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EWAS epigenome-wide association study

EWIS epigenome-wide interaction study

GAN Global Asthma Network

GINA Global Initiative for Asthma

GLM generalized linear model

GNC German National Cohort

GWAS genome-wide association study

HIC high-income country

IARC International Agency for Research on Cancer

ICD International Classification of Diseases

IL17 interleukin-17

IL1B interleukin-1β

ILC3 innate lymphoid cell group 3
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LMIC low- and middle-income country

MITM meet-in-the-middle

MS mass spectrometry

NCD non-communicable disease

NLRP3 nucleotide-binding domain, leucine-rich repeats-containing family, pyrin domain-containing-3

NMR nuclear magnetic resonance

NO2 nitrogen dioxide

PBF percent body fat

PI3K phosphatidylinositol-3-kinases

PM10 particulate matter with <10 µm in diameter

PM2.5 particulate matter with <2.5 µm in diameter

PPAR peroxisome proliferator-activated receptor

QTOF quadrupole time-of-flight

RXRα retinoid X receptor alpha

SAPALDIA Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults

SNP single nucleotide polymorphism

Th2 type 2 helper T cell

TLR toll-like receptor

UFP ultrafine particles

UHPLC ultrahigh performance liquid chromatography

WC waist circumference

WHO World Health Organization

WHR waist-hip ratio

WHtR waist-height ratio
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Summary

Non-communicable disease (NCD) epidemic threatens public health in all regions of the

world. Asthma is one of the major NCDs along with cardiovascular diseases, cancer,

diabetes, and other chronic respiratory diseases. Asthma etiology is poorly understood,

hindering the efficient primary prevention. Recent findings indicate that asthma is a mix-

ture of various phenotypes with potentially different mechanism. While obesity and air

pollution have been indicated as risk factors for asthma, it is not clear yet whether they

contribute to the development of asthma rather than exacerbation of already existing

disease and through which mechanisms they exert the effects on asthma development.

Elucidation of such mechanism, especially if it is shared by multiple exposures and/or

multiple diseases, will critically benefit primary prevention. The research efforts for mech-

anistic understanding can be contextualized as part of exposome — the entirety of the

exposures an individual experiences throughout the life course — and aging phenome —

the diseases and morbidities often accompanied with aging — research, where systems

approach e.g. omics analysis finds a critical usage.

The Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults

(SAPALDIA) is an on-going population cohort since 1991. With its detailed information

on the participants’ health, life style, and exposure, SAPALDIA offers a unique oppor-

tunity to investigate the NCD etiology. This PhD project aimed to contribute to better

understanding the role of obesity and air pollution exposure in asthma etiology, taking

the heterogeneity of the disease phenotype into account.

We identified four asthma phenotypes using latent class analysis, which showed het-

erogeneity in the association with obesity. We conducted epigenomics — assessments

of genome-wide DNA methylation — and metabolomics — assessments of the entirety of

small molecules — on the blood samples taken from the adult-onset asthma cases and con-
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trols. Epigenomics pathway analysis revealed that DNA methylation on the inflammation-

related genes modifies the effect of BMI on non-atopic adult-onset asthma. This pathway

analysis also provided evidence that the NLRP3-IL1B-IL17 axis, a component of innate

immunity, plays a role in the asthma etiology in humans, confirming the previous research

findings in mice experiments. Metabolomics pathway analysis pointed to the perturbation

of inflammatory pathways as a potentially shared mechanism through which long-term air

pollution exposure affects adult-onset asthma and cardio- and cerebrovascular diseases.

Despite the cross-sectional study design and the limited statistical power, this PhD

project achieved to demonstrate the importance of distinguishing asthma phenotypes to

study etiology; to exemplify the usefulness of cohort studies with biobanks in exposome

research and the applicability of systems approach in cohort studies; and to provide a

proof-of-concept evidence of the disease mechanism shared by multiple NCDs. Our find-

ings can be considered as the first step of the translational approach — innovation, vali-

dation, and application. Once validated by future research including replication in other

populations and consolidation of causality using Mendelian randomization, the pursuit of

mechanistic understanding can guide prevention strategies to efficiently tackle the NCD

epidemic.
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Zusammenfassung

Die Epidemie der nicht übertragbaren Krankheiten (non-communicable diseases; NCD)

bedroht die Gesundheit der Bevölkerung in allen Regionen der Welt. Asthma zählt neben

Herzkreislauferkrankungen, Krebs, Diabetes, und anderen chronischen Atemwegserkrankun-

gen, zu den Hauptkrankheiten der NCDs. Die Ätiologie von Asthma ist noch weitgehend

unbekannt, was die effiziente Primärprävention erschwert. Neuere Befunde deuten da-

rauf hin, dass Asthma aus verschiedenen Phänotypen besteht, mit unterschiedlichen Ur-

sachen. Obwohl Fettleibigkeit und Luftverschmutzung als Risikofaktoren von Asthma

gelten, ist es noch nicht klar ob sie zur Entwicklung von Asthma beitragen oder beste-

hendes Asthma nur verschlimmern und welche Mechanismen einen Effekt auf die Asth-

maentwicklung haben. Die Aufklärung solcher Mechanismen, insbesondere wenn mehrere

Risikofaktoren und Krankheiten diese teilen, wird der Primärprävention zugutekommen.

Die Forschungsarbeiten zur mechanistischen Aufklärung kann man als einen Teil von

Exposom- und Alterungsphänomforschung verstehen, welche versucht die Gesamtheit aller

Expositionen die ein Individuum über den Lebensverlauf erfährt bzw. die Gesamtheit al-

tersbedingter Krankheiten zu untersuchen. Solche Forschung benötigt einen Systemansatz

einschliesslich Omics-Analysen.

Die Schweizer Kohortenstudie über Luftverschmutzung und Atemwegs- und Herz-

erkrankungen bei Erwachsenen (SAPALDIA) ist eine seit 1991 laufende Bevölkerungsko-

hortenstudie. Mit ihren detaillierten Informationen zur Gesuntheit, Lebensstil, und an-

deren Expositionen, bietet SAPALDIA eine einzigartige Gelegenheit die Ätiologie der

NCDs zu untersuchen. Ziel dieser Dissertation ist es, einen Beitrag zu leisten zum Ver-

ständnis der Rolle von Fettleibigkeit und Luftverschmutzung in der Asthmaentwicklung,

unter Berücksichtigung der Heterogenität der Asthmaphänotypen.

Mit Hilfe von Latent-Class-Analysen identifizierten wir vier Asthmaphänotypen, die

xix



eine Heterogenität im Zusammenhang mit Fettleibigkeit zeigen. Epigenom- und Metabolom-

analysen wurden auf die Blutproben der spät einsetzenden Asthmafälle und Kontroll-

gruppen durchgeführt, womit man das umfassende DNA-Methylierungsprofil bzw. die

Gesamtheit aller kleinen Moleküle beurteilt. Die “Epigenomics” Pathway-Analyse zeigte

dass die DNA-Methylierung der Gene, welche mit Entzündungen zusammenhängen, den

Effekt von BMI auf nicht atopischem, spät einsetzendem Asthma modifiziert. Die Pathway-

Analyse erbrachte ebenfalls den Nachweis dafür, dass die NLRP3-IL1B-IL17-Achse, ein

Teil der angeborenen Immunität, eine Rolle bei Asthmaentwicklung am Menschen spielt,

wie die früheren Forschungsbefunde bei Mäusen festgestellt haben. Die “Metabolomics”

Pathway-Analyse zeigte, dass Stoffwechselwegstörungen, durch langfristige Luftverschmut-

zung, als einen möglicherweise gemeinsamen Mechanismus zur Entwicklung von Asthma

und Herzkreislauferkrankungen beitragen.

Gleichwohl des Querschnittsdesign und der limitierten statistischen Power veranschau-

licht dieses PhD Projekt die Wichtichkeit bei Ätiologie-Forschung, Asthmaphänotypen

zu unterscheiden; die Wichtigkeit der Kohortenstudien mit assoziierten Biobanken wie

SAPALDIA für die Omics-Analyse zur Exposomforschung zu nützen; und erbrachten

einen “Proof-of-Concept”, dass ein eventueller gemeinsamer Mechanismus mehrere NCDs

beeinflusst. Die Befunde dieser Dissertation können als erster Schritt eines translationalen

Ansatzes — Innovation, Validierung, und Anwendung — angesehen werden. Nach Vali-

dierung durch zukünftige Forschung, einschliesslich Replikation in weiteren Bevölkerun-

gen und Kausalitätsfeststellung z.B. mit Hilfe von Mendelian Randomization, können die

Forschungsarbeiten zur mechanistischen Aufklärung, Präventionsstrategien leiten um die

NCD-Epidemie effizient zu bekämpfen.
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Introduction

1. INTRODUCTION

1.1 Non-communicable disease (NCD) epidemic

In the early days of epidemiology, infectious diseases – smallpox, cholera, influenza, among

others – were the killers. Industrialization leading to improved sanitation and nutrition

accompanied by development of antibiotics and vaccines moved the battlefield from the

infectious diseases to the NCDs. According to the recent World Health Organization

(WHO) report, NCDs caused twice as many deaths as caused by all other causes com-

bined in 2012 (WHO, 2014). The Global Burden of Diseases, Injuries, and Risk Factors

Study 2015 reported that NCDs caused the highest burden measured in disability-adjusted

life-years (DALYs) (Forouzanfar et al., 2016). This NCD epidemic affects not only the

high-income countries (HICs) but all regions in the world. The low- and middle-income

countries (LMICs) have been experiencing rapid increase in NCD mortality and morbid-

ity due to globalization and urbanization (Figure 1.1). In 2012, 74% of the 38 million

deaths due to NCDs and 82% of the 16 million premature deaths due to NCDs occurred

in LMICs (WHO, 2014). Economic losses due to NCDs including premature deaths and

productivity loss alongside with the costs to the health systems prevent the development

and progress of the LMICs (The Global Asthma Network (GAN) 2014).

The NCD epidemic is dominated by cardiovascular diseases, cancer, diabetes, and

chronic respiratory diseases including asthma, all of which can be considered as aging-
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Figure 1.1. Probability of dying from the four main non-communicable diseases between
the ages of 30 and 70 years, comparable estimates, 2012 (WHO, 2014, Global status report on

noncommunicable diseases 2014 c⃝World Health Organization (2014), all rights reserved, used with permission)

related diseases. Elderly often suffer from multiple morbidities, while centenarians never

develop any such NCDs, indicating the potential clustering of the NCDs. It is conceiv-

able that there are common mechanisms shared in the aging-related diseases, causing or

preventing multiple, clustered NCDs. Meta-analyses of genome-wide association studies

(GWAS) identified pleiotropic loci associated with multiple NCDs, supporting the hypoth-

esis of shared mechanism in various NCDs (He et al., 2016, Jeck et al., 2012). Elucidation

of the shared mechanism leading to the multiple, clustered NCDs associated with aging

– aging phenome – will facilitate successful prevention and control of the NCDs.

1.2 Asthma as part of the NCD epidemic

Asthma is a chronic airway disease often characterized by chronic airway inflammation,

airway obstruction, and airway hyperresponsiveness, but these characteristics are neither

necessary nor sufficient to define asthma (Global Initiative for Asthma (GINA) 2018).
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Asthma is controllable with appropriate medication and if well controlled, rarely affects

daily life of the patients. Poorly controlled asthma, however, decreases quality of life and

imposes economic burden due to direct costs as well as indirect costs due to productivity

loss (GAN, 2014).

Approximately 340 million people live with asthma worldwide, affecting all age groups

and all regions (Forouzanfar et al., 2016) as depicted in the map of DALYs (Figure 1.2).

Asthma caused 24 million DALYs worldwide in 2016, one third occurred in LMICs. On

the other hand, more than half of the 0.42 million deaths due to asthma occurred in

LMICs in 2016, indicating the poor control of the disease in LMICs.

Figure 1.2. DALYs per 100,000 population attributed to asthma by country in 2010 (GAN,

2014, The Global Asthma Report 2014 c⃝The Global Asthma Network (2014), all rights reserved, used with permission)

As priority interventions against NCD epidemic, the WHO report focused on tobacco

control, salt intake reduction, healthier diet, physical activity, reduction in harmful alcohol

intake, and availability and affordability of essential medicines and technology (WHO,
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2014). Asthma is included in the WHO agenda of NCDs as part of chronic respiratory

diseases. However, it is important to distinguish the measures to prevent asthma attacks

and improve the control of the disease from the measures to prevent the incidence of the

disease. The priority interventions set by the WHO hardly address the latter, considering

that the etiology of the disease is largely unknown and the proposed target risk factors

have small population attributable fractions for asthma (Pearce et al., 2013). Better

understanding of the disease mechanism will facilitate successful prevention and control

of asthma.

1.3 Causes and risk factors of asthma

Although asthma often runs in families and heritability of childhood asthma is indeed

estimated up to 82% (Ullemar et al., 2016), the genetic variants identified by GWAS

account for little of the disease prevalence (Demenais et al., 2018, Moffatt et al., 2010).

There are non-genetic factors considered as risk factors for asthma including allergy,

respiratory infections, smoking, air pollution, physical activity, female sex, and obesity.

Their causal effects are largely inconclusive yet. Asthma had been considered as an

allergic disease but allergy does not accompany all asthma cases. As will be elaborated

later, asthma is now believed to be a mixture of heterogeneous phenotypes including

allergic and non-allergic asthma, rather than a single disease (GINA, 2018, Wenzel, 2012).

While respiratory infections, exercise, and exposure to tobacco smoke and air pollution

can trigger asthma attacks, it is unclear if they cause the disease progress. Asthma

prevalence is higher in boys than in girls but the ratio reverses around puberty (Carey

et al., 2007). Reasons for the sex difference in asthma are yet to be elucidated. Obesity

has been well associated with asthma in children and in adults (Beuther and Sutherland,
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2007, Egan et al., 2013). The hypothesized mechanisms to explain the obesity-asthma

association will be described later in this chapter.

1.4 Heterogeneity of asthma phenotype

As reviewed by Wenzel (Wenzel, 2012), various asthma phenotypes can be distinguished

in terms of disease history (early-onset or adult-onset), clinical and physiological features

(allergic, non-allergic, exercise-induced, or obesity-related), biomarkers (eosinophilic, neu-

trophilic, presence or absence of the type 2 helper T cell (Th2) signature cytokines), and re-

sponse to therapy. GINA also acknowledged the heterogeneity of asthma phenotypes and

distinguished allergic, non-allergic, late-onset, obesity-related asthma, and long-standing

asthma with fixed airflow limitation (GINA, 2018).

Early-onset asthma is the most common asthma phenotype and often allergic and re-

sponsive to corticosteroid therapy. A large GWAS identified genetic determinants specific

for early-onset asthma (Moffatt et al., 2010). Late-onset asthma is less studied compared

to early-onset asthma and often refractory to corticosteroid therapy. Non-allergic asthma

is often adult-onset and more likely to refractory to corticosteroid therapy compared to

allergic asthma. Obesity-related asthma tends to be female predominant, adult-onset,

non-allergic, lacking Th2 signature cytokines, non-eosinophilic, highly symptomatic, and

refractory to corticosteroid therapy. It has not been established yet how to categorize

asthma phenotypes and how to relate them to treatment options or clinical benefits.

Clustering methods have been applied with some success (Haldar et al., 2008, Moore et

al., 2010, Siroux et al., 2014, Boudier et al., 2013) but consensus is yet to be achieved.

In this PhD project we aimed to fill this gap by investigating asthma heterogeneity and

etiology with special attention to late-onset asthma.
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1.5 Obesity as a risk factor for asthma

Obesity has repeatedly been associated with incident asthma in children (Egan et al.,

2013) and in adults (Beuther and Sutherland, 2007). Obesity-related asthma has also

been considered as a distinct asthma phenotype as described above. Recent Mendelian

randomization studies provided causal reasoning of the obesity effect on asthma (Granell

et al., 2014, Skaaby et al., 2017). However, the biological mechanism through which

obesity exerts the effects on asthma is yet poorly understood. It should be borne in mind

that the obesity-asthma relationship may differ across asthma phenotypes. Obesity was

reported to have stronger effects on adult-onset asthma than early-onset asthma (Haldar

et al., 2008, Moore et al., 2010) and on non-atopic asthma than atopic asthma (Castro-

Giner et al., 2009, Fenger et al., 2012).

The potential mechanisms explaining the obesity-asthma association include: Obesity

can reduce lung volume and promote airway narrowing; Obesity can increase the work of

breathing leading to misdiagnosis of asthma; Obesity-related hormones, i.e. adipokines,

might play a role in the asthma development; Comorbidities of obesity – dyslipidemia,

gastroesophageal reflux disease, sleep dyspnea, type 2 diabetes, etc. – may exacerbate

asthma; Or the same genetic and/or environmental factors cause both conditions (Shore,

2008). The most likely hypothesis is that obesity-induced low-grade systemic inflamma-

tion causes asthma development. Adipose tissue in obese individuals is known to produce

abnormal amount of pro-inflammatory cytokines (Weisberg et al., 2003). In obesity,

macrophages are known to infiltrate into adipose tissue and differentiate predominantly

into M1, the pro-inflammatory type of macrophages, leading to low-grade systemic in-

flammation (Castoldi et al., 2016, Engin, 2017).

A recent mice study provided a convincing evidence of innate immunity as a link

between obesity and asthma (Kim et al., 2014). They demonstrated that obesity-induced
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airway hyperresponsiveness (AHR) was dependent on the NLRP3 (nucleotide-binding

domain, leucine-rich repeats-containing family, pyrin domain-containing 3) inflammasome

and its downstream activity via interleukin-1β(IL1B) and interleukin-17 (IL17) produced

by innate lymphoid cell group 3 (ILC3) cells by showing that obese mice did not develop

AHR when the NLRP3-IL1B-IL17 axis was blocked either by knockout or administration

of antagonists. It was the keen interest of this PhD project if this NLRP3-IL1B-IL17 axis

also explains the obesity-asthma association in humans.

1.6 Air pollution exposure as a risk factor for asthma

The acute effect of air pollution exposure on exacerbation of pre-existing asthma has been

established over decades (Schwartz et al., 1993, Weinmayr et al., 2010). The long-term

effect of air pollution exposure – whether air pollution exposure contributes to asthma

development – is less clear. The largest study to date with individual exposure estimates

for over 600,000 adults reported cross-sectional association of annual mean exposure to

nitrogen dioxide (NO2) and particulate matter (PM) with <10 µm in diameter (PM10)

with asthma prevalence (Cai et al., 2017). The long-term effect of air pollution exposure

on asthma incidence is less consistent. The European Study of Cohorts for Air Pollution

Effects (ESCAPE) study reported positive albeit not statistically significant association

of annual mean exposure to various air pollutants including NO2, PM10, and PM2.5 with

asthma incidence (Jacquemin et al., 2015). Compared to PM10 and PM2.5, ultrafine

particles (UFP; <0.1 µm in diameter) has been less studied for the effects on asthma.

Various air pollutants have different source and composition, and therefore can have

different toxicity (Kumar et al., 2015, Schwarze et al., 2007). Smaller particles are believed

to have more hazardous effects on respiratory system because they can reach easily into
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the alveoli and the higher ratio of surface to mass can harbor larger amount of toxic

substances (Li et al., 2016). On the other hand, larger particles with higher iron content

can be more hazardous (Kumar et al., 2015).

The mechanism by which air pollution exposure exerts the effect either on exacerbation

or new onset of asthma is not clear. The potential mechanisms include: high concentration

air pollutants irritates lung epithelium and causes acute inflammation; exposure to specific

air pollutants enhance airway sensitization; chronic, low level exposure to air pollution

induces oxidative stress and inflammation thereof (Guarnieri and Balmes, 2014)

1.7 Omics analysis: a new epidemiology tool in the

era of NCD epidemic

Success of the human genome project followed by fast-paced development of high-throughput

technologies began a new era of omics analysis. The term “-omics” refers to a comprehen-

sive study of a totality of biological molecules – “genome” as for the entirety of genetic

variants, “methylome” as for the genome-wide DNA methylation, etc. It is now possible

to measure vast number of biological molecules simultaneously at a relatively low cost.

Cohort studies, if accompanied with biobanks, can therefore afford systems approach,

which is crucial to better understand disease etiology.

1.7.1 Epigenomics

Epigenetics refers to the processes by which gene expression is regulated without changing

DNA sequence. Various epigenetic mechanisms are known, including DNA methylation,

histone modification, chromatin remodeling, and non-coding RNAs. DNA methylation is

the most widely studied epigenetic mechanism. This PhD project, as many epidemiologi-
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cal studies usually do, investigated DNA methylation, because technology for cost effective

measurements is not available for other epigenetic mechanisms. DNA methylation occurs

in the cytosine-guanine (CpG) dinucleotides via covalent bonding of a methyl group to

the 5-carbon of the pyrimidine ring of the cytosine residue to form a 5-methylcytosine.

The unmethylated cytosine can be distinguished from the 5-methylcytosine by bisulfite

conversion, where only the unmethylated cytosine converts to uracil, and quantified by

e.g. Illumina Infinium array chips. The methylation level can regulate gene expression.

Hypermethylation in CpG islands – 200 bp or larger sequence with high contents of CpG

dinucleotides – embedded in the promoter region is known to silence the gene. Function of

methylation in other loci than CpG islands within promoter regions – CpG islands in gene

body, intergenic CpG islands, and CpG sites outside of CpG islands – is less understood

but recently being recognized (Jones, 2012).

Unlike genome, in principle, methylome is dynamic, i.e. DNA methylation level changes

over time in response to environment in a tissue-specific manner. Therefore DNA methy-

lation can serve as an excellent biomarker for exposures. For example, epigenome-wide

association studies (EWAS) identified numerous CpG sites whose methylation levels were

strongly associated with tobacco smoking (Joehanes et al., 2016). For some of the CpG

sites, their smoking-induced methylation changes did not restore to the normal level even

several decades after smoking cessation (Guida et al., 2015). Such persistent biomarkers

offer a new opportunity to better characterize the exposure as well as to contribute to

better understanding the mechanism related to the exposure. As the epigenetic markers

are modifiable unlike genetic variants, causal understanding of the mechanism can lead

to novel therapeutic options (Heerboth et al., 2014, Tough et al., 2016). Moreover, con-

sidering the importance of epigenetic reprogramming in embryonic development and the

possibility of transgenerational epigenetic inheritance via primordial germ cells of the em-
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bryo, it is also conceivable that epigenetic markers – probably involving other epigenetic

processes than DNA methylation – represent a crucial channel through which multiple

hazards affect various organs.

1.7.2 Metabolomics

Small molecules in the bodily fluid – generally referred as “metabolites” – can be consid-

ered as the product of genetics, endogenous processes governed by genetics and epigenetics,

and environmental exposures including diet and behavior. Comprehensive investigation of

such metabolites allows an access to unique information on disease etiology. The measure-

ments of metabolites are conducted either by using nuclear magnetic resonance (NMR)

spectroscopy or mass spectrometry (MS) in combination of liquid chromatography (LC).

MS-based methods are more sensitive and detect broader spectrum of chemicals in terms

of chemical class and concentration range compared to NMR-based methods. NMR-

based methods have strengths in structure elucidation and reproducibility (Bictash et

al., 2010, Tzoulaki et al., 2014). Both methods can be applied in untargeted or targeted

metabolomics. The untargeted metabolomics aims to profile the full spectrum of chemi-

cals in the samples as allowed by the method used. The targeted metabolomics restricts

the profiling to a specific class, e.g. lipids, leukotrienes, volatile organic compounds, etc.

Identification of the metabolites poses a unique challenge in untargeted metabolomics.

Metabolite databases with information on their chemical and clinical information such

as The Human Metabolome Database (HMDB; http://www.hmdb.ca) (Wishart et al.,

2007) and METLIN (https://metlin.scripps.edu) (Smith et al., 2005) or bioinformatics

tools to automate the chemical annotation such as xMSannotator (Uppal et al., 2017)

and Mummichog (Li et al., 2013) can be consulted to tackle the challenge (Rattray et al.,

2018).
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1.7.3 Exposomics

The term “exposome” was first coined by Wild as a match for “genome” to point out

the critical needs of more accurate and comprehensive exposure assessment to catch up

with that of genetics (Wild, 2005). The exposome is defined as every exposure to which

an individual is subjected throughout the life course. It does not only include the usual

environmental hazards such as air pollution and water contamination but also more gen-

eral environmental exposures such as socioeconomic status and urban structure, as well

as internal exposures such as endogenous processes and microbiota (Wild, 2012). Such

broad spectrum exposures cannot be captured by the classic assessment of single expo-

sures. Therefore omics analyses constitute an inevitable component of exposome research

in epidemiology (Lopez de Maturana et al., 2016). Integration of multi-omics informa-

tion benefits the mechanistic understanding of the exposome (Figure 1.3). The EXPO-

sOMICS was one of the first large-scale implementation of exposome research funded by

European Union (Vineis et al., 2016, Turner et al., 2018). In the EXPOsOMICS project,

various omics analyses in combination with classic exposure assessment were conducted

to provide mechanistic understanding of the exposure-disease association, paying special

attention to water and air pollution (Vineis et al., 2016). This PhD project was in part

conducted in the context of the EXPOsOMICS.

1.7.4 Meet-in-the-middle (MITM)

Vineis and Perera proposed the MITM approach as to strengthen the causal interpre-

tation of the intermediate biomarkers (Vineis and Perera, 2007). The MITM can be

implemented by prospective search for the intermediate biomarkers associated with both

exposure and disease (Figure 1.4). Such intermediate biomarkers are more likely on the

causal pathway linking the exposure to the disease. Recent studies applied the MITM
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Figure 1.3. Omics integrative epidemiology (Lopez de Maturana et al, 2016, Toward the integration of

Omics data in epidemiological studies: still a “long and winding road”. Genet Epidemiol, 40, 558-569. c⃝John Wiley

and Sons (2016), all rights reserved, used with permission)

approach successfully to consolidate the causal interpretation of the effect of smoking

on lung cancer (Fasanelli et al., 2015) using the DNA methylation markers previously

reported to be strongly associated with smoking (Guida et al., 2015) as the intermedi-

ate biomarkers; of the effect of lifestyle on liver cancer using metabolites identified from

untargeted metabolomics as the intermediate biomarkers (Assi et al., 2015); and of the

effect of air pollution exposure on cardio- and cerebrovascular diseases using the DNA

methylation markers on the inflammation-related genes as the intermediate biomarkers

(Fiorito et al., 2017). As part of the EXPOsOMICS, this PhD project applied the MITM

approach to interpret the association between air pollution exposure and asthma using

metabolomics biomarkers.

1.7.5 Statistics in omics analysis

Omics analysis inevitably involves high dimension data, causing the “n ≪ p” issue, i.e. the

number of parameters p greatly exceeds the number of observation n. The most widely ap-
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Figure 1.4. The MITM approach (Vineis et al, 2013, Advancing the application of omics-based biomarkers

in environmental epidemiology. Environ Mol Mutagen, 54, 461-7. c⃝John Wiley and Sons (2013), all rights reserved,

used with permission)

plied approach is the univariate analysis followed by multiple testing corrections (Balding,

2006). This approach is referred as ome-wide association analysis, e.g. GWAS, EWAS,

etc. The simplest method for multiple testing corrections is to adjust the significance level

α by α/n, so called Bonferroni correction. However, the tests should not be considered

independent because of their correlation structure: genome-wide data measured as SNPs

can have correlation mainly driven by physical distance (linkage disequilibrium); methy-

lome data can have clustered correlations (Lovkvist et al., 2016); untargeted metabolomics

data can have a very complex correlation reflecting biological relationship between the

molecules. In the situation of such correlation, the Bonferroni correction can be too

stringent leading to increased false negatives. Alternatives include the permutation-based

estimation of the effective number of tests (Chadeau-Hyam et al., 2013) and the false

discovery rate approach (Benjamini and Hochberg, 1995).
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Regardless of the choice for the multiple testing corrections, the univariate methods

bound to overlook the relationship between molecules, which may provide better insight

on the biological mechanism (Agier et al., 2016). Although a variety of multivariate

approaches have been developed and applied to omics analyses, including principal com-

ponent analysis, (sparse) partial least squares regression, Lasso, Elastic net, among others,

there is no established pipeline for all types of molecules and platforms. Specifically in

epigenomics, approaches to search for differentially methylated regions (DMRs) have been

developed and applied in acknowledgement of the clustering nature of the data (Clifford

et al., 2018, Perry et al., 2018).

1.7.6 Bioinformatics in omics analysis

Besides the issues caused by the high dimension, statistical analyses of omics data face

another level of challenge posed by the biological nature of the data. Proper design of

the analysis or interpretation of the results require each parameter – SNPs in genomics,

CpG sites in epigenomics, metabolites in metabolomics – to be contextualized in terms

of genes, regulatory elements, and biological pathways. Bioinformatics resources have

been growing at an unprecedented pace (Chen, 2015). Prominent resources include: the

Reference Sequence (RefSeq) (Pruitt et al., 2005) and the Single Nucleotide Polymorphism

Database (dbSNP) (Sayers et al., 2011) are the DNA sequence databases housed by

the National Center for Biotechnology Information (NCBI); Ensembl offers a genome

browser jointly built by European Bioinformatics Institute (EBI) and Wellcome Sanger

Institute (Hubbard et al., 2002); the Encyclopedia of DNA Elements (ENCODE) provides

functional information on human genome (Hong et al., 2016); and Kyoto Encyclopedia

of Genes and Genomes (KEGG) is a collection of databases of pathways, genes, and

chemicals (Kanehisa and Goto, 2000). The journal Nucleic Acids Research publishes a
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special issue in January every year devoted to update the available molecular biology

databases. The Nucleic Acids Research Database Issues provide a good overview.

1.7.7 Personalized health research from a public health and pri-

mary prevention perspective

Since the success of the human genome project, omics analysis has been burgeoning but

often understood as a servant for personalized medicine. However, personalized medicine

and omics analysis in that sense do not necessarily contradict public health benefit. Risk

factors of NCDs often have small effect size and work in concert, and therefore systems

approach is imperative. Omics analysis contextualized in a well-designed cohort study

can contribute to better understanding of disease etiology, which in turn contributes to

better primary prevention. Multiple correlated exposures challenge the classic assess-

ment of single exposures. Systems approach accompanied by advancement of statistical

methodologies to address correlation structure and dynamics of the exposures can pro-

vide a novel way of risk assessment (National Academies of Sciences and Medicine, 2017).

Mechanistic understanding between exposome and aging phenome can potentially provide

a novel window of intervention; improve burden of disease estimates; and best inform the

primary prevention strategies.
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2. OBJECTIVES

In this PhD project we aimed to contribute to better understanding the role of obesity

and air pollution exposure in asthma etiology, taking the heterogeneity of the disease

phenotypes into account. Specifically, the objectives of this PhD project were as follows:

1. Identify asthma phenotypes and assess heterogeneity in associa-

tion with obesity across asthma phenotypes

2. Assess association of obesity with asthma and its heterogeneity

across various obesity measures

3. Improve understanding the biological mechanism mediating the

effects of obesity on asthma

4. Assess association of air pollution exposure with asthma

5. Improve understanding the biological mechanism mediating the

effects of air pollution exposure on asthma

The results of the objectives 1 and 2 are presented in Article I; the results of the objec-

tive 3 are in Article II; and the results of the objectives 4 and 5 are presented in Article III.
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3. METHODS

3.1 Study samples

3.1.1 The Swiss Cohort Study on Air Pollution and Lung and

Heart Diseases in Adults (SAPALDIA)

SAPALDIA is a population-based adult cohort in Switzerland. SAPALDIA was initiated

in 1991 (SAPALDIA1), recruiting 9651 adults aged 18-62 years (Martin et al., 1997).

Participants were randomly selected from eight areas representing the diverse geography,

meteorology, and degrees of urbanization of the country: Basel, Wald, Davos, Lugano,

Montana, Payerne, Aarau, and Geneva (Figure 3.1). 8047 and 6088 out of the 9651

initial participants were followed up in 2001-3 (SAPALDIA2) (Ackermann-Liebrich et al.,

2005) and in 2010-11 (SAPALDIA3), respectively. Information on respiratory health and

various risk factors including life style was collected by questionnaires and in-person inter-

views as well as on-site physical examinations including spirometry. At SAPALDIA2 and

SAPALDIA3, blood samples were also collected and stored in a biobank. All participants

provided informed consent and ethical approval was obtained from the Swiss Academy of

Medical Sciences and the regional committees for each study area. In this PhD project

we analyzed mainly SAPALDIA3 data.
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Figure 3.1. SAPALDIA study areas

3.1.2 Nested case-control study

In the context of EXPOsOMICS, a nested case-control study was conducted from SAPAL-

DIA3. Cases were selected among the ever-asthma cases who had not smoked at least

10 years before SAPALDIA3 based on availability of blood samples in the biobank and

non-missing information on covariates including atopy and age of asthma onset. Controls

were randomly selected among the participants who had not smoked at least 10 years

before SAPALDIA3 and never reported the following from SAPALDIA1 to SAPALDIA3:

ever-asthma; doctor-diagnosed asthma; current asthma; wheezing without cold in the last

12 months; three or more asthma-related symptoms in the last 12 months (symptoms con-

sidered: breathless while wheezing; woken up with a feeling of chest tightness; attack of

shortness of breath after exercise; attack of shortness of breath while at rest; woken up by

attack of shortness of breath). Article II and III relied on the case-control samples after

exclusion of cases with age of asthma onset earlier than 16 years, in order to specifically

investigate adult-onset asthma as a distinct phenotype.
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3.2 Asthma phenotypes

Ever asthma is defined if the question “Have you ever had asthma?” was answered “yes”

at least once from SAPALDIA1 to SAPALDIA3. Doctor-diagnosed asthma is defined if

both questions “Have you ever had asthma?” and “Was this confirmed by a doctor?” were

answered “yes” at least once from SAPALDIA1 to SAPALDIA3. Adult-onset asthma

was defined if the self-reported age of asthma onset was 16 years or older among ever-

asthma cases. Current asthma was defined if either the question “Have you had an

attack of asthma in the last 12 months?” or the question “Are you currently taking any

medicines including inhalers, aerosols, or tablets for asthma?” was answered “yes” at

SAPALDIA3. Atopy was defined if the skin prick test at baseline showed an adjusted

mean wheal diameter ≥3 mm to at least one of eight common allergens including cat fur,

dog epithelia, house dust mite (Dermatophagoides pteronyssinus), timothy grass pollen,

birch pollen, Parietaria pollen, and the moulds Alternaria and Cladosporium. In this PhD

project we investigated prevalent asthma rather than incident asthma, acknowledging the

challenge in defining incident asthma cases. Asthma can go unnoticed for long time, grow

out, and resurface, all of which increase the misclassification risk for incident asthma.

3.3 Obesity metrics

Body mass index (BMI), derived from anthropometric measurements as weight in kilo-

grams divided by the square of height in meters, was used as the main obesity metric.

While BMI is widely used as obesity metric, its limitation is also well acknowledged that it

is ignorant of fat distribution and incapable of distinguishing fat from lean mass. In Arti-

cle I, alternative metrics were included in the analysis and compared with BMI, including:

percent body fat, derived as (weight – fat-free mass)/weight in percentage with the fat-
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free mass was estimated from bioelectric impedance measurement; waist circumference;

waist-hip ratio; waist-height ratio. In Article II, BMI change defined as the difference

between SAPALDIA3 and SAPALDIA2 was also used as better proxy for accumulating

excess fat in late adulthood.

3.4 Air pollution exposure estimates

The SAPALDIA participants were assigned annual mean exposure to PM2.5 and NO2,

and biennial mean exposure to UFP by geocoding their home address. PM2.5 estimates

in 2010 were derived from PolluMap, a nation-wide, high resolution dispersion model in

Switzerland (FOEN, 2013). Lagged estimates up to 7 years before SAPALDIA3 were

derived by Meteotest on behalf of the federal office for the environment (FOEN, 2014).

UFP estimates in 2011/2012 were derived from the multi-area land use regression (LUR)

models developed in SAPALDIA covering 4 out of the 8 SAPALDIA study areas (Basel,

Wald, Lugano, and Geneva) (Eeftens et al., 2016). Lung deposited surface area (LDSA),

in addition to particle number concentration (PNC), was estimated in acknowledgement

of the previous experimental studies reporting stronger effects of the surface area than the

mass of the UFP (Schwarze et al., 2006, Stoeger et al., 2006). NO2 estimates were derived

from a European LUR model developed in the context of EXPOsOMICS (de Hoogh et

al., 2016).

3.5 Epigenomics

Buffy coat fraction collected and stored at SAPALDIA3 was analyzed for the nested

case-control samples. DNA was extracted from buffy coat fraction and treated with

bisulfite so that unmethylated cytosine is converted to uracil while methylated cytosine (5-
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methylcytosine) remains unaffected. Bisulfite-converted DNA was analyzed with Illumina

Infinium HumanMethylation450 BeadChip (450k array) in a carefully designed order to

minimize batch effect. All the laboratory analysis was conducted in the International

Agency for Research on Cancer (IARC). A detailed description of the laboratory process

is presented in Article II.

Raw data acquired from the chip measurements were fluorescence intensities, from

which β values were derived as the ratio of methylated intensity over total intensity. Pre-

processing and quality control were conducted mainly using R package minfi (Aryee et

al., 2014). In addition to the minfi pipeline, beta-mixture quantile normalization (BMIQ)

(Teschendorff et al., 2013) was applied to correct for the Illumina probe design bias. The

450k array is a mixture of two types of assays: type I assay consists of two bead types,

one for methylated and the other for unmethylated loci, from which the fluorescence was

measured by a single color channel; type II assay uses one bead type only, where methy-

lated and unmethylated loci fluoresce at different wavelengths and therefore need to be

measured by two different color channels (Figure 3.2). Approximately 28% of the 450k

array probes are measured by type I assay and 72% by type II. This probe design is

known to possibly cause bias (Dedeurwaerder et al., 2011). BMIQ is one of the widely

applied techniques to mitigate this bias by rescaling the type II probe values to follow the

distribution obtained from the type I probes. In order to correct for batch effect, a prin-

cipal component analysis (PCA) was conducted on the 220 control probes incorporated

into the 450k array and designed to assist quality control for bisulfite conversion, stain-

ing, hybridization, etc. The components derived from the PCA represent the summary

measure of technical variation. The residuals out of the regression of β values on the first

30 components were considered to represent the batch effect-free methylation level.
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Figure 3.2. Illumina Infinium HumanMethylation450 BeadChip array design (Bibikova et al,

2011, High density DNA methylation array with single CpG site resolution. Genomics, 98, 288-95. c⃝Elsevier (2011),

all rights reserved, used with permission)

3.6 Metabolomics

Serum samples collected and stored at SAPALDIA3 were analyzed for the nested case-

control samples with an ultrahigh performance liquid chromatography/quadrupole time-

of-flight/mass spectrometry (UHPCL-QTOF-MS) system in a randomized order as a sin-

gle batch. The peak heights were preprocessed to identify features defined by mass-to-

charge ratio and retention time. After preprocessing, 12,003 features were identified and

7089 features were ready for statistical analyses after filtering out the features with >40%

missing values. The chemical identity of the features was unknown. Given the high work

load involved in the annotation of the features, only the features found interesting out of

the statistical analyses were further examined for the peak validity and annotation. Of

note is that some features identified by the preprocessing could still be artifacts or false

findings from the feature finding algorithm. The additional inspection of the selected
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features sorted out such false features. A true identity of the remaining features could be

confirmed by comparing them with the standard substance, if the feature was measured in

a detectable concentration and the standard substance was available. All the laboratory

analysis including quality control and annotation was conducted in the IARC. A detailed

description of the laboratory analysis is presented in Article III.
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Abstract

Although evidence for the heterogeneity of asthma accumulated, consensus for definitions

of asthma phenotypes is still lacking. Obesity may have heterogeneous effects on various

asthma phenotypes. We aimed to distinguish asthma phenotypes by latent class analysis

and to investigate their associations with different obesity parameters in adults using a

population-based Swiss cohort (SAPALDIA).

We applied latent class analysis to 959 self-reported asthmatics using information

on disease activity, atopy, and age of onset. Associations with obesity were examined by

multinomial logistic regression, after adjustments for age, sex, smoking status, educational

level, and study centre. Body mass index, percent body fat, waist hip ratio, waist height

ratio, and waist circumference were used as obesity measure.

Four asthma classes were identified, including persistent multiple symptom-presenting

asthma (n = 122), symptom-presenting asthma (n = 290), symptom-free atopic asthma (n

= 294), and symptom-free non-atopic asthma (n = 253). Obesity was positively associated

with symptom-presenting asthma classes but not with symptom-free ones. Percent body

fat showed the strongest association with the persistent multiple symptom-presenting

asthma.

We observed heterogeneity of associations with obesity across asthma classes, indicat-

ing different asthma aetiologies.
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4.1 Introduction

Asthma is a highly heterogeneous disease with common pathophysiological features includ-

ing airway hyperresponsiveness and airway inflammation but also with divergent features

distinctive of asthma subtypes (Wenzel, 2012). Non-eosinophilic asthma, characterized

by an absence of eosinophils in the airway inflammation, differs from eosinophilic asthma

in many aspects (Haldar and Pavord, 2007). Non-eosinophilic asthma is more likely to be

refractory to corticosteroid therapy and to be non-atopic, whereas epithelial hyperplasia

or hypertrophy occurs only in the eosinophilic subtype. This indicates that the variable

phenotypes presumably have distinct aetiologies. Recent findings from the Genome Wide

Association Studies (GWAS) also suggest that early-onset asthma has distinct genetic

risk factors in comparison to the late-onset subtype (Moffatt et al., 2010). Distinguishing

asthma phenotypes allows for the examination of the aetiology and pathobiology of the

disease and may also contribute to a better prediction of disease progression and more

targeted therapies.

Previous studies reported association between obesity and incident asthma (Beuther

and Sutherland, 2007, Brumpton et al., 2013, Hjellvik et al., 2010, Egan et al., 2013).

However, few studies were designed so that obesity preceded true asthma onset. Asthma

can often be unnoticed or undiagnosed for a while. This hinders ensuring that obesity

precedes the true incidence of asthma. Therefore, despite the accumulated reports on the

association, causality remains inconclusive.

While body mass index (BMI) is the most widely used obesity measure, it might not be

the optimal measure regarding its role in pathophysiology for respiratory diseases such as

asthma. BMI cannot distinguish fat mass from muscular mass, and hence cannot capture

one of the most important features of obesity – body fat distribution. Moreover, the

relationship between obesity and asthma may be heterogeneous across different asthma

29



Article I

phenotypes (Fenger et al., 2012, Holguin et al., 2011, Castro-Giner et al., 2009, Ma and

Xiao, 2013).

Latent class analysis (LCA) has been successfully applied to distinguish asthma phe-

notypes (Henderson et al., 2008, Siroux et al., 2011, Siroux et al., 2014, Spycher et al.,

2008). LCA is a method to analyse the relationships among manifest variables, assuming

some unobserved categorical variables (Hagenaars and McCutcheon, 2002). In this study,

we applied LCA to distinguish asthma phenotypes.

We examined the association between a variety of obesity measures – BMI, percent

body fat (PBF), waist circumference (WC), waist hip ratio (WHR), waist height ratio

(WHtR) – and different asthma classes found by LCA, utilizing the Swiss Cohort Study

on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA).

4.2 Methods

4.2.1 Study population

The Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPAL-

DIA) was initiated in 1991 (SAPALDIA1), recruiting 9651 adults aged 18 to 62 years

(Ackermann-Liebrich et al., 2005). 8047 subjects from the initial cohort participated in

the first follow-up in 2001-3 (SAPALDIA2) (Martin et al., 1997) and 6088 subjects in

the second follow-up in 2010-11 (SAPALDIA3). At each survey, participants underwent

a spirometry examination and a detailed in-person interview on respiratory health and

risk factors. The subjects who participated at baseline and at least in one follow-up

were included in this study (Figure 4.1). Ethical approval was obtained from the Swiss

Academy of Medical Sciences and the regional committees for each study centre.
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Figure 4.1. Flow chart of inclusion and exclusion criteria

9651 subjects participated at baseline 

8254 subjects participated  in either 

the first or the second follow-up 

or both 

1094 subjects answered ‘yes’ to the 

question ‘have you ever had asthma?’ 

either at baseline or in the first or 

second follow-up (‘asthmatics’) 

§ 959 asthmatics were included  

in the LCA 

135 subjects with missing information 

for skin prick test, self-reported nasal 

allergy, or age of asthma onset were 

excluded 

7160 subjects never answered ‘yes’ 

to the question ‘have you ever had 

asthma?’ (‘non-asthmatics’)  

616 asthmatics were included  

in the multinomial logistic regression 

analyses 

343 asthmatics and 3193 non-

asthmatics with missing 

information for BMI, PBF, WHR, 

WC, WHtR, age, sex, education, 

smoking status, area of 

examination were excluded 

3967 non-asthmatics were included  

in the multinomial logistic regression 

analyses 

§As sensitivity analyses, LCA applied to 677 physician-diagnosed asthmatics instead of 959 self-reported asthmatics or

to 472 asthmatics who reported either asthma attack in the last 12 months or current asthma medication at least once

from baseline to the second follow-up.
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4.2.2 Asthma definition

Subjects were considered to be asthmatic if they answered “yes” to the question “Have

you ever had asthma?” either at baseline or in the first or the second follow-up (n = 1094).

After exclusion of asthmatics with missing information for skin prick test, self-reported

nasal allergy, or age of asthma onset (n = 135), LCA was applied to 959 asthmatics. As

a sensitivity analysis, we used physician-diagnosed asthma, restricting the sample to 677

asthmatics if they answered “yes” to both questions “Have you ever had asthma?” and

“Was this confirmed by a doctor?” either at baseline or in the first or the second follow-

up. In an additional sensitivity analysis, we restricted LCA to those who reported either

asthma attack in the last 12 months or current asthma medication at least once from

baseline to the second follow-up (n = 472).

4.2.3 Obesity measures

We examined five obesity measures including body mass index (BMI; weight in kilograms

divided by the square of height in meters), percent body fat (PBF), waist hip ratio (WHR),

waist circumference (WC), and waist height ratio (WHtR) in SAPALDIA3. Height was

measured in SAPALDIA1, 2, and 3. Weight was asked in SAPALDIA1 and measured

in SAPALDIA2 and 3. Waist and hip circumference were measured in SAPALDIA3.

Bioelectric impedance was measured in SAPALDIA3 using the device Helios (Helios,

Forana, Frankfurt, Germany). Fat-free mass was derived from the measured resistance

and reactance using the formula of Kyle et al (Kyle et al., 2001). Fat mass was then

computed as the difference between body weight and estimated fat-free mass. PBF was

defined as the ratio of fat mass to body weight in percent.
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4.2.4 Clustering asthma classes using LCA

Seven variables were chosen as manifest variables to reflect different aspects of asthma

phenotypes: 1) asthma attack in the last 12 months (yes or no). SAPALDIA3 information

on current asthma attack, current asthma medication, and current asthma symptoms was

given priority and then complemented with the information from SAPALDIA2 for those

who did not participate in SAPALDIA3; 2) current asthma medication (yes or no); 3)

number of asthma symptoms in the last 12 months (no symptoms, one or two symp-

toms, or more than two symptoms). Five typical respiratory symptoms were considered:

breathless while wheezing, chest tightness, shortness of breath at rest, shortness of breath

after exercise, and woken by shortness of breath at night. The asthma symptom variables

were constructed by counting positive answers across five symptoms and throughout study

follow-ups, regardless the number of non-missing answers; 4) number of asthma symp-

toms repeatedly reported from baseline to the second follow-up (no persistent symptoms,

one or two persistent symptoms, or more than two persistent symptoms); 5) atopy de-

fined by positive skin prick test at baseline (yes or no), identified by an adjusted mean

wheal diameter ≥3 mm to at least one of eight common allergens (cat fur, dog epithelia,

house dust mite (Dermatophagoides pteronyssinus), timothy grass pollen, birch pollen,

Parietaria pollen, and the moulds Alternaria and Cladosporium) (Martin et al., 1997,

Wüthrich et al., 1995); 6) nasal allergy including hay fever reported at least once from

baseline to the second follow-up (yes or no); 7) age of asthma onset ≥16 or <16 years

(late or early onset), following Moffatt et al (2010). The cut-off of 16 years is the time

around which boys and girls attain puberty and around puberty gender disproportionate

incidence rates reverse from male to female preponderance.

LCA was applied to asthmatics with non-missing information on allergy and age of

onset (n = 959). For asthma attack in the last 12 months and current asthma medication,
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subjects with missing information were assumed to be negative. In order to find the

appropriate number of latent classes, models were fitted with 2 to 8 latent classes. The

best number was selected primarily based on the Bayesian information criterion (BIC)

while the prevalence of classes was also considered. Without compromising too much on

BIC, the number of latent classes resulting in more evenly distributed classes was chosen.

Each subject was assigned to the latent class with the highest posterior probability.

A descriptive analysis was conducted by examining distributions across LCA-derived

asthma classes of age, sex, obesity, education level, smoking status, physical activity,

high-sensitive C-reactive protein (hs-CRP) level, airway obstruction, and lung function

at baseline including forced expiratory volume in one second (FEV1) as percentage of the

predicted, forced vital capacity (FVC) as percentage of the predicted, FEV1/FVC, forced

expiratory flow between 25% and 75% of FVC (FEF25−75) as percentage of the predicted,

and bronchial hyperresponsiveness (BHR). hs-CRP was measured at SAPALDIA2. Ex-

treme hs-CRP values, i.e. higher than 10 mg/L, were excluded. Airway obstruction was

defined as FEF1/FVC < 0.7 according to the Global Initiative for Chronic Obstructive

Lung Disease (GOLD) (Pauwels et al., 2001). BHR was defined by 20% decline in FEV1 on

methacholine challenge, taking saline as reference. Lung function measurements were ob-

tained using pre-bronchodilator spirometry as previously described (Ackermann-Liebrich

et al., 2005). The predicted values for FEV1, FVC, and FEF25−75 were obtained using

Brändli et al equations (Brandli et al., 1996, Brandli et al., 2000).

4.2.5 Obesity-asthma association examined by multinomial lo-

gistic regression

LCA-derived asthma classes and non-asthmatics as reference were regressed on one of

the five different obesity measures, adjusting for age, sex, smoking status, education level
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and study centre. To enable comparison across different obesity measures, odds ratios

(OR) were computed for 1 standard deviation (SD) increase. For interpretation purposes,

we also reported ORs for overweight or obesity, following commonly used categorisation

(Table 4.S2). Men were classified as obese if BMI ≥ 30 kg/m2, WHR ≥ 1.0, WC ≥ 102

cm, or WHtR ≥ 0.6 and as overweight if BMI ≥ 25 kg/m2, PBF > 25%, WHR ≥ 0.9,

WC ≥ 94 cm, or WHtR ≥ 0.5 but not obese. Women were classified as obese if BMI ≥

30 kg/m2, WHR ≥ 0.85, WC ≥ 88 cm, or WHtR ≥ 0.6 and as overweight if BMI ≥ 25

kg/m2, PBF > 32%, WHR ≥ 0.8, WC ≥ 80 cm, or WHtR ≥ 0.5 but not obese. Although

PBF higher than 25% for men and 32% for women is generally considered overweight, the

consensus for optimal cut-offs of PBF is lacking.

4.2.6 Additional analyses

In an attempt to examine the effect of chronic exposure to obesity, a multinomial lo-

gistic regression model was fitted to the stably overweight participants defined as being

overweight (BMI ≥ 25 kg/m2) from baseline to the second follow-up. Another sensitiv-

ity analysis was conducted, restricting to physically active participants. Subjects were

defined as physically active if they reported either moderate physical activity ≥ 150

minutes/week, vigorous physical activity ≥ 60 minutes/week, or combined duration (du-

ration of moderate physical activity + 2 × duration of vigorous physical activity) ≥ 150

minutes/week. Information on physical activity was obtained from four questions as-

sessing frequency and duration of moderate and vigorous activities (Federal Statistical

Office. Schweizerische Gesundheitsbefragung).
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4.2.7 Statistical software

All analyses were conducted using R 3.1.3 (Team, 2015). In particular, R packages poLCA

(Linzer and Lewis, 2011) and nnet (Ripley, 2002) were used for the LCA and multinomial

logistic regression, respectively.

4.3 Results

4.3.1 Four asthma classes identified by LCA

Although five classes resulted in slightly better BIC, the model with four classes was cho-

sen due to more evenly distributed class membership (Table 4.S1). The LCA with four

classes distinguished persistent multiple symptom-presenting asthma (class 1, n = 122),

symptom-presenting asthma (class 2, n = 290), symptom-free atopic asthma (class 3,

n = 294), and symptom-free non-atopic asthma (class 4, n = 253). class 1 was character-

ized by a high probability of experiencing an asthma attack in the last 12 months, cur-

rently being on asthma medication, and having persistent asthma symptoms (Table 4.1).

class 1 subjects were more likely to have late-onset asthma. class 2 was characterized by

having one or two persistent or current asthma symptoms. class 3 and class 4 were

characterized by experiencing neither current nor persistent asthma symptoms and were

distinguished mainly by atopy and nasal allergy: class 3 subjects were more likely to have

atopy and nasal allergy, whereas class 4 subjects were predominantly non-atopic and less

likely to have nasal allergy. Contrasts in skin prick test were stronger than contrasts in

nasal allergy self-report.

The distribution of age, sex, obesity, education level, smoking status, and physical ac-

tivity did not differ much between the four classes, except that women are over-represented
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Table 4.1. Class-conditional probabilities for each of the manifest variables

Class 1 Class 2 Class 3 Class 4

Asthma attack in the last 12 months 58.6 29.4 5.1 4.1

Current asthma medication 56.2 38.2 5.7 7.3

Number of asthma symptoms 1 - 2 symptoms 2.1 84.4 19.2 9.2
in the last 12 months > 2 symptoms 96.3 0.0 0.7 0.0

Number of asthma symptoms 1 - 2 symptoms 36.0 72.1 5.5 10.6
reported at least twice > 2 symptoms 57.2 8.0 1.5 1.2

Positive skin prick test at baseline 44.9 48.2 100.0 7.2

Nasal allergy including hay fever 64.6 61.0 85.5 31.4

Age of asthma onset ≥ 16 years 75.2 66.8 51.7 57.2

All values are presented in per cent. class 1: persistent multiple symptom-presenting asthma; class 2: symptom-

presenting asthma; class 3: symptom-free atopic asthma; class 4: symptom-free non-atopic asthma.

in class 1 (Tables 4.2 and 4.S3). Bronchial hyperresponsiveness (BHR) at baseline was

more prevalent in classes 1, 2 and 3 than in class 4.

Notably, classes 1 and 2 showed higher prevalence of airway obstruction. For class 1

and 2, airway obstruction was already observed at baseline. FEV1% predicted, FEV1/FVC

ratio, and FEF25−75% predicted were lower in comparison to classes 3 and 4. FVC% pre-

dicted did not differ much by asthma classes.

The sensitivity analyses, applying LCA to 768 asthmatics who participated in the

second follow-up, or restricting LCA to 677 physician-diagnosed asthmatics, resulted in

similar class membership (Table 4.S4; Kappa > 0.9 for both). When restricted to 472

asthmatics who ever reported either asthma attack in the last 12 months or current

asthma medication, LCA could not distinguish atopic and non-atopic classes among the

symptom-free asthmatics (Table 4.S4; Kappa > 0.3). Instead, the symptom-presenting

asthma (class 2) was further differentiated into atopic and non-atopic classes. In any case,

the class with highest probability of multiple persistent symptoms similar to the class 1
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again showed a stronger association with obesity compared to any other classes (data not

shown).

4.3.2 Heterogeneity of obesity-asthma association

Multinomial logistic regression models were fitted to the four LCA-derived asthma classes

with non-asthmatics as reference. Participants with any missing values in the five obesity

measures were excluded (Figure 4.1). Among the five obesity measures examined as

continuous determinants, BMI, PBF, WC and WHtR showed a significant association with

class 1 (Table 6.3). PBF showed the strongest association (OR = 1.63 (95% confidence

interval (CI): 1.21 - 2.20) for 1 SD increase) and further adjustment for BMI did not

attenuate this (OR = 1.57 (95% CI: 0.96 - 2.56)). These results imply that in our sample

1% higher PBF is associated with a 6.1% increased risk of having the class 1 if BMI

remains the same. For class 2, all five obesity measures showed a significant positive

association. Interestingly, the associations of PBF, WC and WHtR to class 2 became

stronger when adjusted for BMI. None of the five obesity measures showed a significant

positive association to symptom-free asthma (classes 3 and 4). WHR was even negatively

associated with class 4. Interaction analyses suggested a gender difference in the positive

association of obesity with class 1 and the association to be stronger in men, but the

results were inconsistent across different obesity measures (data not shown).

Being obese showed a positive association with classes 1 and 2 irrespective of the

parameter used for classification (BMI, WHR, WC or WHtR) (Table 4.S5). Being

overweight defined by PBF showed strong positive associations with classes 1 and 2, in

comparison with being overweight defined by other obesity measures.
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Table 4.3. Odds ratio for 1 SD increase in each of five obesity measures after adjustment

for age, sex, smoking status, educational level, and area of examination

Class 1 Class 2 Class 3 Class 4

BMI 1.32 [1.09, 1.60] 1.23 [1.08, 1.41] 1.01 [0.85, 1.19] 1.04 [0.88, 1.21]

PBF 1.63 [1.21, 2.20] 1.47 [1.21, 1.78] 0.96 [0.78, 1.19] 0.98 [0.79, 1.21]
adjusted for BMI 1.57 [0.96, 2.56] 1.49 [1.09, 2.04] 0.88 [0.63, 1.23] 0.86 [0.62, 1.21]

WHR 1.29 [0.98, 1.71] 1.46 [1.23, 1.75] 0.98 [0.78, 1.22] 0.79 [0.64, 0.98]
adjusted for BMI 1.13 [0.82, 1.55] 1.38 [1.14, 1.68] 0.96 [0.75, 1.23] 0.73 [0.58, 0.93]

WC 1.40 [1.10, 1.77] 1.42 [1.22, 1.66] 1.01 [0.83, 1.21] 0.93 [0.77, 1.13]
adjusted for BMI 1.21 [0.74, 1.97] 1.79 [1.30, 2.46] 0.99 [0.69, 1.41] 0.69 [0.48, 0.98]

WHtR 1.41 [1.14, 1.75] 1.38 [1.19, 1.59] 1.03 [0.86, 1.23] 0.97 [0.82, 1.16]
adjusted for BMI 1.41 [0.87, 2.26] 1.73 [1.26, 2.38] 1.09 [0.76, 1.57] 0.78 [0.55, 1.11]

95% confidence intervals are in square brackets. Note that the odds ratios are obtained from multinomial logistic

regression with non-asthmatics as reference category, and hence they are conditional on either being non-asthmatic or

respective class. class 1: persistent multiple symptom-presenting asthma; class 2: symptom-presenting asthma; class 3:

symptom-free atopic asthma; class 4: symptom-free non-atopic asthma.

4.3.3 Stronger association among the stably overweight

When the analysis was restricted to participants who were stably overweight (BMI ≥

25 kg/m2) from baseline to the second follow-up, the association of PBF with persis-

tent multiple symptom-presenting asthma increased (OR = 2.45 (95% CI 1.15 - 5.21))

(Figure 4.2 and Table 4.S6). This corresponds to saying that among the stably over-

weight, 1% higher PBF is associated with a 12.4% increased risk of having class 1. BMI,

WC and WHtR also showed a stronger association to class 1 when restricted to the stably

overweight, but not as pronounced as for PBF. This restricted analysis did not lead to

much increase in ORs for class 2.

When the analyses were restricted to physically active participants, the associations

were not altered (Table 4.S7).
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Figure 4.2. Odds ratio for 1 SD increase in each of five obesity measures before and

after restriction to the stably overweight participants, adjusted for age, sex, smoking status,

educational level, and area of examination
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4.4 Discussion

LCA enabled us to identify asthma sub-phenotypes in an agnostic way, with a priori

selected relevant characteristics taken into consideration. Simple classification, for ex-

ample by creating a contingency table, would suffer from low power, given the large

number of characteristics to consider. Unlike such simple classification, LCA reveals the

co-occurrence and importance in distinguishing classes over multiple characteristics. The

LCA-derived asthma classes were distinguished mostly by disease activity and atopic sta-

tus. Our multinomial logistic regression analyses showed that obesity was associated with

symptom-presenting asthma classes but not with symptom-free ones, indicating they may

indeed have different aetiologies. Associations were consistently strongest for PBF and

the highest odds ratios were observed for the association between PBF and class 1 asthma

sub-phenotype.

class 1 represented relatively severe and presumably poorly controlled asthma. Sub-

jects of this class are also more likely to have late-onset, non-atopic asthma and to be

female. This finding is in line with results from earlier studies aiming to identify asthma

sub-phenotypes by applying various clustering methods (Haldar et al., 2008, Moore et

al., 2010, Siroux et al., 2011, Newby et al., 2014). In contrast to the previous cluster-

ing studies, we did not identify age of disease onset to be a key differentiating factor.

However, categorization of age-of-onset by 16 years cut-off may not be the optimal way

to assess. A recent SAPALDIA study showed that gender difference in asthma incidence

attenuated in late adulthood (Hansen et al., 2015) and menopause has been associated

with asthma phenotypes (van den Berge et al., 2009). It would be interesting to investi-

gate asthma that manifests later in adulthood as potentially a separate phenotype or to

examine if the association to obesity changes around menopause, but limited number of

observations did not allow such additional analysis. Our analyses revealed the strongest
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association of obesity with class 1, pointing to a distinct asthma entity both from a clinical

and an aetiological perspective. Although this study assessed self-reported ever asthma,

possibly including the asthmatics whose childhood asthma had grown out, class 1 was

also identified when LCA was restricted to those who reported either asthma attack or

medication during the time of SAPALDIA follow-up and showed the strongest association

with obesity.

Most obesity measures examined in this study showed a positive association with the

symptom-presenting asthma classes. Comparing the OR for 1 SD increase, PBF had the

strongest association with class 1, suggesting that PBF captures the effects of adiposity

on respiratory health better than BMI, confirming the limitation of BMI to be used as

health-relevant obesity measure. In recognition of the limitation of BMI, Fenger et al

examined various obesity measures in relation to asthma (Fenger et al., 2012) and lung

function (Fenger et al., 2014), although they did not report any specific measure being

superior to BMI. Wang et al showed stronger association of asthma to PBF than to BMI

among children (Wang et al., 2014). Alternatively, this strong association between PBF

and symptom-presenting asthma classes might be in part attributed to reverse causation,

i.e. asthmatics tend to lack physical activity and lose muscle mass, which then associates

with higher PBF.

One of the most favoured hypotheses explaining the obesity-asthma association is that

low-grade chronic inflammation induced by visceral adipose tissue leads to airway inflam-

mation. In fact, we did observe higher serum levels of high-sensitive C-reactive protein

(hs-CRP) in severe asthma classes (Table 4.2). While a positive association between

hs-CRP and BMI was observed among SAPALDIA participants, ANCOVA with LCA-

derived asthma classes as factor and BMI and sex as covariates did not identify asthma

classes as a statistically significant determinant of hs-CRP (data not shown). Obese
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asthmatics have often shown a dissociation between symptoms and biomarkers of airway

inflammation such as sputum eosinophil count or exhaled nitric oxide (McLachlan et al.,

2007, Todd et al., 2007), suggesting a distinct underlying inflammatory mechanism. A

recent study also reported that airway inflammation was not elevated in obese asthmat-

ics (Sideleva et al., 2012). Elucidation of the pathophysiology linking obesity to asthma

requires further studies paying attention to the heterogeneity of asthma phenotypes.

Our results might also be biased due to the fact that obese individuals may be over-

diagnosed with asthma. Obesity is thought to cause physiological impairments in lung

function such as reduced lung volumes and chest wall restriction (Steier et al., 2014) and

dyspnoea caused by obesity-related impairments may be mistaken for asthma (Beuther

and Sutherland, 2005). However, in our study, PBF showed a strong association to

symptom-presenting asthma phenotypes even if adjusted for BMI. This suggests that the

obesity-asthma relationship is not solely attributed to the impaired lung function caused

by obesity. Moreover, we also observed decrease in FEF25−75% predicted, but not in

FVC% predicted, in symptom-presenting asthma classes, suggesting that obesity-asthma

association is likely due to the airway inflammation rather than mechanical impairments.

Independent evidence also showed that the risk of asthma over-diagnosis is not higher

among obese than non-obese (Aaron et al., 2008).

Nevertheless, reverse causation remains a plausible explanation for the obesity-asthma

association. One can suspect that asthmatics gain weight as a side effect of systemic corti-

costeroids, higher systemic inflammation, or sedentary life style. However, the commonly

used asthma treatment, an inhaler, is not generally known to cause systemic side effects

(Hedberg and Rossner, 2000). A more obvious hypothesis would be that respiratory

symptoms hinder asthmatics from being physically active and hence lead to weight gain.

Due to our study design, we cannot demonstrate that obesity preceded true asthma onset.
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However, the obesity effect observed in this study did not attenuate when the analysis

was restricted to physically active participants, suggesting that the observed association

cannot entirely be explained by reverse causation. Interaction analyses also showed that

physical activity did not modify the effect of obesity on the severe asthma classes, regard-

less of obesity metrics used (data not shown).

The effects of all five obesity measures became stronger when the analyses were re-

stricted to stably overweight participants. This seems to support the causality of the

association between obesity and persistent multiple symptom-presenting asthma. Recent

findings from a Mendelian randomisation approach point to the causality of the associa-

tion in childhood asthma (Granell et al., 2014). However, in order for a conclusive causal

inference, further biological and epidemiological studies are required.

4.5 Conclusion

We demonstrated that LCA is a useful tool to disentangle the heterogeneity of asthma

phenotypes. Four LCA-derived asthma classes were distinguished mainly by disease activ-

ity and atopic status. We observed heterogeneous associations with obesity across LCA-

derived classes, indicating possible aetiological differences. Most obesity measures showed

a positive association with symptom-presenting asthma classes but not with symptom-free

ones. PBF was better than BMI in explaining persistent multiple symptom-presenting

asthma class. The obesity-asthma association was stronger among the stably overweight.
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Administrative staff : N. Bauer Ott, C. Gabriel and R. Gutknecht.

47



Article I

4.6 Supplementary Material

Table 4.S1. Summary of LCA results after 100 repetitions

Number of classes BICa Size of the smallest classb Size of the largest classb

2 8965 ± 3e-11 392 567

3 8883 ± 2e-9 268 354

4 8823 ± 2e-9 122 294

5 8815 ± 2e-10 94 278

6 8842 ± 2e-7 76 290

7 8887 ± 9e-1 34 [27, 52] 279 [279, 322]

8 8935 ± 1e-1 31 [31, 47] 309 [257, 309]

aData are presented as mean ± standard deviation. bIn case the results varied over 100 repetitions, data are presented

as median [min, max].

Table 4.S2. Categorization used for different obesity measures

Men Women
Normal Overweight Obese Normal Overweight Obese

BMI [kg/m2] < 25 ≥ 25 and < 30 ≥ 30 < 25 ≥ 25 and < 30 ≥ 30

PBF [%] ≤ 25 > 25 - ≤ 32 > 32 -

WHR < 0.9 ≥ 0.9 and < 1.0 ≥ 1.0 < 0.8 ≥ 0.8 and < 0.85 ≥ 0.85

WC [cm] < 94 ≥ 94 and < 102 ≥ 102 < 80 ≥ 80 and < 88 ≥ 88

WHtR < 0.5 ≥ 0.5 and < 0.6 ≥ 0.6 < 0.5 ≥ 0.5 and < 0.6 ≥ 0.6

BMI: body mass index; PBF: percent body fat; WHR: waist hip ratio; WC: waist circumference; WHtR: waist height

ratio.
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Table 4.S5. Associationa of obesity with LCA-derived asthma classes: odds ratio for

overweight or obesity, based on the cut-offs specific for each of five obesity measures

Class 1 Class 2 Class 3 Class 4

BMI overweight 1.51 [0.89, 2.58] 1.17 [0.83, 1.64] 0.94 [0.66, 1.34] 0.99 [0.68, 1.42]
obese 2.25 [1.22, 4.15] 1.73 [1.17, 2.55] 1.05 [0.67, 1.66] 1.40 [0.92, 2.15]

PBF overweight 1.67 [0.99, 2.83] 1.55 [1.11, 2.16] 1.15 [0.82, 1.60] 0.94 [0.67, 1.33]
adjusted for BMI overweight 1.26 [0.69, 2.30] 1.29 [0.88, 1.90] 1.19 [0.80, 1.77] 0.87 [0.58, 1.31]

WHR overweight 1.57 [0.84, 2.92] 0.97 [0.63, 1.48] 0.94 [0.64, 1.39] 1.03 [0.69, 1.52]
obese 1.80 [0.96, 3.37] 2.34 [1.57, 3.48] 0.92 [0.59, 1.42] 0.64 [0.41, 0.99]

adjusted for BMI overweight 1.42 [0.76, 2.66] 0.94 [0.61, 1.44] 0.93 [0.62, 1.38] 0.97 [0.65, 1.44]
obese 1.35 [0.68, 2.66] 2.15 [1.39, 3.33] 0.89 [0.54, 1.45] 0.55 [0.33, 0.89]

WC overweight 1.08 [0.57, 2.06] 1.07 [0.71, 1.60] 1.25 [0.85, 1.83] 0.95 [0.64, 1.43]
obese 2.06 [1.21, 3.50] 1.91 [1.36, 2.69] 1.05 [0.71, 1.55] 0.93 [0.64, 1.37]

adjusted for BMI overweight 0.97 [0.50, 1.91] 1.04 [0.68, 1.60] 1.26 [0.83, 1.90] 0.88 [0.58, 1.36]
obese 1.57 [0.75, 3.29] 1.81 [1.12, 2.91] 1.06 [0.61, 1.86] 0.77 [0.45, 1.34]

WHtR overweight 0.73 [0.41, 1.29] 1.37 [0.95, 1.98] 1.01 [0.69, 1.46] 0.99 [0.68, 1.45]
obese 2.12 [1.15, 3.91] 2.21 [1.44, 3.39] 1.05 [0.63, 1.73] 0.97 [0.59, 1.58]

adjusted for BMI overweight 0.58 [0.30, 1.11] 1.33 [0.87, 2.04] 1.01 [0.65, 1.58] 0.90 [0.57, 1.40]
obese 1.21 [0.44, 3.30] 2.06 [1.05, 4.04] 1.06 [0.49, 2.30] 0.76 [0.35, 1.62]

aAdjusted for age, sex, smoking status, educational level, and study centre. 95% confidence intervals are in square

brackets. Men were classified as obese if BMI ≥ 30 kg/m2, WHR ≥ 1.0, WC ≥ 102 cm, or WHtR ≥ 0.6 and as

overweight if BMI ≥ 25 kg/m2, PBF > 25%, WHR ≥ 0.9, WC ≥ 94 cm, or WHtR ≥ 0.5. Women were classified as

obese if BMI ≥ 30 kg/m2, WHR ≥ 0.85, WC ≥ 88 cm, or WHtR ≥ 0.6 and as overweight if BMI ≥ 25 kg/m2, PBF

> 32%, WHR ≥ 0.8, WC ≥ 80 cm, or WHtR ≥ 0.5. BMI: body mass index; PBF: percent body fat; WHR: waist-hip

ratio; WC: waist circumference; WHtR: waist-height ratio. Odds ratios are obtained from multinomial logistic regression

with non-asthmatics as reference category, and hence are conditional on either being non-asthmatic or respective class.

Class 1: persistent multiple symptom-presenting asthma; Class 2: symptom-presenting asthma; Class 3: symptom-free

atopic asthma; Class 4: symptom-free non-atopic asthma.
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Table 4.S6. Associationa of obesity with LCA-derived asthma classes: odds ratio for 1

standard deviation (SD) increase in each of five obesity measures among the stably over-

weight participants

Class 1 Class 2 Class 3 Class 4

BMI 1.42 [1.01, 2.00] 1.20 [0.96, 1.51] 1.04 [0.75, 1.42] 1.03 [0.75, 1.41]

PBF 2.45 [1.15, 5.21] 1.55 [1.01, 2.37] 0.89 [0.55, 1.43] 0.87 [0.52, 1.44]

adjusted for BMI 2.15 [0.75, 6.16] 1.47 [0.83, 2.62] 0.76 [0.40, 1.42] 0.74 [0.38, 1.44]

WHR 1.17 [0.68, 2.02] 1.60 [1.17, 2.20] 1.17 [0.79, 1.73] 0.77 [0.53, 1.12]

adjusted for BMI 1.01 [0.56, 1.81] 1.55 [1.12, 2.14] 1.17 [0.78, 1.77] 0.75 [0.51, 1.10]

WC 1.56 [1.05, 2.32] 1.30 [1.03, 1.66] 0.96 [0.70, 1.32] 0.91 [0.66, 1.26]

adjusted for BMI 1.45 [0.67, 3.13] 1.37 [0.90, 2.11] 0.83 [0.50, 1.38] 0.75 [0.46, 1.24]

WHtR 1.65 [1.13, 2.41] 1.32 [1.04, 1.67] 1.04 [0.75, 1.43] 0.94 [0.68, 1.30]

adjusted for BMI 1.93 [0.86, 4.33] 1.47 [0.94, 2.30] 1.01 [0.58, 1.79] 0.79 [0.46, 1.33]

aAdjusted for age, sex, smoking status, educational level, and study centre. 95% confidence intervals are in square

brackets. Being stably overweight was defined as being overweight (BMI ≥ 25 kg/m2) from baseline to the second

follow-up. Odds ratios are obtained from multinomial logistic regression with non-asthmatics as reference category, and

hence are conditional on either being non-asthmatic or respective class. class 1: persistent multiple symptom-presenting

asthma; class 2: symptom-presenting asthma; class 3: symptom-free atopic asthma; class 4: symptom-free non-atopic

asthma.
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Table 4.S7. Associationa of obesity with LCA-derived asthma classes: odds ratio for 1 SD

increase in each of five obesity measures among the physically active participants

Class 1 Class 2 Class 3 Class 4

BMI 1.34 [1.08, 1.67] 1.27 [1.09, 1.48] 0.98 [0.81, 1.19] 1.07 [0.90, 1.28]

PBF 1.73 [1.24, 2.41] 1.59 [1.27, 2.00] 0.99 [0.78, 1.26] 1.06 [0.83, 1.34]

WHR 1.31 [0.94, 1.84] 1.52 [1.22, 1.89] 1.00 [0.77, 1.28] 0.86 [0.67, 1.10]

WC 1.45 [1.11, 1.90] 1.47 [1.23, 1.77] 1.04 [0.84, 1.29] 0.99 [0.80, 1.22]

WHtR 1.42 [1.11, 1.81] 1.43 [1.20, 1.69] 1.04 [0.85, 1.27] 1.01 [0.83, 1.22]

aAdjusted for age, sex, smoking status, educational level, and study centre. 95% confidence intervals are in square

brackets. Odds ratios are obtained from multinomial logistic regression with non-asthmatics as reference category, and

hence are conditional on either being non-asthmatic or respective class. Class 1: persistent multiple symptom-presenting

asthma; Class 2: symptom-presenting asthma; Class 3: symptom-free atopic asthma; Class 4: symptom-free non-atopic

asthma.
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Abstract

A high body mass (BMI) index has repeatedly been associated with non-atopic asthma,

but the biological mechanism linking obesity to asthma is still poorly understood. We

aimed to test the hypothesis that inflammation and/or innate immunity plays a role in the

obesity-asthma link. DNA methylome was measured in blood samples of 61 non-atopic

participants with asthma and 146 non-atopic participants without asthma (non-smokers

for at least 10 years) taking part in the Swiss Cohort Study on Air Pollution and Lung and

Heart Diseases in Adults (SAPALDIA) study. Modification by DNA methylation of the

association of BMI or BMI change over 10 years with adult-onset asthma was examined

at each CpG site and differentially methylated region. Pathway enrichment tests were

conducted for genes in a priori curated inflammatory pathways and the NLRP3-IL1B-

IL17 axis. The latter was chosen on the basis of previous work in mice. Inflammatory

pathways including glucocorticoid/PPAR signaling (p = 0.0023), MAPK signaling (p =

0.013), NF-κB signaling (p = 0.031), and PI3K/AKT signaling (p = 0.031) were enriched

for the effect modification of BMI, while NLRP3-IL1B-IL17 axis was enriched for the

effect modification of BMI change over 10 years (p = 0.046). DNA methylation measured

in peripheral blood is consistent with inflammation as a link between BMI and adult-onset

asthma and with the NLRP3-IL1B-IL17 axis as a link between BMI change over 10 years

and adult-onset asthma in non-atopic participants.
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5.1 Introduction

Obesity and overweight have repeatedly been linked to asthma (Beuther and Sutherland,

2007, Egan et al., 2013), with several studies reporting a stronger association of obesity

or overweight with non-atopic as compared to atopic asthma (Castro-Giner et al., 2009,

Fenger et al., 2012) and with late-onset asthma compared to early-onset asthma (Haldar

et al., 2008, Moore et al., 2010). We have previously observed heterogeneity of the

overweight-asthma association across asthma classes identified by latent class analysis

(Jeong et al., 2017).

The biological mechanism linking obesity and overweight with asthma is yet poorly

understood. Excessive adipose tissue may increase the work associated with breathing, re-

duce lung volume, and promote airway hyperresponsiveness and airway narrowing (Shore,

2008, Steier et al., 2014). However, the more likely hypothesis is that the obesity-asthma

association is not entirely mechanical, but that obesity-related chronic inflammation con-

tributes to asthma development. Adiposity is characterized by dysregulated production

of pro-inflammatory cytokines and infiltration and activation of macrophages (Suganami

et al., 2005, Weisberg et al., 2003). While M2 macrophages are predominant in non-

obese adipose tissue, pro-inflammatory M1 macrophages increase in obese adipose tissue,

leading to low-grade chronic systemic inflammation (Castoldi et al., 2016). Whether and

how obesity and overweight leads to airway inflammation is controversial. An interesting

finding in mice experiments pointed to NLRP3 (nucleotide-binding domain, leucine-rich

repeats-containing family, pyrin domain-containing-3) inflammasome and interleukin-17

(IL17) producing innate lymphoid cell group 3 (ILC3) cells as a link between obesity and

airway hyperresponsiveness (AHR) (Kim et al., 2014). On recognition of various dan-

ger signals, NLRP3 inflammasome produces interleukin-1β(IL1B) via caspase-1. IL1B, in

turn, activates ILC3 cells to produce interleukin-17 (IL17), leading to AHR. Kim and her
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colleagues demonstrated that the NLRP3-IL1B-IL17 axis is crucial in AHR development

in obese mice (Kim et al., 2014).

High-throughput arrays allow cost-effective genome-wide quantification of DNA methy-

lation. The epigenome-wide association study (EWAS) design has been successfully ap-

plied to identify methylation markers measured in peripheral blood related to a variety of

endogenous and environmental insults as well as health outcomes. Recently, the largest

EWAS on asthma identified DNA methylation at several immunity and inflammation

related CpG sites to be associated with asthma in children (Xu et al., 2018, Forno et

al., 2018, Reese et al., 2018). Several studies reported methylation markers of obesity

measured in peripheral blood (Dick et al., 2014, Wahl et al., 2017, Xu et al., 2013).

Several studies reported methylation markers of obesity and overweight measured in pe-

ripheral blood, which in part reflected inflammatory pathways (Dick et al., 2014, Wahl

et al., 2017, Xu et al., 2013). Rastogi and her colleagues reported differential DNA

methylation in obese children with non-atopic asthma that was consistent with a role

of inflammation (Rastogi et al., 2013). However, differential DNA methylation related

to obesity-associated asthma in adults is largely unexplored. An earlier EWAS study in

adults showed heterogeneity in differential DNA methylation patterns across inflamma-

tory sub-phenotypes of asthma (Gunawardhana et al., 2014).

In the light of suggestive evidence for inflammation as a mediator in the overweight/

obesity-asthma link, we formally explored whether interaction signals between BMI or

BMI change and DNA methylation in peripheral blood on non-atopic adult-onset asthma

are enriched for signals mapping to inflammatory pathways. Specifically we tested the

hypothesis by conducting an epigenome-wide interaction study (EWIS) followed by can-

didate pathway enrichment analysis for a priori curated inflammatory pathways and the

NLRP3-IL1B-IL17 axis, making use of the information from the Swiss Cohort Study on
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Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA). Identification of

differential DNA methylation enriched in the candidate pathways would add further sup-

port that inflammation and/or innate immunity play a role in overweight-asthma link,

although the inflammation was not directly measured. This hypothesis-driven approach

was corroborated by agnostic pathway enrichment analysis in combination with differen-

tially methylated region (DMR) analysis.

5.2 Materials and methods

5.2.1 Study samples

The Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPAL-

DIA) was initiated in 1991 (SAPALDIA1), recruiting 9651 participants in eight regions

representing various meteorological and geographical environments in Switzerland. 8047

and 6088 out of the 9651 participants were followed-up in the second and the third survey,

respectively (SAPALDIA2 in 2001-3 and SAPALDIA3 in 2010-11). The detailed study

protocol was reported previously (Ackermann-Liebrich et al., 2005, Martin et al., 1997).

We conducted a nested case-control study of adult-onset asthma among the non-atopic

SAPALDIA3 participants, all of whom were non-smokers for at least 10 years before blood

draw and interview. Cases were selected among the participants with self-reported asthma

and self-reported age of onset later than 16 years, based on the availability of archived

blood samples and covariate information. Controls were randomly selected among the par-

ticipants who never reported the following throughout the surveys: self-reported asthma;

physician-diagnosed asthma; asthma attack in the last 12 months; current asthma medica-

tion; wheezing without cold in the last 12 months; three or more asthma-related symptoms

in the last 12 months (symptoms considered: breathless while wheezing; woken up with a
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feeling of chest tightness; attack of shortness of breath after exercise; attack of shortness

of breath while at rest; woken by attack of shortness of breath). Cases and controls with

positive skin prick test at baseline defined as an adjusted mean wheal diameter ≥3 mm

to at least one of eight common respiratory allergens were excluded (allergens considered:

cat fur, dog epithelia, house dust mite (Dermatophagoides pteronyssinus), timothy grass

pollen, birch pollen, Parietaria pollen, and the molds Alternaria and Cladosporium). In

total 61 cases and 146 controls were examined in the EWIS followed by the pathway

enrichment tests. Study samples’ characteristics are summarized in Table 5.1. All par-

ticipants gave written informed consent and ethical approval was obtained from the Swiss

Academy of Medical Sciences and the regional committees for each study center.

5.2.2 Covariates

Weight and height were measured and body mass index (BMI) was computed as weight

in kilograms divided by the square of height in meters. BMI change was defined as

the difference in BMI between SAPALDIA3 and SAPALDIA2. Negative values of the

BMI change mean reduction in BMI. Educational level was categorized from self-reported

highest education into “low” (primary school), “middle” (secondary/middle school or

apprenticeship), and “high” (college or university). Pack-years of cigarettes smoked in

life were computed from self-reported number of cigarettes smoked per day and smoking

history. Physical activity was dichotomized from self-reported frequency and duration of

moderate and vigorous physical activity into “sufficiently active” (either moderate physical

activity ≥ 150 min/week, vigorous physical activity ≥ 60 min/week, or combined duration

(duration of moderate physical activity + 2 × duration of vigorous physical activity) ≥

150 min/week) and “insufficiently active” (otherwise).

In order to confirm that BMI is related to chronic inflammation, we examined as-
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Table 5.1. Study samples’ characteristics by adult-onset asthma status at SAPALDIA 3

Cases Controls

N 61 146

Age [year] 60.8 (15.6) 57.4 (15.0)

Female 43 (70%) 82 (56%)

BMIa [kg/m2] 25.7 (5.8) 24.5 (4.8)

BMI changeb [kg/m2] 0.4 (2.0) 0.5 (1.6)

Smokingc

Former 27 (44%) 50 (34%)
Never 34 (56%) 96 (66%)

Pack-yearsd 7.8 (13.3) 6.8 (11.6)

Education levele

Low 0 (0%) 2 (1%)
Middle 43 (70%) 94 (64%)
High 18 (30%) 50 (34%)

Physical activityf

Insufficiently active 18 (30%) 30 (21%)
Sufficiently active 42 (69%) 113 (77%)

N/A 1 (2%) 3 (2%)

Bench timeg [min] 80.0 (34.0) 82.5 (32.5)

hs-CRPh [min] 1.3 (1.4) 0.7 (1.2)

Data are presented as count (%) or median (interquartile range). aMeasured at SAPALDIA3. bChange in BMI between

SAPALDIA2 and SAPALDIA3. cFormer smokers had not smoked for at least 10 years before blood was drawn. dOnly

computed in former smokers (pack-years were set to zero for never smokers). eLow = primary school; middle =

secondary/middle school or apprenticeship; high = college or university. fSufficiently active at SAPALDIA3= either

moderate physical activity ≥ 150 min/week, vigorous physical activity ≥ 60 min/week, or combined duration (duration

of moderate physical activity + 2 × duration of vigorous physical activity) ≥ 150 min/week; insufficiently active =

otherwise. N/A = not available. g Time elapsed between blood draw and storage in freezer. h Measured at SAPALDIA2.
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sociation between BMI and high-sensitive C-reactive protein (hs-CRP) within the study

subjects (n = 206; one subject was excluded due to missing information on hs-CRP).

We used information on both BMI and hs-CRP at SAPALDIA2 because hs-CRP was

measured only at SAPALDIA2. Log-transformed hs-CRP was regressed on BMI after

adjustment for age, sex, education level, study area, and pack-years of cigarettes smoked

up to SAPALDIA2.

5.2.3 Methylome

Peripheral blood samples had been collected at SAPALDIA3, the second follow-up visit

in 2010 of the cohort study. Pre-analytically, the blood samples were processed and the

buffy coat fraction was archived at −80◦C for five years until DNA extraction using the

QIAamp Blood Mini Kit (QIAGEN, Hilden, Germany) following the manufacturer’s in-

structions (Hebels et al., 2013). A small number of samples yielded limited DNA quantity

and were replaced by DNA extracted (using the Gentra Puregene Blood Kit (QIAGEN,

Hilden, Germany) following the manufacturer’s instructions) from whole blood of the same

venipuncture as used for buffy coats. Bisulfite conversion of 600 ng of each sample was

performed using the EZ-96 DNA Methylation-GoldT Kit according to the manufacturer’s

protocol (Zymo Research, Orange, CA, USA). Then, 200 ng of bisulfite-converted DNA

was used for hybridization on the Illumina Infinium HumanMethylation450 BeadChip (Il-

lumina, San Diego, CA, USA), following the Illumina Infinium HD Methylation protocol.

Each array consisted of 96-samples distributed equally among 8 chips. The arrays were

designed such that batch effects (e.g. sample position and intra- and inter-variability in

arrays and chips) do not completely confound with biological covariates. This design

allows the retention of biological variation (including the variable of interest) after correc-

tion for technical variation. Specifically, each chip incorporated proportional amounts of
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samples representing the different centers, confounding factors and cases-control status.

Cases and controls were also placed on the chips (not following a specific sequence) in

order to minimize technical variation between them. Raw fluorescence intensities were

retrieved and preprocessed using the R package “minfi” (Aryee et al., 2014). One sample

with sex mismatch was excluded. Background correction and dye bias correction were

performed using Noob (normal-exponential out-of-band) procedure (Triche et al., 2013).

DNA methylation levels were expressed as β values, defined as the ratio of methylated in-

tensity over total intensity with offset = 100. β values were set to missing if the detection

p-value was higher than 10−16. Probes on sex chromosome were excluded. Probes were

then filtered by call rate < 0.95. All samples had call rate > 0.95. Beta-mixture quantile

normalization (BMIQ) procedure was conducted to correct for the Illumina probe design

bias (Teschendorff et al., 2013). The probes known to hybridize with multiple genomic

locations or to target CpG sites overlapping known SNPs with minor allele frequency

greater than 1% in Europeans were excluded (Chen et al., 2013). Finally 430,591 CpGs

were ready for analysis. In addition, principal component analysis (PCA) was conducted

on the 220 control probes incorporated on the Illumina chip following Lehne and Drong

(Lehne et al., 2015) and β values were regressed on the first 30 components. All the sta-

tistical analyses used the resulting residuals in place of the β values to account for batch

effects.

5.2.4 EWIS of DNA methylation and BMI on adult-onset asthma

Logistic regression models were fitted for adult-onset asthma status on BMI at SAPAL-

DIA3, residual of the β value at each CpG site, and their multiplicative interaction upon

adjustment for age (in years), sex, education level, study area, pack-years of cigarettes

smoked in life, bench time (in minutes), and Houseman estimates (Houseman et al., 2012)
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of white blood cell composition for B cells, CD4 T cells, CD8 T cells, natural killer cells,

monocytes, and eosinophils.

Asthma ∼ BMI ×Residuali +Age+ Sex+ Education+Area+ Packyear +

Benchtime+Bcell + CD4T + CD8T +NK +Mono+Eos (i ∈ [1, . . . , 430591])

We did not adjust for neutrophils because immune response in non-atopic participants

was possibly driven by neutrophil proliferation (Annunziato et al., 2015, Linden and

Dahlen, 2014) and therefore adjustment for neutrophils could obscure the association of

interest. Despite the female preponderance in cases compared to controls (Table 5.1),

we did not consider stratification or effect modification by sex based on our observation

that the association between BMI and non-atopic adult-onset asthma did not differ by sex

(Table 5.S3). The interaction was considered genome-wide significant when the p-value

from the interaction term was smaller than 0.1 after the Benjamini-Hochberg correction

for multiple testing. As a sensitivity analysis, the same EWIS was repeated after further

adjustment either for physical activity or for neutrophil estimates.

5.2.5 EWIS of DNA methylation and BMI change on adult-

onset asthma

Logistic regression models were fitted for adult-onset asthma status on BMI change, resid-

ual of the β value at each CpG site, and their multiplicative interaction after adjustment

for the same set of covariates as above and additionally for BMI at SAPALDIA2.

Asthma ∼ (BMIS3−BMIS2)×Residuali+BMIS2+Age+Sex+Education+Area

+ Packyear +Benchtime+Bcell + CD4T + CD8T +NK +Mono+ Eos

(i ∈ [1, . . . , 430591])

The same sensitivity analyses were conducted as above.
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5.2.6 Candidate pathway enrichment analyses using Weighted

Kolmogorov-Smirnov (WKS) method

Genes relevant to the NLRP3-IL1B-IL17 axis were curated based on Kim et al (Kim et al.,

2014). Inflammation-related genes were curated previously by Loza et al into 17 mutually

exclusive pathways (Loza et al., 2007). The complete list of the genes assigned to each

pathway can be found in Table 5.S1. CpG sites were then assigned to the pathway if

the CpG sites reside within 200 bp upstream or downstream of the genes included in each

pathway.

We tested if the pathways are over-represented in the EWIS results by applying the

Weighted Kolmogorov-Smirnov (WKS) enrichment test (Charmpi and Ycart, 2015). Us-

ing this algorithm, the absolute Z-statistics of the CpG sites assigned to each pathway

(e.g. 219 CpG sites assigned to NLRP3-IL1B-IL17 axis) were compared with the null

distribution created by 10000 Monte-Carlo simulations of the absolute Z-statistics from

the entire 430 591 CpG sites. In this approach, Z-statistics from all CpGs mapped to a

pathway were compared to the null distribution without selection based on EWIS-derived

p-values. Over-representation of the pathway was determined by Kolmogorov-Smirnov

tests. Pathways with WKS p-value < 0.05 were declared as enriched. The procedure

includes permutation-based multiple testing correction (Charmpi and Ycart, 2015, van

der Laan et al., 2005).

5.2.7 Identification of differentially methylated regions (DMR)

We used the R package DMRcate to identify DMRs (Peters et al., 2015). The Z-statistics

from EWIS were squared and smoothed using a Gaussian kernel with a bandwidth of

1000 bp and scaling factor of 2, which is equivalent to the kernel standard deviation of
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500 bp. P-values were computed for each CpG site by comparison to the null distribution

of the smoothed estimates. The regions containing at least one CpG site with Benjamini-

Hochberg adjusted p-value < 0.05 were declared as significant. The significant DMRs were

annotated to the genes whose promoter region, defined as 2000 bp from the transcription

start site, overlaps with the DMRs.

5.2.8 Agnostic pathway enrichment analyses using Ingenuity

Pathway Analysis (IPA)

The 1305 genes annotated to the 1131 DMRs identified as significant effect modification of

BMI on adult-onset asthma were tested for over-representation using IPA (http://www.

ingenuity.com/; QIAGEN, Redwood City, CA, USA) canonical pathway analysis. In

brief, the maximum effect modification estimate and the minimum Benjamini-Hochberg

adjusted p-value for each DMR were assumed to represent the expression level and the

p-value, respectively, for the gene annotated to the DMR. The DMRs annotated multiple

genes constituted multiple entries each annotated a single gene. The DMRs with no gene

annotation were excluded (n = 114). The 20 genes annotated to the 18 DMRs for BMI

change were too few to conduct the same pathway analysis.

5.3 Results

From association analysis using SAPALDIA2 information, we confirmed a positive asso-

ciation between BMI and hs-CRP. One unit increase in BMI was associated with 0.1 unit

increase in log-transformed hs-CRP (95% confidence interval [0.07, 0.14]; p < 10−8). We

conducted an EWIS of DNA methylation and BMI or BMI change over 10 years on adult-

onset asthma among non-atopic, non-smoking SAPALDIA3 participants (Table 5.1). We
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found no epigenome-wide significant effect modification after multiple testing corrections.

Sensitivity analyses with additional adjustment for physical activity or neutrophil esti-

mates also resulted in no epigenome-wide significant CpG sites. Figures 5.1, 5.2, and

5.S1-5.S4 summarize the EWIS results.

Figure 5.1. Volcano plot from the EWIS of DNA methylation and BMI on adult-onset

asthma

The EWIS fitted logistic regression models of adult-onset asthma on BMI, residuals of DNA methylation at a single

CpG site, and their multiplicative interaction, upon adjustment for age, sex, education level, study area, pack-years

of cigarettes smoked in life, bench time, and white blood cell composition estimates for B cells, CD4 T cells, CD8 T

cells, natural killer cells, monocytes, and eosinophils. The CpGs assigned to the pathway enriched with p < 0.05 are

highlighted in colors. No line of significance was drawn as no CpG reached genome-wide significance after multiple

testing corrections.

After pathway enrichment analysis of 17 a priori curated inflammatory pathways

(Loza et al., 2007), we found an over-representation of effect modification by DNA methy-

lation of BMI on adult-onset asthma in several pathways: Glucocorticoid/PPAR (peroxi-
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Figure 5.2. Volcano plot from the EWIS of DNA methylation and BMI change on adult-

onset asthma

The EWIS fitted logistic regression models of adult-onset asthma on BMI change, residuals of DNA methylation at a

single CpG site, and their multiplicative interaction, upon adjustment for age, sex, education level, study area, pack-

years of cigarettes smoked in life, bench time, and white blood cell composition estimates for B cells, CD4 T cells, CD8

T cells, natural killer cells, monocytes, and eosinophils. The CpGs assigned to the pathway enriched with p < 0.05

are highlighted in colors. No line of significance was drawn as no CpG reached genome-wide significance after multiple

testing corrections.
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some proliferator-activated receptor) signaling, MAPK (mitogen-activated protein kinase)

signaling, NF-κB (nuclear factor kappa-B) signaling, and PI3K/AKT (phosphatidylinositol-

3-kinases/protein kinase B) signaling (Table 5.2). The pathway “global inflammation”,

defined as the entirety of the 1027 genes assigned to the 17 inflammation pathways, also

showed enrichment. In the sensitivity analyses, the enrichment of PI3K/AKT signaling

disappeared after adjustment for physical activity, while the enrichment of NF-κB sig-

naling and PI3K/AKT signaling disappeared after adjustment for neutrophil estimates

(Table 5.2).

Table 5.2. EWIS of DNA methylation and BMI on adult-onset asthma: enrichment test

results for 17 inflammation pathways and NLRP3-IL1B-IL17 axis

Pathway #Genes #CpGs Enrichment p-value
Basic model Adjusted for Adjusted for

physical activity neutrophil counts

Adhesion-extravasation-migration 142 1737 0.48 0.30 0.37
Apoptosis signaling 68 1210 0.22 0.34 0.32
Calcium signaling 14 413 0.81 0.72 0.70

Complement cascade 40 483 0.92 0.73 0.96
Cytokine signaling 172 1883 0.070 0.053 0.067

Eicosanoid signaling 39 450 0.58 0.78 0.55
Glucocorticoid/PPAR signaling 21 404 0.0023 0.0053 0.0039

G-Protein coupled receptor signaling 42 1133 0.74 0.49 0.66
Innate pathogen detection 50 515 0.89 0.72 0.88

Leukocyte signaling 121 1429 0.14 0.059 0.090
MAPK signaling 118 2682 0.013 0.0036 0.018

Natural killer cell signaling 31 368 0.54 0.41 0.51
NF-κB signaling 33 654 0.031 0.0028 0.054

Phagocytosis-Ag presentation 39 1058 0.81 0.72 0.66
PI3K/AKT signaling 37 907 0.031 0.23 0.053

ROS/glutathione/cytotoxic granules 22 190 0.58 0.45 0.53
TNF superfamily signaling 38 537 0.78 0.69 0.73

Global inflammation§ 1027 15985 0.0026 0.011 0.0057
NLRP3-IL1B-IL17 axis 11 219 1.00 0.99 1.00

The basic model regressed adult-onset asthma on BMI, residuals of DNA methylation at a single CpG site, and their

multiplicative interaction, upon adjustment for age, sex, education level, study area, pack-years of cigarettes smoked in

life, bench time, and white blood cell composition estimates for B cells, CD4 T cells, CD8 T cells, natural killer cells,

monocytes, and eosinophils. §Total of the 17 inflammation pathways; the number of CpG in this pathway (15985) is

smaller than the sum of the CpGs assigned to 17 pathways because there are CpGs assigned to multiple pathways,

although the 17 pathways are mutually exclusive at gene level. Enrichment p-values are in bold if p < 0.05.

When the EWIS was conducted using BMI change instead of BMI, NLRP3-IL1B-IL17
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axis and global inflammation were enriched (Table 5.3). No enrichment was found after

additional adjustment for physical activity. Global inflammation remained enriched after

adjustment for neutrophil estimates while the NLRP3-IL1B-IL17 axis did not. Tables 5.2

and 5.3 summarize the WKS enrichment test results.

Table 5.3. EWIS of DNA methylation and BMI change on adult-onset asthma: enrichment

test results for 17 inflammation pathways and NLRP3-IL1B-IL17 axis

Pathway #Genes #CpGs Enrichment p-value
Basic model Adjusted for Adjusted for

physical activity neutrophil counts

Adhesion-extravasation-migration 142 1737 0.67 0.60 0.39
Apoptosis signaling 68 1210 0.50 0.37 0.22
Calcium signaling 14 413 0.29 0.34 0.21

Complement cascade 40 483 0.45 0.64 0.34
Cytokine signaling 172 1883 0.26 0.35 0.21

Eicosanoid signaling 39 450 0.48 0.17 0.61
Glucocorticoid/PPAR signaling 21 404 0.063 0.15 0.072

G-Protein coupled receptor signaling 42 1133 0.47 0.88 0.46
Innate pathogen detection 50 515 0.059 0.12 0.13

Leukocyte signaling 121 1429 0.35 0.49 0.34
MAPK signaling 118 2682 0.13 0.33 0.24

Natural killer cell signaling 31 368 0.91 0.75 0.91
NF-κB signaling 33 654 0.70 0.49 0.62

Phagocytosis-Ag presentation 39 1058 0.51 0.89 0.71
PI3K/AKT signaling 37 907 0.98 0.98 0.89

ROS/glutathione/cytotoxic granules 22 190 0.24 0.55 0.14
TNF superfamily signaling 38 537 0.085 0.33 0.065

Global inflammation§ 1027 15985 0.048 0.23 0.028
NLRP3-IL1B-IL17 axis 11 219 0.046 0.13 0.15

The basic model regressed adult-onset asthma on BMI change, residuals of DNA methylation at a single CpG site,

and their multiplicative interaction, upon adjustment for BMI at SAPALDIA2, age, sex, education level, study area,

pack-years of cigarettes smoked in life, bench time, and white blood cell composition estimates for B cells, CD4 T cells,

CD8 T cells, natural killer cells, monocytes, and eosinophils. §Total of the 17 inflammation pathways; the number of

CpG in this pathway (15985) is smaller than the sum of the CpGs assigned to 17 pathways because there are CpGs

assigned to multiple pathways, although the 17 pathways are mutually exclusive at gene level. Enrichment p-values are

in bold if p < 0.05.

Our study is likely underpowered to identify differential methylation markers from

the EWAS approach, considering the large dimension of the methylome data, the rel-

atively small sample size, and the investigation of effect modification instead of main

effects. Acknowledging these issues, we additionally searched for differentially methylated
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regions (DMR) using the R package DMRcate (Peters et al., 2015). Based on the EWIS,

we identified 1131 DMRs that modify the association of BMI with non-atopic asthma

as well as 18 DMRs that interact with BMI change affecting its association with non-

atopic asthma. Figures 5.3 and 5.4 summarize the DMRs. Each circle represents one

DMR, whose x- and y-coordinates depict maximum effect modification by 1 SD increase

in residuals within the region and minimum Benjamini-Hochberg adjusted p-value within

the region, respectively. The 1131 and 18 DMRs were annotated to 1305 and 20 genes,

respectively, and there were two overlapping genes. In an agnostic pathway enrichment

analysis, using Ingenuity Pathway Analysis (IPA), we found PPARα/RXRα (retinoid X

receptor alpha) activation (p = 0.015), ERK (extracellular-regulated kinase)/MAPK sig-

naling (p = 0.038), and glucocorticoid receptor signaling (p = 0.038), among others,

enriched for the 1305 genes annotated to the 1131 DMRs. Figure 5.S5 and Table 5.S2

summarize the IPA pathway analysis results.

5.4 Discussion

We found no single CpG sites of genome-wide significant effect modification, however,

we did find DMRs and pathway enrichments. DNA methylation markers usually act in

concert at neighboring CpG sites (Hansen et al., 2011, Irizarry et al., 2009) and therefore

EWIS alone may fail to identify true differential methylation markers (Li et al., 2015).

Global inflammation, defined as the entirety of the 1027 inflammation-related genes

according to the classification proposed by Loza et al (Loza et al., 2007), was over-

represented in the DNA methylation signals modifying the BMI–adult-onset asthma as-

sociation. The agnostic search for the pathway enrichment of the DMRs also revealed

several relevant pathways.Our study results are consistent with inflammation modify-
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Figure 5.3. DMRs derived from the EWIS of DNA methylation and BMI on adult-onset

asthma

Circle size represents the number of CpG sites in the region.
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Figure 5.4. DMRs derived from the EWIS of DNA methylation and BMI change on

adult-onset asthma

Circle size represents the number of CpG sites in the region.
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ing the effect of BMI on adult-onset non-atopic asthma. Adiposity is believed to induce

chronic systemic inflammation via dysregulated production of pro-inflammatory cytokines

and immune cells infiltrated into adipose tissue (Galic et al., 2010, Weisberg et al., 2003).

Our findings suggest that altered methylation in pro-inflammatory gene networks poten-

tially mediate the link between overweight and non-atopic adult-onset asthma. This is in

line with previous findings in children. Rastogi and her colleagues reported hypomethy-

lation in the promoter of genes involved in innate immunity and non-atopic inflammation

in obese children with asthma (Rastogi et al., 2013).

Among the 17 inflammation pathways curated by Loza and his colleagues (Loza et

al., 2007), glucocorticoid/PPAR signaling showed the strongest enrichment. The agnostic

search for the pathway enrichment in the DMRs also found enrichment of Glucocorticoid

receptor signaling in addition to PPARα/RXRα activation. The glucocorticoid/PPAR

signaling includes the genes coding for the nuclear receptors for glucocorticoids, PPARs,

and associated proteins. PPARs have been associated with asthma and PPAR agonists

are considered as a new asthma treatment (Banno et al., 2018). While we cannot rule out

the possibility that asthma medication led to DNA methylation on the genes involved in

glucocorticoid receptor signaling, it is not likely that this would explain the interaction

of methylation signals in this pathway with BMI or BMI change.

MAPK signaling, NF-κB signaling, and PI3K/AKT signaling, are all involved in signal

transduction downstream to the detection of insults e.g. by TLR (toll-like receptor). The

enrichment signals for PI3K/AKT signaling disappeared when the model was additionally

adjusted for physical activity, suggesting that the effect modification of BMI on adult-

onset asthma might be confounded or mediated by physical activity. The enrichment

of NF-κB signaling and PI3K/AKT signaling disappeared when the model was further

adjusted for neutrophil estimates, suggesting that the effect modification in this pathway
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might be modulated by neutrophil proliferation and hence disguised by the adjustment

for neutrophil estimates. ERK/MAPK signaling was also over-represented in the DMRs

from the agnostic pathway analysis.

Interestingly, NLRP3-IL1B-IL17 axis was enriched in the EWIS using BMI change,

suggesting that BMI change represents a phenotype distinct from BMI. The well-known

limitation of BMI is that it cannot distinguish fat from lean mass. Weight change in late

adulthood is more likely attributable to change in fat than in lean mass (Newman et al.,

2005) and people tend to lose lean mass while aging (Kim et al., 2017, Santanasto et al.,

2017). Therefore, fat composition could be better reflected in BMI change than in BMI.

Our finding that the enrichment of NLRP3-IL1B-IL17 axis disappeared upon adjustment

for neutrophil estimates is consistent with the growing evidence of IL17 playing a role

in recruitment, accumulation, and survival of neutrophils in asthma (Annunziato et al.,

2015, Linden and Dahlen, 2014).

The NLRP3 inflammasome and downstream activity have been associated with both

asthma (Esser et al., 2013) and obesity (Vandanmagsar et al., 2011) in humans. To

the best of our knowledge, however, this study is the first to provide evidence of the

NLRP3-IL1B-IL17 axis as a link between overweight and non-atopic adult-onset asthma

in humans. This study is also the first to provide evidence that inflammation represented

in the DNA methylation profile may play a role in the link between overweight and non-

atopic adult-onset asthma.

Pathway enrichment analyses have often been applied to interpret genome-wide pat-

terns of differential methylation. Widely used tools for pathway enrichment analyses

include GSEA (gene set enrichment analysis) (Subramanian et al., 2005), DAVID (the

database for annotation, visualization and integrated discovery) (Huang da et al., 2009),

and IPA (http://www.ingenuity.com; QIAGEN, Redwood City, CA, USA), which were
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originally developed to analyze differential expression of genes. In order to apply these

tools to epigenetics, differential methylation signals first need to be translated from CpGs

to genes. This can lead to a bias, e.g. that large genes with multiple CpGs are more likely

to be represented. In this study, we applied the WKS method to test pathway enrichment

of the EWIS results. The WKS method works in a similar way as GSEA but the enrich-

ment is quantified by using CpG (and not gene) level statistics. This method also supports

examination of custom-curated pathways, allowing straightforward interpretation.

We were underpowered to identify differential DNA methylation as effect modifiers,

although the problem was partly overcome by applying integrative approaches, i.e. DMR

and pathway enrichment analysis. The fact that DMR analysis resulted in more than

1000 signals while EWIS identified no signals consolidates that multivariate approach

suits better than univariate approach to study epigenetic marks that function in clusters.

We applied the WKS enrichment analyses to the absolute Z-statistics. Therefore, the

direction of the effect modification, meaning whether hypo- or hyper-methylation was as-

sociated with increased effect of BMI, was not taken into consideration. The IPA pathway

analysis results may have been biased by transforming the DMRs into gene-level statis-

tics. Moreover, we annotated CpG sites simply based on the location, regardless of their

functional information i.e. whether they resided in promoter, gene body, or intergenic

region, CpG islands or not, etc. The cross-sectional design of our study, along with the

effect modification being studied without mediation analysis, prevents inference of causal

mediation. However, our findings of the enriched pathways using BMI change cannot

be driven entirely by reverse causality, because BMI change preceded the DNA methyla-

tion measurements. Given the recent Mendelian randomization studies, reporting a causal

effect of BMI on childhood asthma (Granell et al., 2014) and a causal effect of BMI on life-

time asthma (Skaaby et al., 2017), the overweight-asthma association may potentially be
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causal. In this study we observed differential DNA methylation enriched in inflammatory

pathways but did not measure chronic inflammation directly in the study subjects. How-

ever, we confirmed that the study subjects showed a strong positive association between

BMI and hs-CRP at SAPALDIA2. In order to elucidate if overweight-induced inflamma-

tion causes asthma, further studies, including two-step Mendelian randomization studies,

are warranted. Taking transcriptomics and proteomics study of blood, lung, and adipose

tissue with asthma phenotype heterogeneity into consideration will be crucial.

5.5 Conclusion

DNA methylation measured in peripheral blood is consistent with inflammation as a

potential link between BMI and adult-onset asthma, and to the NLRP3-IL1B-IL17 axis

as a potential link between BMI change over 10 years and adult-onset asthma, in non-

atopic non-smokers.
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5.6 Supplementary Material

5.6.1 Supplementary figures

Figure 5.S1. Volcano plot from the EWIS of DNA methylation and BMI on adult-onset

asthma, further adjusted for physical activity

The EWIS fitted logistic regression models of adult-onset asthma on BMI, residuals of DNA methylation at a single

CpG site, and their multiplicative interaction, upon adjustment for age, sex, education level, study area, pack-years of

cigarettes smoked in life, physical activity, bench time, and white blood cell composition estimates for B cells, CD4 T

cells, CD8 T cells, natural killer cells, monocytes, and eosinophils. The CpGs assigned to the pathway enriched with p

< 0.05 are highlighted in colors.
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Figure 5.S2. Volcano plot from the EWIS of DNA methylation and BMI on adult-onset

asthma, further adjusted for neutrophil estimates

The EWIS fitted logistic regression models of adult-onset asthma on BMI, residuals of DNA methylation at a single

CpG site, and their multiplicative interaction, upon adjustment for age, sex, education level, study area, pack-years of

cigarettes smoked in life, bench time, and white blood cell composition estimates for B cells, CD4 T cells, CD8 T cells,

natural killer cells, monocytes, eosinophils, and neutrophils. The CpGs assigned to the pathway enriched with p < 0.05

are highlighted in colors.
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Figure 5.S3. Volcano plot from the EWIS of DNA methylation and BMI change on

adult-onset asthma, further adjusted for physical activity

The EWIS fitted logistic regression models of adult-onset asthma on BMI change, residuals of DNA methylation at a

single CpG site, and their multiplicative interaction, upon adjustment for age, sex, education level, study area, pack-

years of cigarettes smoked in life, physical activity, bench time, and white blood cell composition estimates for B cells,

CD4 T cells, CD8 T cells, natural killer cells, monocytes, and eosinophils.
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Figure 5.S4. Volcano plot from the EWIS of DNA methylation and BMI change on

adult-onset asthma, further adjusted for neutrophil estimates

The EWIS fitted logistic regression models of adult-onset asthma on BMI change, residuals of DNA methylation at a

single CpG site, and their multiplicative interaction, upon adjustment for age, sex, education level, study area, pack-

years of cigarettes smoked in life, bench time, and white blood cell composition estimates for B cells, CD4 T cells, CD8

T cells, natural killer cells, monocytes, eosinophils, and neutrophils. The CpGs assigned to the pathway enriched with

p < 0.05 are highlighted in colors.
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Figure 5.S5. Agnostic pathway enrichment results of the DMRs identified from the EWIS

of DNA methylation and BMI on adult-onset asthma
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5.6.2 Supplementary tables

Table 5.S1. Genes curated to 17 inflammatory pathways and NLRP3-IL1B-IL17 axis

Pathway #Genes Genes

Adhesion-

extravasation-

migration

142 PTPRU, VCAM1, CD58, CD2, MUC1, DARC, CD48, F11R, XCL1, SELP, SELL, SELE, RASSF5,

CD34, MENA, ITGB1, CXCL12, VCL, ADAM8, ARHGAP1, CTNND1, SIPA1, CTTN, FUT4, MMP7,

MMP10, MMP1, MMP12, BLR1, THY1, JAM3, CD9, ITGB7, ITGA5, MMP19, MYL6, SELPLG,

PXN, MMP14, SPN, ITGAL, ITGAM, ITGAX, ITGAD, MLCK, MMP2, CCL22, CX3CL1, CCL17,

CDH5, CKLF, CRK, ITGAE, CXCL16, MYH10, CCL2, CCL7, CCL11, CCL8, CCL13, CCL1, CCL5,

CCL16, CCL15, CCL23, CCL18, CCL4, CCR7, ITGA2B, ITGB3, ITGA3, ICAM2, PECAM1, ITGB4,

CD226, ICAM1, ICAM5, ICAM3, CD97, CEACAM5, CEACAM6, CEACAM3, CEACAM1, CEA-

CAM8, PLAUR, VASP, CD33, ROCK2, ITGA6, ITGA4, ITGAV, ALS2, CCL20, SIGLEC1, MMP9,

JAM2, ITGB2, MIF, MYH9, CCR4, CX3CR1, CCR8, CCBP2, CXCR6, XCR1, CCR1, CCR3, CCR2,

CCR5, CCRL2, RHOA, ALCAM, CD47, CD96, RHOH, CXCL1, PPBP, CXCL5, CXCL3, CXCL2,

CXCL9, CXCL10, CXCL11, CXCL13, FYB, CCL28, ITGA1, ITGA2, CXCL14, LECT2, HMMR,

NT5E, VIL2, CCR6, CCL26, CCL24, PTP-PEST, CD36, CCL27, CCL19, CCL21, CD99

Apoptosis signaling 68 DFFB, DFFA, CASP9, MCL1, DAP3, LMNA, FASLG, CAPN2, PARP1, CDC2, FAS, CASP7, GAS2,

BAD, CAPN1, FADD, BIRC3, BIRC2, CASP12, BCL2L14, CRADD, APAF1, DIABLO, ACIN1,

BCL2L2, RIPK3, BCL2L10, BCL2A1, TP53, ROCK1, BCL2, CASP14, CAPNS1, BBC3, BAX,

BCL2L12, HTRA2, BCL2L11, TANK, CFLAR, CASP10, CASP8, CAPN10, BCL2L1, BCL2L13,

BID, A4GALT, BIK, FAIM, TNFSF10, PTPN13, CASP6, CASP3, DAP, DAXX, BAK1, TN-

FRSF21, CASP8AP2, CYCS, CASP2, TNFRSF10B, TNFRSF10C, TNFRSF10D, TNFRSF10A,

RIPK2, DAPK1, SPTAN1, ENDOG

Calcium signaling 14 CAMK1D, PPP3CB, NFATC4, AKAP5, NFATC3, NFAT5, NFATC1, PPP3R1, NFATC2, CABIN1,

PPP3CA, CAMK4, PPP3CC, PPP3R2

Complement cascade 40 MASP2, C1QA, C1QC, C1QB, C8A, C8B, SERPINC1, CFH, C4BPB, C4BPA, CD55, CR2, CR1,

CD46, MBL2, CD59, SERPING1, C1S, C1R, C3AR1, SERPINA1, SERPINA5, SERPINF2, CFD, C3,

CPAMD8, C5AR1, SERPIND1, MASP1, CFI, C9, C7, C6, C2, CFB, C4B, SERPINE1, C5, C8G, PFC

Cytokine signaling 172 IL22RA1, TXLNA, CSF3R, JAK1, IL23R, IL12RB2, CSF1, PIAS3, S100A9, S100A12, S100A8, ILF2,

IL6R, CRP, IL10, IL19, IL20, IL24, IRF6, TGFB2, IL15RA, IL2RA, GATA3, BMPR1A, IRF7, CASP1,

IL18, IL10RA, STAT2, STAT6, IFNG, IL26, IL22, SOCS2, IL31, IL17D, HMGB1, IL25, ISGF3G,

BMP4, SOCS4, TGFB3, PIAS1, IL16, IL32, SOCS1, IL4R, IL21R, IRF8, IL17C, CSF3, STAT5B,

STAT5A, STAT3, TBX21, ACE, SOCS3, TGIF, PTPN2, PIAS2, SOCS6, PIAS4, EBI3, C19ORF10,

TYK2, IL27RA, JAK3, IL12RB1, IL28B, IL28A, IL29, TGFB1, IRF3, IL11, ADAM17, SOCS5, TGFA,

IL1R2, IL1R1, IL1RL2, IL1RL1, IL18R1, IL18RAP, IL1A, IL1B, IL1F7, IL1F9, IL1F6, IL1F8, IL1F5,

IL1F10, IL1RN, NMI, STAT1, STAT4, BMPR2, IL8RB, IL8RA, BMP2, TGIF2, CEBPB, PTPN1, IF-

NAR2, IL10RB, IFNAR1, IFNGR2, IL17RA, LIF, OSM, CSF2RB, IL2RB, PDGFB, IL5RA, TGFBR2,

CISH, IL17RB, IL12A, THPO, IL1RAP, PDGFRA, IL8, BMPR1B, IL2, IL21, IL15, IRF2, IL7R, LIFR,

OSMR, IL31RA, IL6ST, IL3, CSF2, IRF1, IL5, IL13, IL4, IL9, IL17B, CSF1R, PDGFRB, IL12B, IRF4,

AGER, VEGF, IL17A, IL17F, IFNGR1, IL6, IRF5, IL7, JAK2, C9ORF26, IFNB1, IFNW1, IFNA21,

IFNA4, IFNA10, IFNA5, IFNA6, IFNA2, IFNA8, IFNA1, IFNK, NFIL3, TGFBR1, ENG, IL3RA,

CRSP2, IL2RG, IL13RA2, IL13RA1
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Table 5.S1. (Cont.) Genes curated to 17 inflammatory pathways and NLRP3-IL1B-IL17

axis

Pathway #Genes Genes

Eicosanoid signaling 39 PLA2G2A, PLA2G2D, PTGER3, PTGFR, MGST3, PTGS2, AKR1C3, ALOX5, GPR44, PTGES3,

LTA4H, ALOX5AP, CYSLTR2, PTGDR, PTGER2, DPEP3, DPEP2, DPEP1, ALOX15, ALOX12,

ALOX15B, ALOX12B, TBXA2R, PTGER1, PTGIR, FPRL1, FPRL2, PTGIS, GGT1, PGDS, MGST2,

PTGER4, LTC4S, TBXAS1, PTGS1, PTGES2, PTGES, PTGDS, CYSLTR1

Glucocorticoid/

PPAR signaling

21 GMEB1, FAF1, FKBP4, NR4A1, PPARBP, NCOA1, NR4A2, SDPR, HSPD1, GMEB2, NRIP1,

PPARA, KPNA1, PPARGC1A , NR2F1, NR3C1, FOXO3A, SGK, CITED2, GLCCI1, NCOA2

G-Protein coupled re-

ceptor signaling

42 PDE4B, PRKACB, ADORA3, RGS1, ADORA1, CREM, ADRA2A, PDE3B, PLCB3, ADRBK1,

PDE2A, PDE3A, ADCY6, PDE1B, ADCY4, PLCB2, CREBBP, ADORA2B, PRKAR1A, PDE4A,

PRKACA, PDE4C, PDE1A, CREB1, PLCB1, PLCB4, ADORA2A, HRH1, PRKAR2A, ADCY5,

GRK4, ADRA2C, ADCY2, PDE4D, ADRB2, HRH2, SYNGAP1, PDE1C, ADCY1, PRKAR2B,

PTK2B, PRKACG

Innate pathogen de-

tection

50 PGLYRP3, PGLYRP4, CIAS1, NALP6, TOLLIP, CASP5, COP1, ICEBERG, TIRAP, IRAK4, IRAK3,

HSP90B1, OAS1, OAS2, PYCARD, CARD15, NALP1, SARM1, TICAM1, SITPEC, PGLYRP2, PG-

LYRP1, CARD8, NALP12, NALP2, CARD12, IFIH1, PRKRA, KIAA1271, LBP, IRAK2, MYD88,

TLR9, TLR10, TLR1, TLR6, TLR2, TLR3, TLR5, CARD6, CD180, TICAM2, CD14, CARD4, LY96,

DDX58, TLR4, TLR7, TLR8, IRAK1

Leukocyte signaling 121 CD52, PTAFR, LCK, CD53, PTPN22, IGSF3, IGSF2, VTCN1, FCGR1C, FCER1A, SLAMF9,

SLAMF6, SLAMF1, SLAMF7, FCER1G, FCGR2A, FCGR2B, SH2D1B, CD3Z, PTPRC, PTPN7,

PIGR, TCF8, BLNK, PIK3AP1, CD44, RAG1, PTPRJ, MS4A2, MS4A1, CD5, SCGB1A1, SLC3A2,

TCIRG1, CD3E, CBL, CD4, LRRC23, KITLG, FLT3, EDNRB, IGHA1, CSK, LAT, SLC7A5, SCARF1,

CD68, CD79B, GRB2, SECTM1, VAV1, FCER2, CD22, CD79A, CD37, FLT3LG, SIGLEC10,

SIGLEC5, LILRB3, LILRA6, LILRB2, LILRA3, LILRA5, LILRA4, LILRA2, LILRA1, LILRB4,

LILRP2, FCAR, TACR1, CD8A, CD8B1, MAL, ZAP70, MARCO, DPP4, CD28, CTLA4, ICOS,

SIRPB1, SIRPG, PTPNS1, CST7, SLA2, CD40, ICOSLG, SCARF2, VPREB1, IGLL1, GRAP2,

MST1R, CD80, CD86, SH3BP2, CD38, TXK, TEC, DAPP1, EDNRA, TCF7, ITK, LCP2, SCGB3A1,

TREM2, TREM1, TFEB, FYN, TRGV9, PILRB, PBEF1, MSR1, PAG1, PDCD1LG2, PAX5, SHB,

SEMA4D, SYK, ABL1, FOXP3, BTK, CD40LG

MAPK signaling 118 PRKCZ, RAP1GAP, RPS6KA1, MAP3K6, HDAC1, MKNK1, JUN, RAP1A, NRAS, SHC1, MEF2D,

IFI16, PLA2G4A, MAPKAPK2, ATF3, DUSP10, PRKCQ, MAPK8, HRAS, INS, MADD, RPS6KA4,

FOSL1, PPP1CA, PAK1, PPP2R1B, HSPB2, ETS1, KRAS, RAPGEF3, ATF1, DDIT3, DUSP6,

PPP1CC, MAPKAPK5, SOS2, PPM1A, MAX, FOS, RPS6KA5, RASGRP1, TLN2, MAP2K1, MEF2A,

EEF2K, PRKCB1, MAPK3, BCAR1, MAP2K4, MAP2K3, KSR1, PRKCA, MAP2K6, MAP2K2,

JUND, MEF2B, MAP4K1, PPP2R1A, YWHAQ, MYCN, PPP1CB, SOS1, PRKCE, DUSP2, ATF2,

PPP1R7, SRC, PLCG1, YWHAB, ETS2, HMGN1, MAPK1, YWHAH, RAC2, MAP3K7IP1, ATF4,

EP300, MAPK12, MAPK11, PPARG, RAF1, KCNH8, MAPKAPK3, PRKCD, PPP2R3A, EGF,

MAP3K1, RASA1, MEF2C, HINT1, PPP2CA, PPP2R2B, DUSP1, MAPK9, MAPK14, MAPK13,

MAP3K7, HDAC2, PTPRK, MAP3K5, MAP3K7IP2, ESR1, RAC1, EGFR, HSPB1, YWHAG, BRAF,

DUSP4, PPP2CB, LYN, YWHAZ, MYC, PTK2, TLN1, RAPGEF1, ARAF, ELK1, DUSP9
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Table 5.S1. (Cont.) Genes curated to 17 inflammatory pathways and NLRP3-IL1B-IL17

axis

Pathway #Genes Genes

Natural killer cell sig-

naling

31 CD160, CD244, FCGR3A, NCAM1, B3GAT1, PTPN6, KLRB1, KLRD1, KLRK1, KLRC4, KLRC2,

KLRC1, PTPN11, CD300A, TYROBP, SIGLEC7, LAIR1, LILRB1, KIR3DL3, KIR2DS4, KIR3DL2,

NCR1, HLA-G, HLA-E, MICA, MICB, NCR3, NCR2, RAET1E , ULBP3, SH2D1A

NF-κB signaling 33 BCL10, CHUK, BTRC, NFKB2, RELA, NFRKB, TBK1, UBE2N, NFKBIA, MEFV, CSNK2A2,

MAP3K14, MAP3K3, CARD14, MALT1, MAP2K7, NFKBIB, BCL3, RELB, EIF2AK2, REL,

CSNK2A1, UBE2V1, CARD10, BCL6, NFKB1, RIPK1, CSNK2B, NFKBIE, CARD11, IKBKB,

CARD9, IKBKG

Phagocytosis-Ag pre-

sentation

39 CTSS, CD1D, CD1A, CD1C, CD1B, CD1E, PSMA1, LAG3, RFX4, PSMB5, PSME1, PSME2, CIITA,

CD209, RFX1, IFI30, RFXANK, LILRB5, CD207, XBP1, CD74, PRSS16, HLA-A, HLA-C, HLA-B,

HLA-DRA, HLA-DQA1, HLA-DQA2, HLA-DQB2, TAP2, TAP1, PSMB9, HLA-DMB, HLA-DMA,

HLA-DOA, HLA-DPA1, HLA-DPB1, TAPBP, NFX1

PI3K/AKT signaling 37 PIK3CD, FRAP1, PIK3R3, THEM4, AKT3, MAP3K8, PTEN, ILK, RPS6KB2, CCND1, INPPL1,

CDKN1B, MDM2, FOXO1A, HSP90AA1, AKT1, TSC2, PDPK1, PIK3R5, MYH4, RPS6KB1, CDC37,

PIK3R2, AKT2, LIMS1, INPP5D, CTNNB1, PIK3CB, PIK3CA, EIF4E, GAB1, PIK3R1, CDKN1A,

HSP90AB1, NOS3, RHEB, TSC1

ROS/glutathione/ cy-

totoxic granules

22 PRDX1, NCF2, PRF1, CAT, PRG2, CMA1, GZMH, GZMB, GPX2, ANPEP, NOS2A, GZMM, PRTN3,

ELA2, PRDX2, BPI, SOD1, GZMA, GPX3, SOD2, PRDX4, CYBB

TNF superfamily sig-

naling

38 TNFRSF4, TNFRSF14, TNFRSF25, TNFRSF9, TNFRSF1B, TNFSF18, TNFSF4, TRAF5, TRAF6,

TNFRSF1A, LTBR, TNFRSF7, TNFRSF19, TNFSF11, TNFSF13B, TRAF3, TNFRSF12A, TN-

FRSF17, TRADD, TNFSF12, TNFRSF13B, TNFRSF11A, TNFSF9, TNFSF7, TNFSF14, TNFAIP6,

TNFRSF13C, PTX3, TNIP1, TTRAP, LTA, TNF, TNFAIP3, TNFRSF11B, TNFSF15, TNFSF8,

TRAF1, TRAF2

NLRP3-IL1B-IL17

axis

11 NLRP3, PYCARD, CASP1, IL1B, IL1R1, RORC, CCR6, ATXN1, THY1, CD44, IL17A
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Table 5.S2. Agnostic pathway enrichment results of the DMRs identified from the EWIS

of DNA methylation and BMI on adult-onset asthma

Pathway P-value Ratioa Genesb

Protein Ubiquitination Pathway 0.000076 0.11 USP35, PSMA7, UBR2, HSPA1A/HSPA1B, CDC23, UBE2W, SKP1, UBE2O,

HSPA1L, HSPA4, USP7, UBE2B, STUB1, HSPE1, UCHL5, DNAJC30, BIRC3,

UBE2Q1, UBE2M, USP19, DNAJC1, HSPD1, UBE3A, UBE2G2, CBL, HSCB,

PSMA5, DNAJC18, PSMD1, HSPB1

ATM Signaling 0.00019 0.15 MAP2K4, PPP2R2A, TRIM28, MAPK9, TDP1, KAT5, PPM1D, USP7, PPP2R1A,

BRAT1, RAD17, H2AFX, SMC1B, PPP2R5C, CHEK2

Lysine Degradation V 0.0014 0.60 AASDHPPT, PIPOX, ALDH7A1

Huntington’s Disease Signaling 0.0018 0.10 MAP2K4, SGK1, PACSIN1, HSPA1A/HSPA1B, HDAC10, HSPA1L, PRKCZ,

HSPA4, CDK5, NTRK1, HDAC7, NCOR1, GNB1L, BET1L, NAPB, MAP2K7,

HDAC1, APAF1, MAPK9, HIP1, ATP5F1C, CAPNS1, TAF4, IRS1, NCOR2

Selenocysteine Biosynthesis II (Ar-

chaea and Eukaryotes)

0.0026 0.50 SEPHS1, SARS2, SEPSECS

Aldosterone Signaling in Epithelial

Cells

0.0035 0.11 SGK1, HSPA1A/HSPA1B, PLCG1, DNAJC1, HSPD1, SLC9A1, PRKCZ, HSPA1L,

HSPA4, PIP5K1A, DUSP1, HSCB, IRS1, HSPE1, DNAJC18, DNAJC30, PI4KA,

HSPB1

Oleate Biosynthesis II (Animals) 0.0038 0.31 SCD, UFSP2, FADS2, FADS1

Mitochondrial Dysfunction 0.0043 0.11 MAP2K4, NDUFV1, COX4I2, NDUFS7, ACO2, MAPK9, ATP5MG, NDUFB1,

NDUFA13, UQCRB, VPS9D1, ATP5F1C, APH1A, NDUFA6, NDUFS6, ATP5MF,

GPX4, TXNRD2

HIPPO signaling 0.0062 0.13 YWHAQ, PPP2R1A, YWHAH, PPP2R2A, PPP1R7, SMAD3, NF2, PPP1R14A,

PPP2R5C, SKP1, PRKCZ

Estrogen Receptor Signaling 0.0079 0.11 TAF9, MED23, GTF2F2, TAF5L, ERCC2, GTF2A1, TAF4, MED15, ERCC3,

MED21, SPEN, TAF3, NCOR1, NCOR2

Thiosulfate Disproportionation III

(Rhodanese)

0.0081 0.67 MPST, TST

Cell Cycle: G1/S Checkpoint Reg-

ulation

0.0085 0.13 MYC, E2F4, MAX, TGFB1, SMAD3, HDAC7, HDAC1, HDAC10, SKP1

Cell Cycle Control of Chromosomal

Replication

0.0089 0.14 MCM5, CDK13, CDK5, CDK11B, ORC6, DNA2, POLA2, CHEK2

IL-1 Signaling 0.0093 0.12 ECSIT, MAP2K4, ADCY9, MAP2K7, TOLLIP, GNAS, GNA12, MAP3K7, MAPK9,

GNB1L, ADCY7

Phosphatidylglycerol Biosynthesis

II (Non-plastidic)

0.011 0.19 AGPAT5, AGPAT1, MBOAT1, PGS1, MBOAT7

Myc Mediated Apoptosis Signaling 0.011 0.13 FADD, MAP2K4, MYC, YWHAQ, YWHAH, IRS1, APAF1, MAPK9, PRKCZ

Adipogenesis pathway 0.012 0.10 SAP18, LEP, SMAD3, HDAC1, HDAC10, ERCC2, CDK5, TGFB1, ERCC3, HDAC7,

CLOCK, FGFRL1, TBL1XR1, FZD7

D-myo-inositol (1,4,5)-

Trisphosphate Biosynthesis

0.013 0.19 PIP5K1A, PI4K2A, PLCG1, PI4K2B, PI4KA

Oxidative Phosphorylation 0.013 0.11 VPS9D1, ATP5F1C, NDUFV1, COX4I2, NDUFS7, NDUFA6, NDUFS6, ATP5MF,

ATP5MG, NDUFB1, NDUFA13, UQCRB

aRatio of the number of genes in the DMR to the number of genes in the pathway. bGenes overlapping between the

DMR and the pathway.
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Table 5.S2. (Cont.) Agnostic pathway enrichment results of the DMRs identified from

the EWAS of effect modification of BMI on adult-onset asthma

Pathway P-value Ratioa Genesb

PPARα/RXRαActivation 0.015 0.094 MAP2K4, MAP2K7, MED23, GNAS, SMAD3, PLCG1, AIP, ADCY9, TGFB1, IRS1,

MAP3K7, CLOCK, NCOR1, SLC27A1, NCOR2, ADCY7, ACVR2A

CDK5 Signaling 0.015 0.11 ADCY9, PPP2R1A, GNAS, CDK5, PPP2R2A, PPP1R7, EGR1, MAPK9,

PPP1R14A, PPP2R5C, ADCY7

Spermine and Spermidine Degrada-

tion I

0.016 0.50 PAOX, SAT2

Assembly of RNA Polymerase II

Complex

0.016 0.14 TAF9, TAF4, ERCC3, TAF5L, TAF3, GTF2A1, ERCC2

Cell Cycle: G2/M DNA Damage

Checkpoint Regulation

0.016 0.14 YWHAQ, YWHAH, BORA, SKP1, PRKCZ, CHEK2, PPM1D

tRNA Charging 0.016 0.15 CARS2, HARS, EARS2, HARS2, SARS2, QARS

HGF Signaling 0.019 0.10 MAP2K4, ELF2, PXN, MAP2K7, IRS1, MAP3K7, MAPK9, PLCG1, MAP3K8,

STAT3, ELK3, PRKCZ

Pyridoxal 5’-phosphate Salvage

Pathway

0.021 0.12 MAP2K4, PNPO, CDK5, SGK1, MAPK9, MAP3K8, HIPK1, ACVR2A

Mitotic Roles of Polo-Like Kinase 0.023 0.12 PLK4, PPP2R1A, PPP2R2A, TGFB1, FBXO5, CDC23, PPP2R5C, CHEK2

ERK5 Signaling 0.023 0.12 MYC, YWHAQ, YWHAH, SGK1, GNA12, NTRK1, MAP3K8, PRKCZ

Lysine Degradation II 0.025 0.40 AASDHPPT, ALDH7A1

Unfolded protein response 0.026 0.13 HSPA4, MAP2K7, SREBF2, HSPA1A/HSPA1B, CANX, NFE2L2, HSPA1L

Cyclins and Cell Cycle Regulation 0.028 0.11 PPP2R1A, E2F4, PPP2R2A, TGFB1, HDAC7, HDAC1, HDAC10, PPP2R5C, SKP1

NRF2-mediated Oxidative Stress

Response

0.028 0.088 MAP2K4, MAP2K7, MAPK9, DNAJC1, MAFK, PRKCZ, TXNRD1, BACH1, FTL,

KEAP1, IRS1, STIP1, MAP3K7, DNAJC18, GSTO2, FKBP5, NFE2L2

Production of Nitric Oxide and

Reactive Oxygen Species in

Macrophages

0.030 0.088 MAP2K4, MAP2K7, APOB, PPP2R2A, MAPK9, PLCG1, PPP1R14A, SPI1,

PRKCZ, PON1, RHOV, PPP2R1A, PPP1R7, IRS1, MAP3K7, PPP2R5C, MAP3K8

CXCR4 Signaling 0.030 0.091 MAP2K4, PXN, GNAS, MYL2, GNA12, EGR1, MAPK9, PRKCZ, ADCY9, ELMO3,

RHOV, IRS1, GNB1L, ELMO1, ADCY7

Molecular Mechanisms of Cancer 0.030 0.076 MAP2K4, SMAD3, CTNNA1, PRKCZ, MYC, SYNGAP1, CDK5, TGFB1, MAP3K7,

BIRC3, CHEK2, CDK13, E2F4, GNAS, GNA12, BMP8B, APAF1, MAPK9,

ARHGEF17, FADD, ADCY9, RHOV, CBL, MAX, CDK11B, APH1A, IRS1, ADCY7,

WNT1, FZD7

Role of CHK Proteins in Cell Cycle

Checkpoint Control

0.030 0.12 PPP2R1A, E2F4, PPP2R2A, RAD17, PPP2R5C, RFC5, CHEK2

Salvage Pathways of Pyrimidine Ri-

bonucleotides

0.032 0.10 MAP2K4, CDK5, SGK1, MAPK9, AK4, UCK1, CMPK1, MAP3K8, HIPK1,

ACVR2A

STAT3 Pathway 0.032 0.10 MAP2K4, MYC, SOCS1, TGFB1, NTRK1, MAPK9, FGFRL1, IL27RA, STAT3,

NDUFA13

Telomerase Signaling 0.033 0.099 MYC, ELF2, PPP2R1A, PPP2R2A, IRS1, HDAC7, HDAC1, TERT, HDAC10,

PPP2R5C, ELK3

CDP-diacylglycerol Biosynthesis I 0.035 0.17 AGPAT5, AGPAT1, MBOAT1, MBOAT7

aRatio of the number of genes in the DMR to the number of genes in the pathway. bGenes overlapping between the

DMR and the pathway.
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Table 5.S2. (Cont.) Agnostic pathway enrichment results of the DMRs identified from

the EWAS of effect modification of BMI on adult-onset asthma

Pathway P-value Ratioa Genesb

ERK/MAPK Signaling 0.037 0.085 PXN, YWHAH, PPP2R2A, SRF, PLCG1, PPP1R14A, STAT3, YWHAQ, MYC,

PPP2R1A, ELF2, DUSP1, PPP1R7, IRS1, PPP2R5C, ELK3, HSPB1

Glucocorticoid Receptor Signaling 0.038 0.077 CD247, MAP2K4, YWHAH, GTF2F2, SGK1, SMAD3, HSPA1A/HSPA1B, GTF2A1,

HSPA1L, HSPA4, TGFB1, MAP3K7, TAF3, NCOR1, FKBP5, TAF9, MAP2K7,

TAF5L, MAPK9, STAT3, ERCC2, TAF4, DUSP1, IRS1, ERCC3, NCOR2

TGF-αSignaling 0.041 0.10 MAP2K4, TGFB1, RNF111, SMAD3, HDAC1, SKI, MAP3K7, MAPK9, ACVR2A

Role of JAK family kinases in IL-6-

type Cytokine Signaling

0.041 0.16 MAP2K4, SOCS1, MAPK9, STAT3

Induction of Apoptosis by HIV1 0.042 0.11 FADD, MAP2K4, MAP2K7, APAF1, MAPK9, SLC25A3, BIRC3

Breast Cancer Regulation by Stath-

min1

0.046 0.083 E2F4, GNAS, CAMK4, PPP2R2A, PPP1R14A, ARHGEF17, TUBB, PRKCZ,

ADCY9, PPP2R1A, PPP1R7, IRS1, UHMK1, TUBA1C, PPP2R5C, GNB1L,

ADCY7

RAR Activation 0.046 0.084 MAP2K4, SMAD3, MAPK9, ERCC2, PRKCZ, PTEN, ADCY9, TAF4, TGFB1,

DUSP1, ERCC3, NCOR1, NCOR2, CSNK2B, CRABP2, ADCY7

Glycolysis I 0.047 0.15 ENO1, PGAM1, PKM, ALDOA

PDGF Signaling 0.049 0.10 MAP2K4, MYC, PDGFA, IRS1, SPHK2, SRF, PLCG1, CSNK2B, STAT3

Thioredoxin Pathway 0.049 0.29 TXNRD2, TXNRD1

aRatio of the number of genes in the DMR to the number of genes in the pathway. bGenes overlapping between the

DMR and the pathway.

Table 5.S3. Sex difference in BMI effect on adult-onset asthma

#Cases #Controls Coefficient for Coefficient for
BMI [95% CI] BMI:female [95% CI]

All subjectsa 61 146 0.44 [0.09, 0.79] -

Stratification analysisb Female 43 82 0.39 [−0.05, 0.83] -
Male 18 64 0.51 [−0.13, 1.15] -

Interaction analysisc 61 146 0.70 [0.06, 1.35] −0.37 [−1.13, 0.38]

All subjects are non-smoking for at least 10 years and non-atopic. aLogistic regression of adult-onset asthma on BMI

adjusted for sex, age, education level, study area, and pack-years of cigarettes smoked in life. bLogistic regression of

adult-onset asthma on BMI adjusted for age, education level, study area, and pack-years of cigarettes smoked in life,

stratified by sex. cLogistic regression of adult-onset asthma on BMI, sex, and the interaction between BMI and sex,

after adjustment for age, education level, study area, and pack-years of cigarettes smoked in life.
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6. Article III

Perturbation of metabolic pathways

mediates the association of air

pollutants with asthma and
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Abstract

Background: Epidemiologic evidence indicates common risk factors, including air pol-

lution exposure, for respiratory and cardiovascular diseases, suggesting the involvement

of common altered molecular pathways.

Objectives: The goal was to find intermediate metabolites or metabolic pathways that

could be associated with both air pollutants and health outcomes (“meeting-in-the-middle”),

thus shedding light on mechanisms and reinforcing causality.

Methods: We applied a statistical approach named “meet-in-the-middle” to untargeted

metabolomics in two independent case-control studies nested in cohorts on adult-onset

asthma (AOA) and cardio-cerebrovascular diseases (CCVD). We compared the results to

identify both common and disease-specific altered metabolic pathways.

Results: A novel finding was a strong association of AOA with ultrafine particles (UFP;

odds ratio 1.80 [1.26, 2.55] per increase by 5,000 particles/cm3). Further, we have iden-

tified several metabolic pathways that potentially mediate the effect of air pollution on

health outcomes. Among those, perturbation of Linoleate metabolism pathway was asso-

ciated with air pollution exposure, AOA and CCVD.

Conclusions: Our results suggest common pathway perturbations may occur as a con-

sequence of chronic exposure to air pollution leading to increased risk for both AOA and

CCVD.
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6.1 Introduction

Asthmatics often suffer from comorbidities including cardiovascular diseases. Comorbidity

influences the disease prognosis and control. Refractory asthma is more likely to manifest

with cardiovascular comorbidity than controlled asthma (Hekking et al., 2017). Asthma

and cardiovascular disease share common risk factors such as smoking, obesity, aging

and air pollution exposure, consistent with common molecular pathways altered in the

etiology of diseases.

Short-term effects of air pollution exposure on asthma exacerbation have long been

established in adults and in children (Peel et al., 2005; Schwartz et al., 1993; Sunyer et al.,

1997). The role of air pollution in asthma onset is less conclusive, particularly in adults

(Anderson et al., 2013; Jacquemin et al., 2012). Only a few studies used individually

assigned exposure estimates to study the effects of ambient air pollution on adult-onset

asthma. The largest study sample was based on over 600,000 subjects, including 27,000

asthmatics, and demonstrated an association of PM10 exposure – derived from a pan-

European land use regression model – with asthma prevalence (Cai et al., 2017). The

European Study of Cohorts for Air Pollution Effects (ESCAPE) reported a positive but

not statistically significant association with asthma incidence in adults for all air pollution

metrics (NO2, NO, PM10, PM2.5, traffic load; traffic intensity) except PMcoarse (Jacquemin

et al., 2015). In the Swiss SAPALDIA cohort, long term improvement in air pollution

levels was associated with an attenuated age-related lung function decline (Downs et

al., 2007), with a decreased prevalence of respiratory symptoms including wheezing and

breathlessness (Schindler et al., 2009), and with a decreased onset of asthma in adults

(Kunzli et al., 2009).

In addition, a growing number of epidemiological studies showed that air pollution

is associated with coronary artery disease (McGuinn et al., 2016; Wolf et al., 2015),
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cardiovascular diseases (Brook et al., 2010; Franklin et al., 2015), and cerebrovascular

diseases (Stafoggia et al., 2014) including ischemic stroke (Chung et al., 2017; Cox 2017).

A recent meta-analysis within ESCAPE showed that increases in PM2.5 and PM10 were

associated with risks of fatal and total coronary events, respectively (Cesaroni et al.,

2014), and increased risk for cerebrovascular diseases was reported for higher exposure to

PM2.5 and NO2 (Stafoggia et al., 2014).

Ultrafine particles (UFP) exposure has been less studied than exposure to larger par-

ticles, and no regulatory agencies have established guidelines for UFP so far. Compared

to larger particulate matter, UFP have distinctive characteristics that may lead to higher

toxicity: their extremely small size allows them to reach deeper into the tissues and

evade clearance, and higher surface-to-mass ratio facilitates adhesion of larger amounts of

hazardous materials. Whether this indeed translates into a higher risk of respiratory or

cardiovascular diseases in humans remains to be ascertained (Herbert and Kumar 2017).

The biological mechanisms explaining the effects of air pollution on asthma and its

phenotypes and cardio- and cerebrovascular disease (CCVD) are still poorly understood.

The best studied putative biological mechanism is oxidative stress caused by air pollutants,

followed by pulmonary and systemic inflammation (Guarnieri and Balmes 2014; Herbert

and Kumar 2017; Newby et al., 2015; Uzoigwe et al., 2013). Previous studies investigating

the association between long-term exposure to air pollution and various inflammatory

blood biomarkers reported inconsistent results, concerning specific cytokines and pro- or

anti-inflammatory effects (Chuang et al., 2011; Fiorito et al., 2017; Mostafavi et al., 2015).

Large-scale profiling of small molecules in biological samples has become available re-

cently, opening the door to the agnostic interrogation of disease processes at the molecular

level in epidemiological settings. The metabolome reflects endogenous processes as well

as the influences from environment and behaviors, and therefore metabolomics provides
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a unique opportunity to link genome, exposome, and disease. Metabolomics has been in-

creasingly applied to investigate asthma and major adverse cardiovascular events (Kelly

et al., 2017; Kordalewska and Markuszewski 2015; Shah et al., 2012; Wurtz et al., 2015).

However, few studies conducted an untargeted search for blood biomarkers of air pollution

exposure (Vlaanderen et al., 2017) or asthma in adults, and none investigated the link

between CCVD, asthma and air pollution.

This study was conducted in the framework of EXPOsOMICS, an EU-funded project

to investigate the air- and water-borne exposome (Vineis et al., 2016). One of the re-

search questions EXPOsOMICS addresses is the applicability of the “meet-in-the-middle

(MITM)” concept, i.e. intermediate biomarkers as evidence of causality (Vineis et al.,

2013). We have applied the MITM approach within two independent case-control studies

nested in cohorts: one on adult-onset asthma (AOA) within the SAPALDIA cohort, the

other on CCVD within EPIC Italy cohort, and we compared the results to identify both

common and disease-specific altered metabolic pathways.

6.2 Methods

6.2.1 Study population

This study consisted of two independent case-control studies in two different cohorts. All

data were collected and analyzed independently in each cohort and the results were com-

pared to identify metabolites or metabolic pathways mediating the effect of air pollution

exposure to AOA and CCVD.
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Asthma in SAPALDIA

Adult-onset asthma (AOA) metabolomics was studied in a nested case-control study from

the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPAL-

DIA). A total of 9,651 adults were recruited in eight cities representing different geograph-

ical and meteorological environments in Switzerland in 1991 (SAPALDIA1); 8,047 and

6,088 of them participated in the first follow-up in 2001-3 (SAPALDIA2) and in the second

follow-up in 2010-11 (SAPALDIA3), respectively. The study protocol was described in de-

tail previously (Ackermann-Liebrich et al., 2005; Martin et al., 1997). The present study

examined blood samples from SAPALDIA3. A detailed description of the population co-

hort and of the study protocol was described in detail previously (Ackermann-Liebrich et

al., 2005; Martin et al., 1997). Briefly, asthma cases were selected among the self-reported

diagnosis of asthma occurred later than 16 years of age (n = 141) (Siroux et al., 2014)

and with archived blood sample available. Controls were randomly sampled among the

participants who never reported the following since SAPALDIA1: self-reported asthma;

physician-diagnosed asthma; asthma attack in the last 12 months; current asthma medica-

tion; wheezing without cold in the last 12 months; three or more asthma-related symptoms

in the last 12 months (symptoms considered: breathless while wheezing; woken up with a

feeling of chest tightness; attack of shortness of breath after exercise; attack of shortness

of breath while at rest; woken by attack of shortness of breath) (Jacquemin et al., 2015)

All cases and controls had not smoked for at least 10 years before blood was drawn. Study

participants were non-fasted at the time of blood collection and bench time was less than

2 hours for all but ten cases and five controls. Subjects characteristics are summarized

in Table 6.1 and compared to the entire cases and controls among SAPALDIA3 partici-

pants in Table 6.S1. The cases in this study were comparable to the entire SAPALDIA3
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cases. The controls in this study were younger, thinner, and less exposed to air pollution

compared to the entire SAPALDIA3 controls.

Cardio-cerebrovascular diseases in EPIC Italy

Study participants were part of the Italian component (Turin and Varese centers) of the

EPICOR study (Bendinelli et al., 2011), which is the cardiovascular section of the Eu-

ropean Prospective Investigation into Cancer and Nutrition (EPIC) cohort (Palli et al.,

2003). In the period 1993-1998, EPIC Italy completed the recruitment of 47,749 volun-

teers. The Turin and Varese cohorts include 10,604 and 12,083 participants respectively,

all aged 35-65 years. We designed a case-control study nested in the cohort including 386

samples (193 matched case-control pairs), using the incident density sampling method

(Richardson 2004). Criteria for cases and controls selection and matching, outcome clas-

sification and relevant covariates acquisition were described previously (Fiorito et al.,

2017). Briefly, we selected all the incident CCVD cases which arose in the cohort during

the follow-up (until December 2010) among non-smokers (never or former smokers for at

least one year) with available blood sample archived and stored in liquid nitrogen and

with at least one matched control. Matching criteria were smoking status (never/time

since quitting), gender, age (±2.5 years), season and year of recruitment in the cohort.

CCVDs include amyotrophic myocardial infarctions (AMI), acute coronary syndromes

(ACS), coronary angioplasties, carotid angioplasties, fatal coronary events and ischemic

strokes, identified after merging hospital discharge records with the EPIC Italy database,

according to the criteria of the International Classification of Diseases – Ninth Revision

(ICD-9). Suspected cardiovascular events or ischemic strokes were verified by a medical

doctor, supported by information on onset symptoms, levels of cardiac enzymes and tro-

ponins, and electrocardiographic data. We treated CCVD as a single outcome because
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Table 6.1. SAPALDIA sample characteristics – adult-onset asthma

AOA cases Controls AOA casesa Controlsa

N 139 196 73 115

Age [year] 59.4 (19.4) 57.1 (15.8) 60.3 (19.1) 54.8 (15.5)

Female 87 (63%) 101 (52%) 47 (64%) 62 (54%)

BMI [kg/m2] 25.7 (6.4) 24.4 (4.8) 27.0 (6.8) 24.7 (4.8)
Smokingb

Former 54 (39%) 62 (32%) 34 (47%) 37 (32%)
Never 85 (61%) 134 (68%) 39 (53%) 78 (68%)

Education levelc

Low 3 (2%) 2 (1%) 1 (1%) 2 (2%)
Middle 86 (62%) 121 (62%) 46 (63%) 72 (63%)
High 50 (36%) 73 (37%) 26 (36%) 41 (36%)

Fasting time [hour] 2.7 (1.2) 2.8 (1.7) 2.9 (1.8) 2.7 (1.8)

Bench time [min] 80.0 (34.5) 80.0 (28.2) 80.0 (30.0) 80.0 (28.0)

PM2.5
d [µg/m3]

t = 1 14.6 (1.9) 14.3 (1.7) 15.4 (1.5) 14.7 (2.0)
t = 2 14.7 (2.2) 14.4(1.8) 15.7 (2.3) 14.8 (2.4)
t = 3 14.6 (2.8) 14.3 (2.2) 16.0 (2.3) 14.7 (2.4)
t = 4 16.0 (2.8) 15.6 (2.2) 16.7 (1.7) 16.2 (1.9)
t = 5 17.3 (2.3) 17.1 (2.1) 17.8 (1.8) 17.4 (1.9)
t = 6 16.5 (2.4) 16.0 (2.2) 17.2 (1.8) 16.4 (2.3)
t = 7 16.8 (3.4) 16.2 (3.0) 17.6 (3.2) 16.8 (3.2)

PNC [particles/cm3] - - 13418 (6376) 9660 (7970)

LDSA [µ m2/cm3] - - 33.9 (16.1) 27.1 (16.3)

NO2 [µ g/m3] 25.0 (14.3) 21.6 (10.9) 29.3 (11.9) 23.7 (15.0)

Current asthmae 73 (53%) - 40 (55%) -

Current medication 45 (32%) - 27 (37%) -

Data are presented as count (%) or median (interquartile range). PM2.5: annual mean estimates derived from the

PolluMap in 2010; PNC and LDSA: biennial mean estimates derived from a SAPALDIA multi-area LUR in 2011/2012;

NO2: annual mean estimates derived from a European LUR in 2010. aData set used for UFP MWASs, number of

observation smaller due to limited availability of UFP estimates. bFormer smokers had not smoked for at least 10 years

before blood was drawn. cEducation level low: primary school; middle: secondary/middle school or apprenticeship;

high: college or university. d365 days average t-1 years before the examination. eCurrent asthma was defined as either

having reported asthma attack in the last 12 months or currently taking asthma medication.
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they share common risk factors and etiology, mainly originating from blood vessels dis-

orders caused by atherosclerosis (Simons et al., 2009; Soler and Ruiz 2010). All subjects

were fasting at the time of blood collection and bench time was always lower than two

hours for cases and controls. Table 6.2 summarizes the subjects’ characteristics and

Table 6.S2 summarizes their comparison to the entire EPIC subjects. Compared to the

whole EPIC cohort, this study subjects were more likely treated for hypertension; CCVD

cases were more likely female, since we selected non-smokers cases only and in EPIC Italy

women less likely were smokers; controls were older (due to the matching by age), had

higher BMI and a higher proportion of “middle” educated individuals.

This study complies with the Declaration of Helsinki principles, and conforms to eth-

ical requirements. All volunteers signed an informed consent form at enrolment. The

study protocol of SAPALDIA was approved by the Swiss Academy of Medical Sciences

and the regional committees for each study center and the one of EPIC by the Ethics

Committees at the International Agency for Research on Cancer (Lyon, France) and at

the Human Genetics Foundation (now IIGM, Turin, Italy) for EPIC.

6.2.2 Metabolome analyses

Serum samples were analyzed with a UHPLC-QTOF-MS system (Agilent Technologies,

Palo Alto, CA, USA) in randomized order as a single batch within study. The total num-

ber of molecular features was 12,003 and 5290 for SAPALDIA and EPIC Italy respectively.

A detailed description of laboratory and preprocessing procedures can be found in Sup-

plementary Material. The features with non-missing values for at least 60% of the total

sample were retained. The final dataset contained 7089 and 2790 features for SAPALDIA

and EPIC Italy respectively (1,452 were in common). In EPIC Italy, additional missing

values were imputed using the procedure implemented in the R package imputeLCMD.
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Table 6.2. EPIC Italy sample characteristics – cardio-cerebrovascular diseases§

CCVD cases Controls CCVD casesa Controlsa

N 166 d 155 71 73

Center

Turin 71 (43%) 73 (47%) 71 (100%) 73 (100%)

Varese 95 (57%) 82 (53%) - -

Age [years] 56.16 (9.56) 56.55 (9.44) 58.01 (8.85) 57.27 (10.11)

Female 107 (64%) 95 (61%) 12 (17%) 13 (18%)

BMI [kg/m2] 26.34 (4.91) 26.09 (4.91) 26.04 (3.82) 25.89 (4.05)

Smokingb

Former 52 (31%) 54 (35%) 38 (53%) 38 (52%)

Never 114 (69%) 101 (65%) 33 (47%) 35 (48%)

Education levelc

Low 103 (69%) 84 (56%) 32 (45%) 22 (30%)

Middle 48 (32%) 44 (29%) 29 (41%) 31 (43%)

High 12 (8%) 22 (15%) 10 (14%) 20 (27%)

Treatments

Hypertension 75 (45%) 47 (30%) 26 (36%) 26 (36%)

Hyperlipidaemia 69 (41%) 44 (28%) 34 (48%) 26 (36%)

PM2.5 [µg/m3] 21.27 (2.19) 21.27 (2.16)

PNC [particles/cm3] 13,283 (2,335) 13,150 (2,497)

NO2 [µg/m3] 55.15 (14.95) 54.67 (16.48)

Data are presented as count (%) or median (interquartile range). PM2.5: annual mean estimates derived a European

LUR in 2010; PNC: annual mean estimates derived from a local LUR in 2014/2015; NO2: annual mean estimates

derived from a European LUR in 2010. aData set used for UFP MWASs, number of observation smaller due to limited

availability of UFP estimates. bFormer smokers had not smoked for at least 1 year before blood was drawn. cEducation

level: low (primary school or none), middle (vocational or another secondary school), and high (university or vocational

postsecondary school). §AMI/ACS 20%; coronary angioplasties 19%; AMI/ACS + coronary angioplasties 23%, carotid

angioplasties 5%, fatal coronary events 4%; ischemic strokes 29%.
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6.2.3 Air pollution exposure estimates

For PM2.5 and UFP, the exposure estimated derived from different models were used in

the two cohorts as an attempt to make the best use of available data. In SAPALDIA,

annual mean exposure to PM2.5 in 2010 (SAPALDIA3 survey) of study participants was

estimated by using PolluMap, a national air pollution dispersion model for Switzerland

(FOEN 2013). Lagged estimates up to 7 years before SAPALDIA3 were obtained by

interpolation from Meteotest (FOEN 2014). Biennial mean exposure to UFP was esti-

mated based on multi-area land use regression (LUR) models derived from SAPALDIA

specific-measurement campaigns conducted in 2011/2012 and covering 4 out of 8 SAPAL-

DIA study areas (Eeftens et al., 2016). In EPIC Italy, PM2.5 exposure was estimated by

a newly developed European LUR model derived from measurements in 2010 (de Hoogh

et al., 2016). UFP exposure in Turin was estimated by a local LUR model derived from

measurements in 2014/2015 (van Nunen et al., 2017). Both SAPALDIA and EPIC Italy

used the NO2 exposure estimates provided by the aforementioned European LUR model

(de Hoogh et al., 2016). In addition to particle number concentration (PNC), lung de-

posited surface area (LDSA) was used as UFP metric in SAPALDIA. The air pollution

model performance varied across air pollutants and the models: the cross-validation R2

was 0.54 for PM2.5 derived from the European LUR (de Hoogh et al., 2016); 0.82 and 0.87

for PNC and LDSA, respectively, from the Swiss local LUR (Eeftens et al., 2016); 0.33

for PNC from the European local LUR (van Nunen et al., 2017); 0.58 for NO2 from the

European LUR (de Hoogh et al., 2016). As we relied on LUR models developed to cover

limited areas, UFP estimates were available for a subset of samples, 75 AOA cases and

115 controls, and 71 CCVD cases and 73 controls. Each subject was assigned air pollution

exposure estimates by geocoding the residential address. In the case of SAPALDIA this
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was the address at the time point of the SAPALDIA3 survey. In the case of EPIC Italy

this was the address at the time of blood sample collection.

6.2.4 Statistical analyses

Statistical analyses were conducted independently in the two cohorts, applying slightly

different models and covariates to accommodate the discrepancy in the data availability

between the two cohorts.

Association of air pollution exposure with AOA

We assessed the effect of air pollution exposure on AOA by fitting logistic regression mod-

els. AOA was regressed, with non-asthmatics as the reference, on air pollution exposure

after adjustment for age, sex, education level, body mass index (BMI), and study area as

random effect. For PM2.5, the main predictors were two polynomial lag terms defined as

u0 =
∑7

t=1 PM2.5(t) and u1 =
∑7

t=1 t · PM2.5(t), where PM2.5(t) is average exposure to

PM2.5 of 365 days t − 1 years SAPALDIA3 examination. For UFP and NO2, the main

predictors were biennial and annual mean estimates respectively. The association was

also assessed in the entire SAPALDIA subjects (N=3,011; 272 AOA cases). In the anal-

ysis of the entire SAPALDIA subjects, a binary indicator for perfect geocoding quality

was additionally included as a potential modifier of the effect of air pollution exposure

on the metabolite level. Geocoding was declared perfect if the matching was possible at

the level of residential address. In the analysis of the nested case-control samples, the

observations with non-perfect geocoding quality were excluded because the models with

the effect modifier did not converge.
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Association of air pollution exposure with CCVD

The association of exposure to air pollution with CCVD was assessed in the nested case-

control study by logistic regression models adjusting for age at recruitment, center of

recruitment, sex, BMI, smoking status, and education level (see Supplementary Material

for details). In addition, we conducted Cox proportional hazard regression to assess the

association between air pollution exposure and the risk of future CCVD among all EPIC

subjects (Turin and Varese centers; N=18,982; 948 CCVD events).

In both studies, odds ratios (OR), hazard ratios (HR), and 95% confidence intervals

(CI) refer to an increase of 5 µg/m3 PM2.5, 5,000 particles/cm3 PNC, 10 m2/cm3 LDSA,

and 10 µg/m3 NO2.

Metabolome-wide association study (MWAS) on AOA

We conducted logistic regression analyses of AOA on each of the 7089 features after ad-

justment for age, sex, study area, bench time, fasting time, sine and cosine functions

of venipuncture time with periods of 24 and 12 hours, and their multiplicative interac-

tion terms with fasting time. We did not adjust for smoking because all subjects were

non-smokers since 10 years. Feature intensity, age, bench time, and fasting time were

scaled to have mean equal 0 and standard deviation equal 1. We applied the Firth’s

bias-reduction method (Firth 1993; Perry 2016) to obtain less biased estimates and the

Benjamini-Hochberg method to correct for multiple testing (Benjamini and Hochberg

1995). Acknowledging the cross-sectional nature of the study of the AOA MWAS, we

conducted a sensitivity analysis by repeating the AOA MWAS after further adjustment

for current asthma medication.
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MWAS on CCVD

For each of the 2790 features, we tested for their association with incident CCVD by lo-

gistic regression models adjusting for age at recruitment, center of recruitment, sex, BMI,

smoking status, and education level. Sensitivity analyses were conducted on cardiovascu-

lar cases only (i.e. excluding ischemic strokes).

MWAS on air pollution

In SAPALDIA and EPIC Italy separately, each feature was regressed on PM2.5, UFP, or

NO2 after adjustment for the same covariates as in AOA MWAS and in CCVD MWAS,

respectively. In SAPALDIA, a binary indicator for perfect geocoding quality was addi-

tionally included as a potential modifier of the effect of air pollution exposure on the

metabolite level. Geocoding was declared perfect if the matching was possible at the level

of residential address. As in the association of air pollution with AOA, first and second

order polynomial lag terms were used for PM2.5 while biennial and annual mean exposures

were used for UFP and NO2, respectively. In EPIC Italy, annual average exposure was

used as the proxy for long-term exposure for each pollutant.

Link and variance functions

In EPIC Italy, feature intensities were Box-Cox transformed before regression (Han and

Kronmal 2004). In SAPALDIA, the best link and variance were sought for each feature

and semi-partial pseudo-R2 was computed as a measure of effect size (see Supplementary

Material for details).
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6.2.5 Meet-in-the-middle (MITM) approach

Search for MITM features

We examined if any of the features associated with air pollution overlapped with the

features associated with AOA or CCVD as an attempt to search for MITM features. As

no single feature showed metabolome-wide significant association with AOA or CCVD,

we found no single MITM features. Instead, we searched for MITM pathways as de-

scribed below. The history of our analyses in this study is summarized as flowcharts in

supplementary materials (Figure 6.S1: MITM features; Figure 6.1: MITM pathways).

Functional annotation and pathway enrichment tests using Mummichog

Mummichog is an algorithm developed to predict functional activities of metabolites (Li et

al., 2013). Taking untargeted MWAS results as input, Mummichog searches for chemical

identities by matching the measured mass (m/z) of the features to a reference metabolic

model, integrated from KEGG (Kanehisa et al., 2006), UCSD BiGG (Duarte et al., 2007),

and Edinburgh human metabolic network (Ma et al., 2007). Based on this putative an-

notation, it conducts pathway enrichment tests using Fisher’s exact test. The statistical

significance of pathway enrichment is estimated by permutation, where the features are

randomly selected and mapped to each of the possible annotations to produce null distri-

bution. We customized the types of ions that Mummichog searches for chemical identities,

to match with the UHPLC-QTOF-MS method used. Cut-off p-value was chosen to have a

reasonable number of significant features to ensure for the algorithm to conduct pathway

enrichment analysis. We first used the 10th percentile of the p-values from each MWAS

result as the cut-off and then the 5th percentile as a sensitivity analysis (Table 6.S3).
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Figure 6.1. Search for the MITM pathways

*Adjusted for the corresponding air pollutant; **by excluding the pathways not enriched in the other cohort.
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Search for MITM pathways

Pathways found enriched (empirical p-value < 0.05) from Mummichog were listed. The

pathways with overlap size – the number of features that contributed to the enrichment

– smaller than 4 were ignored. This is an attempt to reduce the false positive findings

as Mummichog annotates features only by matching m/z and hence matches are subject

to error. The pathways that were not enriched for the same air pollution metric in both

SAPALDIA and EPIC Italy were excluded. If the pathway enriched for air pollution

metric was also enriched for AOA or CCVD after adjustment for the same metric, they

were declared as “MITM” pathways (Figures 6.S3-6.S5). The MITM pathways were

evaluated by confirmation of the putative annotation which Mummichog used to compute

pathway enrichment (see Supplementary Material for details).

6.3 Results

6.3.1 Exposure to UFP is associated with AOA

From logistic regression of AOA (n = 73) with non-asthmatics as the reference group

(n = 115), we found a strong association of UFP exposure with AOA (Table 6.3). The

odds ratios were 1.80 [95% CI 1.26, 2.55] for an increase in particle number concentra-

tion (PNC) by 5,000 particles/cm3, and 1.73 [95% CI 1.27, 2.36] for an increase in lung

deposited surface area (LDSA) by 10 µm2/cm3. On the contrary, PM2.5 and NO2 did

not show a significant association with AOA. The estimated risk for AOA due to UFP

exposure is still significant after the inclusion of either PM2.5 or NO2 in the regression

model. LDSA showed a stronger, significant association with AOA in the multipollutant

model, supporting the independence of the effect (Tables 6.S4-6.S5). The ORs were

lower when estimated in the whole cohort, which may be partly attributed to the dis-
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crepancy in the samples: While the cases in this study were comparable to the entire

SAPALDIA3 cases, the controls in this study had higher exposure to air pollutants than

the entire SAPALDIA3 controls (Table 6.S1).

Table 6.3. Association of air pollution with AOA and CCVD

Air pollution metric AOA CCVD
ORa [95% CI] ORb [95% CI] ORc [95% CI] HRd [95% CI]

PM2.5
e 1.05 [0.57, 1.95] 1.00 [0.65, 1.56] 1.34 [0.72, 2.52] 1.29 [1.08, 1.55]

PNCf 1.80 [1.26, 2.55] 1.39 [1.03, 1.87] 1.09 [0.60, 2.00] 1.16 [0.97, 1.39]

LDSAg 1.73 [1.27, 2.36] 1.36 [1.04, 1.79] - -

NO2
h 1.12 [0.81, 1.55] 1.16 [0.94, 1.43] 1.03 [0.89, 1.18] 1.12 [0.99, 1.27]

Note: Odds ratios are reported for all cross-sectional analyses (meet-in-the-middle/metabolome subsample) while hazard

ratio is reported for the longitudinal analysis on larger CCVD samples; Sample size is smaller for UFP than other

pollutants because the LUR models were derived only for 4 out of 8 study areas in SAPALDIA and for Turin but not

for Varese in EPIC Italy. aodds ratio adjusted for age, sex, education level, BMI, and study area as random effect

(N=335 for PM2.5 and NO2; N=188 for UFP). bodds ratio adjusted for age, sex, education level, BMI, and study area

as random effect (N=3,011 for PM2.5 and NO2; N=1,555 for UFP). codds ratio adjusted for age, center of recruitment,

sex, BMI, smoking status, and educational level (N=321 for PM2.5 and NO2; N=144 for UFP). dhazard ratio adjusted

for age, center of recruitment, sex, BMI, smoking status, and educational level (N=18,982 for PM2.5 and NO2; N=8,753

for UFP). eper 5 µg/m3 increase in biennial (SAPALDIA) or annual (EPIC Italy) mean PM2.5. fper increase by 5000

particles/cm3 in biennial (SAPALDIA) or annual (EPIC Italy) mean PNC. gper increase by 10 µm2/cm3 in biennial

mean LDSA. hper increase by 10 µg/m3 in annual mean NO2.

6.3.2 Weak but consistent association of air pollution with CCVD

We have observed a positive association of exposure to PM2.5, PNC, and NO2 with the

risk of CCVD (OR = 1.34 [95% CI 0.72, 2.52] for 10 µg/cm3 increase in PM2.5; OR =

1.09 [95% CI 0.60, 2.00] for 5,000 particles/cm3 increase in PNC; OR = 1.03 [95% CI

0.89, 1.18] for µg/cm3 increase in NO2), though the associations did not reach statistical

significance (Table 6.3). However, when we expanded the analyses to the whole EPIC

Turin-Varese subjects (N=18,982; 948 CCVD events), the associations became stronger
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and significant (HR = 1.29 [95% CI 1.08, 1.55] for 10 µg/m3 increase in PM2.5; HR = 1.16

[95% CI 0.97, 1.39] for 5,000 particles/cm3 increase in PNC (Turin subjects; N=8,753);

HR = 1.12 [95% CI 0.99, 1.27] for µg/cm3 increase in NO2). In the multipollutant model,

the OR for PNC was higher than that estimated in the single pollutant model. On the

contrary the OR for PM2.5 dramatically decreased when including other pollutants in the

regression model. These results suggest that the association of air pollution with CCVD

could be mainly driven by PNC.

6.3.3 MWAS: no single metabolites are associated with both air

pollution and AOA or CCVD

None of the 7089 features in SAPALDIA or 2790 features in EPIC Italy showed a sig-

nificant association with AOA or CCVD after multiple testing corrections, respectively

(Figure 6.S1). The air pollution MWAS in SAPALDIA showed 237, three, six and

one features significantly associated with PM2.5, PNC, LDSA, and NO2, respectively

(Figure 6.2). One of the three PNC associated features coincided with the LDSA asso-

ciated features. Five out of the eight UFP associated features were not associated with

any other air pollutant. The only NO2 associated feature was also associated with PM2.5

(Figure 6.S2). In EPIC Italy, no single feature showed a significant association with air

pollution exposure, nor with CCVD after multiple testing corrections (Figure 6.3). The

top 100 signals from each of the air pollution MWASs in both cohorts are summarized in

Supplementary Materiala with putative annotation.

aThis table is available in online supplement and not included in this dissertation.

113



Article III

Figure 6.2. Volcano plots of MWAS results in SAPALDIA

Note the asymmetric distribution of points in air pollution MWASs due to the positive nature of semi-partial pseudo-

R2 used as a measure of effect size. Linoleate (m/z = 281.2464; RT = 7.283) whose annotation was confirmed with

confidence level 1 is highlighted in red; Metabolome-wide signals after Benjamini-Hochberg correction in black. Dotted

line depicts Benjamini-Hochberg adjusted p = 0.05.
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Figure 6.3. Volcano plots of MWAS results in EPIC Italy

Metabolites whose annotation was confirmed with confidence level 1 are highlighted in red: Linoleate (m/z = 281.2481;

RT = 7.306), Octanoic acid (m/z = 127.1119; RT = 4.388), Sphingosine (m/z = 300.2903; RT = 6.019), and L-carnitine

(m/z = 162.1128; RT = 0.601); Metabolites whose annotation was confirmed with confidence level 3 are in blue: α-

Linolenic acid (m/z = 279.2321; RT = 7.166), D-Glucose (m/z = 145.0495; RT = 0.646), Linoelaidyl carnitine (m/z =

424.3428; RT = 6.199), Octadecenoyl carnitine (m/z = 426.3590; RT = 6.337), and Stearoylcarnitine (m/z = 428.373;

RT = 6.479). No metabolome-wide signals after Benjamini-Hochberg correction.
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6.3.4 Several metabolic pathways are commonly associated with

air pollution in both cohorts

Various pathways were associated with air pollution varying with the air pollutant and

the cohort examined (Figure 6.1, Tables 6.S6-6.S11). The pathways that were en-

riched for the same air pollutant in both cohorts are summarized in Table 6.4 and

Figures 6.S3-6.S5: Linoleate metabolism and Fatty acid activation were enriched for

PM2.5; Linoleate metabolism, Glycerophospholipid metabolism, and Glycosphingolipid

metabolism for UFP; Carnitine shuttle and Pyrimidine metabolism for NO2. No over-

lap was found looking at the list of features that contributed to the enrichment in the

two studies (Table 6.S13). We then repeated the same enrichment analysis using the

5th percentile p-value as the cut-off, as a sensitivity analysis. Linoleate metabolism and

Glycerophospholipid metabolism, associated to UFP, were confirmed in both cohorts. All

the pathways associated to NO2, Carnitine shuttle and Pyrimidine metabolism, were also

confirmed.

Table 6.4. Pathways associated to air pollution in both SAPALDIA and EPIC Italy

SAPALDIA EPIC Italy

Air Pathway Overlap Pathway p- Overlap Pathway p-
pollutant size size value size size value

PM2.5 Linoleate metabolismb,c 17 21 0.0007 6 20 0.0249
Fatty acid activationc 10 21 0.0054 5 15 0.0180

UFPa Linoleate metabolismb 12 21 0.0007 7 20 0.0084
Glycerophospholipid 12 36 0.0023 13 35 0.0022

metabolismb

Glycosphingolipid 8 26 0.0079 6 21 0.0367
metabolismc

NO2 Carnitine shuttlec 10 26 0.0063 6 19 0.0040
Pyrimidine metabolism 12 33 0.0074 8 28 0.0035

aEither PNC or LDSA in SAPALDIA and PNC in EPIC Italy. balso enriched for AOA after further adjustment for the

corresponding air pollutant. calso enriched for CCVD after further adjustment for the corresponding air pollutant.
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6.3.5 Pathways enrichment and MITM analysis for AOA and

CCVD

We found various altered metabolic pathways associated with AOA and CCVD (Figure 6.1,

Tables 6.5 and 6.6). The majority of the enriched pathways did not overlap between

AOA and CCVD. Pathways associated with AOA and CCVD, respectively, after ad-

justment for single air pollution metrics to identify MITM pathways are presented in

Tables 6.S14-6.S20.

Table 6.5. Pathways associated to AOA unadjusted for air pollution exposure

Pathway Overlap size Pathway size p-value

Tryptophan metabolism 20 54 0.0009
Vitamin B6 (pyridoxine) metabolism 4 6 0.0017

Biopterin metabolism 6 13 0.0021
TCA cycle 4 8 0.0041

Hexose phosphorylation 5 12 0.0048
Fatty Acid Metabolism 5 14 0.0101

De novo fatty acid biosynthesis 7 22 0.0102
Drug metabolism - cytochrome P450 12 42 0.0102

Valine, leucine and isoleucine degradation 7 23 0.0137
Urea cycle/amino group metabolism 9 32 0.0169

Fatty acid activation 6 21 0.0258
Leukotriene metabolism 13 51 0.0278
Butanoate metabolism 5 17 0.0284

Glycosphingolipid metabolism 7 26 0.0312
Lysine metabolism 6 22 0.0342

Drug metabolism - other enzymes 5 18 0.0387
Arginine and Proline Metabolism 6 23 0.0447
Starch and Sucrose Metabolism 4 14 0.0458

Pentose and Glucuronate Interconversions 4 14 0.0458
Vitamin E metabolism 8 32 0.0461

Mummichog pathway enrichment test on the results from AOA MWAS adjusted for age, sex, study area, bench time,

fasting time, sine and cosine functions of venipuncture time with periods of 24 and 12 hours, and their multiplicative

interaction terms with fasting time.
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Table 6.6. Pathways associated to CCVD unadjusted for air pollution exposure

Pathway Overlap size Pathway size p-value

De novo fatty acid biosynthesis 9 14 0.0011
Hexose phosphorylation 8 12 0.0012

Phosphatidylinositol phosphate metabolism 6 10 0.0031
Carnitine shuttle 9 19 0.0047

Starch and Sucrose Metabolism 6 11 0.0051
Linoleate metabolism 9 20 0.0070

Glycosphingolipid metabolism 9 21 0.0105
Glutamate metabolism 5 10 0.0139

Caffeine metabolism 5 11 0.0249
Fatty acid activation 6 15 0.0398

Glycolysis and Gluconeogenesis 4 9 0.0479
Fructose and mannose metabolism 4 9 0.0479

Mummichog pathway enrichment test on the results from CCVD MWAS adjusted for age at recruitment, center of

recruitment, sex, BMI, smoking status, and education level.

6.3.6 Linoleate metabolism is a common MITM pathway linking

air pollution to AOA and CCVD

Linoleate metabolism was enriched for PM2.5 and UFP in both cohorts and for AOA

after adjustment for PM2.5 or UFP (Tables 6.S14-6.S16) as well as for CCVD after

adjustment for PM2.5 (Table 6.S18). Therefore, we considered Linoleate metabolism as

MITM linking PM2.5 and UFP to AOA and PM2.5 to CCVD. Similarly, we considered

Glycerophospholipid metabolism as MITM linking UFP to AOA (Table 6.S16); Fatty

acid activation, Glycosphingolipid metabolism, and Carnitine shuttle as MITM linking

PM2.5, UFP, or NO2 to CCVD, respectively (Tables 6.S18-6.S20).

Linoleate metabolism and Glycerophospholipid metabolism were confirmed as MITM

pathways linking UFP to AOA after the sensitivity analysis (5th percentile of p-values

as the cut-off), as well as Glycosphingolipid metabolism linking UFP to CCVD, and

Carnitine shuttle linking NO2 to CCVD. In SAPALDIA, Linoleate metabolism and Glyc-

erophospholipid metabolism remained significant after adjustment for current asthma
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medication, indicating that these MITM pathways were not driven by reverse causation

(Tables 6.S21-6.S22). In EPIC, Glycosphingolipid metabolism and Carnitine shuttle

were still significant as the MITM pathways for UFP and NO2 respectively in the sensi-

tivity analyses after excluding ischemic strokes (Tables 6.S23-6.S24).

6.3.7 Confirmed annotation of metabolites in MITM pathways

A total of 108 features mapping to the aforementioned MITM pathways were selected for

confirmation of the putative annotation. Table 6.7 summarizes all the features whose

annotation was confirmed using chemical standards and fragmentation spectra. Linoleate

was confirmed in both cohorts with confidence level 1 according to the classification of

the Chemical Analysis Working Group (CAWG) (Sumner et al., 2007). In SAPALDIA,

linoleate was considered as a signal for the AOA MWAS further adjusted for UFP and con-

tributed to the enrichment of Linoleate metabolism and Glycerophospholipid metabolism.

In EPIC Italy, linoleate was considered as a signal for the PM2.5 MWAS and contributed to

the enrichment of Linoleate metabolism. Also confirmed were octanoic acid, sphingosine,

and L-carnitine, contributing in EPIC Italy to the enrichment of Fatty acid activation for

PM2.5, Glycosphingolipid metabolism for UFP, and Carnitine shuttle for CCVD adjusted

for NO2, respectively. Five additional features were confirmed for their chemical classes

with confidence level 3 for the CAWG (Sumner et al., 2007).

6.3.8 Additional sensitivity analyses

For consistency between the two studies, we performed further sensitivity analyses on

AOA. Additional adjustment for education level resulted in a non-relevant change of the

results, while adjustment for BMI slightly changed the results (Table 6.S25). In the

pathway enrichment analyses, Glycerophospholipid metabolism remained as MITM link-
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ing UFP to AOA after adjustment for BMI or for education level. Linoleate metabolism

remained as MITM linking UFP to AOA after adjustment for education level but not

after adjustment for BMI.

6.4 Discussion

In short-term studies, UFP exposure has been reported to have cardio-respiratory effects

that were stronger than for larger particles. Peters et al. reported that UFP exposure

had a stronger effect on peak expiratory flow than larger particles (Peters et al., 1997).

Exposure to UFP but not to larger particles was associated with asthma exacerbations

in children (Evans et al., 2014). However, a recent in vitro study showed that coarse

particles might have stronger effects on airway epithelium, possibly due to the higher

iron content in coarse particles (Kumar et al., 2015). Studies investigating the long-

term cardio-respiratory effects of UFP exposure remain very limited. In the California

Teachers Study cohort, UFP exposure derived from a chemical transport model was as-

sociated with all-cause and ischemic heart disease mortality (Ostro et al., 2015). In the

SAPALDIA cohort, UFP exposure was associated with carotid-intima media thickness, a

marker of subclinical atherosclerosis (Aguilera et al., 2016). UFP exposure derived from a

city-specific LUR model in Toronto linked to health registry data of 1.1 million adult city

residents found no positive association of UFP exposure with respiratory disease incidence

including AOA (Weichenthal et al., 2017). This is in contrast to our findings, which are

based on individual reports of asthma and which provide evidence of UFP effects being

stronger than, and independent of, those of larger particles. The results for the multipol-

lutant model suggest that ultrafine particles instead of particulate matters could mainly

drive associations with AOA and CCVD. In fact, the risks conferred by PNC estimated
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in the multipollutant models were higher than those determined in the single pollutant

models. On the contrary, the ORs for PM2.5 dramatically decrease when including PNC

and NO2 in the regression models. However, it is not easy to address this question and to

correctly interpret these results due to the strong correlation among various pollutants.

To investigate whether ultrafine particles or particulate matters confer the main risk goes

beyond the scope of this study and needs a more specific study design.

Traffic-related pollutants contribute mainly to the fine or ultrafine particles, while

specks of dust of geological origin including metals link to the coarse particles (Kelly

and Fussell, 2012, Yamada et al., 2005). Particulates of various sizes may have different

toxicity dependent on their composition (Kumar et al., 2015, Schwarze et al., 2007).

However, we cannot rule out the possibility of the residual confounding by unaddressed

exposures potentially correlated with air pollution e.g. transportation noise.

6.4.1 Meet-in-the-middle (MITM) approach

We applied the “meet-in-the-middle (MITM)” approach, which helps in developing a

causal hypothesis and improve biological understanding for air pollution-cardio-respiratory

health associations, making use of high-resolution metabolomic data. In the MITM ap-

proach, one searches for intermediate biomarkers that are associated with both the ex-

posure and the outcome (Vineis et al., 2013). Ideally, this applies to longitudinal studies

where the exposure precedes the biomarker measurement, and the biomarker measure-

ment precedes the outcome, e.g. incidence of cardiovascular events, as we did for CCVD

in EPIC Italy. It is much less straightforward to define incident cases for asthma than for

CCVD. Asthma is a complex chronic disease phenotype that develops over a long period

of time, can go unnoticed for years if not for decades, and can also disappear as well as

resurface. This difficulty inherent to asthma research is complicating the assessment of
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causality to identified risks such as air pollution. Realizing this difficulty, we pursued

the MITM approach for asthma even though our study is by design cross-sectional. For

all these reasons, we restricted the outcome to adult (after the 16 years of age) onset of

asthma which is less susceptible to reverse causation bias and exposure misclassification.

6.4.2 MWAS analyses

At the level of single metabolites, we found no intermediate biomarkers among the 7089

and 2790 features investigated in SAPALDIA and EPIC Italy respectively, due to lacking

metabolome-wide significant associations. Multiple testing corrections can be too strin-

gent, given the highly inter-correlated nature of the metabolome. The effective number

of tests (ENT) computed for the SAPALDIA metabolome was 2728, indicating a high

degree of dependency in the data. Given this highly correlated, high dimensional data

structure, our study likely suffers from low power to detect subtle differences related to

chronic diseases, and in particular to asthma, where distinguishing sub-phenotypes may

be essential for understanding risk and etiology of the disease (Jeong et al., 2017, Siroux

et al., 2014, Wenzel, 2012). Therefore, heterogeneity and misclassification might have

attenuated the associations with biomarkers. Distinguishing further sub-phenotypes re-

quires larger data in future metabolome studies. Given the above, we focused on pathway

enrichment analyses.

6.4.3 Pathway enrichment analyses

Metabolomics, given the high dimensionality and high dependency, benefits much from

multivariate systems approaches like pathway enrichment tests. Yet, the challenge unique

to metabolomics in this context is annotation. Unlike other omics, annotation of the

features obtained from untargeted metabolomics requires laborious manual work. The
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Mummichog software offers an opportunity to bypass this step and to conduct pathway

enrichment tests directly from untargeted MWAS results. Using Mummichog, we found

various pathways enriched for AOA, CCVD, and air pollution exposures. Air pollution

MWASs and pathway enrichment tests conducted in two cohorts served as each other’s

validation. Although we found no single overlapping features between the two cohorts

when comparing validated pathways, lack of such overlap does not exclude the possibility

that the pathways truly reflect air pollution-induced metabolic changes, involving different

molecules. The specific molecules affected in a pathway may, for example, depend on the

particle composition which can vary across different areas (Kelly and Fussell, 2012).

However, the untargeted metabolomics using UHPLC-QTOF-MS system detects a lim-

ited range of molecular weight and concentration, making exogenous molecules hard to be

detected. And Mummichog relies on the knowledge based databases, where the metabolic

studies were concentrated on the endogenous molecules (Rappaport et al., 2014). This

could have brought bias into our pathway enrichment findings.

6.4.4 Linoleate metabolism is a common MITM pathway for

AOA and CCVD

AOA and CCVD were mostly associated with different sets of pathways and hence MITM

pathways linking air pollution exposure to both chronic diseases differed. The two chronic

diseases may involve different biological mechanisms and the same environmental insults

may act through different pathways. One exception was Linoleate metabolism pathway,

which was found not only as MITM pathway linking PM2.5 and UFP to AOA but also

linking PM2.5 to CCVD. Laboratory analysis confirmed the annotation of linoleate in

both cohorts. The feature confirmed as linoleate showed a positive association with AOA,

while it did not show statistically significant association with UFPs exposure and did
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not contribute to the pathway enrichment for UFPs. Still, the Lineolate MITM-pathway

finding seems biologically interesting. Linoleate was reported in an in vitro experiment to

regulate the pro-inflammatory cytokine IL8 (Maruyama et al., 2014) and induce smooth

muscle contraction via the free fatty acid receptor 1 (FFAR1) (Mizuta et al., 2015).

Another in vitro study demonstrated that α1-antitrypsin bound to linoleate reduced the

expression and secretion of IL1β in LPS-stimulated neutrophils, while free α1-antitrypin

did not (Aggarwal et al., 2016). In observational studies in children, eczema was positively

associated with linoleate intake (Miyake et al., 2011) and atopy with circulating linoleate

(Yen et al., 2008). A recent targeted metabolomic study investigated 64 lipid metabolites

and reported Linoleate metabolism and Arachidonic acid metabolism as the top pathways

albeit not statistically significantly associated with asthma control (McGeachie et al.,

2015). Few studies associated linoleate with CCVD, although in general ω-6 fatty acids

have long been believed to have pro-inflammatory effects in the cardiovascular system. An

early in vitro study suggested that linoleate may lead to atherogenesis by NFκB signaling

mediated vascular adhesion molecule-1 (VCAM-1) expression (Dichtl et al., 2002). The

finding of linoleate metabolism was driven by our untargeted approach and confirmatory

existing evidence. But for the aforementioned limitations in this approach, we may have

missed other pathways, where evidence also exists.

6.4.5 CCVD specific MITM pathways

Glycosphingolipid metabolism was found as MITM pathway linking exposure to UFP and

CCVD and annotation of sphingosine was confirmed as one of the modulated metabolites

in this pathway. Sphingolipids are structural components of cell membrane but known to

play a crucial role in apoptosis, cell growth, senescence, and cell cycle control (Yang et al.,

2004). Sphingolipids in blood have been associated with cardiovascular diseases including
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acute coronary syndrome (Pan et al., 2014) and myocardial infarction (Park et al., 2015).

A recent clinical trial reported a strong association between blood sphingolipids and inci-

dent cardiovascular diseases (Wang et al., 2017). Sphingolipids have also been associated

with asthma (Petrache and Berdyshev, 2016) in contrast to our findings. Perturbation of

sphingolipid metabolism may be more relevant for allergic or child-onset asthma (Ono et

al., 2015).

Carnitine shuttle pathway was identified as a MITM pathway linking exposure to NO2

and CCVD. Carnitines facilitate the transport of long-chain fatty acids from the cytosol

into the mitochondria and play an important role in fatty acid metabolism and carbo-

hydrate utilization. The role of L-carnitine in CCVD has been extensively described,

reporting protective effects of L-carnitine administration for various cardiovascular dis-

eases including coronary artery disease, congestive heart failure, and hypertension (Ferrari

et al., 2004). A recent meta-analysis of randomized controlled trials demonstrated the

efficacy of L-carnitine against chronic heart failure (Song et al., 2017). In an experimental

study in rats, inflammation accompanied with hypertension was attenuated by L-carnitine

administration (Miguel-Carrasco et al., 2008). In this study, however, L-carnitine was as-

sociated with increased risk of CCVD.

6.4.6 Strengths and limitations

Strengths of our study include its prospective nature (nested in longitudinal cohorts), the

individual assessment of exposure to air pollution, the accurate diagnoses for the out-

comes, the agnostic nature of our metabolome-wide measurements, and the application

of ‘meet-in-the-middle’ as a novel approach helping in the causal interpretation of the re-

sults. We focused on biological pathways that were associated with air pollution (mostly

UFP) in both studies, supporting the robustness and replicability of our findings. Limita-
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tions include the small sample size for metabolome-wide analyses; we focused on pathways

enrichment but we were not able to identify single features associated with both air pol-

lution and at least one disease due to the lack of statistical power. The demonstration

of the MITM approach in the context of exposome research faces several challenges, one

of which is the access to sufficiently powered, harmonized cohort data, and the other the

availability of co-morbid phenotype information in the same study participants. These

challenges limit the causal inference of the results presented. Yet, the added value of the

current study is its role in capitalizing on the full potential of exposome research, namely

identifying public health relevant pathways broadly associated with chronic diseases. Also,

we used slightly different statistical methods (including the set of confounders) in the two

studies, mainly due to the nature of the outcomes and the quite different estimation of

exposure in the two studies. PNC and PM2.5 exposure in EPIC and in Basel could not

be derived from the same exposure measurement campaigns and models. With regard

to PNC the Swiss model was more accurate than the Italian model. The inaccuracy

of exposure measures limited our ability to find statistically significant associations and

overlapping signals between the two studies and phenotypes. Unlike in SAPALDIA, we

could not take into consideration geocoding quality in EPIC Italy as for the source of

potential exposure misclassification. Unlike in EPIC Italy, we did not adjust for BMI in

SAPALDIA. Air pollution exposure can increase the risk of obesity (Eze et al., 2015, Wei

et al., 2016) and obesity may have a causal effect on asthma (Wenzel, 2012), therefore

adjustment for BMI can lead to missing some signals. Given the smaller sample size and

expected subtle effects, parsimony was more strongly sought in AOA MWAS. And a previ-

ous study observed less strong association between socioeconomic status and air pollution

exposure in Switzerland than in Italy (Temam et al., 2017). Sensitivity analysis showed

that the additional adjustment did not affect the results. Similarly, we group together
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cardio- and cerebrovascular diseases and treated as a single outcome (CCVD) because

they share common risk factors and etiology. The sensitivity analyses on cardiovascular

outcomes only, confirmed the main results of this study. Finally, we did not consider the

indoor air pollution, which may also have effects on AOA and CCVD. However, we specu-

lated that the indoor air pollution would rather be an effect modifier than a confounder of

ambient air pollution, i.e. we would conceivably have observed stronger effects of ambient

air pollution in subjects less exposed to indoor air pollution.

6.5 Conclusions

In summary, we successfully applied a MITM approach in untargeted metabolomics to

produce evidence of common and disease-specific pathway perturbations in the etiological

relationship between air pollution exposure, AOA, and CCVD. Our findings need to be

confirmed in future targeted and untargeted studies.
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6.6 Supplementary Material

6.6.1 Covariates acquisition

SAPALDIA

Height and weight were measured at SAPALDIA3 and body mass index (BMI) was calcu-

lated as weight in kg divided by squared height in meters. Education level was categorized

into primary school (‘low’), secondary or middle school or apprenticeship (‘medium’), and

college or university (‘high’), based on the self-reported highest education at SAPALDIA3.

EPIC Italy

Smoking habits data were collected at study enrolment through the use of a questionnaire,

and participants were categorized as ‘never’, ‘former’ and ‘current’ smokers. Height and

weight were measured at enrolment with a standardized protocol, and body mass index

(BMI) was calculated as the ratio between weight in kg and squared height in meters,

treated as a continuous variable. The self-reported highest educational level was catego-

rized as primary school or none (‘low’), vocational or another secondary school (‘medium’),

and university or vocational postsecondary school (‘high’) and used as a proxy for the

socio-economic condition.

6.6.2 Metabolome analyses: laboratory and pre-processing pro-

cedures

Sample preparation

Serum samples were prepared by mixing 20 µL aliquot of a sample with 200 µL of acetoni-

trile, and filtering the precipitate with 0.2 µm Captiva ND plates (Agilent Technologies).

The filtrate was collected into a polypropylene well plate that was sealed with a Rapid
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EPS well plate sealing tape (BioChromato) and kept frozen until analysis. Quality control

(QC) samples were prepared using a sample pool that was prepared by combining small

aliquots of the study samples.

Sample analysis

Samples were analyzed in randomized order as a single batch with a UHPLC-QTOF-

MS system (Agilent Technologies) consisting of a 1290 Binary LC system, a Jet Stream

electrospray ionization (ESI) source, and a 6550 QTOF mass spectrometer. Autosampler

tray was kept refrigerated and 2 µL of the sample solution was injected on an ACQUITY

UPLC HSS T3 column (2.1 × 100mm, 1.8 µm; Waters). Column temperature was 45 ◦C

and mobile phase flow rate 0.4 ml/min, consisting of ultrapure water and LC-MS grade

methanol, both containing 0.05 % (v/v) of formic acid. The gradient profile was as follows:

0-6 min: 5% → 100% methanol, 6-10.5 min: 100% methanol, 10.5-13 min: 5% methanol.

The mass spectrometer was operated in positive polarity using the following condi-

tions: drying gas (nitrogen) temperature 175 ◦C and flow 12 L/min, sheath gas tem-

perature 350 ◦C and flow 11 L/min, nebulizer pressure 45 psi, capillary voltage 3500 V,

nozzle voltage 300 V, and fragmentor voltage 175 V. Data acquisition was performed us-

ing 2 GHz extended dynamic range mode across a mass range of 50-1000. Scan rate was

1.67 Hz and data acquisition was in centroid mode. Continuous mass axis calibration was

performed by monitoring two reference ions from an infusion solution throughout the runs

(m/z 121.050873 and m/z 922.009798). Data was acquired using MassHunter Acquisition

B.05.01 (Agilent Technologies). The analytical run included all study samples in ran-

dom order, intervened after every 12 injections with a QC sample to monitor instrument

performance and sample stability.
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Data preprocessing

Preprocessing of the acquired data was performed using Qualitative Analysis B.06.00, DA

Reprocessor, and Mass Profiler Professional 12.1 software (Agilent Technologies). Recur-

sive feature finding was employed to find compounds as singly charged proton adducts

[M+H]+, by using data from all study samples. The initial processing of the data was per-

formed using Qualitative Analysis with MFE algorithm set to small molecules. Threshold

values for mass and chromatographic peak heights were 1500 and 8000 counts, respec-

tively. A single mass peak was considered a feature if neutral mass could be calculated

and peak spacing tolerance for isotope peaks was 0.0025 m/z plus 7 ppm, with the isotope

model set to common organic molecules. Only singly charged ions were included.

After the initial feature finding, the compounds that existed in at least 2% of all

the samples were combined into a single list, using 0.1 min retention time and 15 ppm

+2 mDa mass windows for alignment. The resulting list was used as a target for the

recursive feature extraction of the data, which was performed using an Agilent FBF

algorithm with match tolerance for the compound mass and retention time set at ±10

ppm and ±0.05 min. Multiply charged ions were excluded, ion species was limited to

[M+H]+, and chromatographic peak height threshold was 2000 counts. Any number of

ions associated with each compound was allowed.

6.6.3 Link and variance function in GLM

In EPIC Italy, feature intensities were Box-Cox transformed before regression. In SAPAL-

DIA, the best link was sought for each feature by searching for a link function in the power

family leading to the highest log-likelihood among six links (power(2), identity, sqrt, log,

inverse, and 1/muˆ2). The best variance function was chosen among Gaussian, inverse

Gaussian, and Gamma, based on AIC. P-values were obtained from likelihood-ratio tests
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comparing the model with the air pollution related variables to the model without them.

A concern about this approach was that it may have caused underestimation of p-values

because link and variance functions were selected using the same data as for inference,

rather than set a priori, and this additional uncertainty was not taken into account in

p-value computation. First, we conducted simulation studies where we compared the

p-values computed from models fitted with the best link and variance function with the

p-values from models fitted with identity link and Gaussian distribution, respectively. We

observed few additional false positives due to selection of link or variance functions (data

not shown). Second, even though this approach leads to underestimation of p-values, it

does not affect the comparability between models. And increase in false positives is of less

concern in this study as we do not aim to report robust biomarkers but to seek MITM

evidence.

Using various link and variance functions made the resulting coefficients incomparable.

Therefore we computed semi-partial pseudo-R2 as a measure of effect size.

6.6.4 Semi-partial pseudo-R2 coefficient

Suppose we are interested in comparing two nested models, a full model M(βF ) : µF =

XFβF and a reduced model M(βR) : µR = XRβR, where βF is a regression parameter

vector of size k and βR of sizer, k > r, and βR ⊂ βF . We can partition βF as βF = [ βR
βC

]

and XF as XF = [XR XC ].

Let us define the following quadratic forms (or sum of squares, if in scalar form):

Total Sum of Squares:

SST = yT [I − 1

n
J ]y =

n∑
i=1

(yi − ȳ)2 (1)

133



Article III

Sum of Squares due to (marginal) Regression on XR:

SSRegR = yT [HR − 1

n
J ]y =

n∑
i=1

(µ̂Ri − ȳ)2 (2)

Sum of Squares due to (conditional) Regression on XC adjusting for XR:

SSRegR|F = yT [HF −HR]y =
n∑

i=1

(µ̂Fi − µ̂Ri)
2 (3)

Residual Sum of Squares (of the full model):

SSEF = yT [I −HF ]y =
n∑

i=1

(yi − µ̂Fi)
2 (4)

where HF = XF (X
T
FXF )

−1XT
F is the hat-matrix of the full model and HR = XR(X

T
RXR)

−1XT
R

is the hat-matrix of the reduced model.

The fundamental theorem of regression becomes:

SST = SSRegR + SSRegR|F + SSEF (5)

These quadratic forms and the identity (5) can be used to compute the coefficient of

semi-partial squared correlation as a measure of “fraction of variation explained” by XC :

R2
F |R;sp =

yT [HF −HR]y

yT [I − 1
n
J ]y

=
SSRegR|F

SST
= 1− SSE + SSRegR

SST
(6)

Extending R2
F |R;sp to generalized linear models (GLMs) is difficult because there is

no exact decomposition like (5) for GLMs in general. This lack of obvious extension of

R2
F |R;sp to GLMs has opened the way to many different generalizations, which collectively

go under the term of “pseudo-R2” measures.

To introduce notation, let M(βF ) : µF = h(XFβF ) and M(βR) : µR = h(XRβR) be a

full and a reduced generalized linear model respectively, with µ = E[y], and let βF and

XF be partitioned as before. The response variable Y is assumed to belong to the Natural

Exponential Class of distributions Y |x ∼ NEC(µ, ϕ) with ϕ a dispersion parameter.
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Furthermore, let:

l(βF ; y,XF ) = log(L(βF ; y,XF )) the log-likelihood of the full model (7)

l(βR; y,XR) = log(L(βR; y,XR)) the log-likelihood of the reduced model (8)

l(β0; y, 1n) = log(L(βF ; y, 1n)) the log-likelihood of the null model (9)

l(βsat; y,Xsat) = log(L(βsat; y,Xsat)) the log-likelihood of the saturated model (10)

Estimation of all models is carried out through Maximum Likelihood, and therefore

substitution of the unknown parameters βF , βR, β0, and βsat with their MLE’s β̂F , β̂R,

β̂0, and β̂sat provides the maximized versions of the log-likelihoods (7), (8), (9), and

(10): l(βF ; y,XF ), l(βR; y,XR), l(β0; y, 1n), and l(βsat; y,Xsat). With these maximized

log-likelihoods, it is possible to build up the following quantities:

D0 = 2(l(β̂sat; y,Xsat)− l(β̂0; y, 1n)) deviance of the null model (11)

DF = 2(l(β̂sat; y,Xsat)− l(β̂F ; y,XF )) deviance of the full model (12)

D0|F = 2(l(β̂F ; y,XF )− l(β̂0; y, 1n)) extra-deviance of the null vs full model (13)

D0|R = 2(l(β̂R; y,XR)− l(β̂0; y, 1n)) extra-deviance of the null vs reduced model (14)

DR|F = 2(l(β̂F ; y,XF )− l(β̂R; y,XR)) extra-deviance of the reduced vs full model (15)

As correctly observed by Cameron and Windmeijr (Cameron and Windmeijer, 1997),

(11), (12), (13), (14), and (15) are the exact analog for GLMs of SST , SSEF , SSRegF ,

SSRegR, and SSRegR|F in linear models. It is trivial to show that exact additive decom-

position, analog to (5), holds for (11), (12), (13), (14), and (15):

D0 = D0|F +DF (16)

D0 = D0|R +DR|F +DF (17)
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Cameron and Windmeijr(Cameron and Windmeijer, 1997) used (16) to propose their

multiple pseudo-R2:

R2
CW =

D0|F

D0

= 1− DF

D0

(18)

Although Cameron and Windmeijr did not propose explicitly generalization of the

semi-partial R2 coefficients used in linear models, decomposition (17) immediately pro-

vides such generalization; by analogy with (6), it is natural to define the semi-partial

pseudo-R2 coefficient:

R2
CW ;F |R;sp =

DR|F

D0

= 1−
D0|R +DF

D0

(19)

This semi-partial pseudo-R2 coefficient measures the relative contribution of the vari-

ables in XC , air pollution exposure variables in this study, to the reduction in variation

of the response Y ; it equals the fraction of total variation in Y which is explained by XC ,

when its variables are added to those in XR, already included in the model.

6.6.5 Confirmation of chemical identities from Mummichog

We examined if the ion Mummichog assigned to a metabolite was theoretically feasible, if

the proposed charge state and retention time were plausible, and if the chromatographic

peaks were of adequate quality. Final confirmation was based on comparisons of the

retention time and fragmentation spectra against those of an authentic chemical standard.
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6.6.6 Supplementary figures

Figure 6.S1. Search for the MITM pathways

*Adjusted for the corresponding air pollutant; **by excluding the pathways not enriched in the other cohort.
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Figure 6.S2. Venn diagram of air pollution MWAS signals in SAPALDIA

The number of signals with p-value smaller than 0.05 after Benjamini-Hochberg correction from MWAS either on

PM2.5, PNC, LDSA, or NO2 in SAPALDIA, adjusted for age, sex, study area, bench time, fasting time, sine and cosine

functions of venipuncture time with periods of 24 and 12 hours, their multiplicative interaction terms with fasting time,

and geocoding quality.
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Figure 6.S3. List of pathways enriched by Mummichog on PM2.5 MWAS results

The pathways enriched for PM2.5 in both cohorts are in bold; MITM pathways in red. * depicts the pathways confirmed

in a sensitivity analysis using the 5th percentile p-value as cut-off.
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Figure 6.S4. List of pathways enriched by Mummichog on UFP MWAS results

The pathways enriched for UFP in both cohorts are in bold; MITM pathways in red. * depicts the pathways confirmed

in a sensitivity analysis using the 5th percentile p-value as cut-off. In SAPALDIA, the pathways enriched either for

PNC or LDSA are listed.
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Figure 6.S5. List of pathways enriched by Mummichog on NO2 MWAS results

The pathways enriched for NO2 in both cohorts are in bold; MITM pathways in red. * depicts the pathways confirmed

in a sensitivity analysis using the 5th percentile p-value as cut-off.
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6.6.7 Supplementary tables

Table 6.S1. SAPALDIA sample characteristics – AOA

AOA cases Controls
Nested study SAPALDIA3 pa Nested study SAPALDIA3 pa

N 139 374 - 196 3755 -

Age [year] 59.4 (19.4) 58.8 (18.2) 0.98 57.1 (15.8) 60.4 (17.6) < 0.001

Female 87 (63%) 230 (61%) 0.90 101 (52%) 1920 (51%) 0.97

BMI [kg/m2 25.7 (6.4) 26.1 (6.3) 0.31 24.4 (4.8) 25.7 (5.6) < 0.001
Smoking
Currentb - 51 (14%) - - 582 (15%) -
Formerc 54 (39%) 168 (45%) 62 (32%) 1401 (37%)
Never 85 (61%) 155 (41%) 134 (68%) 1772 (47%)

Education leveld

Low 3 (2%) 20 (5%) 2 (1%) 205 (5%)
Middle 86 (62%) 239 (64%) 0.20 121 (62%) 2463 (66%) 0.0027
High 50 (36%) 115 (31%) 73 (37%) 1086 (29%)

PM2.5
e [µg/m3]

t = 1 14.6 (1.9) 14.7 (1.4) 0.49 14.3 (1.7) 14.5 (1.6) 0.048
t = 2 14.7 (2.2) 14.9(1.6) 0.40 14.4 (1.8) 14.6 (1.8) 0.034
t = 3 14.6 (2.8) 14.7 (1.9) 0.44 14.3 (2.2) 14.5 (2.1) 0.022
t = 4 16.0 (2.8) 16.1 (2.4) 0.30 15.6 (2.2) 15.9 (2.4) 0.091
t = 5 17.3 (2.3) 17.5 (1.7) 0.53 17.1 (2.1) 17.2 (2.0) 0.13
t = 6 16.5 (2.4) 16.5 (1.7) 0.98 16.0 (2.2) 16.2 (2.0) 0.051
t = 7 16.8 (3.4) 17.0 (2.3) 0.47 16.2 (3.0) 16.6 (3.0) 0.097

PNCf [particles/cm3] 13,418 (6,376) 12,463 (5,969) 0.40 9,660 (7,970) 10,585 (8,540) 0.021

LDSAf [µ m2/cm3] 33.9 (16.1) 32.0 (12.8) 0.20 27.1 (16.3) 29.6 (19.9) 0.0078

NO2 [µ g/m3] 25.0 (14.3) 25.4 (12.2) 0.57 21.6 (10.9) 23.5 (12.2) 0.054

Current asthmag 73 (53%) 198 (53%) 0.92 - - -

Current medication 45 (32%) 135 (36%) 0.45 - - -

Data are presented as count (%) or median (interquartile range). PM2.5: annual mean estimates derived from the

PolluMap in 2010; PNC and LDSA: biennial mean estimates derived from a SAPALDIA multi-area LUR in 2011/2012;

NO2: annual mean estimates derived from a European LUR in 2010. aFor categorical variables p-values derived from χ2

test and for continuous variables from Wilcoxon rank sum tests. bCurrent smokers were excluded for the metabolomics

analysis. cFormer smokers had not smoked for at least 10 years before blood was drawn. dEducation level low: primary

school; middle: secondary/middle school or apprenticeship; high: college or university. e365 days average t-1 years

before the examination. fNumber of observation smaller due to limited availability of UFP estimates. gCurrent asthma

was defined as either having reported asthma attack in the last 12 months or currently taking asthma medication.
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Table 6.S2. EPIC Italy sample characteristics – CCVD

CCVD cases Controls
EPIC EPIC

Nested study Turin/Varese pa Nested study Turin/Varese pa

N 166 948 - 155 18,034 -

Center

Turin 71 (43%) 418 (44%) 0.81 73 (47%) 8,335 (46%) 0.89

Varese 95 (57%) 530 (56%) 82 (53%) 9,699 (54%)

Age [years] 56.16 (9.56) 56.54 (10.95) 0.92 56.55 (9.44) 50.37 (12.01) < 0.001

Female 107 (64%) 450 (47%) <0.001 95 (61%) 11,566 (64%) 0.51

BMI [kg/m2] 26.34 (4.91) 26.22 (4.89) 0.27 26.09 (4.91) 24.99 (4.81) 0.002

Smoking

Currentb - 287 (30%) - - 3,983 (22%) -

Formerc 52 (31%) 260 (28%) 54 (35%) 4,811 (27%)

Never 114 (69%) 401 (42%) 101 (65%) 9,240 (51%)

Education leveld

Low 103 (69%) 581 (61%) 0.86 84 (56%) 9,329 (52%) < 0.001

Middle 48 (32%) 298 (32%) 44 (29%) 6,810 (38%)

High 12 (8%) 66 (7%) 22 (15%) 1,877 (10%)

Treatments

Hypertension 75 (45%) 346 (36%) 0.04 47 (30%) 3885 (21%) 0.01

Hyperlipidaemia 69 (41%) 365 (38%) 0.51 44 (28%) 4,457 (25%) 0.33

PM2.5 [µg/m3] 21.27 (2.19) 21.76 (2.57) 0.39 21.27 (2.16) 21.29 (1.82) 0.93

PNCe [particles/cm3] 13,283 (2,335) 13,244 (1,646) 0.55 13,150 (2,497) 13,212 (1,910) 0.91

NO2 [µg/m3] 55.15 (14.95) 53.55 (16.54) 0.38 54.67 (16.48) 52.28 (20.33) 0.11

Data are presented as count (%) or median (interquartile range). PM2.5: annual mean estimates derived a European

LUR in 2010; PNC: annual mean estimates derived from a local LUR in 2014/2015; NO2: annual mean estimates derived

from a European LUR in 2010. aFor categorical variables p-values derived from χ2 test and for continuous variables from

Wilcoxon rank sum tests. bCurrent smokers were excluded for the metabolomics analysis. cFormer smokers had not

smoked for at least 1 year before blood was drawn. dEducation level: low (primary school or none), middle (vocational

or another secondary school), and high (university or vocational postsecondary school). eNumber of observation smaller

due to limited availability of UFP estimates.
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Table 6.S3. 10th and 5th percentile of the nominal p-values used as cut-off for Mummichog

MWAS 10th percentile of p-values 5th percentile of p-values

SAPALDIA PM2.5 0.014 0.0041
PNC 0.046 0.020
LDSA 0.086 0.039
NO2 0.17 0.088
AOA 0.12 0.062
AOA, adj. for PM2.5 0.11 0.058
AOA, adj. for PNC 0.11 0.065
AOA, adj. for LDSA 0.11 0.065
AOA, adj. for NO2 0.12 0.062

EPIC Italy PM2.5 0.10 0.05
PNC 0.11 0.06
NO2 0.08 0.04
CCVD 0.14 0.07
CCVD, adj. for PM2.5 0.12 0.07
CCVD, adj. for PNC 0.10 0.06
CCVD, adj. for NO2 0.13 0.08

Table 6.S4. Association of UFP with AOA or CCVD, independent of other air pollutants

UFP metric AOA CCVD
ORa [95% CI] ORb [95% CI] ORc [95% CI] HRd [95% CI]

PNCe adj. for PM2.5 1.75 [0.86, 3.55] 1.34 [0.80, 2.25] 1.08 [0.58, 1.99] 1.21 [1.00, 1.47]

adj. for NO2 2.21 [1.15, 4.26] 1.13 [0.78, 1.64] 1.11 [0.60, 2.04] 1.20 [0.98, 1.46]

LDSAf adj. for PM2.5 2.67 [1.13, 6.33] 1.58 [0.95, 2.63] - -

adj. for NO2 1.88 [1.18, 3.01] 1.15 [0.78, 1.69] - -

Note: Odds ratios are reported for all cross-sectional analyses (meet-in-the-middle/metabolome subsample) while hazard

ratio is reported for the longitudinal analysis on larger CCVD samples. aodds ratio adjusted for age, sex, education

level, BMI, and study area as random effect (N=188). bodds ratio adjusted for age, sex, education level, BMI, and

study area as random effect (N=1,555). codds ratio adjusted for age, center of recruitment, sex, BMI, smoking status,

and educational level (N=144). dhazard ratio adjusted for age, center of recruitment, sex, BMI, smoking status, and

educational level (N=8,753). eper increase by 5000 particles/cm3 in biennial (SAPALDIA) or annual (EPIC Italy) mean

PNC. fper increase by 10 µm2/cm3 in biannual mean LDSA.

144



Article III

Table 6.S5. Multipollutant model results for association of air pollutants with AOA and

CCVD

Air pollution metric AOA CCVD
OR [95% CI] OR [95% CI] OR [95% CI] HR [95% CI]

(N = 188) (N = 1555) (N = 144) (N = 8753)

Model using PNC PM2.5
a 1.03 [0.11, 9.86] 0.90 [0.25, 3.25] 0.77 [0.45, 1.33] 0.42 [0.15, 1.14]

PNCb 2.21 [0.86, 5.66] 1.17 [0.69, 1.99] 1.46 [0.71, 3.00] 1.24 [1.03, 1.50]

NO2
c 0.76 [0.37, 1.56] 1.39 [0.92, 2.11] 0.82 [0.54, 1.25] 1.12 [0.97, 1.29]

Model using LDSA PM2.5
a 0.19 [0.01, 4.30] 0.55 [0.10, 2.98] - -

LDSAd 2.92 [1.13, 7.52] 1.38 [0.79, 2.43] - -

NO2
c 0.87 [0.48, 1.57] 1.27 [0.75, 2.15] - -

Note: Odds ratios are reported for all cross-sectional analyses (meet-in-the-middle/metabolome subsample) while hazard

ratio is reported for the longitudinal analysis on larger CCVD samples. AOA status was regressed on biennial mean

PM2.5, biennial mean UFP, and annual mean NO2, after adjustment for age, sex, education level, BMI, and study area

as random effect; Geocoding quality was either included as effect modifier or the observations with non-perfect geocoding

quality were excluded when the model failed to converge. CCVD status was regressed on annual mean PM2.5, UFP, and

NO2, after adjustment for age, center of recruitment, sex, BMI, smoking status, and educational level. aper 5 µg/m3

increase in biennial (SAPALDIA) or annual (EPIC Italy) mean PM2.5. bper increase by 5000 particles/cm3 in biennial

(SAPALDIA) or annual (EPIC Italy) mean PNC. cper increase by 10 µg/m3 in annual mean NO2. dper increase by

10 µm2/cm3 in biennial mean LDSA.

Table 6.S6. Pathways associated to PM2.5 in SAPALDIA

Pathway Overlap size Pathway size p-value

Linoleate metabolism 17 21 0.0007
Limonene and pinene degradation 6 6 0.0008

Fatty acid activation 10 21 0.0054
Glycerophospholipid metabolism 14 36 0.0239

Mummichog pathway enrichment test on the results from PM2.5 MWAS adjusted for age, sex, study area, bench time,

fasting time, sine and cosine functions of venipuncture time with periods of 24 and 12 hours, their multiplicative

interaction terms with fasting time, and geocoding quality.
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Table 6.S7. Pathways associated to PM2.5 in EPIC

Pathway Overlap size Pathway size p-value

Nitrogen metabolism 4 4 0.0009
Glutamate metabolism 6 10 0.0011
Alkaloid biosynthesis II 4 6 0.0018

Alanine and Aspartate Metabolism 7 16 0.0022
Porphyrin metabolism 8 20 0.0026

Purine metabolism 10 27 0.0027
Histidine metabolism 7 17 0.0029

De novo fatty acid biosynthesis 6 14 0.0033
Pyrimidine metabolism 10 28 0.0035

Beta-Alanine metabolism 5 12 0.0057
Xenobiotics metabolism 14 45 0.0061

Tyrosine metabolism 22 76 0.0078
Arginine and Proline Metabolism 9 29 0.0114

Methionine and cysteine metabolism 10 33 0.0120
Caffeine metabolism 4 11 0.0178
Fatty acid activation 5 15 0.0180

Valine, leucine and isoleucine degradation 6 19 0.0182
Urea cycle/amino group metabolism 12 43 0.0204

Linoleate metabolism 6 20 0.0249
Butanoate metabolism 5 16 0.0255

Vitamin B9 (folate) metabolism 3 8 0.0292
Galactose metabolism 7 25 0.0324

Mummichog pathway enrichment test on the results from PM2.5 MWAS adjusted for age at recruitment, center of

recruitment, sex, BMI, smoking status, and education level.

Table 6.S8. Pathways associated to PNC in SAPALDIA

Pathway Overlap size Pathway size p-value

Linoleate metabolism 12 21 0.0007
De novo fatty acid biosynthesis 9 22 0.0014

Leukotriene metabolism 17 51 0.0014
Fatty acid activation 8 21 0.0023

Glycerophospholipid metabolism 12 36 0.0023
Glycosphingolipid metabolism 8 26 0.0079

Fatty Acid Metabolism 5 14 0.0083
C21-steroid hormone biosynthesis and metabolism 20 86 0.0396

Mummichog pathway enrichment test on the results from PNC MWAS adjusted for age, sex, study area, bench time,

fasting time, sine and cosine functions of venipuncture time with periods of 24 and 12 hours, their multiplicative

interaction terms with fasting time, and geocoding quality.
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Table 6.S9. Pathways associated to PNC in EPIC

Pathway Overlap size Pathway size p-value

Tyrosine metabolism 35 76 0.0010
Tryptophan metabolism 24 58 0.0011
Biopterin metabolism 7 11 0.0012

Glycerophospholipid metabolism 13 35 0.0022
Carnitine shuttle 7 19 0.0063

Valine, leucine and isoleucine degradation 7 19 0.0063
Linoleate metabolism 7 20 0.0084
N-Glycan biosynthesis 4 10 0.0142

Phosphatidylinositol phosphate metabolism 4 10 0.0142
Aminosugars metabolism 5 14 0.0146

Urea cycle/amino group metabolism 12 43 0.0193
Vitamin B3 (nicotinate and nicotinamide) metabolism 5 15 0.0208

Pyrimidine metabolism 8 28 0.0256
Porphyrin metabolism 6 20 0.0275
Butanoate metabolism 5 16 0.0291

Methionine and cysteine metabolism 9 33 0.0315
Hexose phosphorylation 4 12 0.0316

Glycosphingolipid metabolism 6 21 0.0367

Mummichog pathway enrichment test on the results from PNC MWAS adjusted for age at recruitment, center of

recruitment, sex, BMI, smoking status, and education level.

Table 6.S10. Pathways associated to LDSA in SAPALDIA

Pathway Overlap size Pathway size p-value

Linoleate metabolism 11 21 0.0009
Fatty acid activation 11 21 0.0009

Glycerophospholipid metabolism 15 36 0.0011
De novo fatty acid biosynthesis 9 22 0.0024

Leukotriene metabolism 15 51 0.0144
Selenoamino acid metabolism 4 10 0.0151

Fatty Acid Metabolism 5 14 0.0165

Mummichog pathway enrichment test on the results from LDSA MWAS adjusted for age, sex, study area, bench time,

fasting time, sine and cosine functions of venipuncture time with periods of 24 and 12 hours, their multiplicative

interaction terms with fasting time, and geocoding quality.
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Table 6.S11. Pathways associated to NO2 in SAPALDIA

Pathway Overlap size Pathway size p-value

Linoleate metabolism 10 21 0.0016
Biopterin metabolism 6 13 0.0056

Selenoamino acid metabolism 5 10 0.0059
Carnitine shuttle 10 26 0.0063

Glycerophospholipid metabolism 13 36 0.0068
Pyrimidine metabolism 12 33 0.0074

Drug metabolism - other enzymes 7 18 0.0119
Beta-Alanine metabolism 4 9 0.0199

Drug metabolism - cytochrome P450 13 42 0.0346
Fatty acid activation 7 21 0.0371

Mummichog pathway enrichment test on the results from NO2 MWAS adjusted for age, sex, study area, bench time,

fasting time, sine and cosine functions of venipuncture time with periods of 24 and 12 hours, their multiplicative

interaction terms with fasting time, and geocoding quality.

Table 6.S12. Pathways associated to NO2 in EPIC

Pathway Overlap size Pathway size p-value

Pyrimidine metabolism 8 28 0.0035
Urea cycle/amino group metabolism 11 43 0.0036

Carnitine shuttle 6 19 0.0040
Lysine metabolism 7 24 0.0041

Arginine and Proline Metabolism 8 29 0.0042
Butanoate metabolism 5 16 0.0065

Valine, leucine and isoleucine degradation 5 19 0.0158
Methionine and cysteine metabolism 7 33 0.0326

Mummichog pathway enrichment test on the results from NO2 MWAS adjusted for age at recruitment, center of

recruitment, sex, BMI, smoking status, and education level.
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Table 6.S13. Overlapping features in the pathways associated with air pollution in both

cohorts

Air pollution Pathway Overlap size #Features with ∆m/z < 10 ppm
SAPALDIA EPIC Italy Totala ∆RT < 0.1 minb

PM2.5 Linoleate metabolism 17 6 1 0
Fatty acid activation 10 5 1 0

PNC Linoleate metabolism 12 7 1 0
Glycerophospholipid metabolism 12 13 3 1d

Glycosphingolipid metabolism 8 6 0 0

LDSAc Linoleate metabolism 11 7 1 0
Glycerophospholipid metabolism 15 13 8 2d

NO2 Carnitine shuttle 10 6 1 0
Pyrimidine metabolism 12 8 2 0

atotal number of features with absolute difference in m/z smaller than 10 ppm between SAPALDIA and EPIC Italy.

bout of the number of features with Δm/z < 10 ppm, the number of features with absolute difference in retention time

smaller than 0.1 min between SAPALDIA and EPIC Italy. cLDSA in SAPALDIA compared with PNC in EPIC Italy.

dIncorrect annotation by Mummichog.

Table 6.S14. Pathways associated to AOA adjusted for PM2.5

Pathway Overlap size Pathway size p-value

Tryptophan metabolism 25 54 0.0007
Biopterin metabolism 9 13 0.0007

Vitamin B6 (pyridoxine) metabolism 4 6 0.0018
TCA cycle 4 8 0.0043

Hexose phosphorylation 5 12 0.0051
Glutathione Metabolism 4 10 0.0104

Lysine metabolism 7 22 0.0109
Leukotriene metabolism 14 51 0.0136
Aminosugars metabolism 8 29 0.0243

Drug metabolism - cytochrome P450 11 42 0.0268
Linoleate metabolism 6 21 0.0275
Butanoate metabolism 5 17 0.0302

De novo fatty acid biosynthesis 6 22 0.0365
Aspartate and asparagine metabolism 11 44 0.0403

Drug metabolism - other enzymes 5 18 0.0411
Fatty Acid Metabolism 4 14 0.0484

Urea cycle/amino group metabolism 8 32 0.0495
Vitamin E metabolism 8 32 0.0495

Mummichog pathway enrichment test on the results from AOA MWAS adjusted for age, sex, study area, bench time,

fasting time, sine and cosine functions of venipuncture time with periods of 24 and 12 hours, their multiplicative

interaction terms with fasting time, and PM2.5. The MITM pathway is in bold.
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Table 6.S15. Pathways associated to AOA adjusted for PNC

Pathway Overlap size Pathway size p-value

Biopterin metabolism 8 13 0.0008
Selenoamino acid metabolism 5 10 0.0027

Linoleate metabolism 8 21 0.0032
Fatty acid activation 8 21 0.0032

De novo fatty acid biosynthesis 8 22 0.0042
Xenobiotics metabolism 16 57 0.0104
Leukotriene metabolism 14 51 0.0159

Glycine, serine, alanine and threonine metabolism 8 28 0.0238
Tryptophan metabolism 14 54 0.0299

Drug metabolism - cytochrome P450 11 42 0.0340
C21-steroid hormone biosynthesis and metabolism 21 86 0.0472

Mummichog pathway enrichment test on the results from AOA MWAS adjusted for age, sex, study area, bench time,

fasting time, sine and cosine functions of venipuncture time with periods of 24 and 12 hours, their multiplicative

interaction terms with fasting time, and PNC. The MITM pathway is in bold.

Table 6.S16. Pathways associated to AOA adjusted for LDSA

Pathway Overlap size Pathway size p-value

Biopterin metabolism 8 13 0.0008
Glycine, serine, alanine and threonine metabolism 9 28 0.0053

Fatty acid activation 7 21 0.0066
Xenobiotics metabolism 16 57 0.0067

De novo fatty acid biosynthesis 7 22 0.0087
Squalene and cholesterol biosynthesis 11 41 0.0161

Tryptophan metabolism 14 54 0.0174
Linoleate metabolism 6 21 0.0221

C21-steroid hormone biosynthesis and metabolism 21 86 0.0258
Carnitine shuttle 7 26 0.0264

Drug metabolism - other enzymes 5 18 0.0338
Glycerophospholipid metabolism 9 36 0.0351

Fatty Acid Metabolism 4 14 0.0407
Drug metabolism - cytochrome P450 10 42 0.0481

Leukotriene metabolism 12 51 0.0488
Porphyrin metabolism 6 24 0.0496

Mummichog pathway enrichment test on the results from AOA MWAS adjusted for age, sex, study area, bench time,

fasting time, sine and cosine functions of venipuncture time with periods of 24 and 12 hours, their multiplicative

interaction terms with fasting time, and LDSA. The MITM pathways are in bold.
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Table 6.S17. Pathways associated to AOA adjusted for NO2

Pathway Overlap size Pathway size p-value

Biopterin metabolism 9 13 0.0007
Tryptophan metabolism 20 54 0.0009

Vitamin B6 (pyridoxine) metabolism 4 6 0.0019
Drug metabolism - cytochrome P450 13 42 0.0042

Hexose phosphorylation 5 12 0.0052
De novo fatty acid biosynthesis 6 22 0.0415

Drug metabolism - other enzymes 5 18 0.0488

Mummichog pathway enrichment test on the results from AOA MWAS adjusted for age, sex, study area, bench time,

fasting time, sine and cosine functions of venipuncture time with periods of 24 and 12 hours, their multiplicative

interaction terms with fasting time, and NO2.

Table 6.S18. Pathways associated to CCVD adjusted for PM2.5

Pathway Overlap size Pathway size p-value

De novo fatty acid biosynthesis 10 14 0.0004
Carnitine shuttle 11 19 0.0004

Starch and Sucrose Metabolism 7 11 0.0006
Hexose phosphorylation 7 12 0.0008

Phosphatidylinositol phosphate metabolism 6 10 0.0011
Tryptophan metabolism 22 58 0.0020
Fatty acid activation 7 15 0.0029

Lysine metabolism 10 24 0.0031
Caffeine metabolism 5 11 0.0077

Ascorbate (Vitamin C) and Aldarate Metabolism 7 18 0.0110
Glycolysis and Gluconeogenesis 4 9 0.0154

Fructose and mannose metabolism 4 9 0.0154
Glycerophospholipid metabolism 12 35 0.0161

Sialic acid metabolism 7 19 0.0169
Arginine and Proline Metabolism 10 29 0.0186

Linoleate metabolism 7 20 0.0253
Porphyrin metabolism 7 20 0.0253
Glutamate metabolism 4 10 0.0270

Glycosphingolipid metabolism 7 21 0.0367
Fatty Acid Metabolism 4 11 0.0445

Mummichog pathway enrichment test on the results from CCVD MWAS adjusted for age at recruitment, center of

recruitment, sex, BMI, smoking status, education level, and PM2.5. The MITM pathways are in bold.
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Table 6.S19. Pathways associated to CCVD adjusted for PNC

Pathway Overlap size Pathway size p-value

Tyrosine metabolism 35 76 0.0010
Tryptophan metabolism 24 58 0.0011
Biopterin metabolism 7 11 0.0012

Glycerophospholipid metabolism 13 35 0.0022
Carnitine shuttle 7 19 0.0063

Valine, leucine and isoleucine degradation 7 19 0.0063
Linoleate metabolism 7 20 0.0084
N-Glycan biosynthesis 4 10 0.0142

Phosphatidylinositol phosphate metabolism 4 10 0.0142
Aminosugars metabolism 5 14 0.0146

Urea cycle/amino group metabolism 12 43 0.0193
Vitamin B3 (nicotinate and nicotinamide) metabolism 5 15 0.0208

Pyrimidine metabolism 8 28 0.0256
Porphyrin metabolism 6 20 0.0275
Butanoate metabolism 5 16 0.0291

Methionine and cysteine metabolism 9 33 0.0315
Hexose phosphorylation 4 12 0.0316

Glycosphingolipid metabolism 6 21 0.0367

Mummichog pathway enrichment test on the results from CCVD MWAS adjusted for age at recruitment, center of

recruitment, sex, BMI, smoking status, education level, and PNC. The MITM pathway is in bold.
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Table 6.S20. Pathways associated to CCVD adjusted for NO2

Pathway Overlap size Pathway size p-value

De novo fatty acid biosynthesis 10 14 0.0006
Starch and Sucrose Metabolism 7 11 0.0011

Hexose phosphorylation 7 12 0.0015
Phosphatidylinositol phosphate metabolism 6 10 0.0019

Carnitine shuttle 9 19 0.0026
Tryptophan metabolism 22 58 0.0035

Fatty acid activation 7 15 0.0050
Lysine metabolism 10 24 0.0054

Linoleate metabolism 8 20 0.0119
Caffeine metabolism 5 11 0.0136

Ascorbate (Vitamin C) and Aldarate Metabolism 7 18 0.0192
Glycolysis and Gluconeogenesis 4 9 0.0270

Fructose and mannose metabolism 4 9 0.0270
Glycerophospholipid metabolism 12 35 0.0274

Sialic acid metabolism 7 19 0.0292
Porphyrin metabolism 7 20 0.0433

Mummichog pathway enrichment test on the results from CCVD MWAS adjusted for age at recruitment, center of

recruitment, sex, BMI, smoking status, education level, and NO2. The MITM pathway is in bold.

Table 6.S21. Pathways associated to AOA adjusted for PNC and in addition for current

asthma medication — sensitivity analysis

Pathway Overlap size Pathway size p-value

Biopterin metabolism 9 13 0.0007
Linoleate metabolism 10 21 0.0010

Drug metabolism - cytochrome P450 14 42 0.0028
Xenobiotics metabolism 18 57 0.0029

Fatty acid activation 8 21 0.0031
De novo fatty acid biosynthesis 8 22 0.0040
Selenoamino acid metabolism 4 10 0.0111

Fatty Acid Metabolism 5 14 0.0115
Drug metabolism - other enzymes 6 18 0.0118

Tryptophan metabolism 15 54 0.0131
Glycerophospholipid metabolism 10 36 0.0202

Carnitine shuttle 7 26 0.0370

Mummichog pathway enrichment test on the results from AOA MWAS adjusted for age, sex, study area, bench time,

fasting time, sine and cosine functions of venipuncture time with periods of 24 and 12 hours, their multiplicative

interaction terms with fasting time, PNC, and current asthma medication. The MITM pathways found from the main

analysis are in bold.
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Table 6.S22. Pathways associated to AOA adjusted for LDSA and in addition for current

asthma medication — sensitivity analysis

Pathway Overlap size Pathway size p-value

Linoleate metabolism 11 21 0.0012
Biopterin metabolism 8 13 0.0012

Xenobiotics metabolism 19 57 0.0062
Fatty acid activation 8 21 0.0082

De novo fatty acid biosynthesis 8 22 0.0113
Drug metabolism - cytochrome P450 13 42 0.0217

Tryptophan metabolism 16 54 0.0283
Fatty Acid Metabolism 5 14 0.0292

Drug metabolism - other enzymes 6 18 0.0325

Mummichog pathway enrichment test on the results from AOA MWAS adjusted for age, sex, study area, bench time,

fasting time, sine and cosine functions of venipuncture time with periods of 24 and 12 hours, their multiplicative

interaction terms with fasting time, LDSA, and current asthma medication. The MITM pathway found from the main

analysis is in bold.

Table 6.S23. Pathways associated to CVD adjusted for PNC — sensitivity analysis ex-

cluding cerebrovascular disease cases

Pathway Overlap size Pathway size p-value

Tyrosine metabolism 18 76 0.0009
Biopterin metabolism 5 11 0.001

Tryptophan metabolism 13 58 0.001
Carnitine shuttle 6 19 0.001

Linoleate metabolism 6 20 0.002
Porphyrin metabolism 4 20 0.02

Glycerophospholipid metabolism 6 35 0.02
Glycosphingolipid metabolism 4 21 0.02

Xenobiotics metabolism 7 45 0.03

Mummichog pathway enrichment test on the results from CVD MWAS (cerebrovascular disease cases excluded) adjusted

for age at recruitment, centre of recruitment, sex, BMI, smoking status, education level and PNC. The MITM pathway

is in bold.
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Table 6.S24. Pathways associated to CVD adjusted for NO2 — sensitivity analysis ex-

cluding cerebrovascular disease cases

Pathway Overlap size Pathway size p-value

Starch and Sucrose Metabolism 7 11 0.0009
Phosphatidylinositol phosphate metabolism 6 10 0.0012

Hexose phosphorylation 6 12 0.0019
De novo fatty acid biosynthesis 6 14 0.0035

Caffeine metabolism 5 11 0.0041
Linoleate metabolism 7 20 0.0074

Arginine and Proline Metabolism 9 29 0.0109
Tryptophan metabolism 16 58 0.0158

Carnitine shuttle 6 19 0.0179
Lysine metabolism 7 24 0.0237

Galactose metabolism 7 25 0.0311
Glycosphingolipid metabolism 6 21 0.0326

Glycerophospholipid metabolism 9 35 0.0457

Mummichog pathway enrichment test on the results from CVD MWAS (cerebrovascular disease cases excluded) adjusted

for age at recruitment, centre of recruitment, sex, BMI, smoking status, education level and NO2. The MITM pathway

is in bold.

Table 6.S25. Comparison of the MWAS results with or without further adjustment for

BMI or education level — AOA analysis

Adjusted for BMI Adjusted for education level
Pearson Spearman Pearson corr.

MWAS correlation correlation correlation correlation
of coefficients of p-values of coefficients of p-values

PM2.5 1.000 (u0) 0.996 1.000 (u0) 0.996
1.000 (u1) 1.000 (u1)

PNC 1.000 0.995 1.000 0.991
LDSA 0.997 0.995 1.000 0.992
NO2 0.995 0.995 0.997 0.996
AOA 0.983 0.933 1.000 0.998

AOA, adj. for PM2.5 0.984 0.937 1.000 0.998
AOA, adj. for PNC 0.970 0.901 0.997 0.991

AOA, adj. for LDSA 0.971 0.907 0.997 0.988
AOA, adj. for NO2 0.982 0.930 1.000 0.998
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7. DISCUSSION

7.1 Main findings

The aim of this PhD project was to contribute to better understanding the role of obesity

and air pollution exposure in asthma etiology, taking into account asthma heterogeneity.

Following sections will discuss the contributions this PhD project made towards the aim.

7.1.1 Importance of distinguishing asthma phenotypes

All the findings presented in this PhD project support the importance of distinguishing

asthma phenotypes. Among the self-reported ever asthma cases in SAPALDIA, LCA

identified various asthma phenotypes which differed by disease activity, atopy, and age

of disease onset. The relatively severe phenotypes but not the mild phenotypes showed

association with obesity (Article I). The relatively severe phenotypes were characterized

by multiple persistent asthma symptoms, lacking atopy, and late-onset of the disease.

In the pathway analysis of DNA methylation as effect modifier of obesity on asthma,

the DNA methylation in inflammation-related genes modified the effect of BMI on non-

atopic adult-onset asthma (Article II). In the metabolomics pathway analysis, fatty acid

metabolism-related pathways appeared to be meeting-in-the-middle, i.e. mediating the

air pollution exposure to adult-onset asthma (Article III).

The finding that the association with risk factors and the pathways involved in the

157



Discussion

association differed by asthma phenotypes indicates that the different phenotypes are

potentially distinct disease entities with different etiology. It also emphasizes the impor-

tance of refined phenotype information to take into account asthma phenotypes, although

there is yet no consensus how to classify them.

7.1.2 Asthma-obesity association

Confirming the accumulating evidence in literature (Beuther and Sutherland, 2007, Egan

et al., 2013, Peters et al., 2018), a strong positive association between obesity and the

relatively severe asthma phenotypes identified by LCA was observed. Although the cross-

sectional design hinders causal interpretation of the association, this work provided evi-

dence against potential reverse causation, i.e. asthma symptoms lead to physical inactivity

and in turn to obesity. The association between obesity and the LCA-identified severe

phenotypes remained significant when the analysis was restricted to the subjects with suf-

ficient physical activity. The association became stronger in the subjects who had been

overweight or obese over 20 years, which can hardly be explained by reverse causation.

Considering the recent Mendelian randomization evidence (Granell et al., 2014, Skaaby et

al., 2017), it seems plausible to consider obesity leading to asthma rather than the other

way around. Understanding the mechanism behind the association could also strengthen

the causal interpretation. The pathway level evidence from Article III provided plau-

sible explanation of the mechanism linking obesity to asthma, strengthening the causal

interpretation.

7.1.3 BMI not the optimal metric of obesity

Out of the five obesity measures examined, i.e. BMI, percent body fat (PBF), waist cir-

cumference (WC), waist-hip ratio (WHR), and waist-height ratio (WHtR), the strongest
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association to LCA-identified severe asthma phenotypes was observed with PBF, and the

association was independent of BMI (Article I). The pathway enrichment analysis found

the DNA methylation of NLRP3-IL1B-IL17 axis as effect modifier of BMI change over

10 years on non-atopic adult-onset asthma, while did not as effect modifier of BMI. The

findings indicated that compared to BMI, PBF and BMI change over 10 years captured

distinct features of obesity as a risk factor for asthma. As a metric of obesity, BMI has

limitations: it cannot distinguish fat mass from lean mass, cannot take into considera-

tion fat distribution and body shape. WHR is considered better than BMI to capture

fat distribution. However, fat distribution varies widely across ethnic groups and there-

fore WHR might not work for all ethnic groups. PBF, estimated based on bioelectric

impedance measurements, relates more directly to adiposity than BMI. Longitudinal as-

sessment of BMI, e.g. BMI change over 10 years, possibly captures accumulating excess

fat in late adulthood better than cross-sectional BMI. BMI tends to increase as people age

and the weight gain in late adulthood is more likely due to fat accumulation (Newman et

al., 2005). It is also not uncommon for elderly to lose weight and it is more likely due to

muscle loss (Kim et al., 2017, Santanasto et al., 2017).

7.1.4 Asthma-air pollution association

A strong positive association was observed between UFP exposure and adult-onset asthma

among non-smoking subsamples of SAPALDIA3. PM2.5 or NO2 exposure did not show

a strong association with adult-onset asthma. Multipollutant models provided evidence

that the UFP association was independent of other pollutants. This finding is believed to

contribute to the literature where the conclusive evidence of the UFP effects on adult-onset

asthma has been lacking. Although cross-sectional design of the study did not allow causal

interpretation of the association, untargeted metabolomics analysis of the peripheral blood
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in the same subsamples found Linoleate metabolism and Glycerophospholipid metabolism

as MITM pathways, providing evidence towards causality.

7.1.5 Inflammation: shared mechanism linking various expo-

sures, asthma, and comorbidities

The candidate pathway analysis of genome-wide DNA methylation demonstrated that the

inflammation-related genes modify the effects of BMI on non-atopic adult-onset asthma.

This finding was further supported by the agnostic pathway analysis of differentially

methylated regions. The agnostic pathway analysis of untargeted blood metabolomics

identified Linoleate metabolism as MITM pathway linking air pollution exposure not

only to adult-onset asthma but also to cardio- and cerebrovascular diseases. Previous

in vitro studies demonstrated the pro-inflammatory role of linoleate (Maruyama et al.,

2014, Mizuta et al., 2015), although its role in the disease etiology is yet inconclusive.

It is conceivable that inflammation conveys the effects of various insults, endogenous

(e.g. obesity) and exogenous (e.g. air pollution) alike. The inflammation can be considered

as the shared mechanism of the aging phenome, in line with the previous findings from

meta-analyses of GWAS reporting pleiotropic loci associated with multiple NCDs around

inflammation-related genes (Jeck et al 2012; He et al 2016). This finding is also relevant

to LMICs suffering from the dual burden of diseases, i.e. the continuing high burden of

infectious disease including tuberculosis, HIV/AIDS, and parasitic diseases in combination

with the rapidly increasing burden of NCDs (Young et al., 2009, Remais et al., 2013). The

associations between the infectious diseases and the NCDs are in many cases potentially

bidirectional (Oni and Unwin, 2015). Tuberculosis and diabetes, for example, have long

been associated and while the association is often interpreted that diabetes increases the

risk of tuberculosis infection, it is also conceivable that tuberculosis infection increases

160



Discussion

the risk of diabetes via inflammation or more broadly innate immune response (Pickup,

2004, Young et al., 2009).

7.1.6 Innate immunity: a plausible mechanism behind the link

between obesity and non-atopic asthma

The finding from mice experiments that obesity-induced airway hyperresponsiveness oc-

curred via the NLRP3-IL1B-IL17 axis situated in the center from the beginning of this

PhD project. Obesity-related asthma has been considered as a distinct asthma phenotype

and reported to be more likely non-atopic and to have neutrophilic airway inflammation

(Fenger et al., 2012, Zheng et al., 2016). The candidate pathway analysis of DNA methy-

lation on the NLRP3-IL1B-IL17 axis-related genes provided novel evidence that this axis

may also play a role as a link between obesity and non-atopic adult-onset asthma. In-

terestingly, the NLRP3-IL1B-IL17 axis was found enriched only when the model was not

adjusted for neutrophil counts. This was in line with the literature that the effect of IL17

on asthma was mediated by recruitment and survival of neutrophils (Annunziato et al.,

2015, Linden and Dahlen, 2014).

7.2 Strengths and limitations

This PhD project relied on the high-quality, rich data from SAPALDIA: three surveys on

the same subjects over two decades; refined information on respiratory health, allowing to

investigate various asthma phenotypes; dense information on risk factors including obesity

and life style; individual level estimates of various air pollutants from high resolution

models; multiple omics measurements on the same subsamples. The omics analyses were

most likely underpowered as they were conducted only for the subsamples of relatively
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small size. The limited statistical power may have led to false negative findings in the

omics analyses. The limited statistical power was also one of the reasons unable to

investigate broader spectrum exposures. However, the low power was at least in part

overcome by applying multivariate approaches such as pathway enrichment tests and

DMR approach in methylome analysis. Thanks to the collaboration with partners of a

variety of expertise, we could have made use of state-of-the-art technologies and statistical

methods, and allowed investigation of broader phenome as done in the metabolomics

study (Article III). At the same time, this PhD project has been the incubator of such

collaboration, which will serve future research.

Although SAPALDIA offers longitudinal data, we used cross-sectional designs mainly

because of the difficulties in defining incident cases of asthma. This made it difficult

to draw causal inference. Throughout this PhD project, therefore, the effort has been

made not to overly interpret the findings as causal. However, it should still be said that

the findings contributed to strengthening the causal reasoning. Causality in observational

studies can be best conceptualized by counterfactual model. Risk factors of NCDs such as

asthma are neither necessary nor sufficient and often have small effect size. Implementing

counterfactual models for NCDs requires infeasibly large sample size, if not impossible.

Therefore causal inference in the NCD epidemiology has to rely on the pieces of evidence

coming from various fields – in vitro studies, animal studies, clinical trials, and cohort

studies. The MITM concept applied in Article III, for example, is only associational per

se but can still be understood as a tool to strengthen causal interpretation on the basis

of prior knowledge. It should be noted that cohort studies are often the only source of

evidence for causal effects of certain exposures, e.g. air pollution, for which experimental

studies are not ethically acceptable or feasible. Such comprehensive consideration for

causality has been already practiced by the IARC in the evaluation process of carcinogen
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classification: for evaluation of the evidence, a variety of factors are taken into consid-

eration, including study size, sound methodology, and replication across various study

designs with emphasis on epidemiological studies (IARC, 2006).

7.3 Research implications

We confirmed the findings from previous studies that obesity-induced asthma is more

likely to be non-atopic and adult-onset and provided novel evidence of inflammation as

a potential mechanism behind the obesity-induced non-atopic adult-onset asthma. The

findings demonstrated the importance of distinguishing asthma phenotypes in under-

standing of the etiology and the necessity of refined information collected from cohort

participants to allow such investigation. This PhD project exemplified the applicability

of omics analysis to obtain insights into the NCD etiology and provided a proof-of-concept

for the investigation of common pathways shared in aging phenome. Further research,

including Mendelian randomization studies, is warranted to consolidate the causal infer-

ence of the mechanistic findings reported here. Thanks to the unprecedented genetic data,

for the first time we epidemiologists now possess a tool for causal inference in observa-

tional study settings. Mendelian randomization has been indeed increasingly applied in

epidemiology (Timpson et al., 2011, Granell et al., 2014, Richmond et al., 2014, Millard

et al., 2015, Skaaby et al., 2017), and the literature will only grow. However, it should

be borne in mind that instrument variables are not available for all the risk factors of

public health relevance. For example, air pollution exposure cannot be expected to have

genetic variants as instrument variables. Such lack of instrument variables and hence

inapplicability of Mendelian randomization should not discourage the research efforts to

elucidate the causal effects of air pollution exposure. Moreover, future research should
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note that people are inevitably exposed to multiple exposures. Refined and validated ex-

posure assessments, possibly accompanied with multiple omics analyses, will help study

such a mixture of exposures.

7.3.1 Lessons learnt from EXPOsOMICS

The large exposome research consortium, EXPOsOMICS, exemplified how to implement

exposome research as well as what challenges such research faces. The biggest challenge

was the limited availability of harmonized data with sufficient power (Vineis et al., 2016).

Considering the small effect size of the NCD risk factors and the broad spectrum of ex-

posures that the exposome research aims to cover, large sample size is required. Besides

the budding initiatives for mega-cohorts – the All of Us in the United States (NIH, 2018),

the National Cohort (NAKO) in Germany (GNC Consortium, 2014), the CONSTANCES

in France (Zins and Goldberg, 2015), the China Kadoorie Biobank (Chen et al., 2011),

among others – will facilitate future research, for the time being the exposome research

needs to utilize consortium comprising of multiple cohorts. The exposome concept does

not only cover the full spectrum of exposures but also spans the life course of the ex-

posures from in utero to late adulthood. In order to capture the multiple key stages of

life, albeit not the full life course, a consortium comprising multiple cohorts of various

age groups – birth cohorts, children cohorts, adult cohorts, etc. – is inevitable (Wild,

2012). Even though multiple cohorts participated in the EXPOsOMICS, it was not al-

ways straightforward to integrate the data, which had been collected from the different

cohorts before the consortium. Efforts were made to ensure that the data newly collected

within the consortium were standardized across the participating cohorts, for example by

developing West-European LUR models for PM2.5 and NO2 (de Hoogh et al., 2016, van

Nunen et al., 2017). Careful design, management, and communication – in particular the

164



Discussion

interdisciplinary collaboration between epidemiologists, fieldworkers, and laboratory sci-

entists at each step of data collection including storage, processing, storage, and sharing

– were of paramount importance to ensure the harmonized, high quality data in such a

large, multi-center, international consortium.

7.4 Public health implications

Given the escalating prevalence of obesity, the obesity-asthma association implies public

health concerns not only in HICs like Switzerland but also in LMICs. Over the last

decades obesity has been growing rapidly in LMICs, contributing to huge burden of NCDs

(Ford et al., 2017, Forouzanfar et al., 2016). Considering that the air pollution is often

poorly controlled in LMICs, the strong association between UFP and asthma we observed

casts serious concerns in LMIC settings. NCD epidemic can form a vicious circle in the

resource-deficient settings, i.e. poverty drives unhealthy life style leading to higher risk

of NCDs and productivity loss and health costs due to the NCDs in turn aggravate the

poverty (WHO, 2014).

NCDs often require life-long, expensive treatments, posing serious economic burden

not only to the affected individuals and households but also to the societies. Treatment-

focused strategies would not be affordable in the HICs and the LMICs alike, given the

alarmingly increasing health costs in the HICs and the already stretched, fragile health

systems in the LMICs. The most cost-effective strategy against NCDs is primary pre-

vention. And the primary prevention must be implemented at the society level, because

many NCD risk factors are under influence of the infrastructure, law system, and cul-

ture within the society. Air pollution exposure can be little modified at the individual

level. Obesity is often considered as a result of genetics and behavior but societal factors
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should not be ignored: public transport, urban structure, physical activity education in

school, regulation on food industry, labor law, etc. Tailoring such systemic factors should

be informed by the state-of-the-art evidence of the disease etiology. Considering that

most NCD risk factors have small effect size and work in concert, systems approach is

imperative for NCD etiology research.

Omics analysis alongside with investigation of high quality information other than

omics can provide a new winder to capture the patterns of multiple exposures and con-

tribute to better understanding of the disease etiology. Elucidation of the shared mech-

anism for aging phenome can critically benefit prevention and intervention strategies to

combat the NCD epidemic. Moreover, if there is a shared mechanism in the association

between multiple exposures and multiple diseases, the burden of disease estimated must

be informed accordingly, as the burden of disease could have been underestimated in case

of synergistic effects of various exposures on comorbidities or could have been overesti-

mated in case of compensating/saturating effects. Omics analysis can also offer novel

therapy options as exemplified by several epigenetic drugs (Heerboth et al., 2014, Tough

et al., 2016).

7.5 Conclusion and future work

Making use of the rich, high quality data in SAPALDIA, we demonstrated as an example

how to take a step forward to mechanistic understanding of asthma, and at the same

time exemplified the usefulness of cohort studies with refined phenotype information ac-

companied with biobank. We also provided a proof-of-concept for inflammation as the

shared mechanism of asthma and cardiovascular diseases, major components of NCD epi-

demic. Before these findings actually benefit global public health, future research should
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replicate and refine the mechanistic understanding; consolidate its causality by Mendelian

randomization studies; and expand to broader spectrum of exposures taking into account

their correlation structure and interactions. Importantly, exposures that societies rather

than individuals have leverage on, e.g. urban structure and socioeconomic status should

be further investigated as NCD risk factors, considering that poverty is a consequence

as well as a cause of NCDs. This mandates the cohort studies in various populations

including LMICs because each population is positioned in a specific setting with differ-

ent spectrum of exposures and hence findings from one specific population are unlikely

generalized into other populations. The pursuit of mechanistic understanding of NCDs,

as this PhD project aimed, can be considered as the first step of translational approaches

we all do in every sector in public health: innovations shall be validated and applied in

real-world settings to improve public health.
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