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Thesis Summary 1 

THESIS SUMMARY 

The overall perspective of my PhD project was to uncover the mechanisms that generate DNA damage-

dependent chromatin mobility and to identify the players implicated in this process. To tackle this problem, 

I investigated the physical characteristics and composition of chromatin under DNA damaging conditions. 

I see my PhD project divided into two mayor themes: 

(I) Identifying physical chromatin changes under DNA damaging conditions (mainly using microscopic 

assays) 

(II) Addressing changes in chromatin protein composition upon DNA damage and DNA damage 

checkpoint activation (using Western blot analysis, genome-wide nucleosome mapping, microscopy and 

quantitative mass spectrometry) 

This thesis consists of six chapters. Chapter 1 introduces the structure and function of chromatin and 

shows how it changes in response to DNA damage. Chapter 2 gives an in-depth overview about the 

function of chromatin remodeling enzymes during DNA double-strand break repair. Chapters 3-5 

summarize my main scientific contributions. In Chapter 6, I discuss the findings of my work, draw 

conclusions and present future prospectives. 

My main project led to the finding that remodeling enzymes trigger chromatin mobility in response to 

DNA damage by a mechanism that involves the proteasomal degradation of nucleosomes. Nucleosomes 

are essential for proper chromatin organization and the maintenance of genome integrity. Histones are 

post-translationally modified and often evicted at sites of DNA breaks, facilitating recruitment of repair 

factors. Whether such chromatin changes are localized or genome-wide has been a question of debate. 

Using a range of quantitative methods, we show that histone levels drop by 20-40% in response to DNA 

damage, due to eviction from chromatin by the INO80 remodeler and degradation by the proteasome. 

Chromatin decompaction and increased fiber flexibility accompany histone degradation, but also occur in 

the absence of damage when histone levels are reduced by other means. As a result, recombination rates 

and DNA repair focus turnover are enhanced. Thus, we propose that a generalized reduction in 

nucleosome occupancy is an integral part of the DNA damage response, providing mechanisms for 

enhanced chromatin mobility and homology search.  
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CHAPTER 1: INTRODUCTION TO HISTONE DYNAMICS IN DNA DAMAGE 
AND REPAIR 

Chromatin structure 

Nucleosomes: The building blocks of chromatin 

 The organization of genomic DNA into chromatin is common amongst all eukaryotes, with its 

principles of architecture being conserved from yeast to man. The most basic and repeating unit of 

chromatin is the nucleosome which is formed by 146 base pairs (bp) of DNA that wrap around an 

octameric core of histone proteins (Fig. 1a). A canonical nucleosome is composed of the four core 

histones H2A, H2B, H3 and H4. Histones are small, positively charged proteins containing both an N-

terminal histone tail and a central histone fold domain (HFD). The hydrophobic HFD serves as 

dimerization module prompting the formation of H2A-H2B and H3-H4 dimers, whereas a positively 

charged histone surface stabilizes histone-DNA interactions (for review, see (Malik and Henikoff 2003); 

(Khorasanizadeh 2004) and (Talbert, Ahmad et al. 2012)). Canonical nucleosome core particles contain 

two H3-H4 and two H2A-H2B dimers, forming an inner (H3-H4)2 tetrameric core flanked by two separate 

2x(H2A-H2B) dimers (Luger, Mader et al. 1997). In contrast to this compact core, the flexible and lysine-

rich histone tails extend away from the nucleosome core particle. 

 These core histones are among the most highly conserved proteins in all eukaryotes (Malik and 

Henikoff 2003) and their evolutionary origin can be tracked back to archaea (Sandman, Krzycki et al. 1990) 

where, in the case of M. fervidus, tetrameric, nucleosome-like histone structures were found to bind and 

compact DNA (Pereira, Grayling et al. 1997). Within each histone type the primary amino acid sequence 

is highly conserved across species, yet the level of conservation among all histone variants is most apparent 

with respect to the secondary and tertiary protein structure of the HFD (Arents and Moudrianakis 1995) 

which defines the common nominator for all histones. 

 Next to histones, high mobility group proteins are the second most abundant proteins found on 

chromatin (for review see (Travers 2003) and (Bianchi and Agresti 2005)). Small, highly charged proteins, 

they have a variety of different functions ranging from the establishment of proper chromatin architecture 

to the control of transcriptionally active and inactive chromatin regions. There are three major families of 

HMG proteins: HMGA, HMGN, HMGB. HMGA proteins contain an AT hook and bind to AT rich 

DNA sequences. HMGN proteins bind inside nucleosomes. HMGB proteins contain  
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Figure 1 Chromatin structure and function. (a) Overview of nucleosomes as the building blocks of chromatin. 
Nucleosomes come in many different “flavors” owing to a multitude of histone variants and histone tail modifications. 
(b) Illustrates the role of histone chaperones in protecting newly synthesized histones and assembling them into 
nucleosomes. (c) Chromatin remodeling complexes and their role in organizing nucleosomes along DNA. (d) Chromatin 
adopts a scaffold structure. Chromatin has roles during (e) DSB repair, forms (f) different states of compaction and fold 
into (g) higher-order structures. (h) Chromatin organization and subcompartmentalization of the yeast nucleus. (i) 
Different degrees of chromatin compaction and its local environment impact a variety of cellular processes  
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HMG boxes, 80 amino acid domains that bind to the minor groove of DNA (Bianchi and Agresti 2005, 

Malarkey and Churchill 2012). HMGB1 has well studied roles in enhancing transcription (Celona, Weiner 

et al. 2011). Yeast has two HMGB homologues called Nhp6 A and B (non-histone protein) (Stillman 

2010). 

Histone variants 

Despite the high level of conservation among core histones, nucleosomes can come in many different 

flavors owing to the existence of additional, non-canonical histone variants and the vast combinatorial 

variety of post-translational modifications (PTMs) (Fig. 1a, reviewed in (Campos and Reinberg 2009)). 

Lower eukaryotes like the budding yeast Saccharomyces cerevisiae, express a single version of each inner-core 

(H3, H4) and outer-core (H2A, H2B) histone alongside with two non-canonical histone variants Htz1 and 

Hho1. Their counterparts in higher eukaryotes, H2A.Z and H1, are highly conserved. H1 is a special 

histone as it lacks the HDF domain and serves as a unique structural linker histone. While the exact role 

of Hho1 in yeast remains somewhat enigmatic, H1 is an abundant component of higher eukaryotic 

chromatin, where it associates with the linker DNA between nucleosomes (Fig. 1). This impacts chromatin 

structure, compaction and folding (Panday and Grove 2017). In contrast to H1, all other histone variants 

retain the typical HFD, but differ in other aspects of amino acid sequence. Few H2B and H4 variants exist, 

while there are multiple H2A and H3 variants: H2A.Z is an abundant H2A variant found throughout 

chromatin where it accumulates at +1 nucleosome in promoter regions (Guillemette, Bataille et al. 2005, 

Li, Eirin-Lopez et al. 2005, Raisner, Hartley et al. 2005, Albert, Mavrich et al. 2007), and, to a lesser extent, 

throughout gene bodies. The pattern of H2A.Z positioning over coding regions and near gene promoters 

clearly highlights its role in transcriptional regulation, which is well documented in both yeast and 

mammalian cells (Rando and Winston 2012). In addition to the role in transcription, various reports 

implicate H2A.Z or Htz1 in DNA repair pathways (Kalocsay, Hiller et al. 2009, Morillo-Huesca, Clemente-

Ruiz et al. 2010). Notably, yeast htz1 deletion alleles are hypersensitive to DNA damaging agents (Kalocsay, 

Hiller et al. 2009). This hypersensitivity probably reflects indirect effects on transcriptional as well as direct 

effects on repair. Besides H2A.Z, mammals, flies and worms express H2A.X, another H2A variant. H2A.X 

does not significantly differ from the canonical H2A except for an additional C-terminal motif. H2A.X is 

found uniformly along chromatin, and its most prominent feature is that it can be phosphorylated on a C-

terminal serine residue in response to DNA damage. In humans, H2A.X phosphorylation occurs at serine 

S139 generating γH2A.X, while in yeast the canonical H2A contains a serine at S129 that serves the same 

role, generating γH2A (Rogakou, Pilch et al. 1998, Downs, Lowndes et al. 2000). Two additional H2A 

variants, macroH2A and H2A.Bbd (Barr body deficient), are found exclusively in mammals. H2A.Bbd 



6 Chapter 1: Introduction to Histone Dynamics in DNA Damage and Repair 

expression is restricted to brain tissue and testes where its function remains largely unknown (Campos and 

Reinberg 2009). Both macroH2A and H2A.Bbd fail to fully accommodate within the nucleosome particle. 

Therefore, they are believed to confer a more open nucleosomal state (Zhou, Fan et al. 2007) (Luger, 

Dechassa et al. 2012). Interestingly, macroH2A was found to bind chromatin in a Poly(ADP-ribose) 

(PAR)-dependent manner (Timinszky, Till et al. 2009, Khurana, Kruhlak et al. 2014) and accumulate at 

DNA double-strand breaks (DSBs) as well as UV damaged sites (Xu, Xu et al. 2012).  

 With respect to histone H3, three different variants (H3.1, H3.2 and H3.3) are found in all higher 

eukaryotes, where H3.1 and H3.2 are synthetized and loaded during DNA replication. In contrast, the 

histone variant H3.3 is expressed and deposited into chromatin throughout the cell cycle in a transcription-

independent manner  (Gurard-Levin, Quivy et al. 2014)). Yeast only use one histone H3.3-like variant for 

both pathways. Finally, centromere-specific H3 variants (CenpA in humans and Cse4 in budding yeast) 

define centromeric regions for proper chromosome function and segregation. 

Histone post-translational modifications 

 Histone variants play an important role in diversifying nucleosome structure, providing a means to 

modulate nucleosome composition and compaction along the genome (Fig. 1a). They respond to the 

genomic context, while generating a nucleosomal context. An additional layer of nucleosome modifications 

is achieved by post-translationally modifying histone tails, in particular the N-terminal tails of histones H3 

and H4 (Campos and Reinberg 2009) and (Zentner and Henikoff 2013). Based on their mode of action, 

the impact of histone PTMs on chromatin structure can be divided into three categories: intrinsic, extrinsic 

or effector-mediated. Intrinsic effects directly influence physical nucleosome stability by altering histone-

histone or histone-DNA interactions. This depends on the localization of the modified residue within the 

nucleosome core particle. Histone PTMs that act extrinsically on chromatin change inter-nucleosomal 

contacts and thereby affect higher order chromatin structure and organization. The effector-mediated 

impact describes chromatin changes which arise though the recruitment and action of chromatin-

modifying proteins to histone PTMs. In all cases, histone modifying enzymes like acetyltransferases 

(HATs) and methyltransferases (HMTs) catalyze the covalent attachment of acetyl and methyl moieties to 

lysine residues. This neutralizes positive charges and regulates the association of chromatin binding 

proteins.  

 Many experiments, ranging from early chromatin fractionation (Hebbes, Clayton et al. 1994) to 

genome-wide ChIP-sequencing (Wang, Zang et al. 2008), have identified highly repetitive and 

transcriptionally silent heterochromatin as a hypoacetylated domain. Depending on different subtypes of 
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heterochromatin, the histones can be further enriched for either H3 lysine 9 di- or tri-methylation 

(H3K9me2/3), which recruits heterochromatin protein 1 (HP1), or for H3K27me3, which recruits the 

Polycomb repressive complex 1 (PRC1) (Nielsen, Oulad-Abdelghani et al. 2001, Jacobs and 

Khorasanizadeh 2002, Fischle, Wang et al. 2003). Transcriptionally silent heterochromatin generally also 

assumes a specific spatial distribution within the nuclear space. Repressive, H3K9me3-enriched chromatin 

is associated with the nuclear envelope, forming lamin associated domains (LADs). In humans, lamina 

association may be achieved through direct interactions of HP1 with integral lamin B-type receptors or 

through binding of barrier-to-autointegration factor (BAF) to LEM-domain proteins (Towbin, Gonzalez-

Sandoval et al. 2013)). In embryos of the nematode C. elegans, a nuclear envelope protein and direct 

H3K9me3 reader called CEC-4, bridges between heterochromatin and the inner nuclear membrane 

(Gonzalez-Sandoval, Towbin et al. 2015). 

 Taken together, these hallmarks of heterochromatin confer a closed chromatin state which protects 

vulnerable parts of the genome from rearrangements by preventing illegitimate transcription or deleterious 

recombination events (reviewed in Zeller and Gasser, in prep.). In contrast, euchromatin generally excludes 

H3K9 methylation. Indeed, transcriptionally active regions are found in a hyperacetylated state which 

promotes chromatin unfolding and favors binding of the transcription machinery. Transcribed genes show 

an enrichment of H4K16ac and H3K4me3 within their 5’ region whereas H3K36me3 accumulates towards 

the 3’ end of the gene (Hebbes, Clayton et al. 1994). Such active modifications keep gene bodies open for 

transcription factor binding and the successful assembly of the transcription machinery. 

 Histone modifications also have important functions at sites of DNA lesions after genotoxic events. 

The most prominent modification is the phosphorylation of histone variant H2A.X on its C-terminal 

serine by the checkpoint kinases ATR and ATM (Mec1 and Tel1 in yeast) (Rogakou, Pilch et al. 1998, 

Downs, Lowndes et al. 2000). After initial phosphorylation, γH2A.X spreads from the site of damage 

creating a positive feedback loop which recruits various repair factors and amplifies DNA damage 

checkpoint (DDC) signaling. H2A.X is not the only histone modified by PTMs in response to DNA 

damage. Specific H4 acetylation and methylation events occur (H4K16ac, H4K20me), together with 

histone H1 and H2B ubiquitylation. Both are known to function during the DNA damage response 

(DDR). Acetylation of H4K16 in response to DNA damage is carried out by the HATs TIP60 and MOF 

(Murr, Loizou et al. 2006, Sharma, So et al. 2010). Whereas MOF regulates global levels of H4K16Ac with 

important roles in replication, TIP60 localizes to DSBs and modifies H4K16 in a site specific manner 

(Akhtar and Becker 2000). Interestingly, depletion of either MOF or TIP60 shows defects in DSB repair. 

E3 ubiquitin ligases bear similar functions at sites of DNA damage. At the site of a DSB, the heterodimeric 
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RNF20-40 complex monoubiquitinates H2BK120. This coincides with RNF8 E3 ligase-mediated 

ubiquitination of Histone H1. RNF168, another ubiquitin ligase, subsequently binds to ubiquitinated H1 

and targets H2AK13 and K15. Ubiquitination events carried out by the combined function of 

RNF8/RNF168 favor the recruitment of 53BP1, a protein channeling DSB repair through non-

homologous end joining (NHEJ), by protecting from resection. In contrast, H4K16ac together with 

monoubiquitinated H2BK120 was shown to promote chromatin relaxation and facilitates the recruitment 

of factors that promote resection and repair by homologous recombination (HR) (Schwertman, Bekker-

Jensen et al. 2016)) 

 Taken together, histone PTMs work alongside histone variants to define nucleosome structure and 

orchestrate repair within chromatin. Histone modifications can partition the genome into domains of 

different epigenetic states, with nucleosomes at the base of genome organization, as the building block of 

chromatin (Fig. 1a). Following this hierarchy of genomic organization from DNA into chromatin fibers, 

it is clear that a highly regulated enzymatic machinery must exist to orchestrate the assembly and 

disassembly of histones into nucleosomes, their deposition and proper placement along the DNA fiber. 

Two large protein families of histone chaperones and nucleosome remodeling complexes carry out the 

majority of these “architectural” tasks. These are discussed in the next paragraph.  

Histone chaperones and nucleosome remodelers: The architects of chromatin 

Once histones are synthesized in the cytoplasm, they are immediately bound by dedicated histone 

chaperones (Fig. 1b). As a consequence, free histones are basically non-existent in a cellular context. If 

not incorporated into chromatin, histones reside in a chaperone-associated form that either shields their 

hydrophobic histone-histone (Natsume, Eitoku et al. 2007) or buffers their charged surface (Andrews, 

Chen et al. 2010) preventing improper nucleosome assembly, unspecific binding to DNA and unscheduled 

histone degradation. Chaperones have overlapping as well as unique roles in histone binding, buffering 

and transfer (De Koning, Corpet et al. 2007) and (Gurard-Levin, Quivy et al. 2014)). In brief, mammalian 

NASP (nuclear autoantigenic sperm protein) binds to canonical H3-H4 dimers protecting them from 

degradation and regulating their transfer into the nucleus. Nap 1 (Nucleosome-assembly protein 1) carries 

out similar functions as NASP, but acts on H2A-H2B dimers. While NASP and Asf1 (anti-silencing 

function 1) have overlapping roles in buffering soluble pools of canonical H3-H4 within the nucleus, the 

FACT (facilitates chromatin transcription) complex associates with H2A-H2B dimers and plays a major 

role in safeguarding histones before and after the passage of transcription polymerases. The CAF-1 

(chromatin assembly factor 1) complex has a unique function in regulating H3.1-H4 assembly into 

nucleosomes during replication. In contrast, DAXX (death domain–associated protein) and HIRA 
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(histone regulator A) coordinate H3.3-H4 dimer assembly independent of new DNA synthesis, often in a 

transcription coupled manner.  

 Following the assembly of histones into chromatin-bound nucleosomes, the level of nucleosome 

packaging and the access of DNA binding proteins to specific sequence motifs can be altered by chromatin 

remodeling complexes (remodelers) (Fig. 1c). Remodelers do not assemble new nucleosomes from histone 

dimers, yet they often work in concert with or subsequent to chaperones. Remodelers contain subunits 

that bind histones, such as the actin related proteins Arp4, Arp5, Arp7, Arp8 and Arp9 in S. cerevisiae, which 

bridge between chaperone function and remodeler action (Fig. 1bc). Remodelers also contain a catalytic 

subunit that harbors a large Swi2/Snf2 (switch/sucrose non-fermenting) ATPase. This subunit uses the 

energy of ATP hydrolysis to exchange histone variants as well as evict, slide and space nucleosomes along 

DNA. Such actions regulate gene transcription, DNA replication, repair and chromatin structure genome-

wide (Clapier and Cairns 2009) and (Seeber, Hauer et al. 2013)). Except for human Alc1 (amplified in liver 

cancer 1) and Fun30 (yeast function unknown protein 30, SMARCAD1 in humans), the majority of Snf2 

ATPases act as part of large macromolecular assemblies. Each catalytically active ATPase is surrounded 

by different auxiliary subunits, including DNA helicases, histone modifying enzymes, histone mark readers, 

actin related proteins and actin itself. Some of these subunits are shared among remodeling complexes, 

others are unique. An in-depth overview on chromatin remodeler composition and function with a focus 

on DNA damage and repair is given in Chapter 2 as well as in (Clapier and Cairns 2009). 

Higher-order chromatin folding and subnuclear organization 

While the role of the nucleosome as the basic repeating unit of chromatin is clear (Fig. 1d), there is a 

continuing debate whether or not interphase chromatin is organized into a solenoid helix, that was called 

the 30nm fiber (Fig. 1g). In the 30 nm fiber folding model, regularly spaced nucleosomal arrays of the 

10nm fiber level (primary structure) are folded into a 30nm fiber (secondary structure), which itself can be 

subjected to larger-scale configurations (tertiary structure) through long range chromatin interactions. This 

higher-order structure defines the way chromatin occupies the nuclear space (Zhou, Fan et al. 2007). The 

formation of a 30nm fiber requires the selective binding of nucleosomes that are in close proximity to each 

other on the DNA strand, and generally histone modifications, linker lengths and linker histones 

themselves (e.g. H1) determine whether a “one start” solenoid or a “two start” zigzag helix is formed 

(Dorigo, Schalch et al. 2004, Schalch, Duda et al. 2005, Robinson, Fairall et al. 2006, Li and Reinberg 2011). 

In contrast to the 30nm fiber model which is largely based on the folding of the nucleosomal fiber in vitro, 

other studies argue based on in vivo measurements, that interphase chromatin is a mesh of 10nm fibers 

(beads on a string) (Eden Fussner 2010). Thus, an alternative model proposes that interphase nucleosomes 
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exist in a highly disordered, interdigitated state that prevents the formation of 30nm fibers (Zhou, Fan et 

al. 2007, Maeshima and Eltsov 2008, Luger, Dechassa et al. 2012). Similar to the 30nm fiber model, the 

state of interdigitation is thought to be regulated by nucleosome spacing, nucleosome composition and 

other chromatin associated proteins (Luger, Dechassa et al. 2012). Thus, the existence of secondary and 

tertiary structural elements in vivo remains controversial. Nonetheless, it is clear that modifying the 

plasticity and the dynamics of chromatin can have dramatic effects on DNA metabolism. 

 Beyond the higher order folding of the chromatin fiber, chromatin domains and chromosomes 

themselves are ordered within the nuclear space. In yeast, chromosomes assume a Rabl conformation (Fig. 

1h), through which all centromeres cluster at one point, near the membrane-embedded spindle pole body 

(SPB), while telomeres are anchored at other sites around the nuclear rim (Gotta, Laroche et al. 1996, 

Bystricky, Laroche et al. 2005, Duan, Andronescu et al. 2010). Furthermore, the highly repetitive and 

transcribed rDNA is found in a single, crescent shaped nucleolus in yeast, which defines yet another 

subnuclear compartment. Apart from spatially organizing chromosomes, nuclear position can also have 

far reaching effects on transcription (Taddei, Van Houwe et al. 2006) and DNA repair (Nagai, Dubrana et 

al. 2008, Oza, Jaspersen et al. 2009). 

Chromatin dynamics during DSB repair 
All cells, post-mitotic or proliferating, are challenged by thousands of DNA damaging events every day. 

Damage is induced by exogenous (radiation, radiomimetic cancer drugs or toxins) as well as endogenous 

(free radicals from cell internal metabolism) agents (Lindahl and Barnes 2000, Jackson and Bartek 2009)). 

One of the most common sources of exogenous damage to which we are exposed every day is solar 

ultraviolet (UV) light. When the high energy from short wavelength UV rays is released on the DNA 

backbone, thymidine base dimers are formed. Such bulky DNA adducts can be bypassed by translesion 

synthesis (TLS) or efficiently repaired through a process called nucleotide excision repair (NER). If left 

unresolved, such adducts pose a barrier to replicative or transcription polymerases and can cause the 

formation of single-stranded (SSBs) as well as double-stranded (DSBs) DNA breaks. The same threat 

applies to endogenous replication stress which is caused through excessive DNA base damage or by a lack 

of free nucleotides for de-novo DNA synthesis. When replication forks collapse, both SSB and DSB 

formation has been observed. In contrast to breaks which are formed through cellular processes, ionizing 

radiation (IR) or radiomimetic drugs like Zeocin (also known as Bleomycin) can more directly induce SSBs 

and DSBs (Povirk, Wubter et al. 1977). 
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DNA damage checkpoint activation and homology directed DSB repair 

Given the diversity of DNA lesions possible, a large array of specialized repair pathways has evolved, 

employing a multitude of repair proteins, some dedicated to unique types of repair, and others serving 

multiple pathways. Common to most genomic insults is the activation of the DNA damage response 

pathway (DDR). It is initiated by a highly conserved kinase signaling cascade called the DNA damage 

checkpoint (DDC) (Fig. 2a). Following damage sensing and activation of a central DDC checkpoint 

kinase, downstream transducer proteins, some of which are also kinases, initiate and fine-tune repair 

pathway choice and recovery. A DSB can trigger one of two major repair pathways. Non-homologous end 

joining (NHEJ), which ligates the free DNA ends back together, or homologous recombination (HR) 

which copies information from a DNA template (the sister chromatid or an ectopic donor) to repair the 

break (Heyer, Ehmsen et al. 2010) and (Symington and Gautier 2011)). Post-mitotic mammalian cells 

prevalently use NHEJ, whereas replicative cells show a substantial, albeit low level of HR. Yeast spend 

much of their lifetime in S- or G2-phase which makes HR the preferred pathway for DSB repair. While 

NHEJ can be error prone and introduce small insertions or deletions (INDELs), HR faithfully restores 

the original sequence information. If HR is not mediated by an intact sister chromatid, but by the 

homologous chromosome, it is possible that a diploid cell might lose its heterozygous state (LOH). 

 A DSB repaired by HR is first bound by the damage sensing MRX/MRN complex which activates 

the key checkpoint kinases Mec1/ATR and Tel1/ATM (Fig. 2c). Transducer proteins (Rad9/53BP1, 

MDC1) help to transmits the damage signal to downstream effector kinases (Rad53/CHK2, CHK1) and 

trigger full DDC activation. This response spreads within the entire nucleus and stimulates the recruitment 

of repair proteins to the sites of DNA damage. Early repair factors like helicases (Sgs1/BLM) disentangle 

DNA to facilitate resection by the exonucleases Sae2/CtIP, EXO1 and DNA2. Helicase action highlights 

the fact that DNA structure needs to change during repair. This becomes especially important during HR 

directed DSB repair as it requires both the access to the lesion as well as to the homologous templates for 

later D-loop formation, strand invasion and successful repair. 

 Nucleosomes can obstruct repair factor access (Fig. 2c). To overcome this barrier, several 

chromatin remodeling complexes like INO80-C, SWR1-C/SRCAP-C and RSC are recruited to DSB sites 

(Morrison, Highland et al. 2004, van Attikum, Fritsch et al. 2004, Chai, Huang et al. 2005). Remodelers 

shift nucleosomes, exchange histone variants or evict whole nucleosomes. This is thought to increase 

chromatin accessibility for repair. For instance, INO80-C binds to H2A.Z containing nucleosomes where 

it exchanges H2A.Z-H2B dimers for canonical H2A-H2B (Papamichos-Chronakis, Watanabe et al. 2011). 

The reverse action is catalyzed by SWR1-C which incorporates H2A.Z–H2B dimers into nucleosomes in 
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a stepwise and unidirectional fashion (Luk, Ranjan et al. 2010). While INO80 and RSC have well studies 

roles in DSB repair, many other remodelers function on similar pathways. Another remodeler that has 

recently been implicated in DSB repair is Fun30 and its human homologue SMARCAD1. Both proteins 

were shown to promote Exo1 and Dna2-mediated long-range resection through chromatin (Chen, Cui et 

al. 2012, Costelloe, Louge et al. 2012, Eapen, Sugawara et al. 2012). In vivo, Fun30 acts as a bone fide 

remodeler, being able to catalyze histone dimer exchanges and nucleosome re-positioning (Awad, Ryan et 

al. 2010). In yeast, Fun30 binding to DSBs has recently been shown to depend on an interaction network 

including the damage scaffold protein Dpb11/TopBP1 and the 9-1-1 complex (Bantele, Ferreira et al. 

2017). Furthermore, Fun30 has important roles in deactivating the DNA damage checkpoint after repair 

(Chen, Cui et al. 2012, Eapen, Sugawara et al. 2012). An extensive overview on remodeler action during 

DSB repair is given in Chapter 2. 

 Extensive resection creates long 3’ single stranded (ss) DNA overhangs flanking the break. 

Overhangs are subsequently bound and protected by the ssDNA binding complex RPA. Widespread RPA 

binding feeds back into the DDC through accumulation of additional Mec1/ATR. In both yeast and 

mammals this is accompanied by γH2A (γH2A.X in mammals) phosphorylation; a mark which helps 

Mec1/ATR spreading. This further highlights the fact that chromatin serves as a signaling platform during 

DSB repair (Fig. 2c).  
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Figure 2 Checkpoint activation and DSB repair in the context of chromatin. (a) Proteins involved in DNA damage 
checkpoint activation in response to a DSB. Mammalian proteins are capitalized. (b) DSB repair pathways. Blue protein 
names refer to yeast proteins corresponding mammalian names are in brackets and brown. Proteins without a yeast 
homologue are brown with no bracket. Dashed lines indicate DNA synthesis. DSBs can be repaired by at least three 
pathways: non-homologous end joining (NHEJ), single-strand annealing (SSA) and homologous recombination (HR). 
Adapted from (Heyer, Ehmsen et al. 2010). (c) Both the DNA damage checkpoint and DSB repair need to integrate into 
chromatin. The key steps and the main players during HR directed DSB repair are listed. The first panel highlights early 
steps after DSB occurrence. The second panel illustrates DSB processing and spreading of the DDC signal. The last panel 
shows the Rad51 nucleofilament before homology search and later strand invasion and repair. 



14 Chapter 1: Introduction to Histone Dynamics in DNA Damage and Repair 

 Rad51 nucleofilament formation follows RPA binding and is initiated through Rad52-dependent 

displacement of RPA. The nucleofilament then engages in a physical search for its homologous template 

which can be the sister chromatid if replication has already occurred, or an ectopic, non-sister donor 

sequence. This process of homology search has long been considered as one of the central mechanisms 

which would require chromatin movement. Physically moving DNA within the nucleus requires structural 

changes within chromatin. Thus, both damage signaling and repair needs to be integrated within 

chromatin. Chromosomes undergo spatial organization and compartmentalization within the nucleus. 

Thus, an inherently difficult task is presented to homology directed repair if the donor template is spatially 

distant or even in another subcompartment of the nucleus. Cells solve this dilemma through controlled 

relocalization events and by increasing the physical mobility of damaged DNA within the nucleus - both 

processes are thought to promote homology search and repair and will be discussed in detail.  

DSB repair within the nuclear space – a matter of position 

The 16 yeast chromosomes assume a Rabl conformation within the interphase nucleus. Both their terminal 

ends and their central regions undergo clustering and subcompartmentation. Telomeres come together in 

4-5 foci at the nuclear periphery. Centromeres also cluster spatially at the inner nuclear membrane through 

microtubules that link the centromere to the yeast centrosome equivalent, called the spindle pole body 

(SPB) (Fig. 1h)(Bystricky, Laroche et al. 2005, Duan, Andronescu et al. 2010). Whereas in species with an 

open mitosis the centrosome-kinetochore link is set up only in mitosis, in budding yeast, which has a closed 

mitosis, short MTs link chromosomes to the SPB throughout the cell cycle. The SUN (Sad1-Unc-84-

related) domain protein Mps3 and the acidic Esc1 protein are integral parts of the inner nuclear membrane 

and independently anchor telomeres to suppress subtelomeric recombination (Schober, Ferreira et al. 

2009). However, telomere positon is dynamic and when they become critically short, they are released 

from their peripheral anchor for telomerase-dependent elongation (Ferreira, Luke et al. 2011). This 

observation, together with the notion that Rad52 foci, are preferentially found internally (Bystricky, Van 

Attikum et al. 2009) led to the general hypothesis that canonical homologous recombination is favored 

within the interior of the nucleus while the periphery suppresses recombination and favors alternative 

repair pathways (Horigome, Bustard et al. 2016). Nuclear compartmentalization is conserved among 

species and different chromosomes occupy distinct regions within the nucleus. Furthermore, in all species 

known, heterochromatin domains cluster together (Taddei and Gasser 2012)).  

 The main gate that controls traffic in and out of the nucleus is the nuclear pore complex (NPC). It 

consists of more than 30 different protein species which form subcomplexes that are arranged in an eight-

fold symmetry and penetrate the outer and inner nuclear membrane (Bukata, Parker et al. 2013). The 
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Nup84 subcomplex has been identified to serve as a binding site for persistent DSBs (Nagai, Dubrana et 

al. 2008, Kalocsay, Hiller et al. 2009, Oza, Jaspersen et al. 2009) which occur at collapsed replication forks 

(Nagai, Dubrana et al. 2008, Su XA 2015), in subtelomereic regions (Therizols, Fairhead et al. 2006) or can 

be artificially induced by endonuclease expression (Fig. 3) (Nagai, Dubrana et al. 2008, Oza, Jaspersen et 

al. 2009). It was further noted that DSBs localize to another type of inner nuclear membrane protein - the 

SUN domain protein Mps3 in budding yeast. This is equally true in the fission yeast Schizosaccharomyces 

pombe where DSBs associate with Sad1, a member of the LINC (linker of nucleoskeleton and cytoskeleton) 

complex. Studies by the Gasser and King laboratories have investigated the requirements for DSB binding 

to Nup84 and/or Mps3 and identified the factors which distinguish them (Horigome, Oma et al. 2014, 

Swartz, Rodriguez et al. 2014). The association of DSBs with Nup84 was further shown to occur 

independent of the cell cycle phase and required neither the chromatin remodeler INO80C nor the 

recombinase activity of Rad51. Hence, extensive resection of the break was dispensable (Horigome, Oma 

et al. 2014). In contrast, Mps3 or Sad1 binding happened uniquely in S/G2 phase and was dependent on 

resection. Here, binding to Mps3 further required both INO80 remodeling function and Rad51 activity. 

Importantly, direct targeting of SWR1 via LexA fusions shifted chromatin to the nuclear periphery even 

in the absence of DNA damage (Yoshida, Shimada et al. 2010, Horigome, Oma et al. 2014). SWR1 

mediated Htz1 (H2A.Z) incorporation was necessary for both binding to pores and Mps3. Horigome et 

al., moreover, used a functional assay that scored for sister chromatid exchange and showed that mutations 

in the two binding sites have additive repair defects. This suggested that sequestration at Mps3 and the 

nuclear pore regulate different DSB repair outcomes. 

 Previous work indicated that the Slx5/Slx8 SUMO-targeted ubiquitin ligase (STUbL) interacts with 

nuclear pores both in yeast (Nagai, Dubrana et al. 2008) and the fly Drosophila melanogaster (Ryu, Spatola et 

al. 2015). In addition, several studies identified Slx5/Slx8 as a suppressor for gross chromosomal 

rearrangement (GCR) events (Zhang, Roberts et al. 2006, Nagai, Dubrana et al. 2008). Combined with the 

notion that STUbLs contain SUMO-interacting motifs (SIMs) (Sarangi and Zhao 2015) and the fact that 

repair proteins of many different pathways are SUMOylated (Cremona, Sarangi et al. 2012, Psakhye and 

Jentsch 2012) it became obvious to test whether SUMO ligases contribute to the relocation of damage to 

the nuclear envelope. The question arose whether Slx5/Slx8 has an active role in relocating DSBs or 

instead processes them at the periphery? Four recent studies (Ryu, Spatola et al. 2015, Su XA 2015, 

Churikov, Charifi et al. 2016, Horigome, Bustard et al. 2016) have addressed this question  
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at induced DSBs, eroded telomeres, and collapsed replication forks in budding yeast and Drosophila 

(Seeber and Gasser 2016)). In yeast, polySUMOylation mediated by the E3 ligases Siz2 and Mms21 

targeted Slx5/Slx8 to persistent breaks in G1 phase with both Slx5 and Slx8 being indispensable for 

damage relocation to nuclear pores. In contrast, monoSUMOylation during S phase was sufficient to shift 

resected breaks to Mps3. Here, relocation occurred independently of Slx5/Slx8. Functionally, Slx5/Slx8-

dependent DSB binding to pores appears to favor repair by ectopic break-induced replication (BIR) 

and/or imprecise end-joining. In a parallel study by the Chiolo laboratory using Drosophila cells, it was 

Figure 3 Relocalization pathways and signaling mechanisms in yeast, Drosophila and humans. Adopted from 
(Amaral, Ryu et al. 2017). The models show how different types of DNA damage are relocated to the nuclear periphery - 
either to nuclear pores or other anchors within the inner nuclear membrane. Collapsed replication forks, persistent DSBs 
and eroded telomeres all shift to nuclear pores with different requirements. A two-step pathway was identified for DSBs 
in heterochromatic domains. Here, breaks first move outside of the heterochromatic domain and then towards the nuclear 
periphery. The differences and similarities in this pathway is illustrated for Drosophila and mice. The lowest panel in the 
figure indicates how chromatin expansion at the site of a DSB could increase repair factor access to promote efficient 
repair. 
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shown that DSBs in heterochromatin, which are known to accumulate at the outer rim of heterochromatic 

domains (Chiolo, Minoda et al. 2011) (Fig. 3), shifted further towards the nuclear periphery (Ryu, Spatola 

et al. 2015). While relocation events followed the same SUMOylation and STUbL dependencies as in yeast, 

binding differed since it occurred both at nuclear pores and the fly Mps3 homologues Koi and Spag4 

(Chiolo, Minoda et al. 2011).  

Whereas these two studies focused on induced DSBs, similar work was pursued by the Geli and Lisby 

laboratories which focused on the molecular requirements for the relocation of eroded telomeres to the 

nuclear periphery. Shortened telomeres arise from replicative ageing-related telomerase loss (Churikov, 

Charifi et al. 2016) (Fig. 3). Once critically short, they become unprotected and elicit Mec1-dependent 

checkpoint activation and growth arrest (Hector, Ray et al. 2012). Most of the cells die or remain arrested, 

but some survivors can escape by rearranging their telomeres through rare recombination events (Zakian 

1999). Churikov et al. found that critically shortened telomeres are relocated to the NPC in a SUMO-

dependent pathway very similar to that observed at DSBs in yeast and Drosophila. The shift of eroded 

telomeres to the NPC involved Slx5-Slx8-dependent targeting of poly-SUMOylated proteins and is 

proposed to facilitate telomere repair events either through de-SUMOylation or proteasomal degradation 

events (Churikov, Charifi et al. 2016).  

 Collectively, these studies defined a conserved and SUMOylation-dependent pathway which shifts 

damage from a subnuclear context to a peripheral anchor – either being the NPCs or the inner nuclear 

membrane protein Mps3/SUN1. In this context, relocation is thought to favor alternative repair pathways 

whereas failure to move appears to be detrimental for the recovery from the insult.  

Repair in heterochromatic domains: Where DSB relocation integrates with chromatin structure 

Apart from shifting damage to the nuclear periphery, DSB relocation events have been observed in the 

context of heterochromatin. Heterochromatic regions consist of highly repetitive sequences which are 

prone to non-allelic, ectopic recombination. Illegitimate recombination events can cause translocations, 

duplications and deletions often found in human diseases such as cancer and infertility (Pearson, Nichol 

Edamura et al. 2005). To preserve genome integrity, repair within these regions needs to be tightly 

regulated. Compared to HR, NHEJ in repetitive DNA is potentially less problematic as small insertions 

or deletions would not affect the overall function of tandem repeats as severely as genes. Thus, the question 

remained whether heterochromatic DSBs are repaired either by NHEJ, HR or both. Furthermore, it was 

not known whether the highly compacted and rigid heterochromatic domains would need to be expanded 

in response to DNA damage to allow repair protein access. Studies on the spatial dynamics of DSB repair 
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in the context of heterochromatin greatly benefitted from the organization of heterochromatic regions in 

a distinct domain within the nucleus, a phenomenon conserved from yeast to man. 

 In yeast and humans, the highly transcribed and repetitive rDNA elements cluster together in a 

prominent subnuclear domain – the nucleolus. This site of ribosome biosynthesis separates from the rest 

of the genetic material and displays heterochromatic properties. An early study in yeast found that induced 

DSBs in the rDNA context need to shift their position and move towards the outside of the nucleolar 

volume in order to be processed for homologous recombination (Torres-Rosell, Sunjevaric et al. 2007). 

Nucleolar exclusion depended on Rad52 SUMOylation by the Smc5/6-Mms21 SUMO ligase complex and 

is thought to prevent illegitimate recombination events within the clustered rDNA repeats. Consequently, 

mutations which abrogated this shift caused rDNA hyperrecombination and genome instability (Torres-

Rosell, Sunjevaric et al. 2007). Recently, two reports showed remarkable conservation of this pathway in 

human cells (Harding, Boiarsky et al. 2015, van Sluis and McStay 2015). In both studies, persistent DSB in 

the rDNA reorganized within the nucleolus shifted away from this repetitive compartment, exactly as had 

been described in yeast (Torres-Rosell, Sunjevaric et al. 2007, Harding, Boiarsky et al. 2015, van Sluis and 

McStay 2015). This coincided with ATM-dependent inhibition of RNA polymerase I, an important step 

to prevent collision between the repair and transcription machineries. Harding et al. additionally found that 

NHEJ was the prevalent pathway allowing transcriptional restart if repair could occur quickly (Harding, 

Boiarsky et al. 2015). 

 Pericentric and centromeric repeats in humans and flies are also organized in a heterochromatic 

subcompartment within the nucleus, and the Karpen laboratory made the interesting observation that 

pericentric DSB repair happened with striking similarities to the rDNA situation in flies. Namely, 

irradiation-induces DSBs in heterochromatin were relocated before they could be repaired by HR (Chiolo, 

Minoda et al. 2011). Whereas proteins involved in early resection events were rapidly recruited to the 

breaks, recombination steps that involved Rad51 mediated strand invasion only occurred after the shift 

(Chiolo, Minoda et al. 2011). Break relocation itself depended on checkpoint and resection proteins 

whereas the Smc5/6 SUMO E3 ligase complex was required to exclude Rad51 from heterochromatic 

domains and prevent abnormal recombination (Chiolo, Minoda et al. 2011). As described above, the 

Chiolo lab now extended this Drosophila study, showing that pericentromeric DSBs further undergo 

SUMOylation dependent anchoring to the NPC or at inner nuclear membrane proteins after having 

relocated to the edge of the heterochromatic domains (INMPs) (Ryu, Spatola et al. 2015). This appears to 

be an essential step before Rad51 recruitment could occur to promote HR repair. 
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 Most of the studies discussed so far uniquely addressed HR repair of heterochromatic DSB and 

found that it happened only after breaks had relocated away from the repressive compartment (Torres-

Rosell, Sunjevaric et al. 2007, Ayoub, Jeyasekharan et al. 2008, Chiolo, Minoda et al. 2011, Jakob, Splinter 

et al. 2011, Harding, Boiarsky et al. 2015, Ryu, Spatola et al. 2015, van Sluis and McStay 2015). Moreover, 

a subset of these studies reported repair kinetics in the context of heterochromatin to be significantly 

slower as in euchromatin (Chiolo, Minoda et al. 2011, Ryu, Spatola et al. 2015). When Harding et al. 

compared the kinetics of HR and NHEJ specifically in heterochromatin, these two major repair pathways 

showed further temporal variation (Harding, Boiarsky et al. 2015). On the one hand, the general impact of 

NHEJ in heterochromatin repair is questioned and on the other hand it raises questions concerning the 

exact timeframe of both HR or NHEJ in repetitive genomic regions. Two recent studies refine previous 

findings and provide answers to both questions (Janssen, Breuer et al. 2016, Tsouroula, Furst et al. 2016). 

Jannsen and colleagues used an in vivo system to induce heterochromatic or euchromatic single DSBs in 

Drosophila and followed their repair kinetics in space and time. Their results recapitulated the spatio–

temporal dynamics of irradiation induced breaks (Chiolo, Minoda et al. 2011, Ryu, Spatola et al. 2015). 

Yet, live cell imaging together with sequence analysis of repair products revised earlier findings by showing 

that DSBs in euchromatin and heterochromatin follow strikingly similar repair kinetics and employ both 

NHEJ and HR (Janssen, Breuer et al. 2016). The spatial uncoupling of DSB repair pathways (NHEJ vs. 

HR) in mammalian heterochromatin was addressed by the Soutoglou laboratory and provided answers to 

how repair varies in different heterochromatic compartments (Tsouroula, Furst et al. 2016). Sophisticated 

microscopy techniques were used to track the repair of CRISPR-Cas9-induced, pericentric or centromeric 

DSBs during different stages of cell cycle. While pericentric breaks in G1 phase were repaired by NHEJ 

and remained positionally stable, HR during S/G2 could only occur after breaks had relocated to the edge 

of the pericentric domain. Centromeric breaks behaved differently and all repair events underwent 

heterochromatic exclusion. DSB relocation was further found to depend on DNA resection followed by 

Rad51/BRCA2 binding and DSB stabilization to prevent repair by another, deleterious recombination 

pathway called single-strand annealing (SSA) (Tsouroula, Furst et al. 2016). 

 In conclusion, these results emphasize the general importance of spatially separating HR mediated 

repair events from highly repetitive sequences. In heterochromatic regions, a SUMOylation and StUBL 

dependent pathway shifts damage away from the repeats such that DSBs are physically isolated from other 

ectopic sequences, a mechanism most likely preventing aberrant recombination. While the functional 

importance and the key players of this process have been fairly well described, the question remains 

whether highly compacted and inaccessible heterochromatic domains undergo additional structural 

changes in response to DNA damage. This hypothesis becomes tempting as changing chromatin structure 
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after DNA insults would both provide a basis for the observed long-range shifts of broken DNA as well 

as increase the access of repair proteins to the lesions. 

Chromatin unfolds in response to DNA damage 

Heterochromatin is highly compacted and inaccessible. This restrictive chromatin nature mainly relies on 

densely packaged nucleosomes, repressive histone marks (H3K9me3, H3K27me3) and other 

heterochromatin binding proteins such as HP1 and KAP-1 (Goodarzi, Noon et al. 2008, Polo, Kaidi et al. 

2010). Since both NHEJ and HR reactions still need to occur close to or within heterochromatin, it was 

proposed that the accessibility of such domains must increase in response to DNA damage. Several studies 

have proven this hypothesis just and show that DNA damage indeed causes heterochromatin to unfold. 

In human fibroblasts or mouse NIH3T3 cells, chromatin relaxation in response to IR happened as a result 

of ATM-dependent KAP-1 phosphorylation and its subsequent loss from heterochromatin (Ziv, 

Bielopolski et al. 2006, Goodarzi, Noon et al. 2008, Beucher, Birraux et al. 2009, Goodarzi, Kurka et al. 

2011, Woodbine, Brunton et al. 2011, Lee, Goodarzi et al. 2012). Interestingly, CHD3 (Goodarzi, Kurka 

et al.), a remodeler involved in chromatin compaction and gene repression (Denslow and Wade 2007) also 

dissociated upon KAP-1 phosphorylation. Comparable events were seen after treatment with tert-butyl 

hydroperoxide (TBH), an agent which confers oxidative damage (Woodbine, Brunton et al. 2011). 

Moreover, the yeast remodeler enzyme SWI/SNF facilitated Rad51 and Rad54 dependent strand invasion 

by alleviating heterochromatic constraints during recombinational repair in vitro (Sinha, Watanabe et al. 

2009). In Drosophila, both checkpoint kinases ATM and ATR are required for global heterochromatin 

expansion which triggers DSB relocation together with an increase in the access of HR factors like Rad51 

(Chiolo, Minoda et al. 2011, Ryu, Spatola et al. 2015). While heterochromatin relaxation equally occurs at 

site-specific, CRISPR-Cas9-induced DSBs in mice NIH3T3 cells, it was found that the the compacted 

state at pericentric or centromeric regions was neither refractory to RAD51 nor to KU80 (Tsouroula, Furst 

et al. 2016). Furthermore, RAD51 recruitment patterns were not altered after forced heterochromatin 

relaxation either through treatment with the deacetylase inhibitor Trichostatin A (TSA) or by tethering of 

the transcriptional activator VP64 (Tsouroula, Furst et al. 2016). The question whether heterochromatin 

expansion is functionally linked to relocation and whether it needs to occur before a DSB can be moved 

towards the edge of repressive domains is therefore currently under dispute. Tsouroula et al. further 

observed that heterochromatin expansion did neither cause KAP-1 alleviation nor a reduction in the 

heterochromatin-associated repressive mark H3K9me3 (Tsouroula, Furst et al. 2016). Surprisingly, H3K9 

methylation even increased around DSBs. This is to some extent in line with observations previously made 

by the Misteli laboratory (Burgess, Burman et al. 2014). Here, laser-irradiation caused rapid chromatin 
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expansion but was followed by a localized compaction. The re-compaction was found to be important for 

checkpoint signaling but not for repair which suggests that specific chromatin configurations regulate 

different aspects of the DDR (Burgess, Burman et al. 2014). Furthermore, unfolding and compaction 

might happen at different time-scales after DNA damage indicating a blockage to certain factors while 

allowing the access of others. The exact mechanism that causes heterochromatin to unfold in response to 

DNA damage, and  the extent to which re-compaction is integral to the DDR in human and mouse cells 

remains subject to further investigation.  

 Chromatin compaction in telomeres is also investigated in mammalian systems. Telomeres are 

structures with long TTAGG repeats that extend over many kilobases and end in a 3’ ssDNA overhang 

which, if left unprotected, appears like a resected DSB ready for recombination. The shelterin complex 

(comprised of TRF1, TRF2 and other proteins) binds to telomeric ends and bends them into a protective 

form called “t-loop”. T-loop formation blocks ATM binding which prevents DDR activation and 

illegitimate recombination events (Marcomini and Gasser 2015)). It has further been proposed that 

shelterin might mediate chromatin compaction at telomere ends as another means to prevent aberrant 

DNA damage signaling (Bandaria, Qin et al. 2016). Since DDR signaling is not strictly inhibited by 

chromatin compaction (Ziv, Bielopolski et al. 2006, Goodarzi, Noon et al. 2008) and chromatin re-

compaction can, in some cases, even amplify DDC signaling (Burgess, Burman et al. 2014), it was difficult 

to predict a priori whether chromatin compaction could protect telomeres from DDR signaling. Bandaria 

et al. used super-resolution microscopy in HeLa cells and showed that the shelterin complex together with 

telomeric DNA organizes human telomeres into compact globular structures. Interestingly, knockdown 

of individual shelterin subunits or mutations that interfered with its assembly caused a 10-fold increase in 

telomere volume which was indicative for chromatin unfolding and directly linked to the accumulation of 

DDR signals at telomeres. This suggests that DNA compaction reduces the access of DDR factors at 

telomeres, hence termed the “telomere compaction model” (Bandaria, Qin et al. 2016). 

 Two recent studies now challenge this idea (Timashev, Babcock et al. 2017, Vancevska, Douglass et 

al. 2017). Super-resolution STROM microscopy in HeLa cells depleted for TRF1, TRF2 or both 

(Vancevska, Douglass et al. 2017) or in mouse cells (Timashev, Babcock et al. 2017) showed that 

accumulation of DDR markers like yH2A.X or 53BP1 at telomeres can occur without widespread 

chromatin decompaction (Timashev, Babcock et al. 2017, Vancevska, Douglass et al. 2017). In both cases, 

the knockdown of shelterin factors only affected the size of a small DDR-positive telomere subset, 

consistent with an increase in TTAGG fish signal. This is indicative of a previously known 53BP1-

dependent clustering of dysfunctional telomeres. Whereas these studies neither exclude nor definitely 
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prove the possibility that a compacted chromatin state protects telomeres from aberrant DDR signaling 

(Parks and Stone 2017)), they do contribute to our understanding of telomere protection and the function 

of chromatin compaction in DDR signaling. 

 DNA damage is not restricted to heterochromatin or telomeres but occurs everywhere in the 

genome. As a consequence, the barrier of nucleosomes which confer global chromatin compaction needs 

to be overcome to allow repair factor binding. Accordingly, chromatin decondensation was found to be a 

universal prerequisite to promote repair of different DNA lesions including base damage, SSBs and DSBs. 

UV light causes base damage which is repaired by a process called nucleotide excision repair (NER). In 

this pathway, the detection of DNA lesions is stimulated by the damaged DNA-binding protein 2 (DDB2), 

a member of the cullin-RING ubiquitin ligase (CRL4) complex (Marteijn, Lans et al. 2014)). ZRF1, another 

NER protein, stabilizes the CRL4 complex at damaged sites (Gracheva, Chitale et al. 2016) and DICER 

processed non-coding RNAs were also found to assist in repair (Francia, Michelini et al. 2012, Wei, Ba et 

al. 2012). Fluorescence microscopy experiments in hamster AO3 cells showed that DDB2 elicits the 

unfolding of large chromatin structures at UV-induced damage sites in an ATP-dependent manner 

(Luijsterburg, Lindh et al. 2012). Interestingly, this agreed with a DDB2- and PARP1-dependent reduction 

in core histone density around the lesion (Luijsterburg, Lindh et al. 2012). Furthermore, the direct targeting 

of DDB2, ZRF1 or DICER to chromatin by a LacI fusion protein allowed the unfolding of chromatin 

even in the absence of DNA damage (Adam, Dabin et al. 2016, Chitale and Richly 2017). Under these 

conditions, DICER and ZRF1 function were shown to depend on PARP1 while the catalytic activity of 

DICER was dispensable (Chitale and Richly 2017). 

 Chromatin decompaction is also observed at DSBs which repair via NHEJ or HR. In human U2OS 

cells, PARP1 was shown to recruit the CHD2 remodeler to multiphoton micro-irradiation induced DSBs 

through a poly(ADP-ribose)[PAR]-binding domain. CHD2 triggered rapid chromatin expansion and the 

deposition of histone variant H3.3 (Luijsterburg, de Krijger et al. 2016). This was further required to 

assemble the NHEJ complex at broken chromosomes and promote efficient DSB repair (Luijsterburg, de 

Krijger et al. 2016). Another microscopy-based study used a molecular flow assay to measure chromatin 

compaction around irradiation induced DSBs (Hinde, Kong et al. 2014). By analyzing the flow of EGFP 

molecules into chromatin before and after DSB induction, Hinde et al. found that DNA damage induces 

a transient decrease in chromatin compaction which in turn facilitated NHEJ repair factor (Ku70) 

recruitment to the lesions (Hinde, Kong et al. 2014).  
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 Similar effects were recently shown to occur during homology directed DSB repair in yeast. A study 

by the Gasser and Holcman laboratories used improved time-lapse imaging regimes and super-resolution 

microscopy to follow the spatial occupancy of chromatin in response to DNA a at site-specific DSB 

(Amitai, Seeber et al. 2017). Amitai and colleagues found that INO80-dependent chromatin expansion also 

occurred at site specific DSBs and further used mathematical polymer models which predicted that 

chromatin unfolding would favor DSB extrusion from compacted domains (Amitai, Seeber et al. 2017). 

These predictions held true during in vivo experiments and could explain how DSBs are excluded from 

the nucleolar volume for HR repair (Amitai, Seeber et al. 2017).  

 In summary, both mammalian and yeast chromatin unfolds and, in some cases, re-compacts in 

response to DNA damage. This is true for heterochromatic and euchromatic domains and potentially 

regulates different repair reactions and safeguards genome stability by modulating repair factor access. To 

some extent, telomere protection follows the same principles. Interestingly, all of these findings indicate 

large-scale changes in chromatin structure. However, the mechanism by which DNA relocates cannot be 

simply explained by chromatin expansion and other pathways must be at play to physically move broken 

DNA from one compartment to the next. This tempting hypothesis has found prove in a number of 

different studies which show how broken DNA increases its mobility within the nucleus with implications 

in HR repair both in yeast and mammalian cells (Dion, Kalck et al. 2012, Mine-Hattab and Rothstein 2012, 

Seeber, Dion et al. 2013, Lottersberger, Karssemeijer et al. 2015, Amitai, Seeber et al. 2017, Hauer, Seeber 

et al. 2017). 

Chromatin mobility: On the move with native and broken DNA 

A number of experiments over the past 20 years has shown that chromatin is not a static entity in yeast, 

flies, mice and humans, but undergoes defined movements within the nuclear space (Marshall, Straight et 

al. 1997, Bornfleth, Edelmann et al. 1999, Heun, Laroche et al. 2001, Vazquez, Belmont et al. 2001, Chubb, 

Boyle et al. 2002, Neumann, Dion et al. 2012) (Dion and Gasser 2013, Seeber and Gasser 2016). The 

majority of these movements showed sub-diffusive behavior (Weber, Theriot et al. 2010, Albert, Mathon 

et al. 2013, Amitai, Toulouze et al. 2015) indicating that chromatin could roam only within a restricted 

volume which was significantly smaller than that of the nucleus. This argued that internal forces must 

constrain chromatin movement (Marshall, Straight et al. 1997, Heun, Laroche et al. 2001, Vazquez, 

Belmont et al. 2001, Chubb, Boyle et al. 2002, Gasser, Hediger et al. 2004, Bystricky, Laroche et al. 2005). 

The mobility of a locus was indeed ATP-dependent in vivo (Marshall, Straight et al. 1997, Heun, Laroche 

et al. 2001, Levi, Ruan et al. 2005) and strongly influenced by the interaction with fixed elements at the 
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nuclear envelope such as pores (Verdaasdonk, Vasquez et al. 2013, Horigome, Oma et al. 2014), the inner 

nuclear membrane protein Esc1 (Gasser, Hediger et al. 2004) or the spindle pole body (SPB) 

(Verdaasdonk, Vasquez et al. 2013, Strecker, Gupta et al. 2016, Lawrimore, Barry et al. 2017). Exemplary 

studies forced Silent Information Regulator (SIR) complex assembly on ectopic plasmids which shifted 

them to the nuclear envelope and abolished movement (Gasser, Hediger et al. 2004, Bupp, Martin et al. 

2007). In contrast, circularizing the endogenous LYS2 locus into a 16 kb ring which caused the constraint 

movement of LYS2 to become freely diffusive after pop-out (Gasser, Hediger et al. 2004) argued for an 

additional source of drag that is posed on chromatin by the continuity and inherent flexibility of the 

chromatin fiber itself. Experiments which compared chromatin flexibility and the degree of movement at 

different loci along the genome enforced this notion (Verdaasdonk, Vasquez et al. 2013, Dickerson, 

Gierlinski et al. 2016). Furthermore, changing the local chromatin context directly impacted movement as 

seen in mobility changes after chromatin remodeler targeting (Neumann, Dion et al. 2012), the ablation of 

sister chromatid cohesion (Dion, Kalck et al. 2013), or forced nucleosome reduction from DNA (Bouck 

Figure 4 The concepts of local DSB mobility. The formation of a DSB activates the DNA damage checkpoint. The 
key checkpoint kinase Mec1 phosphorylates downstream effector proteins (Rad9 and Rad53) as well as chromatin 
remodeling complexes (INO80-C). If the DSB is repaired by HR, local repair proteins process the lesion and lead to the 
formation of the Rad51 nucleofilament which will enter homology search and engage in recombinational repair. Chromatin 
locally unfolds at the break site. This likely promotes extrusion from heterochromatic domains and increases the access of 
repair factors. Furthermore, DSBs become more mobile. This is thought to facilitate the homology search through nuclear 
space and promote relocation events to the nuclear periphery. Both the DNA damage checkpoint and chromatin 
remodelers have been implicated in DSB mobility. 
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and Bloom 2007, Verdaasdonk, Vasquez et al. 2013, Hauer, Seeber et al. 2017). Finally, INO80-dependent 

eviction of nucleosomes at the PHO5 locus in the absence of phosphate increases the movement of an 

appropriately tagged locus (Neumann, Dion et al. 2012). The notion that damaged chromatin underwent 

large structural changes and that DSBs were physically shifted either away from heterochromatic 

compartments (see previous paragraphs) or towards the nuclear periphery, made it tempting to test 

whether chromatin mobility would also change in response to DNA damage.  

 Investigations into this hypothesis have indeed shown that chromatin movement increases in 

response to DNA damage both at the site of an induced DSB (Fig. 4)(Dion, Kalck et al. 2012, Mine-

Hattab and Rothstein 2012) and genome-wide at undamaged sites when multiple DSBs were present in 

the genome (Mine-Hattab and Rothstein 2012, Seeber, Dion et al. 2013, Hauer, Seeber et al. 2017). In both 

cases, the INO80 remodeler and proteins of the DDC were required for the increased mobility (Dion, 

Kalck et al. 2012, Mine-Hattab and Rothstein 2012, Seeber, Dion et al. 2013, Amitai, Seeber et al. 2017). 

Similar dependencies have recently been shown for mammalian cells where IR triggered an 53BP1 and 

ATM kinase dependent increase in locus movement (Lottersberger, Karssemeijer et al. 2015). Earlier work 

from the de Lange laboratory had shown that uncapped telomeres (which lack components of the 

protective shelterin complex) undergo increased movement and correlated with elevated rates of telomere 

end-to-end fusions. Both telomere movement and end-to-end fusion depended on 53BP1 (Dimitrova, 

Chen et al. 2008). In a more recent work, enhanced mobility of dysfunctional telomeres was further linked 

to SUN-domain-containing proteins which stay in contact with the LINC complex that bridges the 

nucleoskeleton to the cytoskeleton (Lottersberger, Karssemeijer et al. 2015). Following this intriguing 

observation, the authors also identified a role for cytoskeleton-bound kinesins in telomere fusions and the 

repair of internal breaks, suggesting that an active, kinesin-driven movement of the nucleus or elements in 

the nuclear envelope affects DSB repair (Lottersberger, Karssemeijer et al. 2015). In budding yeast, DSB 

mobility was correlated with efficient HR (Dion, Kalck et al. 2012, Hauer, Seeber et al. 2017), whereas 

DSBs that exhibited increased movement in human cells were more likely to result in genomic 

translocations events (Roukos, Voss et al. 2013). This argues that enhanced mobility is a tightly controlled 

and programmed event rather than a side effect of the DDR.  

 DSB mobility is thought to enhance the search for a homologous donor sequence required for DSB 

repair by HR (Rudin and Haber 1988, Weiner, Zauberman et al. 2009, Neumann, Dion et al. 2012). This 

seem to be especially important if the sister chromatid is equally broken or absent and an ectopic template 

becomes essential for successful repair. Furthermore, DSBs need to be mobile for relocation away from 

the bulk of heterochromatic repeats (Torres-Rosell, Sunjevaric et al. 2007, Chiolo, Minoda et al. 2011, 
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Harding, Boiarsky et al. 2015, Ryu, Spatola et al. 2015, van Sluis and McStay 2015, Tsouroula, Furst et al. 

2016). Another benefit of increasing the mobility of DSBs or telomeres locally and the genome globally is 

to disassociate illegitimate pairing events during HR or re-attach a lost end for NHEJ (Lottersberger, 

Karssemeijer et al. 2015). However, the mechanisms that generate enhanced chromatin mobility have 

remained elusive. 

Histone loss and the cytoskeleton affect chromatin mobility 

Until recently, little was known about the the mechanisms which drive chromatin mobility at site specific 

DSBs, genome-wide when multiple DSBs were present or at uncapped human telomeres (Torres-Rosell, 

Sunjevaric et al. 2007, Dion, Kalck et al. 2012, Mine-Hattab and Rothstein 2012, Seeber, Dion et al. 2013, 

Harding, Boiarsky et al. 2015, van Sluis and McStay 2015, Tsouroula, Furst et al. 2016). Recently, 

accumulating evidence shows that the movement observed at dysfunctional telomeres after the depletion 

of shelterin complex components can be linked to the cytoskeleton. Besides the implications of DDC 

checkpoint protein 53BP1 (Dimitrova, Chen et al. 2008, Lottersberger, Karssemeijer et al. 2015), increased 

mobility of uncapped telomeres could be reversibly inhibited by treating cells with the microtubule poison 

Taxol or Nocodazole (Lottersberger, Karssemeijer et al. 2015). Importantly, the same effect was seen upon 

knockout of the two LINC complex components SUN1 and SUN2 which indirectly link chromosomes to 

microtubules via nuclear-membrane-spanning KASH-domain Nesprin proteins. Interestingly, Taxol also 

reduced the movement of IR-induced damage foci (Lottersberger, Karssemeijer et al. 2015).  

 Another very recent study in mammalian cells used a high-throughput chromosome conformation 

capture assay (capture Hi-C) to investigate clustering of induced DSBs, yet another pathway that demands 

for chromatin mobility (Aymard, Aguirrebengoa et al. 2017). The results demonstrated that DSBs 

clustering occurred in actively transcribed regions and depended on both DDR proteins and cytoskeleton 

organizers; namely MRN, Formin 2 (FMN2, a nuclear actin organizer) and the LINC complex (Aymard, 

Aguirrebengoa et al. 2017). In summary, these studies imply that the forces applied by microtubules can 

be transduced to internal chromatin domains. In yeast, however, early experiments indicated a reverse 

effect and Nocodazole treatment was shown to increase the mobility of chromatin in the absence of 

damage (Marshall, Straight et al. 1997). This probably reflects the different roles of cytoskeletal filaments 

in yeast and man, as in budding yeast, subcellular organelles are more commonly positioned by actin 

filaments rather than by microtubules. 

 Intriguingly in yeast, the depletion of the KASH-like protein Csm4, a putative LINC complex 

component, similarly increased telomere movement, although most likely this was due to telomere 
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detachment (Spichal, Brion et al. 2016). Work from this laboratory further implicates the actin cytoskeleton 

in chromatin movement and showed that both cytoplasmic and nuclear actin contribute to locus motion, 

through a mechanism that appears to be independent of Csm4 (Spichal, Brion et al. 2016).. A recent study 

by the Gasser laboratory showed that the effect of the actin cytoskeleton on chromatin mobility is likely 

caused by actin-driven nuclear oscillations rather than through a direct effect on chromatin (Amitai, Seeber 

et al. 2017). Consequently, actin depolarization with the cytotoxic Latrunculin A reduced nuclear rotation 

but did not prevent DSB-induced movement (Amitai, Seeber et al. 2017). Within the eukaryotic nucleus, 

actin has been detected in its monomeric, globular “G” form. Intriguingly, actin directly interacts with 

Actin Related Protein (Arp) containing chromatin remodelers like INO80-C. Since INO80 is necessary 

for damage-associated mobility (Dion, Kalck et al. 2012, Seeber, Dion et al. 2013, Hauer, Seeber et al. 

2017), Latrunculin A could interfere with mobility by abrogating INO80-C-mediated changes in the 

nucleosome packing. 

 Previous experiments showed that histone level homeostasis impacts cellular aging, DNA repair and 

genome stability. Aging yeast cells and human fibroblasts exhibit a substantial loss of Histone H3 and 

Histone H4 (Feser, Truong et al. 2010, O'Sullivan, Kubicek et al. 2010) (Oberdoerffer 2010). Notably, this 

reduction in human fibroblasts seems to correlate with prolonged DDR signaling arising from eroded 

telomeres (O'Sullivan, Kubicek et al. 2010). While histone overexpression is sufficient to extend the 

replicative lifespan in yeast (Feser, Truong et al. 2010) it also coincides with a hypersensitivity to DNA 

damaging agents (Liang, Burkhart et al. 2012). Furthermore, overexpressed histone proteins accumulate as 

a free pool in the nucleus and the DDC protein Rad53 was shown to mediate their proteasome dependent 

degradation (Gunjan and Verreault 2003, Singh, Gonzalez et al. 2012). Taken together with the important 

function of chromatin remodeling enzymes in DSB mobility, it is likely that endogenous histone levels 

could also play a major role in damage-induced chromatin mobility. Here, controlled histone reductions 

would both provide a mechanism for local and global chromatin mobility in response to DNA damage. 

This hypothesis is supported by polymer modeling which predicts both the expansion of chromatin and 

the loss of constraining forces that limit chromatin movement. Amatai et al. could recently validate these 

predictions in vivo and showed that local DSB mobility is concurrent with remodeler-dependent unfolding. 

(Fig. 4) (Amitai, Seeber et al. 2017). However, the mechanisms that underlie enhanced chromatin mobility 

have remained elusive. In this thesis, I show that nucleosome degradation triggered by remodelers and 

checkpoint proteins enhances chromatin movement and accessibility, and promotes efficient repair 

(Chapter 4). 
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Histones have to go: The fate of nucleosomes during DNA damage and repair 

Several pioneering studies from the Verreault and Gunjan laboratories, have shown that changing histone 

level homeostasis can impact DNA damage sensitivity. Early work in yeast identified a Rad53-dependent 

surveillance mechanism that regulates histone protein levels with implications in DNA repair (Gunjan and 

Verreault 2003). In this study, histone H3 was was overexpressed from the galactose promoter. 

Consequently, excess histones accumulated in cells depleted for Rad53 (rad53∆) resulted in slow growth, 

DNA damage sensitivity, and chromosome loss phenotypes (Gunjan and Verreault 2003, Liang, Burkhart 

et al. 2012). Interestingly, rad53∆ sensitivity to genotoxic agents was significantly suppressed by disruption 

of the HHT2-HHF2 gene cluster (hht2-hhf2∆) which reduced histone H3/H4 gene dosage. Equal benefits 

of reduced histone dosage have been reported at site-specific DSBs where HHT2-HHF2 deletion 

conferred survival after cut induction, apparently through HR repair (Liang, Burkhart et al. 2012). 

Interestingly, hht2-hhf2∆ seemed to reduce the free pool of histones rather than the chromatin bound 

histone fraction (Gunjan and Verreault 2003, Liang, Burkhart et al. 2012). This was consistent with the 

observation that that Rad53 only targeted nonchromatin-bound histones for phosphorylation. Both free 

histones and proteins of the DDR have highly charged interfaces to interact with DNA. Furthermore, 

Rad53 has been shown to directly interact with histones (Gunjan and Verreault 2003). This led to the 

hypothesis that damage sensitivity caused by histone overexpression in rad53∆ cells could derive from 

excess histones binding to repair proteins and thus sequestering them away from the damage (Gunjan and 

Verreault 2003). Likewise, histone reduction would then promote survival after damage by increasing the 

amount of free repair proteins. Proteasomal degradation of histones in the Rad53 pathway was mediated 

by the E3 ligase Tom1 (Singh, Kabbaj et al. 2009, Singh, Gonzalez et al. 2012). The two ubiquitin 

conjugating enzymes (E2) Ubc4 and UBc5 interacted with Rad53 in vivo and could ubiquitinate histones 

in vitro. Interestingly Rad53-mediated histone H3 phosphorylation at tyrosine 99 was critical for the 

degradation of this histone (Singh, Kabbaj et al. 2009). Thereafter, a screen based on sensitivities to histone 

overexpression identified additional histone E3 ligases in this process (Singh, Gonzalez et al. 2012). 

 Reduced histone levels have equally been observed after replicative ageing in human fibroblasts 

(O'Sullivan, Kubicek et al. 2010) (Oberdoerffer 2010) and (Pal and Tyler 2016)). Replicative aged cells 

show decreased levels in both histone transcription and protein levels. Interestingly this effect seems to 

derive from a chronic checkpoint response triggered by telomere shortening in the course of aging 

(O'Sullivan, Kubicek et al. 2010). Similar degrees of age-related histone level reductions were seen in yeast 

(Feser, Truong et al. 2010). Notably, cell longevity could be increased by bringing histone amounts back 

to their native level (Feser, Truong et al. 2010). This shows interesting parallels to a recently identified 
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process in which transient histone gene repression coincided with the recovery of mammalian cells from 

apoptosis (Tang, Talbot et al. 2017). This process has been termed “anastasis” and raises the interesting 

hypothesis that transient histone level reductions could be beneficial for growth recovery through 

mechanisms yet to be identified (Tang, Talbot et al. 2017). In contrast, forcing nucleosome loss from DNA 

in vivo can be detrimental in certain situation. The Neefjes laboratory showed that the chemotherapeutic 

agent doxorubicin (a topoisomerase II [TopoII] inhibitor) caused histone eviction from open chromatin 

and contributed to chemotherapeutic effects (Pang, Qiao et al. 2013). Doxorubicin was found to bind to 

the minor groove of DNA via its amino sugar (Frederick, Williams et al. 1990) and probably compete for 

histone or HMG protein binding (Pang, Qiao et al. 2013). On one hand, this is beneficial as doxorubicin 

evicted yH2A.X from the lesions caused by TopoII inhibition, and thereby attenuated the DDC, driving 

cancer cells into apoptotic cell death. On the other hand, the observed histone loss could explain the 

detrimental secondary effects of doxorubicin on slowly proliferating heart tissue, a rather unwanted effect 

(Pang, Qiao et al. 2013). Furthermore, the Henikoff group showed that doxorubicin-induced 

topoisomerase inhibition results in increased nucleosome turnover and salt solubility within gene bodies 

and suggest that mainly DNA torsional stress contributes to the destabilization of nucleosomes (Teves 

and Henikoff 2014). Of course a complete block of histone synthesis has more drastic effects: it blocks 

the cell cycle (Kim, Han et al. 1988), increases centromere separation and spindle length (Bouck and Bloom 

2007), makes chromatin more susceptible to radiation damage (Celona, Weiner et al. 2011), impairs 

chromosome bi-orientation during mitosis (Murillo-Pineda, Cabello-Lobato et al. 2014) and leads to a 

global up-regulation of transcription (Kim, Han et al. 1988, Celona, Weiner et al. 2011, Hu, Chen et al. 

2014). 

 Taken together these results show how reductions in nucleosome occupancy along DNA can cause 

detrimental effects in certain scenarios. Interestingly, this raises the possibility of using chromatin 

modifying drugs/methods to increase the success of cancer therapy in chemotherapeutic combination 

treatments.  
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 Given that damage does not occur on naked DNA but in the context of chromatin, it is clear that 

repair must occur in accordance to the prime-repair-restore model (Fig. 5) (Soria, Polo et al. 2012). First, 

before a lesion can be repaired, it must firstly be made accessible to the repair machinery (“primed”). 

Secondly, repair needs to take place in the context of chromatin and finally, it is important to restore the 

chromatin/nucleosome context after repair. The repair and recovery from DNA damage has thus 

implications in both cell survival and epigenome maintenance (Soria, Polo et al. 2012, Adam, Dabin et al. 

2015, Gerhold, Hauer et al. 2015). Histone degradation and mobilization after genomic insults and 

checkpoint activation is not restricted to DSBs and has been shown to occur both locally and globally in 

response to various DNA damaging agents. In that sense, the van Attikum laboratory has shown that 

chromatin remodeling alters nucleosome dynamics at IR induced DSBs as well as at sites of UV damage 

(Luijsterburg, Lindh et al. 2012, Luijsterburg, de Krijger et al. 2016). CHD2-dependent remodeling of 

chromatin around breaks in human U2OS cells relied on parylation which caused chromatin expansion 

and deposition of the histone variant H3.3 (Luijsterburg, de Krijger et al. 2016). Furthermore, fluorescence 

recovery after photobleaching (FRAP) microscopy revealed a DDB2 and PARP1 dependent loss of core 

histones from UV-damaged chromatin in hamster cells (Luijsterburg, Lindh et al. 2012). Apart from the 

importance of parylation in DDR signaling, ATM and NBS1 recruitment to I-PpoI induced DSBs was 

shown to cause localized disruption of nucleosomes in human MCF7 cells (Berkovich, Monnat et al. 2007). 

In this case, ChIP experiments were used to follow the levels of H2B at breaks (Berkovich, Monnat et al. 

2007). A later study by the same laboratory followed the abundance of all core histones around I-PpoI 

sites (Goldstein, Derheimer et al. 2013). Break induction caused a selective loss of H2A and H2B, but not 

Figure 5 The prime-repair-restore model. Adopted from (Adam, Dabin et al. 2015). DNA damage (yellow star) triggers 
widespread chromatin changes, including a loss of pre-existing histones (red) at the damage site and the incorporation of 
new information (green) during the course of repair. The pattern of histone variants and associated PTMs after restorage 
differs from the original state. Future challenges and key questions in the field are marked by dashed blue circles. 
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of H3 nor H4. Interestingly, down-regulation of nucleolin, a protein with histone chaperone activity, 

abrogates nucleosome disruption, repair factor recruitment and the repair of the DSBs (Goldstein, 

Derheimer et al. 2013). Similar results were obtained with FRAP experiments at localized UV damage sites 

in different human cell lines (Dinant, Ampatziadis-Michailidis et al. 2013). In this case, selective H2A/H2B 

loss at the damaged sites depended on the Spt16, one of the two subunits of the histone chaperone FACT. 

Moreover, Spt16 was essential to restart transcription after repair (Dinant, Ampatziadis-Michailidis et al. 

2013). Finally, it was shown that disrupting nucleosomes to allow access for repair was important for DSBs 

induced at the yeast mating type locus MAT, if the donor is heterochromatic. In a strain created by Hicks 

et al., recombination-mediated repair of a DSB at MAT could only occur at the HML donor locus (Tsabar, 

Hicks et al. 2016). Notably, 60 minutes after cut induction, nucleosomes at the donor site were greatly 

reduced and coincided with homology-driven strand invasion (Rad51 accumulation) (Tsabar, Hicks et al. 

2016). These observations indicate that chromatin accessibility needs to be increased both at the DSB site 

and the homologous template to allow for successful recombination. 

 In addition to these local effects, nucleosomes were found to be lost genome-wide in response to 

UV, IR or radiomimetic damage. Consistently, chromatin fractionation and salt extraction studies in 

human 293T cells showed that histones were destabilized and released from chromatin upon irradiation 

(Xu, Sun et al. 2010). This technique measured the degree of protein extractability from chromatin in 

response to damage. The authors found that the core histones H2B, H3 and H4, as well as the histone 

variant H2A.X became more extractable after damage. This IR-dependent destabilization was further 

found to be an active process requiring the ATPase activity of the p400 ATPase in the SWI/SNF complex 

and histone acetylation by the Tip60 acetyltransferase (Xu, Sun et al. 2010). Analysis of the human CUL4-

DDB-ROC1 ubiquitin ligase showed substrate specificity to histones in vitro and further ubiquitinated H3 

and H4 in response to global UV damage in vivo (Wang, Zhai et al. 2006). Ubiquitination weakened 

histone-histone interactions and caused nucleosome eviction. At this stage, it was not analyzed whether 

subsequent proteasomal degradation occurred (Wang, Zhai et al. 2006). In Chapter 4, I will discuss our 

finding which describes a global, proteasome-mediated degradation of all core histones in response to 

Zeocin damage (Hauer, Seeber et al. 2017). 
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Summary 
This chapter highlights the importance of nucleosome remodelers in DNA repair and provides an in-depth 

overview on INO80 and SWR-1 remodeling complex function. It consists of two parts based on the review 

articles shown here. 

Remodelers form a conserved class of proteins harboring a Swi2/Snf2 ATPase that uses the energy from 

ATP hydrolysis to change the local state of chromatin by exchanging histone variants, ejecting octamers 

and sliding/spacing nucleosomes. These actions regulate gene transcription, DNA replication, repair and 

chromatin structure genome-wide. The first part of this chapter discusses the roles of yeast and mammalian 

chromatin remodeling complexes in DSB repair pathways. We provide side by side comparisons of 

remodeler subunit conservation and their respective roles in DNA damage repair. In addition, we highlight 

the importance of chromatin remodeling in regulating damage-provoked local and global chromatin 

mobility. The second part of this chapter specifically discusses the roles of INO80-C and SWR1 as 

“Guardians of the Genome”. Both remodelers possess important functions in DSB relocation events, cell 

cycle regulation, damage repair and were implicated in cancer.  
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ATP-dependent nucleosome remodelers use ATP hydrolysis to

shift, evict and exchange histone dimers or octamers and have

well-established roles in transcription. Earlier work has

suggested a role for nucleosome remodelers such as INO80 in

double-strand break (DSB) repair. This review will begin with an

update on recent studies that explore how remodelers are

recruited to DSBs. We then examine their impact on various

steps of repair, focusing on resection and the formation of the

Rad51-ssDNA nucleofilament. Finally, we will explore new

studies that implicate remodelers in the physical movement of

chromatin in response to damage.
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Introduction
In eukaryotic cells, the genomic DNA is wrapped around
histone proteins to form a compact nucleosomal fiber.
This form of chromatin is bound and protected by a
variety of factors, yet is nonetheless susceptible to envir-
onmentally induced damage. Once damaged, repair and
checkpoint signaling machineries recruit chromatin mod-
ifying enzymes to render damaged DNA accessible to
repair. This is mediated both by enzymes that modify
histones and by ATP-dependent nucleosome remodelers
that can shift, evict and exchange histone dimers or
octamers, facilitating the different steps of the repair
process. Histone modifications coordinate repair with
other DNA-based functions, such as transcription and
replication. Recent work also suggests that nucleosome
remodelers enhance micromovement [1!] and possibly
evict proteins that inhibit the repair process [2!!]. Finally,
the re-establishment of the initial chromatin structure

requires histone chaperones and various modifying
enzymes that deposit or remove acetyl-groups, methyl-
groups and ubiquitin from histone tails [3]. It is likely that
active nucleosome remodeling is required as well for
proper recovery after repair.

All remodelers of the SWI2/SNF2 family contain related,
large catalytic ATPase subunits. A new phylogenetic
analysis has replaced the classical grouping (SWI/SNF,
ISWI, CHD and INO80) of the various remodelers, split-
ting them into six major families, namely the Snf2-like,
Swr1-like, SMARCAL1, Rad54-like, Rad5/16-like and
ERCC6/SSO1653-like [4] (Table 1). SWI/SNF members
of the Snf2-like family contain a bromodomain which binds
acetylated histone tails. ISWI remodelers have HAND,
SANT and SLIDE domains involved in DNA binding in
the context of nucleosomes. The Snf2-like family also
includes CHD remodelers, which contain a tandem chro-
modomain that mediates binding to methylated histones.
INO80 complexes fall into the Swr1-like class, which has a
characteristic insert in the middle of the ATPase domain,
and contain a RuvB-like DNA helicase, Rvb1/2 in yeast or
TIP49a,b in mammals. Most remodeling complexes harbor
a number of additional subunits, among them actin and
actin related proteins (Arps), some of which are shared,
others unique to specific remodelers (Table 1) [5].

Previous work had shown that mutation or down-regula-
tion of some remodeler subunits renders cells hypersen-
sitive to DNA damage [6]. This phenotype, however, can
stem from effects either on transcription, replication, or
the repair pathway itself. To study the direct involvement
of chromatin remodelers in double strand break (DSB)
repair, chromatin immunoprecipitation (ChIP) and fluor-
escent imaging studies have monitored whether or not a
given ATP-dependent nucleosome remodeler was
recruited to a unique DSB or to a zone of laser-induced
damage. These approaches have implicated many remo-
delers directly in steps of repair, and most frequently in
repair by homologous recombination (HR), but more
recently, also by non-homologous end joining (Table
2). Given the broader effect of remodelers on chromatin
composition, we will hereafter refer to them as chromatin
remodelers, rather than nucleosome remodelers. In this
review, we provide an overview about the various roles
that remodeling complexes play during DSB repair. Cru-
cial to understand is how remodelers are initially recruited
to DSBs, how they impact the various steps of repair and
how they affect the formation of the Rad51-ssDNA
nucleofilament. Recent studies also implicate chromatin
remodelers in changing the physical movement of DNA
in response to damage.
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Recruitment of chromatin remodelers to a
DSB
The INO80 nucleosome remodeler is recruited to DSBs
in both yeast and man. In yeast, the INO80 complex is
made up of 15 subunits including Ino80, Rvb1/2, Arp5/8,

Arp4, Act1, Nhp10 and Ies3. Its recruitment to DSBs in
yeast requires an interaction with phosphorylated H2A
(gH2A); mutation of the phosphoacceptor site on yeast
H2A reduced INO80 binding at an induced DSB [7 ]. The
subunits implicated in this interaction are Nhp10 and Ies3
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Table 1

Composition and classification of nucleosome remodelers in S. cerevisiae and Human.

Grouping Organism

Family Subfamily & 
Composition S. cerevisiae Human

Swr1
like

Ino80 Complex INO80 INO80

ATPase Ino80 hINO80
Orthologous 
subunits

Rvb1*, Rvb2* TIP49A*, TIP49B*
Arp4*, Arp5*, Arp8, Act1 BAF53a*, ARP5, ARP8
Taf14
Ies2 hIES2
Ies6 hIES6

Unique Ies1, Ies3-5, Nhp10 Amida, NFRKB, MCRS1, FLJ90652, FLJ20309
Swr1 Complex SWR1 SRCAP TRRAP/Tip60

ATPase Swr1 SRCAP p400
Orthologous 
subunits

Rvb1*, Rvb2* Tip49a*, Tip49b* Tip49a*, Tip49b*
Arp4*, Arp6, Act1 BAF53a*, Arp6 BAF53a*, Actin
Yaf9 GAS41* GAS41*
Swc4/Eaf2 DMAP1* DMAP1*
Swc2/Vps72 YL-1* YL-1*
Bdf1 BRD8/TRCp120
H2AZ, H2B H2AZ, H2B
Swc6/Vps71 Znf-HIT1

Unique Swc3,5,7 Tip60, MRG15, MRGX, FLJ11730, 
MRGBP, EPC1,EPC-like, ING3

Etl1 Complex FUN30 SMARCAD1

ATPase Fun30 SMARCAD1
Subunits Not identified Not identified

Snf2
like

Mi-2 Complex No homolog NuRD

ATPase CHD3/Mi-2 α
CHD4/Mi-2β

Subunits MBD2,MBD3, MTA1-3, HDAC1-2, RbAp46 or 48, p66α, p66 β
Chd1 Complex CHD1 CHD1

ATPase Chd1 CHD1 
Subunits monomeric monomermic

Alc1 Complex No homolog ALC1

ATPase ALC1
Subunits Not identified

Snf2 Complex SWI/SNF RSC BAF PBAF

ATPase Swi2/Snf2 Sth1 BRG1/SMARCA4 or hBRM/SMARCA2 BRG1
Orthologous 
subunits

BAF250a/ARID1A or BAF250b/ARID1B 
or

Rsc1, Rsc2, Rsc4 BAF180*, BAF200/ARID2* BAF180*, BAF200/ARID2*
Swi3 Rsc8 BAF155/SMARCC1*and/or 

BAF170/SMARCC2*
BAF155/SMARCC1*and/or 
BAF170/SMARCC2*

Swp73 Rsc6 BAF60a/SMARCD1* BAF60a/SMARCD1*
Arp7*, Arp9* Arp7*, Arp9* BAF53a* BAF53a*
Snf5 Sfh1 BAF47/hSNF5/SMARCB1* BAF47/hSNF5/SMARCB1*

BAF57/SMARCE1* BAF57/SMARCE1*
β-actin* β-actin*

Unique Swi1/Adr6, Swp82, 
Taf14, Snf6, Snf11

Rsc3, Rsc5, Rsc7, Rsc9, 
Rsc10, Rsc30, Htl1, Lbd7, 
Rtt102

BAF45a or BAF45d

Iswi Complex ISW1a ISW1b ISW2 ACF CHRAC NURF

ATPase Isw1* Isw1* Isw2 hSNF2H hSNF2L
Orthologous 
subunits

Itc1 WCRF180/ hACF1* WCRF180/ hACF1* BPTF
Dpb4 hCHRAC17 RbAp46
Dls1 hCHRAC15 RbAp48

Unique Ioc3 Ioc2, Ioc4
Rad54
like

Rad54 Complex Rad54 Rad54

ATPase Rad54 Rad54

*Subunits shared within different remodeling complexes of the same organism.
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(a subunit which is lost upon deletion of NHP10) [8], and
Arp4, with Arp4 having been shown to physically associ-
ate with gH2A [9]. The story appears to be different in
mammals, where INO80 is recruited to laser-induced
sites of damage independently of gH2A.X, but in a
manner sensitive to loss of Arp8 [10]. shRNA against
other INO80 subunits did not have an effect on recruit-
ment, but it should be noted that the INO80 subunits
studied were only reduced to levels ranging from 20% to
40% of wild-type levels. It remains possible that other
INO80 subunits play a role in the recruitment to DSBs,
but that the shRNA knock-down was not sufficient to
impair binding at the break. Another mammalian study
shows that Arp5 interacts with gH2A.X and promotes its
initial phosphorylation [11]. In the same vein, a new
report using Arabidopsis shows that Arp5 is required to
prevent sensitivity to DNA damaging agents, highlight-
ing the importance of this subunit [12]. Collectively these
findings argue that in higher eukaryotes the initial recruit-
ment of INO80 is mediated by Arp8, while Arp5 sub-
sequently interacts with and facilitates the spread of
gH2AX.

Also recruited by interaction with gH2A.X is the INO80-
related yeast remodeler SWR1 (p400 or SRCAP in man).
The SWR1 remodeler has been shown to deposit H2A.Z
(Htz1 in yeast), a conserved variant of H2A, by catalyzing
the replacement of H2A–H2B dimers with H2A.Z–H2B
dimers in a stepwise and unidirectional manner [13].
H2A.Z is found enriched near the TSS of genes, as well
as in some heterochromatic regions. A number of papers
implicate H2A.Z or Htz1 in repair pathways [14] and, not
surprisingly, mutants in Swr1 or Swr1 complex com-
ponents are sensitive to DNA damaging agents [15,16].
In mammalian cells, H2A.Z can be exchanged onto
nucleosomes at DSBs by TRRAP/TIP60’s p400 ATPase
domain, the recruitment of which depends on gH2A.X, as
in yeast [36]. At the DSB, H2A.Z exchange is required for
the acetylation of histone H4 by TIP60, and for histone
ubiquitination by RNF8. H2A.Z then ultimately leads to
enhanced Ku recruitment, favoring repair by NHEJ,
whereas its absence, leads to extensive resection and
inaccurate repair [17!].

The SWI/SNF remodeling complex has also been shown
to be recruited to DSBs [18], although the mechanism of
recruitment is unknown, particularly in yeast. In one
report, a null mutant of the yeast SWI/SNF subunit
Snf2 did not result in enhanced sensitivity to UV or
ionizing radiation (IR) [19], while in other yeast back-
grounds SNF2 or SNF5 deletions rendered cells suscept-
ible to either HU or bleomycin treatment [18]. Indeed, in
this paper, SWI/SNF2 subunits could be detected at
DSBs by ChIP one hour after damage induction [18].
What SWI/SNF achieves at DSBs in yeast is unclear, as it
appears to be dispensable for HR if the donor sequence is
euchromatic. On the other hand, SWI/SNF was shown to

be necessary for the eviction of heterochromatin factors
(Sir3) from donor sequences in vitro [20]. This occurs
during mating type switching, which requires invasion of
the resected DNA strands from MAT into silent chroma-
tin at HM loci.

In humans, the SWI/SNF complex contains one of two
catalytic subunits, BRG1 or BRM, along with many
BRG1/BRM associated factors (BAFs) [5]. A recent study
proposed a positive feedback loop, in which the histone
acetyl transferase (HAT) GCN5 binds to gH2A.X upon
damage, acetylating adjacent H3 molecules, which would
be recognized by the bromodomain of BRG1. SWI/SNF
is then thought to facilitate access to the damage extend-
ing phosphorylation of H2A.X and thus more acetylation
[21!]. However, other HATs, such as Tip60, p300 and
CBP have been shown to work with SWI/SNF at DSBs in
NHEJ [22].

In a more general way, DSBs undergo a series of de-
pendent events which involve ubiquitination, acetylation
of H3K14 and finally the acetylation-dependent recruit-
ment and active remodeling by the SWI/SNF subunit
BRG1.

In one study, SWI/SNF was shown to be recruited to
neocarzinostatin induced DSBs in a manner promoted by
BRIT1/MCPH1, an early DNA damage response protein.
This entailed the ATR/ATM dependent phosphorylation
of the SWI/SNF subunit, BAF170. Chromatin cannot
relax as monitored by MNase sensitivity assays upon
BRIT/MCPH1 depletion, which coincides with defects
in both HR and NHEJ in mammalian cells [23].

In conclusion, human SWI/SNF has previously unappre-
ciated roles in promoting the early spread of gH2A.X and
histone acetylation at DSBs. Whether NHEJ and HR
pathways have a differential dependence on SWI/SNF is
not yet clear.

Repressive Snf2-like remodeling complexes of the Mi-2
and CHD class (such as CHD1 and NuRD complexes)
are unique in the sense that their catalytic subunits
contain a characteristic N-terminal tandem chromodo-
main, which directs them to methylated histones. This
domain, at least for Chd1, regulates its ATPase motor
dynamics [24!]. CHD1 and NuRD have clear roles in
transcriptional regulation, histone dynamics and gene
silencing [5], whereas their impact on DSB repair is only
starting to be revealed.

In mammalian cells, shRNA knockdowns of NuRD sub-
units, CHD4 or MTA2, resulted in increased levels of
spontaneous damage and persistent p53 activation [25!].
CHD4 also promotes ubiquitination of histones, which
correlates with recruitment of BRCA1 and RNF168 and
maintenance of the G2/M checkpoint. Further studies
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showed that the NuRD components CHD4 and MTA1
are recruited to sites of IR-induced DNA damage. This
recruitment takes place in a previously unappreciated,
polyadenosine 50-diphosphate (ADP)-ribose (PARyla-
tion)-dependent manner, but is independent of H2A.X
phosphorylation [26!,27!!]. It was also shown that com-
ponents of the Polycomb Repressive Complex 1 (PRC1),
such as MEL-18, are recruited to DSBs in a PARylation-
dependent manner, and that PARylation is required to
exclude nascent RNA as well as RNA polymerase II from
regions of laser induced damage [27!!]. Thus PARylation
and NuRD recruitment appear to repress transcription at
breaks. Speculation on the role of heterochromatin
proteins in DSB repair is discussed elsewhere [3]. PAR-
ylation is also crucial for the recruitment of another
human Snf2-like chromatin remodeler, ALC1, also
known as CHD1L. ALC1 is targeted to sites of phleo-
mycin-induced damage through its interaction with poly-
ADP ribose. ALC1 overexpression delays or impedes
repair, based on the comet assay. It is thought that
ALC1 may promote NHEJ through its physical inter-
actions with Ku70, XRCC1, DNA-PKcs and the histone
chaperone APLF. Its interaction with subunits of the
RPA complex may also suggest a role in HR, or another
pathway of repair requiring DNA resection [28–30].

Finally, the related NuRD complex ATPase, CHD3, was
shown to be lost from lesions induced in KAP-1-enriched
heterochromatic domains [26!]. This effect is regulated
by ATM dependent phosphorylation of KAP-1 at Ser824.
Once KAP-1 is phosphorylated (pKAP-1), its direct inter-
action with CHD3 is disrupted, resulting in CHD3 loss
from the domain. The ensuing chromatin relaxation is
thought to promote DNA accessibility of heterochromatic
regions, thereby facilitating repair [31!!,32]. This is con-
sistent with the role proposed for CHD3 and MI-2 in
promoting chromatin compaction and gene repression
[33].

The closest yeast equivalent to mammalian CHD3,
CHD4 and ALC1 ATPases is the monomeric Chd1
remodeler (Table 1). Computational studies showed that
yeast and other lower eukaryotes lack KAP-1-like
proteins and PAR, and so far there have been no recent
studies that link yeast Chd1 to DSB repair. In summary,
these results identify ALC1 and CHD4 as active factors
in genome maintenance that recruit DNA damage
response factors, possibly favoring repair, while the
related CHD3-containing NuRD remodeler complex
needs to be lost from heterochromatic sites in order to
aid repair. This suggests that the chromatin context of
the DNA damage strongly influences which remodeler is
important for subsequent repair events. Furthermore,
depending on whether the situation calls for NHEJ-
mediated or HR-mediated repair, resection may either
need to be attenuated or promoted by remodeling
complexes.

Role of chromatin remodelers in resection
The Swr1-like remodeler INO80 [7] and the Snf2-like
remodeler RSC [34] were the first chromatin remodeling
complexes to be associated with resection (for an in depth
analysis see [6]). A recent study on mammalian INO80
and one of its subunits, Arp8, shows the importance of
INO80 in RPA filament formation after damage [35!].
This is consistent with its previously demonstrated role in
resection in yeast [36]. We note that, TIP49a,b which is
part of the human INO80, SCRAP and TTRAP/Tip60
complexes [5] and yeast Rvb1/Rvb2 of INO80 and SWR1,
have been shown to be ATP-dependent helicases that
unwind DNA at 30 ssDNA overhangs of at least 30
nucleotides in length, in a 30 to 50 direction [37]. These
in vitro findings suggest that complexes containing
TIP49a,b (or Rvb1/Rvb2) may be generally involved in
processing resected DNA ends.

Fun30 is a poorly characterized chromatin remodeler of
the Etl1 Snf2-like nucleosome remodeler family
[4,38,39!!]. The previous best described role of Fun30
was the protection of centromeres by maintaining the
integrity of centromeric chromatin [40,41]. Three new
studies highlight the role of Fun30 in Sgs1 and Exo1
dependent long-range resection at a DSB [2,40,42!!].
Fun30 appears to be the most important chromatin
remodeler for long-range resection in yeast, although this
role is partially redundant with that of INO80 and RSC
near the DSB [2]. This also appears to hold true in
mammals for SMARCAD1, the closest human homologue
of Fun30 [42!!]. Intriguingly, Fun30 becomes partly
dispensable when recruitment of the checkpoint
mediator Rad9 is ablated. Rad9 inhibits resection at DSBs
[43,44] thus favoring NHEJ over HR. Fun30 is proposed
to remove Rad9 (Figure 1) and thus promote resection
and HR [2,39!!]. Consistently, when Fun30 is deleted,
Rad9 spreads outwards from the DSB, presumably antag-
onizing resection [2]. This paper also offers evidence
indicating that CHD1, SWR1, Rad54 and ISW1 remodel-
ing factors do not play any significant role in resection,
though Rad54 is epistatic with Fun30 with respect to its
damage sensitivity [2].

Cells without intact INO80, SWR1 and RSC are still
proficient in single-strand annealing (SSA), a repair
mechanism that requires extensive resection to repair
a DSB. However, fun30D strains are defective in repair by
SSA, highlighting the importance of this protein’s invol-
vement in long range resection [2,39!!]. Importantly,
Fun30 does not seem to be involved in strand invasion
or in later steps of HR. However, like rdh54D strains,
fun30D strains are defective in adaptation to a single
DSB, due to the hyperactivation of Mec1 (ATR kinase)
through Mre11 [39!!]. These papers have now added
Fun30 to the list of DNA damage response factors,
although little is known about the complex(es) it
forms.
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Rad51-ssDNA filament formation
After resection, one of the next steps in HR is the formation
of a Rad51 filament along the ssDNA strand. This is
facilitated by  a number of remodelers. For example when
Fun30 is deleted, Rad51 levels at distal sites from a
DSB (5 kb) are greatly  reduced and accumulate slowly

over time. Even though basal protein levels are reduced,
this defect in recruitment and accumulation is not seen
within proximal sites to the DSB (1 kb) [2].

The same holds true for Tip49a-depleted or Tip49b-
depleted human cells where Rad51 focus accumulation

6 Genome architecture and expression

COGEDE-961; NO. OF PAGES 11

Please cite this article in press as: Seeber A, et al.: Nucleosome remodelers in double-strand break repair, Curr Opin Genet Dev (2013), http://dx.doi.org/10.1016/j.gde.2012.12.008

Figure 1

HATMec1/
Tel1

Rad9

Rad9

Long range resection
(28 kb)

Short range 
resection

(5 kb)

INO80,
RSC

Ino80

Distal Rad51
accumulation(5 kb)

Arp8

CHD3

pK
AP

-1

CHD3

KA
P-

1

ATM/
ATR

Remodeling 
Complexes

Remodeling 
Complexes

ALC1

CHD4
NuRDPARP1

Heterochromatic 
regionH2A-H2B / Htz1-H2B dimer exchange Euchromatin

Poly ADP-ribosylation

Site of damage/DSB

TRRAP/Tip60
Tip49a/b

Recruitment to a DSB
and early histone modifications

Resection

Rad51-ssDNA nucleofilament
formation

Yeast Mammals

HAT

SWI/SNF
BRG1

INO80, RSC, SWI/SNF
           SWR1

SWR1

INO80, RSC

(a)

(b)

(c)

Site of damage/DSB
H2A-H2B Histone dimer

Htz1-H2B Histone dimer

Dna2/
Sgs1,
Exo1

Rad54

Rad9

Rad54

Rad54
Rad54

Fun30Rad51 Rad51 Rad51 Rad51 Rad51 Rad51

Rad51

Rad51 Rad51 Rad51 Rad51 Rad51 Rad51

Rad51

Fun30

PP

P
P

P
Ac Ac Ac Ac AcAc

P

P P
P

P P P
P

Current Opinion in Genetics & Development

Chromatin remodeling at different steps during HR. (a) Formation of a DSB activates the DNA damage response followed by an orchestrated
localization of repair factors to the site of damage, priming it for repair. The events occurring in budding yeast are on the left and those in mammals on
the right. One of the first steps during DSB repair is the acetylation of histones, combined with phosphorylation by checkpoint kinases. The
combination recruits chromatin remodeling complexes to the site of damage. Upon binding, remodelers change the local occupancy and histone
composition of nucleosomes around the DSB, facilitating the accessibility for subsequent repair factors. In mammals both acetylation and the
recruitment of remodelers associated with transcriptional repression is documented. In heterochromatic regions the CHD3-containing NuRD complex
is evicted from heterochromatin. This may facilitate the opening of these compacted chromatin regions. PARylation is also important in recruiting
NuRD complex components such as CHD4 and ALC1 (CHD1L) near the lesion. (b) The next step in HR requires resection of the dsDNA at the break
site, generating a 30 overhang. RSC and INO80 have a role in short range resection while Fun30 is essential for long range resection. Following DSB
formation, Fun30 accumulates at distal sites from the break, removing the resection barrier imposed by Rad9 binding. Once Rad9 is removed, the
exonucleases Dna2/Sgs1 and Exo1 can produce long ssDNA overhangs. (c) Following resection, the ssDNA binding protein Rad51 is loaded onto DNA
and forms the ssDNA nucleofilament. Rad54 stabilizes the Rad51 filament. In haploid yeast cells, Arp8 within the INO80 complex is required for
efficient accumulation of Rad51 at DSBs. In mammals Tip49a,b in the human TRRAP/Tip60 promotes Rad51 focus formation at DSBs.
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is strongly reduced in response to IR, rendering cells
sensitive to damaging agents. Indeed, the amount of
soluble Rad51 accumulates, and the level of chromatin-
bound Rad51 decreases, upon Tip49a/b depletion. The
authors also show that relaxing chromatin before DSB
induction, using sodium butyrate to provoke hyperace-
tylation, restores the number of Rad51 foci to wild-type
levels, possibly achieving the same opening of chromatin
as that effected by the Tip49/TRRAP/Tip60 complex
[45,46]. Alternatively, SRCAP may be involved. One
model proposes that the role of Tip49 within the
TTRAP–Tip60 complex is to relax chromatin by acety-
lation, enabling the access of the repair machinery at the
break site. Mammalian INO80 does not seem to be
important for the recruitment of Rad51, but rather affects
the recruitment of early repair proteins such as 53BP1,
which may antagonize HR [35!]. In contrast, in haploid
yeast Rad51 recruitment to an irreparable DSB is dimin-
ished in arp8D cells [47]. We note that when a donor is
present and the DSB was repairable by HR in yeast, as in
the mammalian study, INO80 mutants did not show a
defect in Rad51 recruitment [48]. Given that yeast Rad51
activity is enhanced in diploids, it may be that Arp8
becomes dispensable in diploid cells for Rad51-filament
formation [49].

Rad54 also plays a role in stabilizing Rad51 ssDNA
filaments [50,51]. Evidence from a new mammalian study
indicates that Rad54 dependent accumulation of Rad51
does not require the ATPase domain of Rad54, although
ATP hydrolysis is required for the dissociation of Rad54
from the filament. Following IR induced damage over
five hours, the authors observed an increase in the num-
ber of Rad54-GFP foci at the nuclear periphery. After
another five hours the number of foci at the periphery
dropped to the same levels as at the beginning of the
experiment. In a Rad54-GFP ATPase mutant, the num-
ber of foci at the periphery continued to accumulate over
the course of the experiment. The authors interpret this
effect as relocation of a DSB to the nuclear periphery.
However, this result could also indicate that DSBs are
repaired faster in internal regions (euchromatin) than at
the periphery (heterochromatin), or that foci persist
longer in less accessible peripheral heterochromatin
[52!!]. Finally, displacement of yeast heterochromatin
factors by the SWI/SNF remodeler complex was shown
to promote Rad51 mediated joint-molecule formation and
Rad54 dependent strand invasion, priming the DSB for
repair by HR in vitro [20]. Taken together, these obser-
vations support the model that SWI/SNF ATPases facili-
tate Rad51 focus formation while Rad54 promotes
filament assembly.

Dynamics of the DSB fiber
The least understood step in HR is homology search [53]
(Figure 2). This process implies that a DSB scans the
nucleus for its homologous template, in order to anneal

and finally carry out repair by recombination. Undamaged
chromatin moves within the nucleus, but it is constrained
by the continuity of the chromatin fiber [54]. Both sides of
a break remain linked by the MRN/MRX complex, yet
changes in chromatin structure could change the persist-
ence length of the chromatin fiber [1]. Recently it was
tested whether the mobility of a DNA locus changes upon
DSB induction and the impact of such movement on HR-
mediated repair. Two studies in budding yeast have
shown that DNA bearing a DSB in S-phase cells moves
through a nuclear volume approximately 4-times larger
than that of undamaged DNA [55!!,56!!]. Similarly, in
mammalian cells the mobility of IR induced foci was
found to increase over that of undamaged chromatin
[57!]. While yeast and man share this phenomenon, a
small increase in radius of constraint in yeast can enhance
access to more than 60% of the genome, while in mam-
malian cells the same radius of movement might only
mean that damage shifts from a compacted domain of
chromatin to an open space nearby, without accessing a
large part of the genome.

In support of the idea that chromatin mobility enhances
HR, it was shown that the decreased chromatin mobility
scored in a rad9D strains, correlated with lower rates of
heteroduplex formation, when the donor sequence sits on
a nonhomologous chromosome [55!!]. The ATR homol-
ogue Mec1 was also implicated in the increased mobility
of the DSB [55!!].

One way in which random chromatin movement can be
increased is through the removal of nucleosomes, which
might increase the flexibility of a compacted chromatin
fiber. In support of this model, work from the Gasser
laboratory showed that the targeting of INO80 increased
chromatin mobility in a manner dependent on its ATPase
activity. At the PHO5 promoter the increased movement
could be correlated with nucleosome displacement by
INO80 [1]. Consistently, the enhanced movement scored
at an induced DSB was partially reduced in an arp8D
strain [1], while the loss of Rad51 or of Rad54’s ATPase
activity completely eliminated damage-induced chroma-
tin mobility [55!!]. Since Rad51 helps recruit Rad54, and
Rad54 in turn stabilizes the Rad51-ssDNA fiber, it is
unclear whether the Rad54 ATPase action or the creation
of the Rad51-ssDNA filament, or both enhance move-
ment [55!!].

Rad54 remodels chromatin [58] in a manner that corre-
lates both with its dsDNA translocation activity, and its
ATPase activity [50,51]. Thus, Rad54 may actively slide
nucleosomes away from the resected DSB [59], which
could, based on the action of other chromatin remode-
lers, increase the radius of the random walk movement
of the DSB, due to reduced constraint on the damaged
chromatin fiber. Interestingly, Rad54 molecules in
human do not need their ATPase domains to associate
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with DSBs, and lack of ATPase activity inhibits its
turnover at sites of damage, as shown by FRAP
[52!!]. Thus, it could also be the release of Rad54  that
enhances movement of the resected break. In mamma-
lian cells, but not in yeast, hINO80 binds to and pro-
motes the expression of the RAD54 gene, which
suggests that INO80 may also have indirect effects in
DSB repair. Indeed, enhanced expression of Rad54  can
complement the DNA repair defect of human Ino80-
deficient cells [60].

The specific mechanism of how remodelers increase
chromatin mobility is still an open question. Multiple
effects, including release from anchoring molecules,
reduced persistence length, or the effect of the ATPase
itself, are all possibilities. Some insight may be gained
by identifying and comparing the effects of different
remodeler subtypes in regard to chromatin mobility.

Conclusions
Up to this point only a few studies of chromatin remo-
delers in damage have scored defects in repair that could
be traced unambiguously to the remodeler’s activity at
the site of damage. This may in part reflect redundancy in
the function of chromatin remodelers, but may also
simply arise from the fact that the appropriate read-outs
were not yet monitored. Many unanswered questions
remain. It is still unclear why so many chromatin remo-
deling factors are recruited to double-strand breaks. It is
unclear how chromatin remodelers increase mobility of
chromatin, why some damage shows movement while
other do not, and what the impact of chromatin mobility is
on repair. What role do remodelers play in the late stages
of HR or in the restoration of chromatin after repair? The
literature currently implicates histone chaperones in this
step leaving the role for remodelers largely open [3]. The
fate of nucleosomes during the DNA damage response is
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A speculative role of chromatin remodelers in homology search. In order to repair a lesion by HR, the homologous template needs to be identified and
bound. The homologous template can be the sister chromatid after replication, although in special cases, repair occurs with ectopic homologous
sequences. Several studies suggest that the efficiency of homology search is rate-limiting for DSB repair by HR with ectopic donors [53,62]. Upon
damage, DSBs become more mobile, which may facilitate the homology search through nuclear space. This increase in mobility is dependent on the
ATPase activities of INO80 and Rad54, both of which can remodel nucleosomes. Other chromatin remodeling complexes may also be involved in
homology search dynamics.
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an open question. Certainly, there has to be nucleosome
eviction during resection to form an overhang for HR.
The possibility remains that half nucleosomes remain
bound, although it is unlikely that the Rad51 fiber con-
tains nucleosomes. Improved methods for quantifying
histone abundance at sites of damage would help to
resolve this question. The fact that many cancers have
mutations in subunits of chromatin remodeling com-
plexes [61] indicates that these enzymes remain an unex-
plored source of diagnostic targets to help screen for
diseases that stem from genomic instability.

Acknowledgments
The Gasser laboratory is supported by the Novartis Research Foundation,
the Marie Curie networks Image-DDR and Nucleosome 4D, and the Swiss
National Science Foundation. We thank H. Ferreira, V. Dion and F. Clarke
for constructive advice on the writing.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

! of special interest
!! of outstanding interest

1.
!

Neumann FR, Dion V, Gehlen LR, Tsai-Pflugfelder M, Schmid R,
Taddei A, Gasser SM: Targeted INO80 enhances subnuclear
chromatin movement and ectopic homologous
recombination. Genes Dev 2012, 26:369-383.

The authors show that targeting the INO80 complex to a locus increases
its mobility within the yeast nucleus. This was correlated with higher rates
of spontaneous gene conversion, and with nucleosome eviction at the
PHO5 promoter. The increase in mobility at a DSB is Arp8-dependent.
The authors propose a model where by nucleosome eviction increases
chromatin mobility by enhancing the flexibility of the chromatin fiber.

2.
!!

Chen X, Cui D, Papusha A, Zhang X, Chu CD, Tang J, Chen K, Pan X,
Ira G: The Fun30 nucleosome remodeller promotes resection of
DNA double-strand break ends. Nature 2012, 489:576-580.

One of three important studies on the role of Fun30 in double-strand
break repair. Here the authors highlight Fun30 as nucleosome remodeler
that promotes resection of DSBs through a mechanism that seems to
promote the removal of Rad9. They also show the relative roles of the
RSC and INO80 remodeling complexes in resection.

3. Soria G, Polo Sophie E, Almouzni G: Prime, repair, restore: the
active role of chromatin in the DNA damage response. Mol Cell
2012, 46:722-734.

4. Flaus A, Martin DM, Barton GJ, Owen-Hughes T: Identification of
multiple distinct Snf2 subfamilies with conserved structural
motifs. Nucleic Acids Res 2006, 34:2887-2905.

5. Clapier CR, Cairns BR: The biology of chromatin remodeling
complexes. Annu Rev Biochem 2009, 78:273-304.

6. Chambers AL, Downs JA: The RSC and INO80 chromatin-
remodeling complexes in DNA double-strand break repair.
Prog Mol Biol Transl Sci 2012, 110:229-261.

7. van Attikum H, Fritsch O, Hohn B, Gasser SM: Recruitment of the
INO80 complex by H2A phosphorylation links ATP-dependent
chromatin remodeling with DNA double-strand break repair.
Cell 2004, 119:777-788.

8. Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, Greenblatt JF,
Haber JE, Shen X: INO80 and g-H2AX interaction links ATP-
dependent chromatin remodeling to DNA damage repair. Cell
2004, 119:767-775.

9. Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A,
Bouchard N, Kron SJ, Jackson SP, Cote J: Binding of chromatin-
modifying activities to phosphorylated histone H2A at DNA
damage sites. Mol Cell 2004, 16:979-990.

10. Kashiwaba S, Kitahashi K, Watanabe T, Onoda F, Ohtsu M,
Murakami Y: The mammalian INO80 complex is recruited to

DNA damage sites in an ARP8 dependent manner. Biochem
Biophys Res Commun 2010, 402:619-625.

11. Kitayama K, Kamo M, Oma Y, Matsuda R, Uchida T, Ikura T,
Tashiro S, Ohyama T, Winsor B, Harata M: The human actin-
related protein hArp5: nucleo-cytoplasmic shuttling and
involvement in DNA repair. Exp Cell Res 2009, 315:206-217.

12. Kandasamy MK, McKinney EC, Deal RB, Smith AP, Meagher RB:
Arabidopsis actin-related protein ARP5 in multicellular
development and DNA repair. Dev Biol 2009, 335:22-32.

13. Luk E, Ranjan A, Fitzgerald PC, Mizuguchi G, Huang Y, Wei D,
Wu C: Stepwise histone replacement by SWR1 requires dual
activation with histone H2A.Z and canonical nucleosome. Cell
2010, 143:725-736.

14. Bao YH: Chromatin response to DNA double-strand break
damage. Epigenomics 2011, 3:307-321.

15. Kalocsay M, Hiller NJ, Jentsch S: Chromosome-wide Rad51
spreading and SUMO-H2A.Z-dependent chromosome fixation
in response to a persistent DNA double-strand break. Mol Cell
2009, 33:335-343.

16. Morillo-Huesca M, Clemente-Ruiz M, Andujar E, Prado F: The
SWR1 histone replacement complex causes genetic instability
and genome-wide transcription misregulation in the absence
of H2A.Z. PLoS ONE 2010, 5:e12143.

17.
!

Xu Y, Ayrapetov MK, Xu C, Gursoy-Yuzugullu O, Hu Y, Price BD:
Histone H2A.Z controls a critical chromatin remodeling step
required for DNA double-strand break repair. Mol Cell 2012,
48:723-733.

Convincing evidence is put forth for a functional role of H2A.Z deposition
by p400 and subsequent acetylation by Tip60 in mammals at dSBs in
mammalian cells, Incorporation of H2A.Z along with acetylation of H4
facilitates relaxation of chromatin and allows for subsequent modifica-
tions such as ubiquitination and loading of KU to mediate repair by NHEJ.

18. Chai B, Huang J, Cairns BR, Laurent BC: Distinct roles for the
RSC and Swi/Snf ATP-dependent chromatin remodelers in
DNA double-strand break repair. Genes Dev 2005,
19:1656-1661.

19. Shen X, Mizuguchi G, Hamiche A, Wu C: A chromatin
remodelling complex involved in transcription and DNA
processing. Nature 2000, 406:541-544.

20. Sinha M, Watanabe S, Johnson A, Moazed D, Peterson CL:
Recombinational repair within heterochromatin requires ATP-
dependent chromatin remodeling. Cell 2009, 138:1109-1121.

21.
!

Lee HS, Park JH, Kim SJ, Kwon SJ, Kwon J: A cooperative
activation loop among SWI/SNF, gamma-H2AX and H3
acetylation for DNA double-strand break repair. EMBO J 2010,
29:1434-1445.

The authors provide evidence of a positive feedback loop between SWI/
SNF, H3 acetylation and phosphorylation of H2A.X, facilitating DSB
repair.

22. Ogiwara H, Ui A, Otsuka A, Satoh H, Yokomi I, Nakajima S, Yasui A,
Yokota J, Kohno T: Histone acetylation by CBP and p300 at
double-strand break sites facilitates SWI/SNF chromatin
remodeling and the recruitment of non-homologous end
joining factors. Oncogene 2011, 30:2135-2146.

23. Peng G, Yim EK, Dai H, Jackson AP, Burgt I, Pan MR, Hu R, Li K,
Lin SY: BRIT1/MCPH1 links chromatin remodelling to DNA
damage response. Nat Cell Biol 2009, 11:865-872.

24.
!

Hauk G, McKnight JN, Nodelman IM, Bowman GD: The
chromodomains of the Chd1 chromatin remodeler regulate
DNA access to the ATPase motor. Mol Cell 2010, 39:711-723.

This study solved the crystal structure of yeast Chd1 and proposes a
model where the chromodomains of Chd1 allow it to distinguish between
nucleosomes and naked DNA by controlling access to its ATPase motor.

25.
!

Smeenk G, Wiegant WW, Vrolijk H, Solari AP, Pastink A, van
Attikum H: The NuRD chromatin-remodeling complex
regulates signaling and repair of DNA damage. J Cell Biol 2010,
190:741-749.

Knockdown of MTA2 or CHD4, which encode components of the NuRD
complex, leads to accumulation of DNA damage as well as sensitivity to
IR. CHD4 stimulates RNF8/RNF168 dependent ubiquitin conjugates, and
promotes DSB repair and checkpoint activation in response to IR.

Nucleosome remodelers in double-strand break repair Seeber, Hauer and Gasser 9

COGEDE-961; NO. OF PAGES 11

Please cite this article in press as: Seeber A, et al.: Nucleosome remodelers in double-strand break repair, Curr Opin Genet Dev (2013), http://dx.doi.org/10.1016/j.gde.2012.12.008

www.sciencedirect.com Current Opinion in Genetics & Development 2013, 23:1–11



 

Chapter 2: Nucleosome remodelers in double-strand break repair 53 

 

 

26.
!

Polo SE, Kaidi A, Baskcomb L, Galanty Y, Jackson SP: Regulation
of DNA-damage responses and cell-cycle progression by the
chromatin remodelling factor CHD4. EMBO J 2010,
29:3130-3139.

CHD4 promotes DSB repair and cell survival after damage as well as
acting as a regulator of G1/S cell cycle progression by controlling p53
deacetylation.

27.
!!

Chou DM, Adamson B, Dephoure NE, Tan X, Nottke AC, Hurov KE,
Gygi SP, Colaiacovo MP, Elledge SJ: A chromatin localization
screen reveals poly (ADP ribose)-regulated recruitment of the
repressive polycomb and NuRD complexes to sites of DNA
damage. Proc Natl Acad Sci U S A 2010, 107:18475-18480.

The authors find that components of mammalian Polycomb Repressive
Complex 1 (PRC1), such as MEL-18, like MTA1 and CHD4 of the NuRD
complex, are recruited to sites of laser induced damage in a PARP
dependent manner. They show that exclusion of nascent transcripts
as well as RNA polymerase II from sites of laser induced damage was
dependent on PARP. They propose a model whereby PARP promotes
transcriptional repression at sites of DNA damage.

28. Ahel D, Horejsi Z, Wiechens N, Polo SE, Garcia-Wilson E, Ahel I,
Flynn H, Skehel M, West SC, Jackson SP et al.: Poly(ADP-ribose)-
dependent regulation of DNA repair by the chromatin
remodeling enzyme ALC1. Science 2009, 325:1240-1243.

29. Ahel I, Ahel D, Matsusaka T, Clark AJ, Pines J, Boulton SJ,
West SC: Poly(ADP-ribose)-binding zinc finger motifs in DNA
repair/checkpoint proteins. Nature 2008, 451:81-85.

30. Gottschalk AJ, Timinszky G, Kong SE, Jin J, Cai Y, Swanson SK,
Washburn MP, Florens L, Ladurner AG, Conaway JW et al.:
Poly(ADP-ribosyl)ation directs recruitment and activation of
an ATP-dependent chromatin remodeler. Proc Natl Acad Sci U
S A 2009, 106:13770-13774.

31.
!!

Goodarzi AA, Kurka T, Jeggo PA: KAP-1 phosphorylation
regulates CHD3 nucleosome remodeling during the DNA
double-strand break response. Nat Struct Mol Biol 2011,
18:831-839.

The authors show that the mammalian remodeler CHD3 is lost from
heterochromatin upon damage following the phosphorylation of KAP-1
by ATM. Loss of CHD3 results in chromatin relaxation which could help
facilitate repair in heterochromatic regions, by antagonizing chromatin
compaction.

32. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lobrich M,
Jeggo PA: ATM signaling facilitates repair of DNA double-
strand breaks associated with heterochromatin. Mol Cell 2008,
31:167-177.

33. Denslow SA, Wade PA: The human Mi-2//NuRD complex and
gene regulation. Oncogene 2007, 26:5433-5438.

34. Shim EY, Hong SJ, Oum JH, Yanez Y, Zhang Y, Lee SE: RSC
mobilizes nucleosomes to improve accessibility of repair
machinery to the damaged chromatin. Mol Cell Biol 2007,
27:1602-1613.

35.
!

Gospodinov A, Vaissiere T, Krastev DB, Legube G, Anachkova B,
Herceg Z: Mammalian Ino80 mediates double-strand break
repair through its role in DNA end strand resection. Mol Cell
Biol 2011, 31:4735-4745.

Here the authors show that mammalian INO80 is required for efficient
DSB repair. They show that 53BP1 but not Rad51 focus formation is
impaired upon human Ino80 depletion. This led them to investigate the
role of INO80 in early steps of repair and they find that the complex
mediates 50–30 resection of DSB ends.

36. van Attikum H, Fritsch O, Gasser SM: Distinct roles for SWR1 and
INO80 chromatin remodeling complexes at chromosomal
double-strand breaks. EMBO J 2007, 26:4113-4125.

37. Papin C, Humbert O, Kalashnikova A, Eckert K, Morera S, Kas E,
Grigoriev M: 30- to 50 DNA unwinding by TIP49b proteins. FEBS J
2010, 277:2705-2714.

38. Awad S, Ryan D, Prochasson P, Owen-Hughes T, Hassan AH: The
Snf2 homolog Fun30 acts as a homodimeric ATP-dependent
chromatin-remodeling enzyme. J Biol Chem 2010, 285:9477-9484.

39.
!!

Eapen VV, Sugawara N, Tsabar M, Wu WH, Haber JE: The
Saccharomyces cerevisiae chromatin remodeler Fun30
regulates DNA end-resection and checkpoint deactivation.
Mol Cell Biol 2012, 32:4727-4740.

One of three important studies on the role of Fun30 in double strand break
repair. The authors show that Fun30 promotes 50 to 30 resection of DSBs.
Deletion of FUN30  results in a "3.3 fold reduction in the speed of
resection. They also show that Fun30 is important for the adaptation
of DNA damage checkpoint arrested cells with an unrepaired DSB to
resume cell cycle progression.

40. Durand-Dubief M, Will WR, Petrini E, Theodorou D, Harris RR,
Crawford MR, Paszkiewicz K, Krueger F, Correra RM, Vetter AT
et al.: SWI/SNF-like chromatin remodeling factor Fun30
supports point centromere function in S. cerevisiae. PLoS
Genet 2012, 8:e1002974.

41. Stralfors A, Walfridsson J, Bhuiyan H, Ekwall K: The FUN30
chromatin remodeler, Fft3, protects centromeric and
subtelomeric domains from euchromatin formation. PLoS
Genet 2011, 7:e1001334.

42.
!!

Costelloe T, Louge R, Tomimatsu N, Mukherjee B, Martini E,
Khadaroo B, Dubois K, Wiegant WW, Thierry A, Burma S et al.: The
yeast Fun30 and human SMARCAD1 chromatin remodellers
promote DNA end resection. Nature 2012, 489:581-584.

One of three important studies on the role of Fun30 in double strand break
repair. In addition to showing that yeast Fun30 plays a role in resection
these authors show that the closest human homologue, SMARCAD1 also
is recruited to and plays a role in repair of DSBs.

43. Lazzaro F, Sapountzi V, Granata M, Pellicioli A, Vaze M, Haber JE,
Plevani P, Lydall D, Muzi-Falconi M: Histone methyltransferase
Dot1 and Rad9 inhibit single-stranded DNA accumulation
at DSBs and uncapped telomeres. EMBO J 2008,
27:1502-1512.

44. Lydall D, Weinert T: Yeast checkpoint genes in DNA damage
processing: implications for repair and arrest. Science 1995,
270:1488-1491.

45. Gospodinov A, Tsaneva I, Anachkova B: RAD51 foci formation in
response to DNA damage is modulated by TIP49. Int J Biochem
Cell Biol 2009, 41:925-933.

46. Murr R, Loizou JI, Yang YG, Cuenin C, Li H, Wang ZQ, Herceg Z:
Histone acetylation by Trrap–Tip60 modulates loading of
repair proteins and repair of DNA double-strand breaks. Nat
Cell Biol 2006, 8:91-99.

47. Tsukuda T, Fleming AB, Nickoloff JA, Osley MA: Chromatin
remodelling at a DNA double-strand break site in
Saccharomyces cerevisiae. Nature 2005, 438:379-383.

48. Tsukuda T, Lo YC, Krishna S, Sterk R, Osley MA, Nickoloff JA:
INO80-dependent chromatin remodeling regulates early and
late stages of mitotic homologous recombination. DNA Repair
(Amst) 2009, 8:360-369.

49. Morgan EA, Shah N, Symington LS: The requirement for ATP
hydrolysis by Saccharomyces cerevisiae Rad51 is bypassed
by mating-type heterozygosity or RAD54 in high copy. Mol Cell
Biol 2002, 22:6336-6343.

50. Mazin AV, Mazina OM, Bugreev DV, Rossi MJ: Rad54, the motor
of homologous recombination. DNA Repair (Amst) 2010,
9:286-302.

51. Ceballos SJ, Heyer WD: Functions of the Snf2/Swi2 family
Rad54 motor protein in homologous recombination. Biochim
Biophys Acta 2011, 1809:509-523.

52.
!!

Agarwal S, van Cappellen Wa, Guénolé A, Eppink B, Linsen SEV,
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Abstract

The double membrane of the eukaryotic nucleus surrounds the genome, constraining it to a nuclear sphere.
Proteins, RNA protein particles and artificial chromosome rings diffuse rapidly and freely throughout the
nucleoplasm, while chromosomal loci show subdiffusive movement with varying degrees of constraint. In situ
biochemical approaches and live imaging studies have revealed the existence of nuclear subcompartments
that are enriched for specific chromatin states and/or enzymatic activities. This sequestration is thought to
enhance the formation of heterochromatin, particularly when factors of limited abundance are involved.
Implicit in the concept of compartmentation is the idea that chromatin is able to move from one compartment to
another. Indeed, in budding yeast, gene activation, repression and the presence of persistent DNA
double-strand breaks each has been shown to provoke subnuclear relocalization of chromatin. In some
cases, movement has been linked to the action of ATP-dependent chromatin remodeling complexes, more
specifically to the Snf2-related ATPase-containing complexes, SWR-C and INO80-C. Here we examine how
these multi-subunit remodelers contribute to chromatin-based processes linked to the DNA damage
response. We review recent evidence that supports a role for yeast SWR-C and INO80-C in determining the
subnuclear position of damaged domains and finally, we recap the multiple ways in which these remodelers
contribute to genomic integrity.

© 2014 Elsevier Ltd. All rights reserved.

Introduction

Despite its small size, the budding yeast nucleus is
a well-organized cellular compartment, in which
chromosome position is at least partially determined
by the interaction of landmark chromosomal do-
mains, such as telomeres and centromeres, with the
nuclear envelope [1,2]. Telomeres cluster at the
nuclear rim tethered by telomere-specific factors,
while centromeres are linked by microtubules—even
in interphase—to the membrane-embedded spindle
pole body. Despite the flexibility of the chromatin
fiber, various techniques have shown that intra--
chromosomal contacts are more frequent than
inter-chromosomal contacts [3–5], suggesting that
yeast chromosomes also occupy “territories”, much
like those proposed for larger vertebrate nuclei by
Cremer and Cremer [6]. Consistently, the smallest

yeast chromosomes, such as chromosome III, fold
back allowing contact between right and left telo-
meres in a loose, whole chromosome loop [7,8].
Other telomeres appear to cluster stochastically,
with chromosome arm length playing a more
important role in partner choice than sequence
composition [9]. In addition to telomeres, heritably
silenced loci colocalize with telomeres at the nuclear
envelope [10], while active genes distribute more
randomly. Silencing factors themselves (Sir3 and
Sir4) play a role in both clustering [11] and peri-
nuclear anchoring [12–14], as they interact with
anchorage sites at the nuclear membrane, namely
Mps3 [15,16] and Esc1 [14,17]. Nuclear pores
provide further organization at the nuclear rim,
contacting poised promoters or active genes through
either SAGA (Spt/Ada/Gcn5 acetyltransferase) or
the mRNA-binding complex THO-TREX [18].

0022-2836/© 2014 Elsevier Ltd. All rights reserved. J. Mol. Biol. (2015) 427, 637–651
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The enrichment of heterochromatin along the inner
face of the nuclear envelope is a conserved feature of
all eukaryotic nuclei, except for a few differentiated
mammalian cell types [19]. Whereas the association of
promoters with nuclear pores may also be conserved
across species, the impact of this interaction is unclear.
In contrast, the functional relevance of the association
of DNA double-strand breaks (DSBs) and very short
telomereswith the inner faceof thenuclear pore is clear
[20,21]. Pore protein mutations render yeast cells
highly sensitive to DNA damaging agents, particularly
in strains in which homologous recombination (HR) is
impaired [20,22,23]. Given that nuclear pores are
preferred sites of SUMO metabolism and that a large
number of proteins are sumoylated in response toDNA
damage [24,25], the functional impact of pore associ-
ation may well reflect the sumoylation associated with
specific repair pathways. For instance, the pore-asso-
ciated SUMO-dependent ubiquitin ligase Slx5/Slx8
plays a role in recombination-mediated repair [26–28].
Despite the multiple anchorage points mentioned

above, most yeast chromatin is in constant motion.
Its movement, which can be monitored by fluores-
cence time-lapsemicroscopy, is best described as a
constrained random walk [13,29,30], whose dynam-
ics vary with intracellular ATP levels and the cell
cycle [13,29,31,32]. An average yeast locus in open
chromatin in G1 phase, distal from chromosome
ends, has a radius of constraint of ~0.65 μm, which
drops to ~0.35 μm in S phase, representing roughly
30% and 15% of the nuclear volume, respectively.
The degree of movement is dependent on many
parameters, including the status of the local chro-
matin, linkage of sister chromatids through cohesin
and the distance of the tag from a landmark
anchorage site [2,12,33,34].
Recent results implicate two nucleosome remo-

delers (INO80-C and SWR-C) in regulating this
chromatin mobility and in the association of DNA
damage with perinuclear sites [30,35–37]. It is
thus relevant to review chromatin dynamics in
terms of local nucleosome composition, chroma-
tin compaction and the precise position of the
locus within the nuclear sphere. Remarkably,
INO80-C and SWR-C nucleosome remodelers
are implicated in all three aspects of chromatin
dynamics, particularly during the DNA damage
response (DDR).

Chromatin Compaction and Spatial
Constraint

Three overlapping mechanisms contribute to sub-
nuclear chromatin localization. The first reflects an
order imposed by enzymatic functions inherent to the
nucleus and often arises from large protein complexes
that interact, leading to a clustering of their DNA
substrates (e.g., replication foci). The second is the

result of sequence-specific anchorage, that is, inter-
actions of chromatin with less mobile structures (e.g.,
pores, SPB, nucleoli). The third is the impact of the
chromatin fiber itself, namely, its compaction and
continuity, which means that one locus can impact
both the position and the mobility of its neighbor. Not
only at silenced regions but also in general, yeast
chromatin is highly compacted, having a 40- to 80-fold
higher compaction ratio thanB-formDNA [38,39]. This
ratio is, of course, even higher in mammalian cells.
Nonetheless, chromatin must be accessible for DNA
binding factors that regulate replication, transcription,
recombination and repair. Thus, dynamic modulation
of chromatin states is a key regulatory principle for
nearly every DNA-based reaction.
Initial evidence that chromatin mobility and com-

paction are interdependent came from measure-
ments of chromatin mobility monitored by
fluorescence correlated spectroscopy or two-photon
standing wave fluorescence photobleaching [40].
With this, the Bardeen group showed that short--
range chromatin mobility in vivo was variable and
reflected DNA–histone interaction. Notably, mobility
increased when DNA–histone interactions were
weakened in higher salt concentrations and de-
creased upon specific photocrosslinking of histones
[40]. This link between nucleosomal stability and
chromatin mobility is consistent with later studies
described below, which showed that the nucleo-
some remodeler INO80-C increased the movement
of chromatin to which it was bound [30].
By tracking fluorescently tagged chromosomal

loci with time-lapse microscopy and plotting mean
squared displacement, one can extract quantitative
parameters of chromatin mobility, most commonly,
the radius of constraint (Rc), which defines the area
within which a particle is free to diffuse. While the
Rc values for non-repetitive, open chromatin
domains in fly, human or yeast cells are very com-
parable, their apparent diffusion coefficients (D)
range from 1.25 × 10−4 μm2/s (5p14) in man to
1.8 × 10−3 μm2/s (LYS2 ) in yeast [29,31,41]. Dif-
ferent types of motion can also be distinguished:
smaller, saltatory movements b0.2 μm that occur
constantly, and larger, more rapid movements (i.e.,
N0.5 μm in a 10.5-s interval [31]). The smaller
movements are observed for internal sequences and
repressed domains at the nuclear periphery. Active,
internal loci on the other hand also show larger steps.
Even more irregular is the movement associated with
DSBs, which can be tracked through the binding of the
HR factor Rad52 [42,43]. In this case, both diffusion
coefficients and Rc increase, purportedly as part of a
homology search process. Specifically, a particular
undamaged locus withRc = 0.46 μm in S phase (12%
of the nuclear volume), increased to 0.70 μm (47%)
after induction of a DSB and initial processing of the
end to bind Rad52 [42]. The increase may in part
reflect the loss of cohesion between sister chromatids,
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for the release of cohesin from replicated sisters was
shown to augment the Rc value [34]. On the other
hand, the loss or alteration of nucleosomemodification
or density that accompany DSB processing may also
contribute to increased mobility.

Chromatin Dynamics during Cell Cycle

As mentioned above, the mobility of a chromosomal
locus depends on two further criteria: cell cycle stage
and its chromatin status. Studies in Drosophila
spermatocytes revealed both random constrained
movement over short-time windows and a long-range
movement inS/G2phase,which occurredover amuch
longer timescale. Moreover, a decrease in step size for
rapid movements was recorded in late G2 spermato-
cytes just before entry into meiosis [32]. This drop in
mobility correlatedwith a developmental change that is
characterized by nuclear reorganization and a dramat-
ic movement of bulk chromatin from a central region to
three distinct perinuclearmasses [44]. The decrease in
chromatin movement scored for budding yeast origins
of replication inSphase [31] is due at least in part to the
loading of the cohesin ring, which links replicated
sisters together [34]. Not only linkages in trans but also
the linear continuity of the DNA strand in cis restricts
chromatinmobility; the tracking of a 17-kb fluorescently
tagged locus excised from a yeast chromosome
showed rapid movement throughout the nucleoplasm
(Rc = 0.95 μm), rather than its normal constraint
(Rc = 0.65 μm) [13,30]. This freedom of movement
would enhance contact between sequences, which is
needed for the homology search step of DSB repair by
HR. Studies with plasmid-borne donors argue that this
search is indeed rate limiting in yeast [45]; thus, altered
movement would be one way to favor a homology
search beyond the replicated sister chromatid (Fig. 1).

Chromatin Remodelers and Chromatin
Mobility

The enhanced subnuclear movement observed for
DSBs argues that chromatin movement is not simply
caused by Brownian motion but is a regulated cellular
process that responds to enzymatic control (reviewed
in Ref. [33]). For instance, the chromatin remodeler
INO80-C is able to increase chromatinmobility when it
is bound either at an artificial reporter or at the
endogenous PHO5 promoter [30], although in the
latter case, increasedmobility correlated with induced
transcription, whereas in the former, it did not.
Intriguingly, the targeting of either SWI/SNF or
SWR-C chromatin remodelers (through lexA-Snf2,
lexA-Swr1 or lexA-Arp6 fusions) to the same locus did
not increase Rc values [30,37], while the tethering of
the Rad54 ATPase domain did (M.H.H., unpublished
results). Thus, it is not simply the presence of a large

complex but the type of activity it exerts that impacts
chromatin mobility. With 17 different Snf2-type
ATPases in yeast and 53 in human [46], it is likely
that different chromatin remodelers will play various
and only partially redundant roles that alter the com-
position, structure and mobility of chromatin. The
INO80-C result argues that, at least in some cases,
the modulation of nucleosome organization impacts
chromatin dynamics.

The Mobility of DNA DSBs

Induction of a targeted and irreparable DSB in-
creases the mobility of the targeted locus compared
with that of the same site undamaged [42,43]. Prior to
the increase, there may be a transient drop in mobility
that correlates with the initial steps of resection, lasting
approximately 10 min [47]. The subsequent increase
was shown to correlatewith theefficiency ofDNA repair
by HRwith an ectopic donor sequence, and the activity
of Rad54, a remodeler ATPase required for strand
exchange, contributed to the increase. Enhanced DSB
movementwasalso dependent on theDDR, notably on
the ATR kinase Mec1 and its coactivator Rad9 (which
serves an equivalent role as BRCA1 or 53BP1 in man)
[42]. In this respect, it is important to note that multiple
subunits of Snf2 chromatin remodeling complexes
including ISW1, ISW2, INO80-C, SWR-C, RSC and
SWI/SNF undergo DNA damage-induced phosphory-
lation by Mec1 and Tel1 [48,49].
The DDR also modifies chromatin itself by phos-

phorylating H2A in yeast (H2A.X in mammals). This
leads to an extensive modification of local chromatin
composition, including acetylation, ubiquitination, po-
tential H2A.Z deposition and eventually histone
eviction, coincident with end resection (reviewed in
Ref. [50]). It is difficult to sort out which of these
modifications ultimately contributes to enhanced chro-
matin mobility, as the interplay between remodelers
and their chromatin substrates at sites of DNAdamage
contributes to many aspects of DNA repair. Interest-
ingly, the concerted activity of theDDRand remodelers
is not restricted to the site of DNA damage. Checkpoint
activation, even in the absence of damage, leads to a
more generalized increase in chromatin mobility that
was dependent on Mec1 and its downstream target
kinase Rad53 [36,43] (Fig. 1).
The underlying phenomenon that allows for en-

hanced chromatin movement at breaks and non-da-
maged sites may reflect localized nucleosome
remodeling, which can impact compaction and alter
the long-range flexibility of the chromatin fiber. Indeed,
arp8 and arp5 null mutants, which significantly hamper
Ino80's ATPase activity [51,52], fully counteract the
increase inmobility at genomic loci away from theDSB
and partially reduce the mobility of the DSB itself
[30,36]. The loss of the Swr1 ATPase, or of SWR-C
cofactors, also compromised the enhanced mobility at
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the damaged locus, yet it did not affect movement at
distal sites [36,37]. In common is the fact that changes
in chromatin mobility are dependent on the initial ATR/
Mec1 checkpoint kinase response, suggesting that
chromatin alterations are part of a cell's physiological
response to DNA damage. Importantly, the Mec1-in-
duced effects appear to be mediated at least in part by
INO80-C [36].

Relocating Difficult-to-Repair DNA
Damage to the Nuclear Periphery

A second phenomenon observed in yeast that links
nuclear organization to DNA repair concerns the
relocation of difficult-to-repair DNA DSBs and col-
lapsed replication forks to the nuclear envelope

[20,53]. Both the Nup84 subcomplex of the nuclear
pore and the SUN domain protein Mps3 are implicated
as perinuclear binding sites for break association
(reviewed in Ref. [54]). The relocalization event from
the nucleoplasm to the periphery required activation of
the DNA damage checkpoint and was affected by loss
of the histone variant Htz1 (H2A.Z) [35], which implies
a role for SWR-C in the process of DSB relocation.
Indeed, both SWR-C and INO80-C were recently
shown to contribute to the positioning of DSBs at
the nuclear envelope [37] (Fig. 2). Specifically, the loss
of Swr1 or Htz1 was shown to compromise the
association of DSBs with either nuclear pores or with
themembrane protein Mps3, while INO80-C promotes
binding to Mps3 without affecting DSB relocation to
pores [37]. The two binding sites are further distin-
guished by the phase of the cell cycle in which they
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are functional: the association of persistent DSBs
with Mps3 requires Rad51 and end resection, which
occurs only in S phase cells, while DSB-pore
association occurs as well in G1 phase.
The two binding sites appear to have different

effects on the outcomeof repair (Fig. 2). Sequestration
of breaks or telomeres byMps3 generally suppresses
recombination events [16,53]. Hence, DSB relocaliza-
tion toMps3 after unsuccessful homology searchmay
prevent illegitimate recombination. Association with
the pore, on the other hand, favors non-canonical
recombination, that is, recombination with sequences
other than those on the homologous sister chromo-
some. Associated with the nuclear pore is the Slx5/
Slx8 SUMO-targeted ubiquitin ligase, which ubiquity-
lates components of the sumoylated repair machin-
ery, such as Rad52, and targets them for degradation
[55]. This function may be necessary to allow
alternative repair events, such as break-induced

replication or microhomology-mediated recombina-
tion. Consistently, type II survivors of telomerase
ablation, which survive thanks to imprecise recom-
bination events between telomeric repeats, require
Slx5/Slx8 activity [56,57]. On the other hand, Slx5/
Slx8 was reported to inhibit Rad51-mediated (ca-
nonical) recombination events [55]. Even if the
relevant targets of sumoylation and eventually
ubiquitination remain unclear, the role of the nuclear
pore in harboring SUMO-modulating enzymes that
help cells survive DNA damage is undisputed
[23,58]. Intriguingly, a recent study in Caenorhabdi-
tis elegans suggests that aspects of pore regulation
of repair pathways—in this case, for translesion
synthesis—may also be conserved across species
[59].
The discovery that INO80-C and SWR-C play

important roles in DSB relocalization, thereby
affecting the long-range organization of chromatin in
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the nucleus, is consistent with other recent results that
implicate these multi-subunit chromatin remodelers in
chromatin-associated processes elicited by DNA
damage. Thus, we can view INO80-C and SWR-C
as important guardians of the genome, each contrib-
uting to genomic integrity in a unique way.
Even though the ATPase and scaffold proteins

Ino80 and Swr1 have similar domain architectures
and share some common subunits, their overall

topology, mode of nucleosome interaction and range
of enzymatic activities vary significantly [52,60,61]
(Fig. 3 ). Whereas SWR-C has been shown to
incorporate the H2A.Z (Htz1) variant into nucleo-
somes [62–64], INO80-C is reported to evict
unacetylated Htz1 from the genome [65] but also
remodels, spaces or evicts whole nucleosomes [66–
68]. Both remodelers contain a DNA helicase, Rvb1/
Rvb2 , apparen t l y p resen t as a doub le
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heterohexamer in INO80-C, and as a single hetero-
hexamer in SWR-C [52,60]. The function of the Rvbs
within these complexes remains largely unexplored.
It is also unclear what link, if any, exists between

enhancedDSBmobility and the sequestration of DSBs
at thenuclear periphery. Interestingly, in budding yeast,
LexA targeting of Swr1, Arp6 orHtz1 is sufficient to shift
a given locus (ARS607) to the nuclear membrane
[37,69], yet the targeting of these proteins did not affect
locus mobility. In contrast, the targeting of INO80-C
subunits increased themobility of an undamaged locus
but did not alter its radial position [30].This suggests
that randomchromatinmovement is not rate-limiting for
DSB recruitment to pores or to Mps3. Indeed, arp8Δ or
rad51 Δ mutants have decreased DSB mobility, yet
break relocation to the pore is intact [30,37,42]. It is
important to note that the two events, enhanced
mobility and pore sequestration, are kinetically distinct:
movement seems to increase as soon as Mre11 and
Rad52 bind, while DSBs accumulate at the nuclear
periphery up to 2 hours after cleavage. Still it is likely
that both events reflect chromatin changes at the level
of the nucleosome.
It is not yet clear whether a general concept of

damage-induced chromatin mobility is conserved in
mammalian cells, as seemingly opposing results have
beenpublished (reviewed inRef. [33]). In termsofDNA
translocations, two models have been proposed: the
'contact-first model' requires two breaks that are in
spatial proximity already prior to DNA damage [70,71],
while DSBs in the 'breakage-first model' are able to
scan the nuclear compartment to search for partners
[72]. It is interesting to note that, in mouse fibroblasts,
DSBs generally do not provoke enhanced movement,
but the subpopulation of DNA DSBs that ultimately
leads to translocations does indeed show enhanced
mobility. This fulfills both the 'contact- and break-
age-first hypotheses' [73]. Similar results were report-
ed for DSBs induced by ionizing radiation and
etoposide in humanU2OS cells, which show a roughly
2-fold increase in Rc values, in a cell-cycle-dependent
and an ATP-dependent manner [74,75]. Enhanced
movement was also scored for uncapped telomeres in
mammalian cells, yet mobility increase was 53BP1
dependent [76]. In the latter case, movement was
proposed to enhance end joining, while in the former
reports, it was suggested to facilitate HR. One testable
hypothesis is that the movement, which promotes
homology search, is actively suppressed in mammals.
A failure to impair mammalian chromosomal break
mobilitymight then lead to deleterious translocationsor
deletions. Intriguingly, the human SWI/SNF homo-
logue BRM appears to favor precise NHEJ [77],
possibly by impairing movement.
We note that human SWI/SNF complex (found in

two related forms, called BAF and PBAF) has been
identified to be the most frequently mutated chromatin
regulatory complex in human cancer [78], suggesting
that its mutation poses a serious threat to genomic

stability. Moreover, PBAF, the human homologue of
the yeast RSC remodeling complex, was shown to be
important for both DSB-induced transcriptional silenc-
ing and the repair of a subset of DNA DSBs at early
time points [79]. Therefore, it is possible that PBAF
antagonizes mobility to favor rapid pathways of repair
like NHEJ, and it may be opposed by the action of
INO80-C.

INO80-C and SWR-C in DNA Repair and
Replication

In budding yeast, both INO80-C and SWR-C were
shown to be recruited to DSBs and to impact the repair
process at different stages [80–82] (Fig. 3). While
sharing many similarities in subunit composition,
SWR-C and INO80-C have very distinct functions
with regard to nucleosome remodeling. Both influence
the genomic distribution of the histone variant Htz1:
SWR-C deposits Htz1 in a stepwisemanner, exchang-
ing it for the canonical H2A, while INO80-C has been
proposed to evict Htz1, particularly at non-promoter
sites [65]. In addition and unlike SWR-C, INO80-C is
able to slide, position and evict nucleosomes, regard-
less of their composition. This contributes to the
regulation of a large number of genes (reviewed in
Ref. [61]). Indeed, the catalytic Ino80 subunit and the
Arp5 subunit map to many RNA pol II promoters that
show changes in expression upon ino80 deletion. In
parallel, INO80-C is enriched at origins of replication
and tRNA genes [83–85]. SWR-C, on the other hand,
controls the expression of a restricted set of genes,
largely through the deposition of Htz1 [86]. Both
SWR-C and Htz1 are highly enriched immediately
downstream of the transcriptional start site in budding
yeast [87–89].
The link to DNA repair was first suggested by the

strong hypersensitivity to DNA damaging agents
scored for yeast cells that lack either Ino80 or Swr1.
Loss of functional INO80-C leads to a pronounced
sensitivity to hydroxyurea (HU) and methane methyl-
sulfonate (MMS), with weaker sensitivity to ultraviolet
light (UV) and ionizing radiation [66,90]. Yeast strains
lacking Swr1 are also sensitive to HU or MMS [62],
althoughHUsensitivity ismuch lower in swr1 -deficient
strains as compared to ino80-deficient strains. Intrigu-
ingly, htz1 Δ single mutants are more sensitive to DNA
damaging agents than htz1 Δswr1 Δ double mutants
[91], suggesting that SWR-C inflicts further damage or
interferes with recovery from damage in the absence
of Htz1.
Synthetic lethality screens have shown that the loss

of INO80-C activity renders cells hypersensitive to the
loss of genes involved in recombination, particularly in
the presence of DNA damaging agents [92] (N.
Hustedt and S.M.G., unpublished results). Coupled
with the recruitment of INO80-C to an induced DSB
[80,81], this argues for a direct role in DSB repair.
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Similarly, SWR-C is rapidly recruited to DSBs, and
swr1 and htz1 mutants also show synthetic sensitivity
to DNA damaging agents in combination with factors
involved in checkpoint activation and/or recombina-
tion [92] (N. Hustedt andS.M.G., unpublished results).
Whereas INO80-C, along with RSC and Fun30,
contributes to resection of the DSB, SWR-C appears
not to be involved in resection under normal growth
conditions [93,94]. Nonetheless, Swr1 recruitment to
an inducedDSB is bothmore rapid andmore transient
than that of Ino80, consistent with a role in early steps
of DSB processing [93]. Its role may simply be to
deposit Htz1. An important unresolved question
concerns the events that trigger the recruitment of
these remodelers to DNA damage.

The Recognition of DNA Damage by
Remodelers

Although chromatin immunoprecipitation experi-
ments showed that Mec1-dependent phosphorylation
of histoneH2A at serine 129 (H2AS129) (H2A.XS139
in mammals) was necessary for INO80-C and SWR-C
recruitment to DNA breaks (reviewed in Ref. [50]),
recent work argues that this effect is indirect. For
unknown reasons, cells bearing an S129 mutation in
histone H2A, eliminating the acceptor site for Mec1/
Tel1 phosphorylation, accumulate in G1 phase.
Intriguingly, remodeler recruitment to DSBs was also
shown to be cell cycle dependent (higher in S and
lower in G1); thus, the effect of the H2AS129mutant is
most likely indirect [82]. In addition to INO80-C and
SWR-C, SWI/SNF, RSC and NuA4 accumulate at
breaks weakly in G1 phase andmuchmore robustly in
G2 phase cells. Interestingly, γ-H2A.X (phospho-H2A)
accumulation near the DSB was inversely correlated
with remodeling enzyme enrichment being robust in
G1 and less pronounced in G2/M. This correlates with
the fact that the INO80-C remodeler is implicated in
nucleosome eviction and the promotion of end
resection at DSBs [82]. Finally, resection deficient
yeast strains, that is, strains lacking Sgs1 and Exo1,
showed a significant decrease of remodeler recruit-
ment adjacent to the break, suggesting that either
cross-talk between these factors and the remodelers
or end resection itself plays a role in remodeler
recruitment [82].
It is unclearwhich subunits of the remodelers directly

recognize damaged sites. Interestingly, both SWR-C
and INO80-C have subunits that bind single-strand
and double-strand DNAs with fairly high affinity, albeit
with little sequence specificity (reviewed in Ref. [61]).
SWR-C accumulation immediately downstream of
transcriptional start sites may well reflect the remode-
ler's affinity for non-nucleosomal DNA. On the other
hand, Arp4, an integral subunit of INO80-C, SWR-C
and NuA4, seems to bind to phosphorylated H2A
(γ-H2A.X). For NuA4, this interaction activated its HAT

activity and led to the acetylation of histones,
contributing further to INO80-C and SWR-C recruit-
ment to DSBs [95]. Another study implicated Nhp10, a
non-essential subunit of INO80-C, in the interaction
between INO80-C and γ-H2A.X [80]. Taf14 is another
INO80-C subunit that is present in several complexes
and may contribute to their recruitment to chromatin
(M. Sopta, personal communication). Most likely, the
combined affinities for DNA and modified histones
contribute to the enhanced recruitment of remodeler
complexes to DSBs.
Although γ-H2A.Xmay contribute to the recruitment of

Arp4-containing chromatin modifiers, it also anti-corre-
lates with their accumulation [82], suggesting that there
may be a rapid eviction of γ-H2A.X-containing nucleo-
somes by the recruited remodelers. The same may be
true for Htz1; we note that there are conflicting reports
as to whether this variant increases or decreases at
DSBs [35,93,96]. Most likely, Htz1-containing nucleo-
somes at the DSB are transiently deposited and rapidly
lost, along with phosphorylated H2A, during the
processing events that precede repair by HR.

Aiding or Avoiding Resection at DSBs

One of the first steps of DSB processing for HR
involves resection of the DNA strands adjacent to the
break (Fig. 3). This is achieved through either one of
two resection pathways—that of Sgs1-Dna2 or of
Exo1. The resection machinery dependent on
Sgs1-Dna2 requires a nucleosome-free gap adjacent
to the DSB. Resection by Exo1 is blocked by nucleo-
somes yet is stimulated by dynamic H2A.Z-H2B
incorporation after DNA break induction, and consis-
tently, SWR-C was found to facilitate Exo1 processing
in HR [96]. Other laboratories failed to see effects of
swr1 mutants on resection [93,94]. Given that INO80-C
helps evict H2A.Z and γ-H2A.X near DSBs [93], its role
may be to facilitate resection dependent on
Sgs1-Dna2.
In this respect, we note that some studies suggest

that histones are lost as a consequence of resection
rather than as a prerequisite for resection [97,98].
This suggests that remodelers fulfill tasks other than
nucleosome eviction at the DSB, which favor or
disfavor resection, and influence the outcome or
pathway of repair. For instance, chromatin immuno-
precipitation experiments showed that INO80-C
subunits Arp8 and Nhp10 are important to retain
Mec1 and Mre11 at the break site (indicative of
resection), as well as yKu80 (which promotes
NHEJ), while SWR-C contributes only to yKu
retention [93]. Whereas the deletion of swr1 and
arp8 had no effect on the repair of the MAT locus by
gene conversion with HM loci [93], the remodeler
mutants did have differential effects on NHEJ
pathways: SWR-C promoted error-free NHEJ while
INO80-C was found to have a modest effect on
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error-prone NHEJ, which requires resection [93].
Moreover, deletion of SWR-C subunit Arp6 leads to
a significant increase of spontaneous HR events,
suggesting that SWR-C actively represses HR-me-
diated repair in yeast [99].
The data implicating INO80-C in repair are more

extensive. Studies in Arabidopsis thaliana implicate
INO80-C in ectopic (transposon) recombination
events [100], and arp8-depleted diploid yeast cells
were modestly defective in interhomolog DSB repair
by HR [101]. Indeed, in arp8Δ cells, Rad51 is
recruited to the DSB but the transfer to the
homologous donor showed a marked delay, which
correlates with a failure to displace nucleosomes at
the donor locus [101]. Thus, it was argued that
INO80-C contributes both to very early and very late
stages of HR. Finally, arp8Δ strains were defective
for DNA damage-induced sister chromatid recombi-
nation and inter-chromosomal recombination be-
tween heteroalleles, suggesting that widespread
DNA damage might enhance INO80-C's contribu-
tions [99]. In this context, it is again relevant to
mention that multiple INO80-C subunits are targets
of Mec1 phosphorylation [48,49] and that a modifi-
cation of its activity by phosphorylation may contrib-
ute to the defects revealed in various repair assays.
Perhaps this explains the lack of effect seen by ino80
mutation on recombination-mediated repair at MAT:
this locus does not activate the checkpoint kinase
Mec1 when it repairs the HO-induced cut by gene
conversion with HMR or HML .
It is also important to note that arp8Δ strains may

not reveal the full impact of INO80-C on repair, since
yeasts lacking Arp8 are much less sensitive to DNA
damaging agents than ino80Δ strains. Indeed, the
lack of the Arp8 module (Arp8, Arp4 and actin)
strongly hampers but does not impair the INO80-C
remodeling reaction [52]. Unfortunately, in many
strains, a complete ino80 deletion is lethal. Further
studies, preferably with a degron-inducible loss of
function allele, will be needed to define the exact
contribution of INO80 to repair.

Conserved and Divergent Functions
across Species

The INO80subfamily of remodelers hasan impact on
genome stability throughout the eukaryotic kingdom,
yet this conservation may not necessarily apply to
specific roles in DSB repair. In mammalian cells, the
more common repair pathway for DSB repair is NHEJ
[102]. However, in mouse embryonic fibroblasts,
INO80-Cand its subunit YY1areessential inHR-based
repair and their deletion leads to DNA damage
sensitivity. Additionally, loss of YY1 causes polyploidy
and chromosomal aberrations [103]. In line with this
finding, human andmouse INO80-C contribute to 5′–3′
strand resection [104] and mouse INO80-C was found

to be required for the generation of single-stranded
DNA for homology-directed DNA repair at telomeres
[105].
Immunofluorescence experiments showed that

human INO80-C is directed to the site of DNA damage
in an Arp8-dependentmanner, suggesting a direct role
of mammalian INO80-C in DNA repair [106]. However,
assessing the direct effects of human INO80-C in DNA
repair might be difficult, as this chromatin remodeler
also indirectly affects DNA repair by controlling the
transcription of the repair genes Rad54B and XRCC3
[107]. It is unclear whether INO80 evicts H2A.Z in
mammalian cells, as a H2A.Z chaperone has been
recently reported, called ANP32E, which removes the
histone variant across the genome and links H2A.Z to
the p400/TIP60 complex [108].
The human counterpart of SWR-C, SRCAP, also

incorporates H2A.Z-H2B dimers into nucleosomes
[109]. Mutations in the human SRCAP protein can
cause Floating-Harbor Syndrome, which is character-
ized by delayed osseous maturation, distinctive facial
appearance, expressive language deficits and short
stature [110]. Recent results show that, in HeLa cells,
SRCAP contributes to cellular resistance to DSB-indu-
cing agents and, as in yeast, is directly recruited to
DSBs [111]. Intriguingly, SRCAP is able to form a
complex with CtIP (S. cerevisiae: Sae2) and promotes
accumulation of CtIP at DSBs, which is thought to
cooperatewith theMRN (S. cerevisiae: MRX) complex
to stimulate the initiation of resection. Consistently, the
same authors demonstrate that SRCAP facilitates
DNA end resection, as well as the recruitment of
replication protein A and the recombinase RAD51
[111]. InA. thaliana, mutations in SWR-C subunits also
caused hypersensitivity to DNA damaging agents and
correlated with impaired HR [112]. Whereas the
damage hypersensitivity is conserved in budding
yeast, swr1 Δ and arp6 Δ mutants lead instead to
increased HR [91,99] and swr1 null cells supported
wild-type levels of Mre11 binding, end resection and
checkpoint activation, in stark contrast to the pheno-
types reported for SRCAP-depleted HeLa cells. Again
further work is required to determine whether these
discrepancies reflect the assays used or divergent
roles for the H2A.Z (Htz1) in different species.

Involvement of INO80-C in Replication

The hypersensitivity of S. cerevisiae ino80 deletion
mutants to replication stress induced by HU depletion
of nucleotides suggested a role of INO80-C in
replication. Indeed, G1-arrested wild-type cells upreg-
ulate Ino80 expression upon release into HU-contain-
ing medium, and INO80-C is enriched at yeast origins
of replication in an S-phase-specific manner, showing
a genome-wide preference for early-firing over late-fir-
ing origins [83–85]. HU stalls replication forks due to a
depletion of dNTPs and leads to a Mec1-dependent
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checkpoint activation. Stabilizing polymerases at the
stalled forks is essential for successful replication and
cell survival. In two-dimensional gel analyses of
stalled replication forks, a mutant ino80 appeared to
cause replication fork collapse [113], while arp5 Δ and
arp8Δ alleles did not but instead showed a dramati-
cally impaired resumption of replication [83]. A
genome-wide collapse of replication forks in the
ino80 mutant seems unlikely, given that the phos-
phorylation of H2A, indicative of DSBs arising from
collapsed forks, was not significantly different be-
tween ino80 and wild-type cells [85].
In contrast to HU, MMS induces S-phase-specific

damagebybasemodification, provoking breaksor fork
stalling that often require translesion synthesis for
repair. Ubiquitination of the DNA replication processiv-
ity clamp proliferating nuclear antigen (PCNA) at K146
by Rad6-Rad18 is necessary to confer MMS damage
tolerance during replication in the error-free damage
avoidance pathway [114]. Within this pathway, Rad51
is recruited to the stalled replication fork in a
Rad18-dependent and ub-PCNA-dependent manner
[115]. A functional INO80 complex appears to be
necessary for both Rad18 and Rad51 recruitments to
MMS lesions and therefore also contributes to MMS
resistance during replication [85]. The fact that ATPase
activity of Ino80 is essential to recruit Rad18 and also
Rad51 to stalled replication forks indicates that
INO80-C also remodels nucleosomes and alters the
chromatin landscape at damaged forks.
It will be interesting to explore how INO80-C and

also SWR-C function in post-replicative repair or
nucleosome assembly after replication, given that
H3K56 acetylation both coincides with nucleosome
reconstitution after passage of the replication fork
(reviewed in Ref. [116]) and influences the enzy-
matic activity of SWR-C and INO80-C [117]. Not only
the concerted action of INO80-C and SWR-C but
also of other chromatin remodelers is likely to play a
vital part in replication; notably, ISWI and INO80-C
were also shown to function together to downregu-
late S phase checkpoint activity and ensure proper
progression through S phase [118].

INO80-C and Nucleotide Excision Repair

Based on the findings that ino80Δ yeast strains are
sensitive to replication blocking damage (induced by
UV or MMS, for example), but not to ionizing radiation
or camptothecin, it was suggested that INO80-C
primarily functions during the replication of the genome
[119]. However, the repair of methylated purines
caused by MMS or UV-induced cyclobutyl pyrimidine
dimers is not deficient in ino80Δ mutants [90,119].
Rather, INO80-C appears to function by facilitating the
assembly of nucleotide excision repair (NER) factors
and by restoring the chromatin state after NER of
UV-induced damage. This may stem from the dama-

ge-induced interaction of INO80-C with Rad4-Rad23, a
complex formed between the yeast XP-C homologue,
Rad4, and Rad23, which bridges from the NER repair
machinery to the proteasome [90,120]. Both Rad4 and
Rad23 are necessary for NER due to the physical
interactionofRad23with the26Sproteasome [121,122].

INO80-C and SWR-C in Checkpoint
Pathways

INO80-C has been identified to be a Mec1 (ATR)
and Tel1 (ATM) target in the DNA damage checkpoint
response, with its subunit Ies4 being phosphorylated
in the presence of DNA damage [48]. Ies4 phos-
phoacceptor site mutants do not significantly alter the
repair of DNAdamagebut domodulate the checkpoint
response [48]. An Ies4 phosphomimic mutant shows
mild sensitivity to HU or MMS but no defects in other
steps in HR- or NHEJ-mediated DSB repair, confirm-
ing that phospho-Ies4 is not directly involved in the
repair process of DNA DSBs.
The phosphomimetic form of Ies4 does show an

elevated checkpoint response in response to MMS
and leads to a more pronounced cell cycle arrest.
Impairing Ies4 phosphorylation had no evident impact
on the checkpoint compared to wild-type cells but
showed a strong synergistic lethality effect with the
replication checkpoint factor Tof1 deletion mutant
upon chronic exposure to HU. This suggest that
INO80-C phosphorylation on subunit Ies4 is indeed
critical during the DNA damage elicited by replication
stress, even if it has no phenotype on its own [48].
There is no clear mechanism through which Ies4
phosphorylation could influence the remodeling activ-
ity of INO80-C although the protein is located close to
the YEATS domain protein Taf14 within the Arp8
module of INO80-C [52]. Intriguingly, deletion of
Nhp10 completely alleviates the DNA damage sensi-
tivity of the phosphomimetic Ies4 mutations [48].
It is plausible that the Ies4 phosphoacceptor sites

are redundant with other modifications induced by
Mec1/Tel1 within INO80-C, given that Ies4 is among
the non-conserved subunits in INO80-C. Indeed, a
proteomic screen also identified Ies1 and Ino80 to be
Mec1 and Tel1 targets [49] (N. Hustedt and S.M.G.,
personal communication). Since Ies1 does not asso-
ciate with INO80-C in an nhp10Δ background [52], it
would be possible that phosphorylation of at least Ies4
and Ies1 is jointly needed to modulate INO80 function
upon checkpoint activation. In other words, checkpoint
activation could be transmitted to INO80-C through the
coordinate phosphorylation of both components (Ies1
and Ies4). In the INO80-C that lacks Nhp10, Ies1 may
fail to be modulated, allowing Nhp10 deletion to
suppress the DNA damage sensitivity of Ies4 phos-
phomimetic mutations.
The role of SWR-C in checkpoint activation is less

well understood. The same proteomic screen that
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identified Ies1 and Ino80 as new Mec1/Tel1 targets
also shows that SWR-C subunits Bdf1 and Swr1 are
phosphorylated upon checkpoint activation [49].
Therefore, it seems likely that also SWR-C plays a
role in checkpoint-triggered processes. One hint that
this may be the case comes from the observation
that both SWR-C and INO80-C play a role in
checkpoint adaptation. Checkpoint adaptation is a
process that allows cells to escape an extended
checkpoint arrest to re-enter the cell cycle with an
unrepaired DSB. The components in this pathway
seem to be at least partially conserved [123].
Budding yeast cells lacking Ino80, or expressing
an ATPase deficient form of Ino80, are not able to
overcome the checkpoint arrest. This correlates with
a drop of H2A phosphorylation and increase of Htz1
incorporation surrounding the DSB. Interestingly,
this effect can be counteracted by the additional
deletion of Swr1. Therefore, INO80-C and SWR-C
appear to have antagonistic functions in regulating
checkpoint adaptation [124]. It is unclear whether
SWR-C and INO80-C are involved in a novel
pathway, possibly involving Htz1, or whether they
act downstream of Ku70 or Rad51, two proteins
previously implicated in the process.

Remodelers and Cancer

The role of chromatin remodelers in cancer is far
from understood, but recent sequencing studies have
made it clear that chromatin regulators play a vital part
inmaintaining the integrity of the genome.Not only are
remodeler subunits found overexpressed or modulat-
ed in numerous types of cancer, but their correct
interplay is crucial to maintain genome stability and
prevent oncogenic transformation [78]. Human SWI/
SNF or BAF has been identified to be the most
frequently mutated chromatin regulatory complex in
human cancer, suggesting that it is a potent tumor
suppressor. In contrast to other known tumor sup-
pressors or oncogenes that drive particular types of
cancer, humanSWI/SNFsubunit genesweremutated
in a wide range of cancers. Therefore, it is likely that
SWI/SNF suppresses tumors on a very fundamental
cellular level [78]. In the same study, it was shown that
genes of SRCAP or TIP60 subunits were affected to a
much lesser extent in the cancer genomes assessed,
while INO80-C subunits were mutated only in a very
small subset of cancers [78]. It would be interesting to
probe for an imbalanced epigenetic landscape as a
consequence of SWI/SNF mutations in cancer and to
verify the factors that play havoc with chromatin
composition.
Tumor suppressors such as SWI/SNF are usually

difficult targets for cancer therapy, and therefore, it
will be important to elucidate whether there are
situations in which different remodelers antagonize
each other, allowing for remodeler upregulation by

inhibition of an opposing activity. On the other hand,
given that BRG1 and BRM function as mutually
exclusive subunits of human SWI/SNF, BRM could
be a suitable target for SWI/SNF mutant cancer
therapy in cancers that show paralogue insufficiency
and dependence on the remaining ATPase subunit
[125]. Paralogue insufficiency was also demonstrat-
ed in cancers for ARID1a and ARID1b, another
subunit of the BRM/BRG1 complexes, suggesting
that this too might be a potential target for inducing
synthetic lethality in cancer cells [126].
The fact thatmultiple types of cancer show increased

H3K56 acetylation suggests that the proper distribution
of this specific post-translational modification is impor-
tant for genomic integrity. In particular, this histone
modification shows foci formation upon DNA damage
that colocalize with sites of DNA repair [127]. Given the
major impact of H3K56ac on the enzymatic activity of
remodelers in yeast [117], there may be a misregula-
tion of INO80-C and SRCAP (human SWR-C), or of
TIP60, that contributes to genomic instability.
Finally, we note that many chromatin remodelers

harbor subunits with a YEATS domain and several
YEATS proteins in humans, such as GAS41, ENL
and AF9, are linked to human cancers (reviewed in
Ref. [128]). These proteins may be involved in the
recruitment of remodelers to sites of damage or may
modulate the Snf2 enzymatic activity that is neces-
sary for maintenance of the epigenetic landscape
under DNA damaging conditions. It is noteworthy
that leukemias that specifically upregulate BAF
(assembled around the BRG1 ATPase) require the
complex for maintenance of the leukemia and that
loss of BRG1 leads to immediate apoptosis and cell
cycle arrest [129]. Given that BRG1 is dispensable
for the long-termmaintenance of hematopoietic stem
cells, inhibitors that specifically block its function
might be a promising avenue for a novel therapy
against leukemia [129]. Finally it is also noteworthy
that chromatin remodelers can be modulated by
second messengers such as IP6 [130,131]. These
small effector molecules may represent yet another
means to modulate remodeler function, restoring the
balance needed for genome stability by chemical
intervention.
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Summary 
This chapter discusses the mechanism of heterochromatin sequestration to the nuclear periphery in C. 

elegans embryos by the nuclear envelope protein CEC-4. The study by Gonzalez-Sandoval et al. further 

illustrates phenotypic effects on embryo development when dysregulation of the CEC-4 pathway occurs. 

Of special interest to this thesis is the semi-automated and pixel-classification driven image analysis 

workflow used to explore a subset of three-dimensional imaging data. We used it to unbiasedly measure 

the subnuclear position as well as spatial expansion of a fluorescently labeled, heterochromatic array in 3D 

space. After having successfully tested and published the principles of this technique, it was extensively 

used to address chromatin expansion in Chapter 4.  
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SUMMARY

Interphase chromatin is organized in distinct nuclear
sub-compartments, reflecting its degree of compac-
tion and transcriptional status. In Caenorhabditis
elegans embryos, H3K9 methylation is necessary to
silence and to anchor repeat-rich heterochromatin
at the nuclear periphery. In a screen for perinuclear
anchors of heterochromatin, we identified a previ-
ously uncharacterized C. elegans chromodomain
protein, CEC-4. CEC-4 binds preferentially mono-,
di-, or tri-methylated H3K9 and localizes at the nu-
clear envelope independently of H3K9 methylation
and nuclear lamin. CEC-4 is necessary for endoge-
nous heterochromatin anchoring, but not for tran-
scriptional repression, in contrast to other known
H3K9 methyl-binders in worms, which mediate
gene repression but not perinuclear anchoring.
When we ectopically induce a muscle differentiation
program in embryos, cec-4 mutants fail to commit
fully to muscle cell fate. This suggests that perinu-
clear sequestration of chromatin during develop-
ment helps restrict cell differentiation programs by
stabilizing commitment to a specific cell fate.

INTRODUCTION

Cues stemming from the spatial organization of chromatin are
widely thought to influence the function of eukaryotic genomes.
Indeed, chromatin assumes distinct patterns of distribution in
the interphase nucleus in response to cell-type-specific gene
expression (reviewed in Meister et al., 2011; Talamas and Capel-
son, 2015). Dense-staining heterochromatin and repressed tis-
sue-specific genes are sequestered at the inner nuclear
membrane (INM) in both plant and animal cells. In metazoans,
an INM-associated network of the intermediate filament protein
lamin and other associated proteins provides a scaffold that
helps the interphase nucleus reform after mitosis (Nigg, 1992).

The chromatin that associates with the nuclear lamina (lamin-
associated domains or LADs) is generally gene poor, transcrip-
tionally silent, and enriched for repressive histone marks
(Gerstein et al., 2010; Guelen et al., 2008; Ikegami et al., 2010;
Pickersgill et al., 2006). Importantly, in C. elegans embryos the
integrity of two histone methyltransferases (HMTs) that target
histone H3K9, MET-2, and SET-25 was shown to be essential
for the peripheral localization of heterochromatin (Towbin et al.,
2012). Perturbed H3K9 methylation also partially compromised
proper heterochromatin organization in mammalian cells (Kind
et al., 2013; Pinheiro et al., 2012). However, no nuclear envelope
protein has yet been identified that anchors H3K9-methylated
chromatin specifically.
Studies of nuclear organization during the development of

multicellular organisms or of embryonic stem cell (ESC) differen-
tiation in vitro showed that perinuclear chromatin sequestration
is a dynamic process that changes with cell-type-specific gene
expression (Fussner et al., 2010; Harr et al., 2015; Meister
et al., 2010; Peric-Hupkes et al., 2010). Important genetic studies
of Solovei et al. (2013) showed that heterochromatin tethering in
differentiated mammalian cells depends on two partially redun-
dant pathways that reflect the sequential induction through
development of lamin B receptor (LBR) and lamin A/C. In some
mouse tissues both LBR and lamin A/C are expressed; in others,
expression of only one is sufficient to ensure the conventional
sequestration of heterochromatin at the INM. In the absence of
both perinuclear components, heterochromatin accumulated
at the nuclear core (Solovei et al., 2013).
Despite these genetic implications, it was unclear what

bridges chromatin to LBR or lamin A/C. LBR has been shown
to bind the chromodomain (CD) of Heterochromatin proteins
1a and g (HP1a and HP1g; (Ye and Worman, 1996), which
are hallmarks of heterochromatin. But HP1a-containing chro-
mocenters are not necessarily perinuclear, and HP1g is bound
to many euchromatic loci positioned away from INM (Minc
et al., 1999). Moreover, complete ablation of HP1a or b in
either pluripotent or differentiated ESCs does not change
chromocenter positioning (Mattout et al., 2015). Mammalian
LBR also binds histone H4K20me2 in vitro through its C-termi-
nal Tudor domain (Hirano et al., 2012), yet H4K20me2 is
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Figure 1. cec-4 Is Required for Anchoring and Compaction of a Heterochromatic Array
(A) Heterochromatic transgene array gwIs4 [baf-1p::GFP-lacI::let-858 30UTR; myo-3p::RFP] reporter.

(B) Zoning assay for array distribution. Radial position is determined relative to the INM, and values are binned into three concentric zones.

(legend continued on next page)
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broadly distributed without enrichment on LADs (Barski et al.,
2007).
Whereas mammalian lamins were reported to bind AT-rich

DNA and histone dimers in vitro (reviewed in Wilson and Foisner,
2010), this affinity cannot account for selective heterochromatin
binding. Nor is it explained by lamin A/C interaction with tran-
scription factors or the barrier to autointegration factor (BAF),
which may link specific promoters to lamins (Kubben et al.,
2012; Meuleman et al., 2013). Similarly, the lamin associated
Lap2b interacts with HDAC3 and the transcription factor cKrox,
a ligand of GAGA motifs, leading to the repression and perinu-
clear anchoring of a subset of mammalian promoters (Zullo
et al., 2012). Yet LADs extend far beyond promoters, coinciding
instead with extensive domains of H3K9 methylation (Towbin
et al., 2012).
Alternatively, nuclear lamins may act indirectly by providing a

stable platform for the localization of other INM proteins (e.g.,
Lap2b, Emerin and Man1 [Brachner and Foisner, 2011]). Indeed,
depletion of the C. elegans lamin, LMN-1, mislocalizes Emerin
(EMR-1) and Man1 (LEM-2), and the worm Emerin in turn helps
stabilize repressed muscle and neuronal genes at the INM in
differentiated worm tissues (González-Aguilera et al., 2014).
Yet neither Emerin nor Man1 bind heterochromatin directly. A
similar indirect effect was ascribed to mammalian SAMP-1, an
INM protein connected to LINC (linker of nucleo- and cytoskel-
eton) complex, whose loss compromises nuclear integrity and
leads to Emerin, SUN-1, and Lamin A/C mislocalization (Gudise
et al., 2011). Finally, loss of PRR14, a perinuclear HP1-binding
protein, altered perinuclear attachment of H3K9-methylated do-
mains in mammalian nuclei, yet led to general defects in nuclear
structure, raising the question of indirect effect on DNA localiza-
tion (Poleshko et al., 2013).
Here we exploit the power of RNAi screens in the nematode

C. elegans to find a methyl-H3K9-specific perinuclear anchor
for heterochromatin. We have individually downregulated genes
that harbor characteristic histonemethylation bindingmotifs and
monitored changes in the perinuclear anchoring of heterochro-
matin in early embryos. We identified a previously uncharacter-
ized C. elegans CD protein, CEC-4, as our only positive hit.
CEC-4 localizes at the INM where it directly binds endogenous
H3K9-methylated chromatin through its CD’s aromatic cage.
CEC-4 is not necessary for the transcriptional silencing of either
endogenous genes or a heterochromatic reporter, although the
methylation of H3K9 and its ligands HPL-2 and LIN-61 are.
Despite this, a reproducible fraction of cec-4 embryos were un-

able to maintain the muscle specification induced by a pulse of
HLH-1 (MyoD) expression. We suggest that perinuclear seques-
tration of chromatin contributes to cell fate commitment under
conditions of perturbed development.

RESULTS

CEC-4 Is a Chromodomain Factor that Anchors a
Heterochromatic Array
To search for proteins involved in the anchoring of methylated
H3K9 chromatin, we designed an RNAi screen with a fluores-
cent reporter for perinuclear heterochromatin positioning in
C. elegans embryos. Our reporter is an integrated plasmid array,
gwIs4, which expresses the GFP-LacI fusion protein under con-
trol of the ubiquitously active baf-1 promoter. GFP-LacI binds a
lacO site that occurs once per 3.5 kb (!300x), generating a fluo-
rescent focus that binds the INM in embryonic nuclei (Figure 1A).
The histones on the array are trimethylated on H3K9 and H3K27,
but lack H3K4 methylation, and have reduced gene expression,
thereby recapitulating conserved features of heterochromatin
(Meister et al., 2010; Towbin et al., 2010). Array position is deter-
mined with a zoning assay in which radial distances from the
spot to the nuclear periphery, scored in the focal plane in which
the spot is the brightest, are binned into 3 zones of equal surface
(Figure 1B). Deviation from 33% indicates nonrandom
localization.
The C. elegans genome encodes 65 proteins that contain

methyl-lysine/-arginine binding motifs, namely CD, MBT (malig-
nant brain tumor), PHD (plant homeodomain) and Tudor domains
(Table S1; reviewed in Taverna et al., 2007). This set of proteins
includes HPL-1 and HPL-2, homologs of HP1, a highly
conserved CD protein that binds methylated H3K9 to silence
heterochromatin (Nestorov et al., 2013). HPL-1 co-localizes
with the heterochromatic gwIs4 array in worm embryos and ap-
pears to repress transcription in a promoter-specific manner
working together with the H1 variant HIS-24 in larvae (Studencka
et al., 2012a). HPL-2 binds H3K9me2/3 as well as H3K27me2/3
in vitro, and it is needed to repress large heterochromatic arrays
in both embryos and germline cells, as well as to fine-tune other
gene expression events (Couteau et al., 2002; Studencka et al.,
2012b). A third H3K9me2/me3 ligand is the MBT-domain protein
LIN-61, whose loss compromises vulva development, silencing
of heterochromatic arrays, and a neuron-specific reporter in so-
matic cells (Koester-Eiserfunke and Fischle, 2011; Zheng et al.,
2013). Remarkably, elimination of these known H3K9me ligands,

(C) Array distribution quantitation, as described in (B), in early embryos (50–250 cell stage) of indicated genotypes (Tables S1 and S3). Red line = random

distribution of 33%.

(D) Design of candidate RNAi screen in lin-61;hpl-1 deficient strain. L1 larvae subjected to RNAi for candidates listed in Table S3, and embryonic progeny

screened for array delocalization.

(E) Z-projection of representative embryos bearing gwIs4 in WT and cec-4(ok3124) strains. Insets: single nuclei. Scale bar, 5 or 2 mm, respectively. Array dis-

tribution, zone 1 data in early embryos as indicated, n = foci scored per condition. Pair-wise comparisons of mock RNAi and WT conditions with cec-4 RNAi or

mutant yielded p values < 0.001 by c2 test.

(F) Z-projection of GFP fluorescence in embryos of indicated genotype with gwIs4. Insets: bright field. Scale bar, 20 or 10 mm, respectively. Quantified signal

intensity displayed as box plot in log2 scale, whiskers = 1st and 3rd quartiles. Black lines: median, blue dots: mean, red dashed line: baseline = mean of WT.

n = embryos scored.

(G) 3D spot volume and distance from INM in WT and cec-4(ok3124) embryos. Notched box plots overlapping individual measurements as above. n = 209 and

237, respectively, from five embryos each; pair-wise comparisons with p-values < 0.001 by Student’s t test.

See also Figure S1.
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singly or in combination, had little impact on the perinuclear
sequestration of the gwIs4 heterochromatic array, although the
mutants did lose transcriptional repression (Figure 1C; Towbin
et al., 2012).

Conscious that anchor redundancy might be a concern, we
downregulated other methyl-binding candidates by RNAi in
hpl-1;lin-61 double mutant embryos. Only one RNAi target,
cec-4, which encodes an uncharacterized CD protein, affected
the perinuclear anchoring of the heterochromatic reporter (Fig-
ures 1D and 1E). The percentage of heterochromatic foci in the
outermost nuclear zone dropped from 92% to 20%, following
cec-4 RNAi (Figures 1E and S1B). Although cec-3/eap-1 has
been described as an H3K9me1-3 binder involved in neuron-
specific gene expression (Greer et al., 2014; Zheng et al.,
2013), cec-3 RNAi had no impact on heterochromatin anchoring
in our screen (data not shown).

The effect of cec-4 RNAi on array position did not depend on
the absence of LIN-61 or HPL-1, for the same RNAi in WTworms
yielded identical array delocalization (Figures 1E and S1B). To
rule out off-target effects of cec-4RNAi, we scored array position
in embryos carrying the null mutant cec-4(ok3124), which lacks
the 50 UTR and first 2 exons (Figure S1A). The genetic ablation
of cec-4 phenocopied cec-4RNAi, yielding full array detachment
from the INM, identical to that scored in embryos that lack H3K9
methylation; i.e., the met-2 set-25 double mutant (Towbin et al.,
2012). Thus, the CD-encoding cec-4 gene is required, like H3K9-
methylation, for the perinuclear anchoring of heterochromatic
arrays in C. elegans early embryos.

We examined the effect of cec-4 ablation on gene expression
by quantifying the fluorescent intensity of GFP-LacI, which is ex-
pressed from a housekeeping promoter on the gwIs4 array.
Although the expression levels are strongly upregulated in
met-2 set-25 mutant, deletion of cec-4 did not alter GFP-LacI
expression in embryos (Figure 1F). Both H3K9me3 and the
enzyme mediating this terminal modification, SET-25, remained
enriched on the delocalized array in cec-4mutant embryos (Fig-
ures S1C and S1D), consistent with the observed transcriptional
repression. We conclude that CEC-4-mediated anchoring is not
essential for heterochromatic array repression. Nonetheless,
coupled with the loss of anchoring we scored a significant de-
compaction of the reporter, upon release from the INM. Moni-
tored by a quantitative 3D volume rendering protocol, we found
that the mean volume expanded from about 192 to 239 voxels
upon cec-4 deletion (Figure 1G).

CEC-4 Localizes Intrinsically to the Nuclear Periphery
We next examined the subcellular localization of CEC-4. A
mCherry-tagged version of cec-4 was integrated as a site-
specific, single-copy genomic insertion under control of its
endogenous cec-4 promoter and 30UTR (Figure S2A). Confocal
fluorescence microscopy of CEC-4-mCherry (CEC-4-mCh)
showed that the protein forms a ring at the nuclear periphery at
all embryonic stages (Figure 2A). This distribution persisted in
larval and adult differentiated tissues and in the germline of adult
worms (Figure 2D; data not shown). CEC-4 localizationwas inde-
pendent of H3K9methylation; the same perinuclear CEC-4-mCh
ring was found in the met-2 set-25 mutant, in which H3K9 is un-
methylated and heterochromatin was delocalized and ex-

pressed (Figure 2C). Only in mitosis did CEC-4-mCh become
dispersed (data not shown), much like lamins, which undergo
phosphorylation by cyclinB/Cdk in mitosis (Nigg, 1992).
Quantification of fluorescence intensity of CEC-4-mCh in L1

larval stage showed protein level variation in a tissue-specific
fashion. CEC-4 is weakly expressed in intestine, highly ex-
pressed in muscle, and is found at intermediate levels in almost
every other tissue (Figure 2D). This unequal tissue-specific
expression was not observed for an EMR-1 fusion construct de-
signed and integrated in a similar manner (EMR-1-mCherry; Fig-
ures 2D and S2A).
To characterize CEC-4’s nuclear rim pattern further, we

imaged embryos at 100 nm resolution using super-resolution
structured illumination microscopy (SR-SIM). The CEC-4-mCh
ring resolved into a perinuclear, punctate pattern (Figure 2B),
and counterlabeling of nuclear pores or LMN-1 (lamin) showed
CEC-4 in the same concentric plane as lamin and is situated
mostly between pores (Figure 2B). Lamin and CEC-4-mCh
were in very close proximity, yet could be resolved as distinct
foci (low yellow signal in red/green channel merge; Figure 2B),
suggesting that CEC-4 might localize to the INM independently
of lamin. Indeed, after treating these worms with lmn-1 RNAi,
CEC-4 perinuclear ring persisted (data not shown). The same
was true after RNAi against Emerin, LEM-2, SUN-1, UNC-84,
BAF-1, and all other known C. elegans INM components (Table
S6).
We reasoned that if CEC-4 localizes independently of lamin, it

might also associate with the nuclear envelope of budding yeast,
which lacks lamin entirely (reviewed in Taddei andGasser, 2012).
Indeed, when expressed as aGFP fusion protein under control of
the GAL1 promoter, CEC-4-GFP formed a perinuclear ring at
INM of yeast nuclei (Figure S2B). To map the domain that directs
CEC-4 to the INM, we expressed complementary N- and C-ter-
minal fragments of CEC-4, fused to GFP. Both yielded a diffuse
nuclear distribution (Figure S2C), suggesting that the integrity of
the holoprotein is necessary for INM enrichment (Figure S2C).
Similar results were obtained with similar constructs expressed
ectopically in C. elegans (data not shown). Finally, in yeast as
inworms, ablation of known INMand pore basket proteins (Table
S7) did not alter CEC-4-GFP localization. We therefore propose
that either CEC-4 has an intrinsic affinity for the INM, or else it
binds a conserved but uncharacterized membrane component.

CEC-4 Chromodomain Preferentially Binds
Methylated H3K9
Based on sequence analysis, the CEC-4 CD (aa 82–141) shares
42% identity with mammalian HP1a CD and 33% with HPL-1/2
CDs, yet CEC-4 lacks the HP1-specific chromoshadow and
RNA-binding hinge domains (Couteau et al., 2002). Protein com-
parison failed to reveal a strict homolog of CEC-4 in mammalian
genomes, apart from the CD and a second conservedmotif, here
called PD (putative domain, aa 25–76), which is found in other
CD-containing proteins (Figure 3A).
The CEC-4 CD has a canonical secondary structure like

mammalian HP1 and Pc3 (Fischle et al., 2003b), with an aromatic
cage containing two tyrosine residues that are predicted to
recognize methylated lysine within the H3 ARK(S/T) motif. To
characterize the specificity of CEC-4 CD binding, we expressed
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and purified the WT CD-containing fragment of CEC-4 (CEC-4
CD; aa 25–141) and a mutated version of the same fragment
(Y87A and Y111A; CEC-4 cd-2YA; Figures 3A and S3A), bearing
point mutations that should disrupt the aromatic cage. Using

magnetic beads coated with unmethylated (me0) or tri-methyl-
ated (me3) H3K9 peptide (aa 1–20+Cys), we found that the WT
CEC-4 CD bound a H3K9me3 peptide specifically, while the
CEC-4 cd-2YA mutant fragment did not (Figure 3B).
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Figure 2. Perinuclear CEC-4 Localization Is Independent of H3K9 Methylation, and Varies from Tissue to Tissue
(A) Single plane images of indicated embryo stages expressing CEC-4-mCh.

(B) SR-SIM microscopy of CEC-4-mCh transgenic embryos, counterstained for nuclear pores, lamin or mCherry. Embryo sections and single nuclear planes

shown.

(C) Z-projection of CEC-4-mCh inmet-2 set-25mutant background; images of mCherry alone and merged with gwIs4 GFP-LacI signal are shown. Insets: single

plain nuclei. Quantification of array distribution, n = foci scored.

(D) Single plane confocal images of CEC-4- and EMR-1-mCh transgenic L1 larvae; scheme of L1 worm color-coded by tissue, M: muscle, I: intestine, H: hy-

poderm. Measured mCh signal intensity displayed as box plots in a.u. as in Figure 1. Black circles = outliers, n = number of nuclei per tissue; pair-wise com-

parisons for * and **p value < 0.001 in Wilcoxon test. Scale bar, 5 mm in whole/section embryos and larvae; 2mm in single nuclei/insets.

See also Figure S2.
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Figure 3. CEC-4 CD Binds Methylated H3K9 Peptides
(A) Schematic comparison of H. sapiens HP1a,C. elegans HPL-1/2 and CEC-4. CD (green), purple: chromoshadow (ChSh) domain, blue: conserved PD. Purified

CEC-4 CD fragments in blue; red X = Y87A and Y111A mutations.

(B) Pull-down of recombinant His-tagged CEC-4 CD fragments (A) by unmodified or me3-H3K9 resin-immobilized peptides. Protein visualized by SYPRO Ruby

staining.

(C) AlphaScreen scheme: donor and acceptor microbeads coated with 188 different biotinylated peptides and His-tagged CEC-4 CD, respectively. Interaction

produces a fluorescent signal through singlet oxygen (1O2) transfer from donor to Ni+2 ions on acceptor beads. Three peptide concentrations tested with equal

amounts of CEC-4 CD (200 nM). Color-coded results reflect signal intensity (see Table S4 for rest of library).

(D) Dose-response binding curves for indicated H3K9 peptides with CEC-4 CD in AlphaScreen assay.

(E) Quantitation of binding affinities of H3K9 peptides to CEC-4 CD and cd-2YA mutant determined by ITC. In (D) and (E) solid lines represent a nonlinear least-

square fit using one-sided fitting equation.

See also Figures S3 and S4.
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We evaluated CEC-4 CD specificity by scoring interaction with
a range of modified and unmodified histone tail peptides in a
quantitative chemiluminiscence assay (Alpha Screen; Taouji
et al., 2009). We screened the ALTA Biosciences library, which
contains 188 histone tail ligands each with a different epigenetic
modification (Table S4; Figure 3C). Consistent with the pull-
down assay, strong interaction signals were detected almost
exclusively between CEC-4 CD and a peptide of histone H3
bearing me1-, me2-, or me3-K9. Intriguingly, CEC-4 affinity for
H3K9me3-containing peptides was compromised by addition-
ally phosphorylating S10 and/or T11 (Figure 3C and Table S4).
Such modifications have been proposed to release HP1 from
chromatin in mitosis (Fischle et al., 2003a).
The interaction of CEC-4 CD with methylated H3K9 was

confirmed by serial dilutions of each peptide in the AlphaScreen
(Figure 3D) and IC50 (half maximal inhibitory concentration) was
determined by peptide displacement. CEC-4 CD bound to
me1-, me-2, or me3-K9 H3 peptides with similar affinities (Fig-
ure S3C). We then measured binding energies using Isothermal
Titration Calorimetry (ITC). Dissociation constants (Kd) for
CEC-4 CD bound to the methylated H3K9 peptides ranged
from 5 to 9 mM. There was a slight preference for me2 and no
detectable binding to the unmodified H3 peptide (Figures 3E,
S3D, and S4A). Similar Kd values have been reported for human,
mouse, andDrosophilaHP1 homologs (reviewed in Steffen et al.,
2012). The interaction requires the characteristic aromatic cage
of the CEC-4 CD, as CEC-4 cd-2YA gave only background level
interaction (Figures 3E and S4A). We conclude that CEC-4 CD
recognizes H3K9me1, me2, and me3. Its affinity for all three
methyl-H3K9 forms is consistent with the fact that heterochro-
matic arrays remain peripherally sequestered in the set-25
mutant, which has H3K9me1/me2, but no H3K9me3 (Towbin
et al., 2012).
In addition to its strong affinity to H3K9me-peptides, we de-

tected interaction of the CEC-4 CD with me1- or me-2 H3K37
(aa 28–48; Figures 3C and S3B; Table S4). Methylation of
H3K37 has not been reported to occur in native C. elegans chro-
matin and was not detected in our own mass spectrometry of
embryonic histones (data not shown; Towbin et al., 2012). To
date, the only documented occurrence of H3K37me1 is in tan-
dem with H3K36me1 at origins of replication in budding yeast,
outside of S phase (Unnikrishnan et al., 2010). However,
CEC-4 did not recognize H3K36me. In addition, CEC-4 CD had
significantly lower affinity for H3K37me than for methylated
H3K9 (Figures S3D, S3E, and S4B). Thus, the physiological rele-
vance of this second binding site is unclear.

The CEC-4 CD Is Essential for Heterochromatin
Anchoring in Embryos, but Is Redundant in
Differentiated Tissues
The single-copy CEC-4-mCh fully restores array anchoring in
the cec-4 null mutant. It is enriched on the anchored heterochro-
matic reporter due to its affinity for H3K9me (Figures 4A and
S2C). An identical integration construct bearing the aromatic
cage mutations described above (CEC-4cd-2YA-mCh) did not
complement for anchoring, nor did it bind to the array (Figure 4B).
Thus, disruption of the CEC-4 CD aromatic cage is sufficient to
disrupt the anchoring of heterochromatin at the INM in embryos

and the binding of methylated H3K9 peptides in vitro. On the
other hand, CD integrity is not involved in CEC-4 localization,
given that CEC-4cd-2YA-mCh forms a perinuclear ring like WT
CEC-4-mCh (Figure 4B).
In contrast to the situation in embryos, the ablation of cec-4

did not provoke relocalization of the heterochromatic array in
differentiated L1 larval tissues, such as intestine and hypoderm
(Figure 4C). The same was observed in the met-2 set-25 double
mutant (Towbin et al., 2012). It appears, therefore, that compen-
satory or redundant mechanisms for anchoring heterochromatin
are induced in the differentiated tissues of the L1 larva. It is un-
clear whether these mechanisms are fully independent of
CEC-4 or if CEC-4 contributes to tissue-specific anchoring in a
redundant manner (Figure 2D). Both the redundancy and tis-
sue-specificity aspects are reminiscent of lamin A/C and LBR
effects in mice (Solovei et al., 2013).

Loss of CEC-4 Alters the Spatial Distribution of
Endogenous Chromosome Arms
Thus far integrated transgenic arrays were used as a surrogate
for heterochromatin. To see if CEC-4 affects the distribution of
endogenous chromatin, we performed LEM-2 chromatin immu-
noprecipitation coupled to deep sequencing (ChIP-seq) in WT
and mutant embryos. C. elegans chromosomes are holocentric
and lack pericentric satellite heterochromatin but are enriched
for H3K9 methylation and repetitive elements along the distal
arms of all autosomes and the left arm of chromosome X(Ger-
stein et al., 2010; Ikegami et al., 2010). Previous ChIP and
lamin-Dam-ID studies had shown that chromosome arms are
proximal to the INM in C. elegans embryos, larvae, and adults.
Moreover, the loss of H3K9 methylation (met-2 set-25) was
enough to compromise INM-anchoring of the repeat-rich auto-
somal arms (González-Aguilera et al., 2014; Ikegami et al.,
2010; Towbin et al., 2012).
We used ChIP-seq to map LEM-2-binding along endogenous

sequences in WT, cec-4, and met-2 set-25 embryos. Euclidian
distances were measured showing high similarity between rep-
licas. Hierarchical clustering resolved WT LEM-2 ChIP as
different from either mutant, while the met-2 set-25 and cec-4
mutants clustered together (Figure S5A). All input samples
were very similar. Plotting the LEM-2 signals along the chromo-
somal sequences showed that distal arms lost anchoring in
cec-4 null embryos to the same degree as in the H3K9me-defi-
cient met-2 set-25 mutant (Figures 5A and S5B).
As expected, LEM-2 binding along wild-type autosomes was

polarized: chromosome arms were enriched at the INM and cen-
ters were depleted. This polarization was reduced for each auto-
some similarly in both mutants. The integrated LEM-2 signal on
each chromosomal extremity was plotted against the signal inte-
grated over each center, to visualize the effects of the mutations
(Figure 5B). We conclude that the INM binding of the endoge-
nous repeat-rich domains on chromosome arms requires H3K9
methylation and its recognition by CEC-4. Nonetheless, other
positioning pathways likely exist, since chromosome extremities
were displaced to different degrees.
In many organisms heterochromatin is also clustered around

the nucleolus, the site of rDNA transcription by RNA Pol I (Pa-
deken and Heun, 2014). The C. elegans rDNA is found on the
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distal arms of ChrI and ChrV in heterochromatic regions (Fig-
ure 5A). We therefore checked whether nucleoli change their
radial position in the cec-4 mutant by staining for a conserved
marker of the nucleolus, fibrillarin (Figure 5A). In embryos lacking
CEC-4, nucleoli shifted quantitatively away from the perinuclear
lamin (Figure 5C), confirming that CEC-4 contributes profoundly
to the positioning of endogenous chromatin in embryos.

Monitoring Gene Expression in the Absence of CEC-4
It has long been debated whether nuclear localization is suffi-
cient to influence gene expression. To test this we generated
gene expression profiles (RNA-seq) of WT, met-2 set-25, and
cec-4 mutant embryos. Pairwise comparison of two indepen-
dent biological replicas of mutant and WT samples showed a

reproducible upregulation (>4-fold) of a large number of genes
in embryos lacking H3K9 methylation (met-2 set-25), whereas
the loss of CEC-4 led to robust upregulation of a single gene,
srw-85 (Figure 5D). The modest effect of cec-4 mutation on
gene expression is consistent with our results from the array-
borne GFP-LacI (Figure 1F). In the case of endogenous genes
in early embryos, the lack of derepression might simply reflect
the absence of transcription factors needed for tissue-specific
gene expression. However, given that the loss of H3K9 methyl-
ation does upregulate many genes in embryos, it is more likely
that H3K9me-ligands other than CEC-4 mediate gene repres-
sion. Analysis of datasets in 500 bp windows across the whole
genome, for potential changes in non-genic regions, yielded
similar results to the gene-centric analysis; only genomic
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(A) Z-projections showing co-localization of gwIs4 GFP-LacI signal with CEC-4-mCh in cec-4 null embryos. Insets: single nucleus. Zoning assay for array dis-

tribution, n = foci scored. Schematic view of transgenic protein expressed.

(B) Same as (A), except that CEC-4 transgene contains CD mutations (CEC-4cd2YA-mCh). Pair-wise comparison of (A) and (B) graphs with p value < 0.001,

c2 test.

(C) Single plane images of L1 stage worms containing gwIs4 and EMR-1-mCh in indicated genotypes. White arrows indicate hypoderm (H) or intestine (I)

cells; * marks granule intestine foci. Insets: intestine nuclei, black arrows = array foci. Zoning assay on indicated tissues, n = foci scored per condition. Scale bars,

5 mm in embryos/L1 sections and 2 mm in single nuclei.

See also Figure S2.
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windows spanning the srw-85 locus were reproducibly upregu-
lated in cec-4(ok3124) (Figure S5C).
The dramatic induction of srw-85 (> 16-fold) upon displace-

ment from the INM is a notable exception (Figures 5A and
5D–5F). Its derepression correlates strongly with subnuclear
position, and not with H3K9methylation state, as it was not dere-
pressed in met-2 or set-25 single mutant embryos, which retain
anchoring (Towbin et al., 2012). SRW-85 is a member of the
C. elegans chemoreceptor family of seven transmembrane G
protein-coupled receptors (7TM-GPCR). The gene sits on
ChrV-right, along with 90% of the 145 srw family members,
and is normally expressed in non-ASE type (gustatory) neurons
(Etchberger et al., 2007). Given that surrounding genes are not
equally upregulated (Figure S5D), we conclude that srw-85 is
an exception rather than the rule. CEC-4, unlike other H3K9
methylation readers, serves primarily to position chromatin,
although the H3K9me2/me3 modification it recognizes also me-
diates transcriptional silencing.

Perinuclear Anchoring Helps Stabilize an Ectopically
Induced Cell Differentiation Program
We examined cec-4 mutant worms for developmental defects.
Surprisingly, we found no drop in brood size nor embryonic
lethality (either at 20!C or 26!C). We scored no reproducible dif-
ferences in the developmental timing of embryonic stages, and
except for a slight increase in the proportion of male progeny,
proliferation appeared normal under standard laboratory condi-
tions (data not shown). Given that alternative anchoring path-
ways are induced in L1 larvae, we sought to test the role of
CEC-4-mediated chromatin tethering specifically in embryos.
To this end, we used an assay that induces muscle cell spec-

ification in embryos in response to a cell-type independent burst
of HLH-1 (MyoD) expression, a master regulator for muscle dif-
ferentiation (Fukushige and Krause, 2005). Induction of HLH-1
is driven by the hsp-16.2 heat-shock (HS) promoter on a trans-
gene array (HS::hlh-1) and is achieved by placing embryos at
34!C for 10 min; about 24 hr after, efficiency of induction can
be monitored by morphology and muscle-specific gene ex-
pression (Figure 6A). To test whether cec-4 mutant alters the
efficiency of muscle induction, we introduced the HS::hlh-1
transgene and the gwIs4 array into WT and cec-4 mutant, using
the latter as a fluorescent reporter for muscle-specific gene
expression (myo-3p::RFP). At 40 min after HS, hlh-1 mRNA
was expressed at comparable levels in both genotypes, as
was the downstream muscle specific myosin, myo-3, at 24 hr
after HS (Figure 6B).
We induced HLH-1 expression at different time points during

synchronized embryonic growth and monitored the outcome
by microscopy. A striking difference between WT and mutant
embryos was noted when we exposed the bean stage ("560
cells; 300 min growth at 22.5!C) to the HLH-1 pulse (Fig-
ure 6C–6F). Whereas 100% of the wild-type embryos turned
into lumps of muscle-like cells with muscle-twitching behavior,
among the heat-shocked cec-4 null embryos a reproducible
25% continued to develop, reaching the point of hatching from
the eggshell despite their documented HLH-1 expression (Fig-
ure 6C and 6D). These hatched larva-like organisms were clearly
abnormal, as they were disrupted by the slightest manipulation

and failed to survive. Nonetheless, they had progressed well
beyond embryonic stages and did not manifest the muscle
morphology of their WT counterparts (Figure 6C and 6E). To
rule out a general temperature sensitivity of cec-4 deletion, we
exposed the mutant embryos lacking the HS::hlh-1 to HS, yet
observed no effect on development: all embryos yielded normal
larvae (Figure 6C).
After HLH-1 induction, the fluorescent reporter myo-3p::RFP

was detected in patches of cells in both genotypes, with an over-
all higher intensity in WT cells (Figures 6E and S6A). The subset
of cec-4 mutant embryos that became muscle, like the WT em-
bryos, showed twitching behavior. In contrast, the cec-4 null
hatched larva-like worms had a dispersedmyo-3p::RFP expres-
sion pattern throughout the organism, which was distinct from
the usual myo-3 expression pattern in L1 larvae body wall mus-
cle (Figure 6E). We could complement the cec-4 deletion by
introducing the tagged CEC-4-mCh; indeed, this restored the
normal WT response to HLH-1 induction, and 100% of the em-
bryos became muscle cells. In contrast, complementing with
CEC-4cd2YA-mCh yielded results reminiscent of the cec-4
null, albeit less penetrant (Figure S6B).
The inefficiency of the cec-4mutant for muscle tissue conver-

sion in response toMyoD, appears to reflect an inability to lock in
the muscle specification program and repress other differentia-
tion programs. In other words, despite high level expression of
HLH-1, the cec-4 mutant appeared to remain more permissive
to other differentiation signals and therefore continued to
develop other tissues while expressing muscle-specific genes.
We confirmed this by tracking an intestine cell marker that is
not expressed in either genotype at the bean stage when we
perform HS. The reporter (kind gift of G.-J. Hendriks and H.
Grosshans, personal communication) expresses a GFP-tagged
nuclear pore protein from an L1-stage gut-specific promoter
(nhx-2). At 18 hr after HS, we find that the fluorescent gut marker
(nhx-2p::npp-9::GFP) was detected in 94.5% of cec-4 mutant
embryos, but significantly less in WT (39.6%; Figure 6F).
Given the fragility of the hatched larvae-like structures, neither

immunostaining nor manual isolation for RNA-seq was possible.
However, their morphology alone allows one to conclude that a
significant fraction of the cec-4mutant embryos failed to restrict
gene expression to the muscle program. Thus, the perinuclear
sequestration of silent genes by CEC-4 in embryonic stages ap-
pears to help stabilize the HLH-1-induced muscle cell fate.

DISCUSSION

Perinuclear Chromatin Sequestration through Histone
H3K9 Methylation
Heterochromatin, or transcriptionally silenced chromatin, is
often juxtaposed to the INM in eukaryotic organisms. Previous
work has identified H3K9 methylation as essential for hetero-
chromatin anchoring in worms (Towbin et al., 2012) and impor-
tant in mammalian cells (Kind et al., 2013; Pinheiro et al.,
2012). However, no INM anchor that selectively binds this epige-
netic mark was known. Here we describe CEC-4 as a perinuclear
C. elegans protein which is necessary for the tethering of endog-
enous chromatin bearing me1-, me2-, or me3-H3K9 histones. Its
CD’s aromatic cage is necessary for H3K9me binding in vitro and
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in vivo. Ablation of CEC-4 delocalizes heterochromatin, but
does not necessarily lead to its derepression, whereas loss of
histone H3K9 methylation compromises both. Other H3K9me-
ligands (HP1 homologs HPL-1 and HPL-2, or LIN-61) contribute
to transcriptional repression by binding H3K9me2 or me3, but
do not mediate perinuclear anchoring. This bifurcation in func-
tion of a single methylated lysine in a histone tail, through
divergent sets of methyl-lysine readers, provides a paradigm
for how epigenetic states can coordinate distinct activities. In
this case, chromatin can be anchored without silencing and
silenced without anchoring, even though the two functions are
correlated through H3K9 methylation. H3K9me1/me2 is suffi-
cient for tethering through CEC-4, while H3K9me3 is needed
for gene repression mediated by other H3K9me-readers (Fig-
ure 7). It remains to be seen if CEC-4 and other H3K9me readers
interact.

CEC-4 Contributes to the Robustness of Ectopically
Induced Differentiation
This finding gave us the opportunity to examine what happens
during development when heterochromatin anchorage is
compromised, without loss of H3K9methylation or the transcrip-
tional repression it mediates. Although cec-4 mutant embryos
yielded normal adult worms when development proceeded un-
perturbed, we were able to demonstrate a function for hetero-
chromatin anchoring in early development by inducing muscle
differentiation with ectopic expression of MyoD (HLH-1). Unlike
the WT strain, a significant fraction of cec-4 deficient embryos
(about 25%) did not maintain the muscle fate provoked
by HLH-1 induction (Figure 6) and continued to develop. In
contrast, the induction ofmuscle cell fate and repression of alter-
native programs of differentiation occurred in 100% of the WT
bean-staged embryos. The failure of the mutant to sustain an
HLH-1-induced muscle program could either mean that CEC-4
actively supports muscle-specific gene expression, or else that
it helps repress other tissue-specific programs. Given that
muscle markers were expressed in heat-shocked cec-4 mutant
embryos and that muscles develop normally in the mutant
without HS, we favor the latter hypothesis: upon loss of CEC-
4-mediated heterochromatin sequestration, non-muscle pro-
grams may not be properly repressed during ectopic muscle
induction. This is consistent with earlier studies that showed a
clear spatial segregation of active and inactive tissue-specific
genes in differentiated cells of C. elegans larvae (Meister et al.,
2010).
Because cec-4 ablation per se seems to have a very limited

effect on normal transcription patterns, we propose that CEC-
4-mediated tethering does not control gene repression directly,

but instead influences events that prepare genes for tissue-
restricted patterns. These events might be the remodeling of
epigenetic states (e.g., through histone deacetylases that bind
the nuclear envelope [Zullo et al., 2012]), the sequestration of
promoters away from their regulators, or the timing of replication
of tissue-specific genes (Hiratani et al., 2008). These changes
may not directly repress transcription, but rather change the
compaction state of chromatin as a prerequisite for stage-spe-
cific repression. Indeed, the INM-released arrays in cec-4 mu-
tants are less compact (Figure 1), although we did not detect
less histone H3K9 methylation by genome-wide ChIP (data not
shown).
ESC differentiation studies have shown that the timing of repli-

cation of genes, and their reassembly into chromatin following
replication, are compromised by spatial misorganization (re-
viewed in Hiratani et al., 2009). Moreover, it has been suggested
that altered replication timing precedes commitment to differen-
tiation-related expression patterns (Hiratani et al., 2008). Thus,
we propose that CEC-4-mediated chromatin positioning and
compaction may contribute to a replication timing program,
which in turn reinforces appropriate gene repression. We expect
that the compromised commitment of cec-4 mutant is not
restricted to muscle differentiation, but rather is a general mech-
anism that becomes important when normal development is per-
turbed. Whereas the ectopic HLH-1 induction is definitely a
strong perturbation, less dramatic perturbations during develop-
ment may rely on spatial sequestration to ensure proper patterns
of tissue-specific gene expression.

Extending Nuclear Anchoring Mechanisms to Other
Organisms
Although CEC-4 is the first CD protein reported to form a ring at
the nuclear perimeter autonomously, CEC-4’s anchoring func-
tion becomes either redundant or replaced by other mechanisms
in L1 larvae, the stage at which most cells reached terminal dif-
ferentiation. We note that heterochromatin can be anchored in
differentiated tissues without H3K9 methylation, and without
HPL-1, HPL-2, or LIN-61 (Studencka et al., 2012b; Towbin
et al., 2012). Another CD protein, CEC-3, had no impact on em-
bryonic array distribution in our screen, although it appears to
restrain the expression of a neuronal specific transcription factor
in larvae (Greer et al., 2014; Zheng et al., 2013). Thus, four
H3K9me binders—HPL-1, HPL-2, LIN-61 and CEC-3—con-
tribute to transcriptional silencing during development, while
CEC-4 specifically sequesters H3K9me-containing chromatin
in embryos. CEC-4 may also contribute to heterochromatin
anchoring in some differentiated worm tissues, albeit in a redun-
dant manner (data not shown).

(B) LEM-2 ChIP enrichment of arms (left or right) compared with corresponding center plotted for each genotype. Error bars = SEM.

(C) Representative merged color, single plane nuclei are shown for WT and cec-4mutant stained for anti-fibrillarin, lamin, and gwIs4 array (anti-GFP), Scale bar,

2 mm. Zoning assay of nucleolar foci in 50–250 cell stage embryos, n = foci scored; pair-wise comparison p value < 0.001, c2 test.

(D) Relative gene expression profiles as scatter plots of met-2 set-25 and cec-4 mutants versus WT early embryo extracts. Genes significantly changed are

circled, bold star = srw-85.

(E) LEM-2 ChIP qPCR for srw-85 and C18D4.6 genes. ChIP values as a percentage of respective input DNA.

(F) Gene expression levels of indicated genotypes by qRT-PCR, normalized to pmp-3 gene and shown relative toWT expression. Error bars = SEM of 3 biological

replicas.

See also Figure S5.
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We have not identified a direct homolog of CEC-4 in non-nem-
atode species, and we suspect that this protein’s two functions,
INM-association and specific H3K9me-recognition, may be
embodied in two separate polypeptides in mammals. As
mentioned, an example of such split function may be
the mammalian nuclear membrane-spanning protein PPR14,
which can bind HP1. The interpretation that PPR14 anchors het-
erochromatin through this ligand is complicated, however, by the
pleiotropic effects its loss has on nuclear shape (Poleshko et al.,
2013). Similarly, themammalian LBRmay bind HP1 and carries a
Tudor domain with a preference for H4K20me2 in vitro (Hirano
et al., 2012; Ye andWorman, 1996).Whereas there is no compel-
ling evidence that either H4K20me2 or HP1 mediate perinuclear
anchoring in early development, LBR itself is implicated in the
spatial organization of the genome in differentiated mammalian
cells, particularly in cells that do not express Lamin A/C (Clowney
et al., 2012; Solovei et al., 2013). Unfortunately, indirect
effects again complicate the interpretation of LBR ablation, since
this transmembrane protein has sterol reductase activity that
regulates cholesterol metabolism and maintains appropriate
spacing between inner and outer nuclear membranes (Holmer
et al., 1998). Thus, both indirect effects and redundancy among
anchors have made it difficult to characterize chromatin-teth-
ering pathways in mammalian cells. Nonetheless, it is possible

(B) Quantitation of hlh-1 and muscle specific myo-3 expression by qRT-PCR in indicated genotypes, 40 min and 24 hr after HS relative to before HS; data

normalized to pmp-3 gene. Error bars = SEM of 3 biological replicas.

(C) Stereoscopic representative images of synchronized bean stage embryos before and 24 hr after HS. As control, cec-4 null embryos lacking HS::hlh-1 were

treated similarly. Hatched larva-like worms highlighted with dashed white line and arrow. Scale bar, 20 mm.

(D) Average hatching ratio after HS according to genotype in bar plot. Error bars = SEM of six independent assays, n = total embryos tested.

(E) Muscle reporter pattern for indicated genotypes. Z-projections of bright field and fluorescent myo-3p::RFP (from gwIs4) imaging taken 18 hr after HS. Wild-

type L1 imaged independently. Scale bars = 5 mm.

(F) Intestine reporter nhx-2p::npp-9::GFP pattern for indicated genotypes. Z-projections taken as in (E). n = 3, total number of embryos scored = 53 and 55

respectively. Scale bars,5 mm.

See also Figure S6.
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(B) Summary of chromosome organization in early

embryos in indicated genotypes. In WT embryos

H3K9 methylation-enriched chromosome arms

(dash lines) bind CEC-4 at the INM and are en-

riched for SET-25 (red foci). Lack of H3K9

methylation (met-2 set-25 mutant) releases het-

erochromatin in embryos and derepresses genes

(light green spots). Loss of CEC-4 compromises

chromatin position, but does not induce gene

expression.

that these INM proteins function through
chromatin binding proteins that resemble
CEC-4. Separation of function mutations
that uniquely compromise chromatin
positioning will be needed to define these
pathways unequivocally.

In other species, repressive epigenetic marks other than
H3K9 methylation may contribute to the spatial sequestra-
tion of repressed chromatin. In mouse 3T3 embryonic fibro-
blasts (MEFs), the Polycomb mark H3K27me3 was reported
to contribute to perinuclear positioning at the edges of
LADs (Harr et al., 2015). In worms, the loss of Polycomb
components MES-3 and MES-6 led to derepression of our
heterochromatic reporter in embryos (Towbin et al., 2012),
but did not trigger release from the nuclear periphery. More-
over, in most species, the H3K27me3-positive foci found in
differentiating cells are not perinuclear (Eberhart et al.,
2013). This, however, does not preclude the possibility that
combinatorial epigenetic signatures target chromatin to the
INM.
The relative simplicity of the C. elegans system and the

conserved nature of its epigenetic and developmental programs
has allowed us to dissect nuclear organization with a genetic
approach. Given the conserved role H3K9me has in chromatin
positioning, it is likely that factors with analogous functions as
CEC-4 exist elsewhere. Functional screens in compromisedback-
grounds will be able to shed light on relevant anchors in differenti-
ated cells. Disruption of specific anchors in differentiated tissues
will extend our understanding of the function of heterochromatin
sequestration.
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EXPERIMENTAL PROCEDURES

RNAi Screen
RNAi was performed at 22.5!C by placing L1 worms on feeding plates as pre-

viously described (Timmons et al., 2001). For the list of genes used (Table S3) in

the RNAi screen see Supplemental Experimental Procedures.

Microscopy
Microscopywas carried out on a spinning disc confocalmicroscope, using 2%

agarose pads for live-microscopy or poly-lysine coated slides for fixed sam-

ples. Acquisition and analysis of array and nucleolus distribution, array spot

volume, expression levels of GFP-LacI and CEC-4-mCh, and enrichment of

CEC-4 over array are online, along with a description of super resolution-struc-

tured illumination microscopy (SR-SIM; Elyra S.1 [Carl Zeiss]).

AlphaScreen Direct Binding and In Vitro Assays
Purified recombinant His-tagged CEC-4 CD (200 nM) was screened for its

binding to modified histone peptides with the ALTA Biosciences peptide array

system (Alta Biosciences, UK) and the AlphaScreen assay. Details for protein

purification, peptide pull down and ITC are in Supplemental Experimental

Procedures.

LEM-2 ChIP-Seq and RNA-Seq
Early embryonic progeny was harvested after synchronization (60–65 hr de-

pending on each strain) for WT, met-2 set-25, and cec-4 mutant strains in

two independent biological replicates. LEM-2 ChIP was performed as

described (Ikegami et al., 2010). Total RNA was extracted by phenol/chloro-

form, further purified, and depleted for rRNA. Detailed information about library

preparation and data analysis is described in Supplemental Experimental

Procedures.

Heat-Shock Induced Muscle Differentiation
Two cell-stage embryos, of different genetic backgrounds containing the

HS::hlh-1 transgene, were allowed to develop until bean stage (300 min at

22.5!C). HS at 34!C for 10 min was performed either on 2% agarose pads

or on liquid with a thermal cycler with in situ slide block. After recovery for

24 hr, evaluation of hatching larva-like worms was determined by stereomicro-

scopy, and reporter markers by spinning disc confocal microscopy. Details for

qPCR of HS samples is described in Supplemental Experimental Procedures.
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Figure S1. Genomic Context of cec-4 and Its Deletion Allele, Related to Figure 1
Heterochromatic array contains H3K9me3 and co-localizes with SET-25 even when it is away from nuclear periphery in cec-4 mutant.

(A) Schematic representation (not to scale) of genomic region where cec-4 gene is localized, and deletion allele coverage.

(B) Quantitation of array distribution in different experimental conditions as indicated, n: foci scored in presented order. Pair-wise comparisons ofmock RNAi and

WT conditions with the respective cec-4 RNAi and cec-4 mutant show statistically significant differences with p-value < 0.001 in all comparisons, c2 test.

(C) Immunofluorescence (IF) of transgene gwIs4 array (anti-GFP) and repressive histone mark H3K9me3 in WT and cec-4 mutant strains. Z-projection of

representative nuclei are shown, co-localization observed as yellow signal in merged panels. Scale bar, 2 mm.

(D) Live microscopy of N-terminally tagged SET-25 with mCherry (mCh-SET-25) together with array in indicated genotypes. Z-projection images of embryos in

individual and merged colors. Insets: single nuclei. Scale bars, 5 and 2 mm for embryos and insets respectively.
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CEC-4 forms a nuclear ring in S. cerevisiae, which is compromised by loss of full-length protein.

(A) Schematic representation of CEC-4 and EMR-1 fusion constructs to mCherry. Both constructs were integrated as single copy on Chr II by MosSCI. cec-
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(B) Expression of intron-less full-length CEC-4 fused C-terminally to GFP in S. cerevisiae. Bright field, CEC-4-GFP, NUP-49-CFP (as perinuclear marker) and

merged single plane images are shown.

(C) Full-length, N-term and C-term fragments of CEC-4 fused to GFP expressed in yeast. Schematic representation of each construct is presented, in which the

GAL1-10 promoter (pGAL) drives CEC-4-mCherry and corresponding fragment fusions. Single plane images of representative patterns are shown. Scale bars on

(B) and (C) panel, 2 mm.

(D) Quantitation of CEC-4-mCherry intensity level on array-bound region in contrast to a non-array perinuclear region, as described in Supplemental Experimental

Procedures forWT andmet-2 set-25mutant embryos.Whiskers: 1st and 3rd quartiles, black circles: outliers, black lines:median, blue dots:mean, red dashed line:

baseline set as no difference in enrichment, n: total number of arrays per nuclei measured of each genotype.
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Figure 3
CD point mutations impair binding to all substrates tested.

(A) ClustalWmultiple sequence alignment of CEC-4’s CD (82-141 aa) with differentH. sapiensCBX proteins as indicated. Blue color range represents percentage

of identity, and consensus sequence is displayed. The two highlighted lysines (dashed red boxes) replaced by alanines in the CEC-4 cd 2YA construct.

(B) Histone H3 tail sequence for visualization of amino acid context of lysines 9 and 37, to which CEC-4 CD showed positive.

(C) IC50 (half maximal inhibitory concentration) of H3K9 peptides binding to CEC-4 CD measured by AlphaScreen peptide displacement assay. Non-biotinylated

H3K9 peptides were used to compete with the binding of CEC-4 CD and biotin-H3K9me2 peptide in AlphaScreen binding assay.

(D) Table showing parameters measured for association of CEC-4 CD and the different methylated states of indicated H3 peptides. N (stoichiometry), K (as-

sociation constant), DH (enthalpic change) and DS (entropy change) in Isothermal Titration Calorimetry (ITC) assay.

(E) Quantitation of binding affinities of methylated H3K37 peptides to CEC-4 CD and mutant cd-2YA, determined by ITC. For all graphs solid lines represent a

nonlinear least-square fit using one-site fitting equation.
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Figure S4. Intact CEC-4 CD Binds Preferentially to All Methylated Forms of H3K9 and with Less Affinity for H3K37 (me1 > me2 > me3) as
Monitored by ITC, Related to Figure 3
(A) Raw binding data of ITC injections of all methylated forms of H3K9 for both CEC-4 CD andCEC-4cd-2YA is shown. Dissociation constants (Kd) determined are

shown in Fig 2E. Kd’s with CEC-4cd-2YA were unable to be determined.

(B) Same as in (A) except that the peptides are related to methylation of H3K37. Kd’s are shown in Fig S2E.
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Figure S5. LEM-2 ChIP Enrichment Signals of met-2 set-25 and cec-4 Mutants Cluster and Are Different from WT, with a Less Polarized
Pattern, Related to Figure 5
Genes srw-85 and C18D4.6 are depleted for H3K9me in cec-4 embryos, while only srw-85 is derepressed.

(A) Heat-map of hierarchical clustered Euclidean distances of LEM-2 ChIP and Input (total chromatin extracted) normalized reads of WT,met2 set-25, and cec-4

mutants in duplicate.

(B) Average of duplicates of LEM-2 ChIP enrichment plotted over chromosomes. Tracks are shown only for autosomal chromosomes. Averaged signals (Z scores

of IP – input) are shown in 200 kb windows.

(C) Relative expression profiles in windows of 500 bp (not strand assigned) for the whole genome of cec-4mutants to WT levels in early embryos. Scatter plots

compare replicas of indicated genotypes.

(D) qRT-PCR mRNA level quantitation for indicated genes in WT and cec-4 mutant background. Data shown normalized to pmp-3 gene and relative to the

expression in WT. Error bars = SEM of five biological replicas of early embryo extracts.
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Restoration by expression of CEC-4-mCherry, but not the CEC-4 CD-2YA mutant.

(A) Muscle specificmyo-3p::RFP reporter (contained in gwIs4 array) for indicated genotypes 24 hr after HS. Z-projection images of bright field andmyo-3p::RFP

are shown. Scale bar, 5 mm. Quantitation of RFP intensity signal 24 hr after HS for indicated genotypes. Intensity levels are plotted in a.u., black line: median, n:

number of embryos of respective genotype.

(B) Table showing number of hatched larva-like worms for different strains tested.

S8 Cell 163, 1333–1347, December 3, 2015 ª2015 Elsevier Inc.
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Supplemental Experimental Procedures: 

Constructs and Strains 

Gene synthesis of cec-4 for protein expression and yeast constructs were from GenScript USA 

Inc. For the CEC-4 tagged construct, the gene was amplified from N2 worm genomic DNA. All 

plasmid constructs were generated by MultiSite Gateway® cloning (Invitrogen). The Y87A and 

Y111A point mutations in the cec-4 gene, referred to as 2YA, were introduced by multi-site-

directed mutagenesis (Agilent Technologies) for both in vivo and in vitro experiments. All worm 

and yeast strains used are listed in Table S1 and S2, respectively. The cec-4(ok3124) strain 

received from CGC was out-crossed six times to N2 wild-type strain. CEC-4 tagged wild-type 

and mutant cd2YA versions, were made using the MosSCI technique (Frokjaer-Jensen et al., 

2008). The MosSCI strains were out-crossed twice to N2 wild-type strain. The EMR-1-mCherry 

strain was kindly provided by P. Askjer; the intestine specific marker strain (nhx-2p::npp-

9::GFP) in Fig. 6F by Hendricks G.J. and H. Grosshans (Friedrich Miescher Institute for 

Biomedical Research, Basel, Switzerland, personal communication). Worms for microscopy 

experiments were grown at 22.5˚C; RNA and LEM-2 ChIP sequencing strains were grown at 

20˚C; qPCR strains were grown at 20˚C except for Fig. 6B at 22.5˚C. For yeast experiments, 

CEC-4 full length (1-270 aa), CEC-4N (1-144 aa) and CEC-4C (142-270 aa) were cloned into 

Advanced Gateway Destination vector plasmid 14193 (pAG415GAL-ccdB-EGFP); plasmids 

were transformed using standard transformation protocol in GA-1981 or GA-3628 strains (see 

Table S2 for strain details). Yeast were grown at 30°C. 

RNAi  

RNAi was performed by placing larval stage 1 (L1) worms on feeding plates as previously 

described (Timmons et al., 2001). Table S3 and S6 lists genes tested in RNAi screen and CEC-4-
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mCherry localization experiments. All RNAi clones used were sequenced first to confirm target. 

As a mock RNAi control, the L4440 vector (Fire vector library) was modified by removing an 

EcoRV fragment containing 25bp identical to GFP-LacI.  

Immunofluorescence (IF) 

IF for Fig. S1C was done as described in (Meister et al., 2010), and for Fig. 2B and 5C IF as 

described in (Rohner et al., 2013). Antibodies used in pairs: for gwIs4: monoclonal anti-GFP 

(MBL-D153-3) and Alexa-488 anti-rat; for H3K9 methylation: monoclonal anti-H3K9me3 

(Wako #303-34832) and Alexa-568 anti-mouse; for nuclear pores: monoclonal mAB414 (Abcam 

ab24609) and Alexa-555 anti-mouse; for lamin: anti-CeLMN-1 (a gift from Y. Gruenbaum, The 

Hebrew University of Jerusalem, Jerusalem, Israel) and Alexa-488, -555 or -647 anti-rabbit; for 

CEC-4-mCherry: monoclonal anti-mCherry (Life technologies M11217) and Alexa-488 anti-rat; 

for nucleolus: anti-Fibrillarin (kindly provided by P. Heun, Welcome Trust Center for Cell 

Biology, Edinburgh, UK) and Alexa-555 anti-human. 

Microscopy 

Except for Fig. 2B and 6C, microscopy was carried out on spinning disk multipoint confocal 

microscopes: (1) AxioImager M1 [Carl Zeiss] + Yokogawa CSU-22 scan head, Plan-Neofluar 

100×/1.45 NA oil objective, EM-CCD camera [Cascade II; Photometrics], and MetaMorph 7.7.2 

software or (2) Olympus IX81 + Yokogawa CSU-X1 scan head, PlanApo 100x/1.45 TIRFM or 

60x/1.45 NA oil objectives, 2X Back-illuminated EM-CCD EvolveDelta (Photometrics), and 

VisiView 2.1.4 software. Live microscopy samples were prepared as previously described 

(Meister et al., 2010). Figs. 1E, 1F, 5C and S1C were de-convolved with Huygens Pro software. 

Single plane and 3D reconstruction (maximum intensity Z-projections) images and analysis were 

generated using Fiji/ImageJ software (Schindelin et al., 2012). Quantitation of array and 
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nucleolus distribution on focal stacks of images was done with plugin PointPicker 

(http://bigwww.epfl.ch/ thevenaz/pointpicker/) as described (Meister et al., 2010); for proper 

quantitation in cec-4(ok3124) mutant, we used a strain with an additional copy of a lacO free 

baf-1p::GFP-LacI transgene (gwIs39), to enhance the GFP signal and be able to identify nuclear 

periphery.  

Quantitation of GFP/RFP signal intensity on focal stack images was done selecting the plane at 

the embryo middle section and subtracting the average background of corresponding image. In 

Fig. 1F all strains were compared to average wild-type signal intensity. In Fig. S2D, quantitation 

of CEC-4-mCherry enrichment over array on focal stacks of images was done measuring, for 

each nucleus, the mCherry intensity in the nuclear volume occupied by the array and divided by 

the mCherry intensity in an equivalent region outside the array at the nuclear periphery. In Fig. 

2D, quantitation of CEC-4-mCherry and EMR-1-mCherry fluorescent intensity in various tissues 

of L1 worms was performed on single nuclei, selecting a middle nuclear section plane; the 

obtained intensity values were normalized on the average background fluorescence of the 

corresponding image. Zoning assay graphs were done in Microsoft Excel and Intensity signal 

box-plots in R. 

For Fig. 1F Fiji ImageJ was used to change de dynamic range of deconvolved images, giving 

more value to low intense pixels (same settings applied to all images). Pixel classification in 

Ilastik 1.1.5 image analysis and classification software (Sommer, 2011)was used to segment the 

greyscale images in 3D space. With all Ilastik features selected, three individual labels were 

trained for detecting (1) the background, (2) the nuclei and (3) the GFP foci. A Matlab based 

function was used analyze the Ilastik probability maps and calculate different nuclei and foci 

parameters. Spot volume describes the 3D foci dimensions in voxels and Spot distance is 
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calculated by measuring the minimal 3D distance from the Spot centroid to the nuclear 

periphery. 

For Fig. 2B, high-resolution imaging was performed with a super resolution-structured 

illumination (SR-SIM) microscope (Elyra S.1 [Carl Zeiss], Plan-Apochromat 63x/1.4 NA 

objective lens, EM-CCD camera [iXon 885; Andor Technology], and ZEN Blue 2010D software 

[Carl Zeiss]). Processing was performed with Zen software [Carl Zeiss]. For Fig. 6C, microscopy 

was carried out on fluorescence stereomicroscope (Leica MZ FL III, PlanApo 2x/0.07 NA, Leica 

DFC350 FX camera 0.63x lens, and Imagic ims Client V14Q4_p3 software).  

For yeast experiments (Fig. S2B and C), cells were cultured overnight at 30°C in a synthetic 

medium containing 2% raffinose, 0.1% glucose and lacking leucine to prevent the loss of the 

plasmid. The next day cultures were diluted in the same medium containing raffinose only, and 

were imaged when cells reached a concentration of 0.2-0.4 x107 cells/ml. Live yeast cells were 

mounted on pad of agarose (1.4%) containing raffinose or galactose for imaging. 

Multiple sequence alignment  

CEC-4 and H. sapiens CBX protein sequences were aligned with ClustalW (www.ebi.ac.uk), and 

visualized by Jalview (Waterhouse et al., 2009). 

Recombinant protein purification 

The CEC-4 CD (aa 25-141) and CEC-4 cd-2YA (aa 25-141, Y87A-Y111A) constructs were 

cloned into pOPINF vector using the In-Fusion system (Clontech) (Berrow et al., 2007), proteins 

were expressed in the E. coli strain BL21 Rosetta pLysS and affinity purified through the His tag 

binding to ProBond Ni-NTA resin (Invitrogen) according to manufacturer’s instructions. For ITC 

experiments His tag was removed by HRV 3C protease digestion (Novagen) and proteins were 
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further purified by gel filtration on a HiLoad 16/60 Superdex 75 column in 20 mM Tris pH 7.5, 

200 mM NaCl, 0.02% NaN3 and 1 mM TCEP. Purity was confirmed by SDS–PAGE and 

Coomassie blue staining. Protein concentration was measured by UV absorbance (280 nm). 

Binding Assay SulfoLink 

H3K9me0 and H3K9me3 peptides (aa 1-20 + Cys) (gift from A. Peters, Friedrich Miescher 

Institute for Biomedical Research, Basel, Switzerland) were reduced and coupled to SulfoLink 

beads (Thermo scientific) according to manufacturer’s instructions. 25µM of recombinant His 

tagged CEC-4 CD and CEC-4 cd-2YA were incubated with the peptide-beads slurry (7µM 

peptide concentration) for 2 h at 4ºC on a rotator. After washing three times with 20mM Tris-

HCl pH 7.5, 0.2M NaCl and 0.05% Triton X-100 for 1min-5min-1min, respectively, bound 

proteins were released from the beads, run on an SDS-PAGE gel, and stained by SYPRO® 

Ruby. 

Peptide array library and AlphaScreen direct binding 

AlphaScreen direct binding assays were performed in 384-well plate (ProxiPlateTM-384 Plus, 

Perkin Elmer) with AlphaScreen Histidine Detection kit (Nickel Chelate, PerkinElmer 

#6760619) in optimized assay buffer (25mM   HEPES, 100mM NaCl, 0.1% BSA, 0.05% 

Tween20, pH=7.5). The binding of CEC-4 CD to histone peptides was performed by 

AlphaScreen assay with ALTA Biosciences peptide array system (Alta Biosciences, UK). Three 

different peptide concentrations (62.5, 125 and 250nM) were used to screen histone peptides 

binding to CEC-4 CD (200nM). Quantitation was based on the intensity readout. The peptides 

with an intensity of 50-fold more than the control (assay condition without protein) were 

considered as hits. Table S4 shows raw data generated from AlphaScreen. 
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AlphaScreen direct binding was further used for confirmation of methylated H3K9 binding to 

CEC-4 CD. 3µl of 2-fold serial dilutions of N-terminal biotinylated histone H31-21K9 peptides, 

final concentration 0.5-500nM, were plated in a 384-well plate followed by adding 3µl of N-

terminal His-tagged CEC-4 CD (final 200nM). After incubation at room temperature for 1 hour, 

3µl of streptavidin-coated donor beads (20ug/ml) and 3µl of nickel chelate acceptor beads 

(20ug/ml) were then added under low light conditions. The plates were sealed and incubated at 

room temperature for 1 h, then read on an EnVision multilabel Plate Reader (Perkin Elmer). 

Peptide displacement assay 

IC50 (half maximal inhibitory concentration) for H3K9 peptides to CEC-4 CD were measured 

by AlphaScreen peptide displacement assay and done in duplicate. 2-fold series dilution of non-

biotinylated H3K9 peptides starting from 100μM were used for competing with the binding of 

biotin-H3K9me2 (50nM) to CEC-4 CD (25nM). After incubation at room temperature for 1 

hour, streptavidin-coated donor beads (20ug/ml) and nickel chelate acceptor beads (20ug/ml) 

were then added under low light conditions. The plate was then read on the EnVision using the 

AlphaScreen protocol after 1 hour incubation. 

Isothermal Titration Calorimetry (ITC) 

ITC was carried out on a MicroCal iTC200 calorimeter (GE Healthcare) at 25°C in 20 mM Tris-

HCl pH7.5, 100 mM NaCl. 30 μM recombinant-cleaved CEC-4 CD and CEC-4 cd-2YA proteins 

were loaded into sample cell, 450µM histone H31-21K9 or H328-48K37 peptide solution was 

sequentially injected into sample cell; with exception of 800µM for H328-48K37me3 . 

Thermodynamic parameters N (stoichiometry), Ka (association constant), ΔH (enthalpic change) 

and ΔS (entropy change) were obtained by nonlinear least-square fitting using Origin software. 

ITC experiments were performed twice. 
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LEM-2 Chromatin Immuno-precipitation followed by deep sequ encing (ChIP-seq) 

Wild-type, met-2 set-25 and cec-4 mutant strains were grown in parallel and in two independent 

biological replicas. For each strain, 400,000 L1 worms were grown synchronously in 500 ml S-

medium containing HB101 E. coli strain, as food source, under continuous agitation (180 rpm) at 

20ºC until gravid adults with early embryos were observed (between 60-65 hours depending on 

strain). Embryonic progeny was harvested using hypochlorite treatment. Embryos were cross-

linked with 2.16% formaldehyde in M9 buffer for 30 minutes at room temperature, washed twice 

with M9 and once with FA buffer (50mM HEPES-KOH pH7.5, 1mM EDTA, 1% Triton X-100, 

0.1% sodium deoxycholate, 150mM NaCl). LEM-2 ChIP was performed as described (Ikegami 

et al., 2010) with anti-LEM-2 (Novus Biologicals #48540002).  Libraries were prepared from 

chromatin IP (1.7 -7.4 ng) and input (10 ng) samples using the NEBNext ultra DNA library prep 

kit for Illumina (NEB # 7370) and the NEBNext Multiplex Oligos for Illumina (NEB # E7335), 

according to the manufacturer’s recommendations. No size selection was performed during 

sample preparation and the libraries were indexed and amplified using 15 PCR cycles, using the 

recommended conditions. After a final cleanup with Agencourt AmPure XP beads (Beckman # 

A63881), the library size distribution and concentrations were determined using a BioAnalyzer 

2100 (Agilent technologies) and Qubit (Invitrogen) instrument, respectively. The final pools 

were prepared by mixing equimolar amounts of all individually indexed libraries and then 

sequenced on a HiSeq 2500 (Illumina) in Rapid mode (Paired-End 50). Processing of the LEM-2 

ChIP-seq data, all paired-end ChIP-seq data (2x50bp) were mapped to the C. elegans genome 

(ce6) with the R package QuasR (Gaidatzis et al., 2015) 

(http://www.bioconductor.org/packages/3.1/bioc/html/QuasR.html) using the included aligner 

bowtie (Langmead et al., 2009) allowing only for uniquely mapping read pairs. The command 
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used to do the alignments was "proj<- qAlign("samples.txt","BSgenome.Celegans.UCSC.ce6")" 

which instructs bowtie to align using the parameters "--fr -m 1 --best --strata --maxins 500 --

phred33-quals". Read density along the genome was calculated by tiling the genome into 200kb 

windows (non-overlapping) and counting the number of sequence fragments within each 

window. The command used to create the window count table was 

qCount(proj,regions,useRead="first"). This instructs QuasR to position each read at the middle 

of its respective fragment (determined by the two reads) and to only consider the first read (on 

any strand) for quantitation in order to avoid double counting. To compensate for differences in 

the read depths of the various libraries, we divided each sample by the total number of mapped 

reads and multiplied by the average library size. Log2 expression levels were calculated after 

adding a pseudocount of 1 (y=log2(x+1)). Finally, ChIP-seq signals are displayed as z-scores of 

IP – input. 

RNA followed by deep sequencing (RNA-seq) 

Wild-type, met-2 set-25, cec-4 mutant strains were grown in two independent biological replicas. 

For each strain, 100,000 - 200,000 L1 worms were grown synchronously in 250 ml S-medium 

containing HB101 E. coli strain under continuous agitation (180 rpm) at 20ºC until gravid adults 

with early embryos were observed (between 60-65 hours depending on strain). Embryonic 

progeny was harvested using hypochlorite treatment, re-suspended in 500µl Trizol® and snap-

freeze in liquid nitrogen. Extraction of RNA was performed according to the WormBook 

protocol (Stiernagle, 2006). Total RNA was purified using RNeasy kit (QIAGEN 74104) 

including DNase treatment. Depletion of ribosomal RNA was done for 5 µg of total RNA with 

Ribo-Zero™ Margnetic Gold Kit (Epicentre MRGZG12324) and further concentrated with RNA 

Clean & Concentrator™ kit (Zymo Research R1015) according to corresponding manufacturer’s 
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instructions. From the depleted RNA 50ng were used for library preparation with the ScriptSeq 

v2 RNA-seq Library preparation kit (Epicentre). Equimolar pools of 3 samples were created and 

loaded on an Illumina HiSeq v3 flowcell using a cBot. Sequencing was performed on a HiSeq 

2500 sequencer for 51 cycles running RTA 1.17.21.3. Samples were demultiplexed and FastQ 

files were generated using blc2fastq-1.8.4. Processing of the RNA-seq data, gene expression 

levels from RNA-seq data were quantified as described previously (Hendriks et al., 2014) using 

WormBase (WS190) annotation for coding transcripts and in windows of 500bp (unstranded) for 

the whole genome, in order to track non-genic changes.  

Real-Time Quantitative PCR (RT-qPCR) 

For gene expression levels in Fig. 5F same initial RNA extracts were used as for RNA-seq with 

addition of parallel grown and extracted cultures of met-2 and set-25 single mutant strains. For 

Fig. 6B three independent replicas of mixed stage embryo extracts were collected as described 

below in the Heat-shock induced muscle differentiation section. For Fig. S5C five independent 

early embryo extracts were used:  starting from 25, 000 synchronized L1 worms of wild-type and 

cec-4 mutant grown on peptone-rich (PR) plates with OP50 E.coli for 60-65 hours until gravid 

adults with early embryos were observed; RNA extraction was performed by 4 rounds of freeze 

cracking, treat with chloroform and transfer aqueous phase to Direct-zol™ column and follow 

manufacturer’s instructions (30 minutes DNase I digestion included). For all RNA extracts 

cDNA synthesis was done with SuperScript® III First-Strand Synthesis System (Thermo Fisher 

Scientific 18080-051) according to manufacturer’s instructions, starting from 1-2 µg of total 

RNA and using (dT)20 oligos; RNase H treatment was included.   

LEM-2 ChIP qPCR samples of corresponding genotypes were produced as described above for 

LEM-2 Chromatin Immuno-precipitation followed by deep sequencing.  
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All RT-qPCR reactions were done in 10µl volume, using diluted cDNA to 500ng or total volume 

of ChIPed and Input (10% of total material used) samples, with SYBR® Green PCR Master Mix 

(Life technologies 4309155) for Fig. 6B and 5F mRNA or GoTaq® Green Master Mix (Promega 

M712) for Fig. 5E and S5C according to manufacturer’s instructions. Gene-specific primers (see 

Table S5) were used in 300nM concentration. StepOnePlus™ System (Life technologies 

4376600) was used for qPCR run and data collection. Further analysis was done in Microsoft 

Excel.  

All primer pairs were tested and selected for amplification efficiencies ranging from 90-100%, 

except for unc-98 with 83%, C18D6.4 with 73% and myo-3 with 68%. For gene expression 

analysis ΔΔCT method was used, pmp-3 carried as housekeeping gene for sample normalization. 

For ChIP-qPCR ChIP sample data was normalized to corresponding input chromatin (reported as 

percentage input on figures).  

Heat-shock induced muscle differentiation  

Except for Fig. 6B, two cell stage embryos were isolated from transgenic gravid adults 

containing heat-shock (HS) expression construct gvIs[hsp-16.2::hlh-1 rol6(su1006)]  and gwIs4 

[baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] or [nhx-2p::npp-9::BLRP:GFP:3xHA-unc-54 

3'UTR] and different genetic backgrounds as stated in each figure; in Fig. 6C an extra cec-4 

mutant alone was carried as control for HS induction. Isolated embryos were incubated for 300 

min at 22.5°C, either directly on agarose slides or in liquid inside humid chamber. All working 

genotypes reach embryonic bean stage after this incubation period. Embryos were shifted to 

34°C for 10 min in a thermal cycler with a In-Situ slide block. Recovery from HS induction was 

done at 22.5°C in humid chamber and assessment of hatched larva-like worms was done in 

between 18 to 24 h after HS. Images were taken on stereomicroscope and/or spinning disk 
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confocal microscope, as appropriate. As controls for myogenic conversion we observed 

twitching and fluorescent reporter myo-3p::RFP bared in gwIs4 array. For Fig. 6B, synchronized 

L1 worms of corresponding genotypes were plated on PR-plates with OP50 bacteria, and 

incubated for 2 days at 22.5°C until gravid adulthood. Embryonic progeny was harvested using 

hypochlorite treatment. Mixed stage embryos were split into three 1.5ml tubes with equal 

volumes: one tube was re-suspended in 500µl Trizol® and snap-frozen in liquid nitrogen (before 

HS condition), the rest were heat-shocked in a thermal cycler for 10 min at 34°C. They recovered 

at room temperature, one tube for 40 min (40’ after HS) and second tube 24 h (24h after HS). 

Both tubes were re-suspended in Trizol® and snap-frozen like the “before HS” sample. 
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Supplemental Tables:  

Table S2. List of yeast strains. Related to Experimental Procedures 

Strain Background Genotype Reference 

GA-1340 W303 can1-100 mlp1::URA3 mlp2::HIS3 
esc1::KanMx4 

(Andrulis et al., 
2002) 

GA-1469 W303 mlp1::TRP1 (Hediger et al., 2002) 

GA-1470 W303 mlp2::HIS3 (Hediger et al., 2002) 

GA-1526 W303 mlp1::TRP1, mlp2::HIS3 (Hediger et al., 2002) 

GA-1981 W303 MATa/MATα, leu2-3,112/leu2-3,112, 
his3-11,15/his3-11,15, trp1-1/trp1-1, 
can1-100/can1-100, ade2-1/ade2-1, 
ura3-1/ura3-1 = W303 diploid 

(Thomas and 
Rothstein, 1989) 

GA-2470 W303 nup133::HIS3 (Bucci and Wente, 
1998) 

GA-3628 W303 can1-100 NUP49::CFP-NUP49 URA3  (Taddei et al., 2009) 

GA-4887 W303 mps3::mps3 delta75-150KanMx6 
tel1::URA 

(Schober et al., 2009) 

GA-5306 W303 can1-100 nup84::His3 (Nagai et al., 2008) 

GA-5307 W303 can1-100 nup120::His3 (Nagai et al., 2008) 

GA-5545 W303 src1::hygro NUP49-GFP (Ferreira et al., 2011) 

GA-5670 W303 mlp1::URA3 mlp2::HIS3 
siz2::cloNAT 

(Ferreira et al., 2011) 
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Table S5. RT-qPCR primer pairs used in this study. Related to Figs. 5 and 6 

Target Sequence 
srw-85 F 
srw-85 R 
C18D6.4 F 
C18D6.4 R 
pmp-3 F 
pmp-3 R 
genomic srw-85 F 
genomic srw-85 R 
genomic C18D6.4 F 
genomic C18D6.4 R 
hlh-1 F 
hlh-1 R 
myo-3 F 
myo-3 R 
F21D9.4 F 

GCGTGTCCCGAAATAAAGTC 
GATCTTCAAGTCTCGAATGCAG 
TACAGTGCTCATCAACTTGCC 
GCAATAAGAAGAGCATCTTCAAGG 
GTTCCCGTGTTCATCACTCAT 
ACACCGTCGAGAAGCTGTAGA 
GTGAGATGTGCCTGAGGAGT 
CCTACCGCTATCCATTCACG 
CGGGCTCTGGATGAGGTAAT 
TGCTATTGGCGGGAGGCTTA 
CAAAGAACGTGTCCGAATCC 
TGAGAGGAAGTCACATAATCGT 
AGACAGGTTGAGGAGGCTGA 
TCTGATAAGCGCACTGGATG 
CAGAGTATACTACAAAGGACTGGAG 

F21D9.4 R AGCCGATTGAGGTTGATGAC 
C25F9.5 F 
C25F9.5 R 

TTTCATCACACGAGATGAGATGG 
GTATACGTAGGTAGCAAGTCCTG 

Y43F8A.5 F TTAATGATCCTCAACATGCGCT 
Y43F8A.5 R 
unc-98 F 

GAGGTGCTATCCGTAAGTGTG 
TCCAGATACAACAATGGATGACGA 

unc-98 R TGAGCACTTGAACTTCCGACA 
unc-45 F 
unc-45 R 
pal-1 F 
pal-1 F 

GCTGATGAATTATACACTGAAGC 
GAGCCTCTTTTGCGTCTTGA 
GGAAGTAGCAGTAGTGATAGTGG 
GAATCCCTGAAACTGTTGATAATCC 
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Table S6. Depletion of nuclear envelope components to address CEC-4-mCherry perinuclear 
localization in worms. Referred in text section “CEC-4 is intrinsically localized at the nuclear 
periphery” 

RNAi of NE related gene CEC-4-mCh localization 
anc-1 Perinuclear ring 
baf-1 Perinuclear ring 
emr-1 Perinuclear ring 
lem-2 Perinuclear ring 
lmn-1 Perinuclear ring 
sun-1 Perinuclear ring 
unc-83 Perinuclear ring 
unc-84 Perinuclear ring 
zyg-12 Perinuclear ring 

 

 

Table S7. Yeast mutations in nuclear envelope components used to address CEC-4-mCherry 
perinuclear localization in yeast. Referred in text section “CEC-4 is intrinsically localized at the 
nuclear periphery”  

Mutation Tested CEC-4-mCh localization 
mlp1 mlp2 esc1 Perinuclear ring 
mlp1 Perinuclear ring 
mlp2 Perinuclear ring 
mlp1 mlp2 Perinuclear ring 
mlp1 mlp2 siz2 Perinuclear ring 
nup133 Perinuclear ring 
mps3::mps3 delta75-150 tel1 Perinuclear ring 
nup84 Perinuclear ring 
nup120 Perinuclear ring 
src1 Perinuclear ring 
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Summary 
This chapter presents my main project as a PhD student in the Gasser laboratory. In the following study, 

we show that cellular levels of histones drop 20–40% in response to DNA damage. Histones were 

degraded by the proteasomes which was dependent on both both the DNA damage checkpoint and the 

INO80 nucleosome remodeler. We confirmed reductions in histone levels by stable isotope labeling of 

amino acids in cell culture (SILAC)-based mass spectrometry, genome-wide nucleosome mapping and 

fluorescence microscopy. Chromatin compaction and increased fiber flexibility accompanied histone 

degradation, both in response to DNA damage and after artificial reduction of histone levels. As a result, 

recombination rates and DNA-repair focus turnover were enhanced. We propose that a generalized 

reduction in nucleosome occupancy is an integral part of the DNA damage response in yeast that  provides 

mechanisms for enhanced chromatin mobility and homology search. 

  



114 Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 

 

A R T I C L E S

NATURE STRUCTURAL & MOLECULAR BIOLOGY VOLUME 24 NUMBER 2 FEBRUARY 2017 99

The genomic DNA of eukaryotes is highly organized and packed into 
chromatin. The most basic unit of chromatin is the nucleosome, which 
is formed by 146 bp of DNA that wrap around an octameric core of 
histone proteins. Chromatin remodelers use the energy from ATP 
hydrolysis to change the local state of chromatin by sliding/spacing or 
ejecting nucleosomes. These actions regulate gene transcription1, repli-
cation2, chromatin structure and DNA repair genome-wide3,4. Cellular 
genomes are constantly exposed to different sources of DNA damage, 
requiring the repair machinery to both disrupt and restore chroma-
tin structure5. Heterochromatic chromatin tends to obstruct protein 
access to repair sites. Moreover, DNA double-strand breaks (DSBs) 
found in heterochromatin relocate to the edge of such domains6–8,  
a phenomenon that requires a certain degree of physical mobility.

In budding yeast and human cells exposed to DNA damage, an 
increase in chromatin mobility has been observed both at lesions9–11  
and at undamaged sites where no DSBs could be detected10,12. The chro-
matin remodeler INO80-C and activation of the DNA damage check-
point (DDC) were implicated in both processes9,10,12. Functionally, 
enhanced local DSB mobility was shown to be correlated with efficient  
repair by homologous recombination9. Modeling algorithms 
(A.A., A.S., S.M.G. and D.H., unpublished observations) suggest 
that mobility could enhance the search for the donor sequence 
required for homology-based repair, and elevated chromatin mobil-
ity was shown to result in genomic translocations in human cells11. 
However, the mechanisms that underlie enhanced chromatin mobility  
have remained elusive. Here we show that nucleosome degradation 

triggered by remodelers and checkpoint proteins enhances chromatin 
movement and accessibility, and promotes efficient repair.

RESULTS
DNA damage triggers extensive histone loss from chromatin
To investigate whether DNA damage and DDC activation affect 
chromatin structure and/or composition genome-wide, we used 
quantitative SILAC mass spectrometry in Saccharomyces cerevisiae 
and measured histone abundance before and after acute treatment  
(1 h) with the radiomimetic drug Zeocin. Relative ratios of nonmodi-
fied histone peptides (damage versus control, unlabeled (‘light’ (L)) 
versus labeled (‘heavy” (H)) peptides) indicated a substantial loss of 
20% o 6% of the core histones H2A, H2B, H3 and H4 (Fig. 1a and 
Supplementary Fig. 1). Interestingly, levels of the histone variant 
Htz1 (H2A.Z) remained rather stable. Quantitative immunoblot ana-
lysis confirmed our observations and showed robust DDC activation 
(GH2A signal, Rad53 upshift) along with a dose-dependent relation-
ship between histone H3/H4 loss and Zeocin treatment (Fig. 1b). 
We observed the same effect when we used another source of DNA 
damage, ionizing radiation (G-IR) (Supplementary Fig. 2a–d).

Despite being highly quantitative for protein abundance, mass spec-
trometry data do not distinguish between histone pools and nucleo-
somes, and they lack positional information. To investigate whether 
entire nucleosomes were lost globally after DNA damage or at spe-
cific genomic loci, we carried out genome-wide nucleosome mapping.  
We found that the positioning of nucleosomes around the promoters  
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enhances chromatin dynamics and recombination rates
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Mariya Kryzhanovska1, Jan Eglinger1, David Holcman4, Tom Owen-Hughes3 & Susan M Gasser1,2

Nucleosomes are essential for proper chromatin organization and the maintenance of genome integrity. Histones are post-
translationally modified and often evicted at sites of DNA breaks, facilitating the recruitment of repair factors. Whether such 
chromatin changes are localized or genome-wide is debated. Here we show that cellular levels of histones drop 20–40% in 
response to DNA damage. This histone loss occurs from chromatin, is proteasome-mediated and requires both the DNA damage 
checkpoint and the INO80 nucleosome remodeler. We confirmed reductions in histone levels by stable isotope labeling of 
amino acids in cell culture (SILAC)-based mass spectrometry, genome-wide nucleosome mapping and fluorescence microscopy. 
Chromatin decompaction and increased fiber flexibility accompanied histone degradation, both in response to DNA damage and 
after artificial reduction of histone levels. As a result, recombination rates and DNA-repair focus turnover were enhanced. Thus, 
we propose that a generalized reduction in nucleosome occupancy is an integral part of the DNA damage response in yeast that 
provides mechanisms for enhanced chromatin mobility and homology search. 
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of yeast genes changed little after damage induction (Fig. 1c). To 
assess global changes in nucleosome abundance, we implemented 
internal standardization by mixing defined numbers of Candida  
glabrata cells with the experimental S. cerevisiae cells before chromatin 
preparations1 3 . Normalization of the S. cerevisiae reads with respect 
to the C. glabrata reads showed a decrease in nucleosome occupancy 

both within promoters and across coding regions after Zeocin treat-
ment (Fig. 1c and Supplementary Table 1). This effect was just as 
strong on a subset of 750 low-expression genes (Fig. 1c) as it was 
on highly transcribed genes (Supplementary Fig. 2e), which sug-
gests that transcription is unlikely to regulate or drive the reduction.  
Finally, we found no preferential depletion in specific structural  
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Figure 1 DNA damage triggers a global loss of core histones from chromatin. (a) Damage-dependent global histone degradation quantified by SILAC-based 
mass spectrometry on chromatin fractions from two independent cells pools (for further information see Supplementary Fig. 1). Box plots (with median, 
interquartile ranges and Tukey whiskers) show light/heavy (L/H) histone peptide distribution, indicating the degradation of core histones and, to a lesser 
extent, Htz1 (H2A.Z). Zeo250, 250 Mg/ml Zeocin. (b) Right: representative immunoblot analysis using antibodies to H3 and H4 on whole cell extracts from 
asynchronous (asy.) wild-type cultures in response to Zeocin treatment. Rad53 and GH2A were probed to confirm checkpoint activation. MCM2 was used to 
control for loading; here the control (Ctr.) represents bands on the Ponceau-stained membrane. The asterisk indicates a phosphorylation-dependent Rad53 
mobility shift. Uncropped gel images are shown in Supplementary Data Set 1. Left: a schematic illustrating the experimental setup and a bar graph showing 
mean values and s.e.m. of immunoblot quantification of H3 and H4 blots from at least four independent experiments after Zeocin treatment, relative to 
the control condition. WB, western blotting. (c) Genome-wide nucleosome mapping. The scheme illustrates the effect of histone loss on nucleosome reads. 
Nucleosomal DNA fragments were sequenced from strain GA-6879 (wild type) grown in the absence (Ctr.) or presence of 500 Mg/ml Zeocin (Zeo500).  
The graphs show the distribution of nucleosome reads over all genes and over the 15% of genes with the lowest expression aligned to the transcription 
start site (TSS). Results are from four independent experiments (gray shading indicates os.d.). Norm., normalized. (d) Live single-cell microscopy of 
H2B-CFP and Htz1-mEos. Scale bar, 2 Mm. Graphs show the experimental outline and the mean fluorescent signals and s.e.m. of individual cells (cell 
numbers indicated) per treatment over time relative to the control condition. The dashed lines in the graphs indicate the beginning and the end of Zeocin 
treatment. Source data are available online.
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elements such as centromeres or telomeres, in agreement with the 
idea that the effect is widespread.

To determine the kinetics of histone reduction, we used time-lapse 
live-cell tracking of functional fluorescently labeled ectopic histone 
H2B (H2B-CFP) or control Htz1-mEos, along with Nup49-GFP,  
which labels the nuclear rim (Fig. 1d, Supplementary Fig. 2g and 

Supplementary Video 1). We used microfluidic chambers to trap 
cells and pulse-treated the cells for 1 h with Zeocin, which gene-
rated roughly 4–7 DSBs per genome14. Histone H2B degradation  
(20% o 1.7% compared with undamaged cells) occurred within 30 min  
of Zeocin exposure. We did not observe differential loss of either 
Nup49-GFP (Supplementary Fig. 2f) or the Htz1-mEos control after 
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Figure 2 Histones are degraded by the proteasome. (a) Left: scheme illustrating the experimental setup. (a,b) Immunoblot analyses and quantification 
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the experimental protocol. (c) Immunoblot analysis and quantification showing H4 levels in response to Zeocin treatment in wild-type and 26S 
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degradation. Rad53 and GH2A were probed to confirm checkpoint activation. Actin and control show loading; control represents bands on the original 
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MSD graph represents the mean o s.e.m. (gray shaded region) of cells pooled from three independent experiments. Box plot represents median values  
(black rectangles), interquartile ranges and Tukey whiskers. The dashed rectangle highlights the trend of medians and is not a statistical value). *P < 0.05, 
**P < 0.01, ***P < 0.001, unequal-variance t test (d) or Kolmogorov–Smirnov test (b); NS, not significant. See Supplementary Data Set 2 for mobility 
parameters and numbers of cells analyzed.
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DNA damage, which suggests that the induced histone degradation 
targets only core histones (Fig. 1d). Combined with our mass spec-
trometry and immunoblotting data, these results suggest the rapid 
degradation of histones, rather than simple eviction from chromatin.  
Previously, Gunjan and colleagues15,16 showed that an excess of 
nonchromatin-bound histones is phosphorylated by the Rad53 
checkpoint kinase and subsequently ubiquitinated and subjected 
to proteasomal degradation. This prompted us to test whether the 
proteasome inhibitor MG132 or mutation of the 26S proteasome 
(pre1-1, pre2-2)17 would suppress the loss of histones from chroma-
tin. Consistent with proteasome involvement, both the inhibitor and 
the mutations in PRE1 and PRE2 genes suppressed the DNA-damage-
induced H3 or H4 degradation (Fig. 2). Moreover, by synchronizing 
cells in G1 phase before damage, we found that degradation occurred 
throughout the cell cycle (Supplementary Fig. 3).

We considered that the observed histone loss might be accentuated 
by impaired expression of histone genes, which are tightly regulated 
and show promoter-dependent upregulation in S phase. To elimi-
nate this confounding factor, we placed the H3 and H4 genes under  
the control of the galactose promoter in a strain in which both  
endogenous H3 and H4 copies were deleted (histone-shutdown 
strain; Supplementary Fig. 4a). With constitutive H3/H4 expression  
(growth in media with low amounts of galactose), we found the same 
depletion effect after exposure to Zeocin as was noted in cells with 
endogenous histone genes, in agreement with the idea that DNA  

damage induces active degradation of histones, and not simply a 
loss of new histone synthesis (Supplementary Fig. 4). The loss of  
histones was rapid and so substantial that by 1 h after treatment, 
every third nucleosome could be removed from DNA. It is therefore 
likely that higher-order chromatin structure changes in response to 
DNA damage.

Damaged chromatin increases mobility, decompaction and 
flexibility
The increase in chromatin movement after DNA damage has been 
well documented, although the mechanisms leading to enhanced 
mobility remain elusive12,18,19. To see whether histone loss might be at 
the root of this phenomenon, we examined the physical characteristics 
of yeast chromatin under the same conditions that triggered histone 
loss. Using improved imaging protocols, we monitored the volume 
of chromatin domains in three-dimensional (3D) space, the inherent 
flexibility of the nucleosome polymer and the physical movement of 
fluorescently tagged sites.

Previous studies in which chromatin mobility was quantified used low 
sampling rates during live-cell imaging ($t = 1.5 s) to determine the trajec-
tory of a moving locus and the area explored (radius of constraint)9–12,20.  
However, such low time-resolved data yield little information on chro-
matin fiber compaction or flexibility. To resolve this, we used a novel 
high-speed imaging technique (300-ms or 80-ms imaging intervals) 
with which we confirmed that increased chromatin mobility can be 
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monitored at a nondamaged site (MET10) in cells responding to wide-
spread DNA damage (Fig. 3a and Supplementary Fig. 5a). By applying 
an analysis based on polymer models to our high-speed imaging data 
(A.A., A.S., S.M.G. and D.H., unpublished), we estimated biophysical 
parameters that predict both the expansion of chromatin (reflected by 
an increase in the anomalous exponent A) and the loss of constraining 
forces that limit chromatin movement (as seen by a decrease in the 
spring constant KC) (Fig. 3b and Supplementary Fig. 5b).

To examine whether the 3D volume of a defined chromatin domain 
was altered in the nucleus, we used super-resolution microscopy cou-
pled with subsequent machine-learning and 3D pixel-classification 
analysis. Using this technique, we measured the change in volume 
of TetR-mCherry-tagged chromosomal loci (chromatin expansion) 
in cells fixed 30 min after exposure to different amounts of Zeocin  
(Fig. 3c). Indeed, we scored a dose-dependent decompaction of  
S-phase chromatin: 3D TetR-mCherry foci volumes expanded with 
increased amounts of damage (Fig. 3d).

The second prediction from the polymer modeling of locus dynamics 
was that the flexibility of the chromatin fiber would be enhanced after 
DNA damage. Thus, we monitored chromatin flexibility with confo-
cal microscopy and measured the 3D distances between two differen-
tially labeled genomic loci positioned on the same chromosome arm. 
We used two independent sets of loci spaced at genomic distances of 
either 320 kb on chromosome 14 or 50 kb on chromosome 3. For the 
first set, we synchronized cells, fixed them before or after Zeocin treat-
ment and then calculated the average of all distances measured between 
the lacI-GFP and TetR-mRFP fluorescently tagged loci (Fig. 4a).  
We found that after DNA damage, the average interspot distance 
increased substantially in both G1-phase (0.97–1.2 Mm) and S-phase 
(0.99–1.12 Mm) cells. For the second set of data, we took a similar 
approach, but we measured the distance between CFP-lacI-tagged and 
TetR-mRFP-tagged foci on chromosome 3 in real time (Supplementary 
Video 2). In all cases we included Rad52-GFP and ensured that there 
was no overlap of Rad52-GFP with either of the other two fluorescent 
signals, thus ensuring that the measured changes did not arise from 
effects linked to local DNA repair events. Analysis of changes in rela-
tive mean squared distance and of the average of all measured distances 
revealed a robust increase in interspot dynamics and distances after 
Zeocin treatment (Fig. 4b). These data are consistent with a model in 
which damage-triggered histone degradation reduces the amount of 
nucleosome-mediated compaction within the chromatin fiber, causing 
chromatin to expand. The enhanced physical dynamics would thus be 
a reflection of increased flexibility.

Histone abundance dictates chromatin movement and 
decompaction
To confirm that increased chromatin mobility and decompaction arise 
as a consequence of histone loss, we made use of a histone-shutdown 
yeast strain that expresses H3 and H4 under the control of the GAL1-
GAL10 (GAL1-10) promoter, which is susceptible to media-controlled 
repression as well as induction (Fig. 5a). After 1 h in galactose, we 
released A-factor-arrested cells bearing this shutdown construct into 
raffinose-containing medium. Depending on the concentration of 
raffinose, we observed reduced GAL1-10-driven expression, which 
reduced histone levels in a controlled manner by 39% within an hour 
(Supplementary Fig. 6a,b). This artificial reduction of histones did 
not cause DDC activation, even when levels were reduced extensively 
(Supplementary Fig. 6b). By using the appropriate galactose:raffinose  
mixture, however, we were able to reduce histone levels in a controlled  
manner, even in the absence of damage (Fig. 5b). This reduction  
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Figure 5 Artificial histone reduction in the absence of damage triggers 
chromatin expansion and increased motion. (a) Schematic showing a 
method for reducing H3 and H4 levels via transcriptional inhibition by 
releasing cells into media containing raffinose. A plasmid-borne construct  
in which the GAL1-10 promoter drives the only pair of histone H3/H4  
genes was used in the shutdown (SD) strain, whereas a plasmid carrying  
the wild-type HHT1-HHF1 locus was used in the control strain.  
(b) Quantified immunoblot data showing histone H4 loss at different time 
points after H3/H4 shutdown in raffinose medium, from one experiment 
(Supplementary Fig. 6). (c) Box plots and cumulative-density graph  
showing volume distributions of data derived from 3D structured 
illumination microscopy (SIM) on multiple single cells (n values in graph) 
from two different cultures with tagged MGS1 loci after controlled histone 
H3/H4 shutdown. Data are presented relative to the control condition 
(hatched yellow box plot). The lower and upper horizontal dashed lines in 
the cumulative-density graph indicate 0% and 100%, respectively. Box 
plots  represent median values, interquartile ranges and Tukey whiskers. 
***P < 0.001; NS, not significant; results from unequal-variances t tests.  
(d) MSD analysis of the MGS1 locus in response to controlled histone- 
level reductions. The graph on the right shows enhanced chromatin 
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after H3/H4 repression in raffinose-containing medium (nSD (Raff) = 30, 
nControl (Gal) = 97 different cells from three independent experiments).  
Both MSD graphs show the mean o s.e.m. (gray shading) of cells pooled 
from at least three different experiments. See Supplementary  
Data Set 2 for mobility parameters and numbers of cells analyzed.  
Source data are available online.
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provoked both chromatin decompaction (Fig. 5c) and a striking 
increase in chromatin mobility, measured at the MGS1 locus after 1 
h on the defined medium (Fig. 5d).

To further validate these findings, we made use of a mutant bear-
ing deletions of two high-mobility group protein 1 (HMGB1) gene 

orthologs, NHP6A and NHP6B (nhp6a$nhp6b$, for simplicity referred 
to here as nhp6$), that was previously described as having reduced 
levels of core histone proteins21 (Fig. 6a). We observed that nhp6$ 
did not trigger endogenous damage checkpoints and showed neither 
an altered flow cytometry distribution (Fig. 6b) nor Rad53 activation 
(Supplementary Fig. 7a), yet by tracking chromatin mobility with 
the high-speed imaging regime we found that the mobility of two 
labeled foci, MET10 and PES4, was markedly enhanced in nhp6$ cells 
(Fig. 6c,d and Supplementary Fig. 7b). High-resolution time-lapse 
imaging of the GFP-LacI-tagged PES4 or the TetR-mCherry-tagged 
MET10 locus further confirmed an increase in chromatin flexibility, 
reflected in a decrease in the spring constant KC, and a positive trend 
in the anomalous exponent A (Fig. 6e and Supplementary Fig. 7c,d). 
Finally, using super-resolution microscopy we monitored an increase 
in the 3D volume of the TetR-mCherry-labeled MET10 locus in nhp6$ 
cells, which was more pronounced in an asynchronous culture, for 
unknown reasons (Fig. 6f). Combined with the effects observed in 
the histone-shutdown strain, these manipulations argue for a direct 
link between histone levels and chromatin movement.

Histone loss depends on checkpoints and INO80-C and 
modulates recombination efficiency
DNA damage activates the central DDC kinase Mec1 (ATR), which ini-
tiates a widespread phosphorylation cascade leading to a global dam-
age response and cell-cycle arrest. Additionally, repair proteins such as 
Mre11, Exo1, Rad51 and Rad52 act locally on DNA to mediate resection  
and preparation for either repair by homologous recombination or 
end-joining. Among Mec1 targets are the downstream effector kinase 
Rad53 (CHK2)22 and multiple subunits of the INO80-C remodeler23,24. 
Because both INO80-C and DDC proteins have been implicated in a 
general increase in chromatin mobility in response to DNA damage12, 
we hypothesized that these factors might also regulate histone loss, 
which we have shown can trigger enhanced chromatin mobility.

Using immunoblotting, we found that in strains lacking checkpoint 
kinase Mec1 or Rad53, histone degradation after Zeocin treatment was 
completely abolished (Fig. 7a,b). More strikingly, the same depend-
ency was observed for three strains with deletion of Arp8, Ies4 or Arp5, 
respectively, INO80-C subunits that do not contribute to the DDC 
but are required for nucleosome remodeling (Fig. 7a,b). Importantly, 
histone loss occurred independently of Rad51 and Exo1, which shows 
that local repair events are not necessary for the DDC-triggered 
degradation of histones. We further confirmed this with two other 
assays: H2B-CFP fluorescence monitoring over time (Fig. 7c) and  
super-resolution microscopy of tagged locus 3D volumes (Fig. 7d).  
In all cases we found that histone loss and chromatin expansion required 
the Mec1-mediated checkpoint and intact INO80-C: no histone loss 
or chromatin expansion was seen in mec1$sml1$, rad53$ or arp8$ 
strains, whereas cells bearing sml1$ (a control for the mec1$sml1$) 
and rad51$ behaved like their wild-type counterparts in response  
to damage (Fig. 7c,d).

The main role of the DDC kinase Mec1 is to trigger a cell-wide stress 
response that helps the cell cope with DNA damage. This seems to be, 
at least in part, mediated by the remodeler INO80-C23,24. The impor-
tance of chromatin remodeling in histone degradation is not entirely 
surprising, given that INO80 was recently shown to interact with 
CDC48, an AAA+ ATPase involved in proteasome-dependent protein 
degradation25. Moreover, both MEC1 and INO80-C are linked to RNA 
polymerase II eviction at sites of replication fork–transcription colli-
sion24. Thus, these genetic dependencies further validate our hypothesis 
that histone degradation and chromatin expansion are the key phenom-
ena underlying damage-enhanced chromatin movement (Fig. 7e). Our 
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Figure 6 Loss of high-mobility-group proteins NHP6A and NHP6B links 
reduced nucleosome occupancy to chromatin expansion and enhanced 
mobility. (a) Cells carrying deletions of both NHP6A and NHP6B (nhp6$) 
have fewer nucleosomes on DNA than wild-type cells. (b) Immunoblot 
quantification from three experiments confirmed reduced histone levels 
in nhp6$ cells, and flow cytometry analysis showed similar cell-cycle 
profiles for wild-type and nhp6$ cells. (c,d) MSD graphs derived from 
high-speed live cell imaging data of nhp6$ cells, highlighting enhanced 
chromatin mobility at two independent genomic loci, MET10 (c) and 
PES4 (d) (nMET10,WT = 31, nMET10,nhp6$ = 47, nPES4,WT = 35, nPES4,nhp6$ 
= 57 different cells from three independent experiments). (e) Graphs 
showing the means (colored dots) and whiskers (os.d.) of biophysical 
parameters derived from imaging data, predicting concurrent loss of 
constraining forces on chromatin. Color-coded as in b. (f) Box plots 
showing MET10 (TetR-mCherry) foci volumes resulting from 3D-SIM 
microscopy in multiple asynchronous (asy.) G1-phase or S-phase nhp6$ 
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indicating chromatin expansion in nhp6$ cells. Color-coded as in b.  
All bar graphs and MSD graphs (cells pooled from at least three 
independent experiments) represent the mean o s.e.m. Box plots in  
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unequal-variances t tests (f). See Supplementary Data Set 2 for mobility 
parameters and numbers of cells analyzed. NS, not significant.
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data further suggest that a failure to degrade histones might impair 
repair proteins’ access to chromatin, providing an additional explana-
tion for previously observed repair deficiencies in these mutants26,27.

To examine the functional relevance of the observed DNA-damage-
triggered reduction in nucleosome occupancy, and to test the hypothesis  
that nucleosome reduction facilitates homologous recombination and 
thus DNA repair, we made use of a recombination assay that monitors 
the integration rates of two different URA3  cassettes (800-bp homo-
logy or 82-bp homology) at two independent loci (MGS1  and URA3 ). 
In otherwise isogenic haploid strains, we impaired INO80-C activity 
by disrupting its nucleosome-binding subunit Arp8 (arp8 $) or we 
deleted both NHP6  genes, to reduce nucleosome levels genome-wide21.  
Consistent with previously reported recombination defects in arp8 $ 
strains26,27, we observed reduced recombination rates in this mutant, 

whereas rates were significantly increased in the nhp6 $ strain (Fig. 8a). 
Interestingly, Liang et al.16 showed that deletion of the histone H3-H4 
copy-2 genes (HHT2  and HHF2 ) can confer resistance to DNA-dam-
aging agents and restore the viability of DDC mutants under stress 
conditions. Thus, we hypothesized that artificially lowering histone 
levels by removing NHP6 might rescue arp8 $ sensitivity and even 
increase the fitness of wild-type cells under damaging conditions. 
Using a recovery assay that scores cell survival after a 1-h treatment  
with increasing amounts of Zeocin, we found that nhp6 $ cells recov-
ered better from acute DNA damage than a wild-type strain did,  
and that reducing nucleosome occupancy by deleting NHP6  partially 
rescued the Zeocin sensitivity of an arp8 $ strain (Fig. 8b).

The observation that increased recombination rates in nhp6 $ cells 
stemmed from changes in nucleosome occupancy prompted us to 
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test whether gene-targeting rates could also be increased by other 
approaches that reduce histone levels. Hence, we used the same 
recombination assay in our histone-shutdown strain and followed 
the integration of two different hygromycin-resistance markers at 
either ATG2  (ATG2 ::hygro) or MGS1  (MGS1 ::hygro). This was done 
immediately after a 2-h incubation in raffinose-containing medium 
(raffinose only or a defined 1:20 galactose:raffinose mixture), which 
reduces histone H3 and H4 levels (Fig. 8c). Consistent with the nhp6 $ 
experiment, we found that a reduction of histone levels by means of 
transcriptional repression significantly enhanced the integration rates 
of both ATG2 ::hygro and MGS1 ::hygro PCR products (Fig. 8d).

Finally, we used fluorescence microscopy to follow the kinetics of 
Rad52-GFP focus formation and dissolution during 16 h after a brief 
exposure to Zeocin. We found fewer Rad52 (BRCA2) foci in nhp6 $ 
cells than in wild-type cells (Supplementary Fig. 7e). Given that 
Rad52 accumulates at sites of damage and disappears once recom-
bination-mediated repair is completed28, this result suggests that a 
reduction in histone levels enhances the turnover of the recombina-
tion-mediated repair reaction.

DISCUSSION
In a robust combinatorial approach, we used quantitative mass 
spectrometry, fluorescent live-cell microscopy and genome-wide 
nucleosome mapping to show that core histone proteins—but not 
the histone variant Htz1—are degraded from yeast chromatin when 
the genome is challenged by DNA damage. This requires checkpoint 
activation and INO80-C function and is mediated through the protea-
some. Furthermore, reducing the levels of histones on DNA enhances 
chromatin mobility, decompaction and fiber flexibility. Proteins 
that function uniquely in recombination-mediated DNA repair (for  
example, Rad51 and Exo1) were not involved in histone loss, whereas 
the Mec1-target INO80-C, a chromatin remodeler implicated in effi-
cient repair, is. Other studies have postulated a release of chromosomal 
tethers around the centromere as the source of altered chromatin 
mobility20,29. This, however, cannot account for the observed expan-
sion of noncentromeric chromatin or for the observed dependence 
on INO80-C for these events. Furthermore, there is no evidence to 
date that centromeres delocalize in response to damage.

Although we cannot rule out that other mechanisms also contribute to 
nuclear or chromosomal motion, our data irrefutably demonstrate that  
a reduction in histone levels, even in the absence of DNA damage, is 

sufficient to decompact chromatin and enhance chromatin mobility. 
We suggest that histone degradation facilitates the search for donor 
sequences, an event required for DSB repair by homologous recombina-
tion with a nonsister template, and that chromatin decompaction might 
further enhance the access of DNA (both damage and template) to the 
repair machinery. However, mobility might also help disrupt improper 
pairing events during homologous recombination. Recombination 
assays indicate that a reduction in nucleosome occupancy brought 
about by NHP6  deletion or by means of transcriptional histone gene 
repression increases gene-targeting rates and enhances the turnover rate  
of repair processes. Although controlled histone loss might facilitate 
repair, its misregulation and the resulting effects on chromatin structure 
and dynamics are likely to promote oncogenic translocations that might 
drive tumorigenesis.

Taken together, our study identifies histone loss as a fairly immedi-
ate response to DDC activation and implicates remodeler-dependent 
histone degradation as a novel and integral part of the yeast DNA 
damage response. We demonstrate how changes in chromatin com-
position can affect the physical characteristics of chromatin, and we 
show that artificial histone-level reduction can be used to increase 
recombination efficiency. Understanding how the post-translational 
modification status of histones and the entire chromatin proteome 
changes after DNA damage will require further investigation. We 
speculate that gene-targeting rates in mammalian cells can also be 
improved through manipulation of histone occupancy.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the online 
version of the paper.
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ONLINE METHODS
Yeast growth, cell cycle arrests and flow cytometry. The yeast strains and plas-
mids used in this study are listed in Supplementary Tables 2 and 3. Yeast strains 
were all haploid and, except for the SILAC strain and the Htz1-mEos imaging con-
trol strain, were derived from the W303 background (Supplementary Table 2).  
Unless otherwise stated, yeast cultures were grown at 30 °C until logarithmic 
(log) growth phase (OD600 = 0.7; 1 × 107 cells/ml) before Zeocin (Invitrogen) or 
G-IR exposure at 30 °C. Live-cell microscopy was done at 25 °C. Flow cytometry 
samples were prepared as previously described30.

For controlled GAL1-10::H3/H4 expression experiments coupled with gene-
targeting assays, GA-8386 and the relevant control strain culture (GA-8385) 
were grown overnight to saturation in YP galactose/raffinose (YP Gal/Raff) 1:5 
medium. The next morning, cultures were inoculated in the same respective 
medium and grown until log growth phase (OD600 = 0.7; 1 × 107 cells/ml) before 
being subjected to pulsed histone-level reductions. After reaching log phase, cells 
were washed once, and pulsed H3 and H4 histone-level reductions were accom-
plished via growth in either prewarmed 30 °C YP Gal/Raff 1:20 or YP raffinose 
medium for 120 min before transformation with the respective gene-targeting 
selection cassettes. For further information about the gene-targeting assay, refer 
to the section “Ectopic recombination assays.”

For cell-cycle arrest and release experiments, 1.5 × 10−8 M alpha factor 
(Zymo Research) was added to exponentially growing cultures at a density of  
OD600 = 0.5. After 1 h, another half of the initial amount of alpha factor was added 
for 30 min, and cells were either held in G1 phase or released into prewarmed 
medium for 15–25 min before Zeocin damage treatment in S phase. Cell fixation 
in the relevant experiments was done for 2 min at room temperature with 4% 
paraformaldehyde.

For all Zeocin or G-IR experiments, saturated yeast overnight cultures were 
diluted to OD600 = 0.1 the next morning and grown to log phase. In all assays, 
Zeocin was added directly to G1-phase arrested, S-phase released or asynchro-
nously growing log cultures. Cultures were incubated with the drug for 1 h before 
high-speed tracking microscopy, or for the time periods indicated in figures 
for other assays and experiments. For G-IR exposure, 5 ml of cell culture was 
transferred to a 35 × 10-mm petri dish and irradiated in a Faxitron CellRad cell 
irradiator until the indicated dose (in grays) was reached. After G-IR treatment, 
cells were directly harvested for further downstream western blotting or mass-
spectrometry-based analysis. For undamaged conditions, either cells were imaged 
immediately for high-speed tracking microscopy, or growth was continued along 
with that of the treated samples for the time periods indicated in the figures. G-IR 
undamaged control cells were also spread on petri dishes and harvested after 
irradiation of treated cells was complete. Further specific growth and treatment 
conditions for high-speed tracking live-cell microscopy were applied according 
to the procedure described in ref. 12.

The proteasome-inhibition assay with proteasome inhibitor MG132 (Bachem) 
was done according to the procedure described in ref. 31. In brief, wild-type 
GA-6879 (Fig. 2a) or erg6$ (ref. 32) GA-1364 (Fig. 2b) cells were grown to satu-
ration overnight in SC proline (wild-type, synthetic complete medium without 
ammonium sulfate but with 0.1% L-proline) or YPAD medium (GA-1364). The 
next morning, cells were inoculated to OD600 = 0.1 in SC (wild-type) or YPAD 
(GA-1364) proline medium supplemented with 0.003% SDS and grown to OD600 
= 0.5 before the addition of 75 MM MG132, or of the same volume of DMSO for 
the control condition. After 30 min of incubation with the inhibitor, Zeocin 
treatment or no-damage control growth was carried out for 1 h at 30 °C before 
cell harvesting for western blotting.

For H2B-CFP (strain GA-3364 and derivatives) and two-foci (strain GA-9777) 
live-cell fluorescent microscopy, log-phase cells were trapped with three pulses 
of 5 p.s.i. pressure in CellASIC plates of the ONIX microfluidic perfusion system 
(Merck Millipore). All perfusions were done at a continuous flow rate of 2 p.s.i. 
pressure. After a 20–30-min recovery phase, cells were treated for 30 min with 
Zeocin before high-speed CFP-RFP tracking microscopy. The recovery phase 
of H2B-CFP-tagged cells was 20 min, after which they were treated with a pulse 
of Zeocin for 1 h, and H2B-CFP fluorescence was followed for an additional  
40 min after treatment.

For constitutive H3/H4 expression or reduction experiments, GA-8386 and the 
relevant control strain culture (GA-8385) were grown overnight to saturation in 
YP galactose (YP Gal) or YP Gal/Raff medium and inoculated in the same respec-
tive media before Zeocin treatment and cell collection. For controlled H3/H4 

shutdown experiments, overnight growth and growth to OD600 = 0.5 were done 
with the same strains in YP Gal/Raff (Gal/Raff 1:5 ratio) medium, which confers 
wild-type H3/H4 expression levels. After G1-phase arrest at 25 °C with alpha 
factor in YP Gal/Raff medium, cells were released into either prewarmed 25 °C 
YP Gal or YP Raff medium for 60 min before fixation for structured illumination 
microscopy (SIM) or high-speed live-cell imaging.

In all other western blotting and label-free mass spectrometry experi-
ments, cells were grown in full medium (YPD), and cell growth for microscopy 
experiments was done in either synthetic complete medium or sterile, filtered,  
non-autoclaved YPD medium.

Genome-wide nucleosome mapping. Strains tested for changes in nucleo-
some occupancy (GA-6879 and GA-8386) were grown in appropriate media to  
OD600 = 0.8. Cultures were split in two, and one of the two was treated with Zeocin 
(500 Mg/ml) for 1 h. At this point the OD600 absorbance of each sample was meas-
ured and C. glabrata cells were spiked in at 1/10 according to the sample OD600. 
Cells were washed three times with ice-cold TBS (20 mM Tris-HCl, pH 8.0, and 
150 mM NaCl) and lysed by bead-beating in micrococcal nuclease (MNase) 
digestion buffer (10 mM Tris, pH 8.0, 50 mM NaCl, 5 mM MgCl2, 1 mM CaCl2,  
1 mM B-mercaptoethanol, 0.5 mM spermidine, 0.075% NP-40). The obtained chro-
matin samples were MNase digested to isolate mononucleosomes, and sequencing 
libraries were prepared according to the method described by Wiechens et al.33.  
Paired-end libraries of MNase-digested chromatin were sequenced using 
Illumina HiSeq technology. Fastq files containing raw reads were aligned to the  
S. cerevisiae and C. glabrata reference genomes by Bowtie2 with the option of a 
maximum fragment length of 500 for nucleosome fragments. The nucleosome 
dyads at each position were calculated in a defined window flanking the transcrip-
tion start site (TSS). The sum of dyads at a given position across all TSSs was then 
normalized by the total number of nucleosome dyads across all positions flanking 
~6,000 TSSs in the given window. We normalized the reads further against the 
number of C. glabrata reads in the sample. For low- and high-expression gene plots, 
the TSSs of 15% high-expression genes and 15% low-expression genes were chosen. 
The data were smoothed using a 50-bp sliding window for graphical representation.  
Plots were generated with Python’s plotting modules matplotlib and pylab.

Quantitative western blot analysis. The total protein content in the relevant 
samples was determined with the Quant-iT protein assay kit (Thermo Fisher 
Scientific), and 8.75 Mg of total protein was loaded and run on Criterion TGX 
Stain-Free 8–16% (Bio-Rad) gels under SDS denaturing electrophoresis condi-
tions. Rapid fluorescent detection of all proteins in the gel or on the membrane 
was done according to the manufacturer’s specifications, and protein transfer on 
PVDF membranes was done with the Trans-Blot Turbo system. All antibodies 
used for subsequent immunodetections are listed in Supplementary Table 4. 
Rad53 protein was detected with a custom-made mouse monoclonal antibody 
(GenScript) to the FHA2 domain of Rad53. Anti-GH2A was similarly a custom-
made polyclonal antibody specific for phospho-S129 in yeast H2A. Titration 
curves of histone H3 and histone H4 antibodies were generated to work within 
the linear detection range before use (data not shown).

Chromatin fractionation and quantitative mass spectrometry. For SILAC-
based mass spectrometry, lysine and arginine double-labeling of the lys2$ arg4$ 
strain yAG-06A was achieved by growth for at least ten generations in ‘heavy’ 
medium as described previously34. After growth to log phase or at G1 cell-cycle 
arrest, heavy-labeled cells (or ‘light’-labeled cells for label-swap controls) were 
treated for 1 h with Zeocin and mixed 1:1 based on the exact cell count with light-
labeled (or heavy-labeled for label-swap control), nontreated control cells. Prior 
to mixing, FACS and western blotting samples were taken to test for cell-cycle 
distribution and DDC activation.

Chromatin fractionation was carried out as previously described35, with 
the modification that chromatin obtained from SILAC-labeled yeast samples 
was resuspended in urea buffer (50 mM Tris-HCl, pH 7.5, 6 M urea, 1% SDS, 5 
mM EDTA) sonicated for optimal solubilization of proteins followed by a TCA 
protein-precipitation step before downstream mass spectrometric analysis. To 
avoid carbamylation in urea buffer, samples were kept below 20 °C and quickly 
processed. Control samples from whole cell extract, supernatant and the chro-
matin fraction were analyzed with SDS-PAGE (Novex 8–16% Tris-glycine gel, 
Invitrogen) gel electrophoresis followed by Coomassie staining.
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Samples for label-free histone quantification came from log-phase or G1-phase 
arrested cells grown in YPD medium. After G-IR treatment, 5 ml of culture was 
fixed with 10% TCA on ice. Whole cell lysates were obtained by bead-beating  
at 4 °C in urea buffer (50 mM Tris, pH 7.5, 6 M urea, 1% SDS, 5 mM EDTA). 
100–150 Mg of total protein was precipitated for downstream MS analysis.

For both SILAC and label-free samples, we carried out reduction and alkyla-
tion of cysteines in 20 Ml of RCM buffer (0.5 M Tris, pH 8.6, 6 M GnHCl) by add-
ing 4 Ml of 100 mM TCEP (tris(2 carboxyethyl)phosphine) for 30 min followed 
by 4 Ml of 250 mM iodoacetamide for another 30 min (in the dark), both at room 
temperature. Prior to the addition of 20 Ml of 1 mg/ml LysC (Wako, Japan), the 
extracts were diluted two-fold to keep a final HEPES concentration of 20 mM. The 
first digestion was carried out overnight at 25 °C. After two-fold dilution, 100 Ml  
of 0.5 mg/ml trypsin was added, and the second digestion was carried out at 37 °C  
overnight. Samples were desalted using SepPak C18 columns (Waters), and elu-
ates were dried to completion in a SpeedVac (Thermo Fisher Scientific).

Both SILAC and label-free LC-MS/MS analyses were done on an Easy-nLC 
1000 pump coupled to an LTQ Orbitrap Velos mass spectrometer (Thermo Fisher 
Scientific) using a Digital PicoView ion source (New Objective). Peptides were 
separated on a New Objective analytical column (75 Mm × 25 cm, Reprosil, 3 Mm)  
with a 150-min 0.1% formic acid–acetonitrile gradient. The flow rate was 200 
nL/min, and injection volumes were adapted accordingly for 1 Mg of peptides 
on column. Data were acquired in a Top20 data-dependent analysis mode.  
MS scans were acquired at a resolution of 60,000 over a range of m/z 350–1,200. 
We identified label-free peptides by searching Swiss-Prot using Mascot 2.4 
(Matrix Science) and compiled them in Scaffold 3.0 (Proteome Software). SILAC 
peptides were identified with MaxQuant 1.4.1.2 via a search of the SGD database. 
Two missed cleavage sites were allowed.

We carried out label-free relative quantification of histones by generating the 
extracted ion chromatogram for the peptide precursor mass, integrating the peak 
areas (using QuanBrowser (Thermo Fisher Scientific)), which we then used to 
calculate the peptide ratios. The average of those ratios determined the ratio of the 
histones (reference untreated or wild-type sample). This method is more precise 
than the Top3 TIC method used in Scaffold. Untreated or wild-type references 
were set to 1. We used two peptides from each ALF, KPK1, IF4A and IFSA1 pro-
tein as internal references for the quantification of relative histone abundances in 
each run. Histone-level ratios in SILAC samples are shown as the average from all 
non-label-swap or label-swap replicas. Ratios were derived from the MaxQuant 
peptide list, with only core histone peptides reported as not being subject to post-
translational modifications taken into account21. We addressed significance by 
blotting the distribution of all protein ratios from the MaxQuant protein-groups 
list together with the protein intensities. Core histones were always the most 
abundant proteins measured and resided within the first significant interval. 
We filtered the MaxQuant protein-groups list by removing all contaminants, all 
reverse hits, and proteins quantified with less than two peptides. The cutoff for 
variability was set to 30%. Normalization was done manually with the 35 most 
abundant proteins (histones excluded). The MaxQuant peptide list (excluding 
the G1 experiment) was filtered accordingly without a variability cutoff and with 
only peptides that had an H/L or L/H count greater than 3 taken into account. 
Normalization was done manually with the top 10% most abundant peptides 
(histone peptides excluded).

Live-cell microscopy and image analysis. Live microscopy was done on a tem-
perature-controllable Olympus IX81 microscope with a Yokogawa CSU-X1 scan-
ning head equipped with two EM-CCD EvolveDelta (Photometrics) cameras, an 
ASI MS-2000 Z-piezo stage and a PlanApo 100×/1.45-NA (numerical aperture) 
total internal reflection fluorescence microscope oil-immersion objective and 
Visiview software. For mRFP-GFP or mRFP-CFP high-speed tracking, fluoro-
phores were excited with lasers at 561 nm (mCherry or mRFP) and 491 nm 
(GFP) or 440 nm (CFP), and emitted fluorescence was acquired simultaneously 
on separate cameras (Semrock FF01-617/73-25 filter for mCherry/mRFP and 
Semrock FF02-525/40-25 filter for GFP or Semrock FF01-475/42-25 for CFP). 
High-speed time-lapse series were conducted, taking eight optical slices per stack 
either every 80 ms for 1 min or every 300 ms for 2 min, with 10-ms exposure 
times per slice. Time-lapse image stacks were analyzed as in ref. 9, using a cus-
tom-made ImageJ (FIJI) plugin36 to extract coordinates of locus position from 
the movies. We tested phototoxicity by exposing wild-type cells (GA-6879) to 

standard imaging conditions and following outgrowth for 5 h by morphological 
analysis, comparing them with unexposed cells. Time series acquired from strains 
GA-9227 and GA-9777 (two-spot data) were deconvolved using Huygens Remote 
Manager, channel-aligned, and cropped to contain one single cell per nucleus 
with the two respective fluorescent spots. Spot tracking over time was done with 
the ImageJ plugin TrackMate included in Fiji37. We generated box plots by plot-
ting all measured distances of treated or untreated cells. Relative MSD analysis 
was performed with KNIME38 using the workflow provided in Supplementary 
Data Set 3 . For each frame, we measured the distance vector of tracks in two 
channels by selecting the two spots with minimal distance. We performed an 
MSD analysis on the distance vectors for all frames, and tracks with a maximum 
MSD(t) value greater than 10 Mm2 were considered as outliers (due to mismatch-
ing of two distant tracks) and removed from the analysis. Relative MSD versus  
t was averaged over all tracks and plotted using R.

For H2B-CFP (GA-3364 and derivatives) live-cell microscopy, cells trapped in 
CellASIC plates were mounted on the same microscopic setup, and different stage 
positions of the whole field of view were excited with a 440-nm laser. The emitted 
fluorescence was acquired on an EM-CCD EvolveDelta (Photometrics) camera 
using a Semrock FF01-475/42-25 emission filter. The Htz1-mEos (GA-9594) and 
Nup49-GFP (GA-5816) control strains were excited at 491 nm, and fluorescence 
was recorded through a Semrock FF02-525/40-25 filter. Time-lapse series (120 min  
total) of 100 optical slices per stack (200-nm intervals) were acquired for 12 time 
points at 10-min intervals, with each slice being exposed for 10 ms per laser 
line. Bright-field images were acquired using a CoolLED diode. Images were 
deconvolved using the Huygens Remote Manager software. For image analysis, 
deconvolved maximum-intensity projections were analyzed as a merged stack in 
ICY. Nuclei were detected and segmented using hierarchical k-means and active 
contours and followed through the time series. The integrated nuclear intensity 
was calculated for each cell nucleus, and the average intensity of all single cells 
per condition was plotted over time. In figures, the t0 time point to 100% intensity 
(via averaging of the first two time points) and the Zeocin treatment condition 
of each strain are shown relative to the respective control.

Structured illumination microscopy and image analysis. Structured illumina-
tion images were acquired on a Zeiss Elyra S.1 microscope with an Andor iXon 
885 EM-CCD camera using an HR diode 488 100-nW solid state laser, a BP 525-
580 + LP 750 filter and a PLAN-APOCHROMAT 63×/1.4-NA oil DIC objective 
lens. Cells were fixed in 4% paraformaldehyde, washed three times in PBS and 
then attached to a thin SIM-grade Zeiss 1.5 glass coverslip using concanavalin 
A. Cells were fully sectioned into 50–65 slices at 0.1-nm intervals taken at 60-
ms exposures per slice with five rotations of the illumination grid. Bright-field 
images of the cells were also acquired with an X-Cite PC 120 EXFO Metal Halide 
lamp. ZEN Black was used to process the images with the automatic settings 
and with the “Raw Scale” option selected. We then analyzed 3D stacks by using 
pixel classification and a custom Matlab script to determine the spot volumes 
and other features as follows: We used a fully automated nucleus and spot-seg-
mentation workflow that allowed for individual detection and feature extrac-
tion where a manual or even a semi-automated delineation would be unfeasible. 
The image-processing software was realized within the Matlab environment and 
supported by the supervised learning-based pixel-classification toolkit Ilastik39.  
The voxels corresponding to the nucleus, the inner spot and background regions 
are annotated interactively by brush strokes during the training phase. Features 
calculated at the labeled pixels and their local neighborhood are then used to 
train a pixel classifier based on a random Forest ensemble learning method. The 
processing software provides an automated whole segmentation of all the nuclei 
and spots present in the scene. The image-processing function is later used in a 
parallelized batch process on multiple processors. After detection and segmenta-
tion of nuclei and spots, the program produces a graphical output in the form of a 
maximum-intensity projection with delineation of the nucleus, the spots and the 
unique ID integer that identifies the nucleus candidate. In addition, 3D logical 
masks corresponding to the classes “spot” and “nucleus” are computed. Finally, 
the program generates an ASCII file in which key features such as volume and 
solidity 3D and descriptive statistics are listed for all detected nuclei and foci.  
The solidity factor is calculated as the proportion of pixels in the 3D convex 
hull. For statistical analysis and data representation, raw volumes were filtered 
to exclude spots smaller than 200 and greater than 4,000 voxels, and the control 
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condition was set to 1. In figures, Zeocin-treated spot or nuclei volume distribu-
tions are shown relative to the untreated control. The distributions were plotted 
with R as box plots or as cumulative-density functions.

Microscopy and image analysis of fixed samples. Microscopy of fixed GA-9777 
samples was done with the same Olympus IX81 microscope setup mentioned 
before. Cells were fixed with paraformaldehyde and attached to a thin SIM-grade 
Zeiss 1.5 glass coverslip using concanavalin A. We acquired 70 optical slices in  
100-nm intervals with the 561-nm and 491-nm laser lines (130-ms exposure 
each). Bright-field images were acquired using a CoolLED diode. Images were 
deconvolved using Huygens Remote Manager and channel-aligned. Then, inters-
pot distances ($d) between the GFP and mRFP centroids were measured with 
the Imaris software. The distribution of all measured distances per condition was 
plotted with R as a box plot or as a cumulative-density function.

Ectopic recombination assays. For Figure 8a: as used in wild-type cells, arp8$ 
cells and cells bearing NHP6A/NHP6B deletions. For specific growth conditions, 
please consult the “Yeast growth, cell-cycle arrests and flow cytometry” section. 
Equal amounts of exponentially growing wild-type (GA-6879) arp8$ (GA-8132) 
and nhp6$ (GA-9771) strains were transformed via the transformation protocol 
either with a linearized URA3 plasmid (pRS406 cut with StuI) presenting 800-bp 
homology to the W303 ura3-1 locus or with an mgs1::caURA3 PCR fragment 
(template plasmid #1050) presenting 40-bp and 42-bp upstream and down-
stream homology, respectively, to the MGS1 locus. As a control, centromeric 
circular plasmid #2422 (ADE2, hphMX4, Cen/ARS), which is maintained in 
yeast cells ectopically, was transformed alongside with the URA3 integration 
cassettes. Primers were #7297 (GTTTTTTTACGCTTGAGGCGCATTGCA
TTGCTGGCACGTTTTTGTGCGGATCC CCGGGTTAATTAA) and #7298 
(CGTATATGTTCTAATATATCTCAGATGGGCCCGCGAGACTTTGCGCG
TTGGCCGATTCATTA).

After transformation, we split cells and plated them on SC-URA plates (100 Ml) 
to select for transformants resulting from integration, and on and YPD+ hygromy-
cin B plates to select for cells containing the plasmid. We compared the numbers 
of Ura+ and Leu+ transformants obtained from each reaction to calculate the 
integration rate for each strain relative to that of a wild-type strain arbitrarily 
set to 1 as a reference. Growth was scored in biological quadruplicates, and each 
transformation was done with four technical replicates; results were averaged.

For Figure 8c,d: control cells and Gal:H3/H4 ‘histone shutdown’ cells. For spe-
cific growth conditions, please consult the “Yeast growth, cell-cycle arrests and 
flow cytometry” section. After pre-growth in YP Gal/Raff 1:5 medium, equal 
amounts of exponentially growing control (GA-8385) and Gal:H3/H4 ‘histone 
shutdown’ (GA-8386) cells were pulse-reduced for histone H3 and H4 levels 
via 2 h of growth in either YP Gal/Raff 1:20 or YP raffinose medium. After the 
histone-reduction pulse, transformations were done with either an atg2::hphMX4 
PCR fragment (PCR product ATG2::hygro, template plasmid #1049) present-
ing 40-bp homology (both upstream and downstream) to the ATG2 locus or an  
mgs1::hphMX4 PCR fragment (PCR product MGS1::hygro, template plasmid 
#1049) presenting 40-bp and 42-bp upstream and downstream homology, 
respectively, to the MGS1 locus. As a control, centromeric circular plasmid #282 
(LEU2, Cen/ARS), which is maintained in yeast cells ectopically, was transformed 
alongside with the hphMX4 PCR integration cassettes.

Primers for PCR product ATG2::hygro were #6302 (ATAGCCTTGGCGAGTT
TTCCGTACATTGAAGAATTCGCCAAGCGGATGCCGGGAGCAGAC) and 
#6303 (GGGATTTTTGGCTCAAGGTGTGGTGGCCCCTTTTCTAAGGGTG
AGCTGATACCGCTCGCC). Primers for PCR product MGS1::hygro were #7297 
(GTTTTTTTACGCTTGAGGCGCATTGCATTGCTGGCACGTTTTTGTGC
GGATCCCCGGGTTAATTAA) and #7298 (CGTATATGTTCTAATATATCTC
AGATGGGCCCGCGAGACTTTGCGCGTTGGCCGATTCATTA).

After transformation, cells were split and plated on YP Gal + hygromycin B 
plates (100 Ml plated) to select for transformants resulting from integration of 
ATG2::hygro or MGS1::hygro and on and SCGal –Leu plates (10 Ml plated) to select 
for cells containing the plasmid. The numbers of hphMX4+ and Leu+ transform-
ants obtained from each reaction were compared to calculate the integration rate 
for each strain relative to that of a wild-type strain arbitrarily set to 1 as a refer-
ence. Growth was done in biological quadruplicates, and each transformation 
was done with four technical replicates; results were averaged.

Recovery assay. Equal amounts of exponentially growing (YPAD medium, 
cell density ~1 × 107 cells/ml) wild-type (GA-6879), arp8$ (GA-8132), nhp6$  
(GA-9771) and arp8$nhp6$ cells (GA-9815) were treated in triplicates with 
increasing amounts of Zeocin (100, 250 and 500 Mg/ml). After 1 h of treatment, 
cells were washed once with fresh, prewarmed (30 °C) YPAD medium and grown 
for an additional hour in YPAD without Zeocin. After this step, the cell density 
was accurately determined in three technical replicates and used later as a cor-
rection factor for cell growth within the 1 h of Zeocin treatment and the 1 h 
of growth in YPAD of the control versus the Zeocin-treated cultures (Zeo100 –  
Zeo500). Aliquots were removed and plated in a dilution row. Growing colonies 
versus plated cells were quantified; the control situation served as reference point 
and was set to 100%.

Rad52-YFP recovery assay. Cells grown to saturation overnight in sterile, fil-
tered, non-autoclaved YPD medium were diluted the next morning, and the 
experiment was started when OD600 reached 0.6. Wild-type (GA-9772) and 
nhp6$ cells (GA-9771) were treated with 250 Mg/ml Zeocin for 30 min. Zeocin 
was washed away and Rad52-YFP foci formation was followed over a total time 
course of 16 h, with microscopic images acquired at the following time points: 
0 min, 20 min, 40 min, 1 h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h, 14 h and 16 h. Rad52-
YFP foci were imaged with the same microscopic setup as mentioned above, 
with 50 optical slices acquired in 200-nm intervals with a 50-ms exposure time 
using a 514-nm laser with appropriate emission filters. Images were deconvolved 
as described above and maximum-intensity projected, and the binary (+ or −) 
content of Rad52-YFP foci of all living cells at each time point in each strain was 
counted. The average amount of cells containing Rad52-YFP foci per time point 
was plotted and is shown in figures together with a logarithmic fit.

Estimating the anomalous diffusion exponent A and the diffusion coefficient. 
Please refer to Supplementary Note 1.

Estimating the effective spring coefficient Kc. Please refer to Supplementary 
Note 1.

Statistics and reproducibility. All chromatin mobility data (spot tracking) 
are pooled from three independent experiments (Figs. 3a, 5d and 6c,d, and 
Supplementary Fig. 5a). Statistical analyses testing the significance of the bio-
physical parameters derived from the imaging data were performed with Matlab 
using the Kolmogorov–Smirnov test (Figs. 3b, 5d and 6e, and Supplementary 
Figs. 5b and 7c,d). All SIM microscopy data from individual single cells were 
pooled and were derived from one experiment. The data were analyzed with 
RStudio using unequal-variance t tests (Figs. 3d, 5c, 6f and 7d). For H2B-CFP 
single-cell fluorescent microscopy analysis, the integrated nuclear intensity was 
calculated for each cell nucleus, and the average intensity of all single cells per 
condition was plotted over time. All data from single cells originated from three 
independent cultures on three different days (Fig. 1d, H2B-CFP), two independ-
ent cultures on two different days (Fig. 1d, Htz1-mEos; Fig. 7c, rad51$/sml1$/
arp8$), or two independent cultures on the same day (Fig. 7c, rad53$sml1$). 
Recombination efficiency and cell recovery experiments were performed in tripli-
cates (three independent cell cultures), and Excel was used to perform two-tailed 
Student’s t tests (Fig. 8a,b,d). Chromatin fractionations were repeated with three 
independent cultures (Supplementary Fig. 1f,g) or two independent cultures 
(Fig. 1a and Supplementary Figs. 1h and 3i,j). Nucleosome mapping data for 
the wild-type strain (GA-6879) was performed on four independent cultures  
(Fig. 1c and Supplementary Fig. 2e); for the H3/H4 transcription independ-
ent strain (GA-8386) the experiment was done once (Supplementary Fig. 4b), 
but new data derived from four independent cultures showed the same effect 
(data not shown). The kinetics of the Rad52-YFP recovery assay on wild-type 
and nhp6$ cells (12 different time points) was performed once but done on  
the single-cell level.

Data availability. The EBI project ID for the nucleosome-seq data in this study 
is PRJEB14701. Source data for Figures 1b,d, 2a–c, 5b, 7b,c and 8a and for 
Supplementary Figure 2g, as well as mass spectrometry data (Supplementary 
Data Sets 4–9), are available online. Other data supporting the findings of this 
study are available from the corresponding author upon request.

©
 2

01
7 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
, p

ar
t o

f S
pr

in
ge

r 
N

at
ur

e.
 A

ll 
ri

gh
ts

 r
es

er
ve

d.



126 Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 

 
N ATURE STRUCTURAL & MOLECULAR BIOLOGYdoi:10.1038/nsmb.3347

30. Haase, S.B. & Lew, D.J. Flow cytometric analysis of DNA content in budding yeast. 
Methods Enzymol. 283, 322–332 (1997).

31. Liu, C., Apodaca, J., Davis, L.E. & Rao, H. Proteasome inhibition in wild-type yeast 
Saccharomyces cerevisiae cells. Biotechniques 42, 158–162 (2007).

32. Lee, D.H. & Goldberg, A.L. Selective inhibitors of the proteasome-dependent and 
vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J. Biol. 
Chem. 271, 27280–27284 (1996).

33. Wiechens, N. et al. The chromatin remodelling enzymes SNF2H and SNF2L position 
nucleosomes adjacent to CTCF and other transcription factors. PLoS Genet. 12, 
e1005940 (2016).

34. Gruhler, A. et al. Quantitative phosphoproteomics applied to the yeast pheromone 
signaling pathway. Mol. Cell. Proteomics 4, 310–327 (2005).

35. Pasero, P., Duncker, B.P., Schwob, E. & Gasser, S.M. A role for the Cdc7 kinase 
regulatory subunit Dbf4p in the formation of initiation-competent origins of 
replication. Genes Dev. 13, 2159–2176 (1999).

36. Sage, D., Neumann, F.R., Hediger, F., Gasser, S.M. & Unser, M. Automatic tracking 
of individual fluorescence particles: application to the study of chromosome 
dynamics. IEEE Trans. Image Process. 14, 1372–1383 (2005).

37. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis.  
Nat. Methods 9, 676–682 (2012).

38. Dietz, C. & Berthold, M.R. KNIME for open-source bioimage analysis: a tutorial. 
Adv. Anat. Embryol. Cell Biol. 219, 179–197 (2016).

39. Sommer, C. & Gerlich, D.W. Machine learning in cell biology—teaching computers 
to recognize phenotypes. J. Cell Sci. 126, 5529–5539 (2013).

©
 2

01
7 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
, p

ar
t o

f S
pr

in
ge

r 
N

at
ur

e.
 A

ll 
ri

gh
ts

 r
es

er
ve

d.



 

Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 127 



128 Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 



 

Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 129 



130 Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 



 

Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 131 



132 Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 



 

Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 133 



134 Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 



 

Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 135 



136 Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 



 

Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 137 



138 Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 



 

Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 139 



140 Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 



 

Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 141 

 



142 Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 



 

Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 143 



144 Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 



 

Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 145 



146 Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 



 

Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 147 



148 Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination 

Rates 

 



 

Chapter 5: Probing global chromatin composition with Mass Spectrometry 149 

CHAPTER 5: PROBING GLOBAL CHROMATIN COMPOSITION WITH MASS 
SPECTROMETRY 

Summary 
Assessing all chromatin bound proteins at once is of special interest and can answer the question how 

global chromatin composition changes in response to genotoxic insults (Fig. 6a). This chapter describes 

our progress in developing a mass spectrometry (MS) based workflow to examine the global protein 

composition of chromatin (chromatome) in yeast. Previously described techniques were developed for 

mammalian systems (Paul Ginno & Dirk Schübeler, unpublished data)(Kustatscher, Hegarat et al. 2014) 

and provided a basis for our approach. However, they awaited refinement to allow for application to yeast. 

We used TMT (Tandem Mass Tag)(McAlister, Huttlin et al. 2012) labeling based MS to unambiguously 

compare different chromatin purification methods and devise a robust workflow for yeast. This work has 

been done in close collaboration with Mariya Kryzhanovska, (a Master student in the Gasser laboratory 

who worked under my guidance) and Paul Ginno (a postdoctoral researcher in the Schübeler laboratory). 

Rationale 
Several MS studies have used different cell fractionation approaches to quantify the proteome of the entire 

nucleus (Dundr and Misteli 2002, Mosley, Florens et al. 2009, Wuhr, Guttler et al. 2015) or its different 

subcompartments (Andersen, Lyon et al. 2002). Fractionation is necessary because highly abundant 

cytoplasmic proteins otherwise mask the signal of the relatively low abundance nuclear proteins. Currently, 

much effort has been put into developing proteomic techniques which address local or global chromatin 

composition following formaldehyde crosslinking of proteins to DNA, coupled with DNA, protein or 

peptide immunoprecipitation (IP) (Wierer and Mann 2016) ). A recent study has devised a novel method 

to quantitatively determine all chromatin-bound proteins (chromatome) in mammalian cells (Kustatscher, 

Hegarat et al. 2014, Kustatscher, Wills et al. 2014). This technique is based on formaldehyde crosslinking 

and subsequent chromatin fractionation. First, whole cells are crosslinked with formaldehyde followed by 

nuclear extraction, lysis and subsequent chromatin fractionation. As chromatin is a dense meshwork of 

DNA-protein crosslinks, it is largely insoluble and precipitates in aqueous solutions. Importantly, 

Kustatscher et al. implemented two key steps in this protocol which could both lower sample complexity 

and reduce unspecific binding. First, RNA was digested from crosslinked chromatin which reduced highly 
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abundant ribosomal protein signals. Secondly, high concentrations of the chaotrope urea were used to 

eliminate unspecifically-bound/non-crosslinked proteins from the precipitated chromatin sample. 

 Work in the Schübeler laboratory (Paul Ginno & Dirk Schübeler, unpublished results) devised 

another method that allows for MS based quantification of the chromatome. This technique exploits the 

unique property of cesium chloride (CsCl) gradients to separate DNA-protein crosslinks from free DNA 

and protein upon ultracentrifugation, a process called isopycnic focusing (Solomon, Larsen et al. 1988, 

Orlando, Strutt et al. 1997). Given the unique density of protein-DNA complexes, it can be used to 

separate mammalian chromatin from other cellular components. To this end, nuclei are extracted from 

mammalian cells, crosslinked and solubilized in a high concentration CsCl solution by sonication. 

Following ultracentrifugation, the CsCl creates a self-forming gradient, and the chromatin-containing 

fractions band with a buoyant density of ρ = 1.39 g/cm3. The fraction is recovered, dialyzed against 

physiological buffer and prepared for MS. Both of these techniques (by Kustatscher & by Ginno) were 

developed for mammalian cell systems in which histone-DNA complexes (nucleosomes) form a major 

component that is readily isolated from other cellular components.  

 In chapter 4, we used simple chromatin fractionation techniques coupled with SILAC-based MS 

analysis to assess chromatin composition in response to DNA damage in budding yeast. Using this, were 

were not able to make definitive statements about the presence of chromatin proteins other than histones. 

The measured intensity values of other proteins were often very low and we observed variability between 

replicates. Furthermore, the presence of cytoplasmic proteins in the chromatin sample made us doubt 

whether this approach achieves sufficient purity to determine an entire chromatome. We therefore set out 

to develop a robust workflow that would allow us to monitor changes in chromatin bound proteins in 

yeast, in response to DNA damage. 

Results 
We first tested whether the CsCl gradient-based, chromatin purification protocol developed in the 

Schübeler laboratory would be applicable in yeast (Fig. 6b). Due to the difficulty of lysing yeast cells 

without spheroplasting, the nuclear extraction step was omitted. In brief, we crosslinked cells with 

formaldehyde during exponential growth, lysed them with detergents and subjected the lysate to CsCl 

fractionation. Following the workflow illustrated in Fig. 6bc, we collected CsCl gradient fractions and 

visualized DNA with Hoechst. We found DNA enriched at a buoyant density of ρ=1.39 g/cm3 which is 

indicative for DNA-protein crosslinks, or chromatin (Solomon, Larsen et al. 1988, Orlando, Strutt et al.  
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Figure 6 Probing chomatin-wide protein composition with the CsCl approach. (a) General objective: developing a 
method which would allow to proge chromatin-wide protein composition in response to DNA damage. (b-c) 
Experimental workflow for CsCl based chromatin enrichment combined with TMT labeling and subsequent mass 
spectrometry. The control was done without formaldehayde crosslinking. Whole cells are subjected to formaldehyde 
crosslinking. After cell lysis, samples are treated with RNAseA and DNA is sheared and solubilized via sonication. Protein-
DNA crosslinks are fractionated via isopycnic focusing during ultracentrifugation on a self-forming CsCl gradient. DNA 
content along the gradient fractions is measured via Hoechst staining and chromatin containing fractions are dialyzed 
against a physiological buffer. After crosslink reversal and DNA digestion with Benzonase, samples are send for mass 
spectrometric measurements. (d) DNA concentration along CsCl gradient fractions derived from non crosslinked vs. 
crosslinked whole cell lysates. An enrichment of DNA-protein crosslinks is seen in the crosslinked sample only at the 
expected density of ρ = 1.39 g/cm3. 
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1997). Free nucleic acids with a density of approximately ρ = 1.7 g/cm3 were found at the bottom and 

free proteins (ρ =1.28–1.35 g/cm3) formed a proteinaceous band at the top of the gradient (ρ=1.7g/cm3) 

(Fig. 6d). This indicated that chromatin should have been well separated from other cellular components. 

 To estimate protein composition within gradient fractions, we dialyzed them against a physiological 

buffer and visualized proteins by silver staining on SDS-PAGE gels (Fig. 6e). Histone H4 distribution 

within the gradient was followed with immunoblotting (Fig. 6e). Immunoblots showed a clear peak of 

DNA-nucleosome crosslinks that were separated from the free histones at the top the gradient (Fig. 6e, 

C6 and C7). As expected, the control sample (no crosslinking) showed neither DNA (Fig. 6d, fractions 

10-25) nor histone signals (Fig. 6e, C2 and C3) at the respective density of ρ=1.39 g/cm3. Interestingly, 

histone H4 peak fractions showed high molecular protein bands on the SDS-PAGE, probably deriving 

from chromatin-bound non-histone proteins (Fig. 6e). We thus combined the respective gradient 

fractions from non-crosslinked and crosslinked cells (Fig. 6e, 3-8 and 4-9 respectively), prepared TMT 

labeled peptides and send those for MS analysis. Unfortunately, we could not detect a specific enrichment 

for any chromatin proteins other than histones upon crosslinking (Fig. 6f). This became even more 

apparent after a GO term analysis of all significantly enriched proteins in both the crosslinked and control 

samples (Fig. 6g). Apart from histones, only one other chromatin related protein group (replication fork 

protection complex) was found to be enriched after crosslinking.  

 Against our expectations, nucleolar proteins were found in the control fractions and cytoplasmic 

proteins were recovered in the crosslinked samples. This is in contrast to what Ginno & Schübeler 

observed with the same method in mammalian cells. As we had omitted the nuclear fractionation step, 

which is a lengthy and error prone procedure in yeast, we hypothesized that the impurities in the gradient 

might arise from whole cell crosslinking. This hypothesis is further strengthened by a study which used 

crosslinking combined with CsCl gradients to isolate proteins bound to the yeast mitochondrial genome. 

Here, it was necessary to purify mitochondria before crosslinking and successful CsCl enrichments 

(Kaufman, Newman et al. 2000). In addition, two other studies in yeast successfully used insolubility-based 

chromatin purification methods (Kubota, Hiraga et al. 2011, Kubota, Nishimura et al. 2013). These latter 

 (e) Silver stained SDS-PAGE and histone H4 Western blot of further pooled fractions from the two gradients visualized 
in d. An enrichment of DNA-histone crosslinks is only detected in the gradient, derived from crosslinked whole cells 
(fractions 4-9). Fractions 5-7 further show high molecular weight bands on a silver stained SDS-PAGE, suggesting the 
presence of other proteins apart from histones in the chromatin peak. (f) Scatterplot showing proteins either enriched in 
the crosslinked gradient or the control situation. Log2 mean intensities from C2+C3 and C6+C7 fractions (e) were plotted. 
Green dots represent proteins enriched upon crosslinking, whereas red marked proteins were significantly enriched in the 
control situation. (g) GO term analysis of proteins enriched in the crosslinked gradient (green) or in the control (red) 
reveals that except nuclear nucleosome and replication fork protection complexes no other chromatin specific proteins 
could be enriched upon crosslinking. 
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methods were similar to the chromatin fractionation procedure described in Chapter 4. We therefore 

developed four additional workflows with three of them including an additional spheroblasting and 

chromatin pre-fractionation step (Fig. 7a).  

 Pre-fractionated yeast chromatin was either crosslinked (Fig. 7b) or directly prepared for MS. The 

two crosslinked chromatin samples were further used for CsCl gradient fractionation or subjected to urea 

washes as described by Kustatscher et al. (Kustatscher, Hegarat et al. 2014). After repeating each workflow 

twice, we used TMT-based MS to compare them side by side for reproducibility and chromatin protein 

enrichment.  

 Clustering of all eight samples by log2 peptide intensities showed high correlation within replicates 

(R>0.8) (Fig. 7c). The reproducibility was further addressed with scatterplots, which showed correlation 

coefficients higher than 0.87 in all cases. This confirms that our workflow is robust (Fig. 7d). Interestingly, 

all pre-fractionated (PF) chromatin samples formed a supercluster that was clearly distinct from the two 

non-pre-fractionated, whole cell extract (WCE) samples (Fig. 7d). This indicated that the protein 

composition was largely similar in between pre-fractionated chromatin, but was clearly distinct from that 

of directly crosslinked cells. 

 After showing that all workflows were reproducible, our next goal was to see which of these allowed 

for the best enrichment of chromatin proteins. We thus first extracted the intensities of all histone and 

transcription factor (TF) derived peptides within each of the two replicates from the four workflows and 

visualized them as boxplots (Fig. 7e). Remarkably, pre-fractionated chromatin, which was washed by urea 

(Fig. 7e, PF_Urea_r1&r2), showed the highest histone intensity signal and the lowest TF signal. We next 

performed a GO term analysis to address the enrichment of chromosome, nucleus or cytosol related 

proteins (Fig. 7f). After summing up the signal intensities of all proteins which fall into one of these 

categories, we calculated their proportion with respect to the total protein signal. This gave us a measure 

for the percentage these categories occupy within in each sample. Strikingly, almost 20% of the total 

protein signal in pre-fractionated chromatin samples further purified with CsCl (PF_CsCl) or washed with 

urea (PF_Urea) was derived from chromosome-related proteins. The same was true for  proteins annotated 

as “nuclear”: this yielded nearly 65% in both workflows, while “cytosolic proteins” made up only 5%. 

Taken together with the high histone signal intensity (Fig. 7e, PF_Urea_r1&r2), this clearly shows that 

pre-fractionating chromatin and subsequently subjecting it to urea washes was the best way to enrich for 

chromatin-bound proteins. 
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 Figure 7 Four different approaches for chromatome enrichment. (a) Four different workflows were tested for 
efficient enrichment of chromatin-related proteins. Each workflow was done in duplicates and the total of 8 samples were 
mulitplexed via TMT labeling and subsequent MS analysis. 1; WCE_CsCl describes crosslinking of whole cells followed 
by CsCl gradients of whole cell extracts. 2; PF_CsCl indicates chromatin prefractionation followed by crosslinking and 
coupled to CsCl gradients. 3; is a classic chromatin fractionation workflow without crosslinking. 4, is equal to 3 but 
chromatin was crosslinked subsequent to fractionation and washed with urea. (b) Western plots following the pre-
fractionation and crosslinking procedure of chromatin as shown in workflow 2 (see in a). WCE = whole cell extract. 
Soluble = soluble fraction after precipitating chromatin. Wash = fraction used to wash precipitated chromatin. 0’ and 100’ 
Xlinking = 0 min. and 100 min. time-points of precipitated chromatin in buffer with formaldehyde at 4°C. Red triangles 
show a crosslinking depended upshift of histone H4. Sonicated = chromatin after sonication. CsCl input = sample loaded 
on the CsCl gradient. (c) Heatmap of log2-intensities for all eight reporters shows good correlation (R>0.8) within 
replicates. 
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(d) Log2-intensities of all reporter (TMT) channels within replicates were plotted against each other. The correlation 
coefficient for each combination is shown. (e) Histone and translation factor signal distribution within different chromatin 
precipitation methods. Intensities of either histones or translation factor (TFs) peptides were extracted from the total 
intensity of every sample. Distributions of log2 transformed histone or TFs intensities are shown. (e) Proportion of specific 
GO term signal to total reporter signal per sample. Bargraphs “Chromosome”, “Nucleus” and “Cytosol” represent the 
proportion of each GO term category in relation to the total protein signal. 
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Material and Methods 
Media and growing conditions for SILAC yeast strain 

Unless otherwise stated, yeast cultures were grown at 30 °C until logarithmic (Horlbeck,  #52) growth 

phase (OD600 = 0.7; 1 × 107 cells/ml).  

Materials 

Physiological buffer: 

1 x PB     Stock solutions   For 40ml 

10mM Tris pH 8    1M    400ul 

1 mM EDTA    0.5M    80ul 

0.5 mM EGTA    0.5M    40ul 

 

Dialysis Buffer:  

1 x DB     Stock solutions    5L 

10 mM Tris pH 8    1M    50ml 

5% Glycerol    100%    250ml 

1 mM EDTA    0.5M    10ml 

0.5 mM EGTA    0.5M    5ml 

H20         4685ml  

 

Buffer A (store at 4°C): 

10 x Buffer A    Stock solutions   For 100ml 

200mM HEPES pH7.5   1M    20ml 

800mM KCl    2M    40ml 

80mM EDTA-KOH   0.5M    16ml 

5mM Spermidine    0.5M    1ml 

2mM Spermine    0.5M    0.4ml 

H2O         to 100ml 
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Buffer B (prepare fresh): 

1 x Buffer B    Stock solutions   For 100ml 

100mM PIPES-KOH pH 9.4   0.5M    20ml 

0.1M EDTA-KOH    0.5M    20ml 

0.1% Na-Azide    10%    1ml 

10mM DTT    1M    1ml 

H2O         to 100ml 

 

Buffer C: 

1 x Buffer C     Stock solutions   For 100ml 

50mM K-Phosphate pH7.0   1M    5ml 

1.1M Sorbitol    2M    55ml 

1mM ß-Mercaptoethanol   14.3M    7ul 

0.5mM MgCl2    1M    50ul 

H2O         to 100ml 

 

 

Wash buffer (prepare fresh): 

1 x WB     Stock solutions   For 80ml 

0.25x (10x BufferA)    10 x Buffer A   20ml 

1M Sorbitol    2M    40ml 

0.5mM PMSF    200mM    200ul 

Roche protease inhibitor 1x       2 maxi tablets 

H2O         to 80ml 

 

E buffer (prepare fresh): 

1 x EB     Stock solutions   For 100 ml 

30mM KCl    1M    3 ml 

50mM HEPES-KOH pH7.5   1M    5ml 

2.5mM MgCl2    1M    250ul 

0.1mM ZnSO4    10 mM    1ml 

2mM NaF    200mM    1ml 

0.5mM Spermidine    0.5M    100ul 

0.2mM PMSF    200mM    100 ul 

Roche protease inhibitor 1x       2 maxi tablets 

Phosphatases inhibitor 1x   (100x)    1 ml 

with or without: 
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0.25% TritonX-100    100%    250ul 

0.5%  TritonX-100   100%    500ul 

H2O         to 100 ml 

 

Chromatin stabilization by crosslinking of whole yeast cells and preparation of WCE for chromatin 

enrichment 

Log-phase yeast cells were fixed for 1 hour at 25°C by addition of formaldehyde (37% formaldehyde 

solution, Sigma-Aldrich) to a final concentration of 3%. Quenching was carried out with glycine (final 

0,125M) for 10 min at 25°C. Cells were harvested by short centrifugation (3500 x g) and washed once with 

1 x PBS. Washed cell pellets were resuspended in physiological buffer (PB). The homogeneous cell 

suspension was flash frozen in droplets. Mechanical lysis was performed by cryo-grinding (Retsch grinder) 

applying 5 cycles of 30 Hz for 2 min. Frozen cell powder was transferred to falcon tubes and left to thaw 

on ice. The volume of WCE was adjusted to 5 ml by ice-cold PB. Sonication was performed on a Branson 

sonifier, applying 30% amplitude power for 6 cycles of 30 sec ON and 15 sec OFF. The sample was cooled 

in an ethanol/dry ice bath during the sonication process. Elimination of RNA from the WCE was achieved 

by 15 min RNAse (home-made) digestion (final 0.05 mg/ml) at 37°C. After this step, sample volumes 

were adjusted to 12 ml with ice-cold PB. Incubation with sarcosyl (sodium lauroyl sarcosinate, FLUKA) 

at final concentration of 0.5% was carried out at 4°C and continued for 30 min. Finally, samples were 

cleared by short centrifugation (2000 x g, 2 min, 4°C). Cleared lysate was stored on ice until further 

processing as described in the enrichment protocol. 

Chromatin yielding by pre-fractionation and subsequent cross-linking 

One liter of log-phase yeast culture (OD600 = 0.7) was harvested by centrifugation (2000 x g, 5 min, RT) 

and washed once with 1 x PBS. Cell pellets were resuspended in 45 ml Buffer B and incubated at RT on a 

rolling device. Buffer B was exchanged by brief centrifugation (2000 x g, 2 min, RT) and resuspension in 

12 ml of Buffer C. Zymolase 100T (US Biologicals) digestion was carried out at 30°C and final 

concentration of 0,75 mg/ml. The digestion was stopped when the spheroplasting was efficiently achieved 

followed by microscopy testing. After a brief centrifugation step (1500 x g, 2 min, 4°C), spheroblast pellets 

were carefully washed twice with ice cold wash buffer. First, spheroblasts were carefully resuspended in 2 

ml of E buffer without Triton X-100, before 2,25 ml E buffer + 0,25% Triton X-100 was added. For 

mixing, slow invertion on ice was performed untill the lysis of spheroplasts was complete. The total lysis 

mixture was overlaid on 9 ml of 30% sucrose in E buffer + 0.25% TritonX-100 (with 1.5% formaldehyde) 

in a Ultra Clear Beckman Coulter 14 ml tube. After ultracentrifugation (18000 x g, 15 min, 4°C) supernatant 
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was removed and chromatin pellet was gently resuspended in 5 ml of E buffer + 0,25% Triton X-100 with 

1% formaldehyde. Chromatin was cross-linked for 60 min on ice, inverting from time to time and further 

cross-linked at RT for 25 min on a rolling device. Addition of final 0,125 M glycine quenched free 

formaldehyde and stopped the crosslinking reaction. The final chromatin sample was centrifuged at 14 

000 x g at 4°C for 15 min and carefully resuspended in 4 ml PB. Chromatin pellet was kept on ice till 

further chromatin enrichment protocol either by CsCl or Urea wash.  

Chromatin enrichment by CsCl gradient purification 

Cesium chloride (SIGMA) was added to cleared lysates or pre-fractionated chromatin to a final buoyant 

density of 1.4 g/cm3 and loaded in Beckman Coulter polyallomer ultracentrifuge tubes. Ultracentrifugation 

in an SW41 rotor was carried out for 90 h, 29 000 rpm, 20 °C. Gradients were harvested by picking a 

needle at the bottom of gradient and collecting drops in nearly equal fractions of 500 µl. DNA content in 

each of fraction was determined by Hoechst stain and DNA containing fractions were collected. Fractions 

were dialyzed overnight in against dialysis buffer (DB). Dialyzed fractions were de-crosslinked at 95°C for 

45 min and addition of 1 ul Benzonase® (250 units) was sufficient to digest DNA within 20 min incubation 

at 37°C. Proteins were precipitated over night by trichloracetic acid (TCA) at a final concentration of 20%. 

Protein pellets were washed once with 10 % TCA/ddH2O solution and additionally washed by 70% 

ethanol solution. Dried protein pellet were stored at -80°C until further trypsin digestion for mass 

spectrometric analysis.  

DNA content determination by Hoechst stain 

For each of the CsCl gradient fractions (10 µl) were mixed with 200 µl of freshly prepared assay solution 

in a black 96 well plate. Fluorescence was measured with a Spectra Max GEMINI EM microplate reader. 

All fractions were measured at least in duplicates. 

1 mg/ml Hoechst 33258 (Eugene) in ddH2O  

10 x TNE buffer (store at 4°C) 

100 mM Tris-HCl, pH 7.5 (Hoechst stock 1M) 

10 mM EDTA, pH 8 (stock 0.5M) 

2M NaCl (stock 5M) pH 7.4  

H 33258 stock solution (1000 x) 10 ul 

TNE buffer (10 x )   10 ml 

H2O    90 ml 

Total    100 ml 
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Chromatin enrichment by urea-washes  

RNA in pre-fractionated chromatin was digested with RNAse for 20 min at 37°C. The chromatin pellet 

(after centrifugation 14000 x g, 15 min, 4°C) was resuspended carefully, but completely in PB + 2% SDS 

(sodium dodecyl sulfate). Urea buffer (1.5 ml) was added and mixed thoroughly by inverting the tube 

several times. Urea wash steps were repeated twice spinning for 15 min at 14 000 x g at RT. Finally, the 

resulting chromatin pellet was washed once in PB + 2% SDS and resuspended in 1 ml PB. Sonication was 

performed with a Bioruptor® at 4°C for 15 min, 15 sec ON, 15 sec OFF (max power). Sample volume 

was increased to 2 ml PB and sarcosyl was added to final 1%. After 30 min incubation at 4°C on a rotating 

device and centrifugation step (14 000 g, 15 min, RT), the soluble fraction was de-crosslinked at 95°C for 

45 min. Chromatin samples were snap frozen and stored at -80°C until further processing such as DNA 

digestion by Benzonase® and standard TCA protein precipitation procedure. 

Immunoblotting 

The total protein content in the relevant samples was determined with the Quant-iT protein assay kit 

(Thermo Fisher Scientific), and 8.75 µg of total protein was loaded and run on Criterion TGX Stain-Free 

8–16% (Bio-Rad) gels under SDS denaturing electrophoresis condi- tions. Rapid fluorescent detection of 

all proteins in the gel or on the membrane was done according to the manufacturer’s specifications, and 

protein transfer on PVDF membranes was done with the Trans-Blot Turbo system. Rad53 protein was 

detected with a custom-made mouse monoclonal antibody (GenScript) to the FHA2 domain of Rad53. 

Anti-γH2A was similarly a custom- made polyclonal antibody specific for phospho-S129 in yeast H2A. 

Titration curves of histone H3 and histone H4 antibodies were generated to work within the linear 

detection range before use (data not shown). 

Trypsin digestion 

Equal amounts (nearly total 100 ug) of each protein sample were resuspended in RCM buffer (0.5 M Tris 

pH 8.6/ 6 M GnHCl, 0.45 µm filtered) and incubated at RT for 30 min after addition of 20 ul 100 mM 

TCEP. Addition of 20 ul 250 mM iodoacetamide (prepare 46 mg/mL of iodoacetamide in ddH2O) and 

incubation at RT in darkness for 30 min were followed by sample dilution with 500 ul trypsin digestion 

buffer (50 mM Tris/HCl pH 8.6, 5 mM CaCl2). Protein digestion was carried out by the addition of trypsin 

(final 3 ng/ul) and 100 % acetonitrile (HPLC grade, final 3.125%) to each sample and an overnight 

incubation at 37°C. The next day, half of the initial trypsin portion was added and digestion was continued 

for another 3-4 hours at 37°C. 
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Desalting 

Peptides were desalted using 50 mg C18 solid phase extraction cartridges (Waters). Approx. 630 ul of 

eluate were obtained. 30 ul (max. 5 ug) aliquots were transferred into auto sampler glass vials for quality 

control MS analyses and dried together with the remaining 600 ul (max. 95 ug) aliquots in a speed vac. 

TMT9plex labeling and desalting 

Samples were labeled with channels 126 – 130C of TMT 10plex reagent (Label reagent set, Thermo 

Fischer, Lot# PI202555). According to the facility’s standard TMT labeling protocol, we mixed in equal 

volumes and then desalted. 40 ul of labeling buffer (2M Urea/0.2M HEPES, pH = 8.3) was added to dried 

peptide pellets followed by the addition of 6 ul of the respective TMT reagent solution (TMT reagents 

126-130C in anhydrous DMSO). The reactions were stopped by adding 3 ul of stop solution (1.5 M 

hydroxylamine). Finally, samples were mixed and empty reaction vials were washed with 20 ul high pH 

buffer (1M potassium phosphate buffer, pH = 12). Mixed solutions were acidified with 230 ul of 2M HCl 

and 80 ul of 5% trifluoroacidic acid (final TFA conc. 0.5%). This mixture was desalted on 50 mg C18 

SepPak Waters SPE cartridges. After elution, peptides were mixed with 50 ul 50% acetonitrile, 0.15% TFA. 

An approximate of 5 ug of the eluted TMT peptide mix  was transferred to an autosampler glass vial and 

dried the remaining 900 ug were dried for subsequent peptide fractionation. 

LC-MS acquisition 

TMT-labeled peptide samples were analyzed using an LC-MS3 method by nano liquid chromatography 

tandem mass spectrometry with an EASY-nLC 1000 pump using a two column set up (Thermo Fisher 

Scientific). The peptides were loaded in buffer A onto a trap column (Acclaim PepMap 100, 75µm x 2cm, 

C18, 3µm, 100Å) and separated using a PepMap RSLC analytical column (50 µm x 15 cm, C18, 2 µm) 

column at 45C mounted on a modified DPV ion source (New Objective) connected to an Orbitrap Fusion 

mass spectrometer (Thermo Scientific) at a flow rate of 150 nl/m with a linear gradient of 3-8% buffer B 

in 3 minutes followed by a linear increase from 8-22% B in 40 minutes, 22-40% B in 5 min, 46-80% B in 

5 min followed by 8 min wash at 80% B (buffer A: 0.1% formic acid in water, buffer B: 0.1% formic acid 

in acetonitrile). Data was acquired using an MS3 method as described by McAlister et al. (Mcalister et al. 

2014). Briefly, MS1 full scans were acquired with a cycle time of 1 second in the Orbitrap analyzer at 120k 

resolution followed by CID fragmentation and detection in the ion trap of the top 10 MS1 peptide 

precursors, synchronous precursor selection of the top 6 MS2 fragment ions followed by HCD 

fragmentation and detection of the TMT10plex reporter ions at 60k resolution in the Orbitrap analyzer. 
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CHAPTER 6: CONCLUSIONS AND FUTURE PROSPECTIVES 

This last chapter is divided into two parts. The first part summarizes my findings and discusses the relevant 

results. The second part highlights the future directions arising from these results. 

Discussion 
In this thesis I have explored global chromatin changes that arise in response to DNA damage. The 

majority of my work was focused on chromatin in the broad sense – specifically focused on histones. 

During my time in the Gasser laboratory, I have used multiple techniques such as quantitative mass 

spectrometry, fluorescence microscopy and image analysis workflows to examine chromatin changes in 

response to DNA damage. This led to the main contributions discussed in Chapters 2 – 5. We found that 

the DNA damage response causes widespread changes in the physical structure and protein composition 

of chromatin. Our work on this subject uncovered a previously unappreciated pathway which triggers 

proteasomal degradation of histone proteins in response to DNA damage (Chapter 4). During the course 

of this study, we further developed a semi-automated image analysis workflow that was successfully used 

to measure the expansion and nuclear position of fluorescently labeled chromatin domains both in yeast 

and C. elegans (Chapters 2 & 3). In addition, we have devised a mass spectrometry-based workflow for the 

quantitative analysis of global chromatin composition (Chapter 5). Finally, we found that forced changes 

in endogenous nucleosome occupancy can impact repair events in yeast. If transferred to mammalian cells, 

this effect might have interesting applications in the future. 

Nucleosome degradation and chromatin expansion at the basis of global chromatin mobility 

In Chapter 4, I have outlined and discussed my main PhD project which uncovered the mechanism by 

which remodeling enzymes are able to increase chromatin mobility in response to DNA damage. 

 We used quantitative mass spectrometry, fluorescent live-cell microscopy and genome-wide 

nucleosome mapping to show that core histone proteins are degraded in response to damage in a 

checkpoint, remodeler and proteasome-dependent manner. This caused chromatin to expand globally, 

become more flexible and enhance its mobility. These findings were further validated in a recent 

publication from the Gasser and Holcman laboratories which showed that INO80-C-dependent 

chromatin expansion and relaxation also occurred at site specific DSBs (Amitai, Seeber et al. 2017). Our 

results thus implicate histone degradation in both local and global damage-provoked chromatin mobility 
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(Fig._8ab). Furthermore, we suggest remodeler-dependent histone degradation as a novel and integral 

part of the DNA damage response in yeast (Fig. 8c). 

 Forcing nucleosome loss from DNA led to enhanced chromatin mobility, unfolded chromatin and 

increased fiber flexibility (Fig. 8c). This directly linked chromatin composition to physical DNA 

movement and placed nucleosomes at the basis of damage-related mobility. Notably, this result contradicts 

an earlier report where transcriptional shutdown of histone H3 was found to decrease locus mobility 

(Verdaasdonk, Vasquez et al. 2013). The difference may reflect that enhanced chromatin flexibility requires 

the loss of both H3 and H4. Another explanation might be that the prolonged H3 repression workflow 

used by Verdaasdonk et al. caused an extended G2 cell cycle arrest and apoptosis even before data 

Figure 8 Concepts of local and global chromatin mobility in response to DNA damage. (a) Recapitulation of DSB 
mobility. For detailed information see Fig. 4. (b) Model for global chromatin mobility. Zeocin is used to induce random 
DSBs and SSBs to the genome. This damage activates the key DDR kinase Mec1. Mec1 targets checkpoint proteins Rad9 
and Rad53. Furthermore, it phosphorylates subunits of the chromatin remodeling complex INO80. Non-damaged loci in 
this scenario will be four times more mobile as compared to the undamaged condition. This global increase in chromatin 
movement requires Mec1, Rad53 and the INO80-C complex. Both the checkpoint and INO80-C trigger proteasome 
dependend degradation of core histones in response to DNA damage. This decompacts chromatin, enhances global 
mobility and facilitates repair. The impact of forced histone reductions is highlighted in blue. (c) Mechansims which are 
thought to be at play in chromatin upon DNA damage. 
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acquisition. Furthermore, it was shown that H4 (but not H3) shutdown lead to a declustering of 

kinetochores (Bouck and Bloom 2007). Yet, another report by the Durocher group has recently postulated 

a release of chromosomal tethers around the centromere as the source of both altered local as well as 

global chromatin mobility (Strecker, Gupta et al. 2016). The authors identified Cep3, an inner kinetochore 

protein in yeast, as a target of the DDC kinase Rad53 and showed that damage-induced phosphorylation 

of Cep3 triggers a release of centromeres from their SPB tether. This was proposed to generally promote 

chromatin movement in response to damage, an effect that seem to be abrogated in a phospho-dead 

(S575A) Cep3 mutant. Strikingly, the cep3-S575A mutation had no effect on repair by homologous 

recombination which would suggest that chromatin mobility is dispensable for repair (Strecker, Gupta et 

al. 2016). These effects, however, cannot account for the expansion of non-centromeric chromatin or for 

the INO80-C dependencies observed in our study. Therefore, two independent hypotheses on how DNA 

damage increases chromatin movement exist: either through centromere declustering or through a change 

in chromatin fiber structure. Here I will discuss our current interpretation of the present data and how 

these hypotheses may potentially overlap.  

 As mentioned earlier, Bouck et al., 2007, showed that complete transcriptional shutdown of H4 leads 

to kinetochore declustering. Therefore, the observed mobility increase in our NHP6 deletion or the 

artificial transcriptional histone gene repression strains may arise not from a genome-wide loss of histones 

but rather a coincident loss of histone-H3 like centromere protein Cse4 at yeast centromeres. This raises 

the question whether damage-dependent histone loss is a cause or consequence to centromere 

declustering? An unpublished study from the Gasser laboratory currently addresses this question (Anais 

Cheblar & Andrew Seeber, personal communication). In this work, NHP6 deletions were used to lower 

nucleosome occupancy in yeast cells containing a fluorescently tagged version of the essential kinetochore 

protein Mtw1 in combination with a tagged nuclear pore protein (Nup49). Both the nuclear position of 

Mtw1 as well as Mtw1 declustering (as in Strecker et al., 2016) was scored in either G1 or G2/M cells.  

Similar experiments were done after Zeocin treatment. Importantly, the microtubule poison Nocodazole 

was used as a positive control for kinetochore detachment (Bystricky, Heun et al. 2004). Surprisingly, 

neither kinetochore declustering nor detachment was observed in nhp6∆ cells or upon Zeocin treatment 

in either cell cycle stage. As expected, Nocodazole treatment led to kinetochore detachment. This 

contradicts the data from Strecker et al. and unambiguously shows that kinetochore declustering is not 

induced by DNA damage or in nhp6∆. Furthermore, Amitai et al. found that the actin cytoskeleton impacts 

chromatin mobility through actin-driven nuclear oscillations which can be removed by treating cells with 

the actin polymerization inhibitor Latrunculin A. These oscillations were not required for enhancing the 
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mobility of a DSB. Therefore, it appears that DNA damage induced chromatin mobility is a result of direct 

changes to the chromatin fiber involving the INO80 complex. 

Chromatome proteomics – a method to measure chromatin-wide protein abundances in yeast 

Chromatin is a “fuzzy organelle” and subject to constant changes. This makes it especially challenging to 

access dynamic changes in protein abundances and modifications. Two recent mass spectrometry 

techniques were used to crosslink, purify and quantitatively analyze chromatin from mammalian cells 

(Kustatscher, Hegarat et al. 2014, Paul Ginno & Dirk Schübeler - unpublished results). In Chapter 5, we 

have compared and modified these techniques and adapted them for chromatome analysis in yeast. During 

the course of this study, we found that CsCl gradient-based purification of chromatin from crosslinked 

cells is incompatible with yeast. It did not enrich chromatin-related proteins other than histones. We thus 

further tested four different workflows for successful chromatin enrichment. Out of these four, pre-

fractionating chromatin from yeast cells before crosslinking and combined with subsequent washes urea 

washes performed best. It showed the highest amount of chromatin enrichment and the lowest amount 

of cytoplasmic protein contamination. We found that urea wash steps probably caused slightly higher 

variation within replicates, but was nevertheless essential to reduce non-specifically bound proteins. 

Purifying pre-fractionated chromatin over CsCl gradients showed comparable result. However, we do not 

recommend this technique because sample preparation times are substantially longer (up to five days as 

compared to two). We therefore recommend the “pre-fractionation, urea wash” workflow to address the 

chromatome in yeast. Coupled with TMT based labeling of peptides, up to nine different conditions can 

be quantified in parallel (multiplexed).  

Future directions 
In Chapter 4, I have shown that INO80-C plays a major role in damage-induced histone degradation. 

This is not surprising as the Ies3 and Ies4 subunits of INO80-C are targets of the Rad53 DDC checkpoint 

kinase and phosphorylated in response to DNA damage (Morrison, Kim et al. 2007). We further showed 

that histones were largely degraded by the proteasome. This suggests that histones need to be targeted for 

degradation by ubiquitination. Interestingly, INO80 was recently shown to interact with CDC48, an AAA+ 

ATPase involved in proteasome-dependent protein degradation (Lafon, Taranum et al. 2015). Moreover, 

both the DDC kinase Mec1 and INO80-C are linked to RNA polymerase II eviction at sites of replication 

fork–transcription collision, another process which most probably requires ubiquitin-mediated protein 

degradation (Poli, Gerhold et al. 2016). However, it remains to clarify what triggers histone degradation in 

yeast and how this process is related to the DDR. To answer this question, it would be interesting to 
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monitor histone PTMs before and after DNA and in damage in the absence and presence of proteasomal 

inhibition. This could be achieved by combining MS based chromatome measurements (described in 

Chapter 5) with histone PTM profiling. Given the involvement of the proteasome, we expect histones to 

acquire ubiquitination. In a simpler approach, histones could be first immunoprecipitated and subsequently 

investigated for ubiquitin-related upshifts on immunoblots. The Gunjan laboratory has recently identified 

multiple E2 and E3 ubiquitin-conjugating enzymes that regulate the degradation of excess histone levels 

in yeast (Singh, Kabbaj et al. 2009, Singh, Gonzalez et al. 2012). It is of interest to test the involvement of 

these enzymes in the damage-depended histone degradation pathway. 

 Using genome-wide nucleosome mapping, we identified a global reduction in nucleosome 

occupancy in response to DNA damage induced with Zeocin (Chapter 4). Up to now, we could not link 

this depletion to any structural elements or genomic regions such as centromeres or telomeres. As 

nucleosome occupancy equally dropped in high and low-level transcribed genes, this effect was 

independent from gene transcription. It would be interesting to determine the role of INO80 in this 

process and further examine whether nucleosomes are preferentially lost at INO80-binding sites and/or 

at genes which are activated in response to DNA damage. To this end, ChIP-sequencing could be used to 

identify INO80-C binding sites before and after Zeocin treatment. These sites could then be correlated to 

genome-wide nucleosome positioning data in WT and INO80-C mutant cells in the absence or presence 

of DNA damage. Finally, there is no study which addressed global transcriptional changes in response to 

Zeocin treatment. Therefore, RNA sequencing experiments would have to be done to correlate histone 

loss with gene transcription. 

 Using mass spectrometry and nucleosome mapping, we showed that core histones are degraded and 

lost from chromatin generally, i.e. genome-wide. However, it is not clear whether local histone loss at 

Zeocin-induced SSBs and DSBs could have contributed to this effect. There is the possibility that the 

global effect could just reflect the accumulation of random local losses in the cell population. This raised 

the question whether the damage checkpoint triggers a truly global nucleosome loss. Notably, we found 

that depletion of the exonuclease Exo1 did not inhibit nucleosome loss. This excluded a role of local DSB 

resection. Furthermore, calculating the amount of resected DNA at 10 DSBs (approximate number of 

breaks caused by the Zeocin concentrations used) within one hour after damage at a resection speed of 5 

kb/h (Saad, Gallardo et al. 2014) could only account for 0.8% of the genome (100 kb). As we observed 

core histone losses of 20-30%, this provided another reason to neglect the effect of resection during global 

histone loss. However, probing nucleosome occupancy in response to artificial DDC activation (Bonilla, 

Melo et al. 2008) in the absence of DNA damage could provide definitive proof. To this end, multiple 
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DSBs could could be induced away from bulk chromatin by galactose-driven I-SceI cuts on a 2µ plasmid. 

Each cell harbors up to 150 copies of such plasmids and I-SceI induction should thus trigger a strong 

checkpoint response without introducing actual damage to chromatin. Genome-wide nucleosome 

mapping could then be used to specifically address nucleosome occupancy along chromosomes. 

Furthermore, it is tempting to couple such experiments with the proteomic approach discussed in Chapter 

5. 

 In Chapter 4, we have shown that histone loss brought about by NHP6 deletion or by 

transcriptional repression of histone genes, is sufficient to increase the rate of gene targeting, presumably 

by making chromatin more accessible. Similar to our results, work from the Bianchi laboratory showed 

that depletion of HMGB1 (the human homologue to Nhp6) equally triggers histone loss, reduced 

nucleosome occupancy and increased chromatin accessibility (Celona, Weiner et al. 2011). HMGB1 and 

Nhp6 belong to the family of high mobility group proteins which are found abundantly on chromatin 

where they bind to the minor grove of DNA (Malarkey and Churchill 2012). Recent biochemical studies 

complement our work and show that nucleosomes constrain the activity of CRISPR-Cas9 (Horlbeck, 

Witkowsky et al. 2016, Isaac, Jiang et al. 2016) which requires access to naked DNA to make its guide-

RNA-directed cut (Jinek, East et al. 2013). This suggests that chromatin accessibility is a rate-limiting step 

for CRISPR-Cas9 related gene editing technologies and that its efficiency might be enhanced in a manner 

similar to the one we used in yeast. It is thus of interest to test whether artificially reducing nucleosome 

levels in mammalian cells would increase CRIPR-Cas9 cutting and gene editing rates. This is of special 

interest as the efficiency of gene editing by HR remains poor and the major challenge to overcome for 

many practical applications of CRISPR-Cas9 editing (Mali, Yang et al. 2013, Wang, Yang et al. 2013, Chu, 

Weber et al. 2015, Maruyama, Dougan et al. 2015). A number of molecules exist that bind to and block 

HMGB1 function such as the anti-inflammatory drug Glycyrrhizin (Mollica, De Marchis et al. 2007) (Fig. 

9a). We now obtained initial indications that treating either yeast or human cells with this HMGB1 

antagonist is sufficient to decrease histone levels in a dose dependent manner (Fig. 9b-e). Together with 

Andrew Seeber and Susan Gasser, I now plan to move on with expanding our previous work from yeast 

to human cells and test whether more accessible DNA increases the efficiency of CRISPR-Cas9 gene 

editing. 

 As mentioned in the introduction, the Neefjes laboratory showed that the chemotherapeutic agent 

doxorubicin caused histone eviction from open chromatin and contributed to chemotherapeutic effects 

(Pang, Qiao et al. 2013). Similar to HMGB1, doxorubicin binds to the minor groove of DNA (Frederick, 

Williams et al. 1990) where it is likely to compete for histone binding (Pang, Qiao et al. 2013). This raises 
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the idea of testing small molecules which can sterically antagonize HMGB1 in chemotherapeutic 

combination treatments. 

 Last, but not least, it should not be forgotten, that controlled histone proteolysis has additional roles 

in a variety of cellular processes including developmental transitions, spermatogenesis, the immune 

response and neuronal plasticity (Maze, Wenderski et al. 2015). An interesting article by Dhaenens et 

recently summarized these facts and put an end to the “step-motherly fashion” by which histone 

proteolysis had “consistently been treated by the scientific community” (Dhaenens, Glibert et al. 2015). 

Figure 9 Glycyrrhizin induces histone loss in yeast and human cells. (a) 
Structure of HMGB1 antagonist, Glycyrrhizin, showing the sugar moiety and the 
triterpene ring. (b) HMGB1 binds to the minor groove of DNA. Molecular 
modelling indicates that the triterpene ring is important for antagonism of 
HMGB1 (Mollica, De Marchis et al. 2007). (c) Immunoblot blot of whole protein 
content extracted from S. cerevisiae cells after treatment with Glycyrrhizin. (d) 
Groth curve of WT yeast treated with increasing amounts of Glycyrrhizin. No 
change is seen upon Glycyrrhizin treatment. (e) Immunoblots showing H3 and 
H4 levels in whole cell extracts from HEK293T cells treated with increasing 
concentrations of Glycyrrhizin dissolved in DMSO or DMSO alone. Interestingly, 
no checkpoint activation is seen in response to Glycyrrhizin treatment (pATM). 
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APPENDICES 

List of abbreviations 
53BP1: p53 binding protein 1, a critical DSB repair protein that antagonizes DNA end resection to 
promote repair by non-homologous end joining and plays a critical role in the DNA damage checkpoint 

alt-NHEJ: alternative non-homologous end joining, a mutagenic pathway in which previously resected 
DNA ends are ligated together, also called microhomology-mediated NHEJ (MM-NHEJ) 

ATR: ataxia telangiectasia and Rad3-related protein, a critical protein kinase in the DNA damage 
response pathway. Mec1 in S. cerevisiae.   

D-loop: displacement loop, the DNA structure caused by strand invasion that displaces one strand of 
the duplex DNA that serves as the template for HR 

DSB: DNA double-strand break, a DNA lesion in which both strands of DNA are broken 

HC: heterochromatin, highly condensed, and predominantly repetitive and transcriptionally repressed 
chromatin region that reside at the nuclear periphery and/or in intranuclear depots.   

HP1: heterochromatin protein 1, a chromodomain-containing protein that associates with 
heterochromatin 

HR: homologous recombination, a major pathway of DSB repair that requires a homologous template 

IR: ionizing radiation consisting of particles, X-rays, or gamma rays with sufficient energy to cause 
ionization in the medium through which it passes. 

KASH: Klarsicht/Anc-1/Syne1 homology, a family of orthologous tail-anchored outer nuclear 
membrane proteins that make up the cytoplasmic aspect of the LINC complex 

LINC complex: linker of nucleoskeleton and cytoskeleton, a complex of inner nuclear membrane SUN 
proteins and outer nuclear membrane KASH proteins that spans the nuclear envelope 

LOH: loss of heterozygosity 

MRX(N): Mre11-Rad50-Xrs2 (Nbs1 in mammals) complex, important for DSB repair and stabilization 
of stalled replication forks 

MSD: mean squared displacement 

NHEJ: non-homologous end joining, a major pathway of DSB repair that involves direct ligation of the 
DSB  

NPC: nuclear pore complex, the massive protein complex that stabilizes nuclear pores and controls the 
bidirectional traffic of macromolecules in and out of the nucleus 

NORs: nucleolar organization regions, the regions of the genome that give rise to nucleoli, later 
established as being the rDNA 
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OB fold: oligonucleotide binding fold. 

rDNA: ribosomal DNA, the repetitive region of the genome that is composed of repeats of the genes 
encoding the ribosomal rRNA subunits. It resides in the nucleolus 

R-loops: an R-loop is a three-stranded nucleic acid structure, composed of a DNA:RNA hybrid and the 
associated non-template single-stranded DNA (ssDNA).  

rRNA: the RNAs produced from the rDNA that make up the bulk of the ribosomes 

RPA: replication protein A, a trimeric (Rfa1,2,3) complex that binds ssDNA, coating it during replication 
and DNA repair and acting as a major protein recruitment scaffold 

SDSA: synthesis-dependent strand annealing, a template-dependent repair mechanism that proceeds 
without Holliday junction intermediates and leads to non-crossover products 

SMC5/6: a cohesin-related protein complex important for genome integrity, linked to SUMOylation 
activity 

SSA: single-strand annealing, a template-independent (but homology-dependent) repair mechanism in 
which the copy number of tandem repeats can be reduced after DSB resection 

ssDNA: single strand DNA 

STUbL: SUMO-targeted ubiquitin ligase, a family of proteins that induce ubiquitination of target 
proteins and require prior SUMOylation 

SUMO: small ubiquitin-like modifier, a small protein that can be conjugated to lysine residues on target 
proteins 

SUN: Sad1/Unc84, a family of orthologous integral inner nuclear membrane proteins that make up the 
nuclear aspect of the LINC complex 

TRF2: telomere repeat (binding) factor, a component of the shelterin complex that protects 
chromosome ends 
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Non-thesis related contributions 
This is a summary of contributions that I made during my PhD to other bodies of work not directly related 

to my thesis. Where necessary I state my contribution. 

Peer-reviewed Publications 

Horigome, C., Y. Oma, T. Konishi, R. Schmid, I. Marcomini, M. H. Hauer, V. Dion, M. Harata and S. M. 
Gasser (2014). "SWR1 and INO80 chromatin remodelers contribute to DNA double-strand break perinuclear 
anchorage site choice." Mol Cell 55(4): 626-639. 

Horigome showed that the Htz1 incorporation by SWR1 shifts DSBs to the nuclear periphery. In this work, I 
was investigating whether direct SWR1 targeting via Arp6-LexA fusion proteins would impact chromatin 
mobility (Fig. 4). 

 

Jinek, M., F. Jiang, D. W. Taylor, S. H. Sternberg, E. Kaya, E. Ma, C. Anders, M. Hauer, K. Zhou and S. Lin 
(2014). "Structures of Cas9 endonucleases reveal RNA-mediated conformational activation." Science 343(6176): 
1247997. 

Jinek, M., K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna and E. Charpentier (2012). "A programmable dual-
RNA–guided DNA endonuclease in adaptive bacterial immunity." Science 337(6096): 816-821. 

Before I joined Susan Gasser’s laboratory, I was working together with Martin Jinek (now Prof. at the University 
of Zuerich, Switzerland) in Jennifer Doudnas lab in Berkeley (in 2011). During this time, I initiated the 
biochemical characterization and crystallization of the Cas9 protein (at that time called Csn1) which is now used 
in the CRISPR/Cas9 genome editing system. 
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“Methods for increasing the frequency of gene targeting by chromatin modification” 
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