose a standardized way of describing an experiment,
which extrapolates a minimum amount of information needed for repro-
ducibility purposes and a workflow to follow in order to carry out an
experiment and achieve reproducible results properly.

1.3 Organization of This Work

This work has been structured into four parts. The first part includes an
overview of the current computer architectures available, with all their
peculiarities and limiting factors (Chapter 2), and the software character-
istics and trends that have an impact on the reproducibility (Chapter 3).

The second part offers an overview of the proposed framework to
address the challenges emerged in the first part. Having highlighted the
factors that affect the reproducibility of the research in computational sci-

12 CHAPTER 1. INTRODUCTION

ences, a characterization of the experiments and an overview of how it
can be coupled with reproducibility is offered (Chapter 4). Section 5.1
shows how to address the complexity, both at software and hardware
level, for moving towards reproducible research. Follows an overview of
the tool PROVA!, in Chapter 5.

The third part comprises the experimental evaluation of the concepts
presented in the previous chapters of this work. First, the problem of
stencil computation is introduced together with a tool to generate syn-
thetic stencil benchmarks (Chapter 7). In Chapter 8 the concept of Perfor-
mance modeling and evaluation are presented and after having charac-
terized and described both hardware and software ((Chapter 9) used, ac-
cording to the taxonomy introduced in Section 4.1, results of experiments
in performance prediction are presented, with focus on the matching
of said predictions and experimental performance results. Then, an in-
depth analysis of a complete cycle of performance engineering is shown,
following the approach proposed in Part II.

The fourth part, Chapter 11, draws the conclusions of this work, high-
lights some limit emerged and proposes ideas for follow-up studies.

Part I

Reproducibility Challenges

Chapter 2

Reproducibility Challenges:

Hardware Complexity

While at the beginning of the supercomputing era the systems were cus-
tom made by producers like Cray, NEC, Fujitsu and were completely dif-
ferent by the standard computers both in terms of price and performance,
since the beginning of the ’90s single-chip general purpose microproces-
sors flooded the HPC market. At the time of writing, most of the micro-
processors available in the supercomputers use off-the-shelf solutions,
not explicitly designed for scientific computing, with few exceptions.

Turing has defined the paradigm at the basis of each modern micro-
processor at the end of the ’30s: the instructions, stored in memory, are
read and decoded by a control unit, before being executed by a different
unit responsible of the computation and manipulation of the data. Writ-
ing a program corresponds to save instructions into memory and make
them available to the Central Processing Unit (CPU). Such an architec-
tural model is still used in modern computers.

2.1 Moore’s Law

Since the beginning of the digital computing era, the microprocessors
have seen their capabilities (performance in a broader sense) doubling
at regular intervals. Moore, observed in 1965 that the transistors count,
on an integrated circuit, doubles every 18-24 months [96]. It is important
to remember that Moore’s law is a business statement, not a technology

16
CHAPTER 2. REPRODUCIBILITY CHALLENGES: HARDWARE

COMPLEXITY

1980 1990 2000 2010

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Processor scaling trends

dates

R
el

at
iv

e
sc

al
in

g

●

●
●
●

●●
●●

●

●
●●●

●●●

●●●

●

●●●●

●
●●●●●

●●●

●
●

●

●
●

● ●

●

●

●
●

●

●
●

●

●

●●●
●

●●●

●●●●●●●
●●●●●●●●●●●
●●●●

●●●●●●●

●

●●
● ●●

●

●

●

●●●●●●●●●●●

●

●

●
●●● ●

●
●

●

●●●●●

●

●

●

●
●●● ●●
●●

●

●
● ●● ●

●
●

●
●

●
●

●
●●●●●
●●

●

●

● ●

●

●●●●●●●●●●●●●● ●

●●

●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●

●
●
●●

●●●
●●●
●●

●●●●●●●
●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

●

●

●

●

●
●

●

● ●
●

●

●●

●●●●

●
●

●

●
●●●●●
●●
●●●●●●

●

●

●
●●●
●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●

●●●●●●●●●●●●●

●●●●●●●

●● ●

●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●

●

●

●●●

●●
● ●

●●●
●●
● ●●

●
●●
●●●

●●●●●●●●●●●●●●

●

●●●●●●●●
●
● ●●●●●●●●●

●●
●●●●●●●●
●●●● ●●●

●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●
●●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●

● ●

●

●

●●
●

●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●
●●
●●●●●●●●●●
●

●●●●●
●
●

●●●●●●●

●

●

●●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●

●●

●

●●
●●

●
●●

●●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●●●●●●
●●●●

●

●●
●

●●
●●
●●
●●●
●●

●●●●●●●●●●●●●●●●
●●●●●

●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●
●●●

●●●
●

●

●●●●●●●●●●
●

●
●

●
●
●●●
●●
● ●●

●●●●

●
●

●●

●

●

●

● ●

●

●

●●

●

●
●●●●●●●
●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●

●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●● ●●●

●●●●●●●
●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●

●
●

●●
●●●●●●●●
●●

●
●●●●●●●●●●●●●●●●●●
●●●●●●●
● ●●●●

●●●●●●

●●●●

●●
●●●

●

●

●●
●

●●

●●

●

●●

●
●

●

●
●●

●●●●●●

●●●●●
●

●●●●
●●●●●●

●●● ●
●
●● ●●●●●●●●●

●●●●●

●

●

●●
●

●

●●●

●●●●●●●●

●
●
●
●●

●●

●

●

●

●

●

●

●●●●●
●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●
●●●●●●
●●

●●
●●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

● ● ●

●

●

●

●●●

●

●

●●●●

●
●

●●●●●
●●●●
●●●
●●●●●●●●●●●● ●

●●●●●

●●●●●●●
●●
●●●●●●●●●●

●●●●

●●

●

●●●

●●

●

●
●●●● ●●●●

●● ●●●●●
●●●●●●●●●●●●●●●●●●● ●●● ●●●

●●
●●●

●
● ●● ●●●●●●●

●●●
●●

●●

●

●●

●

●●

●●●●
●●

●

●
●●

●●

●
●

●●●
●●

●

●
●

●●

●
● ●● ●

●

● ●
● ●

●●●●

●

●
●

●
● ●●

●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●
●●

●

●

●

●
●

●

●

●●●●
●●●●●●●●●●●

●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●

●●●●●●●●●●
●●

●●●●●●●●●●
●●●
●

●●
●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●
●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●

●●

●●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●
●●
●●●

●●●●●●

●●●●●●●

●

●●●●●●●●●

●●
●●●
●●●●●●●●

●●●●●●●● ●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●
●●
●●●●●●● ●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●
● ●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●
●●●
●●

●●●●●
●●●●●●●●

●●●●●●●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●●●●●●●●
●
●●●●●●

●●

●●●●●●
●

●
●●

●●●●●●●●
●●

●

●●

● ●

●

●

●

●

●

●

●
●●

●●

●

●

●
●
●●

●●

●

●

●●●●

●●

●●●●

●

●●●
●●●●

●●

●

●●

●●

●●●●●●●●●

●●●●●●●●

● ●

●

●

●
●
●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●●

●

●

●●
●●

●
●

●●●

●
●

●

●

●●

●

●

●
●

●

●●●●

●●●

●

●

●●

●●
●●

●●

●●●●

●
●●●●
●●●●●
●●
●●
●●

●

●
●

●●●●●●●●●
●●●●
●●●●●●●
●●
●

●
●

●●

●●

●●

●

●

●●

●

●●

●
●●●●
●
●

●

●

●

●

●●●●
●

●●

●

●

●

●●
●

●

●

●
●

●

●
●
●

●

●
●

●

●

●●

●

●●

●
●

●
●
●●

●
●
●

●
●
●●●●●●
●●●●●●●●●
●

●

●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●

●

●●

●
●●●●●

●●●●●●●●

●

●

●

●
●

●●●●●●
●●●

●

●●

●●

●

●

●

●

●●
●
●●
●

●
●●●●●
●
●●

●●
●

●

●

●

●●

●●

●●

●
●

●

●

●
●●●

●

●

●

●
●
●

●
●

●●
●

●

●

●●

●●●●●●
●●

●●

●

●
●
●
●

●
●

●
●●

●

●

●●

●

●
●

●

●
●

●●●
●●●●●
●●●
●● ●●●● ●●

●
●

●

●

●●
●
●●●●●

● ●
●

●

●

●●

●

●

●

●●

●
●

●

●●
●
●

●●●●●

●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●
●●●

●

●

●●
●
●
●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●
●●●●

●●●●●

●●●●●
●●●●●●●●●
●

●●●

●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●

●●●●

●●●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●

● ●

●

●
●

●
●
●
●

●●●●

●

●

●●

●●●●●
●●●

●

●
●

●

●

●
●●
●●●●●●●

●

●●●

●

●
●
●
●
●
●
●●
●

●
●●
●●●●
●
●
●
●●

●

●●●●●●●●

●

●●●●●
●

●
●

●
●

●●●●

●

●
●
●●●

●●

●
●●●
●●

●

●

●

●
●
●

●●

●
●
●
●●●●
●
●●●

●

●
●
●

●●●
●
●
●●●●●
●

●●

●

●

●
●
●

●

●

●●●
●●●

●
●●●
●

●●●●●
●●●

●

●
●●●

●●●●●●●
●●●●●●●●●●●
●●●●

●●●●●●●

●
●
● ●

●

●●●●●●●
●
●●

●
●
● ●

●
●
●

●●
●
●●●
●●●

●●●●●●●●●●●
●
●●

●●

●●
●●●●●●
●
●
●
●●
●●●●●●
●
●●●●●
●●●●●●●
●●
●●●●●●●
●
●●
●
●
●●●●
●
●●●
●

●●
●●●
●
●●●
●

●●●●●●
●
●
●
●
●●●●●
●
●
●
●●●

●●
●●
●●●●●●●
●●●●

●
●●
●

●●●●

●
●●
●
●●
●●●●●
●
●
●●

●●
●●●
●
●
●
●
●
●●●
●
●
●●
●
●

●●●●
●
●
●
●●●
●
●●●●●
●
●
●
●
●●●
●●
●
●●

●

●●

●

●
●

●

●

●

●●●●●
●●●●
●●●●●●●●●
●
●
●●
●
●●
●
●●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●
●●
●●●
●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●●

●
●●

●

●●●●

●●●●●●●
●●

●●●●●
●●●●●●●
●
●●
●●●●●●●●
●●

●●

●

●●●●
●
●
●●
●●●●●●●●●●●●●●
●

●●●●●●●
●●●●●●●●●
●●●●

●●●●●●●
●
●
● ●●●

●●●●
●●●●●●●●●●

●●●●●●●●
●
●●
●●
●●●●
●
●●●●●●
●●
●
●●●●●●●
●●●●●●●●
●
●
●●
●
●●●
●
●●●
●●●●●
●●

●●●
●●●●●●●●●●●●●
●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●●●
●●●●●●●

●

●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●

●

●●●
●
●●
●
●

●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●●
●

●
● ●● ●●

●●
●●

●

●●
●●●
●
●●

●
●●●●

●●

●●●
●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●
●●
●●●●

●●
●●●

●
● ●

●●
●●
●●●
●●●●●●●

●●●●●●●●●●●●●
●●●●
●●●●

●
●
●

●
●●●
●●●●
●●●

●●●●●
●●●

●

●

●●●●

●●

●●

●
●
●●●●●●●

●●●●
● ●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●
●

●

●
●●●●●●●●●●●●●●●
●●●●
●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●● ●●●

●●

●

●●

●

●

●●
●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●

●
●●

●●●●●●
●●
●●

●
●●●●
●●●●●●●●●●●●
●●●●●●●●

●
● ●●

●●
●
●
●●
●
●

●●●
●

●●
●●●

●

●
●
●●
●●

●●

●●

●
●
●

●
●
●●●●
●●●●●
●

●●●●
●
●●●●●

●●●
●●
● ●●●●●●

●●●

●●●●●

●

●
●●

●

●●●

●●●●●●●●

●●●●●

●
●
●●

●●

●●●●●●●●●●●●●●●●

●

●
●●
●
●
●
●●●●

●●●●●
●
●
●●

●
●

●
●
●
●

●

●

●

●●

●
●●●

●

●●●●●
●●●●
●●●
●●●●●●●●●●●●

●
●
●●●● ●●●●● ●

●
●
●●●
●●●●●

●
● ●

●●●

●

●●●
●●●●
●●

●
●●●

●●
●●

●●●

●

●●●●●●●●●●●●●●●●●● ●●●
●●●

●●●
●● ●● ●

●

●
●
●●

●

●●

●●

●

●●

●●

●●●● ●●

●

●
●●

● ●●

●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●

●

●●●●

●●

●
●

●●●

●●
●●

●●
●●
●

●

●
●●● ●●●●●●●●●●●
●●●●●

●●●●●●●
●●● ●●●●

●●●

●
●●
●●
●
●●
●

●●●●●●●●●●

●●●●●●●●●●
●●●●●
●●●●●

●●●●●●●●
●●
●●

●●
●●●●
●●●●
●●

●●
●●●●●●
●● ●●

●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●

●●●●●●●
●●●●●●●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●
●●●●●●●
●●●●
●●
●●
●●
●●
●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●

●●●●●●●●●

●●●●●●●●●●●
●●●

●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●
●●

●●●●

●●
●●●●
●●●●

●●
●
●
●
●●
●
●●●●

●
●●●●●●●
●●
●●
●●●
●●
●
●●

●●●●●●●●●●●●●●
●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●●●●●●●●
●●
●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●
●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●

●●●●●●●●
●●●●●●
●

●

●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●
●●●●
●●●●
●●●
●●●●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●
●●●●
●●●●

●●●●

●●●●●●
●●●●
●
●
●
●
●
●
●●●
●
●
●●
●●●●●
●
●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●
●●●●●●●●●●
●

●
●●
●●●
●●●●
●
●●●●●●●
●●
●●●●●●●
●●
●●●●
●●●●●
●
●●●
●

●
●
●
●
●
●●●●●●
●●●
●●
●
●
●●●
●●
●●
●

●●●●●●●
●
●●●●●●
●
●
●●●●●●●●●●●●●●

●●●
●
●●●●
●
●
●●
●●●●●●●●●●
●
●
●
●●●
●
●●●●●●●●●
●
●●

●●●
●●
●●●●●

●

●●●
●
●
●
●●
●
●●
●
●●
●●●●●●
●
●
●●
●●●
●●

●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●

●
●
●
●●●
●●
●●
●
●
●●●●●●
●
●●●●
●
●
●●
●
●●
●●
●
●●
●
●●●
●
●●
●
●●
●
●●
●
●●●
●●
●●●●●●●●●
●
●
●●
●●
●●●
●●●●
●●
●●●●●
●
●
●●
●
●●
●●●●●
●
●●●●●●

●
●
●
●●●
●
●●●●●

●

●
●
●●●●●●
●●
●●
●
●●●
●
●
●

●
●
●
●●●●
●
●●●
●
●
●
●●●●●
●●

●
●●●●●
●
●
●●

●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●●●

●●●●
●●
●

●

●●●
●●●
●
●
●

●

●

●●●
●●●●●●●●●●●●●●●

●
●●●●●●
●
●●
●
●●●●●●

●●●
●●
●●●●
●●
●●
●
●
●
●●●
●
●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●●●●●●●●

●●
●
●●●●●●●●
●
●●
●
●●
●
●
●
●●
●
●●●●●
●
●●●●
●
●

●●●●●●●●
●●
●●
●
●●
●
●●●●●●●
●●
●
●
●●
●
●●●●
●●
●●●●
●
●

●●
●
●●
●●●●●
●● ●

●
●●●●●●●
●●
●●●

●●
●●
●●
●●
●●
●●●●

●●
●
●●

●●
●
●●●●●●●

●
●●●●
●
●
●●●
●
●●
●

●●● ●●
●●

●
●
●●
●●
●

●

●●●●●●
●●
●●●●

●
●
●

●●
●
●

●●●

●●●●
●●

●

●

●

●
●
●
●
●●

●●●

●

●●

●
●
●●
●●
●
●●●
●
●
●●●

●

●●
●
●●●●
●
●

●
●●●
●

●●

●

●●
●
●

●●●●●●●

●
●●●●●
●
●
●
●●●●
●
●●●
●
●●●●●●
●
●●●●●●
●●
● ●

●●●●●●●●●●●
●●●

●
●

●
●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●
●●●●
●
●

●●●●●●●●●
●
●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●
●●
●●●
●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●
●
●
●●
●
●
●●●●
●
●
●●
●●●●●●●●●●
●
●●

●
●
●●●●●

●

●●
●●
●

●●
●
●●●●●●●

●

●●

●
●
●●
●
●
●
●●●
●●
●
●
●

●●●●●●●●
●
●●●●●●●●
●
●●
●●
●●●
●

●
●●●
●
●
●●
●

●
●●●
●
●
●●●●●●●●●●
●
●
●●●
●●
●
●●●●
●●●
●●●
●●●●
●
●
●●
●●●
●●
●●

●
●
●●●
●●
●●
●
●
●●●
●●
●●●●
●●
●
●●●●●●●●●●●
●●●
●
●
●●
●●
●●●●
●
●
●
●
●●●●
●
●●●
●
●●●
●
●
●●
●●●●
●●
●
●●
●●
●
●●●●●
●
●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●
●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●

●
●
●●
●●

●
●
●●●●●

●
●
●
●●●
●

●●
●●●●●●

●●●●●●
●●●●●●●●●●●●
●●●●●●

●●●●●●

●
●

●
●●
●
●
●

●

●
●

●

●
●

●

●
●
●●

●

●

●
●

●●●
●●●

●
●

●

●

●

●●●●●
●

●●
●

●
●
●

●● ●

●

●●
●●

●

●●●●
●
● ●●

●●

●●●

●●
●●

●●

●

●●

●●

●●
●●●●●●●
●
●
●
●●●●●

●

●●●●●●●●●●●●●●
●●●●●
●●●

●●●
●
●●●

●●
●●●●●●●
●●●●
●●
●●●●●●●●●●
●●●
●●●●●●●
●●

●●●
●●●

●●

●
●

●●
●●●

●●
●●●●
●
●
●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●

●●●●●●●●●
●●●

●
●●
●

●●

●●●●●●
●●

●●

●

●
●

●
●
●
●

●●
●●
●

●
●
●
●●
●●●
●●
●
●
●●●●
●

●
●
●●●●●●●●

●●●●

●

●●
●
●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●

●●●
●
●●●●●●
●●
●●
●●

●●●●●●●●●

●

●●●●

●
●
●
●
●●●●●●●●●

●●●●●●●●
●
●●●●●
●
●●●●●●●●●●●●

●●●●●●
●●
●●●●●●
●
●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●

●

●
●●●●●●●●●
●
●●
●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●●
●●

●●●●
●

●●
●
●

●●●●●

●

●
●●●
●●●●●●
●●
●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●
●
●
●●●●●●●●●●●●

●
●
●●
●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●
●

●●
●●●
●

●●●●●

●

●●●●
●●●

●
●●●
●

●●●●●

●●●

●●

●●●

●

●●

●●●●
●●●●●●●●●●●
●●●●
●●●●●●●

●
●
● ●

●

●●●●●●●
●
●●●
●
●

●

●
●
●

●●
●
●●

●
●

●●

●●●●●●●●●●●
●
●●

●●

●●●●●●●●
●
●
●
●●
●●
●●●●
●
●●●●●
●●●●●●●
●●
●●
●●●●●
●
●●
●
●
●●●●
●
●●●
●

●●
●●●
●
●●●
●

●●●●●●
●
●
●
●
●●●●●
●
●
●
●●●

●
●
●●
●●●●●●●
●●●●

●

●●
●

●●

●●

●
●●
●

●●

●●●●●
●
●
●●

●●
●●●
●
●
●
●
●
●●●
●
●
●●
●
●

●●●●
●
●
●
●●●
●
●●●●●
●
●
●
●
●●●
●●
●
●

●

●

●●

●

●
●

●

●

●

●●●●

●●●●●
●●●●●●●●●
●●
●●
●
●●
●
●●●●
●●●
●

●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●
●●
●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●●

●
●●

●

●●●●

●●●●●●●

●●

●●●●●
●●●●●●●
●
●●
●●●●●●●●
●●

●●

●

●●●

●
●
●

●●

●●●●●●●●●●●●●●

●

●●●●●●●
●●●●●●●●●

●●

●●
●●●●●●●
●
●
● ●●●

●●●●
●●●●●●●●●●●●●●
●●●●
●
●●
●●
●●●●
●
●●●●●●
●●
●
●●●●●●●
●●●●●●●●
●
●
●●
●
●●●
●
●●●
●●●●●
●●
●●●
●●●●●●●●●●●●●
●●●●●●●●●

●
●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●

●

●●●
●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●

●

●●●
●

●●

●
●

●

●

●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●

●● ●

●
●

●●
●●

●●

●
●

●
●●●
●
●●

●
●●●●

●●

●●●
●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●
●●
●●●●

●●
●●●

●
● ●

●●
●●
●●●
●●●●●●●

●●●●●●●●●●●●●
●●●●
●●●●

●
●
●

●

●●●
●●●●
●●●

●●●●●

●

●

●
●

●

●●

●
●

●●

●●

●
●
●●●●●●●

●●●●
●

●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●

●●
●

●

●
●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●
●●
●●●●●●

●●●●

●●●●●
●●●●●●●●●●●●
●

●●
●●

●
●
●●
●
●

●

●●
●●●

●

●●

●●

●

●●●●●

●●● ●●●●●●
●●●

●●●●●

●●●

●●●●●●●●

●●●●●

●
●
●●

●●

●●●●●●●●●●●●●●●●

●

●

●●

●
●●●

●

●●●●●
●●●●
●●●
●●●●●●●●●●●●

●
●
●●●● ●●●●● ●

●
●
●●●
●●●●●

●
● ●

●●●

●

●●●

●●●●
●●

●
●●●

●●
●●

●●●

●

●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●
●●

●● ●
●

●
●
●●

●

●●

●●

●

●●

●●

●●●● ●●

●

●
●●

● ●●
●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●

●

●●●●

●●

●●

●●●

●●
●●

●●
●●
●

● ●
●●● ●●●●●●●●

●●●●
●●●●

●●●●●●●
●●●

●●●●
●●●

●
●●
●●
●
●●
●

●●●●●●●●●●

●●●●●●●●●●
●●●●●
●●●●●

●●●●●●●●
●●
●●

●●
●●●●
●●●●
●●

●●
●●●●●●
●● ●●

●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●

●●●●●●●
●●●●●●●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●
●●●●●●●
●●●●
●●
●●
●●
●●
●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●
●●

●●●●

●●
●●●●
●●●●

●●
●
●
●
●●
●
●●●●

●
●●●●●●●
●●
●●
●●●
●●
●
●●

●●●●●●●●●●●●●●
●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●●●●●●●●
●●
●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●
●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●

●●●●●●●●
●●●●●●
●

●

●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●
●●●●
●●●●
●●●
●●●●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●
●●●●
●●●●

●●●●

●●●●●●
●●●●
●
●
●
●
●
●
●●●
●
●
●●
●●●●●
●
●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●
●●●●●●●●●●
●

●
●●
●●●
●●●●
●
●●●●●●●
●●
●●●●●●●
●●
●●●●
●●●●●
●
●●●
●

●
●
●
●
●
●●●●●●
●●●
●●
●
●
●●●
●●
●●
●

●●●●●●●
●
●●●●●●
●
●
●●●●●●●●●●●●●●

●●●
●
●●●●
●
●
●●
●●●●●●●●●●
●
●
●
●●●
●
●●●●●●●●●
●
●●

●●●
●●
●●●●●

●

●●●
●
●
●
●●
●
●●
●
●●
●●●●●●
●
●
●●
●●●
●●

●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●

●
●
●
●●●
●●
●●
●
●
●●●●●●
●
●●●●
●
●
●●
●
●●
●●
●
●●
●
●●●
●
●●
●
●●
●
●●
●
●●●
●●
●●●●●●●●●
●
●
●●
●●
●●●
●●●●
●●
●●●●●
●
●
●●
●
●●
●●●●●
●
●●●●●●

●
●
●
●●●
●
●●●●●

●

●
●
●●●●●●
●●
●●
●
●●●
●
●
●

●
●
●
●●●●
●
●●●
●
●
●
●●●●●
●●

●
●●●●●
●
●
●●

●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●●●●●●

●●●●
●●
●

●

●●●
●●●
●
●
●

●

●

●●●●●●●●●●●●●●●●●●
● ●●●●●●

●
●●
●
●●●●●●

●●●
●●
●●●●
●●
●●
●
●
●
●●●
●
●●●●●
●
●●●
●●
●
●
●
●
●●●●●●●●●●●●●●

●●
●
●●●●●●●●
●
●●
●
●●
●
●
●
●●
●
●●●●●
●
●●●●
●
●

●●●●●●●●
●●
●●
●
●●
●
●●●●●●●
●●
●
●
●●
●
●●●●
●●
●●●●
●
●

●●
●
●●
●●●●●
●● ●

●
●●●●●●●
●●
●●●

●●
●●
●●
●●
●●
●●●●

●●
●
●●

●●
●
●●●●●●●

●
●●●●
●
●
●●●
●
●●
●

●●● ●●
●●

●
●
●●
●●
●

●

●●●●●●
●●
●●●●

●
●
●

●●
●
●

●●●

●●●●
●●

●

●

●

●
●
●
●
●●

●●●

●

●●

●
●
●●
●●
●
●●●
●
●
●●●

●

●●
●
●●●●
●
●

●
●●●
●

●●

●

●●
●
●

●●●●●●●
●
●●●●●
●
●
●
●●●●
●
●●●
●
●●●●●●
●
●●●●●●
●●
● ●

●●●●●●●●●●●
●●●

●
●

●
●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●
●●●●
●
●

●●●●●●●●●
●
●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●
●●
●●●

●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●
●
●
●●
●
●
●●●●
●
●
●●
●●●●●●●●●●
●
●●

●
●
●●●●●

●

●●
●●
●

●●
●
●●●●●●●

●

●●

●
●
●●
●
●
●
●●●
●●
●
●
●

●●●●●●●●
●
●●●●●●●●
●
●●
●●
●●●
●

●
●●●
●
●
●●
●

●
●●●
●
●
●●●●●●●●●●
●
●
●●●
●●
●
●●●●
●●●
●●●
●●●●
●
●
●●
●●●
●●
●●

●
●
●●●
●●
●●
●
●
●●●
●●
●●●●
●●
●
●●●●●●●●●●●
●●●
●
●
●●
●●
●●●●
●
●
●
●
●●●●
●
●●●
●
●●●
●
●
●●
●●●●
●●
●
●●
●●
●
●●●●●
●
●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●
●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●

●
●●
●
●
●

●

●
●

●

●
●

●

●
●
●●

●

●
●

●
●

●●

●

●●●●●●●●●●●●●●
●●●●●
●●●

●●●
●
●●●

●●

●●
●

●●●●

●●●●
●●

●●●●●●●●●●
●●●
●●●●●●●

●
●

●●●
●●

●

●●

●

●

●●
●●

●
●●
●●●●
●
●
●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●●●●●

●●

●

●

●●

●

●●

●●●●●●

●●

●●●

●

●

●
●
●
●

●●
●●
●

●
●
●
●●
●●●
●●
●
●
●●●●
●●
●
●●●●●●●●●●●

●●
●●
●
●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●
●●●
●
●●●●●●
●●
●●
●●●●●●●●●●●

●

●●●●

●
●
●
●
●●●●●●●●●●●●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●●●●●
●●
●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●

●
●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●●
●● ●●●●

●

●●
●
●
●●●●●
●

●
●●●
●●●

●●●●●
●

●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●
●
●
●●●●●●●●●●●●

●
●
●●
●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●●●●●●
●

●●●●●
●

●

●

●

Transistors
Clock
Power
Performance
Performance/W

Figure 2.1: Overview of the evolution of microprocessors: transistors count,
clock frequency and power consumption. Note that the y-axis is presented in
logarithmic scale and as relative value. Data taken from [1].

2.1. MOORE’S LAW 17

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Year

101

102

103

104
Ga

te
 le

ng
th

 in
 n

m
	Intel 4004

	MOS Technology 6502

	Motorola 68000

	Intel 80386

	DEC WRL MultiTitan

	ARM 6

	AMD K6

	AMD K6-III

	Itanium 2 McKinley

	Pentium 4 Prescott-2M

	Pentium D Presler

	Atom

	Six-core Core i7 (Gulftown)

	Quad-core + GPU Core i7

	Quad-core + GPU Core i7 Ivy Bridge

	12-core POWER8

	Quad-core + GPU Core i7 Haswell

	IBM z13

	8-core Ryzen

	Centriq 2400

Figure 2.2: Overview of the evolution of the gate length of the transistors used
in microprocessors. Data taken from [4].

law and it kept yielding due to an agreement between the manufacturers.
As can be seen in Figure 2.1, circa until 2004 performance scaling came
for free because of the advances in the semiconductor fabrication process
that reduced the gate length of the transistors on the integrated circuit.
In 1971, the Intel 4004 had a gate length of 10µm, while the technology
at the time of writing allows having a gate length of 10 nm (e.g., Intel
Ice Lake architecture). Figure 2.2 shows an overview of the evolution of
the gate length in the transistors. The gate length reduction has notable
side effects: its reduction of factor 2 requires the voltage to be half of its
precedent value, the capacitance C also halves, thus the energy E “ CV2,
reduces by a factor of 8. Thanks to the reduced gate length, the electrons
have to travel shorter, so that the clock frequency can be doubled and the
power consumption results to be:

P “ f ˚ E “ 2 ˚ fold ˚ Eold{8 “ Pold{4.

Integrated circuits are built in 2D wafers, so that P “ Pold{4 translates
into the possibility to have four times more transistors, occupying the
same area and the power consumption to be the same as before. Under
these conditions, doubling the clock drives to double the performance, at

18
CHAPTER 2. REPRODUCIBILITY CHALLENGES: HARDWARE

COMPLEXITY

the same power consumption.
Moore’s Law is often misinterpreted assuming that the compute per-

formance doubles every 18-24 months. This is due to the performance
being proportional to the clock frequency: thanks to the reduction of the
gate length of the transistors, both clock and density of the transistors
could be increased. Unfortunately, the consequent reduction of the volt-
age has drawbacks: the leakage power is increased. Additionally, semi-
conductors require a certain voltage threshold to work, so that there is
a minimum voltage, under which it is not possible to downscale. In the
above reasoning, if we keep the voltage constant and keep scaling the
gate length, the power is increased by a factor 4, because the energy is
proportional to the square of the voltage. As a consequence, manufactur-
ers decided not to proceed further with the frequency scaling, since they
reached the power that a consumer chip can handle (about 120 W). The
green triangles in Figure 2.1 visualize the exponential increase in clock
frequency until 2004, after which the curve flattens out. Current proces-
sor clock rates range around 2-3 GHz. The processor with the highest
clock frequency ever sold commercially, IBM’s zEC12 found in the zEn-
terprise EC12 System, runs at 5.5 GHz.

2004 represents the end of the frequency scaling era. At the time of
writing, transistor gate length scaling in silicon-based semiconductors
is coming to a halt as well due to the lattice constant (0.543 nm) of the
silicon, making it almost impossible to scale further beyond the 10 nm
technology node. Yet, Moore’s Law is still alive thanks to technological
advances. Semiconductor research is very active and exploring several
new ideas: graphene-based transistors [84, 116], whose cut-off frequency
around 3x higher than the cut-off frequency of silicon-based transistors;
abandon the transistors in favor of novel components such as memris-
tors [127]; or eventually moving away from using electrons towards us-
ing photons. Thanks to frequency scaling, processors have become in-
creasingly faster, and the additional transistors have been used to imple-
ment out-of-order execution, Hyper-Threading, and branch prediction.
Nowadays, the available transistors are used to create compute cores
working in parallel. Indeed, the end of frequency scaling represents the
beginning of the multicore era. Parallelism is no longer only hidden by
the hardware, such as in instruction level parallelism, but is now expos-
ing explicitly to the software interface. Current industry trends strive to-
wards the manycore paradigm, i.e., towards integrating many relatively
simple and small cores on one die. There are different ways of integrat-

2.2. FROM SINGLE CORE TO MULTICORE, MANYCORE, AND
ACCELERATORS 19

ing the cores on a chip: they can share the caches or just some levels.
As of the time of writing, architectures offer L1 private caches and start
to share within a subset of cores the L2. The end of frequency scaling
has also brought back co-processors or accelerators. Graphics process-
ing units (GPUs) have become popular for general-purpose computing,
and Intel has produced two generations of Many Integrated Core (MIC)
architectures.

The memory remains the primary concern in moving towards an ex-
ascale system. While, as it has been described, the compute performance
of the microprocessors used to double every 18-24 months, memory tech-
nology evolved but could not keep up. The consequence for it is the so-
called memory gap: the latency between a main memory request and the
request being served has grown into an order of hundreds of processor
cycles. Additionally, the increase of the memory bandwidth has not been
proportional to the compute performance. The consequence is that for
a balanced computation, tens of operations on one datum are required.
Many important scientific compute kernels (including stencil computa-
tions, sparse equation system solvers and algorithms on sparse graphs)
have become severely bandwidth limited. In order to mitigate this issue,
a hierarchy of caches, i.e., a hierarchy of successively smaller, but faster
memories, has been designed, with the underlying assumption that data
can be reused after bringing them close to the CPU.

Due to the memory gap, data movement is expensive in terms of en-
ergy, and more so the farther away the data has to be transferred from:
data transfers have become more expensive than floating point opera-
tions. Therefore, data locality not only has to be taken seriously because
of the impact on performance but also as an energy concern. Improve-
ments in the near future include higher memory density and Hybrid
Memory Cubes, i.e., stacked 3D memory cubes with yet higher band-
width, lower power consumption, and higher memory density.

2.2 From Single Core to Multicore, Manycore,

and Accelerators

The first compute system was built in 1949 upon the concept of the Turing
machine. Instructions were stored in memory together with data. While
the control unit reads and executes the instructions, the arithmetic-logic
unit performs the computations and operates on the data and the instruc-

20
CHAPTER 2. REPRODUCIBILITY CHALLENGES: HARDWARE

COMPLEXITY

M
ai

n
M

em
or

y

L3
 S

ha
re

d
C

ac
he

M
em

or
y

In
te

rfa
ce

L2
 P

riv
at

e
C

ac
he

L1
Instr.

Cache

L1
Data

Cache FP
 R

eg
is

te
r

Fi
le

In
te

ge
r

R
eg

is
te

r F
ile

Shift

INT
Op

FP
mult

Load

Store

FP
add

Figure 2.3: Simplified schematization of a typical cache-based microprocessor.

tions stored in the memory. These two units, together with the I/O inter-
faces, form the Central Processing Unit. Since the instructions (and the
data) must move continuously from the memory to the CPU and back,
the speed of the memory interface can limit the performance of the com-
putation. A computer program is merely a sequence of instruction stored
into the memory: humans usually write their programs in a higher-level
language than the one understood by the machine. Compilers translate
the programs into instructions that will be stored and executed by a com-
puter.

Figure 2.3 presents a simplification of a real architecture. While the ac-
tual work of the execution of a program is done by floating-point (FP) and
integer (INT) units, there is a whole set of additional units, whose pur-
pose is to feed them with data. FP and INT units need data to be available
in registers, so that they can operate. Load and store units make the data
available to the registers and back to memory. To avoid moving the data
back and forth, cache memory holds the data and the instructions that
may be soon reused.

Once the frequency stopped scaling, the increased number of CMOS

2.2. FROM SINGLE CORE TO MULTICORE, MANYCORE, AND
ACCELERATORS 21

started to be used for additional units like branch prediction, out-of-order
execution, hyperthreading, as discussed in Sec. 2.1.

The disposable transistors have been used to develop advanced tech-
niques and offer additional features like pipelining units, data parallelism
(Single Instruction Multiple Data), out-of-order execution, superscalar
capabilities, and caches.

2.2.1 Pipelining

Complex operations have been divided into smaller steps that can be ex-
ecuted by different units of the CPU. Each of the units executes the same
operation as part of a chain. The concatenation of the single operation
executed by each functional unit yields the final result. Ideally, every sin-
gle task needs the same amount of time t to be executed: this way after
each t a new result is available. At its easiest, the basic instruction cycle
is broken up into a series of stages that form the pipeline:

1. Instruction fetch (IF): read the program counter (PC), take the cur-
rent instruction and then update the PC

2. Instruction decode (ID): decode the instruction and read the register
sources

3. Execution (EX): execute the instruction decoded (in case of load or
store, compute the elective address)

4. Memory access (MEM): read or write to the memory according to
the previous stage

5. Write-back (WB): write the results to the register file

As shown in Figures 2.4 and 2.5 the application of such a concept
yields a five-fold speedup without changing the frequency of the clock.
In both cases, the first result is available after five cycles (latency of the
pipeline), but from that moment on, a result is available after each clock
cycle (throughput of 1 cycle). Generalizing, executing N instructions re-
sults in TseqpNq “ 5 ˚N cycles, in a sequential execution, while TpipepNq “
4` N cycles, in case of pipelined execution.

In such circumstances we obtain a speedup of:

Tseq

Tpipe
“

5 ˚ N
4` N

« N,

22
CHAPTER 2. REPRODUCIBILITY CHALLENGES: HARDWARE

COMPLEXITY

IF

ID

EX

MEM

WB

time

Figure 2.4: Basic instruction cycle, broken into a series of stages, without
pipelining. The light colors represent a single instruction, while the dark ones
represent the active stage of the pipeline.

IF

ID

EX

MEM

WB

time

Figure 2.5: Basic instruction cycle, broken into a series of stages, with pipelin-
ing. Each color represents a single instruction.

for large N and throughput

Throughput “
N

Tpipe
“

N
N ` 4

« 1,

for large N.
It is worth noting that the pipelining concept, described for the in-

structions path, is also applied to the data path (actual computation).
Besides the benefits, the introduction of the pipelining introduces some
issues, related to the depth of the pipeline that must increase when the
clock frequency increases. Additionally, the operations in the pipeline
must be independent of each other: in fact, an operation can only take
place if the operands are available. An example of the issue is described
in [62]. Consider the following loop.

2.2. FROM SINGLE CORE TO MULTICORE, MANYCORE, AND
ACCELERATORS 23

while i ă N do
A(i) = s * A(i)

end while

Even if the operation can be pipelined, it is clear that the pipeline must
stall if Apiq is not available in time. One solution is to interleave differ-
ent loop iterations (software pipelining), in order to avoid stalls and meet
the latency requirements. Unfortunately, there are situations, called haz-
ards, that prevent the pipelining of the instructions. Structural hazards
arise from resource conflicts (i.e., a single memory unit needed for two or
more instructions), control hazards occur from pipeline of branches and
instructions that change the execution flow (addressed through branch
prediction), and data hazards, that arise when an instruction depends
on the previous result (Read After Write, Write After Read, Write After
Write, and Read After Read).

2.2.2 Out-of-Order Execution

Pipelining provides higher performance by allowing the execution of dif-
ferent instructions to overlap. Performance can be further improved by
allowing the instructions to be executed out of order. The out-of-order
execution reorders the instructions exploiting register renaming, branch
prediction, and multiple memory accesses. The instructions are fetched
in a compiler-generated order and then dynamically scheduled.

2.2.3 SIMD

Historically, vector computers brought to the light the concept of Single
Instruction Multiple Data (SIMD), and it has been revisited and reused
over time. Recent micro-architectures offer in their instruction set an ex-
tension for both integer and floating-point SIMD operations. SIMD al-
lows executing the same operation on a larger register, as shown in Fig-
ure 2.6, resulting in data level parallelism: parallel computations on a
single instruction. It is worth noting that SIMD does not force the opera-
tion to be intrinsically parallel: if the arithmetic units are available, they
can be (SIMD-) used for truly parallel computation or be fed with data
from the pipeline.

24
CHAPTER 2. REPRODUCIBILITY CHALLENGES: HARDWARE

COMPLEXITY

a[0]

a[1]

a[2]

a[3]

b[0]

b[1]

b[2]

b[3]

c[0]

c[1]

c[2]

c[3]

+

+

+

+

=

=

=

=

32
 b

its

12
8

bi
ts

+ =

12
8

bi
ts

c[0]

c[1]

c[2]

c[3]

a[0]

a[1]

a[2]

a[3]

b[0]

b[1]

b[2]

b[3]

Scalar execution Parallel execution

Figure 2.6: SIMD operation compared to a scalar operation over an array.

IF

IF

ID

ID

EX

EX

MEM

MEM

WB

WB

time

2-
w
ay

su
pe
rs
ca
la
r

Figure 2.7: Superscalarity of instructions: multiple functional units allow to
complete execute several instructions per cycle. Each color represents a single
instruction broken into stages in the pipeline.

2.2. FROM SINGLE CORE TO MULTICORE, MANYCORE, AND
ACCELERATORS 25

SISD
Single Instruction

Single Data

MISD
Multiple Instruction

Single Data
SIMD

Single Instruction
Multiple Data

MIMD
Multiple Instruction

Multiple Data

Instructions Streams
D

at
a

St
re

am
s

Single Multiple
S

in
gl

e
M

ul
tip

le

Figure 2.8: Flynn’s taxonomy of parallel computers, as described in [40].

2.2.4 Superscalarity

The execution stage of the pipeline is a group of different functional units,
each doing its task. As a consequence, it is possible to execute multiple
instructions in parallel: several instructions can be fetched and decoded
at the same time, multiple floating-point pipelines can run in parallel if
the cache is fast enough to feed the required data. Multiple units enable
the use of Instruction Level Parallelism (ILP): the instruction stream is
“parallelized” on the fly. On superscalar RISC processors out-of-order
(OoO) execution hardware is available to optimize the usage of the par-
allel execution. In Figure 2.7 there are 2 instructions completing every
cycle, i.e. more throughput: CPI = 0.5. Modern processors are from 3- to
6-way superscalar and can perform 2 or 4 floating point operations per
cycle.

2.2.5 Parallel Computers

In 1972 Michael J. Flynn proposed a classification of computer architec-
tures based on instructions and data streams [40], as shown in Figure 2.8:

• SISD: single instruction, single data, schematizing the classical scalar
uni-processor system, a sequential computer which exploits no par-
allelism in either the instruction or data streams

• SIMD: single instruction, multiple data. It can be achieved by pipelin-

26
CHAPTER 2. REPRODUCIBILITY CHALLENGES: HARDWARE

COMPLEXITY

ing or multiple functional units. It defines a vector architecture or
vector processor.

• MISD: multiple instructions operate on single data. Uncommon ar-
chitecture which is generally used for fault tolerance. Heteroge-
neous systems operate on the same data stream and must agree on
the result.

• MIMD: multiple instructions, multiple data. Different processors/-
cores may execute different instructions on chunks of data. It rep-
resents the general multiprocessor.

In this work, when we use the words processor or multiprocessor, we
refer to a MIMD multiprocessor.

2.2.6 Simultaneous Multi-Threading

At the time of writing, the majority of the processors is characterized by
a high degree of pipelining: their performance is driven by the extent at
which the pipelines can be used. As described above, in Section 2.2.1, the
efficient usage of the pipelines is affected by memory latencies, branch
mispredictions, dependencies, loop length, etc. These factors may drive
the pipeline to be filled with bubbles, thus causing the idling of the re-
sources.

The trend in computer design is to increase the length of the pipelines,
thus allowing the clock speed to rise too. As a consequence, processors
need more power without a considerable increase in average application
performance. To overcome this issue, modern processors have thread-
ing capabilities, named Simultaneous Multithreading (SMT) or Hyper-
Threading [90]. The main characteristic of the SMT design is the presence
of several CPU cores, comprising status and control registers, stack and
instruction pointers. Resources such as arithmetic units, caches, mem-
ory interfaces, etc. are instead not duplicated. The presence of several
cores (in the CPU) allows the parallel execution of multiple instruction
streams, often named threads, that can stem from the same or different
programs. Since the threads share execution resources, it is possible to fill
the bubbles in the pipeline combining instructions coming from different
instruction streams. It is thus clear that SMT can enhance instruction
throughput, whenever there is potential to interweave instructions from
multiple threads within the pipelines.

2.3. MEMORY SUBSYSTEM 27

SMT poses challenges related to the threads sharing resources like the
caches, which could lead to an increase in capacity misses and synchro-
nization issues [106]. Additionally, when SMT is present, affinity mecha-
nisms (see Section 2.3.1) assume a crucial role.

2.2.7 Dynamic Frequency Scaling

Modern microprocessors can automatically adjust, “on the fly”, their op-
erational frequency, depending on the actual needs, to save power and
reduce the heat generated by the chip. Frequencies can be scaled auto-
matically depending on the system load, in response to ACPI events, or
manually by userspace programs.

When performing reproducible benchmarking it is thus essential to
keep the frequency fixed to a predefined value since the clock speed is
one of the factors affecting the performance of an application. Frequency
can be set both at OS level (see [2]), and by job schedulers (when the OS
is configured to allow it).

2.3 Memory Subsystem

As previously mentioned, the CPU acts on the data available in the regis-
ters. Between the registers (fast, expensive and extremely small) and the
main memory (slow, cheap and large) there are variable levels of cache
memories (small but very fast), integrated on the die, that store copies
of the recently used data. Data are used by the CPU, but must first be
moved to the registers from the main memory. Memory bandwidth is de-
fined as the rate in bytes per second at which the data is transferred from
memory to the CPU. Memory latency is, instead, related to the response
time, i.e., how many clock cycles the memory will delay in returning data
requested by the CPU.

While current machines have a pick performance of various Gflop/s
per core, the memory bandwidth is few GBytes/s, meaning that it is not
able to feed the CPU with enough data to avoid it being idle. Addition-
ally, there is also the memory latency to worsen the situation. The term
memory gap refers to the increasing divergence of the performance be-
tween CPU and memory sub-system [65, 88].

As shown in Fig 2.3, at the time of writing, computer architectures
consist of 3 levels of cache. The first level, called L1, is private (per-core)

28
CHAPTER 2. REPRODUCIBILITY CHALLENGES: HARDWARE

COMPLEXITY

and usually divided into a part designated to the data and one to the in-
structions. The second level, called L2, is either private per core or shared
with a small subset of cores. L3, the level closest to the main memory, is
usually shared per socket. From L1 to L3 the dimension and the latency
increase while the bandwidth decreases. When moving data from the
memory to the registers, it must pass through each level of cache, where
a copy of it will be hosted. Later, if the CPU needs a certain data that is
hosted in one of the cache levels, a cache hit occurs, otherwise (data not
available in cache) a cache miss takes place. When the cache is full and
the CPU requests new data, such data will replace some other one into
the cache (according to a replacing policy), thus having an eviction.

Many applications exhibit a pattern of access to the data that shows
a locality of reference. Data loaded into the cache are most likely to be
reused soon, before their evict has been issued. Such a phenomenon
is called temporal locality and, as described in [62], if the ratio of data
reuse is close to one, a cache system leads to significative performance
advantage. Instead, other applications show a different access pattern re-
questing large amounts of data to be loaded, modified and written back
without potential reuse in time. Such a pattern is called streaming. In
this case, the reuse ratio would be close to 0, thus showing no benefit in
using a cache system.

Caches are organized in lines: all data transfers are based on the unit
of cache lines, thus mitigating the latency for streaming applications.
Since a line is loaded as a whole from memory, items that are stored
close to each other, are loaded with a much lower penalty in terms of
latency. If an application accesses items that are close to each other, thus
showing spatial locality, the latency penalty can be reduced significantly.
Unfortunately, the cache system does not bring benefits to applications
that display a random access pattern.

2.3.1 Shared Memory Computers

A parallel computer is defined to have shared memory when a certain
amount of CPUs share a physical address space. Two main categories
of shared-memory architectures are available: UMA, shown in Fig 2.9,
and ccNUMA, shown in Fig 2.10. In the Uniform Memory Access (UMA)
systems, memory latency and bandwidth are the same for each of the
processors. Such an architecture is scalable only for a limited number of
processors.

2.3. MEMORY SUBSYSTEM 29

Memory

P

L1D

P

L1D
L2

P

L1D

P

L1D
L2

Chipset

Figure 2.9: UMA system consisting of two dual-core chips.

P

L1D
L2

P

L1D
L2

P

L1D
L2

P

L1D
L2

L3

P

L1D
L2

P

L1D
L2

P

L1D
L2

P

L1D
L2

L3

Memory Memory

Memory Interface Memory Interface

Figure 2.10: ccNUMA system consisting of two NUMA domains and eight
cores.

30
CHAPTER 2. REPRODUCIBILITY CHALLENGES: HARDWARE

COMPLEXITY

In the cache-coherent Nonuniform Memory Access (ccNUMA) sys-
tems the memory is logically shared but physically distributed. Each
processor has its own local memory, and the memory of other processors
is accessible, even though is more far away, thus resulting in different la-
tencies and bandwidth depending on the distance of the memory from a
processor. A locality domain consists of a set of cores and their locally
connected memory. Multiple locality domains are connected through
a coherent interconnect, that allows the cores in one domain to access
the memory of the cores in another domain. It is essential that the net-
work connection has bandwidth and latency at least as good as the local
ones. The penalty for accessing a non-local domain can severely affect the
performance of a code. That is particularly true for memory bandwidth
bound application: locality and contention problems show up when the
data is not correctly placed across the NUMA domains. One of such is-
sues is due to the page placement: the data should be mapped into the lo-
cal domain of the processors using them, in order to minimize the traffic
on the links. Additionally, the threads must be pinned to the cores (CPUs)
where the data has been initially mapped, in order to avoid losing locality
(due to a thread that migrates from one CPU to another). ccNUMA archi-
tectures support a first touch policy: the memory pages are mapped into
the locality domain of the processor that first writes (not merely allocates)
to it. Consequently, one must pay attention to the data initialization on
ccNUMA systems. The pseudocodes in Listings 2.1 and A.6 show the
wrong and correct way of initializing an array while calculating a three-
dimensional isotropic star stencil with radius 1, respectively.

1: double * a = malloc ((sizeof (double)) * ((M * N) * P)) ;
2: for (int i = 0 ; i < ((M * N) * P) ; ++i)
3: a [i] = rand () / ((double) RAND_MAX) ;
4:
5: double * b = malloc ((sizeof (double)) * ((M * N) * P)) ;
6: for (int i = 0 ; i < ((M * N) * P) ; ++i)
7: b [i] = rand () / ((double) RAND_MAX) ;
8:
9: . . .

10:
11: #pragma omp parallel for schedule (runtime)
12: for (int k = 1 ; k < (M ´ 1) ; k++)
13: {
14: for (int j = 1 ; j < (N ´ 1) ; j++)
15: {
16: for (int i = 1 ; i < (P ´ 1) ; i++)

2.3. MEMORY SUBSYSTEM 31

17: {
18: // pseudo

19: b [k] [j] [i] = c0 * a [k] [j] [i] + c1 * (
20: (a [k] [j] [i´1] + a [k] [j] [i+ 1]) +
21: (a [k´1][j] [i] + a [k+ 1] [j] [i]) +
22: (a [k] [j´1][i] + a [k] [j+ 1] [i])) ;
23: }
24: }
25: }

Listing 2.1: NUMA unaware initialization of the arrays used to calculate
a a three-dimensional isotropic star stencil with radius 1

1: double * a = malloc ((sizeof (double)) * ((M * N) * P)) ;
2: #pragma omp parallel for schedule (runtime)
3: for (int i = 0 ; i < ((M * N) * P) ; ++i)
4: a [i] = rand () / ((double) RAND_MAX) ;
5:
6: double * b = malloc ((sizeof (double)) * ((M * N) * P)) ;
7: #pragma omp parallel for schedule (runtime)
8: for (int i = 0 ; i < ((M * N) * P) ; ++i)
9: b [i] = rand () / ((double) RAND_MAX) ;

Listing 2.2: NUMA aware initialization of the arrays used to calculate a
a three-dimensional isotropic star stencil with radius 1

Figure 2.11 shows the performance of the code with faulty initializa-
tion, on the left, and the one of the code correctly initialized (right). It
is clear the impact of such a simple modification. One of the possible
problems with such initialization is related to the OpenMP loop sched-
uler: initialization and work distribution must be identical, i.e., a STATIC
loop schedule is needed. This is the default choice of OpenMP. Another
issue could raise if the hardware is not capable of scaling the memory
bandwidth across the locality domains.

The problem of the thread pinning has been showed in [59], where
several experiments have been conducted with and without thread pin-
ning, using different pinning strategies. As a mean of pinning has been
used the Likwid tool [112, 130]. The results published show that without
the correct pinning, the performance suffers both in terms of absolute
value, and in variability across several runs. The issue of thread pin-
ning arises since some operating systems leave the threads free of moving
from one CPU to another (level of affinity between thread and processor).
Erratic performances are an indicator of insufficient thread affinity.

32
CHAPTER 2. REPRODUCIBILITY CHALLENGES: HARDWARE

COMPLEXITY

0

5

10

15

20

1 2 4 8 10 16 20

G
F

lo
p/

s

Number of Threads

Performance Comparison of Project: 3d-1r-isotropic-constant-star-stencil

Parameters (M_MAX N_MAX P_MAX): 525 525 525

Implemented Method

openMP_node

0

5

10

15

20

1 2 4 8 10 16 20

G
F

lo
p/

s

Number of Threads

Performance Comparison of Project: 3d-1r-isotropic-constant-star-stencil

Parameters (M_MAX N_MAX P_MAX): 525 525 525

Implemented Method

openMP_node

Figure 2.11: Performance of the wrongly (left) and correctly (right) initialized
three dimensional isotropic constant stencil with radius 1.

2.3.2 Real Life Intermezzo

During the time spent writing this dissertation, I myself faced a repro-
ducibility issue, while running a 2-dimensional isotropic box stencil with
constant coefficients (described in Section 9.3) and radius 1, with input
size of the grid 100002, NUMA unaware initialization, and thread pin-
ning to the logical nodes via likwid. The code was run on a node with
the following hardware characteristics:

• 2-socket Haswell chips
• Intel Xeon E5-2695 v3 – 2.30 GHz (fixed for all measurements) –

AVX2 (FMA)
• 14 cores per chip; 32 kB L1; 256 kB; (17 + 17) MB L3
• Cluster on Die: Enabled (4 NUMA domains with 7 cores (17 MB L3)

each)
• Dynamic Frequency Scaling: Disabled
• 8 * 8 GB DDR4-2133 / 4 channels
• Peak BW= 68.3 GB/s
• Single core peak performance: 2.3 ˚2 ˚2 ˚4GFLOP{s “ 36.8GFLOP{s
• Ubuntu 14.04.2 LTS (GNU/Linux 3.13.0-57-generic x86 64)
• Intel Compiler: icc 15.0.1 20141023
• Thread pinning via: likwip-pin (to logical nodes)
• CPU frequency fixed to baseline frequency (likwid-setfrequencies)

In Figure 2.12 are shown the results obtained on the same machine,
with a temporal distance of a week (on the left the most dated results).
As the reader can imagine, said results surprised the author, unable to
find a reasonable explanation to the differences. Interestingly enough, the

2.4. NETWORK SUBSYSTEM 33

0 5 10 15 20 25
Number of threads

5

10

15

20

25

30

35

40
Pe

rfo
rm

an
ce

 in
 G

FL
OP

/s
200 timesteps
500 timesteps
1000 timesteps

0 5 10 15 20 25
Number of threads

5

10

15

20

25

30

35

40

Pe
rfo

rm
an

ce
 in

 G
FL

OP
/s

200 timesteps
500 timesteps
1000 timesteps

Figure 2.12: Performance of a 2-dimensional isotropic box stencil with constant
coefficients and radius 1, grid size of 100002 and NUMA unaware initializa-
tion. On the left the performance, varying the numbers iterations, on an Intel
Xeon E5-2695 with Cluster on Die mode enabled and NUMA balancing dis-
abled. On the right the performance of the same code, on the same machine, but
with NUMA balancing enabled.

results on the right (most recent execution) show how the performance
of said stencil varies while increasing the number of iterations. In Fig-
ure 2.12, on the left, the performance stops scaling at six threads (cores),
due to the saturation of the socket. PROVA!, as described in Chapter 5,
stores contextual information of the experiment: not only software used
but also details of the machine, where the code executes. Having a look at
these files, a difference in a single parameter popped up, i.e., the value of
the NUMA balancing. An application will generally perform best when
the threads of its processes are accessing memory on the same NUMA
node as the threads are scheduled. Automatic NUMA balancing moves
tasks (which can be threads or processes) closer to the memory they are
accessing. It also moves the application data to the memory closer to the
tasks that reference it. After noticing the change in the value and with
further investigations, turned out that the machine had been restarted
and the value set to its default value of 1.

2.4 Network Subsystem

Together with hardware and software, the third fundamental component
of high performance computing is represented by the network intercon-
nect. A large variety of solutions is available, with the cheapest one being
the Gigabit Ethernet. The trend is represented by optical interconnects

34
CHAPTER 2. REPRODUCIBILITY CHALLENGES: HARDWARE

COMPLEXITY

that tend to provide a wider bandwidth while being more efficient.
At the time of writing, the #1 machine in the TOP500 [9] listing, named

Summit, is composed of 4356 nodes: it is self-evident that central switches
cannot be used anymore, and hierarchical structure should be preferred.
Summit utilizes a dual-rail Mellanox EDR InfiniBand interconnect, with
a non-blocking fat-tree topology, for both storage and inter-process com-
munications traffic. It interconnects thousands of compute nodes con-
taining both IBM POWER CPUs and NVIDIA GPUs, delivering 200Gb/s
network speed to each of the compute platform. The advances in the
InfiniBand technology allow the applications to communicate latency-
sensitive data effectively.

MPI [42] is one of the programming models that allow the applica-
tions to communicate over a network interconnect, by exchanging mes-
sages. Part of the network subsystem is used to carry out the message
exchange, thus demanding a good mapping between the hardware and
the communication requirements of the applications. Such a problem is
becoming more and more relevant since, as of now, the supercomputers
scale by increasing the number of nodes and their heterogeneity: it in-
evitably affects how the systems are programmed and must be addressed
on the software side.

Chapter 3

Reproducibility Challenges:

Software Complexity

In the previous chapter has been described how the hardware architec-
tures have evolved, showing the complexity of the machines that are
available at the time of writing. The manycore paradigm is the rule, and
the application developers must exploit the large amount of parallelism
offered, thus directly affecting the software. Both inter-node and the fine-
grain intra-node parallelism must be dealt with and addressed. On the
programming side, one must consider data locality as well as synchro-
nization, trying to reduce communication.

3.1 Amdahl’s and Gustafson’s Laws

Since computer manufacturers are providing architectures with an in-
creasing number of computing cores, applications must be parallelized
to properly exploit all the available processors. Ideally, when passing
from running a program on a single compute core to running it on N
cores, one may think of obtaining a reduction of the execution time t to
t{N. Let us denote with fseq and fpar the sequential and the parallel part
of a program, respectively. If the parallel part can be made N times faster
by using N processors, then the time to solution is:

TN “ fseq ˚ T1 `
fpar ˚ T1

N
.

36
CHAPTER 3. REPRODUCIBILITY CHALLENGES: SOFTWARE

COMPLEXITY

2 4 6 8 10
Number of processors

2

4

6

8

10

Sp
ee

du
p

Amdahl's law:
Parallel speedup vs Sequential fraction

0.5
0.75
0.9
0.95
0.99
0.999
1

Figure 3.1: Amdhal’s law [10]: parallel speedup vs sequential fraction, for
ranges of the parallel fraction between 0.5 and 1.

Amdahl’s law [10], states that given a fixed problem, the speedup (i.e.
the ration between the original and the new execution time) of a parallel
machine with N processors is:

SstrongpN, fparq “
1

fpar
N ` p1´ fparq

,

where fpar “ 1´ fseq represents the fraction of the program that can be
parallelized. In Figure 3.1 is shown how the speedup would look like
when fpar varies between 0.5 (half of the program can be parallelized)
and 1 (the whole program can be parallelized). The consequences of Am-
dahl’s law are dramatic: inamely, a non parallelizable fraction of the orig-
inal code fseq “ 0.25 limits the speedup to:

SstrongpN, fparq “
1

0.25
“ 4.

Such a forecast represents the reason why Amdahl’s law is usually de-
fined as pessimistic.

3.1. AMDAHL’S AND GUSTAFSON’S LAWS 37

2 4 6 8 10
Number of processors

2

4

6

8

10

Sp
ee

du
p

Gustafson's law:
Parallel speedup vs Sequential fraction

0.5
0.75
0.9
0.95
0.99
0.999
1

Figure 3.2: Speedup as a function of the number of cores for the ranges of the
parallel fraction 0.5 to 1 assuming Gustafson’s law [60].

In 1978 Gustafson approached the problem from a different perspec-
tive: rather than fixing the problem size, as for Amdahl’s assumption,
one may fix the time to solution. In such a condition, the result is scaling
up the size of a problem, assuming that the size that can be solved grows
together with the available parallelism. Such a way to approach the scal-
ing is defined weak scaling, opposed to the one where the size is fixed,
defined strong scaling. In Gustafson’s scenario, the speedup is calculated
as:

SweakpN, fparq “ N ˚ fpar ` p1´ fparq

which represents a much more optimistic view than Amdahl’s, as can be
seen in Figure 3.2.

38
CHAPTER 3. REPRODUCIBILITY CHALLENGES: SOFTWARE

COMPLEXITY

3.2 Programming Models

The majority of the HPC applications are written in C, C++ or Fortran.
None of these languages directly offers constructs for parallel execution*,
which is offered instead via external libraries (e.g., POSIX threads).

At the time of writing, OpenMP [99] is the preferred option to exploit
thread-level parallelism: its API has become the de-facto standard for
shared-memory computers and intra-node concurrency. It utilizes com-
piler directives, thus resulting independent from the programming lan-
guage. Such a choice though makes it dependent on the compiler sup-
porting it. Nonetheless, thanks to its directives (pragmas), an OpenMP
program can still be correctly compiled to a sequential program, if the
compiler does not support OpenMP. It offers support for loop level and
task level parallelism. It provides a higher level abstraction compared
to pthreads thus making it easier for the programmer to implement an
application without having to manually take care of the synchronization
(as it would have been while using semaphores). OpenMP is restricted
to shared memory environments.

OpenMP offers support for accelerators only from its version 4.5 [99].
In the meanwhile, other languages directly targeting accelerators have
been proposed and accepted by the community, such as OpenACC (a
directive-based programming model targeting a CPU+accelerator sys-
tem, similar to OpenMP), CUDA (an explicit programming model for
GPU accelerators) and OpenCL. In programming models, research has
been focusing on an efficient use of intra-node parallelism, able to prop-
erly exploit the underlying communication system through a fine grain
task-based approach, ranging from libraries (Intel TBB [109]) to language
extensions (Intel Cilk Plus [110] or OpenMP), to experimental program-
ming languages with focus on productivity (Chapel [25]). Kokkos [23]
offers a programming model, in C++, to write portable applications for
complex manycore architectures, aiming for performance portability.

HPX [77] is a task-based asynchronous programming model that of-
fers a solution for homogeneous execution of remote and local opera-
tions.

Message Passing Interface (MPI) [42] is the de-facto standard for pro-
gramming distributed memory architectures. Its first release is dated
1994, and now the standard has reached its version 3. MPI offers sev-

*C++ 17 defines execution policies and implements a parallelized version of some
algorithms, but needs support from the compilers (missing at the time of writing)

3.3. COMPILERS 39

eral communication styles and, thanks to its execution paradigm, the
programmer knows how the data are distributed and where the code is
executed. Communication and synchronization are performed through
calls to the MPI library. The communication can be one- or two-sided
(i.e., one process issues a send to the receiver process, which must call
the recv function, otherwise the program is in a deadlock). The overhead
for the programmer is quite substantial: having a fine-grain control over
the program and its execution, means that the programmer must control
all the aspects of the application code, making this programming style
very powerful but error prone.

3.3 Compilers

Compilers are needed to translate a high-level language into a code that is
executable by a computer. Optimizing compilers often bring benefits, in
terms of performance, to the code they are applied to, being the reduction
of time to solution (i.e., performance) one of the goals of the optimization.
The role of an optimizing compiler comprehends the decision of which
part of the code to optimize, check that the optimization is allowed (i.e.,
does not change the semantics of the original code) and eventually, trans-
late that portion of the code. Mapping the source code to the machine
code is not an easy task, and the compiler must carry it out carefully and
properly, utilizing the resources and characteristics (highlighted in Chap-
ter 2) of the processor it is compiling for. In fact, an optimization often
represents a trade-off: optimizing for ILP or for reducing computation
time, could result in a higher pressure on the registers or increased risk
of capacity misses. Keeping track of the optimizations applied to code is
fundamental when aiming to reproducibility, due to the impact that said
optimizations could have on the final performance of the code.

3.3.1 Basic Optimizations

Compilers generally offer a set of basic optimizations, divided into lev-
els. The kind of optimizations applied for each level is non-standard and
varies from compiler to compiler. Usually, at level 0 (-O0) no optimiza-
tion is applied, thus producing the easiest possible machine code. Higher
levels of optimization, -O1 to -O3, act on memory access transformations,
such as register allocation, removing cache set conflicts or false sharing
of cache lines.

40
CHAPTER 3. REPRODUCIBILITY CHALLENGES: SOFTWARE

COMPLEXITY

The technique called inlining consists in the substitution of a function
call with code directly injected at the place where it is called. The result is
that the arguments of the function do not need to be pushed to the stack,
but can be directly stored into the registers, with a possible drawback
of higher register pressure. Abusing of the inlining can result in bigger
object code, that can cause issues with the L1 instruction cache capacity.

The aliasing, namely the possibility to access the same memory lo-
cation using different names, is one situation, driven by the program-
ming language adopted, that limits the compilers’ ability to generate op-
timized code. While C and C++ allow pointers aliasing, Fortran forbids
it, thus resulting in faster code than the equivalent C/C++ version. For
this reason, C/C++ compilers offer the option to control the aliasing with
a command-line switch (fargument-noalias in GCC, fno-fnalias when using
the Intel compiler).

Floating point expressions are usually not rearranged, except when
using aggressive optimizations, because of their non-associativity.

It is a task of the compilers to orchestrate the registers, putting into
them the operands that are used the most, and keeping them there as
long as possible. Inlining, as described earlier, helps the registers opti-
mization because the arguments do not need to pass through the stack,
thus forcing a read/write to memory. When a compiler deals with loop
bodies abundant in variables and arithmetic expressions, it can quickly
run out of available registers to hold all the operands: in such a case,
the variables must be written back to memory, thus resulting in a perfor-
mance loss.

The impact of different compilers flags can be appreciated in Fig-
ure 3.3: the code executed is the same, with the only difference being
a different set of compilation flags, resulting in two different behaviors at
runtime. Such an experiment shows the importance of details that should
be shared together with the performance results of a code and motivates
a precise description of the experiments, as discussed in Chapter 4.

3.3.2 Loop Optimizations

Most of the work, in scientific codes, is carried out in loops, thus loop
transformations are operations that can result in significant performance
gains. Generally, loop transformations aim to: increase data locality, par-
allelization, exposing parallelism, decrease register pressure, increase in-

3.3. COMPILERS 41

0

5

10

15

20

25

1 2 4 6 8 10

G
F

lo
p/

s

Number of Threads

Performance Comparison of Project: flags

Parameters (M_MAX N_MAX T_MAX): 3000 3000 200

Implemented Method

config1_node

config2_node

Figure 3.3: Runtime performance of a 2-dimensional isotropic box stencil with
constant coefficients, on a node of miniHPC (see Section 9.1.4), using explicit
thread pinning. The input grid size is fixed to 30002, and 200 time-steps are
executed in double precision. The difference in the performance of the two con-
figurations is given by a different set of compilation flags used.

struction level parallelism, decrease loop control and computation over-
heads.

An increment of data locality can be obtained through loop tiling, i.e.,
splitting the iteration space of a loop in smaller tiles. The ideal choice for
a tile is the one that allows the data to fit into the cache, thus avoiding ex-
pensive cache misses. Another way of increasing the locality is provided
by rearranging the order of the loops (loop interchange), letting the inner-
most one iterate over the unit stride dimension, thus maximizing cache
line reuse.

Loop parallelization can be achieved exploiting data parallelism (i.e.,
vectorization) or task parallelism. Sometimes it is needed to apply a loop
transformation first, in order to expose the parallelism of the original loop
nest. It can be achieved via loop interchange or loop skewing (i.e., reshap-
ing the iteration space to avoid dependencies).

To reduce the register pressure, a loop can be split into two or more
loops, thus preventing the spilling of the variables into the memory. Nev-
ertheless, such a choice can causexs an increase in the loop control over-
head.

Loop unrolling represents a way to increase ILP and, at the same time,

42
CHAPTER 3. REPRODUCIBILITY CHALLENGES: SOFTWARE

COMPLEXITY

decrease the loop control overhead. Its drawback is the increased register
pressure. Decreased loop control overhead and increased register pres-
sure is the result of another optimization too, loop fusion, that combines
two or more loops into one.

Moving some loop invariant expressions, i.e., independent from the
loop index variables, outside the loop to avoid that they are computed
several times, is an optimization that decreases the loop computation
overhead, at the cost of increased register pressure.

3.4 Software Stack

While for standard desktop systems, it is common and often enough to
have a single version of a software package installed, this does not yield
for HPC systems, which usually have a vast group of users with differ-
ent needs. Furthermore, multiple version of the same software may in-
clude competing packages providing some functionalities. In [51] it is
shown how the output of a neuroimaging pipeline can change when the
OS version differs on the same architecture, due to a different version
of the glib library available on them, and how it varies when using dif-
ferent architectures with the same OS. Changing the version of a single
software used to conduct an experiment is enough to enter the field of
irreproducibility, like reported in [53]. Reproducibility issues arise when
variations of hardware and software (including its compilation) used to
execute a code are not carefully noted, thus impeding to later identify the
factors that can affect its performance.

3.4.1 Environment

The environment modules [45, 46] provide a solution to the issue of hav-
ing several versions of a specific software package all available on a sys-
tem. They allow a user to customize his environment, by loading or un-
loading the required software packages. Software modules work manip-
ulating environment variables such as $PATH and $LD LIBRARY PATH,
pointing to the locations of binaries, header files or libraries. One ap-
proach could be to provide a script for each piece of software, and the
users must source it before using a specific package. Environment mod-
ules act exactly like that, but transparently to the users, allowing them
to construct their environment dynamically by loading applications, li-
braries, and compilers. The original implementation [45], was a simple

3.4. SOFTWARE STACK 43

collection of shell scripts, while today modules managers can be written
in C with a Tcl interface, or Tcl-only, or C-only, offering more advanced
funcitonalities. A newer approach to software modules is represented by
Lmod [93, 39], implemented in Lua [73] and compatible with Tcl-based
modules. Its goal is to allow users to have real control over their work-
ing environment while improving the user experience without affecting
the experts. Lmod tries to overcome some of the drawbacks of the ex-
isting module tools, like the issue arising when loading modules with
conflicting dependencies, thanks to the concept of families. It is possible
to assign properties to the modules, an essential feature to tag modules
that can run on accelerators.

As clarified in [48], programs compiled with a certain compiler ver-
sion may experience errors when linking to libraries compiled with an-
other. Furthermore, there are some software packages like MPI that are
coupled with a particular compiler or even compiler version.

3.4.2 Build Process

Software modules represent, at the time of writing, the standard solu-
tion adopted in HPC centers. The software modules approach comes at
the cost of a huge complexity in managing them when their number in-
creases, as well as installing the software packages they refer to. The
installation is a non-trivial task on its own: scientific software is often
written by domain experts, whose focus is not to provide a clear and
robust build procedure across several architectures. When it comes to
installing such software packages, the solution can be: a manual installa-
tion by a highly trained and specialized user support team, a collection of
script that automates the tedious sequence of configure-build-make (hard
to maintain long-term solution), package managers, e.g. RPMs and yum
for RedHat based systems, manual module files creation, custom-tools.

While the usage of package managers simplifies and makes it easy
to configure and install specific software correctly, it is not a suitable so-
lution to manage multiple version of the same one, whereas manually
creating module files is not a long-term solution due to the module files
easily losing consistency.

Custom tools are often proposed, starting from a collection of locally
used scripts. Few survive, when attracting the interest of the community
and in case they are flexible enough and well documented. EasyBuild
is one of such projects, and “aims to provide an easy yet powerful way

44
CHAPTER 3. REPRODUCIBILITY CHALLENGES: SOFTWARE

COMPLEXITY

to automatically install (scientific) software stacks, in a robust, consistent
and reproducible way” [48]. It is a collection of Python modules that of-
fer functionalities to install scientific software on HPC systems, including
loading of module files and dependencies, managing the build environ-
ment and creating the module files for the software installed through it.
It provides the concept of compiler toolchain, consisting in a set of compiler
and libraries often used together. Each software package is meticulously
described through a so-called easyconfig, i.e. the specification of build
parameters and actions such as name, version, dependencies. Thanks to
its characteristics it has rapidly attracted interest in the HPC community
and is used across several HPC facilities in Europe, including the Swiss
Supercomputing Centre (CSCS) hosting Piz Daint, the 6th most perform-
ing supercomputer in the world [9] (at the time of writing). EasyBuild
ensures reproducibility and preserves provenance because each aspect
of the installation, from the configuration to the build and the environ-
ment at each time is under control: a log of the whole process is stored
together with the resultant module file, the sources of the software and
a file containing the specification of the package and its dependencies.
Spack [47] represents an alternative to EasyBuild: a flexible, configurable,
Python-based HPC package manager, automating the installation and
fine-tuning of simulations and libraries. Unlike EasyBuild, Spack uses
RPATH linking to ensure that each package can retrieve its dependencies,
and generating a module configuration file. EasyBuild and Lmod teams
have built great synergy: thanks to the first installing scientific software
has been eased resulting in need of managing the modules environment,
through a modern module tool.

Part II

The PROVA! Approach to
Reproducible HPC Research

Chapter 4

Proposed Framework

In the previous chapters have been highlighted the hardware and soft-
ware characteristics of the architectures currently in use in HPC systems.
Chapter 2 presented a brief history of the evolution of the computers
from their invention until the present, trying to explore their capabili-
ties and the actual strengths and limits of their architectural designs. The
abundance of cores and functional units enforces the users to think of
the software in an entirely new way, often having to re-write the algo-
rithms to expose parallelism. The software packages have become more
and more complex, all over their life cycle, from the installation to their
usage. The resulting variegated picture poses severe challenges to the re-
producibility of the research carried out using such a complex mixture of
hardware and software.

In Table 4.1, is presented a short list of the most important publica-
tions and tool related to the topic of reproducibility. By using the words
of Karl Popper: “Non-reproducible single occurrences are of no signifi-
cance to science”. Reproducibility assures that an effect is not observed
due to chance or an experimental artifact resulting in a one-time event.
Claerbout and Karrenbach define reproducibility in computational sci-
ences, picturing it as a nametag attached to every figure caption in a
manuscript, that can be used to recalculate the figures from all the data,
parameters and programs. Between 1990 and 2006, people began to use
terms like replication, replicable, replicability, ideally referring to the pro-
cess of completely re-running an experiment, with all the permutations
of new researchers, new equipment, new subjects or other raw materials.

48 CHAPTER 4. PROPOSED FRAMEWORK

Table 4.1: Timeline of the interest in reproducibility and leading publications.

1992 ¨ ¨ ¨ ¨ ¨ ‚̈ Claerbout and Karrenbach [28].

2004 ¨ ¨ ¨ ¨ ¨ ‚̈ Taverna [95].

2005 ¨ ¨ ¨ ¨ ¨ ‚̈ Galaxy [50].

2006 ¨ ¨ ¨ ¨ ¨ ‚̈ GenePattern 2.0 [108].

2006 ¨ ¨ ¨ ¨ ¨ ‚̈ Kepler [86].

2008 ¨ ¨ ¨ ¨ ¨ ‚̈ VisTrails [117].

2008 ¨ ¨ ¨ ¨ ¨ ‚̈ KNIME [16].

2009 ¨ ¨ ¨ ¨ ¨ ‚̈ LeVeque [82].

2009 ¨ ¨ ¨ ¨ ¨ ‚̈ Ioannidis et al. [74].

2009 ¨ ¨ ¨ ¨ ¨ ‚̈ Drummond [38].

2009 ¨ ¨ ¨ ¨ ¨ ‚̈ Vieland [133].

2010 ¨ ¨ ¨ ¨ ¨ ‚̈ Casadevall and Fang [24].

2011 ¨ ¨ ¨ ¨ ¨ ‚̈ Stodden [126].

2011 ¨ ¨ ¨ ¨ ¨ ‚̈ Peng [100].

2011 ¨ ¨ ¨ ¨ ¨ ‚̈ Prinz et al. [104].

2011 ¨ ¨ ¨ ¨ ¨ ‚̈ Jasny et al. [75].

2012 ¨ ¨ ¨ ¨ ¨ ‚̈ Freire and Silva [43].

2013 ¨ ¨ ¨ ¨ ¨ ‚̈ DataMill [33].

2014 ¨ ¨ ¨ ¨ ¨ ‚̈ Collberg et al. [29].

2014 ¨ ¨ ¨ ¨ ¨ ‚̈
Basel’s Reproducibility
Levels [55].

2014 ¨ ¨ ¨ ¨ ¨ ‚̈ Sumatra [31].

2015 ¨ ¨ ¨ ¨ ¨ ‚̈ PROVA! [87].

2015 ¨ ¨ ¨ ¨ ¨ ‚̈ Topalidou et al. [129].

2015 ¨ ¨ ¨ ¨ ¨ ‚̈ Liberman [83].

2016 ¨ ¨ ¨ ¨ ¨ ‚̈ ACM’s 3R [41].

2017 ¨ ¨ ¨ ¨ ¨ ‚̈ PopperCI [76].

2018 ¨ ¨ ¨ ¨ ¨ ‚̈ Guerrera et al. [59].

2018 ¨ ¨ ¨ ¨ ¨ ‚̈ Barba [13].

49

An outlook of the terminologies used for Reproducible Research is given
by [13], trying to organize all the words used by different research groups
or communities while referring to the broad topic of reproducibility.

The value and importance of reproducibility have been demonstrated
by studies showing impossibility or difficulty to replicate published re-
sults [74], failed clinical trials [104] [14]. The problem has been detected,
and early results have been reported. Dolfi et al. [36] propose a model
for reproducible papers such that “the current manuscript already con-
tains sufficient details, codes, and scripts to reproduce all the presented
numerical results and figures.” A constellation of tools and prototypes
is available, in the bioinformatics field, not only to document the work-
flow of an application but also to make it reproducible. Taverna [95, 98]
and VisTrails [117, 43] integrate data acquisition, derivation, analysis, and
visualization as executable components throughout the scientific explo-
ration process. Repeatability is facilitated by ensuring that the organi-
zations that design the workflows control the evolution of the software
components used in them. This “controlled services” approach is shared
by other WFMS such as Kepler [86, 50], GenePattern [108], Sumatra [31],
and KNIME [16], an open-source workflow-based integration platform
for data analytics.

Opening up access to the data and software, not just the final publica-
tion, is one of the goals of the open science movement, thus allowing to
build upon existing work, either to test it or to develop new ideas. To do
so, a correct sharing of data and code, together with a manuscript, may
be beneficial.

Reproducibility of computer experiments demonstrates strength on
the scientific point of view because a wider community not only can
check the correctness of published results but is also able to compare
different approaches. Experimental research is not time-independent: ex-
periment parameters are changed over time with the goal of getting more
precise results or better performance indices. Thus, systems that address
reproducible experiments must support both present and past configura-
tion settings in a flexible manner.

The major problem when talking about the reproducibility of experi-
ments is that people other than the original researcher have to deal with
the configuration of their environment, which likely differs from the one
used in the original execution: it is therefore needed a dependency check,
which must represent the first step of an experiment. A scientific discov-
ery process may require the application of several steps and activities,

50 CHAPTER 4. PROPOSED FRAMEWORK

and it is necessary to trace and collect sufficient provenance information
over this process, thus offering provenance support. Allowing to run
tests automatically, makes it possible to self-document the environment
in which the experiment was executed and store it.

The difficulty in reproducing computational research is in large part
caused by the difficulty in capturing every last detail of the software
and computing environment, which is what is needed to achieve reliable
replication [32]. As can be found, articles often do not have a sufficiently
detailed description of their experiments and do not make available the
software used to obtain the results claimed. As a consequence, paral-
lel computational results are sometimes impossible to reproduce, often
questionable, and therefore of little or no scientific value [72]. In HPC,
tools that focus on the reproducibility have been introduced only later,
with PROVA! [87] and PopperCI [76].

The first step towards reproducibility in computational sciences is,
therefore, a clear and precise description of the experiments: we pro-
pose a taxonomy of the computational experiments that should serve as
a common denominator and basis.

4.1 Taxonomy of Experiments

Computational problem solving in general can be described as follows:
“A computational problem is solved by an algorithmic method on a com-
pute system”. The triple (Problem / Method / System) represents a micro-
experiment, which can be considered as being one point in the space of
experiments (see Figure 4.1). An example of the description of an experi-
ment in terms of (Problem / Method / System) follows:

• Problem: Solve a (random) dense system of linear equations in IEEE
double precision arithmetic.

• Method: Two-dimensional block-cyclic data distribution. Right-
looking variant of the LU factorization with row partial pivoting
(see [5]).

• System: Distributed-memory computer with Message Passing In-
terface (MPI 1.1 compliant) and Basic Linear Algebra Subprograms
(BLAS) installed.

4.2. REPRODUCIBILITY LEVELS 51

S
y
st

em

Meth
od

ProblemPro1

Met1

Met2

Met3
macro-experiment

Sys1

micro-experiment 1

micro-experiment 2

micro-experiment 3

Figure 4.1: Space of Computational Experiments

Usually, to dive and understand a topic, it is needed to compare data
resulting from more than a single micro-experiment. When keeping two
out of the three dimensions fixed, the outcome is an experiment function
of the third dimension: the red line shown in Figure 4.1 identifies such
a macro-experiment, which is a collection of micro-experiments (e.g., the
black dots in Figure 4.1). Macro-experiments can be categorized as being
either system-oriented, method-oriented, or problem-oriented.

4.2 Reproducibility Levels

Once clarified the terminology to be used for computational experiments,
it is possible to define levels of reproducibility expanding those concepts.
The Association for Computing Machinery (ACM) has recently intro-
duced the 3 Rs of the Research [41], and their description is pretty much
overlapping our three levels of reproducibility, first introduced in Guer-
rera et al. [55], and evolved to the following version:

• Repetition: re-running the original micro- or macro-experiment with-
out any variation of the parameters, should drive to the same re-
sults and a certain level of credibility is guaranteed (completeness
of documentation)

• Replication: re-running an original experiment on a different sys-
tem. An experiment should not be bound to a specific computing
environment (portability)

52 CHAPTER 4. PROPOSED FRAMEWORK

• Re-experimentation: if changing the methods drives to the same
outputs, the scientific approach is proven (correctness of the ap-
proach)

4.3 Goals of the PROVA! Project

Once defined the taxonomy of computational experiments, and the levels
of reproducibility, the next step is to produce an effort to share them to the
community and provide a reusable solution that can be adopted to create
a collaborative ecosystem for the discipline of performance engineering
(see Figure 4.2).

Performance modeling and experimentation are two interrelated tasks:
once chosen a problem to solve, it needs to be studied and characterized
by performance models. The understanding given by a model must be
tested through experiments on selected systems, using specific methods.
Ideally, the prediction of a model and the results of reproducible exper-
iments match, thus the study can be trusted, and it is ready to be pub-
lished and used by third parties in external applications. In case of a
mismatch between models and experiments, it is crucial to analyze the
results and understand whether the model needs to be adapted or the
method used (and, talking about computational experiments in HPC, its
code) requires an optimization.

In this work, we restrict our analysis to stencil problems, described
in Chapter 7: different classes and kinds of stencils, are involved in the
study and their performance (on several architectures), is predicted and
measured.

The usability of the proposed framework is proved by using stencils
as an input to our tool PROVA! (detailed in Chapter 5), that allows the
user to repeat, replicate and re-experiment stencil computations. Repeat-
ing a stencil computation on a different architecture is complicated and
subject to the knowledge of the configurations and parameters tuned in
the original experiment. When someone else, other than the original au-
thor of the study, tries to repeat a stencil computation (even on the same
system), several challenges emerge: completeness of experiment descrip-
tions, portability, and reproducibility. Such problems are overcome when
following the guidelines we introduce in Section 4.1 or using PROVA!.
The performance results obtained using PROVA! can thus be trusted and
compared with the predictions of the performance models.

4.3. GOALS OF THE PROVA! PROJECT 53

CO
M

PL
ET

EN
ES

S
PO

RT
AB

IL
IT

Y
RE

PR
O

D
U

CI
BI

LI
TY

RE
PE

AT
RE

PL
IC

AT
E

RE
-E

XP
ER

IM
EN

T

EX
PE

RI
M

EN
T

PE
RF

O
RM

AN
CE

M

O
D

EL

AN
AL

YZ
E

LA
W

S
PR

ED
IC

TI
O

N
SC

AL
AB

IL
IT

Y

ST
EN

CI
L

&

PE
RF

O
RM

AN
CE

RE

PO
SI

TO
RY

2 3

1

4

5

O
PT

IM
IZ

E

PE
RF

O
RM

AN
CE

D
AT

A

AD
AP

T

PU
BL

IS
H

6

G
eo

ph
ys

ic
s

Ap
p

Fi
gu

re
4.

2:
Ec

os
ys

te
m

fo
r

re
pr

od
uc

ib
le

st
en

ci
le

xp
er

im
en

ts
.

54 CHAPTER 4. PROPOSED FRAMEWORK

Quantifying the theoretical performance of an HPC architecture is
quite tricky due to the increasing complexity of both hardware and soft-
ware characteristics, as shown in Chapter 2 and Chapter 3. Subsequently,
it is hard to appreciate the gap between theoretical and observed perfor-
mance: therefore we need performance models and tools to drive the
process. Modeling techniques are essentials to understand the perfor-
mance of modern architectures: models can show the bounds to the per-
formance of a particular computation on a given architecture and help to
understand where it is worth to optimize, by showing the bottlenecks of
the target machine, thus guiding the optimization phase.

4.3.1 Contributions to the Project

The PROVA! project represents a joint effort carried out together with An-
tonio Maffia. The taxonomy of experiments and reproducibility levels
have been defined and refined with his help. During the development
of the PROVA! tool (detailed in Chapter 5), my focus has been on the
management of the software environment (whose challenges have been
described in Chapter 3) through modules and scientific software man-
agement tools, and the execution of the jobs on a parallel machine (whose
challenges have been detailed in Chapter 2). His focus has been on de-
signing containerization solutions to manage the software environment,
gathering the output data and generating of performance graphs. The
resulting tool can interface with an analysis and visualization server, that
have been designed and implemented without my active involvement.
The design and development of the stencil kernels generator (STEMPEL),
its integration with PROVA! and the modeling tool (KERNCRAFT), as
well as the experiments, have been carried out exclusively by myself.

Chapter 5

Overview of the PROVA! Tool

The aim of the PROVA! tool is to hide the complexity of the environment
and the maintenance of the software stack, store valuable information
about the system on which an experiment is performed, transparently to
the users, thus making experiments reproducible without adding over-
head. Since the tool automatically manages all the dependencies needed
on the software level (i.e., its context), the users can focus on their re-
search activity and without having to address reproducibility directly.

1: $ workflow run_exp ´p 2d´1risotropic´constant´star \
2: ´e 10 ´d "3000 3000 200" ´m openMP \
3: ´t 1 2 4 6 8 10 16 20 ´́ pin node

Listing 5.1: A possible command in PROVA! to run an experiment involv-
ing a 2-dimensional isotropic constant star stencil with grid size of 30002

using several thread counts and core affinity by node.

The command shown in Listing 5.1 is one such command that may
have used to run the experiments described in Chapter 10.

The aim of PROVA! is to provide an easy way to configure and run
an experiment without dealing with the execution environment and then
visualize the results in a meaningful way. As explained in Section 4.1,
a micro-experiment can be thought as a triple xProblem, Method, Systemy:
our tool has been built upon such a definition. The first step to solve a
problem, is the creation of a new project. Afterwards, methods, repre-
senting solutions (implementations), should be added to the previously
defined project. The last step would be the execution of an experiment
by running the solutions implemented.

56 CHAPTER 5. OVERVIEW OF THE PROVA! TOOL

Furthermore, PROVA! allows, after a configuration step, to run the
same project on a different system.

5.1 Addressing Complexity

PROVA! is a distributed workflow and a system management tool that al-
lows users to test several algorithmic methods on several systems quickly.
That means, not only comparing different solutions but also revealing de-
tails and insights about the test systems.

Indeed, it is essential to test the code written or produced by an op-
timizing compiler on different machines. Tool developers usually focus
and publish performance results on a specific machine (the one they have
access to), often ignoring or not correctly addressing other architectures.
It is worth noting that, even when developers treat several architectures,
there are no studies we are aware of, which correlate methods and sys-
tems, meant as a combination of hardware and software.

While sharing the source code is beneficial, its availability does not
represent a sufficient condition for reproducibility. In fact, the code may
not compile, and even if it does, the results could be affected by the dif-
ferences of other components in the software stack. Additional informa-
tion like version of the compiler, compilation flags, configurations, ex-
periment parameters, and raw results are fundamental contextual infor-
mation for the reproducibility of an experiment. All these information
are automatically stored by PROVA! when creating a project, a method,
and an experiment. Each of them holds a descriptor that stores the rele-
vant information and makes it available to the tool and the users when
needed. Examples of these files are available at the repository [58], for the
methods, the experiments, and the problems discussed in [59]. For each
used software PROVA! stores the building and installing recipes, in the
form of easyconfig files (used by EasyBuild [48, 70, 69]), the compilation
and execution commands, together with their environment (automati-
cally using modules, in a way transparent to the user), self-documenting
the whole research from the creation of a project until the execution of an
experiment. All the configuration files are stored and could be used by
an independent researcher to recreate the state of the system at each step,
even without using PROVA!, to reproduce an experiment.

The complexity that the architectures have reached has been already
discussed in Chapter 2. Such a complexity translates into a vast potential

5.1. ADDRESSING COMPLEXITY 57

in terms of performance, at the cost of an architecture-specific tuning of
the high performance codes. The tuning is required at several levels: in
the source code of an application, at compilation time and also at runtime
(in some cases). It is therefore required to meticulously note these details
and share them to let the results be reproducible. PROVA! tries to fulfill
this task by separating the phases of writing, compiling and running a
code. There are meta-data that bind a particular code to an experiment,
to the way it has been compiled, to the commands executed to run it and
the environment available at that time, thus self-documenting the whole
life-cycle of an experiment.

5.1.1 Implementation Phase

In the HPC field, an experiment is often a code that fulfills some re-
quirements and tries to solve a well-defined problem. The availability
of source code of an experiment is a pre-requisites for the reproducibility
of the research, thus requiring to be stored together with the results of an
experiment and possibly shared.

5.1.2 Compilation Phase

One of the important phases identified is the compilation phase: as clari-
fied in Section 3.3, optimizations, and modifications are carried out in this
phase, that affect the performance of the resulting machine code. Conse-
quently, for pursuing reproducibility, it is necessary to keep track of the
flags used by the compiler and any other software package available and
needed. It is particularly valid in case of stencil compilers, which accept
several possible optimization requests on the command line.

5.1.3 Execution Phase

Not only the compilation can affect the results of an experiment, but also
the way a certain execution is spawned. Scientific software packages of-
ten accept a myriad of command line parameters, not only directly re-
lated to the code that is going to be executed but also affecting the envi-
ronment or configuring the host in a specific way. It is the case of MPI
codes, where requests regarding the global and local options, the map-
ping of processes to resources, and their distribution can be done via
command line arguments. HPC systems usually have a job scheduler

58 CHAPTER 5. OVERVIEW OF THE PROVA! TOOL

that accepts booking of requests, through so-called job files, which also
need to be stored and attached to an experiment.

To analyze and interpret the results, it is crucial to trust and to be able
to reproduce them. PROVA! manages the software stack, but other pa-
rameters can affect the measurements, such as the way the threads are
assigned to the available resources, as described in Chapter 10. As stated
in [130, 113], thread/process affinity is vital for performance. Correct
pinning is even more critical on processors supporting SMT, where hard-
ware threads share resources on a single core. With Likwid [130] no code
changes are required, and it offers a portable approach to the pinning
problem. This motivates the integration of Likwid[112] inside PROVA!:
the explicit pinning of the threads to the cores (processes) is wholly dele-
gated to it. Different options for the pinning have been implemented, that
allow to dynamically build a the likwid call, transparently to the user, as
described in details in Section 6.3.

5.2 Walkthrough

In this section, we show how an experiment can be created and executed,
starting with the definition of the problem.

The first step when using PROVA! is the creation a project, i.e., a prob-
lem and its characteristic parameters. This is done through the command
shown in Listing 5.2, that creates a project called KNL, whose parameters
are X MAX Y MAX Z MAX and their default values 100 100 100.

1: $ source /export/hpwc/PROVA/util/BaseSetup . sh
2: $ workflow project ´c ´p KNL ´́ params "X_MAX Y_MAX \

3: Z_MAX" ´́ values "100 100 100" ´́ threads 64

Listing 5.2: Command used in PROVA! to create a project named KNL
having X MAX, Y MAX, Z MAX as parameters and default values of 100.

Additionally, since HPC machines are the target, a default amount
of threads must be defined. Such a command line, simply represent a
description of the relevant characteristic of a problem. An optional com-
ment can be added, textually describing the project. This information is
stored as metadata of the project and later used to retrieve it.

The next step is the creation of a method, i.e., an implementation of
an algorithmic way to solve the problem we are targeting. Usually, some
software packages are required for a solution to execute. Said packages

5.2. WALKTHROUGH 59

are passed as an argument to the method creation routine, as shown in
Listing 5.3.

1: $ workflow method ´c ´p KNL ´m \
2: OpenMP´4.0´GCC ´4.9.3 ´2.25 ´n wave

Listing 5.3: Command used in PROVA! to create an implementation
named wave (of type OpenMP-4.0-GCC-4.9.3-2.25) and belonging to the
project KNL.

In this case, the method wave is created and added to the previously
created project. The methodType, namely the collection of software pack-
ages required to run the freshly created method, is OpenMP-4.0-GCC-
4.9.3-2.25 : its name reflects the naming scheme used by EasyBuild. Such
a method type defines not only all the environment modules (installed
through EasyBuild and loaded through Lmod) needed to run a method
but also contains scripts describing how such software must be compiled
and executed. PROVA! offers some methodTypes, which fulfill general
needs in performance benchmarking experiments. The expert user can
define new methodTypes on his own or ask an admin to do it. The cre-
ation of a new methodType, requires the knowledge of both PROVA! and
EasyBuild. An example of that is shown in Appendix B.

The result of the command presented in shown in Listing 5.3 is the
creation in the project folder, of a directory, representing the method, and
containing subfolders supposed to contain source code, executable and
outputs. In the src folder, is present a Makefile that allows customizing
the compilation. In the case illustrated, the methodType requires only a
compiler, GCC version 4.9.3, compiled using binutils version 2.25. The
related compilation script, not modifiable by the user, contains merely a
call to make the source code. The customization of the Makefile, as previ-
ously mentioned, is left to the user.

After having created a method inside a project, the user can start im-
plementing his solution into the source code. Once the solution is com-
plete, it is possible to compile it by using the command line shown in
Listing 5.4, that forces the compilation of the method wave of the project
KNL.

$ workflow compile ´p KNL ´n wave

Listing 5.4: Command used in PROVA! to compile the implementation
named wave and belonging to the project KNL.

60 CHAPTER 5. OVERVIEW OF THE PROVA! TOOL

If the code compiles and it is the actual solution one wanted to imple-
ment, then its runtime characteristics can be tested by running it with the
default parameters, as shown in Listing 5.5.

$ workflow run ´p KNL ´n wave ´́ pin none

Listing 5.5: Command used in PROVA! to execute with default parameters
and no explicit pinning the implementation named wave and belonging to
the project KNL.

Once checked the output and confirmed that the semantics of the
code is correct, it is possible to create an experiment. The experiment de-
scriptor contains information that uniquely identifies an experiment and
all the setup involved, e.g., methods used (and therefore their method-
Types), project executed, default and runtime parameters. The way a cer-
tain method is run is defined by the methodType. In the case of a simple
OpenMP code, like the method we just defined, it simply contains a call
to the binary file created, to which is pre-pended the likwid command-
line needed for the pinning of the threads to the processors, as shown in
Listing 5.6.

$ workflow run_exp ´p KNL ´e 5 ´d "200 200 200" \
"150 120 120" ´m wave ´t 2 4 8 16 32 64 128 256 \
´́ pin none

Listing 5.6: Command used in PROVA! to execute an experiment with
non-default parameters and no explicit pinning. A list of of threads to use
and input parameters is passed on the command line.

Several values for the parameters are accepted, and will result in sev-
eral micro-experiments being run.

Since HPC systems usually use a job scheduler to accept executions,
an interface to several types of job scheduler has been defined and imple-
mented. The execution of an experiment through a job is done running
the command shown in Listing 5.7.

$ workflow job_run_exp "pbs" "1" "smp" "00:59:00" "1" \
´p KNL ´e 5 ´d "200 200 200" ´m wave ´t 2 4 8 16 \
32 64 128 256 ´́ pin node

Listing 5.7: Command used in PROVA! to execute an experiment with
non-default parameters and explicit pinning by node. The experiment is
submitted through the job scheduler PBS. A list of of threads to use and
input parameters is passed on the command line.

5.2. WALKTHROUGH 61

Compared to the command in Listing 5.6, there are some extra pa-
rameters at the beginning that identify the type of job scheduler to use
(in this case PBS), the number of nodes to use (in this case, being the
method a plain OpenMP solution, only 1 node is required), the partition
of the cluster to use, the wall-clock time to reserve for the job and the
memory required.

Once the experiment successfully terminates, it is possible to retrieve
the performance data and automatically plot it into a histogram of the
chosen metric, as shown in Listing 5.8.

$ workflow build_graph ´p KNL ´e 20171129 _140354 \
´d "200 200 200" ´m wave_none ´t 2 4 8 16 32 64 128 \
256 ´f 0 ´T stdev ´M mlup/s

Listing 5.8: Command used in PROVA! to generate an histogram of the
performance output obtained in the experiment named 20171129 140354.
Additional parameters restrict the data to be visualized by specifying the
number of threads, the metric to visualize and the error bar.

Information required is the name of the project and the identifier of
the experiment (a string with the date of execution), the value of the pa-
rameters we are interested into, the kind of error-bar desired, and the
metric.

Chapter 6

Implementation Aspects

6.1 Architecture

Client Web Server Remote Environment

https ssh Web
Browser

Cluster

Parallel
machineParallel

machine...
Parallel
machine

File Storage

workspaces

Workspace
UserN

Workspace
User1

...

NFS

Experiment
and Analysis

Server

Front-end machine

Framework Scheduler

Figure 6.1: Architectural overview of PROVA!.

PROVA!, developed for a Unix environment, is mainly composed of
two entities: the framework itself, which interacts with the parallel ma-
chines, and a web interface. In this work, we focus on the framework. It
represents the core of our system and should be installed system-wide by
an administrator, or locally by a user, on the front-end of every cluster on
which it has to be used: in this way it can manage the software stack of
the whole machine. The consistency of the software stack is ensured by
using EasyBuild [48, 70], a scientific software management, and installa-
tion tool, currently used in major HPC centers across Europe (Juelich SC,
CSCS Lugano, VSC Ghent).

64 CHAPTER 6. IMPLEMENTATION ASPECTS

SequenceDiagram1interaction

PROVA! Project

1 : create_project(name, parameters, param_values, threads, comment)

2 : project(name, parameters, param_values, threads, comment)

3 : create_project_folder(project_name)

4 : create_descriptor(name, parameters, default_param_values, threads, comment)

5 : project created

Collaboration1::Interaction1::SequenceDiagram1

Figure 6.2: UML diagram schematizing the creation of a project in a PROVA!
workspace.

SequenceDiagram1interaction

PROVA! Method Project MethodType EasyBuild

CombinedFragment1seq

1 : create_method(project_name, method_type, method_name)

2 : create(project_name, method_type, method_name)

3 : check(project_name)

4 : exists

5 : check(method_type)

6 : eb_install(methodType)

7 : done

8 : exists

9 : create_folder(method_name)

10 : create_descriptor(method_name, method_type)

11 : method created

Collaboration2::Interaction1::SequenceDiagram1

Figure 6.3: UML diagram schematizing the creation of a method in a project.

6.1. ARCHITECTURE 65

Sequence_Experimentinteraction

PROVA! Experiment Job Project Method

1 : run_exp(scheduler, number_nodes, queue, wallclock_time, memory, project, executions, threads, parameters_values, methods, threads, pinning)

2 : create_job(scheduler, number_nodes, queue, wallclock_time, memory)

3 : jobfile

4 : create_experiment(date, project_name, parameters_values, threads)

5 : check_project(project_name)

6 : exists

7 : retrieve_descriptor(project_name)

8 : descriptor

9 : check_methods(methods)

10 : exist

11 : expeirment

12 : submit_job(jobfile)

Collaboration4::Interaction1::Sequence_Experiment

Figure 6.4: UML diagram schematizing the creation of an experiment to run
the methods created in a project.

The core of PROVA! consists of a collection of bash and python scripts,
offering the possibility to install modules (method types), to create and
manage projects and methods (Figure 6.2 and Figure 6.3), as well as to
execute experiments (Figure 6.4) and visualize the output (Figure 6.5).

A first prototype of the tool has been presented in Maffia et al. [87].
Compared to the version described there, PROVA! has been extended
with the possibility to interface with a job scheduling system (see Fig-
ure 6.1): scientists use the tool either via command line or through a web
browser, accessing the remote machine on which they want to execute the
experiments. The connections from the web server to the remote machine
consist of SSH accesses. The core framework installed on the login node
of a cluster is used to locally manage projects (and the related software
and dependencies) and experiments.

Figures 6.2, 6.3, 6.4, and 6.5 describe the sequence of calls that are
needed to create a new project, create a new method (when the method-
Types needed are already available in the system), create and run an ex-
periment (after having implemented the source code to run), and gener-
ate the performance graph after a successful execution of an experiment.

66 CHAPTER 6. IMPLEMENTATION ASPECTS

Sequence_Experimentinteraction

PROVA! Experiment Job Project Method

1 : run_exp(scheduler, number_nodes, queue, wallclock_time, memory, project, executions, threads, parameters_values, methods, threads, pinning)

2 : create_job(scheduler, number_nodes, queue, wallclock_time, memory)

3 : jobfile

4 : create_experiment(date, project_name, parameters_values, threads)

5 : check_project(project_name)

6 : exists

7 : retrieve_descriptor(project_name)

8 : descriptor

9 : check_methods(methods)

10 : exist

11 : expeirment

12 : submit_job(jobfile)

Collaboration4::Interaction1::Sequence_Experiment

Figure 6.5: UML diagram schematizing the creation of a graph showing the
results of the execution of an experiment.

6.2 Mapping of the Experiment Taxonomy

The taxonomy of an experiment, introduced in Section 4.1, is a critical
factor for its reproducibility. Three are the main factors that have been
identified as responsible for the reproducibility or irreproducibility of an
experiment: system, problem, and method. Consequently, they all have
abstractions into the software level. Since a user has no control on the
hardware, the hardware characteristics of a system are merely stored by
PROVA!, so that they will always be available, when it comes to interpret-
ing the results of an execution or in case of discrepancies while replicat-
ing the experiment, thus helping to address the root of the issue. The
software characteristics of a system instead, are partially mapped in the
concept of methodType, described in Section 6.2.2.

6.2.1 Projects

The abstraction of a problem is called project. It is meant to store the
information related to the problem one may want to solve, together with
the parameters introduced. The information is saved in a file called project
descriptor: it stores not only the project name, but also its default param-

6.3. LIKWID INTERFACE 67

eters, and a string serving as a description. A project is a container for
the methods used (and implemented) to solve a specific problem.

6.2.2 Methods

A method is defined as the algorithmic way to solve a problem. In com-
putational sciences, at the lowest level, it is a code, written in any pro-
gramming language, that while running on a system, tries to find a solu-
tion for the problem/project it refers to. Since it must run on a computer
system, it needs to go through several stages, from being written and
tested, to be compiled and then executed.

The complexity related to its execution can vary from the basic need
of a compiler (e.g., GCC or Intel compiler) to the need of a complete chain
of software that must be installed and present in the environment of the
system while the code is run. For instance, in computational molecular
dynamics, scientists often use a software called GROMACS to run their
experiments. In such a scenario, GROMACS must be available when
running a simulation. All the software needed by a certain method are
registered and stored in a method descriptor, together with the method
name and a short description. The software entries in such a descriptor
represent software modules, by default Lmod modules. For each used
software, PROVA! stores the building and installing recipes, in the form
of easyconfig files, used by EasyBuild [48, 70, 69].

Between the abstraction of Method, namely the code one wants to run,
and the software needed for it to run, namely a Lmod module, there is
the abstraction of methodType. It binds the method, the required software
counterpart and they way the user code must be compiled and executed
(in the form of compilation and run scripts).

Acting this way, the whole research from the creation of a project until
the execution of an experiment is self-documented. All the configuration
files are stored and could be used by an independent researcher to recre-
ate the state of the system at each step, even without using PROVA!, to
reproduce an experiment.

6.3 Likwid Interface

To analyze and interpret the results, it is crucial to trust and to be able
to reproduce them. PROVA! manages the software stack, but other pa-

68 CHAPTER 6. IMPLEMENTATION ASPECTS

0

10

20

30

40

50

1 2 4 6 8 12 16 24 32

G
F

lo
p/

s

Number of Threads

Performance Comparison of Project: blur_FGCS17

Parameters (WIDTH HEIGHT): 1024 1024

Implemented Methods

OpenMP_none

OpenMP_node

OpenMP_spread

OpenMP_fill

Figure 6.6: Performance graph of a 2D Gaussian blur, with naive OpenMP
implementation both with and without explicit pinning on Mint, taken from
[59]. The histogram shows the average value out of 5 executions, and the error
bars the standard deviation.

rameters can affect the measurements, such as the way the threads are
assigned to the available resources.

As stated in [130], and described in Section 2.3.1, thread/process affin-
ity is vital for performance. Correct pinning is even more important on
processors supporting SMT, where hardware threads share resources on
a single core. With Likwid [130] no code changes are required, and it of-
fers a portable approach to the pinning problem. Thus, Likwid[112] has
been integrated into PROVA!, delegating to it the explicit pinning of the
threads to the cores. The pinning is performed through three possible
strategies, nominally: ByNode, ByFilling, BySpreading. Said strategies ex-
ploit the abstractions of logical nodes and locality domains (in particular
the socket), offered by likwid (when present at the hardware level).

In Section 9.1.3 and Section 9.1.4, is shown the output of likwid-topology,
which graphically presents the architectural details of a compute node.

6.3. LIKWID INTERFACE 69

The cores available on a socket have a physical and logical id that do not
always match. The pinning strategy ByNode binds a thread to each of
the logical nodes, by increasing id. In the computer systems available at
the time of writing, a node is usually composed of two or more sockets,
hosting each a microprocessor. Even inside a single microprocessor, as
shown in Section 2.3.1, several locality domains can be present. The pin-
ning strategy ByFilling binds the threads to the processors, taking care of
assigning first to the processors in a single socket and then, when each
processor on the first socket has received its thread, moving to the next
available socket. The strategy BySpreading follows a complementary ap-
proach: it tries to balance the threads over the available sockets, assigning
threads in a way that equally distributes them to the sockets. Listing 6.1
shows an example of how each of the three strategies, translates into a
likwid command, in case of executing mycode with 4 threads.

byNode

likwid´pin ´c N :0´3 ./ mycode

#byFilling

likwid´pin ´c S0 :0´3 ./ mycode

#bySpreading

likwid´pin ´c S0 :0´1@S1 :0´1 ./ mycode

Listing 6.1: Example of how the pinning strategies defined by PROVA!
translate into a likwid command.

Figure 6.6, taken from [59], presents a test case of a 2-dimensional
Gaussian blur applied to a 1024x1024 grid, containing values in single
precision (float): all the histograms represent the performance of the same
code, where merely the pinning strategy has been varied, using no ex-
plicit pinning (suffix none), and pinning using the previously described
strategies. The testbed is the Mint cluster at the University of Basel,
whose nodes are dual socket AMD Opteron 6274 “Bulldozer” with a
nominal clock speed of 2.2 GHz and 16 cores per chip.

When the goal is to characterize different systems, one cannot rely on
the OS for managing the threads but must define the thread/core affinity
explicitly.

70 CHAPTER 6. IMPLEMENTATION ASPECTS

0.125 0.25 0.5 1 2 3 4 6 8 16 32 64
actual flop:byte ratio

8

16

32

64

128

256

512

at
ta

in
ab

le
 G

Fl
op

/s
ec

AMD Opteron(TM) Processor 6274
OpenMP_node
PATUS_none
PLUTO-pet_spread

Figure 6.7: Roofline for the Mint cluster with the three kernels implementing a
3D wave equation. The description of the experiment and the discussion of the
results have been published in [59].

6.4 Empirical Roofline

The Roofline model requires a manual analysis of the architecture and
the kernels that will populate the roofline, defined as:

Attainable GFlop{sec “ minpPmax, Bs ˚ AIq,

where Pmax is the peak floating point performance (representing a hard-
ware limit), Bs is the memory bandwidth, and AI is the arithmetic inten-
sity.

While Bs can be measured using the STREAM benchmark [92], Pmax

must be calculated as:

Pmax “ cores ˚ f requency ˚ FLOPS per cycle,

where cores represents the number of real cores available on an architec-
ture, f requency is the clock frequency used by the machine and FLOP per cycle
(taken from the architectural specification of a machine) represents the

6.4. EMPIRICAL ROOFLINE 71

number of floating point operations that said architecture could carry out
over a clock cycle.

The roofline can be plotted and visually inspected for a certain archi-
tecture. On the plot, can then be added the kernel under investigation:
the AI of a kernel lays on the x-axis of the graph and the Attainable GFlop{sec
on the y-axis.

In Figure 6.7 is shown an example of a roofline plot for a 3D wave
equation implemented using three different methods: naive OpenMP im-
plementation, PATUS, and PLUTO, presented in [59].

At the time of writing, PROVA! has only basics automated roofline
capabilities, which should be extended. The arithmetic intensity and the
floating point operations must be calculated by hand and passed to the
tool as input: in future, all necessary data will be automatically calculated
using values from the hardware counters or Kerncraft [64].

Part III

Experimental Evaluation

Chapter 7

Parallel Stencil Codes

7.1 Motifs

In his 2004 lecture titled Defining Software Requirements for Scientific Com-
puting, Phillip Colella identified the so-called seven dwarfs, which are de-
fined as algorithmic methods that capture a reusable pattern of compu-
tation and communication. He identified and presented them because
he was convinced they would be of extreme importance for the numer-
ics research for at least the next decade. The dwarf idea was later taken
up by scientists at Berkeley and the list of dwarfs (renamed to motifs)
was extended [11]: structured grids, unstructured grids, spectral meth-
ods (FFT), dense linear algebra, sparse linear algebra, n-body methods,
montecarlo/map reduce, combinational logic, graph traversal, dynamic
programming, backtrack and branch-and-bound, graphical models, and
finite state machines.

Stencil computations are present in said list as motif Structured Grid. A
stencil defines operations on a multi-dimensional grid, which are repeat-
edly applied such that the value of a grid point depends on the value
of the point itself and the ones of its neighbors, until a certain range or
radius, in a previous time step. The values of the neighborhood can be
weighted, by some coefficients.

Stencil structures usually occur when applying a discretization to dif-
ferential operators. A sweep is the application of a stencil operator to all
the points of a grid. It is possible that both the input and output grids of
a stencil computation are the same, in which case the order of traversal
of the points matters since the method defines which points must use the

76 CHAPTER 7. PARALLEL STENCIL CODES

Figure 7.1: Arithmetic intensity in various computational codes.

updated values and those that still use the old values. Such a scheme
of traversal is called Gauss-Seidel iteration. The Jacobi method instead
uses two different grids as input and output. Thus, the traversal order is
irrelevant. In this work, we restrict ourselves to Jacobi iterations.

While applying a stencil, it is important to define whether the points
at the boundary are particular points that can be treated keeping the val-
ues constant (Dirichlet boundary conditions) or keeping the flux through
the boundary constant (Neumann boundary conditions). In this work
boundaries are not part of the computation.

The stencil motif has numerous applications in science and engineer-
ing such as weather forecast, geophysics, computational fluid dynamics,
and image processing.

Stencil computations expose a high degree of parallelism. However,
performance is not for free. They are memory-bound as typically only
a limited amount of computation is performed per grid point, i.e., low
arithmetic intensity. Arithmetic Intensity is the ratio of total floating-
point operations to total data movement (bytes). Figure 7.1 shows how
arithmetic intensity changes over some selected class of applications. Be-
cause of this memory bandwidth limitation, different optimization strate-
gies can be applied to stencils. For example, if the application requires the
stencil to be applied multiple times, there is potential to exploit temporal
data locality, i.e., reuse cache data across iterations.

A fair amount of research has addressed the question of how tempo-
ral and spatial optimization can be done and what algorithmic changes
and code transformations are needed. It is the purpose of our case study
to experimentally explore different compilation methods. In Section 7.4
are presented two stencil compilers, that will be then used for the exper-
iments.

7.2. STENCILS CLASSIFICATION 77

Figure 7.2: 2-dimensional star stencil with radius 1, constant and isotropic
coefficients, yielding 6 FLOP.

Figure 7.3: 3-dimensional star stencil with radius 1, constant and isotropic
coefficients, yielding 8 FLOP.

7.2 Stencils Classification

Stencil computations present a variety of patterns, useful to characterize
the stencils themselves: dimensionality, shape, radius (or range) sym-
metricity of the coefficients, type of coefficients. In addition to this in-
trinsic parameters, the data type used to represent the values of the grid
points can impact on the performance of a selected stencil on a given
architecture. Such a characterization of stencils emerged within the Ger-
man Federal Ministry of Education and Research project SKAMPY [3,
134].

The characterization keywords are self-explaining. Dimensionality
identifies the number of dimensions over which the stencil expands: they
range from uni-dimensional to n-dimensional, but in scientific computa-
tions, the interesting values for the dimensionality are 2 and 3. In this

78 CHAPTER 7. PARALLEL STENCIL CODES

Figure 7.4: 2-dimensional star stencil with radius 2, constant and isotropic
coefficients, yielding 11 FLOP.

Figure 7.5: 2-dimensional star stencil with radius 3, constant and heteroge-
neous coefficients, yielding 25 FLOP.

work, we restrict ourselves to those values, and examples are shown in
Figure 7.2 and Figure 7.3.

The shape of the neighborhood involved in a stencil function can vary
from star, to box, to hybrid combinations. In case of a star stencil (see
Figure 7.2 and Figure 7.3) the points involved (the active neighborhood)

7.2. STENCILS CLASSIFICATION 79

8

5

10

12

13

11

3

9

6

7

4

4

7

0

2

2

1 1
3

8

5

12

10

11

13

9

6

Figure 7.6: 3-dimensional box stencil with radius 1, variable and point-
symmetric coefficients, yielding 40 FLOP.

3

8

5

12

10

11

13

9

6

7

4

4

7

0

2

2

1 1

8

5

10

12

13

11

3

9

6

Figure 7.7: Unravelling of a 3-dimensional, radius 1, box stencil with variable
and point-symmetric coefficients in order to appreciate their symmetricity.

are the one laying on the same axis as the center point. A box stencil
(see Figure 7.6), instead, considers as neighbors of the center point, not
only the ones laying on the same axis but all the ones that fall into a box
having as perimeter the selected radius.

The radius represents the maximum distance from the center point,
over an axis, to which a point is considered neighbor.

The values of the neighborhood can be weighted, by some coeffi-
cients. In case the coefficients are fixed for each of the points in the neigh-
borhood, i.e., do not vary while the stencil operator moves over the grid,
we talk of constant coefficients, whereas when each of the points of the
grid has a different weight, we talk of variable coefficients.

To some extent, the weights applied to the points of the stencil can ex-
pose some symmetricity that helps to characterize the stencil as: homo-
geneous, heterogeneous, point-symmetric and isotropic. Homogeneity
means that a single weight is applied to each point of the neighborhood,
whereas a heterogeneous stencil presents a different coefficient for each
point, as shown in Figure 7.5. Isotropicity happens when the coefficients
vary with the radius, as shown in Figure 7.4. Point-symmetricity instead,

80 CHAPTER 7. PARALLEL STENCIL CODES

is the condition when the coefficients are symmetric to the center point
of the stencil, as shown in Figure 7.6 and its unraveling, Figure 7.7, that
allows appreciating the symmetricity of the coefficients.

The type of the coefficients can be constant in space and time or vari-
able. Such differentiation is extremely relevant when modeling a stencil
because, in the case of variable coefficients, the dominant working set
can move from the grid points being updated to the coefficients. As de-
scribed in [89], in the PDEs domain, the variability of the coefficients can
stem from parameters, such as conductivities, that depend on the space
or time.

In all the picture presented, the spheres represent points of a grid,
whereas the red color identifies the center point of the stencil (the point
of interested at the time) and all the other colors are used to represent the
coefficients used to weight each point.

The number of FLOP varies according to shape, radius, symmetricity,
and kind of coefficients. For each of the stencils shown in the Figures 7.2-
7.7, the FLOP are specified.

7.3 Stencil TEMPlating Engineering Library

During this work arose a need for a representative set of stencil kernels.
At the best of our knowledge, no such a set is publicly available, so that a
Stencil TEMPlating Engineering Library (STEMPEL) has been developed.

Starting from the stencil classification introduced in the previous sec-
tion, STEMPEL first generates a pseudo-C code that represents the stencil
kernel, and then transforms it in compilable C code with OpenMP par-
allelization (and optionally with blocking), for benchmarking purposes.
The final source code also contains a NUMA aware initialization of the
arrays representing the grid on which the stencil operator is applied.

Furthermore, STEMPEL serves as an interface between the modeling
of the performance of a stencil kernel and its reproducible execution. Fig-
ure 7.8 presents a schematization of its architecture.

An interface to Kerncraft, implemented in STEMPEL, allows obtain-
ing a performance modeling. Said interface passes over to Kerncraft the
pseudo-C code representing a kernel and an architecture descriptor. Ad-
ditional and optional parameters are accepted to refine further the per-
formance prediction required, such as the grid sizes. STEMPEL thus ex-

7.3. STENCIL TEMPLATING ENGINEERING LIBRARY 81

KERNEL

DIMENSIONS

COEFFICIENTS

SYMMETRICITY

DATA TYPE

SHAPE

RADIUS

PREDICTION

COMPILABLE
CODE

RESULTS

PR VA!

STEMPEL GEN

STEMPEL BENCH

Figure 7.8: Architecture of STEMPEL: the generated stencil kernel is passed to
Kerncraft, for the performance modeling, and to the benchmark generator, that
interfaces with PROVA!.

ecutes a call to Kerncraft, requesting both the ECM and Roofline predic-
tion for the kernel and the architecture specified.

Kerncraft offers the option to choose between two possible cache pre-
dictors, namely layer condition and cache simulation with pycachesim.
STEMPEL adopts a fallback strategy, by usually requesting the layer con-
dition analysis, and if that one fails, the cache simulation.

The prediction for the ECM model is obtained when using only one
core and then multiplied either by the saturation value or the number
of cores in the socket, whichever is smaller. Instead, the prediction for
the Roofline model is obtained using the number of cores available in
a socket. Once the stencil has been successfully modeled, the output is
stored, and STEMPEL prepares the execution of an experiment through
PROVA!.

As described in Chapter 5, the usage of PROVA! passes through the
creation of a project (defining the problem to solve) and of a method, that
implements a possible solution using specific software packages. STEM-
PEL provides an interface to PROVA! that is responsible for transparently
setting up a project and creating a method in it. Such a method contains
the compilable C code with OpenMP parallelization that is generated by
STEMPEL, as described above. Afterward, the micro-experiments are
executed, using the number of threads specified via the STEMPEL com-

82 CHAPTER 7. PARALLEL STENCIL CODES

mand line. It is also possible to customize the number of executions re-
quired. Once an experiment successfully terminates, the performance
data are stored together with the predictions, thus allowing a compara-
tive analysis.

It is worth noting that the calls to Kerncraft and PROVA! are entirely
transparent to the user, who has partial control over them by optional
parameters passed to STEMPEL.

7.4 Stencil Compilers

Because of their low arithmetic intensity, i.e., the small number of floating
point operations per transferred data element, stencil computations typ-
ically are limited by the available bandwidth to the memory sub-system.
As a consequence, it is essential to efficiently use the caches, by optimiz-
ing data locality (both spatial and temporal). Bandwidth-saving schemes
like cache blocking techniques and methods to block across multiple time
steps are used to increase the arithmetic intensity.

Hardware-aware programming techniques can also help: software
prefetching, NUMA-aware data initialization, or cache bypassing repre-
sent a way to reduce bandwidth usage further.

A variety of solutions to this computational problem has appeared in
literature, ranging from algorithmic approaches, like the cache-oblivious
schema proposed by Frigo and Strumpen [44], the polyhedral model,
auto-tuning approaches, and the usage of domain-specific languages.

7.4.1 PLUTO

PLUTO [18] is a source to source compiler that uses the polyhedral model
approach for compiler optimization: applicable to loops with affine index
functions and affine loop bounds, it interprets the iteration space as a
polyhedron, and loop transformations correspond to operations or affine
transformations of that polyhedron.

The compiler accepts C code as an input and provides as an output an
OpenMP parallelized C code, with coarse-grained parallelism and data
locality simultaneously. The final code is also optimized for locality and
made amenable for auto-vectorization. It is also able to produce code
exploiting the diamond tiling technique [17].

7.4. STENCIL COMPILERS 83

7.4.2 PATUS

PATUS [26] is based on a DSL + Auto-tuning approach, focusing on ob-
taining performance without affecting the productivity. Domain Specific
Languages allow programmers to write a stencil specification in a high-
level syntax, which is architecture independent.

In PATUS the user writes the stencil code in a C-like syntax: the tool
then generates C code, by mean of a Strategy (i.e., optimization and par-
allelization methods such as cache-blocking). An auto-tuning phase is
executed after the code generation: it is used to select an optimal or near
optimal parameter configuration for the chosen stencil kernel, Strategy,
and hardware platform.

Chapter 8

Performance Evaluation

The purpose of benchmarking and performance evaluation is to assess
the performance and understand the characteristics of HPC platforms.
A state-of-the-art solution to determine the performance of a system is
to use LINPACK [37], to solve a dense system of linear algebraic equa-
tions, using LU factorization with partial pivoting. Since the problem
is very regular, the performance achieved is quite high, and the perfor-
mance numbers give a good correction of peak performance.

The most cited supercomputing ranking, the Top500 [9], lists the 500
most powerful commercially available computer systems and is based
on HPL (High Performance LINPACK). Another way of assessing the
performance could be by solving a real-life problem using a commercial
software/code. The primary goal of such practice is the search for the
best suitable machines for industrial/research projects. The downside of
such methodology is that it usually only investigates one dimension of
the overall performance, i.e., the results of a specific benchmark.

8.1 Performance Analysis

HPC applications seldom exploit the full potential of the modern super-
computers, due to the complexity of their architectures, both in terms of
hardware and software, as described in Chapter 2 and Chapter 3. The
emerging many-core and multi-socket nodes introduce additional de-
grees of complexity to the already high dimensionality and complexity
of performance optimization. In Figure 8.1 is shown the cycle of per-

86 CHAPTER 8. PERFORMANCE EVALUATION

Reproducible
experiment

Optimization

Prediction

Figure 8.1: The performance engineering cycle consists of three phases: analisys
and prediction of the code’s characteristics, reproducible experimentation and
measurements of its run-time behavior, and optmization

formance engineering: due to the trends in computer architectural com-
plexity of the new computer systems and the complexity of the software
that runs on them, the gap between expected and realized performance
is widening.

Performance engineering is critical to address such a gap, with its cy-
cle of prediction, reproducible measurement, and optimization. At the
time of writing, the measurement is seldom referenced as Reproducible,
and with this work, such an issue is being addressed.

Performance optimization not only requires to identify which are the
code fragments that act as bottlenecks but also to understand the causes
of said bottlenecks and determine a possible solution to improve the per-
formance of the code under evaluation. While the identification of code
segments that represent a bottleneck can be easily achieved by using
timers, the characterization of the cause of the bottleneck requires more
sophisticated analysis and modeling of the performance. The execution
of a segment of code can no longer be easily traced due to some opti-
mizations and features of the new micro-architectures: static or dynamic
branch prediction, software prefetching, out-of-order execution.

8.1.1 Performance Models

For a long time, performance modeling has been done analytically as
shown in Hockney and Curington [67], which became famous with the

8.1. PERFORMANCE ANALYSIS 87

Table 8.1: Timeline of performance modeling research and the most relevant
publications.

1993 ¨ ¨ ¨ ¨ ¨ ‚̈ Hockney and Curington [67].

1994 ¨ ¨ ¨ ¨ ¨ ‚̈ Boydl [19].

1999 ¨ ¨ ¨ ¨ ¨ ‚̈ Roofline Model [135].

2000 ¨ ¨ ¨ ¨ ¨ ‚̈ Nudd [97].

2000 ¨ ¨ ¨ ¨ ¨ ‚̈ Hoisie [68].

2001 ¨ ¨ ¨ ¨ ¨ ‚̈ Kerbyson [79].

2005 ¨ ¨ ¨ ¨ ¨ ‚̈ Kerbyson [80].

2006 ¨ ¨ ¨ ¨ ¨ ‚̈ Asanovic [11].

2008 ¨ ¨ ¨ ¨ ¨ ‚̈ Suleman [128].

2010 ¨ ¨ ¨ ¨ ¨ ‚̈ ECM Model [131].

name of Roofline Model [135] in 2009. The assumption that drove Williams
to explore and improve the model proposed by Hockney and Curington
is that while stochastic analytical models [11] and statistical performance
models [19] can predict performance, they seldom provide an actual in-
sight of how to optimize the code or the usage of the compilers. The
Roofline Model provides a sketch of the behavior of a specific architec-
ture combining arithmetic intensity, memory performance (bandwidth)
and computing performance (floating point operations).

The Execution-Cache-Memory [61, 131, 122](ECM) model refines the
performance modeling of streaming loop kernels, and allows, in case of
strong bandwidth limitations, a reasonably accurate prediction of the sat-
uration point. Previously, it could only be addressed in a phenomenolog-
ical way [128]. There are other examples of performance modeling not
restricted to the single node analysis, describing an effort in the direction
of large-scale modeling [68, 97, 79, 80]. At the basis of all the performance
analysis, there is the execution of some code, which happens on a single
chip. For this reason, the focus this work addresses the single node per-
formance analysis.

88 CHAPTER 8. PERFORMANCE EVALUATION

0.125 0.25 0.5 1 2 3 4 6 8 16 32 64
actual flop:byte ratio

8

16

32

64

128

256

512

G
Fl

op
/s

Pmax

I *
b s

Mem
ory

Bou
nd

Compute
Bound

Figure 8.2: Visualization of the Roofline model with explicit depiction of the
compute bound area, delimited by the peak floating point performance Pmax, and
memory bound area, delimited by the applicable peak bandwidth bs at a given
arithmetic intensity I.

Roofline Model

The Roofline model, described in Section 6.4, allows to understand the
performance limit of an application, based on operational intensity (al-
gorithm specific) and on memory bandwidth (hardware specific). The
formula to compute this model is:

P “ minpPmax, I ˚ bsq,

where Pmax is the peak floating point performance of a loop (assuming
that data comes from L1 cache), bs is the applicable peak bandwidth of the
slowest data path utilized, and I is the arithmetic intensity (“work” per
Byte transferred) over the slowest data path utilized (“the bottleneck”).

The Roofline model yields an absolute upper performance bound for
a loop, as shown in Figure 8.2. It assumes that the runtime is dictated
either by the computational work or the data transfers to and from a sin-
gle level in the memory hierarchy. Such an assumption entails that all
data transfers across the whole memory hierarchy perfectly overlap with
each other and with the execution of instructions in the core, which is too
optimistic in the general case [64].

Stencil kernels usually have low arithmetic intensity, which means
that on the roofline graph their upper bound is the memory bandwidth.

8.1. PERFORMANCE ANALYSIS 89

Registers

L1

L2

L3

MEM

TnOL

Execution

TL1-L2

TL2-L3

TL3-MEM

TOL

Figure 8.3: Visualization of the factors involved in the calculation of the ECM
model: overlapping time of computations and store (TOL), time for loading the
data from L1 to the registers (TnOL), time for loading the data from L2 to L1
(TL1´L2), time for loading from L3 to L2 (TL2´L3), and time for loading from
memory to L3 (TL3´MEM).

The Roofline model must, in principle, be generated only once for a given
architecture and then can be reused and add to it the value of the kernels
when tested. Some ceilings can be added to the Roofline and used to
guide the optimizations to perform, as explained in Williams et al. [135].

ECM Model

Another state of the art model that one may use to analyze an architecture
is the Execution Cache Memory model [61, 122]. It shares the idea of the
Roofline that either the execution of the instructions or the data transfer
time represent the limitation of the loop, thus driving its execution time.
The difference lays in the fact that according to the ECM model, all the
memory levels contribute to a single bottleneck: sometimes the transfer
time can overlap (as in the Roofline), while other times it adds up. To pro-

90 CHAPTER 8. PERFORMANCE EVALUATION

vide a prediction of the performance, it takes into account the volume of
the data moved to and from each level of cache, involving the inter-cache
throughputs, and the actual computation that happens into the core (see
Figure 8.3). The formula used to compute the prediction is the following:

TECM,Mem “ maxpTOL, TnOL ` TL1´L2 ` TL2´L3 ` TL3´MEM,

where TOL represents the overlapping time of computations and store,
TnOL is the time for loading the data from L1 to the registers, TL1´L2 the
time for loading from L2 to L1 and so on.

Both Roofline and ECM model are based on a bottleneck analysis un-
der a throughput assumption, but in the latter, the contributions of all
memory hierarchy levels sum up to a single bottleneck: data transfers to
different memory levels may overlap (like in the Roofline model) or may
add up.

Whichever is the model used to analyze a specific stencil on a given
architecture, such a process will drive to performance laws and will show
the path to improve the implementations of the original problem. On the
other side, the measured performance can also drive to adaptation and
improvements in the performance models.

8.1.2 Grey Box Modeling

Performance models can either be analytically calculated or applied with
the help of grey box tools, that help in gathering the information required
to apply said models. The following subsections describe some of such
tools.

ExaSAT

Exascale Static Analysis Tool [132] statically analyzes an application and
automatically gather key characteristics about the computation, commu-
nication, data access patterns and data locality that are important in char-
acterizing the performance of combustion codes. Loop-level information
is collected to create a profile of the code, that is then analyzed to ob-
tain a dependency graph and performance modeling. The performance
model is parameterized with machine specifications, employing an ab-
stract, simplified machine model, user (input) parameters (e.g., problem
size), and software optimizations (e.g., loop fusion). The compiler analy-
sis for ExaSAT is built on top of the ROSE compiler framework [105], an

8.1. PERFORMANCE ANALYSIS 91

KERNEL MACHINE
DESCRIPTOR

CACHE
PREDICTION

IN-CORE
PREDICTION

PERFORMANCE
MODELING

IACA

OSACA

CS

LC

ROOFLINE

ECM

Figure 8.4: Overview of Kerncraft: the user provides kernel code, constants,
and a machine descriptor. IACA or OSACA, pycachesim, and a compiler are
employed to build the ECM and Roofline models. Figure adapted from

open-source compiler infrastructure developed at Lawrence Livermore
National Laboratory. ExaSAT is restricted to the Roofline model for per-
formance prediction.

Empirical Roofline Toolkit

The Roofline model provides an intuitive model and a graphic visual-
ization for understanding kernel performance on various architectures,
but suffers from three factors: hardware characterization (the construc-
tion of the roofline model requires expert knowledge of the target pro-
cessor microarchitecture), knowledge of the characteristics of the kernel,
and software characterization (requires an expert in the architecture and
the algorithm to predict the performance of the HW/SW stack when
compiling/running a routine). The Empirical Roofline Toolkit (ERT),
firstly introduced in [85], empirically determines the machine character-
istics (CPU or GPU-accelerated) that are needed to generate the Roofline
model. An example of the required information are the maximum band-
width for the various levels of the memory hierarchy and the maximum
GFlop/s rate, obtained using several “micro-kernels”.

92 CHAPTER 8. PERFORMANCE EVALUATION

Kerncraft

Kerncraft is a tool, implemented at the FAU Erlangen-Nürnberg, to an-
alyze a C like source code containing a loop nest (stencil kernel loop) in
terms of data transfers and code to be executed. The user must also pro-
vide an architecture description file (in YAML format) and select what
performance model to apply.

A schematization of the full pipeline of Kerncraft is shown in Fig-
ure 8.4. A complete description of the machine descriptor and the pseudo-
C code constraint is showed in [64].

The prediction of the caching behavior is performed through two pos-
sible models: Layer Condition [122, 63] or Cache Simulation. Once eval-
uated the contribution of the data movements, it is necessary to asses the
in-core execution behavior. It is done using the Intel Architecture Core
Analyzer [7] (IACA), that, using as input assembly code representing a
series of instructions, predicts throughput and latency. Its limitation is
that it only supports Intel® 64 code, including Intel® AVX, AVX2, and
AVX-512 instructions. OSACA [8], an open source alternative to IACA, is
under development, but still not ready to be fully integrated into Kern-
craft.

Kerncraft, differently than ExaSAT and ERT, supports automatic de-
tection of the topology of the architecture where the analysis is conducted,
and does not rely on compiler-generated loops, which usually introduce
an element of uncertainty. Additionally, thanks to the use of IACA (and
in the next future OSACA), it generates more accurate in-core predic-
tions than the other competitors, that use a simplified machine model.
For these reasons, Kerncraft has been selected as the tool to model the
performance in the experiments that complement this work.

8.2 Performance Measurement

The results of the experiments that are part of this thesis are an average
performance over ten executions. Additionally, a standard deviation is
represented on the graphs. It can be argued that a median of the per-
formance could be more appropriate, and that is probably true in other
domains. The idea of the author is that, in the HPC domain, each of the
kernels considered in this work, would be normally executed thousands,
or even millions, of times, so that the average represents an appropriate
metric. The quantities that need to be measured are the execution time

8.2. PERFORMANCE MEASUREMENT 93

and the number of floating point operations (FLOP) per run. While the
execution time is measured by using the gettimeo f day routine available
in the timing library, the number of FLOPs is automatically calculated by
inspecting a kernel. GFLOP/s represents billions (109) of floating-point
operations per second.

By analyzing a code, it is possible to discover if its demands exceed
the architecture’s capabilities, thus affecting the performance. In the sten-
cil kernels, the computational work can be identified with multiplica-
tions, additions and sometimes divides. Consequently, the performance
is assessed in GFLOP/s.

Another possible metric is lattice updates per second (LUP/s), which
scales the GFLOP/s by the number of FLOPs executed. The indepen-
dence of this metric from the number of FLOPs executed represent both
its strength and weakness: it emphasizes the work done decoupling it
from possible optimizations that interfere with the arithmetic intensity,
since such optimizations may change the number of FLOPs per stencil
update. For said reason, the results presented use GFLOP/s as a metric,
even though during the experiments also the LUP/s are computed and
stored for further analyses.

To assess the data movements, i.e., the communication between the
CPU and the memory, the work is defined as the number of bytes trans-
ferred, including the traffic due to cache misses and speculative transfers
(e.g., prefetching). The bandwidth is measured in bytes transferred per
second (B/s or millions of bytes per second GB/s).

The ratio between memory bandwidth and peak performance (mea-
sured in FLOP/s) is called Machine Balance (Bm) [22, 62]. A comple-
mentary concept is the code balance (Bc) of a loop, defined as the ratio
between the data traffic and the number of FLOPs. Its reciprocal is called
arithmetic intensity, or computational intensity, e.g., the ratio between
the computation and the communication of a given kernel. The expected
maximum fraction of the peak performance that a code with a balance Bc

can reach on a machine with balance Bm is given by:

minp1,
Bm

Bc
q

8.2.1 Cache Misses

Cache misses can be classified into three basic types [66]: compulsory,
capacity, or conflict misses.

94 CHAPTER 8. PERFORMANCE EVALUATION

Compulsory misses, also called cold start misses, happen when the
first access to a block is not in the cache, so it must be loaded for the first
time.

If the cache cannot contain all the blocks needed during the execution
of a program, capacity misses will occur due to blocks being discarded
and later retrieved.

If the block-placement strategy is set associative or direct mapped,
conflict misses (in addition to compulsory and capacity misses) will oc-
cur because a block can be discarded and later retrieved if too many
blocks map to its set. These are also called collision misses or interfer-
ence misses.

8.2.2 Code Structure and Parallelism

Structured grid codes often perform a large number of sweeps over a
grid applying a stencil operator, i.e., a function that relates a point in the
grid to its neighborhood. Sweeps represent the evolution over time of
a problem, in codes like parabolic or hyperbolic PDEs. In elliptic PDEs,
they are used for the convergence, while in multigrid codes they modify
the resolution of the grid. Inherent parallelism can vary widely from
one sweep to another: Gauss-Seidel method, upwinding stencils, Red-
Black Gauss-Seidel method, Jacobi’s method. This work is restricted to
the Jacobi’s iteration, described in [62].

8.2.3 Memory Access Pattern and Data Locality

The memory access pattern of a stencil can have dramatic impacts on the
performance. In this section, we examine the memory access pattern and
cache locality for a 2D problem on rectangular Cartesian grids and allow
the reader to contemplate more complicated problems. In Figure 8.5 is
shown the access pattern of a 2D 5-point stencil using a Jacobi algorithm.
The C language implements a row-major order for multidimensional ar-
rays: the inner loop variable must ensure stride-one access in order to
minimize the memory traffic. Figure 8.5 shows how the row-wise traver-
sal takes place: the stencil point with the biggest j coordinate (leading
point) is brought to cache for the first time, causing a compulsory cache
miss. This value will stay in cache for three row traversals if the cache of
the machine in use is big enough to store more than two rows of the grid,
so the number of required loads is not five but four (plus one store). In

8.2. PERFORMANCE MEASUREMENT 95

T0

T1

i

j

Figure 8.5: Jacobi algorithm for a 2D 5-point stencil update: in pink and red the
points needed at time T0 to obtain the point in yellow at time T1. The shadow
indicates the points that are needed for the actual computation: if at least two
successive rows can be kept in the cache, only one cell per update has to be fetched
from memory (in red).

three dimensions, the distance between the leading and trailing points in
the stencil should be twice the plane size, thus representing a challenge
to cache capacities. Such an analysis,called Layer Condition analysis, is
automatically performed by Kerncraft.

An Intel Xeon E5-2640 v4 with a clock of 2.6 GHz has maximum mem-
ory bandwidth (bmax) of 51.6 GB/s (measured via STREAM benchmark).
We can thus compute:

Pmax “ 10cores ˚ 2.6GHz ˚ 16DPFLOP “ 416GFLOP{s.

Bm “
bmax

Pmax
“

51.6GB{s
416GFLOP{s

“ 0.124
B

FLOP
“ 0.016

W
FLOP

.

If the cache is big enough to hold two successive rows, when executing a
2D 5-point Jacobi stencil, loading the neighbours at j and j-1 are already
in cache, so only 1 load and 1 store plus the write allocate take place, so

Bc “ data tra f f ic{number o f ; FLOPs “ 3W{5FLOP “ 0.6W{FLOP.

96 CHAPTER 8. PERFORMANCE EVALUATION

The expected performance in GFLOP/s is then:

P “ minpPmax, Pmax ˚ Bm{Bcq “ 10.74GFLOP{s.

8.2.4 Optimization of Stencil Codes

The stencil problem has been widely studied due to its importance and
occurrence in computational sciences. Several optimization techniques
have been proposed over time.

Stencil codes are often easy to parallelize, but it is difficult to obtain a
good ratio of the peak performance, due to their usually low arithmetic
intensity. The techniques proposed, either act on the loop structure, re-
arranging it, but performing exactly the same operations, or on the algo-
rithm, dramatically changing the number of operations required.

To the first group belong cache blocking and time skewing, that are
implementation-only optimizations, where the loops are restructured to
improve performance. To the second group of optimizations belong multi-
grid and adaptive mesh refinement.

Since it is complicated to rearrange the loops, ad hoc stencil compil-
ers have been developed and studied: between these, we find Pochoir,
Halide, PLUTO, and PATUS.

Recently there are efforts to port stencil codes to GPUs via compilers
like TOAST [111].

In this work, we consider two stencil compilers that use different ap-
proaches: PLUTO [18], a source to source C compiler that exploits the
polyhedral model to find affine transformations for efficient tiling both in
space and time, and PATUS [26] that uses a DSL language to effectively
and productively describe a stencil and then auto-tunes the generated
code according to a predefined strategy.

Cache Blocking

As previously discussed, the capacity of the cache affects the number of
cache misses. If we consider the example of stencil sweeps in 8.2.3, it is
possible to block the loops in a way that allows holding in the cache a
useful working set, a well-known concept deriving from the cache block-
ing techniques applied to dense matrix-matrix multiplication.

In two dimensions is necessary to block only the unit-stride loop,
while in three dimensions either the unit-stride, the middle dimension,

8.2. PERFORMANCE MEASUREMENT 97

or both loops need to be blocked to maintain a cache-friendly working
set.

Time Skewing

A stencil is applied multiple times, over several sweeps. Cache blocking
only works inside a single sweep. The same concept of blocking the loops
could also be applied to the time loop, thus obtaining a space-time block-
ing. In this way, once the points of interest are in cache, they advance
in time, to maximize their reuse, and possibly drive to an increase of the
arithmetic intensity. It must be noted that such a technique is limited both
by the bandwidth to the cache and the in-core performance.

Cache-oblivious algorithms were applied to structured grid codes [44,
78] organizing the space-time in trapezoids and parallelepipeds, which
are traversed in a recursive ordering. Such a way of traversing is so ex-
pensive to cancel the benefits given by the reduction in cache misses, thus
resulting in even slower code. Cache aware implementations have been
introduced [91, 119, 121, 137]: they adopt the idea of dividing the space-
time into trapezoids and parallelepipeds but use complex loop nests in-
stead of the recursion. The code complexity drastically increases with the
number of dimensions that are blocked.

Chapter 9

Experimental Testbeds

We set up and execute two macro-experiments (as defined in Section 4.1)
using up to three different methods, on two systems. A precise descrip-
tion of the experiment, in terms of (Problem, Method, System), is a base
step towards the reproducibility of the research.

As sustained in Sections 5.1, sharing the source code is beneficial, but
its availability is not sufficient for reproducibility. In fact the code may
not compile, or the results could be affected by the differences of other
components in the software stack. Pieces of information such as version
of the compiler, compilation flags, configurations, experiment parame-
ters, and raw results are fundamental for the reproducibility of an exper-
iment.

The most important conference in the field of high performance com-
puting, SuperComputing, has since its 2016 edition, launched a repro-
ducibility effort, inviting the authors to submit, together with their pa-
pers, an artifact description, i.e. an appendix describing the details of
their software environments and computational experiments, so that an
independent person could replicate their results. Such an appendix will
be mandatory for papers submitted into the main track, starting from
SuperComputing 2019.

It is worth noting that the information stored by PROVA! provides all
the necessary fields to fill such an appendix, plus additional details that
may be used for further analysis, a posteriori. Configurations, methods,
source code, methodTypes (with their respective run instructions and easy-
configs) used in the experiments later discussed in this work, are available

100 CHAPTER 9. EXPERIMENTAL TESTBEDS

at [54].

9.1 Systems

The experiments that have been performed in this work, unless differ-
ently specified, have been executed in two high performance computing
facilities, geographically far away from each other, composed of compute
nodes with different architectures. The stencil experiments have been run
on a single node of the Emmy and miniHPC clusters.

The software stack is maintained by PROVA! v0.3 (on both clusters)
and, at each time, only the needed software is present in PATH.

9.1.1 Validation Macro-Experiment

For our tests the module “OpenMP : GCC/7.3.0-2.30”, installed through
EasyBuild [70] [48] was loaded. The OpenMP module is used to test the
prediction offered by Kerncraft (v0.6.10, using GCC/7.3.0-2.30). STEM-
PEL, v0.1.0, has been used to generate the stencil kernels and automate
the execution of the experiments by calling both Kerncraft and PROVA!.
A description of said process is detailed in Appendix C.

Likwid [112] is present as system dependency.

9.1.2 Performance Engineering Cycle Macro-Experiment

During this macro-experiment, the following modules, installed through
EasyBuild [70] [48] were loaded:

• OpenMP : GCC/7.3.0-2.30

• PATUS : GCC/7.9.0-2.30, PATUS/0.1.4, Java/1.7.0 79, Maxima/5.37.2
(compiled with ecl/16.0.0)

• PLUTO-pet : GCC/7.3.0-2.30, PLUTO-pet/0.11.0 (pet branch)

Likwid [112] is present as system dependency.
After the validation phase, we pass to the optimization and compar-

ison analysis: we use PROVA! to first repeat an experiment using one
compiler only. Then we can re-experiment, using another method, in this
case, another compiler, to generate code for the chosen stencil. Subse-
quently, we move to another system and use the same code as before,
thus having a repetition and a re-experimentation locally, and globally a

9.1. SYSTEMS 101

replication. Each repetition gives us an insight about the compiler per-
formance on a chosen system. Re-experimentation allows us to compare
different compilers since they run on the same machine. Porting the ex-
periment to another system enables studying the behaviour of the single
compilers on another architecture.

9.1.3 Emmy

The Emmy cluster (NEC), located at the Regionales RechenZentrum Er-
langen (RRZE), is a high-performance compute resource with high speed
interconnect. It is intended for distributed-memory (MPI) or hybrid par-
allel programs with medium to high communication requirements. It is
composed by:

• 560 compute nodes, each with two Xeon 2660v2 “Ivy Bridge” chips
(10 cores per chip + SMT) running at 2.2 GHz with 25 MB Shared
Cache per chip and 64 GB of RAM

• 2 frontend nodes with the same CPUs as the nodes
• 16 Intel Xeon Phi coprocessors
• 16 Nvidia K20 GPGPUs spread over 16 compute nodes
• parallel filesystem (LXFS) with a capacity of 400 TB and an aggre-

gated parallel I/O bandwidth of more than 7000 MB/s
• fat-tree Infiniband interconnect fabric with 40 GBit/s bandwith per

link and direction
• overall peak performance of ca. 234 TFlop/s
• 191 TFlop/s LINPACK, using only the CPUs
• Peak performance Pmax “ 176 GFLOP{s
• Memory bandwidth bmax “ 40.05 GB{s per socket, measured with

STREAM benchmark (through likwid-bench)
• Machine balance Bm “ 0.227 B{FLOP

A representation of its topology, retrieved via Likwid, is shown in Listrings 9.1.

9.1.4 MiniHPC

MiniHPC is a high-performance cluster with high speed interconnect, lo-
cated at the University of Basel, whose details are:

• 22 compute nodes, each with two Xeon E5-2640 v4 “Broadwell”
chips (10 cores per chip + SMT) with 25 MB Shared Cache per chip
and 64 GB of RAM

102 CHAPTER 9. EXPERIMENTAL TESTBEDS

• the compute nodes run at a frequency of 2.6 GHz, using the perfor-
mance governor provided by the Intel Pstate driver

• 1 frontend node with the same CPUs as the nodes
• 4 Intel Xeon Phi 7210 (64 cores per chip + SMT) running at 1.3 GHz

with 32 MB Shared Cache per chip and 96 GB of RAM
• fat-tree Intel Omni-Path interconnect fabric with 100 GBit/s band-

with
• overall peak performance of ca. 23.6 TFlop/s
• 18.3 TFlop/s peak performance, using only the CPUs
• Peak performance Pmax “ 416 GFLOP{s
• Memory bandwidth bmax “ 51.60 GB{s per socket, measured with

STREAM benchmark (through likwid-bench)
• Machine balance Bm “ 0.124 B{FLOP

A representation of its topology, retrieved via Likwid, is shown in List-
ings 9.2.

9.1. SYSTEMS 103

´́ ´́
CPU name : Intel (R) Xeon (R) CPU E5´2660 v2 @ 2 . 2 0 GHz
CPU type : Intel Xeon IvyBridge EN/EP/EX processor
CPU stepping : 4
* *
Hardware Thread Topology
* *
Sockets : 2
Cores per socket : 10
Threads per core : 2

´́ ´́
HWThread Thread Core Socket Available
0 0 0 0 *
1 0 1 0 *
2 0 2 0 *
3 0 3 0 *
4 0 4 0 *
5 0 8 0 *
6 0 9 0 *
7 0 10 0 *
8 0 11 0 *
9 0 12 0 *
10 0 0 1 *
11 0 1 1 *
12 0 2 1 *
13 0 3 1 *
14 0 4 1 *
15 0 8 1 *
16 0 9 1 *
17 0 10 1 *
18 0 11 1 *
19 0 12 1 *
20 1 0 0 *
21 1 1 0 *
22 1 2 0 *
23 1 3 0 *
24 1 4 0 *
25 1 8 0 *
26 1 9 0 *
27 1 10 0 *
28 1 11 0 *
29 1 12 0 *
30 1 0 1 *
31 1 1 1 *
32 1 2 1 *
33 1 3 1 *
34 1 4 1 *
35 1 8 1 *
36 1 9 1 *
37 1 10 1 *
38 1 11 1 *
39 1 12 1 *

´́ ´́
Socket 0 : (0 20 1 21 2 22 3 23 4 24 5 25 6 26 7 27 8 28 9 29)
Socket 1 : (10 30 11 31 12 32 13 33 14 34 15 35 16 36 17 37 18 38 19 39)

´́ ´́
* *
Cache Topology
* *
Level : 1
Size : 32 kB
Cache groups : (0 20) (1 21) (2 22) (3 23) (4 24) (5 25) (6 26)
(7 27) (8 28) (9 29) (10 30) (11 31) (12 32) (13 33) (14 34) (15 35)
(16 36) (17 37) (18 38) (19 39)

´́ ´́
Level : 2
Size : 256 kB
Cache groups : (0 20) (1 21) (2 22) (3 23) (4 24) (5 25) (6 26)
(7 27) (8 28) (9 29) (10 30) (11 31) (12 32) (13 33) (14 34) (15 35)
(16 36) (17 37) (18 38) (19 39)

´́ ´́
Level : 3
Size : 25 MB
Cache groups : (0 20 1 21 2 22 3 23 4 24 5 25 6 26 7 27 8 28 9 29)
(10 30 11 31 12 32 13 33 14 34 15 35 16 36 17 37 18 38 19 39)

´́ ´́
* *
NUMA Topology
* *
NUMA domains : 2

´́ ´́
Domain : 0
Processors : (0 20 1 21 2 22 3 23 4 24 5 25 6 26 7 27 8 28 9 29)
Distances : 10 21
Free memory : 11728 MB
Total memory : 32734 .4 MB

´́ ´́
Domain : 1
Processors : (10 30 11 31 12 32 13 33 14 34 15 35 16 36 17 37 18 38 19 39)
Distances : 21 10
Free memory : 28665 .2 MB
Total memory : 32768 MB

´́ ´́

Listing 9.1: Topology of a node of Emmy, obtained via likwid-topology

104 CHAPTER 9. EXPERIMENTAL TESTBEDS

´́ ´́
CPU name : Intel (R) Xeon (R) CPU E5´2640 v4 @ 2 . 4 0 GHz
CPU type : Intel Xeon Broadwell EN/EP/EX processor
CPU stepping : 1
* *
Hardware Thread Topology
* *
Sockets : 2
Cores per socket : 10
Threads per core : 1

´́ ´́
HWThread Thread Core Socket Available
0 0 0 0 *
1 0 1 0 *
2 0 2 0 *
3 0 3 0 *
4 0 4 0 *
5 0 5 0 *
6 0 6 0 *
7 0 7 0 *
8 0 8 0 *
9 0 9 0 *
10 0 10 1 *
11 0 11 1 *
12 0 12 1 *
13 0 13 1 *
14 0 14 1 *
15 0 15 1 *
16 0 16 1 *
17 0 17 1 *
18 0 18 1 *
19 0 19 1 *

´́ ´́
Socket 0 : (0 1 2 3 4 5 6 7 8 9)
Socket 1 : (10 11 12 13 14 15 16 17 18 19)

´́ ´́
* *
Cache Topology
* *
Level : 1
Size : 32 kB
Cache groups : (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)
(10) (11) (12) (13) (14) (15) (16) (17) (18) (19)

´́ ´́
Level : 2
Size : 256 kB
Cache groups : (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)
(10) (11) (12) (13) (14) (15) (16) (17) (18) (19)

´́ ´́
Level : 3
Size : 25 MB
Cache groups : (0 1 2 3 4 5 6 7 8 9) (10 11 12 13 14 15 16 17 18 19)

´́ ´́
* *
NUMA Topology
* *
NUMA domains : 2

´́ ´́
Domain : 0
Processors : (0 1 2 3 4 5 6 7 8 9)
Distances : 10 21
Free memory : 263 .93 MB
Total memory : 32671 .7 MB

´́ ´́
Domain : 1
Processors : (10 11 12 13 14 15 16 17 18 19)
Distances : 21 10
Free memory : 27457 .6 MB
Total memory : 32768 MB

´́ ´́

Listing 9.2: Topology of a node of MiniHPC, obtained using the utility
likwid-topology

9.1. SYSTEMS 105

Ta
bl

e
9.

1:
Ta

bl
e

re
pr

es
en

tin
g

al
lt

he
co

m
bi

na
tio

ns
of

th
e

ch
ar

ac
te

ri
st

ic
pa

ra
m

et
er

s
of

a
st

ar
st

en
ci

l,
de

pi
ct

in
g

th
e

va
lu

es
us

ed
fo

r
th

e
va

lid
at

io
n

ex
pe

ri
m

en
ts

.

St
en

ci
lP

at
te

rn
C

ar
di

na
li

ty
C

oe
ffi

ci
en

ts
Sy

m
m

et
ri

ci
ty

R
ad

iu
s

G
ri

d
si

ze

ST
A

R

2D

H
om

og
en

eo
us

C
on

st
an

t
1-

4
12

00
0

x
12

00
0

H
et

er
og

en
eo

us

Po
in

t-
sy

m
m

et
ri

c

V
ar

ia
bl

e
1-

4
50

00
x

50
00

Is
ot

ro
pi

c

3D

H
om

og
en

eo
us

C
on

st
an

t
1-

4
25

0
x

25
0

x
25

0
V

ar
ia

bl
e

1-
4

H
et

er
og

en
eo

us
C

on
st

an
t

1-
4

50
0

x
50

0
x

50
0

Po
in

t-
sy

m
m

et
ri

c

V
ar

ia
bl

e
25

0
x

25
0

x
25

0
Is

ot
ro

pi
c

106 CHAPTER 9. EXPERIMENTAL TESTBEDS

Ta
bl

e
9.

2:
Ta

bl
e

re
pr

es
en

tin
g

al
lt

he
co

m
bi

na
tio

ns
of

th
e

ch
ar

ac
te

ri
st

ic
pa

ra
m

et
er

s
of

a
bo

x
st

en
ci

l,
de

pi
ct

in
g

th
e

va
lu

es
us

ed
fo

r
th

e
va

lid
at

io
n

ex
pe

ri
m

en
ts

.

St
en

ci
lP

at
te

rn
C

ar
di

na
li

ty
C

oe
ffi

ci
en

ts
Sy

m
m

et
ri

ci
ty

R
ad

iu
s

G
ri

d
si

ze

BO
X

2D

H
om

og
en

eo
us

C
on

st
an

t
1-

4

30
00

x
30

00

H
et

er
og

en
eo

us

Po
in

t-
sy

m
m

et
ri

c

V
ar

ia
bl

e
1-

3
Is

ot
ro

pi
c

3D

H
om

og
en

eo
us

C
on

st
an

t

1-
2

50
0

x
50

0
x

50
0

H
et

er
og

en
eo

us

V
ar

ia
bl

e
25

0
x

25
0

x
25

0
Po

in
t-

sy
m

m
et

ri
c

Is
ot

ro
pi

c
C

on
st

an
t

1-
3

50
0

x
50

0
x

50
0

V
ar

ia
bl

e
1-

2
25

0
x

25
0

x
25

0

9.2. PROBLEMS 107

9.2 Problems

Using STEMPEL, it is relatively easy to generate synthetic stencil kernels,
that cover all the characteristic parameters identified and described in
Section 7.2.

9.2.1 Kernels Used in the Validation Macro-Experiment

The problems that have been analyzed, implemented, and executed cover
a vast majority of the possible combinations of dimensionality, symmetric-
ity, type of stencil, type of the coefficients, as schematized in TABLE 9.1
and TABLE 9.2.

The codes for the stencil kernels have been generated via STempEL
(v0.1.0) and analyzed using Kerncraft (v0.6.10). For each of the kernels
both ECM and Roofline, models have been applied. The sizes of input
and output grids have generally been chosen so that they do not fit in
L3, and the computation is carried out over grid points in IEEE double
precision arithmetic. The grid size may have been occasionally scaled
down, mostly for box stencils and when using variable coefficients, to
allow Kerncraft and IACA to perform the analysis of the kernel. The
number of timesteps to execute has been automatically and dynamically
selected by making sure that the overall execution time of each kernel
lasts at least 2 seconds. The threads used for the measurement are 1 and
10 (full socket), explicitly pinning to the logical nodes, as described in
Section 6.3.

1: double a [M] [N] , b [M] [N] ;
2: double c0 , c1 , c2 ;
3:
4: for (int j=1; j < M´1; j++){
5: for (int i=1; i < N´1; i++){
6: b [j] [i] = c0 * a [j] [i]
7: + c1 * (a [j] [i´1] + a [j´1][i] +
8: a [j+ 1] [i] + a [j] [i+ 1])
9: + c2 * (a [j´1][i´1] + a [j+ 1] [i´1] +

10: a [j´1][i+1] + a [j+ 1] [i + 1]) ;
11: }
12: }

Listing 9.3: Kernel of a 2-dimensional radius 1 isotropic box stencil with
constant coefficients

108 CHAPTER 9. EXPERIMENTAL TESTBEDS

9.2.2 Kernels Used in the Performance Engineering Cycle

A stencil has been selected to be used for a second experiment, with the
goal of showing a complete performance engineering cycle (discussed in
Chapter 8).

In this case has been executed a 2-dimensional, box stencil with isotro-
pic and constant coefficients. Two different values for the radius have
been used, in order to explore and analyze the behavior of the compilers,
the performance models and the architectures when varying the neigh-
bors involved and thus the operations to be executed: radius 1 (yield-
ing 11 FLOPs), in Listing 9.3 and radius 4 (yielding 89 FLOPs), in List-
ing 9.4. Additionally, the experiment has been conducted using two dif-
ferent grid sizes, the first 5002 and 30002 points in IEEE double precision
arithmetic: in this way we explore the behavior of performance models,
architectures and (stencil) compilers when the grids fit and do not fit in
the L3 caches. The time-steps executed are 200, and the threads used for
the measurement are in the range [1, 20] (up the the full node), explic-
itly pinning either to the logical nodes or spreading the threads over the
sockets, as described in Section 6.3.

1: double a [M] [N] , b [M] [N] ;
2: double c0 , c1 , c2 , c3 , c4 , c5 , c6 , c7 , c8 ;
3:
4: for (int j=4; j < M´4; j++) {
5: for (int i=4; i < N´4; i++) {
6: b [j] [i] = c0 * a [j] [i]
7: + c1 * (a [j] [i´1] + a [j´1][i] + a [j+ 1] [i] + a [j] [i+ 1])
8: + c2 * (a [j] [i´2] + a [j´1][i´1] + a [j+ 1] [i´1] +
9: a [j´2][i] + a [j+ 2] [i] + a [j´1][i+1] +

10: a [j+ 1] [i+1] + a [j] [i+ 2])
11: + c3 * (a [j] [i´3] + a [j´1][i´2] + a [j+ 1] [i´2] +
12: a [j´2][i´1] + a [j+ 2] [i´1] + a [j´3][i] +
13: a [j+ 3] [i] + a [j´2][i+1] + a [j+ 2] [i+1] +
14: a [j´1][i+2] + a [j+ 1] [i+2] + a [j] [i+ 3])
15: + c4 * (a [j] [i´4] + a [j´1][i´3] + a [j+ 1] [i´3] +
16: a [j´2][i´2] + a [j+ 2] [i´2] + a [j´3][i´1] +
17: a [j+ 3] [i´1] + a [j´4][i] + a [j+ 4] [i] +
18: a [j´3][i+1] + a [j+ 3] [i+1] + a [j´2][i+2] +
19: a [j+ 2] [i+2] + a [j´1][i+3] + a [j+ 1] [i+3] +
20: a [j] [i+ 4])
21: + c5 * (a [j´1][i´4] + a [j+ 1] [i´4] + a [j´2][i´3] +
22: a [j+ 2] [i´3] + a [j´3][i´2] + a [j+ 3] [i´2] +
23: a [j´4][i´1] + a [j+ 4] [i´1] + a [j´4][i+1] +

9.3. METHODS 109

24: a [j+ 4] [i+1] + a [j´3][i+2] + a [j+ 3] [i+2] +
25: a [j´2][i+3] + a [j+ 2] [i+3] + a [j´1][i+4] +
26: a [j+ 1] [i+ 4])
27: + c6 * (a [j´2][i´4] + a [j+ 2] [i´4] + a [j´3][i´3] +
28: a [j+ 3] [i´3] + a [j´4][i´2] + a [j+ 4] [i´2] +
29: a [j´4][i+2] + a [j+ 4] [i+2] + a [j´3][i+3] +
30: a [j+ 3] [i+3] + a [j´2][i+4] + a [j+ 2] [i+ 4])
31: + c7 * (a [j´3][i´4] + a [j+ 3] [i´4] + a [j´4][i´3] +
32: a [j+ 4] [i´3] + a [j´4][i+3] + a [j+ 4] [i+3] +
33: a [j´3][i+4] + a [j+ 3] [i+ 4])
34: + c8 * (a [j´4][i´4] + a [j+ 4] [i´4] + a [j´4][i+4] +
35: a [j+ 4] [i + 4]) ;
36: }
37: }

Listing 9.4: Kernel of a 2-dimensional radius 4 isotropic box stencil with
constant coefficients

9.3 Methods

9.3.1 Methods Used in the Validation Macro-Experiment

The micro-experiments we set up, whose definition appears in Section 4.1,
consist of a naive implementation of the problem, by parallelizing with
OpenMP and using NUMA-aware initialization. The source code has
been automatically generated by STEMPEL.

9.3.2 Methods Used in the Performance Engineering Cy-

cle Macro-Experiment

The micro-experiments we set up, whose definition appears in Section 4.1,
consist of the following triplet of methods:

• Naive implementation of the problem, by parallelizing with OpenMP
and using NUMA-aware initialization

• Diamond tiling and loop transformation, according to the polyhe-
dral model, by mean of PLUTO. It provides as output an OpenMP
parallelized C code

• DSL + Auto-tuning approach using PATUS: from a stencil specifi-
cation to C code which is then optimized automatically tuning the

110 CHAPTER 9. EXPERIMENTAL TESTBEDS

hardware parameters specified, like cache block, chunk, unrolling
factor

Chapter 10

Performance Benchmarking

Experiments

The added value provided by PROVA! can be seen at the moment of run-
ning and analyzing the results of the experiments.

PROVA! allows to explore the dimensions of Problem, Method, and Sys-
tem that have been presented in Section 4.1, thus enabling repetition, repli-
cation, and re-experimentation (see Section 4.2).

10.1 Stencil Compilers

Merely assembling and comparing performance results obtained by the
same compiler on different machines could have few or no meaning at
all due to the architectural differences. Using PROVA! it is possible to
compare them, evaluating the behavior they show on the different ma-
chines, thanks to the consistency of the environment. Ideally, users can
choose the compiler offering the best performance on the system they
have access to. Such an analysis gives value to the replication: focus on
the behavior rather than on the numbers. Running an experiment on a
machine allows evaluating how the performance changes while chang-
ing the parameters (i.e., dimension, number of threads used), helping to
understand how a compiler behaves (e.g., if the performance scales to the
whole).

OpenMP code is usually tuned for the target machine, thus making
it senseless to compare two machines, based on the performance results

112 CHAPTER 10. PERFORMANCE BENCHMARKING EXPERIMENTS

of such a code. When it comes to automatically generated code, on the
other hand, it becomes essential to try and check if the generated code
performs well on specific machines only, or if the compiler generates de-
cently performing code for several machines.

The performance of each code must be evaluated in the light of the
expected performance, obtained as a prediction when applying a perfor-
mance model. Performance models could fit perfectly to a specific prob-
lem, thus resulting in an exact match between predicted and measured
performance, or a mismatch could show up. In such cases the reason for
the discrepancy should be investigated and addressed, either adapting
the model or optimizing the code, to reflect the expected performance.

Using the code produced by several compilers as input, it is possible
to characterize the architectures. Furthermore, it would be possible to
identify and extrapolate the parameters that affect the execution of such
codes.

Analyzing the outputs of repetition and re-experimentation experiments
certainly gives information about the compilers and the validity of their
solutions for the fixed system used. Going a little bit beyond, repeating
said experiments on several systems and focusing not only (strictly) on
the numerical outputs but also on the big picture, leads to what we call
behavioral insight.

Remember Hamming’s observation:

“The purpose of computing is insight, not numbers.”

10.1.1 Metric used for Compilers Evaluation and Com-

parison

Due to hardware differences, it is not possible (or valuable) to use the exe-
cution time as a metric: a possible solution to this problem is to compare
against relative speed-up. It is not safe to assume that a compiler pro-
duces code resulting in the same speedup curves (both in terms of weak
and strong scaling) on different machines. Another option is to use a met-
ric of performance like Flop/s (Floating point operations per second) or
LUP/s (Lattice Updates per second) and look at the way they scale over
the number of threads used to characterize a code and an architecture.

Having an insight into the behavior of the scaling allows testing if
it is bound to specific architectural characteristics of the machine or if

10.1. STENCIL COMPILERS 113

2d-1r-homogeneous-constant-star

2d-2r-homogeneous-constant-star

2d-3r-homogeneous-constant-star

2d-4r-homogeneous-constant-star

ECM

Roofline

2.79 2.86 3.95 10.04

0.59 1.48 2.67 7.75

100

75

50

25

0

25

50

75

100

percent error

2d-1r-homogeneous-constant-star

2d-2r-homogeneous-constant-star

2d-3r-homogeneous-constant-star

2d-4r-homogeneous-constant-star

ECM

Roofline

29.34 34.63 36.37 44.75

29.79 33.51 36.52 44.11

100

75

50

25

0

25

50

75

100
percent error

2d-1r-heterogeneous-constant-star

2d-2r-heterogeneous-constant-star

2d-3r-heterogeneous-constant-star

2d-4r-heterogeneous-constant-star

ECM

Roofline

2.19 -3.57 -27.75 -40.00

0.07 0.63 2.56 8.01

100

75

50

25

0

25

50

75

100

percent error

2d-1r-heterogeneous-constant-star

2d-2r-heterogeneous-constant-star

2d-3r-heterogeneous-constant-star

2d-4r-heterogeneous-constant-star

ECM

Roofline

28.87 -3.03 -27.53 -40.44

29.92 34.04 37.24 43.56

100

75

50

25

0

25

50

75

100

percent error

2d-1r-point-symmetric-constant-star

2d-2r-point-symmetric-constant-star

2d-3r-point-symmetric-constant-star

2d-4r-point-symmetric-constant-star

ECM

Roofline

2.83 3.27 -13.87 -27.47

0.71 1.88 2.74 8.51

100

75

50

25

0

25

50

75

100

percent error

2d-1r-point-symmetric-constant-star

2d-2r-point-symmetric-constant-star

2d-3r-point-symmetric-constant-star

2d-4r-point-symmetric-constant-star

ECM

Roofline

28.55 33.91 -13.95 -27.97

29.68 33.40 36.70 43.77

100

75

50

25

0

25

50

75

100

percent error

2d-1r-isotropic-constant-star

2d-2r-isotropic-constant-star

2d-3r-isotropic-constant-star

2d-4r-isotropic-constant-star

ECM

Roofline

2.21 2.61 -5.38 -18.94

0.21 1.38 2.39 8.94

100

75

50

25

0

25

50

75

100

percent error

2d-1r-isotropic-constant-star

2d-2r-isotropic-constant-star

2d-3r-isotropic-constant-star

2d-4r-isotropic-constant-star

ECM

Roofline

28.70 34.22 -4.35 -19.41

29.72 33.62 37.00 44.68

100

75

50

25

0

25

50

75

100

percent error

Figure 10.1: Percentage error of the prediction obtained through ECM and
Roofline model, applied to a 2-dimensional star stencil with homogeneous, het-
erogeneous, point-symmetric and isotropic constant coefficients, on a socket (10
cores) of Emmy (left) and miniHPC (right), against the measured performance.
The predicted performance has been obtained via Kerncraft, and the measured
performance through PROVA!.

114 CHAPTER 10. PERFORMANCE BENCHMARKING EXPERIMENTS

2d-1r-homogeneous-variable-star

2d-2r-homogeneous-variable-star

2d-3r-homogeneous-variable-star

2d-4r-homogeneous-variable-star

ECM

Roofline

59.41 55.55 57.85 41.69

60.40 56.86 58.29 60.89

100

75

50

25

0

25

50

75

100

percent error

2d-1r-homogeneous-variable-star

2d-2r-homogeneous-variable-star

2d-3r-homogeneous-variable-star

2d-4r-homogeneous-variable-star

ECM

Roofline

15.68 22.63 29.88 36.01

15.68 23.24 30.39 35.62

100

75

50

25

0

25

50

75

100
percent error

2d-1r-heterogeneous-variable-star

2d-2r-heterogeneous-variable-star

2d-3r-heterogeneous-variable-star

2d-4r-heterogeneous-variable-star

ECM

Roofline

-29.67 16.61 -6.01 11.17

25.54 -3.08 -5.31 -5.06

100

75

50

25

0

25

50

75

100

percent error

2d-1r-heterogeneous-variable-star

2d-2r-heterogeneous-variable-star

2d-3r-heterogeneous-variable-star

2d-4r-heterogeneous-variable-star

ECM

Roofline

-3.68 20.01 8.66 11.06

35.08 13.33 8.89 8.20

100

75

50

25

0

25

50

75

100

percent error

2d-1r-point-symmetric-variable-star

2d-2r-point-symmetric-variable-star

2d-3r-point-symmetric-variable-star

2d-4r-point-symmetric-variable-star

ECM

Roofline

10.59 -25.86 21.87 16.73

-15.81 -4.25 -1.42 -2.38

100

75

50

25

0

25

50

75

100

percent error

2d-1r-point-symmetric-variable-star

2d-2r-point-symmetric-variable-star

2d-3r-point-symmetric-variable-star

2d-4r-point-symmetric-variable-star

ECM

Roofline

29.59 1.59 25.85 21.51

13.90 19.46 15.00 15.18

100

75

50

25

0

25

50

75

100

percent error

2d-1r-isotropic-variable-star

2d-2r-isotropic-variable-star

2d-3r-isotropic-variable-star

2d-4r-isotropic-variable-star

ECM

Roofline

2.19 13.49 16.17 -4.11

7.48 7.37 0.79 7.36

100

75

50

25

0

25

50

75

100

percent error

2d-1r-isotropic-variable-star

2d-2r-isotropic-variable-star

2d-3r-isotropic-variable-star

2d-4r-isotropic-variable-star

ECM

Roofline

45.16 41.19 38.38 40.24

43.71 41.93 37.59 39.79

100

75

50

25

0

25

50

75

100

percent error

Figure 10.2: Percentage error of the prediction obtained through ECM and
Roofline model, applied to a 2-dimensional star stencil with homogeneous, het-
erogeneous, point-symmetric and isotropic variable coefficients, on a socket (10
cores) of Emmy (left) and miniHPC (right), against the measured performance.
The predicted performance has been obtained via Kerncraft, and the measured
performance through PROVA!.

10.1. STENCIL COMPILERS 115

2d-1r-homogeneous-constant-box

2d-2r-homogeneous-constant-box

2d-3r-homogeneous-constant-box

2d-4r-homogeneous-constant-box

ECM

Roofline

1.52 17.38 26.17 11.23

-1.00 14.90 107.79 230.18

100

75

50

25

0

25

50

75

100

percent error

2d-1r-homogeneous-constant-box

2d-2r-homogeneous-constant-box

2d-3r-homogeneous-constant-box

2d-4r-homogeneous-constant-box

ECM

Roofline

23.47 29.67 60.07 22.69

24.03 30.00 168.39 288.52

100

75

50

25

0

25

50

75

100
percent error

2d-1r-heterogeneous-constant-box

2d-2r-heterogeneous-constant-box

2d-3r-heterogeneous-constant-box

2d-4r-heterogeneous-constant-box

ECM

Roofline

0.44 -37.22 -45.35 -52.23

-1.65 41.38 193.00 224.59

100

75

50

25

0

25

50

75

100

percent error

2d-1r-heterogeneous-constant-box

2d-2r-heterogeneous-constant-box

2d-3r-heterogeneous-constant-box

2d-4r-heterogeneous-constant-box

ECM

Roofline

1.07 -45.69 -60.61 -66.20

24.14 58.64 182.99 345.30

100

75

50

25

0

25

50

75

100

percent error

2d-1r-point-symmetric-constant-box

2d-2r-point-symmetric-constant-box

2d-3r-point-symmetric-constant-box

2d-4r-point-symmetric-constant-box

ECM

Roofline

0.86 -33.68 -31.99 -33.58

-1.49 20.44 146.55 251.06

100

75

50

25

0

25

50

75

100

percent error

2d-1r-point-symmetric-constant-box

2d-2r-point-symmetric-constant-box

2d-3r-point-symmetric-constant-box

2d-4r-point-symmetric-constant-box

ECM

Roofline

24.79 -25.49 -51.03 -52.17

25.37 84.17 141.85 277.86

100

75

50

25

0

25

50

75

100

percent error

2d-1r-isotropic-constant-box

2d-2r-isotropic-constant-box

2d-3r-isotropic-constant-box

2d-4r-isotropic-constant-box

ECM

Roofline

1.66 16.90 -42.89 -45.14

-0.76 14.51 107.37 231.58

100

75

50

25

0

25

50

75

100

percent error

2d-1r-isotropic-constant-box

2d-2r-isotropic-constant-box

2d-3r-isotropic-constant-box

2d-4r-isotropic-constant-box

ECM

Roofline

23.92 31.20 -53.42 -56.69

24.51 30.54 129.32 240.53

100

75

50

25

0

25

50

75

100

percent error

Figure 10.3: Percentage error of the prediction obtained through ECM and
Roofline model, applied to a 2-dimensional box stencil with homogeneous, het-
erogeneous, point-symmetric and isotropic constant coefficients, on a socket (10
cores) of Emmy (left) and miniHPC (right), against the measured performance.
The predicted performance has been obtained via Kerncraft, and the measured
performance through PROVA!.

116 CHAPTER 10. PERFORMANCE BENCHMARKING EXPERIMENTS

2d-1r-homogeneous-variable-box

2d-2r-homogeneous-variable-box

2d-3r-homogeneous-variable-box

ECM

Roofline

-0.36 1.57 28.36

-2.41 -0.42 69.14

100

75

50

25

0

25

50

75

100

percent error

2d-1r-homogeneous-variable-box

2d-2r-homogeneous-variable-box

2d-3r-homogeneous-variable-box

ECM

Roofline

25.19 25.30 58.79

24.45 25.61 103.88

100

75

50

25

0

25

50

75

100

percent error

2d-1r-heterogeneous-variable-box

2d-2r-heterogeneous-variable-box

2d-3r-heterogeneous-variable-box

ECM

Roofline

18.66 -5.66 -9.53

19.35 -6.94 -8.82

100

75

50

25

0

25

50

75

100

percent error

2d-1r-heterogeneous-variable-box

2d-2r-heterogeneous-variable-box

2d-3r-heterogeneous-variable-box

ECM

Roofline

22.23 8.33 1.19

22.67 6.74 1.79

100

75

50

25

0

25

50

75

100

percent error

2d-1r-point-symmetric-variable-box

2d-2r-point-symmetric-variable-box

2d-3r-point-symmetric-variable-box

ECM

Roofline

25.54 12.87 -1.60

-13.35 -4.87 -4.67

100

75

50

25

0

25

50

75

100

percent error

2d-1r-point-symmetric-variable-box

2d-2r-point-symmetric-variable-box

2d-3r-point-symmetric-variable-box

ECM

Roofline

33.66 16.38 9.26

4.97 12.16 7.45

100

75

50

25

0

25

50

75

100

percent error

2d-1r-isotropic-variable-box

2d-2r-isotropic-variable-box

2d-3r-isotropic-variable-box

ECM

Roofline

38.42 27.32 17.86

-25.44 4.19 31.37

100

75

50

25

0

25

50

75

100

percent error

2d-1r-isotropic-variable-box

2d-2r-isotropic-variable-box

2d-3r-isotropic-variable-box

ECM

Roofline

41.58 38.13 0.67

-1.67 27.71 34.09

100

75

50

25

0

25

50

75

100

percent error

Figure 10.4: Percentage error of the prediction obtained through ECM and
Roofline model, applied to a 2-dimensional box stencil with homogeneous, het-
erogeneous, point-symmetric and isotropic variable coefficients, on a socket (10
cores) of Emmy (left) and miniHPC (right), against the measured performance.
The predicted performance has been obtained via Kerncraft, and the measured
performance through PROVA!.

10.1. STENCIL COMPILERS 117

3d-1r-homogeneous-constant-star

3d-2r-homogeneous-constant-star

3d-3r-homogeneous-constant-star

3d-4r-homogeneous-constant-star

ECM

Roofline

9.82 12.16 47.03 40.18

7.02 -51.33 -30.92 -24.23

100

75

50

25

0

25

50

75

100

percent error

3d-1r-homogeneous-constant-star

3d-2r-homogeneous-constant-star

3d-3r-homogeneous-constant-star

3d-4r-homogeneous-constant-star

ECM

Roofline

25.14 36.07 7.45 -0.74

24.39 -46.97 -41.10 -35.70

100

75

50

25

0

25

50

75

100
percent error

3d-1r-heterogeneous-constant-star

3d-2r-heterogeneous-constant-star

3d-3r-heterogeneous-constant-star

3d-4r-heterogeneous-constant-star

ECM

Roofline

9.08 -18.60 37.33 29.42

-33.45 -48.77 -0.54 3.00

100

75

50

25

0

25

50

75

100

percent error

3d-1r-heterogeneous-constant-star

3d-2r-heterogeneous-constant-star

3d-3r-heterogeneous-constant-star

3d-4r-heterogeneous-constant-star

ECM

Roofline

19.99 -25.32 -30.77 5.81

-29.57 -44.75 -40.71 1.10

100

75

50

25

0

25

50

75

100

percent error

3d-1r-point-symmetric-constant-star

3d-2r-point-symmetric-constant-star

3d-3r-point-symmetric-constant-star

3d-4r-point-symmetric-constant-star

ECM

Roofline

11.59 4.73 -3.86 12.71

-32.37 -44.63 -40.39 -24.74

100

75

50

25

0

25

50

75

100

percent error

3d-1r-point-symmetric-constant-star

3d-2r-point-symmetric-constant-star

3d-3r-point-symmetric-constant-star

3d-4r-point-symmetric-constant-star

ECM

Roofline

29.44 -8.49 -28.54 -32.44

-29.34 -43.22 -47.69 -45.66

100

75

50

25

0

25

50

75

100

percent error

3d-1r-isotropic-constant-star

3d-2r-isotropic-constant-star

3d-3r-isotropic-constant-star

3d-4r-isotropic-constant-star

ECM

Roofline

10.81 11.47 6.55 -5.58

-32.85 -48.41 -42.29 -45.08

100

75

50

25

0

25

50

75

100

percent error

3d-1r-isotropic-constant-star

3d-2r-isotropic-constant-star

3d-3r-isotropic-constant-star

3d-4r-isotropic-constant-star

ECM

Roofline

29.11 4.80 -15.78 -18.98

-29.50 -43.31 -46.16 -43.10

100

75

50

25

0

25

50

75

100

percent error

Figure 10.5: Percentage error of the prediction obtained through ECM and
Roofline model, applied to a 3-dimensional star stencil with homogeneous, het-
erogeneous, point-symmetric and isotropic constant coefficients, on a socket (10
cores) of Emmy (left) and miniHPC (right), against the measured performance.
The predicted performance has been obtained via Kerncraft, and the measured
performance through PROVA!.

118 CHAPTER 10. PERFORMANCE BENCHMARKING EXPERIMENTS

3d-1r-homogeneous-variable-star

3d-2r-homogeneous-variable-star

3d-3r-homogeneous-variable-star

3d-4r-homogeneous-variable-star

ECM

Roofline

-9.01 3.48 57.50 37.91

-7.74 -47.48 -27.78 -28.66

100

75

50

25

0

25

50

75

100

percent error

3d-1r-homogeneous-variable-star

3d-2r-homogeneous-variable-star

3d-3r-homogeneous-variable-star

3d-4r-homogeneous-variable-star

ECM

Roofline

-33.07 4.03 -0.33 -2.02

-32.91 -52.71 -45.46 -40.14

100

75

50

25

0

25

50

75

100
percent error

3d-1r-heterogeneous-variable-star

3d-2r-heterogeneous-variable-star

3d-3r-heterogeneous-variable-star

3d-4r-heterogeneous-variable-star

ECM

Roofline

-0.45 3.78 15.60 17.98

0.04 -22.09 -10.21 -9.02

100

75

50

25

0

25

50

75

100

percent error

3d-1r-heterogeneous-variable-star

3d-2r-heterogeneous-variable-star

3d-3r-heterogeneous-variable-star

3d-4r-heterogeneous-variable-star

ECM

Roofline

-6.35 16.49 14.61 13.70

-7.17 -11.68 -10.89 -11.92

100

75

50

25

0

25

50

75

100

percent error

3d-1r-point-symmetric-variable-star

3d-2r-point-symmetric-variable-star

3d-3r-point-symmetric-variable-star

3d-4r-point-symmetric-variable-star

ECM

Roofline

1.72 2.32 26.56 -44.98

1.50 -10.90 -14.74 -29.55

100

75

50

25

0

25

50

75

100

percent error

3d-1r-point-symmetric-variable-star

3d-2r-point-symmetric-variable-star

3d-3r-point-symmetric-variable-star

3d-4r-point-symmetric-variable-star

ECM

Roofline

-3.57 13.47 22.92 -33.18

-4.44 -14.21 -17.61 -20.16

100

75

50

25

0

25

50

75

100

percent error

3d-1r-isotropic-variable-star

3d-2r-isotropic-variable-star

3d-3r-isotropic-variable-star

3d-4r-isotropic-variable-star

ECM

Roofline

-4.45 3.67 29.82 18.11

-4.77 -39.12 -30.87 -41.72

100

75

50

25

0

25

50

75

100

percent error

3d-1r-isotropic-variable-star

3d-2r-isotropic-variable-star

3d-3r-isotropic-variable-star

3d-4r-isotropic-variable-star

ECM

Roofline

-7.90 16.08 21.97 9.90

-7.98 -31.61 -32.04 -36.14

100

75

50

25

0

25

50

75

100

percent error

Figure 10.6: Percentage error of the prediction obtained through ECM and
Roofline model, applied to a 3-dimensional star stencil with homogeneous, het-
erogeneous, point-symmetric and isotropic variable coefficients, on a socket (10
cores) of Emmy (left) and miniHPC (right), against the measured performance.
The predicted performance has been obtained via Kerncraft, and the measured
performance through PROVA!.

10.1. STENCIL COMPILERS 119

3d-1r-homogeneous-constant-box

3d-2r-homogeneous-constant-box

ECM

Roofline

34.74 18.39

64.76 920.01

100

75

50

25

0

25

50

75

100

percent error

3d-1r-homogeneous-constant-box

3d-2r-homogeneous-constant-box

ECM

Roofline

4.57 -50.22

48.75 404.91

100

75

50

25

0

25

50

75

100

percent error

3d-1r-heterogeneous-constant-box

3d-2r-heterogeneous-constant-box

ECM

Roofline

114.16 19.79

224.62 986.76

100

75

50

25

0

25

50

75

100

percent error

3d-1r-heterogeneous-constant-box

3d-2r-heterogeneous-constant-box

ECM

Roofline

-14.38 -38.10

53.10 593.03

100

75

50

25

0

25

50

75

100

percent error

3d-1r-point-symmetric-constant-box

3d-2r-point-symmetric-constant-box

ECM

Roofline

46.18 58.20

78.62 617.67

100

75

50

25

0

25

50

75

100

percent error

3d-1r-point-symmetric-constant-box

3d-2r-point-symmetric-constant-box

ECM

Roofline

-19.15 -3.98

17.56 408.15

100

75

50

25

0

25

50

75

100

percent error

3d-1r-isotropic-constant-box

3d-2r-isotropic-constant-box

3d-3r-isotropic-constant-box

ECM

Roofline

14.83 43.46 41.73

40.05 560.00 1490.57

100

75

50

25

0

25

50

75

100

percent error

3d-1r-isotropic-constant-box

3d-2r-isotropic-constant-box

3d-3r-isotropic-constant-box

ECM

Roofline

-6.35 -9.24 -24.20

37.08 390.02 724.23

100

75

50

25

0

25

50

75

100

percent error

Figure 10.7: Percentage error of the prediction obtained through ECM and
Roofline model, applied to a 3-dimensional box stencil with homogeneous, het-
erogeneous, point-symmetric and isotropic constant coefficients, on a socket (10
cores) of Emmy (left) and miniHPC (right), against the measured performance.
The predicted performance has been obtained via Kerncraft, and the measured
performance through PROVA!.

120 CHAPTER 10. PERFORMANCE BENCHMARKING EXPERIMENTS

3d-1r-homogeneous-variable-box

3d-2r-homogeneous-variable-box

ECM

Roofline

49.56 22.51

105.85 766.28

100

75

50

25

0

25

50

75

100

percent error

3d-1r-homogeneous-variable-box

3d-2r-homogeneous-variable-box

ECM

Roofline

5.11 -49.78

47.54 321.95

100

75

50

25

0

25

50

75

100

percent error

3d-1r-heterogeneous-variable-box

3d-2r-heterogeneous-variable-box

ECM

Roofline

2.07 11.47

2.11 -1.69

100

75

50

25

0

25

50

75

100

percent error

3d-1r-heterogeneous-variable-box

3d-2r-heterogeneous-variable-box

ECM

Roofline

0.57 1.84

-0.16 2.64

100

75

50

25

0

25

50

75

100

percent error

3d-1r-point-symmetric-variable-box

3d-2r-point-symmetric-variable-box

ECM

Roofline

0.88 3.58

-11.27 -12.07

100

75

50

25

0

25

50

75

100

percent error

3d-1r-point-symmetric-variable-box

3d-2r-point-symmetric-variable-box

ECM

Roofline

1.31 -0.74

-0.13 -4.27

100

75

50

25

0

25

50

75

100

percent error

3d-1r-isotropic-variable-box

3d-2r-isotropic-variable-box

ECM

Roofline

15.31 58.48

16.37 344.05

100

75

50

25

0

25

50

75

100

percent error

3d-1r-isotropic-variable-box

3d-2r-isotropic-variable-box

ECM

Roofline

-0.63 -8.77

-0.33 166.99

100

75

50

25

0

25

50

75

100

percent error

Figure 10.8: Percentage error of the prediction obtained through ECM and
Roofline model, applied to a 3-dimensional box stencil with homogeneous, het-
erogeneous, point-symmetric and isotropic variable coefficients, on a socket (10
cores) of Emmy (left) and miniHPC (right), against the measured performance.
The predicted performance has been obtained via Kerncraft, and the measured
performance through PROVA!.

10.2. DISCUSSION OF THE RESULTS 121

it represents a property of the compiler. Only by evaluating a compiler
on several architectures it is possible to understand how to improve its
usage.

10.2 Discussion of the Results

Having all the experiments being executed using PROVA!, we ensure their
reproducibility, as discussed in Chapter 5 and in [87, 59, 56]. We can thus
confidently focus on the analysis of the results concerning the perfor-
mance models used (focus of the validation macro-experiment presented
in Section 10.2.1) and to the stencil compilers that generated the source
code (the focus of the performance engineering cycle macro-experiment
presented in Section 10.2.2).

10.2.1 Validation Experiment

The first macro-experiment has been conceived and performed with the
idea of having a big picture of how the Roofline and the ECM perfor-
mance model predict the execution of the stencil kernels described in
Section 9.2.1 on the systems presented in Section 9.1. The methods used
have been introduced in Section 9.3.

In Figures 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8 are presented the
percentage errors of the predicted performance for a given stencil ker-
nel, obtained using ECM and Roofline models, against the measured per-
formance, obtained executing the experiments through PROVA!. All the
predictions (of the performance of a socket) have been obtained through
Kerncraft by running a command such as the one presented in Listing 10.1.

$ kerncraft ´P LC ´p Roofline ´p ECM stencil . c \
´m IvyBridgeEP_E5 ´2660v2 . yml ´D M 3000 ´D N 3000\
´́ unit=FLOP/s ´́ cores=10 ´vv

Listing 10.1: A possible command used to obtain the performance predic-
tion of Roofline and ECM models for a stencil on an Ivy Bridge E5-2660v2
machine.

Each measured performance is the average of 10 executions, each run-
ning over 10 cores (threads). The quantities measured are: GFLOP/s,
GLUP/s, execution time, iterations, FLOP. The percentage error has been

122 CHAPTER 10. PERFORMANCE BENCHMARKING EXPERIMENTS

calculated according to the following formula:

%Error “
Predicted´Measured

Measured
˚ 100.

A negative value of the percentage error thus means that the mea-
sured value is higher than the predicted one, and vice-versa.

In this work, when the percent error is smaller than 10%, the predic-
tions are considered fully validated by the experiments.

The color bars vary from red to green, with these extremes meaning
a lousy matching between predictions and measured values. Values in
the -10% to 10% are acceptable and can be visually recognized by a light
green or light orange.

The first comments address the difference between the error of the
prediction for the same stencil on the different machines (see Section 4.1).
Under this point of view, the results are positive, since the light and dark
spots mostly match between the two systems, with some exceptions such
as the 2-dimensional isotropic variable star stencil, shown in Figure 10.2.

Generally, measured and predicted results are closer on Emmy (the
graphs on the left in Figures 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8). It
must be noted that the higher rate of percent error on miniHPC could be
caused by an approximation in the modeling of the architecture. Kern-
craft accepts as an input, together with a specification of the kernel, also a
description of the architecture. MiniHPC differs from Emmy in the ways
of associativity of the L3, in particular, said number is not a power of
two, which makes it impossible for Kerncraft to handle it. Consequently,
the ways of associativity, when describing miniHPC, have been modeled
as the closest power of two and the number of sets has been modified
accordingly:

sets ˚ways o f associativity ˚ cache line size “ cache size.

For some kernels, such as 2-dimensional heterogeneous/isotropic con-
stant box stencil, both models fail on both machines. It is an interesting
aspect to investigate in more details, and it is the object of the problem
described in Section 9.2.2.

By definition, the roofline model represents an upper bound to the
achievable performance. Thus its percent error on the heatmaps should
always be green (positive). There are some cases when this does not hap-
pen, such as a 2-dimensional isotropic variable box (Figure 10.4), and the

10.2. DISCUSSION OF THE RESULTS 123

3-dimensional stencils such as the isotropic variable star. In the latter
ECM matches the measured performance much better than Roofline.

In the calculation of the Roofline, Kerncraft tries to take into account
the contention of the shared resources (L3 cache), by equally dividing
them among the cores available on the socket. While on one side it is
correct to assume such a contention, the original assumption may result
too pessimistic: if the bottleneck is the L3, then it may underestimate the
predicted performance. In fact, the closest selected benchmark differs
between the predicted execution with one core and with ten cores. We
believe this to be an aspect to be addressed into the models calculated by
Kerncraft.

It is worth noting that the performance measured is obtained through
a naive OpenMP parallelization and the threads are pinned to the logical
nodes. The strategy used to decide the thread/core affinity also has an
impact on the performance, when using the full node, as shown in the
next Section.

10.2.2 Performance Engineering Cycle Experiment

Besides the performance analysis, that has been conducted using Kern-
craft, and the reproducible performance experiments, thanks to PROVA!,
it is highly relevant to be able to interpret the results, both when the mea-
sured performance matches the predicted one, and also when it does not.
Such an interpretation allows discerning when the model needs to be
adapted, from when the code must be optimized, to conclude the perfor-
mance analysis cycle with the best possible parallel implementation of a
given kernel.

The role of this Section is precisely the one to provide a correct in-
terpretation of performance analysis and reproducible experimentation,
framed by the taxonomy of experiments described in Section 4.1.

The experiments commented here, i.e., 2-dimensional isotropic box
stencil with constant coefficients and radius 1 and 4, have been described
in Section 9.2.2, run on a single node of both the clusters described in
Section 9.1, without explicitly pinning the threads first and then pinning
them to the cores of the node, using the tool Likwid and the pinning
strategies illustrated in Section 6.3.

In all our performance graphs, the histograms show the average value,
while the error bars show the standard deviation obtained out of 10 exe-
cutions. The stencil compilers considered (PLUTO and PATUS) use OpenMP

124 CHAPTER 10. PERFORMANCE BENCHMARKING EXPERIMENTS

directives for running on a system with multiple threads. Because of this,
we compare said approaches against a naive OpenMP implementation
(with NUMA aware initialization) of the chosen stencil to evaluate them.
We experienced a strong fluctuation in the outputs, concerning perfor-
mance, when not using explicit pinning.

The heatmap presented in the previous section (Figure 10.3), shows
that both ECM and Roofline models almost perfectly match the mea-
sured performance on Emmy for the radius one kernel, and they both
fail in predicting the performance for the radius four kernel. In the latter
case, ECM underestimates the performance on both systems, the predic-
tion being slightly worse on miniHPC; Roofline instead overestimates the
performance of a socket, by a factor of 2.5. As explained earlier in Sec-
tion 10.2.1, in the case of miniHPC there is a representation issue (hard-
ware description) that may cause a higher error than on Emmy, that is
well modeled.

Recalling the concepts of access pattern and locality explained in Sec-
tion 8.2.3 and shown in Figure 8.5, we can derive that when executing
the 2-dimensional isotropic box constant stencil with radius 1, and deal-
ing with a cache size ą N` 2 (with N being the number of columns of the
grid), only 1 load and 1 store, plus the write allocate take place. In case
of the 2-dimensional isotropic box constant stencil with radius 4, when
dealing with a cache size ą N ` 8, also only requires 1 load and 1 store,
plus the write allocate. Thus, under the stated conditions, both stencils
only need to transfer 3 data from/to the cache:

Data tra f f ic “ 3 ˚ 8 bytes “ 24B.

The number of FLOP to execute is 11 in the case of the radius 1 stencil,
thus the arithmetic intensity to the memory is:

AI “
1
Bc
“

11FLOP
24B

“ 0.46.

The number of FLOP to execute is 89 in the case of the radius a stencil,
thus the arithmetic intensity to the memory is :

AI “
1
Bc
“

89FLOP
24B

“ 3.7.

=== Roofline ===

Bottlenecks:

level | a. intensity | performance | peak bw | peak bw kernel

10.2. DISCUSSION OF THE RESULTS 125

--------+--------------+-----------------+---------------+----------------

CPU | | 176.00 GFLOP/s | |

L1 | 0.59 FLOP/B | 198.23 GFLOP/s | 338.55 GB/s | triad

L2 | 1.0 FLOP/B | 328.58 GFLOP/s | 324.89 GB/s | triad

L3 | 3.7 FLOP/B | 892.56 GFLOP/s | 240.69 GB/s | copy

MEM | 3.7 FLOP/B | 148.07 GFLOP/s | 39.93 GB/s | copy

Cache or mem bound.

148.07 GFLOP/s due to MEM transfer bottleneck (with bw from copy benchmark)

Arithmetic Intensity: 3.71 FLOP/B

=== ECM ===

T_nOL = 360.0 cy/CL

T_OL = 640.0 cy/CL

L2 = 71.20 GFLOP/s

L3 = 261.07 GFLOP/s

MEM = 150.74 GFLOP/s

memory cycles based on copy kernel with 40.65 GB/s

{ 640.0 || 360.0 | 22.0 | 6.0 | 10.4 } cy/CL = 2.45 GFLOP/s

{ 640.0 \ 640.0 \ 640.0 \ 640.0 } cy/CL

saturating at 61.6 cores

Listing 10.2: ECM prediction through Kerncrat of a 2-dimensional, radius
4, isotropic box stencil with constant coefficients and size 30002 on Emmy.

=== Roofline ===

Bottlenecks:

level | a. intensity | performance | peak bw | peak bw kernel

--------+--------------+-----------------+---------------+----------------

CPU | | 416.00 GFLOP/s | |

L1 | 0.59 FLOP/B | 227.21 GFLOP/s | 388.04 GB/s | triad

L2 | 1.0 FLOP/B | 384.95 GFLOP/s | 380.62 GB/s | triad

L3 | 3.7 FLOP/B | 1232.20 GFLOP/s | 332.28 GB/s | copy

MEM | 3.7 FLOP/B | 236.63 GFLOP/s | 63.81 GB/s | copy

Cache or mem bound.

227.21 GFLOP/s due to L1 transfer bottleneck (with bw from triad benchmark)

Arithmetic Intensity: 0.59 FLOP/B

=== ECM ===

T_nOL = 360.0 cy/CL

T_OL = 640.0 cy/CL

L2 = 84.15 GFLOP/s

L3 = 308.53 GFLOP/s

MEM = 236.96 GFLOP/s

memory cycles based on copy kernel with 63.90 GB/s

{ 640.0 || 360.0 | 22.0 | 6.0 | 7.8 } cy/CL = 2.89 GFLOP/s

{ 640.0 \ 640.0 \ 640.0 \ 640.0 } cy/CL

saturating at 81.9 cores

Listing 10.3: ECM prediction through Kerncrat of a 2-dimensional, ra-
dius 4, isotropic box stencil with constant coefficients and size 30002 on
miniHPC.

=== Roofline ===

Bottlenecks:

126 CHAPTER 10. PERFORMANCE BENCHMARKING EXPERIMENTS

level | a. intensity | performance | peak bw | peak bw kernel

--------+--------------+-----------------+---------------+----------------

CPU | | 176.00 GFLOP/s | |

L1 | 0.59 FLOP/B | 198.23 GFLOP/s | 338.55 GB/s | triad

L2 | 1.0 FLOP/B | 328.58 GFLOP/s | 324.89 GB/s | triad

L3 | 3.7 FLOP/B | 892.56 GFLOP/s | 240.69 GB/s | copy

MEM | 3.7 FLOP/B | 148.07 GFLOP/s | 39.93 GB/s | copy

Cache or mem bound.

148.07 GFLOP/s due to MEM transfer bottleneck (with bw from copy benchmark)

Arithmetic Intensity: 3.71 FLOP/B

=== ECM ===

T_nOL = 360.0 cy/CL

T_OL = 640.0 cy/CL

L2 = 71.20 GFLOP/s

L3 = 261.07 GFLOP/s

MEM = inf YFLOP/s

memory cycles based on load kernel with 46.20 GB/s

{ 640.0 || 360.0 | 22.0 | 6.0 | 0.0 } cy/CL = 2.45 GFLOP/s

{ 640.0 \ 640.0 \ 640.0 \ 640.0 } cy/CL

saturating at inf cores

Listing 10.4: ECM prediction through Kerncrat of a 2-dimensional, radius
4, isotropic box stencil with constant coefficients and size 5002 on Emmy.

=== Roofline ===

Bottlenecks:

level | a. intensity | performance | peak bw | peak bw kernel

--------+--------------+-----------------+---------------+----------------

CPU | | 416.00 GFLOP/s | |

L1 | 0.59 FLOP/B | 227.21 GFLOP/s | 388.04 GB/s | triad

L2 | 1.0 FLOP/B | 384.95 GFLOP/s | 380.62 GB/s | triad

L3 | 3.7 FLOP/B | 1232.20 GFLOP/s | 332.28 GB/s | copy

MEM | 3.7 FLOP/B | 236.63 GFLOP/s | 63.81 GB/s | copy

Cache or mem bound.

227.21 GFLOP/s due to L1 transfer bottleneck (with bw from triad benchmark)

Arithmetic Intensity: 0.59 FLOP/B

=== ECM ====

T_nOL = 360.0 cy/CL

T_OL = 640.0 cy/CL

L2 = 84.15 GFLOP/s

L3 = 308.53 GFLOP/s

MEM = inf YFLOP/s

memory cycles based on load kernel with 57.39 GB/s

{ 640.0 || 360.0 | 22.0 | 6.0 | 0.0 } cy/CL = 2.89 GFLOP/s

{ 640.0 \ 640.0 \ 640.0 \ 640.0 } cy/CL

saturating at inf cores

Listing 10.5: ECM prediction through Kerncrat of a 2-dimensional, radius
4, isotropic box stencil with constant coefficients and size 5002 on miniHPC

Such calculations are confirmed by the grey box analysis performed
using Kerncraft (running a command such as the one presented in List-

10.2. DISCUSSION OF THE RESULTS 127

ing 10.1) and displayed in Listings 10.2 and 10.3.
The automatic analysis of Kerncraft identifies a different bottleneck

on Emmy (memory) and miniHPC (L1), thus resulting in the bottleneck,
not in the L3 to memory data path, but in L1. The bottleneck contributes
to the Roofline prediction that, in both cases, overestimates the expected
performance: a prediction of 148.7 GFLOP/s on Emmy (against the mea-
sured value of 44.52 GFLOP/s) and 227.21 GFLOP/s (against the mea-
sured value of 66.7 GFLOP/s) on miniHPC.

Instead, the ECM model predicts a saturation point greater than the
socket, but an expected performance per core quite low, that brings to
a forecast of 24.5 GFLOP/s on Emmy (against the measured value of
44.52 GFLOP/s) and 28.9 GFLOP/s (against the measured value of 66.7
GFLOP/s) on miniHPC.

Commenting on the overestimation of the performance of the Roofline
model, it is worth noting that it may mean that there is an available per-
formance to be exploited, that the actual code does not, which should be
addressed in the optimization phase.

Similar results are measured and predicted for the 2-dimensional box
stencil with isotropic constant coefficients, radius 4 and grid size 5002,
with the difference that, in this case, the grid is small enough to fit in
cache. The Roofline prediction overestimates the expected performance:
a prediction of 148.7 GFLOP/s on Emmy (against the measured value
of 43.99 GFLOP/s) and 227.21 GFLOP/s (against the measured value of
63.08 GFLOP/s) on miniHPC. The ECM model instead predicts a satura-
tion point greater than the socket, but an expected performance per core
quite low, that brings to a forecast of 24.5 GFLOP/s on Emmy (against
the measured value of 43.99 GFLOP/s) and 28.9 GFLOP/s (against the
measured value of 66.7 GFLOP/s) on miniHPC.

Switching to the 2-dimensional isotropic box constant stencil with ra-
dius 1, the measured values for a grid size of 5002 are 29.39 GFLOP/s and
73.18 GFLOP/s on Emmy and miniHPC respectively. The ECM predic-
tion has been 64.5 GFLOP/s on Emmy and 67.7 GFLOP/s on miniHPC,
while the Roofline prediction has been 18.30 on Emmy and 29.25 GFLOP/s
on miniHPC. Said predictions differ quite a lot and the Roofline ones
have been proven to be extremely wrong. Identical comments can be
done for the version using a 30002 grid.

Some considerations related to the compilers are also needed. Sten-
cils compilers have the task to parallelize a stencil computation automati-
cally, often accepting a pseudo-code (a DSL in the case of PATUS) or plain,

128 CHAPTER 10. PERFORMANCE BENCHMARKING EXPERIMENTS

0

20

40

60

80

100

120

1 2 4 6 8 10 16 20

G
F

lo
p/

s

Number of Threads

Performance Comparison of Project: 2d-1r-iso-const-box

Parameters (M_MAX N_MAX T_MAX): 500 500 200

Implemented Methods

OpenMP_node

OpenMP_spread

PATUS_none

PLUTO_node

PLUTO_spread

0

20

40

60

80

100

120

1 2 4 6 8 10 16 20

G
F

lo
p/

s

Number of Threads

Performance Comparison of Project: 2d-1r-iso-const-box

Parameters (M_MAX N_MAX T_MAX): 500 500 200

Implemented Method

OpenMP_node

OpenMP_spread

PATUS_none

PLUTO_node

PLUTO_spread

0

10

20

30

40

50

60

1 2 4 6 8 10 16 20

G
F

lo
p/

s

Number of Threads

Performance Comparison of Project: 2d-1r-iso-const-box

Parameters (M_MAX N_MAX T_MAX): 3000 3000 200

Implemented Methods

OpenMP_node

OpenMP_spread

PATUS_none

PLUTO_node

PLUTO_spread

0

10

20

30

40

50

60

1 2 4 6 8 10 16 20

G
F

lo
p/

s

Number of Threads

Performance Comparison of Project: 2d-1r-iso-const-box

Parameters (M_MAX N_MAX T_MAX): 3000 3000 200

Implemented Method

OpenMP_node

OpenMP_spread

PATUS_none

PLUTO_node

PLUTO_spread

Figure 10.9: Performance graph of a 2D isotropic, box stencil with constant
coefficients and radius 1. Two dimensions for the grids have been used: 5002

and 30002, while the timesteps are 200. On the left are presented the results
obtained on Emmy, on the right the ones on miniHPC. The kernel has been
implemented using three methods: naive OpenMP implementation with explicit
pinning using the strategies ByNode and BySpreading, PATUS without pinning,
and PLUTO with explicit pinning using the strategies ByNode and BySpreading.
For all the graphs the histogram shows the average value out of 10 executions,
and the error bars the standard deviation.

10.2. DISCUSSION OF THE RESULTS 129

0

20

40

60

80

100

120

1 2 4 6 8 10 16 20

G
F

lo
p/

s

Number of Threads

Performance Comparison of Project: 2d-4r-iso-const-box

Parameters (M_MAX N_MAX T_MAX): 500 500 200

Implemented Methods

OpenMP_node

OpenMP_spread

PATUS_none

PLUTO_node

PLUTO_spread

0

20

40

60

80

100

120

1 2 4 6 8 10 16 20

G
F

lo
p/

s

Number of Threads

Performance Comparison of Project: 2d-4r-iso-const-box

Parameters (M_MAX N_MAX T_MAX): 500 500 200

Implemented Method

OpenMP_node

OpenMP_spread

PATUS_none

PLUTO_node

PLUTO_spread

0

20

40

60

80

100

120

1 2 4 6 8 10 16 20

G
F

lo
p/

s

Number of Threads

Performance Comparison of Project: 2d-4r-iso-const-box

Parameters (M_MAX N_MAX T_MAX): 3000 3000 200

Implemented Methods

OpenMP_node

OpenMP_spread

PATUS_none

PLUTO_node

PLUTO_spread

0

20

40

60

80

100

120

1 2 4 6 8 10 16 20

G
F

lo
p/

s

Number of Threads

Performance Comparison of Project: 2d-4r-iso-const-box

Parameters (M_MAX N_MAX T_MAX): 3000 3000 200

Implemented Method

OpenMP_node

OpenMP_spread

PATUS_none

PLUTO_node

PLUTO_spread

Figure 10.10: Performance graph of a 2D isotropic, box stencil with constant
coefficients and radius 4. Two dimensions for the grids have been used: 5002

and 30002, while the timesteps are 200. On the left are presented the results
obtained on Emmy, on the right the ones on miniHPC. The kernel has been
implemented using three methods: naive OpenMP implementation with explicit
pinning using the strategies ByNode and BySpreading, PATUS without pinning,
and PLUTO with explicit pinning using the strategies ByNode and BySpreading.
For all the graphs the histogram shows the average value out of 10 executions,
and the error bars the standard deviation.

130 CHAPTER 10. PERFORMANCE BENCHMARKING EXPERIMENTS

unoptimized C code (e.g., in the case of PLUTO): they apply optimization
strategies to generate an output source code that then needs to be com-
piled. PLUTO makes use of the diamond tiling technique to optimize the
performance of the stencil automatically. Of course, tiling offers bene-
fits when the number of operations to execute is limited, thus resulting,
ideally, in better performance gains when applied to stencils with a low
number of neighbors. This is precisely what has been experienced in our
experiments, where PLUTO offers excellent performance for the radius
one stencil considered, for both grid sizes (see Figure 10.9). It instead
struggles to produce good code in the case of the radius four stencil (see
Figure 10.10). Having conducted experiments varying the grid size used
as an input turned out to be an excellent decision to have a better overall
understanding, which could lead to the use of a different compiler when
changing the stencil size.

PATUS that “aims to provide a means towards productivity and per-
formance” [27], performs very decently, producing almost in each case
a good code (concerning the obtained performance) that scales linearly
when increasing the number of threads for both stencils used and both
the sizes of the input grid. The experiments highlight an issue whit its
code generated to use a full node, i.e., with 20 threads: we always experi-
enced a considerable drop in performance, with a high value of the stan-
dard deviation (see Figures 10.9 and 10.10). It is worth noting that PATUS

exploits the auto-tuning technique to optimize parameters like chunk size
and unrolling level: for the cases analyzed in this experiment, it failed in
its task.

Both in Figures 10.9 and 10.10 the behavior of OpenMP is interesting:
the histogram in purple represents the performance with pinning to the
logical core (thus using first fully one socket and then passing to the next
one) while the histogram in green represents its performance when pin-
ning the threads by spreading them between the available sockets. As
known in theory, and described in Section A.2 of [62], memory bound
codes benefit when the threads are spread across all sockets. Such an ef-
fect can clearly be seen for the radius one stencil, in Figure 10.9, where the
performance hits, both on Emmy and miniHPC, the limit of the socket:
a saturation at 4.3 cores has been predicted by the ECM model, for the
stencil using a 30002 grid. Saturation happens around six cores, whereas
if using a spreading strategy for pinning, the performance keeps scal-
ing. When executing with enough threads to utilize both the sockets,
even when pinning logically to the cores, then the performance of the

10.2. DISCUSSION OF THE RESULTS 131

two strategies tend to be equivalent, reaching the limit of the architec-
ture. Considering the same stencil (radius 1), but using a grid of dimen-
sion 5002 it is not possible to appreciate this effect since the grid is small
enough to fit in cache, thus not needing frequent data movement from
memory.

Part IV

Conclusions & Future Work

Chapter 11

Conclusions and Future Work

In this thesis has been presented the problem of reproducibility in the
context of High Performance Computing, by describing the issues that
arise with the increased complexity of modern systems both at the hard-
ware and the software level. It is crucial to parallelize the programs, of-
ten via hardware specific optimizations and configurations, and sophis-
ticated program transformations that may hinder the reproducibility of
their results and performance.

Following a description of the factors affecting the reproducibility, a
taxonomy of the experiments in Computational Sciences has been intro-
duced, serving to qualify the information necessary for successful repro-
duction. Varying the experiments, it is possible to target (and achieve)
any level of reproducibility: repetition, replication, and re-experimentation.
The description of an experiment, including the configurations and cus-
tomizations needed to execute it correctly, is part of a framework to con-
duct reproducible research.

A possible implementation of such a framework, PROVA! [57] has
been shown and then used to conduct the experiments that have been
discussed in this work, thus ensuring their reproducibility. PROVA! inter-
faces with tools that help to address the reproducible building and instal-
lation of software, the configuration of the environment, thus providing
a reproducible software stack and environment at the time of executing
an experiment, contributing to its overall reproducibility. In addition to
that, PROVA! maintains code and description of the experiments, pro-
viding documentation, thus enabling their dissemination, acting as an
artifact description.

136 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

The experiments presented in this work are related to thr performance
engineering of stencil kernels. Stencil computation belongs to the struc-
tured grid motif of the Dwarfs of Berkeley [11]. It is a relevant pattern
in scientific computing since it appears in applications ranging from the
weather forecast to geophysics, computational fluid dynamics, and im-
age processing. The stencil pattern has been characterized and described
using keywords related to shape, dimensionality, radius, and properties
of its coefficients.

A tool to generate stencils kernels has been implemented and inter-
faced to Kerncraft, thus enabling the modeling of their performance. In
this way it is possible to perform experimentation in the complex topic
of Performance Engineering: evaluating the expected performance of a
code is needed to verify the bottlenecks that it may hit when running on
a specific architecture. Performance modeling can be carried out either
by analytic modeling of the machine and the code, or by using grey-
box tools like Kerncrat [64], capable of applying the Roofline [135] and
ECM [61] models. The results of the modeling, i.e., predicted perfor-
mance, is then validated against the reproducible performance results
obtained by executing the code through PROVA!: in case of a mismatch,
either the model applied must be adapted, or the code optimized and
tuned to exploit the hardware it runs on. An overview of the behavior of
the performance models is given when running experiments involving a
wide variety of stencil kernels on two different machines.

An in-depth analysis is shown for a selected kernel, also by varying
the input size to fit or not into the cache. In such a case the kernel has
been implemented by using three different approaches: a state of the art
solution (OpenMP) that offers control and very good performance, but
needs expertise; a solution that allows for automatic parallelization by
inserting a simple directive that states the region of the code to be op-
timized by the PLUTO compiler; a solution, via PATUS, that offers to fill
the gap between performance and programmability, by defining a sten-
cil in a high-level domain-specific language that is internally translated
into optimized code, transparently to the user. Such a test case provided
the possibility to evaluate not only the performance models but also such
alternative implementations in different working conditions, shedding
light on the performance-programmability trade-off of the modern archi-
tectures.

The application of the proposed framework for reproducibility, and
the use of PROVA!, together with grey box modeling tools (as demon-

11.1. CONTRIBUTIONS AND RELEVANCE TO THE COMMUNITY 137

strated in the experiments), ideally traces a path towards a discipline of
performance engineering.

11.1 Contributions and Relevance to the Com-

munity

The contributions of this work are manifold:

• Definition of a Taxonomy of Experiments in Computational Sci-
ences

• Definition of three Levels of Reproducibility, based on the experi-
mental setup, that allow classifying the status of a research, chan-
neling it towards credibility and thus re-use of work, which is one
of the cornerstones of science

• A framework to conduct reproducible research in Computational
Sciences and its implementation as a distributed workflow and sys-
tem management tool, PROVA!

• Stencils generator

• Stencil performance analysis through grey-box modeling and vali-
dation

• Application of the proposed framework to the sub-field of struc-
tured grids, e.g. stencil motif, on different architectures, obtaining
a fair comparative analysis of the performance of stencil kernels,
produced using stencil compilers

• As a whole, the previous contributions open the path to a Discipline
of Performance Engineering

The relevance to the community is proven by the following publica-
tions, strictly related to this work:

• Reproducible Experiments in Parallel Computing: Concepts and
Stencil Compiler Benchmark Study. Danilo Guerrera, Helmar Burkhart,
and Antonio Maffia.In Euro-Par 2014: Parallel Processing Workshops,
volume 8805 of Lecture Notes in Computer Science, pages 464–474.
Springer International Publishing, 2014 [55].

138 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

• Trusted High-Performance Computing in the Classroom. Helmar
Burkhart, Danilo Guerrera, and Antonio Maffia. 2014 Workshop on
Education for High Performance Computing, pages 27–33, 2014 [20].

• Reproducibility in Practice: Lessons Learned from Research and
Teaching Experiments. Antonio Maffia, Helmar Burkhart, and Danilo
Guerrera. In Euro-Par 2015: Parallel Processing Workshops. Springer
International Publishing, 2015 [87].

• No more Believe Me: Make Your Informatics Experiments Repro-
ducible. Helmar Burkhart, Danilo Guerrera, and Antonio Maffia [21].

• Reproducible Stencil Compiler Benchmarks Using PROVA!. Danilo
Guerrera, Helmar Burkhart, and Antonio Maffia. In 2016 7th Inter-
national Workshop on Performance Modeling, Benchmarking and Simu-
lation of High Performance Computer Systems (PMBS), pages 108–115.
IEEE, 2016 [56].

• Reproducible stencil compiler benchmarks using PROVA!. Danilo
Guerrera, Antonio Maffia, and Helmar Burkhart. Future Generation
Computer Systems, vol. 92, pages 933-946, may 2018 [59].

11.2 Future Work

The work presented in this dissertation represents only the first steps,
raising several problematics that need to be addressed in the future.

The taxonomy of the experiments that has been introduced has been
thought of having in mind the perspective of high performance comput-
ing experiments, thus focusing on the performance. It may need to be
verified and possibly extended if it proves to be not adequate enough in
a specific niche-domain.

The topic of reproducibility is dominant at the time of writing, but
there is no comprehensive and universally agreed terminology: such an
issue may lead to misunderstandings and could result in a significant ob-
stacle to the diffusion to the broad public of scientific researchers in the
HPC field. Works directly addressing this issue have been recently pub-
lished ([15], [103], [114], [120], [13]), and the focus to it given by major
conferences, such as the “International Conference for High Performance
Computing, Networking, Storage and Analysis” (Supercomputing), may

11.2. FUTURE WORK 139

help to accelerate the convergence towards a widely agreed nomencla-
ture.

PROVA!, a possible implementation of the proposed framework for re-
producibility, is explicitly targeting experiments related to stencil compu-
tation. In [59] it has been proved to be flexible enough to conduct exper-
iments focusing on a different kind of problems and adopting a different
paradigm, such as GPU computation and MPI related experiments.

Some limits emerged in our approach since there are factors that can-
not be easily controlled. Obviously, the hardware itself is an uncontrol-
lable entity and the OS, for instance, provides some essential libraries
that are used as a basis. Thus, a different OS represents a distinct start-
ing point on top of which the software stack is built. Additionally, some
applications, such as machine learning based codes or, as in one of our
test cases, auto-tuning of parameters, may have a non-deterministic na-
ture. Furthermore, even when using EasyBuild’s installation recipes on
several machines, it may seldom happen that issues appear thus leading
to an irreproducible build. While this is usually not the case, it has oc-
curred, mostly due to OS libraries or BIOS level configurations. While
it is not possible to avoid the hardware issue, we can extend our control
of the software by using containerization solutions, such as Shifter [49]
and Singularity [81]. Those would represent an alternative solution to
the combination of Lmod and EasyBuild, that needs to be explored.

The stencils categorization can be further refined to include alterna-
tive patterns, considering: different input and output grids, dependence
on more than just the previous time-step (time-dependence), alternative
sweeps, such as Gauss-Seidel iterations or red-black Gauss-Seidel. Fur-
thermore, the performance models and the codes should be validated in
the presence of non-quadratic and non-cubic grids.

Already having experience with using and porting PROVA!, future
work could include providing collaboration support via GitHub. To do
so, collaboration and provenance issues must be addressed. On a tech-
nical side, a goal is to build a distributed workspace system using tech-
nologies like git, to provide a shared workspace across several parallel
machines and supercomputing sites, as well as a way to collaborate to a
joint project.

The predictions obtained applying Roofline, and ECM models should
always be used to validate the measured performance and vice-versa, re-
sulting in a “Gold Standard” for performance engineering. In this work,
this has been achieved by using STEMPEL and its interface to PROVA!:

140 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

such a workflow should be integrated into PROVA! to make it easily ac-
cessible, helping to build a community of reproducible performance en-
gineering and strengthen its collaborative ecosystem.

The experiments presented in this work, have been conducted in two
small laboratories: it is needed to confirm and expand both solutions and
analysis to supercomputers, which possibly consist of hybrid solutions at
the node level.

If we were to trust the computational results, thus allowing re-use
of work and the option to build on top of existing solutions obtained by
other scientists, reproducibility needs to be emphasized and more widely
applied. On the technical side, there is a need for tools and platforms
that allow executing, storing and remotely accessing reproducible exper-
iments, and offer collaboration support for team efforts. As we proposed
in [20], on the social side, it may be thought of incentives for those who
voluntarily spend time in making their experiments reproducible and
must be developed teaching strategies for making the next generation
of computer scientists aware of the relevance and importance of repro-
ducibility aspects.

Bibliography

[1] Cpu db, a complete database of processors for researchers and hobbyists
alike. http://cpudb.stanford.edu. [cited at p. 16, 175]

[2] Linux cpufreq. https://kernel.org/doc/Documentation/cpu-freq/

governors.txt. [cited at p. 27]

[3] Skampy: Ultra-skalierbare multiphysik-simulationen für erstar-
rungsprozesse in metallen. http://www.walberla.net/fundingskampy.

html. [cited at p. 77]

[4] Transistor count. https://www.revolvy.com/page/Transistor-count.
[cited at p. 17, 175]

[5] HPL - A portable implementation of the high-performance Linpack
Benchmark for distributed-memory computers. http://www.netlib.org/
benchmark/hpl/, 2008. [cited at p. 50]

[6] Onlinehpc. http://www.onlinehpc.com, 2012. Accessed: 2015-04-30.
[cited at p. 11]

[7] Intel® architecture code analyzer. https://software.intel.com/en-us/

articles/intel-architecture-code-analyzer, 2017. Accessed: 2018-08-
09. [cited at p. 92]

[8] Open source architecture code analyzer. https://github.com/RRZE-HPC/

OSACA, 2018. Accessed: 2018-08-09. [cited at p. 92]

[9] Top500, the list. https://www.top500.org, jun 2018. [cited at p. 34, 44, 85]

[10] Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20, 1967,
Spring Joint Computer Conference, AFIPS ’67 (Spring), pages 483–485, New
York, NY, USA, 1967. ACM. [cited at p. 36, 176]

http://cpudb.stanford.edu
https://kernel.org/doc/Documentation/cpu-freq/governors.txt
https://kernel.org/doc/Documentation/cpu-freq/governors.txt
http://www.walberla.net/funding_skampy.html
http://www.walberla.net/funding_skampy.html
https://www.revolvy.com/page/Transistor-count
http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/
http://www.onlinehpc.com
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://github.com/RRZE-HPC/OSACA
https://github.com/RRZE-HPC/OSACA
https://www.top500.org

142 BIBLIOGRAPHY

[11] Krste Asanović, Ras Bodik, Bryan Christopher Catanzaro, Joseph James
Gebis, Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester
Plishker, John Shalf, Samuel Webb Williams, and Katherine A. Yelick. The
landscape of parallel computing research: A view from berkeley. Techni-
cal Report UCB/EECS-2006-183, EECS Department, University of Califor-
nia, Berkeley, Dec 2006. [cited at p. 75, 87, 136]

[12] David H. Bailey, Jonathan M. Borwein, and Victoria Stodden. Facilitating
reproducibility in scientific computing: Principles and practice. In Repro-
ducibility: Principles, Problems, Practices, and Prospects, pages 205–231. John
Wiley & Sons, Inc., jul 2016. [cited at p. 8]

[13] Lorena A. Barba. Terminologies for reproducible research. CoRR,
abs/1802.03311, 2018. [cited at p. 7, 48, 49, 138]

[14] C. Glenn Begley and Lee M. Ellis. Drug development: Raise standards
for preclinical cancer research. Nature, 483(7391):531–533, Mar 2012.
[cited at p. 7, 8, 49]

[15] Fabien C. Y. Benureau and Nicolas P. Rougier. Re-run, repeat, reproduce,
reuse, replicate: Transforming code into scientific contributions. Frontiers
in Neuroinformatics, 11, jan 2018. [cited at p. 138]

[16] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, To-
bias Kötter, Thorsten Meinl, Peter Ohl, Christoph Sieb, Kilian Thiel, and
Bernd Wiswedel. Knime: The konstanz information miner. In Christine
Preisach, Hans Burkhardt, Lars Schmidt-Thieme, and Reinhold Decker,
editors, Data Analysis, Machine Learning and Applications, pages 319–326,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [cited at p. 10, 48, 49]

[17] U. Bondhugula, V. Bandishti, and I. Pananilath. Diamond tiling: Tiling
techniques to maximize parallelism for stencil computations. IEEE Trans-
actions on Parallel and Distributed Systems, 28(5):1285–1298, May 2017.
[cited at p. 82]

[18] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan.
A practical automatic polyhedral parallelizer and locality optimizer. In
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’08, pages 101–113, New York, NY, USA,
2008. ACM. [cited at p. 82, 96]

[19] Eric L. Boyd, Waqar Azeem, Hsien-Hsin Lee, Tien-Pao Shih, Shih-Hao
Hung, and Edward S. Davidson. A hierarchical approach to modeling
and improving the performance of scientific applications on the ksr1. In
Proceedings of the 1994 International Conference on Parallel Processing - Volume

BIBLIOGRAPHY 143

03, ICPP ’94, pages 188–192, Washington, DC, USA, 1994. IEEE Computer
Society. [cited at p. 87]

[20] Helmar Burkhart, Danilo Guerrera, and Antonio Maffia. Trusted high-
performance computing in the classroom. 2014 Workshop on Education for
High Performance Computing, pages 27–33, 2014. [cited at p. 138, 140]

[21] Helmar Burkhart, Danilo Guerrera, and Antonio Maffia. No
more believe me : Make your informatics experiments repro-
ducible. http://www.informatics-europe.org/images/ECSS/ECSS2015/

ECCS2015-Burkhart.pdf, 2015. [cited at p. 138]

[22] Steve Carr and Ken Kennedy. Improving the ratio of memory operations
to floating-point operations in loops. ACM Trans. Program. Lang. Syst.,
16(6):1768–1810, 1994. [cited at p. 93]

[23] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos. J.
Parallel Distrib. Comput., 74(12):3202–3216, December 2014. [cited at p. 38]

[24] A. Casadevall and F. C. Fang. Reproducible science. Infection and Immu-
nity, 78(12):4972–4975, sep 2010. [cited at p. 6, 48]

[25] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel programmabil-
ity and the Chapel language. The International Journal of High Performance
Computing Applications, 21(3):291–312, aug 2007. [cited at p. 38]

[26] M. Christen, O. Schenk, and H. Burkhart. PATUS: A code generation
and autotuning framework for parallel iterative stencil computations on
modern microarchitectures. In Parallel Distributed Processing Symposium
(IPDPS), 2011 IEEE International, pages 676–687, May 2011. [cited at p. 83, 96]

[27] Matthias-Michael Christen. Generating and auto-tuning parallel stencil codes.
PhD thesis, 2011. http://edoc.unibas.ch/diss/DissB9723. [cited at p. 130]

[28] Jon F. Claerbout and Martin Karrenbach. Electronic documents give re-
producible research a new meaning. In SEG Technical Program Expanded
Abstracts 1992. Society of Exploration Geophysicists, jan 1992. [cited at p. 6,

48]

[29] Christian Collberg, Todd Proebsting, Gina Moraila, Zuoming Shi,
and Alex M. Warren. Measuring Reproducibility in Computer Sys-
tems Research. http://reproducibility.cs.arizona.edu/tr.pdf, 2014.
[cited at p. 10, 48]

[30] Christian Collberg, Todd Proebsting, and Alex M Warren. Repeatability
and benefaction in computer systems research. Technical Report 14-04,
University of Arizona, 2015. [cited at p. 10]

http://www.informatics-europe.org/images/ECSS/ECSS2015/ECCS2015-Burkhart.pdf
http://www.informatics-europe.org/images/ECSS/ECSS2015/ECCS2015-Burkhart.pdf
http://edoc.unibas.ch/diss/DissB_9723
http://reproducibility.cs.arizona.edu/tr.pdf

144 BIBLIOGRAPHY

[31] A. P. Davison, M. Mattioni, D. Samarkanov, and B. Teleńczuk. Sumatra:
A Toolkit for Reproducible Research. In V. Stodden, F. Leisch, and R. D.
Peng, editors, Implementing Reproducible Research, chapter 3, pages 57–78.
Chapman & Hall, 2014. [cited at p. 11, 48, 49]

[32] A.P. Davison. Automated capture of experiment context for easier repro-
ducibility in computational research. Computing in Science Engineering,
14(4):48–56, July 2012. [cited at p. 50]

[33] Augusto Born de Oliveira, Jean-Christophe Petkovich, Thomas Reide-
meister, and Sebastian Fischmeister. Datamill: Rigorous performance
evaluation made easy. In Proceedings of the 4th ACM/SPEC International
Conference on Performance Engineering, ICPE ’13, pages 137–148, New York,
NY, USA, 2013. ACM. [cited at p. 11, 48]

[34] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil,
Carl Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John
Good, Anastasia Laity, Joseph C. Jacob, and Daniel S. Katz. Pegasus: A
framework for mapping complex scientific workflows onto distributed
systems. Scientific Programming, 13(3):219–237, 2005. [cited at p. 9]

[35] Oxford English Dictionary. ”art, n.1”. http://www.oed.com. [cited at p. 6]

[36] M. Dolfi, Jan Gukelberger, Andreas Hehn, J. Imriska, K. Pakrouski, T. F.
Rønnow, Matthias Troyer, I. Zintchenko, Fernando Seabra Chirigati, Ju-
liana Freire, and Dennis Shasha. A model project for reproducible pa-
pers: critical temperature for the Ising model on a square lattice. CoRR,
abs/1401.2000, 2014. [cited at p. 49]

[37] Jack Dongarra. The linpack benchmark: An explanation. In Proceedings of
the 1st International Conference on Supercomputing, pages 456–474, London,
UK, UK, 1988. Springer-Verlag. [cited at p. 85]

[38] Chris Drummond. Replicability is not reproducibility: Nor is it good sci-
ence. In Proceedings of the Evaluation Methods for Machine Learning Workshop
at the 26th ICML, 2009. [cited at p. 6, 48]

[39] A. Dubrow. Lmod: The ”secret sauce” behind module management
at tacc. http://www.tacc.utexas.edu/news/feature-stories/2012/lmod.
[cited at p. 43]

[40] Michael J. Flynn. Some computer organizations and their effectiveness.
IEEE Transactions on Computers, C-21(9):948–960, sep 1972. [cited at p. 25, 175]

http://www.oed.com
http://www.tacc.utexas.edu/news/feature-stories/2012/lmod

BIBLIOGRAPHY 145

[41] Association for Computing Machinery. Artifact review badging. https:

//www.acm.org/publications/policies/artifact-review-badging, 2018.
[cited at p. 11, 48, 51]

[42] Message Passing Interface Forum. Mpi: A message-passing interface stan-
dard. Technical report, Knoxville, TN, USA, 1994. [cited at p. 34, 38]

[43] J. Freire and C. T. Silva. Making computations and publications repro-
ducible with vistrails. Computing in Science Engineering, 14(4):18–25, July
2012. [cited at p. 9, 48, 49]

[44] Matteo Frigo and Volker Strumpen. Cache oblivious stencil computations.
In Proceedings of the 19th Annual International Conference on Supercomputing,
ICS ’05, pages 361–366, New York, NY, USA, 2005. ACM. [cited at p. 82, 97]

[45] John L. Furlani. Modules : Providing a flexible user environment. In
Proceeding of the Fifth Large Installation System Administration, pages 141–
152, 1991. [cited at p. 42]

[46] John L. Furlani and Peter W. Osel. Abstract yourself with modules.
In Proceedings of the 10th USENIX Conference on System Administration,
LISA ’96, pages 193–204, Berkeley, CA, USA, 1996. USENIX Association.
[cited at p. 42]

[47] Todd Gamblin, Matthew LeGendre, Michael R. Collette, Gregory L. Lee,
Adam Moody, Bronis R. de Supinski, and Scott Futral. The Spack package
manager. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis on - SC '15. ACM Press, 2015.
[cited at p. 44]

[48] Markus Geimer, Kenneth Hoste, and Robert McLay. Modern scientific
software management using easybuild and lmod. In Proceedings of the First
International Workshop on HPC User Support Tools, HUST ’14, pages 41–51,
Piscataway, NJ, USA, 2014. IEEE Press. [cited at p. 43, 44, 56, 63, 67, 100]

[49] Lisa Gerhardt, Wahid Bhimji, Shane Canon, Markus Fasel, Doug Jacobsen,
Mustafa Mustafa, Jeff Porter, and Vakho Tsulaia. Shifter: Containers for
hpc. Journal of Physics: Conference Series, 898(8):082021, 2017. [cited at p. 139]

[50] B. Giardine. Galaxy: A platform for interactive large-scale genome analy-
sis. Genome Research, 15(10):1451–1455, sep 2005. [cited at p. 9, 48, 49]

[51] Tristan Glatard, Lindsay B. Lewis, Rafael Ferreira da Silva, Reza Adalat,
Natacha Beck, Claude Lepage, Pierre Rioux, Marc-Etienne Rousseau,
Tarek Sherif, Ewa Deelman, Najmeh Khalili-Mahani, and Alan C. Evans.

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

146 BIBLIOGRAPHY

Reproducibility of neuroimaging analyses across operating systems. Fron-
tiers in Neuroinformatics, 9, apr 2015. [cited at p. 42]

[52] Carole A. Goble, Jiten Bhagat, Sergejs Aleksejevs, Don Cruickshank, Da-
nius Michaelides, David Newman, Mark Borkum, Sean Bechhofer, Marco
Roos, Peter Li, and David De Roure. myExperiment: a repository and
social network for the sharing of bioinformatics workflows. Nucleic Acids
Research, 38(suppl 2):W677–W682, may 2010. [cited at p. 9]

[53] Ed H. B. M. Gronenschild, Petra Habets, Heidi I. L. Jacobs, Ron Men-
gelers, Nico Rozendaal, Jim van Os, and Machteld Marcelis. The effects
of FreeSurfer version, workstation type, and macintosh operating system
version on anatomical volume and cortical thickness measurements. PLoS
ONE, 7(6):e38234, jun 2012. [cited at p. 42]

[54] Danilo Guerrera. Source code for the experiments presented in the
ph.d. thesis, 2018. https://github.com/sguera/PhDThesisExperiments.
[cited at p. 100]

[55] Danilo Guerrera, Helmar Burkhart, and Antonio Maffia. Reproducible
experiments in parallel computing: Concepts and stencil compiler bench-
mark study. In Euro-Par 2014: Parallel Processing Workshops, volume 8805
of Lecture Notes in Computer Science, pages 464–474. Springer International
Publishing, 2014. [cited at p. 11, 48, 51, 137]

[56] Danilo Guerrera, Helmar Burkhart, and Antonio Maffia. Reproducible
stencil compiler benchmarks using prova! In 2016 7th International
Workshop on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), pages 108–115. IEEE, 11 2016.
[cited at p. 121, 138]

[57] Danilo Guerrera, Antonio Maffia, and Helmar Burkhart. Prova! try, prove,
convince. https://prova.io, 2016. [cited at p. 11, 135]

[58] Danilo Guerrera, Antonio Maffia, and Helmar Burkhart. Source
code for fcgs17 experiments, 2017. https://github.com/sguera/FGCS17.
[cited at p. 56]

[59] Danilo Guerrera, Antonio Maffia, and Helmar Burkhart. Reproducible
stencil compiler benchmarks using PROVA! Future Generation Computer
Systems, may 2018. DOI: 10.1016/j.future.2018.05.023. [cited at p. 31, 48, 56,

68, 69, 70, 71, 121, 138, 139, 176]

[60] John L. Gustafson. Reevaluating Amdahl’s law. Commun. ACM, 31(5):532–
533, may 1988. [cited at p. 37, 176]

https://github.com/sguera/PhDThesis_Experiments
https://prova.io
https://github.com/sguera/FGCS17

BIBLIOGRAPHY 147

[61] Georg Hager, Jan Treibig, Johannes Habich, and Gerhard Wellein. Ex-
ploring performance and power properties of modern multicore chips via
simple machine models. CoRR, abs/1208.2908, 2012. [cited at p. 87, 89, 136]

[62] Georg Hager and Gerhard Wellein. Introduction to High Performance Com-
puting for Scientists and Engineers. Chapman and Hall / CRC computa-
tional science series. CRC Press, 2011. [cited at p. 22, 28, 93, 94, 130]

[63] Julian Hammer. Layer conditions. https://rrze-hpc.github.io/

layer-condition/. [cited at p. 92]

[64] Julian Hammer, Jan Eitzinger, Georg Hager, and Gerhard Wellein. Kern-
craft: A tool for analytic performance modeling of loop kernels. CoRR,
abs/1702.04653, 2017. [cited at p. 71, 88, 92, 136]

[65] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann, 5 edition, 2012. [cited at p. 27]

[66] M. D. Hill and A. J. Smith. Evaluating associativity in cpu caches. IEEE
Transactions on Computers, 38(12):1612–1630, Dec 1989. [cited at p. 93]

[67] Roger W Hockney and Ian J Curington. f12: A parameter to characterize
memory and communication bottlenecks. Parallel Computing, 10(3):277 –
286, 1989. [cited at p. 86, 87]

[68] Adolfy Hoisie, Olaf Lubeck, and Harvey Wasserman. Performance and
scalability analysis of teraflop-scale parallel architectures using multidi-
mensional wavefront applications. The International Journal of High Perfor-
mance Computing Applications, 14(4):330–346, 2000. [cited at p. 87]

[69] K. Hoste, J. Timmerman, A. Georges, and S. D. Weirdt. Easybuild: Build-
ing software with ease. In 2012 IEEE International Conference on Services
Computing (SCC), volume 00, pages 572–582, Nov. 2013. [cited at p. 56, 67]

[70] HPC team at Ghent University. Easybuild. https://github.com/

hpcugent/easybuild, 03 2017. [cited at p. 56, 63, 67, 100]

[71] HPC team at Ghent University. A collection of easyconfig files that de-
scribe which software to build using which build options with Easy-
Build. https://github.com/easybuilders/easybuild-easyconfigs, 09
2018. [cited at p. 167]

[72] Sascha Hunold and Jesper Larsson Träff. On the state and importance
of reproducible experimental research in parallel computing. CoRR,
abs/1308.3648, 2013. [cited at p. 50]

https://rrze-hpc.github.io/layer-condition/
https://rrze-hpc.github.io/layer-condition/
https://github.com/hpcugent/easybuild
https://github.com/hpcugent/easybuild
https://github.com/easybuilders/easybuild-easyconfigs

148 BIBLIOGRAPHY

[73] Roberto Ierusalimschy. Programming in Lua, Third Edition. Lua.Org, 3rd
edition, 2013. [cited at p. 43]

[74] John P. A. Ioannidis, David B. Allison, Catherine A. Ball, Issa Coulibaly, Xi-
angqin Cui, Aedin C. Culhane, Mario Falchi, Cesare Furlanello, Laurence
Game, Giuseppe Jurman, Jon Mangion, Tapan Mehta, Michael Nitzberg,
Grier P. Page, Enrico Petretto, and Vera van Noort. Repeatability of pub-
lished microarray gene expression analyses. Nat Genet, 41(2):149–155, Feb
2009. [cited at p. 7, 8, 48, 49]

[75] B. R. Jasny, G. Chin, L. Chong, and S. Vignieri. Again, and again, and
again ... Science, 334(6060):1225–1225, dec 2011. [cited at p. 8, 48]

[76] I. Jimenez, A. Arpaci-Dusseau, R. Arpaci-Dusseau, J. Lofstead,
C. Maltzahn, K. Mohror, and R. Ricci. Popperci: Automated reproducibil-
ity validation. In 2017 IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS), pages 450–455, May 2017. [cited at p. 48, 50]

[77] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio,
and Dietmar Fey. HPX: A task based programming model in a global ad-
dress space. In Proceedings of the 8th International Conference on Partitioned
Global Address Space Programming Models, PGAS ’14, pages 6:1–6:11, New
York, NY, USA, 2014. ACM. [cited at p. 38]

[78] Shoaib Kamil, Kaushik Datta, Samuel Williams, Leonid Oliker, John Shalf,
and Katherine Yelick. Implicit and explicit optimizations for stencil com-
putations. In Proceedings of the 2006 Workshop on Memory System Perfor-
mance and Correctness, MSPC ’06, pages 51–60, New York, NY, USA, 2006.
ACM. [cited at p. 97]

[79] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman, and
M. Gittings. Predictive performance and scalability modeling of a large-
scale application. In Proceedings of the 2001 ACM/IEEE Conference on Su-
percomputing, SC ’01, pages 37–37, New York, NY, USA, 2001. ACM.
[cited at p. 87]

[80] Darren J. Kerbyson and Philip W. Jones. A performance model of the
parallel ocean program. The International Journal of High Performance Com-
puting Applications, 19(3):261–276, 2005. [cited at p. 87]

[81] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. Singularity:
Scientific containers for mobility of compute. PLOS ONE, 12(5):e0177459,
may 2017. [cited at p. 139]

BIBLIOGRAPHY 149

[82] Randall J. LeVeque. Python tools for reproducible research on hyper-
bolic problems. Computing in Science & Engineering, 11(1):19–27, jan 2009.
[cited at p. 7, 48]

[83] Mark Liberman. Replicability vs. reproducibility — or is it the other way
around? http://languagelog.ldc.upenn.edu/nll/?p=21956, oct 2015.
[cited at p. 4, 7, 48]

[84] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu,
A. Grill, and Ph. Avouris. 100-GHz transistors from wafer-scale epitaxial
graphene. Science, 327(5966):662–662, feb 2010. [cited at p. 18]

[85] Yu Jung Lo, Samuel Williams, Brian Van Straalen, Terry J. Ligocki,
Matthew J. Cordery, Nicholas J. Wright, Mary W. Hall, and Leonid Oliker.
Roofline model toolkit: A practical tool for architectural and program
analysis. In Stephen A. Jarvis, Steven A. Wright, and Simon D. Ham-
mond, editors, High Performance Computing Systems. Performance Modeling,
Benchmarking, and Simulation, pages 129–148, Cham, 2015. Springer Inter-
national Publishing. [cited at p. 91]

[86] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat
Jaeger, Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao. Sci-
entific workflow management and the Kepler system. Concurrency and
Computation: Practice and Experience, 18(10):1039–1065, 2006. [cited at p. 10,

48, 49]

[87] Antonio Maffia, Helmar Burkhart, and Danilo Guerrera. Reproducibility
in practice: Lessons learned from research and teaching experiments. In
Euro-Par 2015: Parallel Processing Workshops. Springer International Pub-
lishing, 2015. [cited at p. 10, 48, 50, 65, 121, 138]

[88] Nihar R. Mahapatra and Balakrishna Venkatrao. The processor-memory
bottleneck. Crossroads, 5(3es):2–es, apr 1999. [cited at p. 27]

[89] T. Malas, G. Hager, H. Ltaief, H. Stengel, G. Wellein, and D. Keyes.
Multicore-optimized wavefront diamond blocking for optimizing stencil
updates. SIAM Journal on Scientific Computing, 37(4):C439–C464, jan 2015.
[cited at p. 80]

[90] Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David A. Ko-
ufaty, Alan J. Miller, and Michael Upton. Hyper-threading technology ar-
chitecture and microarchitecture. Intel Technology Journal, 6(1):4–15, Febru-
ary 2002. [cited at p. 26]

http://languagelog.ldc.upenn.edu/nll/?p=21956

150 BIBLIOGRAPHY

[91] John Mccalpin and David Wonnacott. Time skewing: A value-based ap-
proach to optimizing for memory locality. Technical Report 379, Rutgers
University, 1999. [cited at p. 97]

[92] John D. McCalpin. Stream: Sustainable memory bandwidth in high
performance computers. Technical report, University of Virginia, Char-
lottesville, Virginia, 1991-2007. A continually updated technical report.
http://www.cs.virginia.edu/stream/. [cited at p. 70]

[93] Robert McLay. Lmod: Environmental modules system. http://www.tacc.
utexas.edu/tacc-projects/lmod. [cited at p. 43]

[94] Jill P. Mesirov. Accessible reproducible research. Science, 327(5964):415–
416, 2010. [cited at p. 8]

[95] Paolo Missier, Stian Soiland-Reyes, Stuart Owen, Wei Tan, Alexandra Ne-
nadic, Ian Dunlop, Alan Williams, Tom Oinn, and Carole Goble. Taverna,
reloaded. In Michael Gertz and Bertram Ludäscher, editors, Scientific and
Statistical Database Management, volume 6187 of Lecture Notes in Computer
Science, pages 471–481. Springer Berlin Heidelberg, 2010. [cited at p. 10, 48,

49]

[96] Gordon E. Moore. Cramming more components onto integrated circuits.
Integrated Circuits Electronics, 38(8):114–117, April 1965. [cited at p. 15]

[97] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry, J. S. Harper,
and D. V. Wilcox. Pace–a toolset for the performance prediction of paral-
lel and distributed systems. The International Journal of High Performance
Computing Applications, 14(3):228–251, 2000. [cited at p. 87]

[98] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: a tool
for the composition and enactment of bioinformatics workflows. Bioinfor-
matics, 20(17):3045–3054, jun 2004. [cited at p. 9, 49]

[99] OpenMP Architecture Review Board. The OpenMP® API specification for
parallel programming. http://www.openmp.org, 2016. [cited at p. 38]

[100] Roger D. Peng. Reproducible research in computational science. Science,
334(6060):1226–1227, 2011. [cited at p. 8, 48]

[101] V. Petkov, M. Gerndt, and M. Firbach. Pathway: Performance analysis and
tuning using workflows. In 2013 IEEE 10th International Conference on High
Performance Computing and Communications 2013 IEEE International Con-
ference on Embedded and Ubiquitous Computing, pages 792–799, Nov 2013.
[cited at p. 11]

http://www.tacc.utexas.edu/tacc-projects/lmod
http://www.tacc.utexas.edu/tacc-projects/lmod
http://www.openmp.org

BIBLIOGRAPHY 151

[102] Heather A. Piwowar, Roger S. Day, and Douglas B. Fridsma. Sharing de-
tailed research data is associated with increased citation rate. PLOS ONE,
2(3):1–5, 03 2007. [cited at p. 9]

[103] Hans E. Plesser. Reproducibility vs. replicability: A brief history of a con-
fused terminology. Frontiers in Neuroinformatics, 11:76, 2018. [cited at p. 138]

[104] Florian Prinz, Thomas Schlange, and Khusru Asadullah. Believe it or not:
how much can we rely on published data on potential drug targets? Na-
ture Reviews Drug Discovery, 10(9):712–712, aug 2011. [cited at p. 7, 8, 48, 49]

[105] Dan Quinlan and Chunhua Liao. The rose source-to-source compiler in-
frastructure. In Cetus Users and Compiler Infrastructure Workshop, in con-
junction with PACT 2011, October 2011. [cited at p. 90]

[106] S.E. Raasch and S.K. Reinhardt. The impact of resource partitioning on
SMT processors. In Oceans 2002 Conference and Exhibition. Conference Pro-
ceedings (Cat. No.02CH37362). IEEE Comput. Soc. [cited at p. 27]

[107] Karthik Ram. Git can facilitate greater reproducibility and increased trans-
parency in science. Source Code for Biology and Medicine, 8(1):7, 2013.
[cited at p. 10]

[108] Michael Reich, Ted Liefeld, Joshua Gould, Jim Lerner, Pablo Tamayo, and
Jill P. Mesirov. Genepattern 2.0. Nat Genet, 38(5):500–501, May 2006.
[cited at p. 9, 48, 49]

[109] James Reinders. Intel Threading Building Blocks. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, first edition, 2007. [cited at p. 38]

[110] Arch D. Robison. Composable parallel patterns with Intel Cilk Plus. Com-
puting in Science & Engineering, 15(2):66–71, mar 2013. [cited at p. 38]

[111] Rodrigo C. O. Rocha, Alyson D. Pereira, Luiz Ramos, and Luı́s F. W. Góes.
Toast: Automatic tiling for iterative stencil computations on gpus. Con-
currency and Computation: Practice and Experience, 29(8):e4053. [cited at p. 96]

[112] Thomas Roehl, Jan Treibig, Georg Hager, and Gerhard Wellein. Likwid.
https://github.com/RRZE-HPC/likwid, 08 2018. [cited at p. 31, 58, 68, 100]

[113] Thomas Röhl, Jan Eitzinger, Georg Hager, and Gerhard Wellein. Valida-
tion of hardware events for successful performance pattern identification
in high performance computing. In Andreas Knüpfer, Tobias Hilbrich,
Christoph Niethammer, José Gracia, Wolfgang E. Nagel, and Michael M.
Resch, editors, Tools for High Performance Computing 2015, pages 17–28.
Springer International Publishing, 2016. [cited at p. 58]

https://github.com/RRZE-HPC/likwid

152 BIBLIOGRAPHY

[114] Nicolas P. Rougier, Konrad Hinsen, Frédéric Alexandre, Thomas Ar-
ildsen, Lorena A. Barba, Fabien C.Y. Benureau, C. Titus Brown, Pierre
de Buyl, Ozan Caglayan, Andrew P. Davison, Marc-André Delsuc, Geor-
gios Detorakis, Alexandra K. Diem, Damien Drix, Pierre Enel, Benoı̂t
Girard, Olivia Guest, Matt G. Hall, Rafael N. Henriques, Xavier Hin-
aut, Kamil S. Jaron, Mehdi Khamassi, Almar Klein, Tiina Manninen,
Pietro Marchesi, Daniel McGlinn, Christoph Metzner, Owen Petchey,
Hans Ekkehard Plesser, Timothée Poisot, Karthik Ram, Yoav Ram, Eti-
enne Roesch, Cyrille Rossant, Vahid Rostami, Aaron Shifman, Joseph
Stachelek, Marcel Stimberg, Frank Stollmeier, Federico Vaggi, Guillaume
Viejo, Julien Vitay, Anya E. Vostinar, Roman Yurchak, and Tiziano Zito.
Sustainable computational science: the ReScience initiative. PeerJ Com-
puter Science, 3:e142, dec 2017. [cited at p. 10, 138]

[115] Geir Kjetil Sandve, Anton Nekrutenko, James Taylor, and Eivind Hovig.
Ten simple rules for reproducible computational research. PLOS Compu-
tational Biology, 9(10):1–4, 10 2013. [cited at p. 9]

[116] N. Savage. First graphene integrated circuit. EEE Spectrum, Jun 2011.
[cited at p. 18]

[117] Carlos E. Scheidegger, Huy T. Vo, David Koop, Juliana Freire, and Clau-
dio T. Silva. Querying and re-using workflows with VisTrails. In Proceed-
ings of the 2008 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’08, pages 1251–1254, New York, NY, USA, 2008. ACM.
[cited at p. 9, 10, 48, 49]

[118] Matthias Schwab, Martin Karrenbach, and Jon Claerbout. Making sci-
entific computations reproducible. Computing in Science & Engineering,
2(6):61–67, 2000. [cited at p. 9]

[119] Sriram Sellappa and Siddhartha Chatterjee. Cache-efficient multigrid al-
gorithms. IJHPCA, 18(1):115–133, 2004. [cited at p. 97]

[120] Arfon M. Smith, Kyle E. Niemeyer, Daniel S. Katz, Lorena A. Barba,
George Githinji, Melissa Gymrek, Kathryn D. Huff, Christopher R.
Madan, Abigail Cabunoc Mayes, Kevin M. Moerman, Pjotr Prins, Karthik
Ram, Ariel Rokem, Tracy K. Teal, Roman Valls Guimera, and Jacob T. Van-
derplas. Journal of open source software (JOSS): design and first-year re-
view. PeerJ Computer Science, 4:e147, feb 2018. [cited at p. 138]

[121] Yonghong Song and Zhiyuan Li. New tiling techniques to improve cache
temporal locality. SIGPLAN Not., 34(5):215–228, may 1999. [cited at p. 97]

BIBLIOGRAPHY 153

[122] Holger Stengel, Jan Treibig, Georg Hager, and Gerhard Wellein. Quantify-
ing performance bottlenecks of stencil computations using the execution-
cache-memory model. CoRR, abs/1410.5010, 2014. [cited at p. 87, 89, 92]

[123] V. Stodden, M. McNutt, D. H. Bailey, E. Deelman, Y. Gil, B. Hanson,
M. A. Heroux, J. P. A. Ioannidis, and M. Taufer. Enhancing reproducibil-
ity for computational methods. Science, 354(6317):1240–1241, dec 2016.
[cited at p. 8]

[124] Victoria Stodden, Friederich Leisch, and Roger D. Peng, editors. Imple-
menting Reproducible Research. The R Series. Chapman and Hall/CRC,
2014. [cited at p. 9]

[125] Victoria Stodden and Sheila Miguez. Best practices for computational
science: Software infrastructure and environments for reproducible and
extensible research. Journal of Open Research Software, 2(1), jul 2014.
[cited at p. 8]

[126] Victoria C. Stodden. Trust your science? open your data and code. Amstat
News, 409:21–22, 2011. [cited at p. 7, 48]

[127] John Paul Strachan, Dmitri B Strukov, Julien Borghetti, J Joshua Yang,
Gilberto Medeiros-Ribeiro, and R Stanley Williams. The switching loca-
tion of a bipolar memristor: chemical, thermal and structural mapping.
Nanotechnology, 22(25):254015, may 2011. [cited at p. 18]

[128] M. Aater Suleman, Moinuddin K. Qureshi, and Yale N. Patt. Feedback-
driven threading: Power-efficient and high-performance execution of
multi-threaded workloads on cmps. SIGARCH Comput. Archit. News,
36(1):277–286, mar 2008. [cited at p. 87]

[129] Meropi Topalidou, Arthur Leblois, Thomas Boraud, and Nicolas P.
Rougier. A long journey into reproducible computational neuroscience.
Frontiers in Computational Neuroscience, 9, mar 2015. [cited at p. 10, 48]

[130] J. Treibig, G. Hager, and G. Wellein. Likwid: A lightweight performance-
oriented tool suite for x86 multicore environments. In Proceedings of
PSTI2010, the First International Workshop on Parallel Software Tools and Tool
Infrastructures, San Diego CA, 2010. [cited at p. 31, 58, 68]

[131] Jan Treibig and Georg Hager. Introducing a performance model for
bandwidth-limited loop kernels. In Roman Wyrzykowski, Jack Dongarra,
Konrad Karczewski, and Jerzy Wasniewski, editors, Parallel Processing and
Applied Mathematics, pages 615–624, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg. [cited at p. 87]

154 BIBLIOGRAPHY

[132] Didem Unat, Cy Chan, Weiqun Zhang, Samuel Williams, John Bachan,
John Bell, and John Shalf. Exasat: An exascale co-design tool for perfor-
mance modeling. The International Journal of High Performance Computing
Applications, 29(2):209–232, 2015. [cited at p. 90]

[133] Veronica J. Vieland. The replication requirement. Nature Genetics,
29(3):244–245, nov 2001. [cited at p. 8, 48]

[134] Gerhard Wellein. private communication. [cited at p. 77]

[135] Samuel Webb Williams, Andrew Waterman, and David A. Patterson.
Roofline: An insightful visual performance model for floating-point pro-
grams and multicore architectures. Technical Report UCB/EECS-2008-
134, EECS Department, University of California, Berkeley, Oct 2008.
[cited at p. 87, 89, 136]

[136] Frank L. H. Wolfs. Introduction to the scientific method. http://

teacher.nsrl.rochester.edu/phylabs/appendixe/appendixe.html, 2013.
[cited at p. 3]

[137] D. Wonnacott. Using time skewing to eliminate idle time due to mem-
ory bandwidth and network limitations. In Proceedings 14th International
Parallel and Distributed Processing Symposium. IPDPS 2000, pages 171–180,
May 2000. [cited at p. 97]

http://teacher.nsrl.rochester.edu/phy_labs/appendixe/appendixe.html
http://teacher.nsrl.rochester.edu/phy_labs/appendixe/appendixe.html

Appendices

Appendix A

Stencils Source Code

A.1 2d-1r-iso-const-box

A.1.1 PATUS

1: stencil 2d1risoconstbox (
2: double grid U (0 . . M_MAX ´1, 0 . . N_MAX ´1) ,
3: double param c0 = 0 . 2 ,
4: double param c1 = 0 . 3 ,
5: double param c2 = 0 . 6 5
6:)
7: {
8: iterate while t < 2 0 0 ;
9: domainsize = (1 . . M_MAX ´2, 1 . . N_MAX ´2) ;

10:
11: initial

12: {
13: U [x , y ; 0] = 1 ;
14: }
15:
16: operation

17: {
18: U [x , y ; t+1] = c0 * U [x , y ; t] +
19: c1 * (U [x , y ´ 1 ; t] + U [x ´ 1 , y ; t] +
20: U [x + 1 , y ; t] + U [x , y + 1 ; t]) +
21: c2 * (U [x ´ 1 , y ´ 1 ; t] + U [x + 1 , y ´ 1 ; t] +
22: U [x ´ 1 , y + 1 ; t] + U [x + 1 , y + 1 ; t])
23: ;
24: }

158 APPENDIX A. STENCILS SOURCE CODE

25: }

Listing A.1: 2-dimensional isotropic box constant stencil with radius 1
implemented in PATUS

A.1.2 PLUTO

1: #include <stdlib . h>
2: #include <math . h>
3:
4: #include ”timing . h”
5: #include ”dim_input . h”
6:
7: int main (int argc , char * * argv)
8: {
9:

10: int M = M_MAX ;
11: int N = N_MAX ;
12: int repeat = T_MAX ;
13:
14: double * * * a = malloc ((sizeof (double * *) * 2)) ;
15: a [0] = (double * *) malloc (sizeof (double *) * M) ;
16: a [1] = (double * *) malloc (sizeof (double *) * M) ;
17: for (int i = 0 ; i < M ; i++){
18: a [0] [i] = (double *) malloc (sizeof (double *) * N) ;
19: a [1] [i] = (double *) malloc (sizeof (double *) * N) ;
20: }
21:
22:
23: #pragma omp parallel for schedule (runtime)
24: for (int j = 0 ; j < M ; ++j)
25: for (int i = 0 ; i < N ; ++i)
26: a [0] [j] [i] = rand () / ((double) RAND_MAX) ;
27:
28: timing (&wct_start , &cput_start) ;
29: #pragma scop

30: for (int n = 0 ; n < repeat ; n++)
31: {
32: for (int j = 1 ; j < M ´ 1 ; j++){
33: for (int i = 1 ; i < N ´ 1 ; i++){
34: a [(n+1)%2][j] [i] = c0 * a [n%2][j] [i]
35: + c1 * (a [n%2][j] [i´1] + a [n%2][j´1][i] +
36: a [n%2][j+ 1] [i] + a [n%2][j] [i+ 1])
37: + c2 * (a [n%2][j´1][i´1] + a [n%2][j+ 1] [i´1] +
38: a [n%2][j´1][i+1] + a [n%2][j+ 1] [i+ 1])
39: ;
40: }

A.1. 2D-1R-ISO-CONST-BOX 159

41: }
42: }
43: #pragma endscop

44:
45: timing (&wct_end , &cput_end) ;

Listing A.2: 2-dimensional isotropic box constant stencil with radius 1
implemented in PLUTO

A.1.3 OpenMP

1: #include <stdlib . h>
2: #include <math . h>
3:
4: #include ”timing . h”
5: #include ”kerncraft . h”
6: #include ”kernel . c”
7:
8: #include ”dim_input . h”
9:

10: void * aligned_malloc (size_t , size_t) ;
11: int main (int argc , char * * argv)
12: {
13:
14: int M = M_MAX ;
15: int N = N_MAX ;
16: int repeat = T_MAX ;
17:
18: double * a = aligned_malloc ((sizeof (double)) * (M * N) , 3 2) ;
19: #pragma omp parallel for schedule (static)
20: for (int i = 0 ; i < (M * N) ; ++i)
21: a [i] = rand () / ((double) RAND_MAX) ;
22:
23: double * b = aligned_malloc ((sizeof (double)) * (M * N) , 3 2) ;
24: #pragma omp parallel for schedule (static)
25: for (int i = 0 ; i < (M * N) ; ++i)
26: b [i] = rand () / ((double) RAND_MAX) ;
27:
28: . . .
29:
30: timing (&wct_start , &cput_start) ;
31: for (int n = 0 ; n < repeat ; ++n)
32: {
33: kernel_loop (a , b , c0 , c1 , c2 , M , N) ;
34: tmp = a ;
35: a = b ;
36: b = tmp ;

160 APPENDIX A. STENCILS SOURCE CODE

37: }
38: timing (&wct_end , &cput_end) ;
39:
40: }
41:
42:
43: void kernel_loop (double *a , double *b , double c0 , double c1 ,
44: double c2 , int M , int N)
45: {
46: #pragma omp parallel for schedule (static)
47: for (int j = 1 ; j < (M ´ 1) ; j++)
48: {
49: for (int i = 1 ; i < (N ´ 1) ; i++)
50: {
51: b [i + (j * N)] = ((c0 * a [i + (j * N)]) + (
52: c1 * (((a [(i ´ 1) + (j * N)] +
53: a [i + ((j ´ 1) * N)]) +
54: a [i + ((j + 1) * N)]) +
55: a [(i + 1) + (j * N)]))) + (
56: c2 * (((a [(i ´ 1) + ((j ´ 1) * N)] +
57: a [(i ´ 1) + ((j + 1) * N)]) +
58: a [(i + 1) + ((j ´ 1) * N)]) +
59: a [(i + 1) + ((j + 1) * N)])) ;
60: }
61:
62: }
63:
64: }

Listing A.3: 2-dimensional isotropic box constant stencil with radius 1
implemented in C + OpenMP

A.2 2d-4r-iso-const-box

A.2.1 PATUS

1: stencil 2d4risoconstbox (
2: double grid U (0 . . M_MAX ´1, 0 . . N_MAX ´1) ,
3: double param c0 = 0 . 2 ,
4: double param c1 = 0 . 3 ,
5: double param c2 = 0 . 6 5 ,
6: double param c3 = 0 . 1 5 ,
7: double param c4 = 0 . 7 5 ,
8: double param c5 = 0 . 4 5 ,
9: double param c6 = 0 . 2 5 ,

10: double param c7 = 0 . 8 5 ,

A.2. 2D-4R-ISO-CONST-BOX 161

11: double param c8 = 0 . 3 5
12:)
13: {
14: iterate while t < 2 0 0 ;
15: domainsize = (4 . . M_MAX ´5, 4 . . N_MAX ´5) ;
16:
17: initial

18: {
19: U [x , y ; 0] = 1 ;
20: }
21:
22: operation

23: {
24: U [x , y ; t+1] = c0 * U [x , y ; t] +
25: c1 * (U [x , y ´ 1 ; t] + U [x ´ 1 , y ; t] +
26: U [x + 1 , y ; t] + U [x , y + 1 ; t]) +
27: c2 * (U [x , y ´ 2 ; t] + U [x ´ 1 , y ´ 1 ; t] +
28: U [x + 1 , y ´ 1 ; t] + U [x ´ 2 , y ; t] +
29: U [x + 2 , y ; t] + U [x ´ 1 , y + 1 ; t] +
30: U [x + 1 , y + 1 ; t] + U [x , y + 2 ; t]) +
31: c3 * (U [x , y ´ 3 ; t] + U [x ´ 1 , y ´ 2 ; t] +
32: U [x + 1 , y ´ 2 ; t] + U [x ´ 2 , y ´ 1 ; t] +
33: U [x + 2 , y ´ 1 ; t] + U [x ´ 3 , y ; t] +
34: U [x + 3 , y ; t] + U [x ´ 2 , y + 1 ; t] +
35: U [x + 2 , y + 1 ; t] + U [x ´ 1 , y + 2 ; t] +
36: U [x + 1 , y + 2 ; t] + U [x , y + 3 ; t]) +
37: c4 * (U [x , y ´ 4 ; t] + U [x ´ 1 , y ´ 3 ; t] +
38: U [x + 1 , y ´ 3 ; t] + U [x ´ 2 , y ´ 2 ; t] +
39: U [x + 2 , y ´ 2 ; t] + U [x ´ 3 , y ´ 1 ; t] +
40: U [x + 3 , y ´ 1 ; t] + U [x ´ 4 , y ; t] +
41: U [x + 4 , y ; t] + U [x ´ 3 , y + 1 ; t] +
42: U [x + 3 , y + 1 ; t] + U [x ´ 2 , y + 2 ; t] +
43: U [x + 2 , y + 2 ; t] + U [x ´ 1 , y + 3 ; t] +
44: U [x + 1 , y + 3 ; t] + U [x , y + 4 ; t]) +
45: c5 * (U [x ´ 1 , y ´ 4 ; t] + U [x + 1 , y ´ 4 ; t] +
46: U [x ´ 2 , y ´ 3 ; t] + U [x + 2 , y ´ 3 ; t] +
47: U [x ´ 3 , y ´ 2 ; t] + U [x + 3 , y ´ 2 ; t] +
48: U [x ´ 4 , y ´ 1 ; t] + U [x + 4 , y ´ 1 ; t] +
49: U [x ´ 4 , y + 1 ; t] + U [x + 4 , y + 1 ; t] +
50: U [x ´ 3 , y + 2 ; t] + U [x + 3 , y + 2 ; t] +
51: U [x ´ 2 , y + 3 ; t] + U [x + 2 , y + 3 ; t] +
52: U [x ´ 1 , y + 4 ; t] + U [x + 1 , y + 4 ; t]) +
53: c6 * (U [x ´ 2 , y ´ 4 ; t] + U [x + 2 , y ´ 4 ; t] +
54: U [x ´ 3 , y ´ 3 ; t] + U [x + 3 , y ´ 3 ; t] +
55: U [x ´ 4 , y ´ 2 ; t] + U [x + 4 , y ´ 2 ; t] +
56: U [x ´ 4 , y + 2 ; t] + U [x + 4 , y + 2 ; t] +
57: U [x ´ 3 , y + 3 ; t] + U [x + 3 , y + 3 ; t] +

162 APPENDIX A. STENCILS SOURCE CODE

58: U [x ´ 2 , y + 4 ; t] + U [x + 2 , y + 4 ; t]) +
59: c7 * (U [x ´ 3 , y ´ 4 ; t] + U [x + 3 , y ´ 4 ; t] +
60: U [x ´ 4 , y ´ 3 ; t] + U [x + 4 , y ´ 3 ; t] +
61: U [x ´ 4 , y + 3 ; t] + U [x + 4 , y + 3 ; t] +
62: U [x ´ 3 , y + 4 ; t] + U [x + 3 , y + 4 ; t]) +
63: c8 * (U [x ´ 4 , y ´ 4 ; t] + U [x + 4 , y ´ 4 ; t] +
64: U [x ´ 4 , y + 4 ; t] + U [x + 4 , y + 4 ; t])
65: ;
66: }
67: }

Listing A.4: 2-dimensional isotropic box constant stencil with radius 4
implemented in PATUS

A.2.2 PLUTO

1: #include <stdlib . h>
2: #include <math . h>
3:
4: #include ”timing . h”
5: #include ”dim_input . h”
6:
7: int main (int argc , char * * argv)
8: {
9:

10: int M = M_MAX ;
11: int N = N_MAX ;
12: int repeat = T_MAX ;
13:
14: double * * * a = malloc ((sizeof (double * *) * 2)) ;
15: a [0] = (double * *) malloc (sizeof (double *) * M) ;
16: a [1] = (double * *) malloc (sizeof (double *) * M) ;
17: for (int i = 0 ; i < M ; i++){
18: a [0] [i] = (double *) malloc (sizeof (double *) * N) ;
19: a [1] [i] = (double *) malloc (sizeof (double *) * N) ;
20: }
21:
22:
23: #pragma omp parallel for schedule (runtime)
24: for (int j = 0 ; j < M ; ++j)
25: for (int i = 0 ; i < N ; ++i)
26: a [0] [j] [i] = rand () / ((double) RAND_MAX) ;
27:
28: timing (&wct_start , &cput_start) ;
29: #pragma scop

30: for (int n = 0 ; n < repeat ; ++n)
31: {

A.2. 2D-4R-ISO-CONST-BOX 163

32: for (int j=4; j < M´4; j++){
33: for (int i=4; i < N´4; i++){
34: a [(n+1)%2][j] [i] = c0 * a [n%2][j] [i]
35: + c1 * (a [n%2][j] [i´1] + a [n%2][j´1][i] +
36: a [n%2][j+ 1] [i] + a [n%2][j] [i+ 1])
37: + c2 * (
38: a [n%2][j] [i´2] + a [n%2][j´1][i´1] +
39: a [n%2][j+ 1] [i´1] + a [n%2][j´2][i] +
40: a [n%2][j+ 2] [i] + a [n%2][j´1][i+1] +
41: a [n%2][j+ 1] [i+1] + a [n%2][j] [i+ 2])
42: + c3 * (
43: a [n%2][j] [i´3] + a [n%2][j´1][i´2] +
44: a [n%2][j+ 1] [i´2] + a [n%2][j´2][i´1] +
45: a [n%2][j+ 2] [i´1] + a [n%2][j´3][i] +
46: a [n%2][j+ 3] [i] + a [n%2][j´2][i+1] +
47: a [n%2][j+ 2] [i+1] + a [n%2][j´1][i+2] +
48: a [n%2][j+ 1] [i+2] + a [n%2][j] [i+ 3])
49: + c4 * (
50: a [n%2][j] [i´4] + a [n%2][j´1][i´3] +
51: a [n%2][j+ 1] [i´3] + a [n%2][j´2][i´2] +
52: a [n%2][j+ 2] [i´2] + a [n%2][j´3][i´1] +
53: a [n%2][j+ 3] [i´1] + a [n%2][j´4][i] +
54: a [n%2][j+ 4] [i] + a [n%2][j´3][i+1] +
55: a [n%2][j+ 3] [i+1] + a [n%2][j´2][i+2] +
56: a [n%2][j+ 2] [i+2] + a [n%2][j´1][i+3] +
57: a [n%2][j+ 1] [i+3] + a [n%2][j] [i+ 4])
58: + c5 * (
59: a [n%2][j´1][i´4] + a [n%2][j+ 1] [i´4] +
60: a [n%2][j´2][i´3] + a [n%2][j+ 2] [i´3] +
61: a [n%2][j´3][i´2] + a [n%2][j+ 3] [i´2] +
62: a [n%2][j´4][i´1] + a [n%2][j+ 4] [i´1] +
63: a [n%2][j´4][i+1] + a [n%2][j+ 4] [i+1] +
64: a [n%2][j´3][i+2] + a [n%2][j+ 3] [i+2] +
65: a [n%2][j´2][i+3] + a [n%2][j+ 2] [i+3] +
66: a [n%2][j´1][i+4] + a [n%2][j+ 1] [i+ 4])
67: + c6 * (
68: a [n%2][j´2][i´4] + a [n%2][j+ 2] [i´4] +
69: a [n%2][j´3][i´3] + a [n%2][j+ 3] [i´3] +
70: a [n%2][j´4][i´2] + a [n%2][j+ 4] [i´2] +
71: a [n%2][j´4][i+2] + a [n%2][j+ 4] [i+2] +
72: a [n%2][j´3][i+3] + a [n%2][j+ 3] [i+3] +
73: a [n%2][j´2][i+4] + a [n%2][j+ 2] [i+ 4])
74: + c7 * (
75: a [n%2][j´3][i´4] + a [n%2][j+ 3] [i´4] +
76: a [n%2][j´4][i´3] + a [n%2][j+ 4] [i´3] +
77: a [n%2][j´4][i+3] + a [n%2][j+ 4] [i+3] +
78: a [n%2][j´3][i+4] + a [n%2][j+ 3] [i+ 4])

164 APPENDIX A. STENCILS SOURCE CODE

79: + c8 * (
80: a [n%2][j´4][i´4] + a [n%2][j+ 4] [i´4] +
81: a [n%2][j´4][i+4] + a [n%2][j+ 4] [i + 4]) ;
82: }
83: }
84: }
85: #pragma endscop

86:
87: timing (&wct_end , &cput_end) ;

Listing A.5: 2-dimensional isotropic box constant stencil with radius 4
implemented in PLUTO

A.2.3 OpenMP

1: #include <stdlib . h>
2: #include <math . h>
3:
4: #include ”timing . h”
5: #include ”kerncraft . h”
6: #include ”kernel . c”
7:
8: #include ”dim_input . h”
9:

10: void * aligned_malloc (size_t , size_t) ;
11: int main (int argc , char * * argv)
12: {
13:
14: int M = M_MAX ;
15: int N = N_MAX ;
16: int repeat = T_MAX ;
17:
18: double * a = aligned_malloc ((sizeof (double)) * (M * N) , 3 2) ;
19: #pragma omp parallel for schedule (runtime)
20: for (int i = 0 ; i < (M * N) ; ++i)
21: a [i] = rand () / ((double) RAND_MAX) ;
22:
23: double * b = aligned_malloc ((sizeof (double)) * (M * N) , 3 2) ;
24: #pragma omp parallel for schedule (runtime)
25: for (int i = 0 ; i < (M * N) ; ++i)
26: b [i] = rand () / ((double) RAND_MAX) ;
27:
28: . . .
29:
30: timing (&wct_start , &cput_start) ;
31: for (int n = 0 ; n < repeat ; ++n)
32: {

A.2. 2D-4R-ISO-CONST-BOX 165

33: kernel_loop (a , b , c0 , c1 , c2 , c3 , c4 , c5 , c6 , c7 , c8 , M , N) ;
34: tmp = a ;
35: a = b ;
36: b = tmp ;
37: }
38: timing (&wct_end , &cput_end) ;
39:
40: }
41:
42:
43: void kernel_loop (double *a , double *b , double c0 , double c1 ,
44: double c2 , double c3 , double c4 , double c5 , double c6 ,
45: double c7 , double c8 , int M , int N)
46: {
47: #pragma omp parallel for schedule (runtime)
48: for (int j = 4 ; j < (M ´ 4) ; j++)
49: {
50: for (int i = 4 ; i < (N ´ 4) ; i++)
51: {
52: b [i + (j * N)] =
53: c0 * a [i + (j * N)] +
54: c1 * (
55: a [(i ´ 1) + (j * N)] + a [i + ((j ´ 1) * N)] +
56: a [i + ((j + 1) * N)] + a [(i + 1) + (j * N)]) +
57: c2 * (
58: a [(i ´ 2) + (j * N)] + a [(i ´ 1) + ((j ´ 1) * N)] +
59: a [(i ´ 1) + ((j + 1) * N)] + a [i + ((j ´ 2) * N)] +
60: a [i + ((j + 2) * N)] + a [(i + 1) + ((j ´ 1) * N)] +
61: a [(i + 1) + ((j + 1) * N)] + a [(i + 2) + (j * N)]) +
62: c3 * (
63: a [(i ´ 3) + (j * N)] + a [(i ´ 2) + ((j ´ 1) * N)] +
64: a [(i ´ 2) + ((j + 1) * N)] + a [(i ´ 1) + ((j ´ 2) * N)] +
65: a [(i ´ 1) + ((j + 2) * N)] + a [i + ((j ´ 3) * N)] +
66: a [i + ((j + 3) * N)] + a [(i + 1) + ((j ´ 2) * N)] +
67: a [(i + 1) + ((j + 2) * N)] + a [(i + 2) + ((j ´ 1) * N)] +
68: a [(i + 2) + ((j + 1) * N)] + a [(i + 3) + (j * N)]) +
69: c4 * (a [(i ´ 4) + (j * N)] +
70: a [(i ´ 3) + ((j ´ 1) * N)] + a [(i ´ 3) + ((j + 1) * N)] +
71: a [(i ´ 2) + ((j ´ 2) * N)] + a [(i ´ 2) + ((j + 2) * N)] +
72: a [(i ´ 1) + ((j ´ 3) * N)] + a [(i ´ 1) + ((j + 3) * N)] +
73: a [i + ((j ´ 4) * N)] + a [i + ((j + 4) * N)] +
74: a [(i + 1) + ((j ´ 3) * N)] + a [(i + 1) + ((j + 3) * N)] +
75: a [(i + 2) + ((j ´ 2) * N)] + a [(i + 2) + ((j + 2) * N)] +
76: a [(i + 3) + ((j ´ 1) * N)] + a [(i + 3) + ((j + 1) * N)] +
77: a [(i + 4) + (j * N)]) +
78: c5 * (a [(i ´ 4) + ((j ´ 1) * N)] +
79: a [(i ´ 4) + ((j + 1) * N)] + a [(i ´ 3) + ((j ´ 2) * N)] +

166 APPENDIX A. STENCILS SOURCE CODE

80: a [(i ´ 3) + ((j + 2) * N)] + a [(i ´ 2) + ((j ´ 3) * N)] +
81: a [(i ´ 2) + ((j + 3) * N)] + a [(i ´ 1) + ((j ´ 4) * N)] +
82: a [(i ´ 1) + ((j + 4) * N)] + a [(i + 1) + ((j ´ 4) * N)] +
83: a [(i + 1) + ((j + 4) * N)] + a [(i + 2) + ((j ´ 3) * N)] +
84: a [(i + 2) + ((j + 3) * N)] + a [(i + 3) + ((j ´ 2) * N)] +
85: a [(i + 3) + ((j + 2) * N)] + a [(i + 4) + ((j ´ 1) * N)] +
86: a [(i + 4) + ((j + 1) * N)]) +
87: c6 * (a [(i ´ 4) + ((j ´ 2) * N)] +
88: a [(i ´ 4) + ((j + 2) * N)] + a [(i ´ 3) + ((j ´ 3) * N)] +
89: a [(i ´ 3) + ((j + 3) * N)] + a [(i ´ 2) + ((j ´ 4) * N)] +
90: a [(i ´ 2) + ((j + 4) * N)] + a [(i + 2) + ((j ´ 4) * N)] +
91: a [(i + 2) + ((j + 4) * N)] + a [(i + 3) + ((j ´ 3) * N)] +
92: a [(i + 3) + ((j + 3) * N)] + a [(i + 4) + ((j ´ 2) * N)] +
93: a [(i + 4) + ((j + 2) * N)]) +
94: c7 * (a [(i ´ 4) + ((j ´ 3) * N)] +
95: a [(i ´ 4) + ((j + 3) * N)] + a [(i ´ 3) + ((j ´ 4) * N)] +
96: a [(i ´ 3) + ((j + 4) * N)] + a [(i + 3) + ((j ´ 4) * N)] +
97: a [(i + 3) + ((j + 4) * N)] + a [(i + 4) + ((j ´ 3) * N)] +
98: a [(i + 4) + ((j + 3) * N)]) +
99: c8 * (a [(i ´ 4) + ((j ´ 4) * N)] +

100: a [(i ´ 4) + ((j + 4) * N)] + a [(i + 4) + ((j ´ 4) * N)] +
101: a [(i + 4) + ((j + 4) * N)]) ;
102: }
103: }
104: }

Listing A.6: 2-dimensional isotropic box constant stencil with radius 4
implemented in C + OpenMP

Appendix B

Creation of a MethodType

A methodtype contains all the information required to install its software
stack and compile and run the source code that uses it. It is the connection
ring between a method (as defined in theory in Section 9.3) and the soft-
ware stack. Its main components are three scripts that describe the way
parameters are set up, the compilation instructions and the command
used to run it. A methodType relies on modules that should be installed
via EasyBuild. EasyBuild offers installation recipes for a variety of scien-
tific software packages: they are available upstream on their repository
[71]. If a custom easyconfig is needed, then it must be part of the method-
Type folder.
One of the methodTypes used in the experiments part of this work is called
PLUTO-pet-0.11. It is used to provide to the users of PROVA! the pet
branch of the PLUTO stencil compiler. If one wants to create such a
methodType, the content of the compile, run and setup parameters scripts
should be the one contained in Listings B.1, B.2, and B.3 respectively.
Since an easyconfig (i.e. an installation recipe for EasyBuild) is not avail-
able in the easyconfigs repository ([71]), it is necessary to provide it. In
Listing B.4 is shown the content of PLUTO-pet-0.11.eb.

168 APPENDIX B. CREATION OF A METHODTYPE

#!/bin/bash

module_home= `pwd `

#create folder where to put the binary files and the outputs

if [! ´d bin] ; then

mkdir bin

fi

if [! ´d out] ; then

mkdir out

fi

#to compile an openmp implementation you need only to call the makefile

cd src

#Compile source

make clean

make all

cd $module_home

Listing B.1: Script used to compile a method whose methodType is PLUTO-
pet-0.11

#!/bin/bash

#Environment variable $CURRENT_NT contains the number of threads to use

#output file name passed as first argument

module_home= `pwd `

export OMP_NUM_THREADS=$CURRENT_NT

#LIKWID_CMD is exported in the environment by the main run script

if ["$1" == ""] ; then

echo "Output file not specified. Output on screen."

$LIKWID_CMD $module_home/bin/project

else

$LIKWID_CMD $module_home/bin/project >> $1

fi

Listing B.2: Script used to run a method whose methodType is PLUTO-pet-
0.11

169

#!/bin/bash

#the environment PARAM_VALUES contains the values of the parameters

#project descriptor passed as first argument

#project descriptor

if ["$1" == ""] ; then

PD = . . / . project
else

PD=$1
fi

#read parameters names and put into an array

read ´ra PARAMS_NAME <<<"$(gawk -F '[""]' '/list/{print $4}' $PD)"

count=0

rm ´rf src/dim_input . h

touch src/dim_input . h

echo "Compiling with parameters: $PARAM_VALUES"

for param in $PARAM_VALUES

do

echo "#define ${PARAMS_NAME[$count]} $param" >> src/dim_input . h
count=$ ((count + 1))

done

Listing B.3: Script used to setup the parameters of a method whose methodType
is PLUTO-pet-0.11

170 APPENDIX B. CREATION OF A METHODTYPE

author: Danilo Guerrera

easyblock = ' ConfigureMake '

name = ' PLUTO´pet '
this version of pluto is the development branch with pet. The tar has been

produced after having typed the following commands:

$ git clone git:// repo.or.cz/pluto.git -b pet

version = ' 0 . 1 1 . 0 '

homepage = ' http :// pluto´compiler . sourceforge . net/ '
description = """PLUTO is an automatic parallelization tool based on the

polyhedral model. The polyhedral model for compiler optimization

provides an abstraction to perform high -level transformations

such as loop -nest optimization and parallelization on affine

loop nests. Pluto transforms C programs from source to source

for coarse -grained parallelism and data locality simultaneously.

The core transformation framework mainly works by finding affine

transformations for efficient tiling."""

toolchain = { ' name ' : ' dummy ' , ' version ' : ' '}

compiler toolchain dependencies

comp = (' GCC ' , ' 4 . 9 . 3 ´ 2 . 2 5 ')
builddependencies = [

comp ,
(' Clang ' , ' 3 . 4 ' , ' ' , comp) ,
(' pkg´config ' , ' 0 . 2 9 ' , ' ' , comp) ,
(' libyaml ' , ' 0 . 1 . 6 ' , ' ' , comp) ,
(' Autotools ' , ' 2 0 1 6 1 0 1 1 ' , ' ' , True) ,

]

sources = [SOURCE_TAR_GZ]
#source_urls = ['http :// sourceforge.net/projects/pluto -compiler/files/']

preconfigopts = "git submodule init && git submodule update &&

./ apply_patches.sh && ./ autogen.sh && "

#preconfigopts += 'CPPFLAGS="- I$EBROOTCLANG/include $CPPFLAGS"

#LDFLAGS="- L$EBROOTCLANG/lib $LDFLAGS" '

configopts = "CC=clang CXX=clang++"

--with -clang -prefix=$EBROOTCLANG --with -isl -prefix=$EBROOTISL"

buildininstalldir = True

runtest = "test"

sanity_check_paths = {
' files ' : ["bin/polycc"] ,
' dirs ' : [] ,

}

maxparallel = 4

moduleclass = ' devel '

Listing B.4: Easyconfig of PLUTO-pet-0.11

Appendix C

Walkthrough of STEMPEL:

Kerncraft and PROVA! Interfaces

This Appendix describes how to use STEMPEL in combination with Kern-
craft and PROVA!.

The first functionality of STEMPEL is the option to generate a pseudo-
C code describing a stencil operator. The generator accepts command
line parameters, specifying the characteristics of the stencil, as described
in Sections 7.2. Listing C.1 shows a possible command to generate a 3-
dimensional star stencil with isotropic and constant coefficients, and ra-
dius one. Its output, created in a format representing the input accepted
by Kerncraft, is saved in a file called stencil.c, whose content is shown in
Listing C.2.

$ stempel gen ´D 3 ´r 1 ´k star ´C constant \
´́ isotropic ´́ store stencil . c

Listing C.1: Command used to create c.

1: double a [M] [N] [P] ;
2: double b [M] [N] [P] ;
3: double c0 ;
4: double c1 ;
5:
6: for (int k=1; k < M´1; k++){
7: for (int j=1; j < N´1; j++){
8: for (int i=1; i < P´1; i++){
9: b [k] [j] [i] = c0 * a [k] [j] [i]

10: + c1 * ((
11: a [k] [j] [i´1] + a [k] [j] [i+ 1]) +

172
APPENDIX C. WALKTHROUGH OF STEMPEL: KERNCRAFT AND PROVA!

INTERFACES

12: (a [k´1][j] [i] + a [k+ 1] [j] [i]) +
13: (a [k] [j´1][i] + a [k] [j+ 1] [i])) ;
14: }
15: }
16: }

Listing C.2: Pseudo-C code produced as an output by the STEMPEL sten-
cil generator, accepting the command line shown in Listing C.1.

The command shown in Listing C.3 requests the ECM prediction, us-
ing the layer condition cache simulator, on an Intel Xeon E5-2640 v4, the
input size of the grid being 2503, using one core.

$ kerncraft ´P LC ´p ECM stencil . c
´m Intel_Xeon_CPU_E5 ´2640_v4 . yml ´D M 250
´D N 250 ´D P 250 ´́ unit=FLOP/s ´́ cores=1 ´vv

Listing C.3: Command issued to predict the performance of a stencil, with
input grid size of 2503, using the ECM model on an Intel Xeon E5-2640 v4.

The Roofline model can be requested, for the same stencil and grid
size, on the same machine, by using the command line presented in List-
ing C.4.

$ kerncraft ´P LC ´p Roofline stencil . c
´m Intel_Xeon_CPU_E5 ´2640_v4 . yml ´D M 250
´D N 250 ´D P 250 ´́ unit=FLOP/s ´́ cores=10 ´vv

Listing C.4: Command issued to predict the performance of a stencil, with
input grid size of 2503, using the Roofline model on an Intel Xeon E5-2640 v4.

After having predicted the performance through Kerncraft, it is pos-
sible to generate a benchmark code, starting from the previously created
pseudo-code. A possible way of doing so is by issuing the command
shown in Listing C.5.

$ stempel bench stencil . c ´m Intel_Xeon_CPU_E5 ´2640_v4 . yml \
´́ store ´́ nocli

Listing C.5: Command used to generate a benchmark code for the pseudo-C
code contained in stencil.c.

To obtain a reproducible execution of an experiment, a tool such as
PROVA! can help. As described in Section 5.2, the usage of PROVA! passes
through the creation of a project, a method and its implementation first,
as shown in Listing C.6.

$ source /export/hpwc/PROVA/util/BaseSetup . sh
$ workflow project ´c ´p stencil ´́ params "X_MAX Y_MAX \

173

Z_MAX" ´́ values "100 100 100" ´́ threads 2
$ workflow method ´c ´p stencil \

´m OpenMP´4.5´GCC ´7.3.0 ´2.30 ´n openMP

$ workflow run_exp ´p stencil ´e 5 ´d 250 250 250 \
´m openMP ´t 1 10 ´́ pin node

Listing C.6: Command used in PROVA! to create a project named stencil,
having X MAX Y MAX Z MAX as parameters and default values of 100.

The sequence of commands shown in Listings C.2, C.3, C.4, C.5, C.6
can be substituted by a single command offered by STEMPEL and listed
in Listing C.7. Such a command accepts the characteristics of the stencil
to model, the descriptor of the architecture for which a prediction must
be performed, paths to the home and a workspace used by PROVA!, to-
gether with parameters such as the number of executions and threads to
use for the experiments, the methodType, paths to the likwid command
and its library. The output of such a command is a folder containing:
pseudo-C code, Kerncraft analysis (both ECM and Roofline model), re-
producible performance results of the benchmark code. All the files men-
tioned above can be used for further analysis, such as the one presented
in Section 10.2.1.

$ analysis ´w $STEMPELWORKSPACE ´k star ´c isotropic \
´C constant ´r 1 ´d 3 ´m Intel_Xeon_CPU_E5 ´2640_v4 . yml \

´p $PROVAHOME $PROVAWORKSPACE ´e 5 ´t 1 10 \
´́ method_type OpenMP´4.5´GCC ´7.3.0 ´2.30
´l $LIKWID_INC $LIKWID_LIB ´́ iaca ´́ sizes 250 250 250

Listing C.7: Command used to generate, model and execute a 3 dimensional
star stencil with isotropic and constant coefficients, and radius one.

List of Figures

2.1 Overview of the evolution of microprocessors: transistors count,
clock frequency and power consumption. Note that the y-axis
is presented in logarithmic scale and as relative value. Data
taken from [1]. 16

2.2 Overview of the evolution of the gate length of the transistors
used in microprocessors. Data taken from [4]. 17

2.3 Simplified schematization of a typical cache-based micropro-
cessor. 20

2.4 Basic instruction cycle, broken into a series of stages, with-
out pipelining. The light colors represent a single instruction,
while the dark ones represent the active stage of the pipeline. . 22

2.5 Basic instruction cycle, broken into a series of stages, with
pipelining. Each color represents a single instruction. 22

2.6 SIMD operation compared to a scalar operation over an array. 24

2.7 Superscalarity of instructions: multiple functional units allow
to complete execute several instructions per cycle. Each color
represents a single instruction broken into stages in the pipeline. 24

2.8 Flynn’s taxonomy of parallel computers, as described in [40]. . 25

2.9 UMA system consisting of two dual-core chips. 29

2.10 ccNUMA system consisting of two NUMA domains and eight
cores. 29

2.11 Performance of the wrongly (left) and correctly (right) initial-
ized three dimensional isotropic constant stencil with radius
1. 32

176 LIST OF FIGURES

2.12 Performance of a 2-dimensional isotropic box stencil with con-
stant coefficients and radius 1, grid size of 100002 and NUMA
unaware initialization. On the left the performance, varying
the numbers iterations, on an Intel Xeon E5-2695 with Cluster
on Die mode enabled and NUMA balancing disabled. On the
right the performance of the same code, on the same machine,
but with NUMA balancing enabled. 33

3.1 Amdhal’s law [10]: parallel speedup vs sequential fraction, for
ranges of the parallel fraction between 0.5 and 1. 36

3.2 Speedup as a function of the number of cores for the ranges of
the parallel fraction 0.5 to 1 assuming Gustafson’s law [60]. . . 37

3.3 Runtime performance of a 2-dimensional isotropic box sten-
cil with constant coefficients, on a node of miniHPC (see Sec-
tion 9.1.4), using explicit thread pinning. The input grid size
is fixed to 30002, and 200 time-steps are executed in double
precision. The difference in the performance of the two con-
figurations is given by a different set of compilation flags used. 41

4.1 Space of Computational Experiments 51
4.2 Ecosystem for reproducible stencil experiments. 53

6.1 Architectural overview of PROVA!. 63
6.2 UML diagram schematizing the creation of a project in a PROVA!

workspace. 64
6.3 UML diagram schematizing the creation of a method in a project. 64
6.4 UML diagram schematizing the creation of an experiment to

run the methods created in a project. 65
6.5 UML diagram schematizing the creation of a graph showing

the results of the execution of an experiment. 66
6.6 Performance graph of a 2D Gaussian blur, with naive OpenMP

implementation both with and without explicit pinning on
Mint, taken from [59]. The histogram shows the average value
out of 5 executions, and the error bars the standard deviation. 68

6.7 Roofline for the Mint cluster with the three kernels implement-
ing a 3D wave equation. The description of the experiment
and the discussion of the results have been published in [59]. . 70

7.1 Arithmetic intensity in various computational codes. 76

LIST OF FIGURES 177

7.2 2-dimensional star stencil with radius 1, constant and isotro-
pic coefficients, yielding 6 FLOP. 77

7.3 3-dimensional star stencil with radius 1, constant and isotro-
pic coefficients, yielding 8 FLOP. 77

7.4 2-dimensional star stencil with radius 2, constant and isotro-
pic coefficients, yielding 11 FLOP. 78

7.5 2-dimensional star stencil with radius 3, constant and hetero-
geneous coefficients, yielding 25 FLOP. 78

7.6 3-dimensional box stencil with radius 1, variable and point-
symmetric coefficients, yielding 40 FLOP. 79

7.7 Unravelling of a 3-dimensional, radius 1, box stencil with vari-
able and point-symmetric coefficients in order to appreciate
their symmetricity. 79

7.8 Architecture of STEMPEL: the generated stencil kernel is passed
to Kerncraft, for the performance modeling, and to the bench-
mark generator, that interfaces with PROVA!. 81

8.1 The performance engineering cycle consists of three phases:
analisys and prediction of the code’s characteristics, repro-
ducible experimentation and measurements of its run-time be-
havior, and optmization . 86

8.2 Visualization of the Roofline model with explicit depiction of
the compute bound area, delimited by the peak floating point
performance Pmax, and memory bound area, delimited by the
applicable peak bandwidth bs at a given arithmetic intensity I. 88

8.3 Visualization of the factors involved in the calculation of the
ECM model: overlapping time of computations and store (TOL),
time for loading the data from L1 to the registers (TnOL), time
for loading the data from L2 to L1 (TL1´L2), time for loading
from L3 to L2 (TL2´L3), and time for loading from memory to
L3 (TL3´MEM). 89

8.4 Overview of Kerncraft: the user provides kernel code, con-
stants, and a machine descriptor. IACA or OSACA, pycachesim,
and a compiler are employed to build the ECM and Roofline
models. Figure adapted from 91

178 LIST OF FIGURES

8.5 Jacobi algorithm for a 2D 5-point stencil update: in pink and
red the points needed at time T0 to obtain the point in yellow
at time T1. The shadow indicates the points that are needed
for the actual computation: if at least two successive rows can
be kept in the cache, only one cell per update has to be fetched
from memory (in red). 95

10.1 Percentage error of the prediction obtained through ECM and
Roofline model, applied to a 2-dimensional star stencil with
homogeneous, heterogeneous, point-symmetric and isotropic
constant coefficients, on a socket (10 cores) of Emmy (left) and
miniHPC (right), against the measured performance. The pre-
dicted performance has been obtained via Kerncraft, and the
measured performance through PROVA!. 113

10.2 Percentage error of the prediction obtained through ECM and
Roofline model, applied to a 2-dimensional star stencil with
homogeneous, heterogeneous, point-symmetric and isotropic
variable coefficients, on a socket (10 cores) of Emmy (left) and
miniHPC (right), against the measured performance. The pre-
dicted performance has been obtained via Kerncraft, and the
measured performance through PROVA!. 114

10.3 Percentage error of the prediction obtained through ECM and
Roofline model, applied to a 2-dimensional box stencil with
homogeneous, heterogeneous, point-symmetric and isotropic
constant coefficients, on a socket (10 cores) of Emmy (left) and
miniHPC (right), against the measured performance. The pre-
dicted performance has been obtained via Kerncraft, and the
measured performance through PROVA!. 115

10.4 Percentage error of the prediction obtained through ECM and
Roofline model, applied to a 2-dimensional box stencil with
homogeneous, heterogeneous, point-symmetric and isotropic
variable coefficients, on a socket (10 cores) of Emmy (left) and
miniHPC (right), against the measured performance. The pre-
dicted performance has been obtained via Kerncraft, and the
measured performance through PROVA!. 116

LIST OF FIGURES 179

10.5 Percentage error of the prediction obtained through ECM and
Roofline model, applied to a 3-dimensional star stencil with
homogeneous, heterogeneous, point-symmetric and isotropic
constant coefficients, on a socket (10 cores) of Emmy (left) and
miniHPC (right), against the measured performance. The pre-
dicted performance has been obtained via Kerncraft, and the
measured performance through PROVA!. 117

10.6 Percentage error of the prediction obtained through ECM and
Roofline model, applied to a 3-dimensional star stencil with
homogeneous, heterogeneous, point-symmetric and isotropic
variable coefficients, on a socket (10 cores) of Emmy (left) and
miniHPC (right), against the measured performance. The pre-
dicted performance has been obtained via Kerncraft, and the
measured performance through PROVA!. 118

10.7 Percentage error of the prediction obtained through ECM and
Roofline model, applied to a 3-dimensional box stencil with
homogeneous, heterogeneous, point-symmetric and isotropic
constant coefficients, on a socket (10 cores) of Emmy (left) and
miniHPC (right), against the measured performance. The pre-
dicted performance has been obtained via Kerncraft, and the
measured performance through PROVA!. 119

10.8 Percentage error of the prediction obtained through ECM and
Roofline model, applied to a 3-dimensional box stencil with
homogeneous, heterogeneous, point-symmetric and isotropic
variable coefficients, on a socket (10 cores) of Emmy (left) and
miniHPC (right), against the measured performance. The pre-
dicted performance has been obtained via Kerncraft, and the
measured performance through PROVA!. 120

10.9 Performance graph of a 2D isotropic, box stencil with constant
coefficients and radius 1. Two dimensions for the grids have
been used: 5002 and 30002, while the timesteps are 200. On the
left are presented the results obtained on Emmy, on the right
the ones on miniHPC. The kernel has been implemented using
three methods: naive OpenMP implementation with explicit
pinning using the strategies ByNode and BySpreading, PATUS

without pinning, and PLUTO with explicit pinning using the
strategies ByNode and BySpreading. For all the graphs the
histogram shows the average value out of 10 executions, and
the error bars the standard deviation. 128

180 LIST OF FIGURES

10.10Performance graph of a 2D isotropic, box stencil with constant
coefficients and radius 4. Two dimensions for the grids have
been used: 5002 and 30002, while the timesteps are 200. On the
left are presented the results obtained on Emmy, on the right
the ones on miniHPC. The kernel has been implemented using
three methods: naive OpenMP implementation with explicit
pinning using the strategies ByNode and BySpreading, PATUS

without pinning, and PLUTO with explicit pinning using the
strategies ByNode and BySpreading. For all the graphs the
histogram shows the average value out of 10 executions, and
the error bars the standard deviation. 129

List of Tables

4.1 Timeline of the interest in reproducibility and leading publi-
cations. 48

8.1 Timeline of performance modeling research and the most rel-
evant publications. 87

9.1 Table representing all the combinations of the characteristic
parameters of a star stencil, depicting the values used for the
validation experiments. 105

9.2 Table representing all the combinations of the characteristic
parameters of a box stencil, depicting the values used for the
validation experiments. 106

Listings

2.1 NUMA unaware initialization of the arrays used to calcu-
late a a three-dimensional isotropic star stencil with radius
1 . 30

2.2 NUMA aware initialization of the arrays used to calculate
a a three-dimensional isotropic star stencil with radius 1 . 31

5.1 A possible command in PROVA! to run an experiment in-
volving a 2-dimensional isotropic constant star stencil with
grid size of 30002 using several thread counts and core
affinity by node. 55

5.2 Command used in PROVA! to create a project named KNL
having X MAX, Y MAX, Z MAX as parameters and default
values of 100. 58

5.3 Command used in PROVA! to create an implementation
named wave (of type OpenMP-4.0-GCC-4.9.3-2.25) and be-
longing to the project KNL. 59

5.4 Command used in PROVA! to compile the implementation
named wave and belonging to the project KNL. 59

5.5 Command used in PROVA! to execute with default param-
eters and no explicit pinning the implementation named
wave and belonging to the project KNL. 60

5.6 Command used in PROVA! to execute an experiment with
non-default parameters and no explicit pinning. A list of
of threads to use and input parameters is passed on the
command line. 60

LISTINGS 183

5.7 Command used in PROVA! to execute an experiment with
non-default parameters and explicit pinning by node. The
experiment is submitted through the job scheduler PBS. A
list of of threads to use and input parameters is passed on
the command line. 60

5.8 Command used in PROVA! to generate an histogram of
the performance output obtained in the experiment named
20171129 140354. Additional parameters restrict the data
to be visualized by specifying the number of threads, the
metric to visualize and the error bar. 61

6.1 Example of how the pinning strategies defined by PROVA!
translate into a likwid command. 69

9.1 Topology of a node of Emmy, obtained via likwid-topology 103
9.2 Topology of a node of MiniHPC, obtained using the utility

likwid-topology . 104
9.3 Kernel of a 2-dimensional radius 1 isotropic box stencil

with constant coefficients . 107
9.4 Kernel of a 2-dimensional radius 4 isotropic box stencil

with constant coefficients . 108
10.1 A possible command used to obtain the performance pre-

diction of Roofline and ECM models for a stencil on an Ivy
Bridge E5-2660v2 machine. 121

10.2 ECM prediction through Kerncrat of a 2-dimensional, ra-
dius 4, isotropic box stencil with constant coefficients and
size 30002 on Emmy. 124

10.3 ECM prediction through Kerncrat of a 2-dimensional, ra-
dius 4, isotropic box stencil with constant coefficients and
size 30002 on miniHPC. 125

10.4 ECM prediction through Kerncrat of a 2-dimensional, ra-
dius 4, isotropic box stencil with constant coefficients and
size 5002 on Emmy. 125

10.5 ECM prediction through Kerncrat of a 2-dimensional, ra-
dius 4, isotropic box stencil with constant coefficients and
size 5002 on miniHPC . 126

A.1 2-dimensional isotropic box constant stencil with radius 1
implemented in PATUS . 157

A.2 2-dimensional isotropic box constant stencil with radius 1
implemented in PLUTO . 158

184 LISTINGS

A.3 2-dimensional isotropic box constant stencil with radius 1
implemented in C + OpenMP 159

A.4 2-dimensional isotropic box constant stencil with radius 4
implemented in PATUS . 160

A.5 2-dimensional isotropic box constant stencil with radius 4
implemented in PLUTO . 162

A.6 2-dimensional isotropic box constant stencil with radius 4
implemented in C + OpenMP 164

B.1 Script used to compile a method whose methodType is
PLUTO-pet-0.11 . 168

B.2 Script used to run a method whose methodType is PLUTO-
pet-0.11 . 168

B.3 Script used to setup the parameters of a method whose
methodType is PLUTO-pet-0.11 169

B.4 Easyconfig of PLUTO-pet-0.11 170
C.1 Command used to create c. 171
C.2 Pseudo-C code produced as an output by the STEMPEL

stencil generator, accepting the command line shown in
Listing C.1. 171

C.3 Command issued to predict the performance of a stencil,
with input grid size of 2503, using the ECM model on an
Intel Xeon E5-2640 v4. 172

C.4 Command issued to predict the performance of a stencil,
with input grid size of 2503, using the Roofline model on
an Intel Xeon E5-2640 v4. 172

C.5 Command used to generate a benchmark code for the pseudo-
C code contained in stencil.c. 172

C.6 Command used in PROVA! to create a project named sten-
cil, having X MAX Y MAX Z MAX as parameters and de-
fault values of 100. 172

C.7 Command used to generate, model and execute a 3 dimen-
sional star stencil with isotropic and constant coefficients,
and radius one. 173

Curriculum Vitae

Personal Data
Name Danilo Guerrera

Data of Birth 11.12.1986

Place of Birth Benevento, Italy

Parents Mario Guerrera and Carmelina Corbo

Nationality Italian

Address Andlauerstrasse 2, 4057 Basel

Education
1999 - 2004 Liceo Scientifico “G. Rummo” in Benevento (Italy)

2004 - 2012 M.Sc. and B.Sc. in Computer Science Engineering at the Uni-
versity of Sannio, Benevento (Italy)

2013 - 2018 Ph.D. candidate in Computer Science at the University of Basel
(Switzerland)

Jun. - Dec. 2017 Scientific Researcher at the Friederich-Alexander University of
Erlangen-Nürnberg (Germany) by the Regionale RechenZentrum
Erlangen (RRZE)

20 Nov. 2018 Ph.D. examination, University of Basel (Switzerland)

	Contents
	1 Introduction
	1.1 Research Questions
	1.2 Related Work
	1.3 Organization of This Work

	I Reproducibility Challenges
	2 Reproducibility Challenges: Hardware Complexity
	2.1 Moore's Law
	2.2 From Single Core to Multicore, Manycore, and Accelerators
	2.2.1 Pipelining
	2.2.2 Out-of-Order Execution
	2.2.3 SIMD
	2.2.4 Superscalarity
	2.2.5 Parallel Computers
	2.2.6 Simultaneous Multi-Threading
	2.2.7 Dynamic Frequency Scaling

	2.3 Memory Subsystem
	2.3.1 Shared Memory Computers
	2.3.2 Real Life Intermezzo

	2.4 Network Subsystem

	3 Reproducibility Challenges: Software Complexity
	3.1 Amdahl's and Gustafson's Laws
	3.2 Programming Models
	3.3 Compilers
	3.3.1 Basic Optimizations
	3.3.2 Loop Optimizations

	3.4 Software Stack
	3.4.1 Environment
	3.4.2 Build Process

	II The PROVA! Approach to Reproducible HPC Research
	4 Proposed Framework
	4.1 Taxonomy of Experiments
	4.2 Reproducibility Levels
	4.3 Goals of the PROVA! Project
	4.3.1 Contributions to the Project

	5 Overview of the PROVA! Tool
	5.1 Addressing Complexity
	5.1.1 Implementation Phase
	5.1.2 Compilation Phase
	5.1.3 Execution Phase

	5.2 Walkthrough

	6 Implementation Aspects
	6.1 Architecture
	6.2 Mapping of the Experiment Taxonomy
	6.2.1 Projects
	6.2.2 Methods

	6.3 Likwid Interface
	6.4 Empirical Roofline

	III Experimental Evaluation
	7 Parallel Stencil Codes
	7.1 Motifs
	7.2 Stencils Classification
	7.3 Stencil TEMPlating Engineering Library
	7.4 Stencil Compilers
	7.4.1 PLUTO
	7.4.2 PATUS

	8 Performance Evaluation
	8.1 Performance Analysis
	8.1.1 Performance Models
	8.1.2 Grey Box Modeling

	8.2 Performance Measurement
	8.2.1 Cache Misses
	8.2.2 Code Structure and Parallelism
	8.2.3 Memory Access Pattern and Data Locality
	8.2.4 Optimization of Stencil Codes

	9 Experimental Testbeds
	9.1 Systems
	9.1.1 Validation Macro-Experiment
	9.1.2 Performance Engineering Cycle Macro-Experiment
	9.1.3 Emmy
	9.1.4 MiniHPC

	9.2 Problems
	9.2.1 Kernels Used in the Validation Macro-Experiment
	9.2.2 Kernels Used in the Performance Engineering Cycle

	9.3 Methods
	9.3.1 Methods Used in the Validation Macro-Experiment
	9.3.2 Methods Used in the Performance Engineering Cycle Macro-Experiment

	10 Performance Benchmarking Experiments
	10.1 Stencil Compilers
	10.1.1 Metric used for Compilers Evaluation and Comparison

	10.2 Discussion of the Results
	10.2.1 Validation Experiment
	10.2.2 Performance Engineering Cycle Experiment

	IV Conclusions & Future Work
	11 Conclusions and Future Work
	11.1 Contributions and Relevance to the Community
	11.2 Future Work

	Bibliography
	Appendices
	A Stencils Source Code
	A.1 2d-1r-iso-const-box
	A.1.1 PATUS
	A.1.2 PLUTO
	A.1.3 OpenMP

	A.2 2d-4r-iso-const-box
	A.2.1 PATUS
	A.2.2 PLUTO
	A.2.3 OpenMP

	B Creation of a MethodType
	C Walkthrough of STEMPEL: Kerncraft and PROVA! Interfaces
	List of Figures
	List of Tables
	Listings

