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1. Abstract 
Macrophages have been recognized as key players in non-alcoholic fatty liver disease 

(NAFLD). Our aim was to assess whether pharmacological attenuation of macrophages can 

be achieved by imatinib, an anti-leukemia drug with known anti-inflammatory and anti-

diabetic properties, and how this impact on NAFLD. We analyzed the pro- and anti-

inflammatory gene expression of murine macrophages and human monocytes in vitro in the 

presence or absence of imatinib. In a time-resolved study, we characterized metabolic 

disease manifestations such as hepatic steatosis, systemic and adipose tissue inflammation 

as well as lipid and glucose metabolism in obese mice at one and three months of imatinib 

treatment. Our results showed that imatinib lowered pro-inflammatory markers in murine 

macrophages and human monocytes in vitro. In obese mice, imatinib reduced TNFα-gene 

expression in peritoneal and liver macrophages and systemic lipid levels at one month. This 

was followed by decreased hepatic steatosis, systemic and adipose tissue inflammation and 

increased insulin sensitivity after three months. As the transcription factor sterol regulatory 

element-binding protein (SREBP) links lipid metabolism to the innate immune response, we 

assessed the gene expression of SREBPs and their target genes, which was indeed 

downregulated in the liver and partially in peritoneal macrophages. In conclusion, targeting 

both inflammatory and lipogenic pathways in macrophages and liver as shown by imatinib 

could represent an attractive novel therapeutic strategy for patients with NAFLD. 
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List of Abbreviation  
Abbreviation  

ATP Adenosine triphosphate  

CCL Chemokine ligand  

CCR Chemokine receptor  

CXCL Chemokine ligand  

DAMP Damage-associated molecular patterns 

FFA Free fatty acids 

GTT Glucose tolerance test  

PPAR-γ Peroxisome proliferator-activated receptor-gamma  

pS273 Phosphorylation at serine 273  

PRR Pattern recognition receptors 

HDL High-density lipoprotein  

HFD High fat diet 

ITT Insulin tolerance test  

i.p. Intraperitoneal 

KC Kupffer cell 

NAFLD Non-alcoholic fatty liver disease 

ROS Reactive oxygen species 

SREBP Sterol regulatory element binding protein 

STZ Streptozotocin 

SVF Stromal vascular fraction 

T2D Type 2 diabetes  

TLR4 Toll-like receptor 4  

TZDs Thiazolidinediones 

VLDL Very low-density lipoprotein 
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2. Introduction 
2.1 Normal physiology 

2.1.1 Energy sources 
The human body requires the three energy sources of carbohydrates, lipids and proteins. These 

biomaterials are metabolized into the smaller biomolecules glucose, fatty acids and amino 

acids, which can be used to generate adenosine triphosphate molecule (ATP). ATP is a 

nucleotide known as the “molecular currency” of intracellular energy transfer due to its ability 

to store and transfer energy in the cells1.  

 
2.1.2 The concept of glucose homeostasis  
Glucose is the main source of energy in the body and is maintained in a physiological range of 

3.5-5.5 mmol/L in the blood2. Glucose homeostasis is defined as the balance between glucose 

entering and removal from the circulation. Glucose is derived either exogenously with food 

intake or endogenously by breakdown of stored glycogen or by gluconeogenesis. The glucose 

metabolism is regulated by many gluco-regulatory hormones. The key regulators of glucose 

homeostasis are insulin and glucagon, but also other hormones impact on glucose homeostasis 

such as amylin, glucagon like peptide-1, glucose-dependent insulin tropic peptide, epinephrine, 

cortisol and growth hormones. After food intake, pancreatic beta cells sense elevated blood 

glucose levels via GLUT2 dependent glucose uptake with a subsequent increase in the ATP to 

ADP ratio, KATP channel closure, opening of voltage gated calcium channels causing insulin 

granule fusion and exocytosis. Secreted insulin increases glucose uptake by muscles and 

adipose. Subsequently, the absorbed glucose is converted into glycogen via glycogenesis in the 

muscles and into triglycerides via lipogenesis in adipose tissue. In the liver, insulin inhibits 

glucose production via activating glycogenesis and thereby increasing hepatic glycogen. 

Conversely during starvation, low blood glucose levels stimulate pancreatic alpha cells to 

release glucagon, which in turn increases glucose production by triggering glycogenolysis and 

gluconeogenesis in the liver2, 3. 

 

2.1.3 Fatty acids in homeostatic state 
Fatty acid homeostasis is defined as the balance between lipid synthesis (lipogenesis) and lipid 

breakdown (lipolysis/ fatty acid oxidation). Fatty acids can be obtained exogenously from 
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nutrition or endogenously by lipogenesis via conversion of acetyl-CoA into triglycerides in 

both liver and adipose tissue. Normal fasting lipids levels are tightly regulated: Fasting and 

dietary unsaturated fatty acids prevent lipid synthesis by stimulating lipolysis in adipose tissue 

and inhibition of lipid synthesis enzymes in the liver, respectively4, 5. Moreover during fasting, 

low plasma insulin levels activate glycolytic and lipogenic enzymes and thereby increase 

glucose uptake and lipid synthesis5. In contrast, a diet rich in carbohydrates triggers lipogenesis 

in both adipose tissue and liver. Additionally, multiple factors contribute to the regulation of 

lipid metabolism including diet, hormones such as insulin, growth hormones and leptin as well 

as transcription factors including sterol regulatory element binding proteins (SREBPs) and 

peroxisome proliferator-activated receptor gamma (PPAR-γ) in both the liver and adipose 

tissue5, 6. 

 

2.2 Pathophysiology  

2.2.1 Obesity  
Obesity and overweight are global health problems and have increased dramatically over the 

last years. In 2016, the World Health Organization reported that more than 1.9 billion adults 

worldwide were overweight with a body mass index (BMI) of 25.0 to 29.9 kg/m2 and 600 millions 

of patients were obese (BMI ≥30 kg/m2)7-9. Obesity and overweight are defined as abnormal 

fat accumulation in adipose tissue10 and in other insulin sensitive tissues that are associated 

with insulin resistance11. Obesity is strongly linked to insulin resistance related diseases such 

as type 2 diabetes (T2D), hypertension, dyslipidemia and non-alcoholic fatty liver disease 

(NAFLD)7, 8, 12. Moreover, recent reports revealed that low-grade inflammation is also 

associated with insulin resistance in obesity and other metabolic diseases13, 14.  

 

2.2.2 Type 2 diabetes 
While about 5% of diabetes cases are considered as type 1 diabetes (T1D) due to a loss in 

pancreatic β-cells15, 16, 90-95% of patients are diagnosed with type 2 diabetes (T2D), which is 

strongly associated with obesity16. Interestingly, only one-third of all obese individuals develop 

T2D. Obesity can progress to T2D when the β-cells of the pancreatic islets fail to compensate 

for insulin resistance. Whereas insulin resistance defined as an inability of cells to properly 

respond to the insulin action, β-cell dysfunction refers to insulin deficiency due to impaired 

insulin secretion or a reduced β-cell mass caused by apoptosis17, 18. While T1D arises from 
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β-cell dysfunction/loss, T2D is a consequence of both insulin resistance and β-cell 

dysfunction16. Physical inactivity, overnutrition, genetics and epigenetics increase the risk for 

T2D by triggering different mechanisms such as glucotoxicity, lipotoxicity, oxidative stress, 

endoplasmic reticulum stress, altered gut microbiota and amyloid deposition, which eventually 

leads to T2D. These various stresses are associated with sterile inflammation during 

development of T2D19-25.  

 

2.2.3 Non-alcoholic fatty liver disease  
Non-alcoholic fatty liver disease (NAFLD) has become the most frequent chronic liver disease 

in developed countries affecting more than 30% of the population26-28. Moreover, NAFLD is 

the main cause for liver transplantations nowadays29. NAFLD comprises of a wide spectrum 

of diseases ranging from simple fatty liver (NAFL) or steatosis to non-alcoholic steatohepatitis 

(NASH). NAFL is determined by the accumulation of more than 5% of fat droplets in 

hepatocytes30. NASH is characterized by different features of hepatocellular injury such as 

ballooning, apoptosis/necrosis, Mallory’s hyaline bodies, giant mitochondria and 

inflammation/ fibrosis31, 32.  

 

NAFLD is classified into a primary and secondary form based of the underlying 

pathogenesis33: Primary NAFLD is strictly associated with insulin resistance and metabolic 

disease such as obesity and T2D. For example, 80 % of NAFLD subjects are obese34 and 

around 61 % of NAFLD patients have T2D35, 36. Moreover, NAFLD in diabetic patients is 

linked to increased risk of cardiovascular disease37 and chronic kidney diseases38. The 

secondary form of NAFLD is caused by underlying diseases such as hepatitis C39, HIV40, 

metabolic disorders i.e. hypopituitarism41 or some drugs like tamoxifen42 and methotrexate43.  

 

Pathogenesis of non-alcoholic fatty liver disease  

The molecular etiology and mechanisms behind the pathophysiology of NAFLD are 

complicated as many factors and pathways contribute to the disease development44. Recently, 

a multiple-hit hypothesis was introduced to explain the development of NAFLD45. Diet, genetic 

polymorphisms46, altered gut microbiota47 and hormones secreted by adipose tissue48 have 

been postulated as important contributors for NAFLD development. However, insulin 

resistance, hepatic lipid accumulation (lipotoxicity), inflammation and mitochondrial 
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dysfunction are key mechanisms for disease progression and they have been broadly studied 

in the context of NAFLD and metabolic syndrome44.  

 

The link between insulin resistance and lipid accumulation in NAFLD 

In the physiological state, glucose is catabolized into fatty acids through the multi-enzyme 

process of de novo lipogenesis in the liver. In addition, fatty acids in the liver are either oxidized 

in the mitochondria or anabolized into triglycerides and released into the blood as very low-

density lipoprotein (VLDL)44, 49. However, excessive food intake and insulin resistance result 

in alterations of fatty acid and glucose homeostasis, leading to an accumulation of lipids in the 

liver, also known as steatosis.  

 

Hepatic lipid accumulation happens by three different ways during NAFLD progression: In the 

NAFL stage, steatosis occurs either due to an increased free fatty acids (FFA) influx originating 

from dysfunctional adipose tissue or an increased hepatic de novo lipogenesis resultant from 

excess dietary carbohydrate30, 33, 44, 49-51. In the NASH stage, decreased lipid exportation as 

VLDLs contributes to lipid accumulation in the liver51 (Fig. 1). 

 

Different mechanisms have been proposed behind abnormal lipid accumulation in the liver. In 

the adipose tissue, insulin resistance reduces the inhibitory action of insulin on the hormone 

sensitive lipase (HSL) and triggers the breakdown of triglycerides, which subsequently leads 

to an increase of FFA in the circulation.  

 

In the liver, increased dietary FFA influx and lipogenesis result in hepatic lipotoxicity 

augmenting insulin resistance33. Hepatic insulin resistance is mediated by lipid intermediates 

particularly diacylglycerols and ceramides44, 49, 52. Accumulation of diacylglycerols and 

ceramides inhibits insulin signaling by activating Protein kinase Cε53 and by suppression of 

protein kinase B50, respectively. Moreover, under hyperinsulinemic conditions, hepatic glucose 

production is increased due to an increase in Forkhead box A2 (FOXA2) protein, a master 

regulator of gluconeogenesis. Paradoxically, insulin promotes increased de novo lipogenesis 

by enhancing SREBP1c through the stimulation of mTOR complex 144, 54. An additionally 

postulated mechanism is the upregulation of hepatic PPAR-γ mRNA together with SREBP1c 

in obese NAFLD patients55.  
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Figure 1| Development of steatosis in non-alcoholic fatty liver disease. In the homeostatic state, hepatic 
lipids are derived from dietary fat, hepatic de novo lipogenesis and peripheral adipose tissue. In insulin resistant 
individuals, lipid metabolism is altered resulting in increased steatosis. Adipose tissue lipases (i.e. HSL, ATGL) 
are not inhibited by insulin, leading to a continuous influx of free fatty acids (FFAs) to hepatocytes. 
Hyperglycemia and hyperinsulinemia stimulate both carbohydrate response element binding protein (ChREBP) 
and sterol regulatory element binding protein-1c (SREBP-1c) in the liver, causing increased de novo fatty acid 
synthesis. In hepatic mitochondria, fatty acid oxidation is reduced due to boosted acetyl-coenzyme A (CoA), 
which is generated from increased fatty acid synthesis. Thus, free fatty acids in the liver are favorably esterified 
to triglycerides (TG) with an increased exportation of very low-density lipoprotein (VLDL) into the blood stream. 
However, in the NASH stage, VLDL exportation is decreased resulting in an increase of TG in the liver and a 
decrease of VLDL in the plasma. Abbreviations: HSL; hormone sensitive lipase, ATGL; adipose triglyceride 
lipase. Figure was taken from Moon, Y.A., 201756. 
 

Inflammation in NAFLD 

The initial accumulation of triglycerides in hepatocytes is considered as benign and a 

physiological response to potentially toxic triglycerides metabolites. This was demonstrated in 

a NASH model where inhibition of triglycerides synthesis improved steatosis, but aggravated 

liver damage57, 58. However, accumulation of FFA and cholesterol in the mitochondria of 

hepatocytes is considered as a dangerous signal. This kind of accumulation leads to metabolic 

stress resulting in an increase of Tumor necrosis factor alpha (TNF-a) and reactive oxygen 

species (ROS) production mediating liver damage and inflammation, eventually resulting in 

NASH development59, 60.  

The progression of steatosis to NASH is associated with a chronic sterile inflammation, which 

is triggered by endogenous damage-associated molecular patterns (DAMPs) produced by 

cellular damage or stress i.e. high-mobility group box 1 (HMGB1), saturated fatty acids, 

cholesterol crystals, proteins, uric acid and ATP and exogenous gut-derived pattern-associated 

molecular patterns (PAMPs) such as lipopolysaccharide (LPS), bacterial DNA or 
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peptidoglycans, which reach the liver via the enterohepatic circulation61-64. DAMP and PAMP 

molecules subsequently activate immune cells of the liver, such as Kupffer cells, monocytes, 

neutrophils, dendritic cells, natural killer cells and NK T cells via pattern recognition receptors 

(PRRs)65. Activation of immune cells amplifies the hepatic inflammatory cascade by the 

release of cytokines such as TNF-a and IL1b, chemokines and ROS, thereby aggravating 

fibrosis and cirrhosis finally leading to hepatocellular carcinoma61, 66. 

 

2.2.4 Liver macrophages in health and NAFLD 
 
Role of macrophages in the healthy liver 

The liver is the organ with the largest reservoir of macrophages with macrophages accounting 

for 15% of total liver cells67, 68. The macrophages of the liver are a heterogeneous population 

including two main types of macrophages62: Yolk sac or fetal liver-derived tissue-resident 

Kupffer cells (KCs) and monocyte-derived macrophages. Whereas KCs are located along 

sinusoidal endothelial cells, monocyte-derived macrophages are normally found in the portal 

triad. In the published literature, F4/80 and CD68 have been used as typical markers for KCs, 

while Ly6C, F4/80 and CD11b were used to identify monocyte-derived macrophages in the 

liver68, 69. However, it seems that hepatic macrophages are heterogenous and surface markers 

of KCs and monocyte-derived macrophages are overlapping, which makes it hard to 

distinguish distinct populations68.  

 

As the macrophages in the liver cannot be properly distinguished, we will refer to them as 

“liver macrophages” in our study. Like other tissue macrophages, liver macrophages display a 

wide range of plasticity during homeostasis and diseases depending on the stimulus68, 70. Liver 

macrophages are activated by exogenous signals like LPS or endogenous danger signals such 

as necrotic cell debris via PRRs. They can exhibit either a pro- or anti-inflammatory 

phenotype68, 71. Pro-inflammatory macrophages are characterized by the expression of the 

chemokines CXCL1 and CCL2, the release of the cytokines i.e. TNF-a, interleukin-1b (IL-

1b), Interleukin-6 (IL-6) and the production of reactive nitrogen species (iNOS) or ROS. In 

contrast, anti-inflammatory macrophages are typically characterized by effective phagocytic 

activity due to activation of scavenger (CD163), mannose (Mrc1) and galactose (Mgl1) 

receptors and the production of the cytokine IL-10. 
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Role of macrophages in NAFLD  

Progression of NAFLD is often associated with the activation of KCs and macrophage 

recruitment72, 73. Different human and rodent studies underline the importance of macrophages 

for the development of steatosis, inflammation and fibrosis. A study conducted in patients with 

steatosis revealed recruitment of CD68+ macrophages in portal areas even before expression 

of pro-inflammatory cytokines74. Additionally, depletion of KCs by clodronate liposomes or 

gadolinium chloride rescues mice from steatosis75, 76. The pro-inflammatory phenotype of 

hepatic macrophages is correlated to the disease severity or progression72. It has been 

demonstrated that monocyte-derived macrophages releasing TNF-a are triggered by KCs in 

the later stage of steatohepatitis as shown in a NASH model77. Another study showed that the 

number of hepatic pro-inflammatory macrophages expressing CCR2 was increased in the 

portal zones of patients with fibrosis and cirrhosis78.  

In the setting of NAFLD and insulin resistance, KCs are activated by various immune signals: 

(i) hepatocytes damage molecules i.e. apoptotic bodies, (ii) lipid overload derived-DAMPs (i.e. 

FFA, free cholesterol and their metabolites, oxidized lipoproteins, ceramides, diacylglycerols) 

and PAMP molecules like LPS72. Upon activation, KCs release pro-inflammatory cytokines 

(e.g. TNF-a, IL-6, IL-1b) and thereby worsen the hepatocytes’ injury. Consequently, KCs 

recruit monocytes via the chemokine pathways like CCL2/CCR2 or CCL5/CCR1 into the 

injured liver tissue. These recruited macrophages can develop into pro-inflammatory, 

angiogenic and fibrogenic macrophages and thus deteriorate NAFLD disease79 (Fig. 2). 
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Figure 2| Activation of hepatic macrophages during initiation and progression of NAFLD.  In the 
initiation stage, DAMPs induced by hepatocytic injury or gut-derived LPS activate KCs in the sinusoidal 
endothelium. KCs in turn produce pro-inflammatory cytokines (e.g. TNF-a, IL-1b). Furthermore, KCs, 
hepatocytes and hepatic stellate cells (HSC) release chemokines such as CCL2, triggering the recruitment of 
Ly6Chi monocytes into the injured liver. In the progression stage (chronic injury), infiltrated monocytes develop 
and expand into Ly6C+ macrophages (Mf), thereby amplifying inflammation, apoptosis and oxidative stress 
resulting in increased hepatic damage. Additionally, Ly6C+Mf stimulate HSC to develop into collagen-producing 
myofibroblasts by secreting pro-fibrotic mediators including tumor growth factor (TGF-b), connective tissue 
growth factor (CTGF), platelet-derived growth factor (PDGF) and tissue inhibitor of matrix metalloproteinase 
(TIMPs). Adapted from Ju, C. and F. Tacke, 201680. 
 
Targeting macrophages in NAFLD 

No approved effective drug is available to treat NAFLD. However, hepatic macrophages have 

been suggested as a potential therapeutic target to prevent or improve NAFLD due to their 

crucial contribution in NAFLD progression79. Pharmacological depletion of KCs indeed 

prevents the development of NAFLD in rodents75, 81. However, complete depletion of 

macrophages is not an appropriate approach in a clinical human setting due to the essential role 

of macrophages in the homeostatic state82. Several studies have been conducted with the aim 

to block the recruitment of monocyte-derived macrophages into liver. For instance, 

pharmacological or genetic ablation of different chemokine, cytokines and pattern recognition 
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receptors improves NAFLD characteristics (e.g. CCR2-CCL283-87, CCR2/578, 87, CXCR3-

CXCL1088, 89, CXCL1690, IL-691, TNF-α92, TLR493). Treatment of NAFLD/diabetic patients 

with a CCR2/5 antagonist showed a significant improvement in fibrosis during a clinical trial 

phase IIb72, 94. Additionally, targeting differentiation of macrophages by a Galectin 3 antagonist 

improves fibrosis induced-liver damage in both NASH patients and in a mouse model95, 96.  

Besides blocking macrophage recruitment, pharmacological attenuation of pro-inflammatory 

macrophages could be an alternative strategy to treat NAFLD. As macrophage activation and 

chronic low-grade inflammation are linked to metabolic disease and insulin resistance97, 

targeting pathologically activated macrophages might even have a broader impact than on 

NAFLD only, but also improve insulin resistance and inflammation. 

 

Pharmacological attenuation of hepatic macrophages 

PPARγ-agonists/thiazolidinediones (TZDs) have been proposed as a pharmacological agent 

targeting macrophages in NAFLD/NASH. TZDs are anti-diabetic drugs acting mainly on the 

adipose tissue. Additionally, PPARγ-agonists have been shown to dampen liver inflammation 

by attenuating macrophage infiltration and shifting macrophages towards an anti- 

inflammatory phenotype, thereby improving steatosis in the liver98-100. Besides that, a meta-

analysis showed that TZDs could be an effective agent for targeting inflammation and steatosis 

in NASH101. However, TZDs have also been linked to many deleterious side effects such as 

weight gain and congestive heart failure, as well as an increased risk for bladder cancer102, 103. 

Therefore, they have been largely abandoned from clinical practice.  

Intriguingly, the beneficial anti-diabetic/ anti-inflammatory action and unwanted side effects 

of TZDs are mechanistically distinct: Recent studies have revealed that the anti-diabetic/ anti-

inflammatory effects are associated with post-translational modification of PPARγ104, 105, 

which involves inhibition of phosphorylation at serine 273 (pS273) that is implicated in obesity 

and insulin resistance105, 106. In contrast, side effects of TZDs are due to transcriptional 

activation of PPARγ-related genes, known as classical PPARγ-agonism104, 105. Thus, 

uncoupling post-translational modification (anti-diabetic/anti-inflammatory effects) from 

transcriptional activation of PPARγ (side effects) could be a promising strategy for 

pharmacological macrophage attenuation. 
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Imatinib as an alternative to TZD 

One potential candidate drug with anti-inflammatory properties is the tyrosine kinase inhibitor 

(TKI) imatinib, which was originally developed to target the tumor-associated fusion protein 

BCR-Abl in chronic myelogenous leukemia (CML). Over the years, several other targets of 

imatinib have been identified107. Most recently, imatinib has been shown to inhibit 

posttranslational phosphorylation of PPARγ without classical PPARγ-agonism105. Like TZDs, 

imatinib has also anti-diabetic/ anti-inflammatory properties. Regarding its anti-inflammatory 

effects, imatinib treatment polarizes tumor-associated macrophages towards an anti-

inflammatory phenotype108, suppresses glycolysis as an indication for anti-inflammatory 

polarization in leukemia cells109, reduces acute liver injury110 and attenuates adipose tissue 

inflammation in obese mice105. Furthermore, glucose-lowering effects have been observed as 

“side effects” in cancer patients treated with imatinib111, 112. In diabetic mouse models, these 

anti-diabetic effects have been attributed to reduced β-cell death and maintained β-cell 

function113-115.  
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3. Aim of the study 
Based on the anti-inflammatory and anti-diabetic effects of imatinib potentially involving 

PPARγ, the aim of our study was to assess whether imatinib directly attenuates macrophages 

and could therefore be used in disease states with pathological macrophage activation such as 

NAFLD. We set out a proof-of-concept study to addresses this novel therapeutic concept by 

testing the effect of imatinib on (i) macrophage activation in vitro, (ii) NAFLD and other 

insulin resistance related diseases such as diabetes and obesity in a time-resolved manner in 

vivo and (iii) human monocytes to assess its translational application. The concept of 

pharmacological macrophage attenuation in NAFLD is intriguing as restoring pathologically 

activated macrophages could potentially not only target the root cause of NAFLD progression, 

but also other metabolic disease manifestations such as adipose tissue and systemic 

inflammation and insulin resistance. A more profound understanding of macrophage 

modulation and the molecular pathways involved holds the promise for new treatment 

strategies in NAFLD and metabolic disease.  
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4. Materials and methods 
4.1 Methods 

4.1.1 Mice  
 
Animals  
C57BL/6N male mice (Charles River Laboratories, Sulzfeld, Germany) were maintained in our 

SPF-facility at 22 Celsius room temperature with a 12 hours light/12 hours dark cycle and 

housed in groups of 3-5 mice. Body weights were monitored once weekly. Mice used for 

metabolic experiments were allowed one week of acclimation after the arrival. All procedures 

were approved by the local Animal Care and Use Committee (Veterinary Office Basel, 

Switzerland) and carried out in accordance with relevant guidelines and regulations.  

 

4.1.2 Cell isolation, culture and treatment 
 
4.1.2.1 Cell isolation and culture 
 
Peritoneal cells 

Primary macrophages were obtained from 6-8 weeks old C57Bl/6N mice. To isolate peritoneal 

macrophages, peritoneal cells were harvested by intra-abdominal lavage: 10 mL of FACS 

buffer were injected into the peritoneal cavity using a 10 mL syringe with a 23Gx11/4 

(0.6x32mm) needle (Terumo AGANIä Needle, TERUMOâ, Tokyo, Japan). The the peritoneal 

membrane was subsequently opened to collect the liquid containing the peritoneal cells through 

a glass funnnel placed in a 50 mL falcon tube. The collected liquid was filtered through a 70 

µm filter (Sigma-Aldrich). Peritoneal cells were pelleted by centrifugation at 453x g for 5 

minutes at 4 Celsius. The cells were used either for RNA isolation or proceessed further for 

macrophage enrichment. 

 

Peritoneal macrophages 

Peritoneal cells were cultured in 24-well plates (200000-700000 cells/ well) in RPMI-1640 

medium without glucose and glutamin suplemented with 10 % FBS, 1 % Glutamax, (100 x, 

200 mM), 1 % Penicillin/ Streptomycin (10000 U/10 mL), 0.1 % fungizone: Amphotericin B 

(250 µg/mL). Cells were incubated overnight at 37 Celsius supplied with 5 % CO2 in a 

humidified atmosphere. On the next day, the cells were enriched for macrophages by washing 
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out the non-adherent cells twice using PBS and then treated as outlined in the section “cell 

treatment”.    

 

Bone marrow derived macrophages (BMDM) 

To isolate murine bone marrow cells, an incision was longitudinally made in the hind leg and 

both of muscles and connective tissue were removed from femur and tibia. Then, the leg was 

cut at pelvic-hip joint and placed in a petri dish containing RPMI-1640 medium. Femur and 

tibia were separated and each of them was cut at one side under sterile conditions. To isolate 

bone marrow cells, the bone was flushed with 5 mL medium (into a 15 mL Falcon). The cells 

were washed (453x g, 5 minutes at 4 Celsius) and resuspended in 1 mL medium. Bone marrow 

cells (0.5 mL) were cultured in a petri dish (Falcon Corning® Dishes 100 x 20 mm style, 

Thermo Fisher Scientific) in RPMI-1640 medium containing HEPES (25 mM) and L-glutamin 

(2mM) suplemented with 10 % FBS, 2 % Penicillin/ Streptomycin, 1 % Sodium Pyruvate (100 

mM), 1 % MEM Non-essential Amino Acids (100 x), and 0.055 mM β-mercapoethanol (1000 

x). For macrophage differentiation, cells were cultured in the presence of M-CSF (10 ng/mL, 

PeproTech, London, UK) at 37 Celsius in an incubator supplied with 5 % CO2 for 7- 9 days. 

The cells were washed with PBS two times at day 3 and 7. One day prior to treatment, the cells 

were washed, collected and seeded in a 96-well plate (60000-100000 cells/ well) in absence of 

M-CSF for 24 hours prior treatment. 

 

Adipose tissue stromal vascular fraction (SVF) 

Murine epididymal adipose tissue was isolated and the weight measured. The tissue was placed 

into a 50 mL falcon tube and minced using a curved scissor. The minced tissue was collected 

in 4 mL of HBSS (Gibco) and a 2x digestion mix containing HBSS, 10 mM HEPES, 8.25 

µg/mL DNAse I, (Sigma- Aldrich) and collagenase IV (Worthington, OH, USA) was added. 

The tissue was digested at 37 Celsius for 25-30 minutes, shaking at 400x g using a 

ThermoMixer® C (Eppendorf, Germany). The digestion was stopped by adding 27 mL cold 

FACS buffer. Digested tissue was filtered through a gauze (HARTMANN Group, Heidenheim 

an der Brenz, Germany) placed on a glass funnel on a 50 mL falcon tube. Isolated cells were 

spun down at 453x g, 5 minutes at 4 Celsius, resuspended in 1 mL red cell lysis buffer to 

remove red blood cells and washed with 10 mL FACS buffer. 
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Cell treatment  

Peritoneal macrophages and BMDM were polarized to a pro-inflammatory M1 (10 ng/mL 

IFNγ, PeproTech, 100 ng/mL Lipopolysaccharide (LPS) E. coli 0111: B4, Sigma-Aldrich, 

Saint Louis, MO, USA) or anti-inflammatory M2 phenotype (10 ng/mL IL-4 and IL-13, 

Thermo Fisher Scientific, Waltham, MA, USA) or left unstimulated (M0) in the presence or 

absence of imatinib (1 µM, Novartis, Basel, Switzerland) for 6 hours (material see Table 2).  

The supernatant from cells were collected and spun down at 2000x g for 5 minutes at 4 Celsius 

to and stored at -20 Celsius for further analysis. Additionally, the cells were lysed for RNA 

isolation using 350 µl RA1 lysis buffer supplemented with 3.5 µl 2-Mercaptoethanol (Sigma-

Alderich, St. Louis, USA) per sample and stored at -80 Celsius.  

 

Table 1: List of cytokines, LPS and TKI used for macrophage’s polarization and treatment 

 
4.1.3 Animal models 
 
Acute inflammation model  

A single intraperitoneal (i.p.) LPS injection (1mg/kg) was applied to mice that were pre-treated 

three times with either imatinib (100 mg/kg) or PBS during 24 hours prior to the LPS injection. 

The mice were analyzed 2 hours after the LPS injection.  

 

Chronic inflammation models  
High fat diet - streptozotocin model (HFD-STZ)  

Mice were fed a high fat diet (HFD; containing 58% fat, 16.4% protein and 25.6% 

carbohydrate, Research diet, New Brunswick, NJ, USA) from 5 weeks onwards for up to 14 

weeks. After 3 weeks of HFD, the mice were treated with a single i.p. injection of 

Streptozotocin (STZ ,130 mg/kg, Sigma-Aldrich) to induce beta cell death. Following 10 

weeks of HFD, the mice were treated either with imatinib (100 mg/kg) or water for 1 month 

by oral gavage.  

Macrophage type Cytokine/ drug concentration  Source 
Mouse cytokines  
M1 LPS E. coli 0111: B4 100ng/mL Sigma-Aldrich 

IFNγ 10ng/mL PeproTech 
M2 IL-4 10ng/mL Thermo Fisher Scientific 

IL-13 10ng/mL Thermo Fisher Scientific 
Human cytokines 
M1 LPS E. coli 0111: B4 100ng/mL Sigma-Aldrich 

IFNγ 10 ng/mL ImmunoTools 
Tyrosin kinase inhibitor 
(TKI) 

Imatinib  1µM 
 

Novartis  
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High fat diet model (HFD) 

HFD is a well-established model for obesity, T2D and NAFLD. Mice were put on HFD for up 

to 13-17 weeks and then treated orally with imatinib (100mg/kg) or vehicle for 1 or 3 months, 

respectively.  

 

Insulin and glucose tolerance tests  

Insulin tolerance test (ITT) assess whole-body insulin resistance, while glucose tolerance test 

(GTT) test glucose tolerance along with insulin secretion. ITT and GTT tests were performed 

at 4 or 8 weeks of imatinib treatment. For ITT, mice were fasted 3 hours and i.p. injected with 

insulin (2 U/kg BW). Blood glucose levels were measured at 0, 15, 30, 60 and 120 minutes 

after insulin injection, using a glucometer (FreeStyle Freedom Lite, Abbott Laboratories, 

Illinois, USA).  

For GTT, mice were fasted 6 hours. Blood samples from tail vein were collected prior to i.p. 

glucose (2 g/kg BW) injections at 0 minutes, or after injections at 15, 30, 60 and 90 minutes. 

Blood glucose levels at indicated time points were measured using glucometer (FreeStyle 

Freedom Lite, Abbott Laboratories, Illinois, USA).  

 

4.1.4 Human study  
To translate our findings to human, a study was conducted with 18 donors according to the 

Declaration of Helsinki and relevant guidelines and regulations. Study approval was obtained 

from the local ethics committee (Ethics Committee of northwest and central Switzerland, 

EKNZ).  

 

Study design and patient’s recruitment  

18 subjects were grouped in healthy controls (He, n=6), adequately controlled diabetics (aDM, 

n=5) and inadequately controlled diabetics (iaDM, n=7). All diabetic subjects were recruited 

at the department of Endocrinology, Diabetes and Metabolism, at University Hospital of Basel 

and included into the study according to the following criteria: (i) age ≥18 years old; (ii) 

diabetes history for more than >3 months (American Diabetes Association criteria); (iii) no 

immunosuppressive treatment or immunodeficiency history; (iv) no immunotherapy treatment 

at the time of sample collection e.g. corticosteroids, antibodies or hemapheresis; (v) no 

psychiatric illness; and (vi) no pregnancy or breastfeeding. Healthy subjects were selected base 

on their age (≥ 18 years old) and their BMI (18-25 kg/m2).  
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Study protocol  
During the first screening visit, patients were informed about the study and screened for study 

inclusion and exclusion criteria by collecting the following data: date of birth, gender, medical 

history, date of diabetes diagnosis, other relevant diagnoses, concomitant therapies/drugs, 

family history (concerning diabetes, obesity and cardiovascular diseases), weight, BMI, waist-

to-hip ratio and blood pressure. During the second visit, 49 mL of blood was collected using 

S-Monovette® 7.5 mL, K3 EDTA (Sarstedt, Nümbrecht, Germany). In addition, vital signs 

and long-term blood glucose levels (HbA1c) were measured. 

 

Human peripheral blood mononuclear cells (PBMCs)  

10 mL PBS (without Mg and Ca; Sigma-Aldrich) was added to 20 mL of the collected blood. 

The diluted blood was added to 16 mL of density gradient medium (Lymphoprep™, 

STEMCELL Technologies Inc., Vancouver, BC, Canada), centrifuged at 453x g, 25 minutes 

at 22 Celsius (acceleration: 4 and deacceleration: 1). The buffy coat layer containing PBMCs 

was collected and washed two times with isolation buffer (PBS, 3 % FBS, 10 mM EDTA) at 

300x g, 10 minutes. The cells were resuspended in 20 mL of isolation buffer, diluted 1:1 and 

counted using cell counting slides by an automatic cell counter (EVE™ NanoEnTek, South 

Korea). Monocytes were enriched from PBMCs at 1x108 cells/mL density using MagniSort® 

Human Pan-Monocyte Enrichment kit (Thermo Fisher Scientific) according to their protocol. 

Isolated monocytes were cultured for 2 hours in RPMI-1640 medium containing HEPES (25 

mM) and L-glutamin (2 mM) suplemented with 1 % Penicillin/ Streptomycin, 1 % 100 mM 

Sodium Pyruvate and 1 % MEM Non-essential Amino Acids (100 x). After two hours, non-

attached cells were washed away. Attached monocytes were cultured with the medium 

described above, additionally supplemented with 10 % FBS. The cells were polarized towards 

a pro-inflammatory phenotype (M1; 10 ng/mL IFNγ, ImmunoTools, Friesoythe, Germany, 100 

ng/mL LPS E. coli 0111: B4) or left unstimulated (M0) in the presence or absence of imatinib 

(1 µM) for 24 hours (material see Table 2). Finally, supernatants and cells were analyzed as 

described in the section “cell treatment”. 
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4.1.5 Readout measures 
 
RNA isolation  

RNA was isolated from lysed cells or tissues using NucleoSpin RNA kit (Macherey Nagel, 

Düren, Germany) and RNeasy Plus Universal Mini kit (QIAGEN, Düsseldorf, Germany); 

respectively, according to the manufacturer's instructions. 

 
Reverse transcription (cDNA synthesis) 

Reverse transcription was performed using SuperScriptII Reverse Transcriptase kit (Thermo 

Fisher Scientific). To synthesize cDNA, 1µL deoxynucleotide triphosphates (dNTPs, 10 mM, 

Roch, Basel, Switzerland) and 1 µl random hexamers (50 ng/µL, Microsynth, Balgach, 

Switzerland) were added to 11.5 µl of total mRNA normalized to 50-100 ng. First, RNA was 

denatured at 65 Celsius for 5 minutes in TProfessional Standard PCR Thermocycler and then 

quickly chilled on ice. Second, a Master Mix containing 4µl 5x Buffer (250 mM Tris-HCl, pH 

8.3 at room temperature; 375 mM KCl; 15 mM MgCl2), 2µl DTT (0.1M) and 0.5µl SuperScript 

II reverse transcriptase was added to each sample and incubated at room temperature for 10 

minutes. Third, samples were placed back into thermocycler at 42 Celsius for 50 minutes and 

the reaction was inactivated at 70 Celsius for 15 minutes. Finally, cDNA product was diluted 

1: 12 in nuclease free water and stored at -20 Celsius. RNaseOUT™ (40 units/µL) was added 

in case of low amount of RNA and in tissue samples. 

 

Quantitative real time polymerase chain reaction (qRT-PCR) 

QRT-PCR (ViiA™ 7 Real-Time PCR System, Thermo Fischer Scientific) was carried out to 

quantify gene expression. A mixture of 7.8 µl of GoTaq® qPCR Master Mix (Promega 

Corporation, Madison, USA) and 5.2 µl cDNA (1:12) was run in duplicate in a 384-well plate 

(VWR, Randor, Pennsylvania, USA). Gene expression of target genes was normalized to the 

geometric mean of two housekeeping genes: B2M (β-2-microglobulin) and PPIA 

(peptidylprolyl isomerase A). Relative gene expression was calculated by 2-ΔΔCT and the 

melting curves were assessed in each run to confirm primer specificity of the PCR reaction. 

Classical pro- and anti-inflammatory markers were obtained from (Microsynth, Balgach, 

Switzerland, see Table 2).  
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Gene Forward Primer Reverse Primer 
Mouse hkg and m1- and m2 -–markers 
B2m 5′ TTCTGGTGCTTGTCTCACTGA 5′ CAGTATGTTCGGCTTCCCATTC 
Ppia 5′ GAGCTGTTTGCAGACAAAGTTC 5′ CCCTGGCACATGAATCCTGG 
Tnf-α 5′ ACTGAACTTCGGGGTGATCG 5′ TGAGGGTCTGGGCCATAGAA 
Il-6 5′ GGATACCACTCCCAACAGACCT 5′ GCCATTGCACAACTCTTTTCTC 
Il-1β 5′ GCAACTGTTCCTGAACTCAACT 5′ ATCTTTTGGGGTCCGTCAACT 
Inos 5′ GTTCTCAGCCCAACAATACAAGA 5′ GTGGACGGGTCGATGTCAC 
Kc 5′ CTGGGATTCACCTCAAGAACATC 5′ CAGGGTCAAGGCAAGCCTC 
Mrc1 5′ CTCTGTTCAGCTATTGGACGC 5′ CGGAATTTCTGGGATTCAGCTTC 
Mgl1 5′ TGAGAAAGGCTTTAAGAACTGGG 5′ GACCACCTGTAGTGATGTGGG 
Rentla  5′ CCAATCCAGCTAACTATCCCTCC 5′ CCAGTCAACGAGTAAGCACAG 
Chil3 5′ AGGAAGCCCTCCTAAGGACA 5′ CTCCACAGATTCTTCCTCAAAAGC 
Il-10 5′ AGGCGCTGTCATCGATTTCTC 5′ GCCTTGTAGACACCTTGGTCTT 
Cd68 5′ GCAGCACAGTGGACATTCAT 5′ AGAGAAACATGGCCC GAAGT 
Adgre1 
(f4/80 or emr1) 

5′ GCC CAG GAGTGGAATGTCAA 5′ CAGACACTCATCAACATCTGCG 

Mouse sterol regulatory element-binding protein (srebps) genes 
Srebp1a 5′ GCCGGCGCCATGGACGAGCTGGCC 5′ CAGGAAGGCTTCCAGAGAGGAGGC 
Nlrp1a  5′ AGGCTCTTTACCCTCTTCTA 5′ ATGTGCTTCTTCTTCTGGTA 
Nlrp1c 5′ GAATCTTTACTCCACCCAGC 5′ CTTTTCCTGGCAAATGTCTT 
Srebp1c 5′ GGAGCCATGGATTGCACATT 5′ GGCCCGGGAAGTCACTGT 
Elovl5 5′ CTGAGTGACGCATCGAAATG 5′ CTTGCACATCCTCCTGCTC 
Scd2 5′ TGCCTTGTATGTTCTGTGGC 5′ TCCTGCAAGCTCTACACCTG 
Fads1s 5′ TGGTGCCCTTCATCCTCTGT 5′ GGTGCCCAAAGTCATGCTGTA 
Acc1 5′ CCTCCGTCAGCTCAGATACA 5′ TTTACTAGGTGCAAGCCAGACA 
Scd1 5′ CTGTACGGGATCATACTGGTTC 5′ GCCGTGCCTTGTAAGTTCTG 
Fasn 5′ AGCGGCCATTTCCATTGCCC 5′ CCATGCCCAGAGGGTGGTTG 
Acacb 5′ CCCAGGAGGCTGCATTGA 5′ AGACATGCTGGGCCTCATAGTA 
Ldlr 5′ ACCTGCCGACCTGATGAATTC 5′ GCAGTCATGTTCACGGTCACA 
Hmgcs1 5′ TTTGATGCAGCTGTTTGAGG 5′ CCACCTGTAGGTCTGGCATT 
Fdps 5′ GAGTCTGCCCGATCTCTGTC 5′ TGAACCTGCTGGAGCTCTTT 
Mvk 5′ GAAGACATCGTCCCTTGCTG 5′ AAC CCT TCT GGT GTGGACA 
Pmvk 5′ GCTCGCATCCAGAAGTCTCT 5′ GCTCTCTGGTCCACTCAAGG 
Hmgcr 5′ GGCCTCCATTGAGATCCG 5′ CACAATAACTTCCCAGGGGT 
Mouse ppar-g phosphorylation-related genes 
Rarres2 5′ GCCTGGCCTGCATTAAAATGG 5′ CTTGCTTCAGAATTGGGCAGT 
Txnip 5′ TCTTTTGAGGTGGTCTTCAACG 5′ GCTTTGACTCGGGTAACTTCACA 
Nr1d1 5′ TACATTGGCTCTAGTGGCTCC 5′ CAGTAGGTGATGGTGGGAAGTA 
Cd24a 5′ GTTGCACCGTTTCCCGGTAA  5′ CCCCTCTGGTGGTAGCGTTA 
Peg10 5′ TGCTTGCACAGAGCTACAGTC 5′ AGTTTGGGATAGGGGCTGCT 
Acyl 5′ CAGCCAAGGCAATTTCAGAGC 5′ CTCGACGTTTGATTAACTGGTCT 
Cidec 5′ ATGGACTACGCCATGAAGTCT 5′ CGGTGCTAACACGACAGGG  
Nr1d2 5′ TGAACGCAGGAGGTGTGATTG 5′ GAGGACTGGAAGCTATTCTCAGA 
Ddx17 5′ TCTTCAGCCAACAATCCCAATC 5′ GGCTCTATCGGTTTCACTACG 
Rybp 5′ CGACCAGGCCAAAAAGACAAG 5′ CACATCGCAGATGCTGCATT 
Nr3c1 5′ AGCTCCCCCTGGTAGAGAC 5′ GGTGAAGACGCAGAAACCTTG 
Aplp2 5′ GTGGTGGAAGACCGTGACTAC 5′ TCGGGGGAACTTTAACATCGT 
Slenbp2 5′ ATGGCTACAAAATGCACAAAGTG 5′ CCTGTGTTCCGGTAAATGCAG 
Cycp2f2 5′ GTCGGTGTTCACGGTGTACC 5′ AAAGTTCCGCAGGATTTGGAC 
Car3 5′ TGACAGGTCTATGCTGAGGGG 5′ CAGCGTATTTTACTCCGTCCAC 
Adipsin 5′ CATGCTCGGCCCTACATGG 5′ CACAGAGTCGTCATCCGTCAC 
Adiponectin 5′ TGTTCCTCTTAATCCTGCCCA 5′ CCAACCTGCACAAGTTCCCTT 
Mouse adipose tissue browning markers 
Cpt1b 5′ TGCCTTTACATCGTCTCCAA 5′ GGCTCCAGGGTTCAGAAAGT 
Ucp1 5′ CTTTGCCTCACTCAGGATTGG  5′ ACTGCCACACCTCCAGTCATT 
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Pgc1α 5′ TATGGAGTGACATAGAGTGTGCT 5′ CCACTTCAATCCACCCAGAAAG 
Dio2 5′ AATTATGCCTCGGAGAAGACCG  5′ GGCAGTTGCCTAGTGAAAGGT 
Cox5b 5′ ATCAGCAACAAGAGAATAGTGGG 5′ GTAATGGGTTCCACAGTTGGG 
Human HKG and M1- and M2- markers 
B2M 5′ GCTCGCGCTACTCTCTCTTT 5′ TGTCGGATGGATGAAACCCA 
PPIA 5′ GCATACGGGTCCTGGCATCTTGTCC 5′ ATGGTGATCTTCTTGCTGGTCTTGC 
TNF-Α 5′ CAGAGGGCCTGTACCTCATC 5′ GGAAGACCCCTCCCAGATAG 
MCP-1 5′ CCCCAGTCACCTGCTGTTAT 5′ TGGAATCCTGAACCCACTTC 
MRC1 5′ CGAGGAAGAGGTTCGGTTCACC 5′ GCAATCCCGGTTCTCATGGC 
CD163 5′ TTGCCAGCAGCTTAAATGTG 5′ AGGACAGTGTTTGGGACTGG 

Table 2: Primers sequences used for quantitative real time-PCR 

 

qRT-PCR reaction program 

Stage 1: denaturation  

Step 1    50 Celsius                                             2   minutes  

Step 2    95 Celsius                                             10 minutes  

Stage 2: annealing  

Step 1    95 Celsius                                             15 second        

Step 2    60 Celsius                                             1   minutes           

Number of cycles                                                40x 

Stage 3: dissociation  

Step 1    95 Celsius                                             15 second        

Step 2    60 Celsius                                             1   minutes  

Step 3    95 Celsius                                             15 second    

Hold 

 

MesoScale technology (MSD) 

For insulin measurement, blood samples were collected in EDTA and centrifuged at 12000x g, 

5 minutes at 4 Celsius. Isolated plasma was stored at -20 Celsius or -80 Celsius and later 

analyzed using MSD mouse/rat insulin kit. For cytokines secretion analysis, plasma and 

supernatants were diluted 2- and 6-fold, respectively, and then analyzed using mouse pro-

inflammatory V-PLEX custom kit for TNFα & IL-6 (MSD, MesoScale Diagnostics, Maryland, 

USA). Plasma insulin, TNFα and IL-6 cytokines were quantified according to manufactures’ 

instruction by electrochemiluminescence (MESO SECTOR S 600) using a standard curve 

approach.  
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Flow cytometry of adipose tissue macrophages  

SVF cells were blocked with anti-mouse CD32/16 antibody (BioLegend, Pacific Heights Blvd 

San Diego, CA San Diego, USA) for 15 minutes and then stained with the following surface 

markers 30 minutes on ice in the dark: CD45 (30-F11), Siglec-F (E50-2440), F4/80 (BM8), 

CD11b (M1/70), CD206 (C068C2) and CD11c (N418) (antibodies see Table 3). To 

discriminate between live and dead cells, DAPI was added prior to analysis. SVF cells were 

analyzed using BD LSRII instrument (BD Biosciences, Franklin Lakes, NJ, USA) and FlowJo 

software (TreeStar Inc., Ashland, OR, USA). ATM identification was achieved using the 

following gating strategy: leukocytes (CD45+) were gated on single-live cells population 

(Singlets DAPI-). Eosinophils (CD45+F4/80lowSiglecF+) were excluded and ATM (non-

eosinophils CD11b+F4/80+) were further classified into double negative (DN), monocyte-

derived M1a (CD11c+CD206-), inflammatory M1b (CD11c+CD206mid) and anti-inflammatory 

M2 (CD11c- to lowCD206high) macrophages as shown in supplementary Fig. 4a-c.  

 
Antibody Clone Fluorophore Source 
CD45 30-F11 PerCP/Cy5.5 Biolegend 
Siglec-F E50-2440 BV510 BD Biosciences 
CD11b M1/70 BV421 Biolegend 
F4/80 BM8 PE Biolegend 
CD11c N418 PE/Cy7 Biolegend 
CD206 C068C2 A647 Biolegend 

Table 3: List of Antibodies for flow cytometry in adipose tissue 
 

Liver enzymes and lipids  

Liver enzymes and lipids were measured in mouse plasma using a Cobas 8000 modular 

analyzer (Roche Diagnostics, Basel, Switzerland) according to the manufacturer’s protocol. 

The assay was performed by Mirjam Jaeggy and Fausta Chiaverio from the Biochemistry 

laboratory, University hospital of Basel, Switzerland.  

 

Seahorse XF flux analysis  

Seahorse metabolic assay was performed to evaluate imatinib’s effect on the metabolic status 

of macrophages. One day prior to the assay, a seahorse sensor cartridge was hydrated using 

Seahorse XF Calibrant solution (200 µl/ well) at 37 Celsius in a non- CO2 incubator overnight.  

On the following day, peritoneal macrophages isolated from obese mice were seeded (100000 

/well) in a seahorse XF 96-well microplate plate and incubated for 2 hours at 37 Celsius 

supplied with 5 % CO2 in RPMI-1640 medium (without glutamin), suplemented with 10  % 

FBS, 1 % Glutamax, 1 % Penicillin/ Streptomycin, 0.1 % fungizone. After incubation, cells 
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were washed two times with 150 µl warm medium (RPMI1640-medium with L-glutamine, 

without glucose and sodium bicarbonate, Sigma -Aldrich) followed by addition of 175 µl of 

the same medium. For metabolic flux measurement, 25 µl of each Seahorse XF compound was 

loaded in the corresponded injection port (Table 4) and the sensor cartridge calibrated for 20 

minutes in the XF96 Seahorse Metabolic Analyzer (Seahorse Bioscience, North Billerica, MA, 

USA) followed by microplate placement according to the instructions. Glycolysis was 

measured by ECAR (extracellular acidification rate) and mitochondrial respiration by OCR 

(oxygen consumption rate) following each reagent injection for two hours. The following 

glycolysis stress compounds were used: Glucose to induce glycolysis; oligomycin to inhibit 

mitochondrial ATP synthase (complex V). The following mitochondrial stress reagents were 

used: FCCP to uncouple oxygen consumption from ATP production; sodium pyruvate 

(simultaneously with FCCP) to fuel maximal respiration upon uncoupling; and rotenone to 

inhibit mitochondrial complex 1. The assay was performed according to the manufacturer’s 

instructions and as described in 116. 

 

Table 4: Seahorse XF reagents and injections. 
 

Seahorse program     
Basal                                 4 cycles      24  minutes 
Injection port A                4 cycles      24  minutes  
Injection port B                4 cycles      24  minutes  
Injection port C                4 cycles      24  minutes  
 
 
Liver histology  
Fixation, embedding and cutting 
Liver samples were isolated and fixed in 4 % formalin (Formafix AG, Hittnau, Switzerland) 

for 24-48 hours. The samples were the placed between two layers of sponge (MEDITE GmbH, 

Burgdorf, Germany) in a cassette (MEDITE) in PBS. Tissue samples were processed in a 

closed linear Tissue Processing System (TPC 15 Duo, MEDITE). The tissue was embedded in 

paraffin using tissue embedding system; TES Valida® (MEDITE) and stored at room 

Port 
 
Injection 

 
Reagents Stock 

Initial 
concentration 

Final 
concentration 

Injection   
(µl) 

A  8x Glucose         - 200 mM 25 mM        25 
B  9x Oligomycin 50 µM 13.5 µM 1.5 µM        25 
 
C  

 
 
10x 

 
FCCP 

 
15 mM 15 µM 1.5 µM 

 
       25 

Sodium 
pyrvate  

100 mM 
10 mM 1 mM 

D 11x Rotenone 13.75 mM 13.75 µM 1.25 µM        25 
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temperature. Paraffin blocks were cut by HM355S Microtome (Thermo Fisher Scientific) into 

5 µm sections by Diego Calabrese (Hepatology Group, Department of Biomedicine, University 

Hospital of Basel) and Michelle Baumann (from the Institute of Pathology, University Hospital 

of Basel).  

 
H&E staining  
Hematoxylin-eosin (H&E) staining was performed by a staining machine (Tissue Tek Prisma, 

Sakura) using a standard automatic staining protocol. Images were acquired using a Nikon 

inverted microscope system (ECLIPSE Ti with DS-Qi2 camera, Tokyo, Japan) and NIS-

Elements AR-4.6 software (Nikon). The NAFLD activity score (NAS)117 was assessed in a 

blinded fashion (Table 5) by Dr. Matthias Matter (Institute of Pathology, University Hospital 

of Basel). 

 
Criteria  Score Range Score 
Grade low- to medium-power evaluation of 
parenchymal involvement by steatosis 

 
0-3 

0= <5% 
1= 5%-33% 
2= 33%-66% 

 
Location Predominant distribution pattern 

 
 
0-3 

0= Zone 3 
1= Zone 1 
2= Azonal 
3=Panacinar 

Inflammation  
lobular inflammation overall assessment of all 
inflammatory foci 

 
0-1 

0= No foci 

1= 2 foci per 200 L field 
 
Ballooning 

 
0-1 

0= None 
1= few balloon cells 

Table 5: Non-alcoholic fatty liver disease score (NAS). 
 
Immunohistochemistry 
Livers sections were deparaffinized, rehydrated and stained with primary antibodies of 

different immune cells for 44 minutes as follows: macrophage marker F4/80, T cell marker 

CD3, B cell marker B220 and neutrophil maker Ly-6G (antibodies see Table 6). Samples were 

washed and stained with secondary antibody for half an hour (anti-rabbit HRP). Slides were 

counterstained with hematoxylin for 8 minutes and bluing reagent was added for 4 minutes.  

The slides were scanned by a Prior robot/Nikon slide scanner. To quantify immune cells, three 

independent visual fields were semi-automatically quantified for area fraction (F4/80) or 

number of cells per nuclei (CD3, B220, Ly-6G) using the Nikon software (NIS) tool (Table 5). 
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Table 6: Antibodies for IHC of immune cells in paraffin liver sections 
 
In situ hybridization (ISH)  
ISH was used to co-localize the RNA of both TNF α and Emr1in hepatic macrophages after 

imatinib treatment. The assay was performed by Diego Calabrese (Hepatology Group, 

Department of Biomedicine, University Hospital of Basel) as previously described 118 and 

according to the manufacturer’s instructions with some modifications. 

 

Tissue Processing 

Formalin-Fixed and Paraffin-Embedded Liver Tissue (FFPE) were deparaffinized, rehydrated 

and pre-treated by boiling the tissues at 85-95 Celsius for 15 minutes, followed by protease 

digestion for 15 minutes at 40 Celsius to unmask target mRNAs and to allow probe 

accessibility.  

 

Hybridization  

TNF-α (20 oligonucleotide, TYPE 1, VB1-10175-06, Panomics-Affymetrix) and Emr1 (20 

oligonucleotide, TYPE 2, VB6-12917-VT, Panomics-Affymetrix) probe sets were diluted 1:30 

and 1:40, respectively, in hybridization buffer and then hybridized at 40 Celsius in 

ThermoBrite oven for 2.5 hours.   

 

Amplification & detection 

Multiple series of hybridization steps were performed at 40 Celsius in a ThermoBrite oven, 

using PreAmplifier Mix QT and Amplifier Mix QT to amplify the signal before the detection. 

The detection was performed incubating the tissues with alkaline phosphates (AP) labeled 

probes for 45 minutes at 40 Celsius. Slides were then incubated with AP chromogenic 

substrates (i.e. Fast Red and Fast Blue), respectively, at 40 Celsius. in the ThermoBrite oven 

and room temperature in a humidified chamber. 
 

IHC Primary antibody Diluent Visualization 
F4/80 F4/80 T-2006 clone BM8 

BMA Biomedicals 
1/50 Performed on Discovery Ventana UltraMap 

anti Rat DAB Kit 
B220 B220 553084 clone RA3-6B2, 

BD Biosciences 
1/4000 Performed on Discovery Ventana UltraMap 

anti Rat DAB Kit 
CD3 CD3 MA1-90582 clone SP7, 

Thermo Fisher Scientific 
1/300 Performed on Bond Leica DAB Kit 

Ly-6G Ly-6G 551459 clone 1A8, 
BD Biosciences 

1/600 Performed on Bond Leica DAB Kit 
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Counterstaining, slides mounting and visualization  

Each slide was counterstained with Gill’s hematoxylin. Slides were then mounted with water 

based mounting media containing DAPI, covered with No. 1 glass coverslip, air-dried for 15 

minutes and finally stored at 4 Celsius. Brightfield and fluorescent images were acquired using 

a laser scanning confocal microscope (LSM710, Carl Zeiss Microscopy, Göttingen, Germany) 

and the Zen2 software (Carl Zeiss Microscopy, Göttingen, Germany) and processed further by 

ImageJ software. 

 

4.1.6 Data analysis  
Data from independent experiments were analyzed using GraphPad PrismTM Software, 

(version 7; GraphPad Software Inc, San Diego, CA). All data are presented as mean±SEM. 

Non-parametric unpaired Mann-Whitney test was used for statistical significance. A p-value 

<0.05 was considered as statistically significant. Grubbs (Extreme Studentized Deviate) test 

was used to identify outliers among at least three samples.   
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4.2 Materials  

4.2.1 Buffers and media 
 
0.5M EDTA (4 Celsius.)  
186.1 g             EDTA x 2H20                                 Sigma-Aldrich         E6635-1kg  
                         MW 372.2   
 
1 L                   dH20  
 
 
 
FACS Buffer (4 Celsius.) 
445 mL              dH20  
 
50 mL                10x DPBS                                      Gibco                      14200067-500ML  
 
 2.5 g                  BSA                                               VWR                       441555J-100 G  
 
 5 mL                 0.5 M EDTA                                  Sigma-Aldrich         03690-100 ML 
  
 
 
Red Cell Lysis Buffer (4 Celsius.) 
8.237 g            NH4Cl (154 mM)                             Sigma-Aldrich         A9434-500 G 
 
1 g                   KHC03 (10 mM)                              Sigma-Aldrich         P9144-500 G 
 
0.2 mL            0.5 M EDTA pH 8 (0.1 mM)            Sigma-Aldrich         03690-100 ML 
 
1 L                  dH20 
 
 
Adipose tissue 2x Digestion mix (VTotal= 8mL*sample)  
VTotal/2             1x HBSS                                          Gibco                       24020-091  
 
0.01 mL/mL    1 M HEPES                                      Sigma-Aldrich         H0887-100 ML 
                         pH 7.5 (10 mM HEPES)   
      
1.5 mg/mL       Collagenase IV                                Worthington             LS004189   
                         ACT: 280 u/mg  
 
0.33 µl/mL       DNAse I                                           Roche                      11284932001 
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Peritoneal Macrophages medium (4 Celsius.) 
RPMI-1640 medium         -Glutamin                        Gibco                       31870025-500 ML  
                                         
10 %                                   FBS                                Gibco                       10500064-500 ML  
 
1 %                                     Glutamax                       Gibco                        35050038-100 ML 
                                           (100 X, 200 mM)  
 
1 %                                     Pen/ Strep                      Gibco                        15140122-100 ML 
                                          (10 000 U/10 mL) 
 
0.1 %                                 Amphotericin B              Gibco                        04195780F-50 ML 
                                          (250 µg/mL) 
 
0.1 %                                  Gentamycin                   Gibco                        15750037-20 ML 
 
 
Bone Marrow Derived Macrophages medium (4 Celsius.) 
RPMI-1640 medium         HEBES 25 mM               Gibco                        52400025-500 ML  
                                          L-Glutamin 2 mM 
 
10 %                                  FBS                                 Gibco                       10500064-500 ML  
 
1 %                                    Glutamax                        Gibco                        35050038-100 ML 
                                          (100 X, 200 mM) 
 
2 %                                    Pen/ Strep                       Gibco                        15140122-100 ML 
                                          (10 000 U/10 mL) 
 
1 %                                    MEM                              Gibco                        11140035-100 ML 
                                          Non-Essential  
                                          Amino acids 100 x    
  
1 %                                    Sodium Pyruvate            Gibco                        11360039-100 ML 
                                          (100mM) 
 
0.055 mM                          β-mercapoethanol          Gibco                        31350010-20 ML 
                                           (1000 x) 
 
Human Monocytes medium (4 Celsius.) 
RPMI-1640 medium         HEBES 25 mM               Gibco                        52400025-500 ML  
                                          L-Glutamin 2 mM 
 
10 %                                  FBS                                Gibco                        10500064-500 ML  
 
1 %                                    Glutamax                        Gibco                        35050038-100 ML 
                                          (100 X, 200 mM) 
 
1 %                                    Pen/ Strep                       Gibco                        5140122-100 ML 
                                          (10 000 U/10 mL) 
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1 %  MEM  Gibco   11140035-100 ML 
  Non-Essential 
  Amino acids 100x 

1 %  Sodium Pyruvate  Gibco   11360039-100 ML 
  (100mM) 

Affymetrix Isolation Buffer (4 Celsius.) 
1 x   PBS  Sigma-Aldrich   D8537-500ML 

-Mg, -Ca

3 %  FBS  Gibco        10500064-500 ML 

10mM  EDTA    Sigma-Aldrich  03690-100ML 

Seahorse Unbuffered Free Glucose medium (4 Celsius.) 
 1 Bottle   RPMI-1640 medium   Sigma-Aldrich   R1383-10x1L 

 with L-glutamine  
  pH 7.4 

Add to 1 L    dH20 

Seahorse XF Compounds (-20 Celsius. ) 
200 mM   D (+) Glucose   Sigma-Aldrich     G7021-1KG     

50 µM   Oligomycin       Sigma-Aldrich   75351-5MG    

15 mM   FCCP  Sigma-Aldrich    C2920-10MG   

100 mM  Sodium Pyruvate  Gibco        11360039-100 ML 
 (100mM) 

13.75 mM    Rotenone.  Sigma-Aldrich   R8875-1G 
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5. Publication
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Imatinib reduces non-alcoholic 
fatty liver disease in obese mice 
by targeting inflammatory and 
lipogenic pathways in macrophages 
and liver
Shefaa AlAsfoor1,2, Theresa V. Rohm1,2, Angela J. T. Bosch1,2, Thomas Dervos1,2, 
Diego Calabrese2, Matthias S. Matter3, Achim Weber4 & Claudia Cavelti-Weder1,2

Macrophages have been recognized as key players in non-alcoholic fatty liver disease (NAFLD). Our aim 
was to assess whether pharmacological attenuation of macrophages can be achieved by imatinib, an 
anti-leukemia drug with known anti-inflammatory and anti-diabetic properties, and how this impacts 
on NAFLD. We analyzed the pro- and anti-inflammatory gene expression of murine macrophages 
and human monocytes in vitro in the presence or absence of imatinib. In a time-resolved study, we 
characterized metabolic disease manifestations such as hepatic steatosis, systemic and adipose 
tissue inflammation as well as lipid and glucose metabolism in obese mice at one and three months of 
imatinib treatment. Our results showed that imatinib lowered pro-inflammatory markers in murine 
macrophages and human monocytes in vitro. In obese mice, imatinib reduced TNFα-gene expression 
in peritoneal and liver macrophages and systemic lipid levels at one month. This was followed by 
decreased hepatic steatosis, systemic and adipose tissue inflammation and increased insulin sensitivity 
after three months. As the transcription factor sterol regulatory element-binding protein (SREBP) links 
lipid metabolism to the innate immune response, we assessed the gene expression of SREBPs and their 
target genes, which was indeed downregulated in the liver and partially in peritoneal macrophages. In 
conclusion, targeting both inflammatory and lipogenic pathways in macrophages and liver as shown by 
imatinib could represent an attractive novel therapeutic strategy for patients with NAFLD.

As a result of the increasing prevalence of obesity, non-alcoholic fatty liver disease (NAFLD) has become one 
of the most common chronic liver diseases worldwide1. NAFLD comprises a wide spectrum of diseases rang-
ing from simple fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), which is characterized by infiltra-
tion of immune cells in the liver. In recent years, evidence has accumulated that macrophages play a key role in 
the onset and progression of NAFLD: Liver injury activates resident liver macrophages leading to cytokine and 
chemokine release, which induces the recruitment of bone marrow-derived macrophages (BMDM) into the liver, 
further amplifying the disease process2–4. We use the term “liver macrophages” for both bone marrow-derived 
and resident liver macrophages as their markers strongly overlap5. Targeting liver macrophages has been postu-
lated as a therapeutic strategy for NAFLD3, especially as currently no specific treatment exists. Pharmacological 
macrophage depletion indeed prevents the development of NAFLD in mouse models2,6,7. Similarly, block-
ing bone marrow-derived macrophage recruitment to the liver by pharmacological or genetic ablation of dif-
ferent chemokine or cytokine pathways improves NAFLD characteristics (e.g. CCR2-CCL24,8–10, CCR2/511,12, 
CXCR3-CXCL1013,14, CXCL1615, IL-616, TNFα17). A CCR2/5 antagonist has been tested in a clinical trial with 
promising results regarding fibrosis in NASH patients18. Besides macrophage depletion and blocking macrophage 
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recruitment, pharmacological attenuation of pro-inflammatory macrophages could be an alternative strategy to 
treat NAFLD. As macrophage activation and chronic low-grade inflammation are linked to metabolic disease 
and insulin resistance19, targeting pathologically activated macrophages might even have a broader impact on 
metabolic disease manifestations.

A potential candidate drug with anti-inflammatory properties is the tyrosine kinase inhibitor (TKI) imati-
nib, which was originally developed to target the tumor-associated fusion protein BCR-Abl in chronic myelog-
enous leukemia (CML). Over the years, several other targets of imatinib have been identified20. Most recently, 
imatinib was shown to inhibit posttranslational phosphorylation of PPARγ21, which is an important regula-
tor of macrophage polarization22. Anti-inflammatory effects upon imatinib treatment include adoption of an 
anti-inflammatory phenotype in tumor-associated macrophages23, suppressed glycolysis as an indication for 
anti-inflammatory polarization in leukemia cells24, reduced acute liver injury25, and attenuated adipose tissue 
inflammation in obese mice21. Additionally, glucose-lowering effects have been observed as “side effects” in can-
cer patients treated with imatinib26,27. In diabetic mouse models, these anti-diabetic effects have been attributed to 
reduced β-cell death and maintained β-cell function28–30. The combination of anti-inflammatory and anti-diabetic 
effects is reminiscent of PPARγ-agonists/thiazolidinediones (TZDs), which are anti-diabetic drugs also known 
to dampen macrophage activation31,32. TZDs were even implicated in reduced hepatic steatosis via modulation of 
liver macrophages33. However, due to side effects such as fluid retention, congestive heart failure, weight gain and 
bone fractures, TZDs have been largely abandoned from clinical practice.

Based on the anti-inflammatory and anti-diabetic effects of imatinib potentially involving PPARγ, the aim of 
our study was to assess whether imatinib directly attenuates macrophages and could therefore be used in disease 
states with pathological macrophage activation such as NAFLD. We set out a proof-of-concept study to addresses 
this novel therapeutic concept by testing the effect of imatinib on (1) macrophage activation in vitro, (2) NAFLD 
and other metabolic disease manifestations in a time-resolved manner in vivo, and (3) human monocytes to 
assess its translational application. The concept of pharmacological macrophage attenuation in NAFLD is intrigu-
ing as restoring pathologically activated macrophages could potentially not only target the root cause of NAFLD, 
but also other metabolic disease manifestations such as adipose tissue and systemic inflammation and insulin 
resistance. A more profound understanding of macrophage modulation and the molecular pathways involved 
holds the promise for new treatment strategies in NAFLD and metabolic disease.

Results
Imatinib lowers pro-inflammatory macrophage activation in vitro.  Imatinib was tested in differ-
entially activated peritoneal macrophages in vitro (M0, M1, M2) after the optimization of housekeeping genes 
(HKGs), the timing of macrophage activation and the dose of imatinib (Supplementary Fig. S1): In peritoneal 
M1-activated macrophages, imatinib lowered multiple pro-inflammatory genes, most consistently TNFα. 
Accordingly, TNFα and IL-6 protein were lower in the supernatants of imatinib-treated M1-macrophages 
(Fig. 1a). In contrast, pro-inflammatory genes were not altered in unstimulated M0- and anti-inflammatory 
M2-peritoneal macrophages (Fig. 1b). To confirm this immune-dampening effect in a different macrophage 
population, imatinib was tested in BMDM, where it exerted a similar immune-dampening effect, although less 
pronounced than in peritoneal cells (Fig. 1c). To find out whether imatinib only dampens pro-inflammatory 
genes or also promotes anti-inflammatory gene expression, anti-inflammatory genes were similarly assessed 
in differentially activated macrophages. We found higher Mgl1 in M2- and Mrc1 in M1-, but no change in 
M0-macrophages upon imatinib (Fig. 1d). This demonstrates that imatinib primarily lowers pro-inflammatory 
markers in M1-activated macrophages in vitro and does not promote up-regulation of anti-inflammatory genes.

Imatinib lowers peritoneal macrophage activation in acute inflammation and metabolic 
disease models.  Next, we asked whether this immune-dampening effect of imatinib on macrophages 
also occurs in vivo. To validate peritoneal macrophages as a direct readout for macrophage attenuation, we 
tested an acute inflammation model by inducing a highly inflammatory response by intraperitoneal (i.p.) 
Lipopolysaccharide (LPS-) injection in mice pretreated with imatinib or water. Imatinib pretreatment lowered 
TNFα gene expression in peritoneal macrophages (Fig. 2a), while anti-inflammatory genes were not altered 
(Supplementary Fig. S2a). To test imatinib in chronic metabolic disease models, diabetic (high fat diet and strep-
tozocin (HFD + STZ)) and obese mice (HFD) were treated with imatinib (IM) or vehicle for up to three months. 
In diabetic mice, TNFα gene expression was significantly lower in peritoneal cells (0.64 ± 0.05 fold) and less 
induced by additional LPS/IFNγ-stimulation when compared to untreated controls (1.8 ± 0.5 and 2.3 ± 0.4 fold, 
respectively, Fig. 2b). Likewise, TNFα gene expression was lower in peritoneal cells of obese mice after one and 
three months of imatinib treatment (both time points 0.58 ± 0.1 fold) and less induced in peritoneal macrophages 
upon additional LPS/IFNγ-stimulation (1.2 ± 0.1 and 2.0 ± 0.3 fold, Fig. 2c). Similar to the acute inflammation 
model, anti-inflammatory genes were not altered (Supplementary Fig. S2b,c). As an additional readout for 
macrophage activation, we used Seahorse analysis, which showed lower metabolic oxidation (OCR) in perito-
neal macrophages from imatinib-treated mice with significantly lower non-mitochondrial and maximum res-
piration (Supplementary Fig. S2d), while only minor effects were found for glycolysis. Thus, imatinib lowers 
pro-inflammatory activation of peritoneal macrophages in acute inflammation and metabolic disease models in 
vivo as assessed by gene expression and metabolic flux.

Imatinib reduces liver macrophages via modulation of the TNFα-pathway.  To assess whether 
imatinib also affects liver macrophages, which are key drivers of NAFLD, we performed a time-resolved study 
with HFD-induced obese mice (data summarized in Table 1): Concurrent with TNFα-reduction in peritoneal 
macrophages, imatinib lowered TNFα gene expression in liver tissue after one month. This was followed by a 
reduction in macrophage gene expression after three months of imatinib treatment (Fig. 2e). Co-localization of 
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TNFα and Emr1 (macrophage marker) mRNA in the liver indicated that TNFα-reduction occurred in liver mac-
rophages (Fig. 2d). Consistent with gene expression, F4/80 area fraction showed no change after one month, but 
prevention of the HFD-induced increase in liver macrophages after three months of imatinib treatment (Fig. 2f,g). 
The immune-modulation was specific to macrophages, as other immune cells such as B- and T-lymphocytes and 
neutrophils were not affected in the liver (Fig. 2h,i). Thus, imatinib leads to early TNFα-reduction in liver mac-
rophages, which later prevents the HFD-induced increase in liver macrophages.

Early TNFα-reduction in macrophages is accompanied by changes in lipid metabolism, fol-
lowed later by markedly decreased hepatic steatosis.  We used our time-resolved approach to 
address the question whether and in what time frame liver macrophage attenuation by imatinib impacts on liver 

Figure 1.  Imatinib lowers pro-inflammatory macrophage activation in vitro. (a) Fold change gene expression 
of pro-inflammatory markers in M1-peritoneal macrophages treated with 1 μM of imatinib (M1 + IM, open 
bars) compared to non-treated M1-controls (M1, closed bar) (n = 8–26). Fold change of TNFα and IL-6 
protein in the supernatant of unstimulated (M0), activated (M1) and concomitantly activated/imatinib-treated 
(M1 + IM) peritoneal macrophages (n = 4–13). (b) Fold change of pro-inflammatory gene expression in 
unstimulated/imatinib-treated (M0 + IM, n = 12–18) and anti-inflammatory/imatinib-treated macrophages 
(M2 + IM, n = 3–12) compared to their respective controls (M0 or M2). (c) Fold change of pro-inflammatory 
gene expression in activated/imatinib-treated BMDM (M1 + IM) and controls (M1) (n = 8–13). Fold change 
of TNFα and IL-6 protein in the supernatant of unstimulated (M0), activated (M1) and concomitantly 
activated/imatinib-treated (M1 + IM) BMDM (n = 6–13). Gene expression of anti-inflammatory genes in 
BMDM (n = 6–9) treated with imatinib compared to non-treated M1-controls. (d) Gene expression of anti-
inflammatory genes in M1-activated (n = 6–9), unstimulated M0 (n = 12–18) and anti-inflammatory M2-
peritoneal macrophages (n = 6–12) treated with imatinib compared to their respective controls (M1, M0, M2). 
Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 2.  Imatinib lowers pro-inflammatory activation in peritoneal and liver macrophages in vivo. (a) Fold 
change of pro-inflammatory genes in peritoneal macrophages in the acute inflammation model (LPS + IM: 
imatinib pretreated mice; LPS: water treated controls; n = 4–6). (b) Fold change of pro-inflammatory genes in 
peritoneal cells and in peritoneal macrophages upon ex vivo stimulation with LPS/IFNγ from diabetic mice 
treated for one month with imatinib (HFD + STZ + IM) compared to water-treated controls (HFD + STZ) 
(n = 3–6). (c) Fold change of pro-inflammatory genes in peritoneal cells and in peritoneal macrophages upon 
ex vivo LPS/IFNγ-stimulation from obese mice (HFD + IM) treated with imatinib compared with water-treated 
controls (HFD) (n = 4–10). (d) In situ hybridization for TNFα (red) and Emr1 (green) mRNA and DAPI 
nuclear staining (blue) in liver sections from chow, HFD and HFD + IM-treated mice. (e) Fold change gene 
expression of macrophage markers CD68 and Emr1 and TNFα in HFD + IM-treated mice compared to HFD 
controls after one and three months of imatinib (n = 5–7). (f,g) Representative liver sections stained for F4/80 
from chow, HFD-fed and HFD + IM-treated mice and quantification by macrophage area fraction (%) at one 
and three months of imatinib treatment. (h,i) Representative liver sections stained for B220, CD3, Ly-6G and 
DAPI from chow, HFD-fed and HFD + IM-treated mice and quantification by % of cells/ DAPI + parenchymal 
cells at three months of imatinib. HFD: High fat diet, IM: imatinib, mos: months, PC: peritoneal cells, PM: 
peritoneal macrophages. Scale bar represents 100μm. Data expressed as mean ± SEM, *p < 0.05, **p < 0.01.
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outcomes: Besides TNFα-reduction in the liver, the earliest change we observed were lowered systemic lipid 
levels after one month of imatinib treatment, also persisting at three months (Fig. 3a,b). All other tissue changes 
were only observed after three months of imatinib treatment (Table 1): The stark increase in hepatic steatosis in 
mice on HFD compared to chow was almost completely resolved after three months of imatinib treatment as 
histologically quantified by the NAFLD activity score (NAS-)score (Fig. 3c,d; Supplementary Fig. S3). Fibrosis 
was not induced by our obesity model and therefore did not affect the NAS-score. These morphological changes 
also affected liver function as shown by lower alkaline phosphatase after three months of imatinib (Fig. 3e). 
Additionally, three months of imatinib prevented the HFD-induced increase in plasma TNFα-levels (Fig. 3f). 
Thus, besides TNFα-reduction in the liver imatinib leads to early changes in lipid metabolism, which is later 
followed by markedly decreased hepatic steatosis.

Imatinib lowers adipose tissue inflammation and increases insulin sensitivity after three 
months.  We also studied the effect of imatinib on other metabolic disease manifestations such as adipose 
tissue inflammation and glucose metabolism in a time-resolved manner (Table 1): While there was no change 
in adipose tissue inflammation after one month of imatinib, the HFD-induced increase in macrophages and 
pro-inflammatory markers in adipose tissue was reversed by three months of imatinib treatment (Fig. 4a). Flow 
cytometry confirmed a higher frequency of macrophages in the adipose tissue of HFD-fed animals compared 
to mice treated for 3 months with imatinib. However, absolute numbers of adipose tissue subpopulations were 
unchanged (Supplementary Fig. S4). In terms of glucose metabolism, diabetic mice had slightly increased insu-
lin sensitivity after one month of imatinib when compared to vehicle-treated mice, while glucose tolerance was 
unaltered (Fig. 4b). After one month of treatment, obese mice showed no change in body weight or glucose and 
insulin tolerance. However, after three months a comparable pattern as in the diabetic model was observed with 
increased insulin sensitivity, yet unchanged glucose tolerance (Fig. 4c). Taken together, reduced adipose tissue 
inflammation and increased insulin sensitivity occur after up to three months of imatinib treatment.

Time-resolved assessment of transcription factors suggests that imatinib targets SREBP, while 
restoration of PPARγ-phosphorylation is a secondary phenomenon.  As the transcription factor 
sterol regulatory element-binding protein (SREBP) links lipid metabolism to the innate immune response34 that 
were both early affected with imatinib treatment, we assessed the target genes of the three isoforms SREBP1a, 
SREBP1c and SREBP2: Imatinib downregulated SREBP1c gene expression in cultures of peritoneal macrophages, 
which was corroborated in vivo after one month of imatinib treatment (Fig. 5a,b). SREBP1a and its target genes 

1 month IM 3 months IM

Peritoneal cells

TNFα gene expression 0.58 ± 0.1 0.58 ± 0.1

SREBP1c target genes 1/4 reduced 0/4 reduced

pS273 PPARγ-related genes 0/12 induced 1/12 induced

Liver

TNFα gene expression 0.48 ± 0.1 0.41 ± 0.1

SREBP1a target genes 1/3 reduced

SREBP1c target genes 3/8 reduced 1/8 reduced

SREBP2 target genes 2/6 reduced 1/6 reduced

CD68 gene expression 0.95 ± 0.1 0.50 ± 0.1

F4/80 gene expression 1.0 ± 0.1 0.71 ± 0.1 (trend)

F4/80 area fraction 0.86 ± 0.1 0.38 ± 0.1

NAS-score 0.9 ± 0.2 0.42 ± 0.2

Alkaline phosphatase not detected 0.59 ± 0.1

Systemic

Cholesterol 0.75 ± 0.05 0.7 ± 0.1

HDL 0.77 ± 0.05 0.76 ± 0.1

Triglycerides 1.05 ± 0.1 0.8 ± 0.1

TNFα 0.9 ± 0.05 0.43 ± 0.1

Adipose tissue

TNFα gene expression 0.55 ± 0.2 0.39 ± 0.1

CD68 gene expression 0.93 ± 0.2 0.57 ± 0.2

F4/80 gene expression 0.88 ± 0.1 0.48 ± 0.1

pS273 PPARγ-related genes 0/17 induced 5/17 induced

Metabolic tests

ITT ns s

GTT ns ns

Table 1.  Summary time resolved study (1 and 3 months imatinib) in obese mice. Statistical differences between 
one and three months data are indicated in bold font. Data presented as mean ± SEM.
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Nlrp1a and Nlrp1c, in contrast, were not altered in peritoneal cells. In the liver, 3/8 SREBP1c and 2/6 SREBP2 
target genes were significantly downregulated after one month imatinib (Fig. 5d). Interestingly, after three months 
of imatinib treatment, SREBP target gene expression was mostly normalized to baseline in both peritoneal cells 
and liver tissue (Fig. 5c,e), suggesting that compensatory mechanisms might occur over time.

Another transcription factor that has been shown to control both inflammatory responses and lipid metab-
olism is PPARγ35. In the context of metabolic disease, PPARγ has been shown to become phosphorylated at 
serine273, leading to dysregulation of a large number of metabolically important genes36. Imatinib was shown 
to inhibit PPARγ-phosphorylation at serine273, thereby reducing insulin resistance and promoting browning 

Figure 3.  Early TNFα-reduction in macrophages is accompanied by changes in lipid metabolism, followed 
later by markedly decreased hepatic steatosis. (a,b) Plasma cholesterol, triglycerides and High-density 
lipoprotein (HDL) in chow, HFD and HFD + IM-treated mice after one (a) and three months of imatinib 
treatment (b; n = 4–7). (c) Representative H&E liver stainings from chow, HFD-fed and HFD + IM-treated 
mice. (d) Quantification of NAFLD features by the NAS-score in chow, HFD and HFD + IM-treated mice. (e) 
Alkaline phosphatase (AP) in chow, HFD and HFD + IM-treated mice (n = 4–7). (f) Fold change of systemic 
TNFα protein in chow, HFD and HFD + IM-treated mice (n = 5–7). HFD: High fat diet, IM: imatinib, mos: 
months. Scale bar represents 100 μm. Data expressed as mean ± SEM, *p < 0.05, **p < 0.01.
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of white adipose tissue21. We therefore assessed genes related to PPARγ-phosphorylation at serine273 in our 
time-resolved study. In white adipose tissue, PPARγ-phosphorylation-related genes were dysregulated (low-
ered) by HFD mainly at the three months’ time point (Supplementary Fig. S5a) when also restoration of these 
genes occurred by imatinib (upregulation of 5/17 PPARγ-phosphorylation-related genes; Fig. 5f). In peritoneal 
cells, no changes in PPARγ-phosphorylation-related genes were found at both one and three months of imatinib 
(Supplementary Fig. S5b), suggesting that phosphorylation at serine273 (pS273) is not directly affected in mac-
rophages. Thus, the early immune-dampening effect in macrophages precedes restored PPARγ-phosphorylation 
in adipose tissue, indicating that restoration of PPARγ-phosphorylation-related genes might be a secondary 
phenomenon.

As a last potential mechanism, we assessed genes involved in thermogenesis as imatinib has previously been 
shown to induce browning of adipose tissue21. However, we did not find upregulation of cold-induced thermo-
genesis genes Pcg1α, Ucp-1, Cox5b, Cpt1b and Dio2 in inguinal adipose tissue of HFD-fed mice upon imatinib 
treatment (Supplementary Fig. S5c). In sum, our time-resolved assessment of potential pathways suggests that 
SREBP-signaling is affected in liver and partially in macrophages, while restoration of PPARγ-phosphorylation at 
pS273 seems to be a secondary phenomenon upon imatinib.

Imatinib lowers pro-inflammatory activation in human monocytes, but hyperglycemia alters 
their responsiveness.  Finally, we assessed whether immune-modulation by imatinib could also be achieved 
in human monocytes. As hyperglycemia is known to impact on monocyte activation37 and our in vitro data 
showed a differential response to imatinib depending on the activation state, we tested the effect of imatinib 
on monocytes from subjects with markedly distinct glycemia, including healthy controls (He), diabetics with 

Figure 4.  Imatinib reduces adipose tissue inflammation and increases insulin sensitivity over time. (a) Fold 
change gene expression of macrophage markers (CD68, F4/80) and pro-inflammatory M1-markers (TNFα, 
IL-6) in whole adipose tissue of chow, HFD and HFD + IM-treated animals (n = 5–7). (b) Body weight, 
insulin sensitivity and glucose tolerance with insulin in diabetic mice treated for one month with imatinib 
(HFD + STZ + IM) and controls (HFD + STZ; n = 4–5). (c) Body weight, insulin sensitivity and glucose 
tolerance with insulin in obese mice treated for three months with imatinib (HFD + IM) and controls (HFD; 
n = 5–6). HFD: High fat diet, IM: imatinib, mos: months, SAC: sacrifice, STZ: Streptozocin. Data expressed as 
mean ± SEM, *p < 0.05, **p < 0.01.
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adequate (aDM) or inadequate glycemic control (iaDM). Supplementary Table S4 shows the baseline charac-
teristics with the intended main differences between aDM and iaDM patients concerning their glycemic con-
trol (HbA1c aDM 52.6 ± 5.5 mmol/mol (7.0 ± 0.5%), iaDM 114.5 ± 6.5 mmol/mol (12.6 ± 0.6%)). Imatinib 
lowered the pro-inflammatory markers TNFα, MCP-1 and CD163 in unstimulated monocytes of all groups, 
while this immune-dampening effect was gradually lost in M1-activated monocytes with deranged glycemic 
control (Fig. 6a,b). Increasing the dose of imatinib did not restore the immune-dampening effect in iaDM 
patients (Fig. 6c). In sum, unstimulated human monocytes respond to imatinib treatment by down-regulation of 
pro-inflammatory markers. However with deranged glycemic control, the immune-dampening effect of imatinib 
is lost in activated monocytes, suggesting altered susceptibility to the drug with hyperglycemia.

Discussion
When first testing the notion of an immune-dampening effect of imatinib on macrophages in vitro, we found 
lower pro-inflammatory gene and protein expression, most consistently TNFα, while anti-inflammatory genes 
were not upregulated. This was slightly less pronounced in BMDM, most likely due to the artificial differenti-
ation by exogenous Macrophage colony-stimulating factor (M-CSF) over one week. To translate our findings 
in vivo, we performed a time-resolved study assessing the effects of imatinib on macrophages and metabolic 
disease manifestations in HFD-induced obese mice: Reduction of TNFα in peritoneal and liver macrophages 
occurred most rapidly upon imatinib. Activated peritoneal macrophages are known to have both enhanced gly-
colysis and mitochondrial oxidation38. Metabolic flux as another measure for macrophage activation confirmed 
altered polarization by lower metabolic oxidation upon imatinib. In the liver, we were able to localize TNFα in 
liver macrophages, which decreased over time as shown by lower F4/80 area fraction and CD68 gene expression. 

Figure 5.  SREBP target genes are downregulated upon imatinib treatment, while PPARγ-phosphorylation 
seems to be a secondary phenomenon. (a) Fold change gene expression of SREBP target genes in M1-
stimulated peritoneal macrophages treated with or without imatinib (IM) in vitro (n = 9). (b,c) Fold change 
gene expression of SREBP target genes in peritoneal cells after one and three months of imatinib treatment 
(n = 4–7). (d,e) Fold change gene expression of SREBP target genes in whole liver tissue after one and three 
months of imatinib (n = 5–9). (f) Fold change gene expression of PPARγ-phosphorylation-regulated genes 
in obese mice treated with imatinib (HFD + IM) compared with water-treated controls (HFD) after one (left) 
and three months of imatinib treatment (right; n = 5–10). AT: adipose tissue, HFD: High fat diet, IM: imatinib, 
mos: months, PC: peritoneal cells, PM: peritoneal macrophages. Data expressed as mean ± SEM, *p < 0.05, 
**p < 0.01, ***p < 0.001.
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Thus, it is conceivable that down-regulation of TNFα by imatinib interrupts the vicious cycle of resident liver 
macrophage activation and/or bone marrow-derived macrophage recruitment to the liver, subsequently lowering 
their activation and/or number.

Concomitant with early TNFα-reduction in macrophages, imatinib led to lipid lowering effects, indicative 
for a mechanism that integrates both innate immunity and lipid metabolism. To assess a common mechanism 
involving both inflammation and lipogenesis, we first focused on the SREBP transcription factor family, which 
is known to activate lipogenic transcriptional programs, but has also been shown to control transcriptional reg-
ulation that extends beyond lipid synthesis39: For example, SREBP1a is highly expressed in immune cells such as 
macrophages and dendritic cells, where it not only activates genes required for lipogenesis but also a gene encod-
ing Nlrp1, a core component of the inflammasome34. Thus, SREBP links lipid metabolism and the innate immune 
response and could therefore explain the simultaneous effects on inflammation and lipid levels we observed upon 
imatinib treatment. We found early reductions of SREBP1c-target genes in the liver and partially in peritoneal 
macrophages. These downregulations were gone after three months of imatinib treatment, most likely due to com-
pensatory mechanisms. We speculate that the SREBP transcriptional program of the target cell determines the 
phenotypic alteration induced by imatinib: In macrophages, imatinib has preferentially an immune-dampening 

Figure 6.  Imatinib lowers pro-inflammatory activation in human monocytes, but hyperglycemia alters their 
responsiveness. (a,b) Fold change gene expression of TNFα, MCP-1 and CD163 in human M0- (a) or M1-
monocytes (b) treated with 1 μM of imatinib (M0 + IM or M1 + IM, open bars) compared to non-treated M0- 
or M1-monocytes (M0 or M1, closed bar) from healthy controls (He, n = 6), adequately controlled diabetics 
(aDM, n = 5) and inadequately controlled diabetics (iaDM, n = 5). (c) Fold change of gene expression of TNFα, 
MCP-1 and CD163 with increasing doses of imatinib (1, 2.5, 5 μM) in inadequately controlled diabetics (n = 3). 
Data expressed as mean ± SEM, *p < 0.05, **p < 0.01.
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effect, while in the liver also lipogenesis is affected. Thus, improvements in metabolic disease manifestations likely 
arise from a combination of the immune-dampening effect on macrophages and lowered lipogenesis induced 
by imatinib. Hence, in the long-term, lower SREBP target gene expression upon imatinib was associated with 
reduced hepatic steatosis, systemic and adipose tissue inflammation and increased insulin sensitivity.

Another transcription factor involved in both inflammation and lipid metabolism is PPARγ35. In obesity 
and insulin resistance, PPARγ was shown to become phosphorylated at serine273 with subsequent dysreg-
ulation of metabolically important genes36. Interestingly, PPARγ-phosphorylation at serine273 was blocked 
by imatinib, thereby restoring dysregulated diabetes-genes and reducing insulin resistance21. However, in our 
time-resolved assessment the early immune-dampening effect on macrophages and reduction in lipid levels 
clearly preceded restoration of PPARγ-phosphorylation-related genes in adipose tissue, indicating that restored 
PPARγ-phosphorylation might be a secondary phenomenon. Restoration of PPARγ-phosphorylation-related 
genes in adipose tissue potentially develops as less TNFα is available to engage in PPARγ-phosphorylation and 
its deleterious metabolic downstream effects. A recent study demonstrated that imatinib interferes with the inter-
action between the histone H3 lysine 4 methyltransferase MLL4 and PPARγ, thereby dampening steatotic target 
genes in short-term experiments40. Thus, dampened SREBP transcriptional programs as observed in our study 
could ultimately be due to imatinib interfering with the MLL4-PPARγ axis with subsequently reduced transcrip-
tion of SREBP target genes.

As a third potential mechanistic pathway, we assessed browning of adipose tissue by imatinib, however, we 
were not able to find consistent upregulation of cold-induced thermogenesis genes. This is in contrast to the pub-
lication by Choi and colleagues21, which could be explained by differences in the study set-up (administration of 
imatinib i.p. versus oral; treatment duration and genetic background (C57BL/6 J versus C57BL/6 N)). The latter is 
insofar important as genetic variability is known to affect cold-induced thermogenesis41.

To translate our findings to human disease, we probed the effect of imatinib on human monocytes. Especially, 
as previous studies showed a heightened inflammatory state in human myeloid cells with hyperglycemia37,42, 
diabetic patients could exhibit altered susceptibility to immune-modulatory drugs like imatinib. Human mono-
cytes responded to imatinib treatment by down-regulation of pro-inflammatory markers also in a non-activated 
state. This is consistent with previous studies showing that monocytes have a “pre-activated” basal condition that 
requires only a single stimulation, while macrophages depend on a second signal to be activated43. In activated 
monocytes, however, the immune-dampening effect of imatinib was lost with deranged glycemic control, sug-
gesting altered susceptibility to the drug with hyperglycemia, and could not be overcome with increasing doses of 
imatinib. Although the extreme stimulation as achieved by ex vivo LPS/IFNγ-stimulation might not represent the 
in vivo situation, it uncovers altered susceptibility to immune-modulation with hyperglycemia.

The strength of our study is that the long-term follow-up and time-resolved approach allowed us to distin-
guish early from later effects of imatinib on different cells and organs. Hence, it became clear that imatinib simul-
taneously affects inflammatory and lipogenic signals in macrophages and in the liver before reducing metabolic 
disease manifestations such as NAFLD, systemic and adipose tissue inflammation or insulin resistance. Our find-
ings expand on previous literature by linking SREBP-signaling not only to lipogenesis, but also to innate immu-
nity in the context of NAFLD. A more profound understanding of integrated pathways between inflammation 
and lipid metabolism could pave the way for the development of novel therapeutics in NAFLD.

The clinical significance of our findings lies in the scarcity of therapeutic measures available for NAFLD 
patients. Imatinib has generally a mild adverse effect profile and long-term safety record. In rare instances, how-
ever, imatinib has been associated with acute liver injury often in connection with hepatotoxic agents interfering 
with cytochrome P450 enzymes, leading to increased imatinib concentrations44. Thus, taking this into account, 
clinical trials could be envisaged in the context of NAFLD. Imatinib has already been tested in the setting of type 
1 diabetes mellitus, however, the results have not yet been published45. In the light of our findings that imatinib 
exerts effects both on innate immunity and lipid metabolism, clinical studies involving patients with metabolic 
disease – preferentially with chronic low-grade inflammation and NAFLD – could yield promising results in the 
future.

Materials and Methods
Animals.  Male C57BL/6 N mice (Charles River Laboratories, Sulzfeld, Germany) were maintained in our SPF-
facility at 22 °C room temperature with 12 h light/12 h dark cycle and were housed in groups of 3–5 mice. Body 
weights were monitored once weekly. Mice used for metabolic experiments were kept for 1 week of acclimation 
period upon arrival. All procedures were approved by the local Animal Care and Use Committee (Veterinary 
Office Basel, Switzerland) and carried out in accordance with relevant guidelines and regulations.

Murine macrophages.  Peritoneal cells were harvested from 6–8-week old male C57BL/6 N mice by 
intra-abdominal lavage, cultured overnight and enriched for macrophages by washing away non-adherent peri-
toneal cells. For BMDM, bone marrow cells were isolated from murine femur and tibia and differentiated by 
M-CSF (10 ng/mL, PeproTech, London, UK) for 7–9 days. Peritoneal macrophages or BMDM were polarized to 
a pro- (M1; 10 ng/mL IFNγ, PeproTech, 100 ng/mL LPS E. coli 0111:B4, Sigma-Aldrich, Saint Louis, MO, USA) 
or anti-inflammatory phenotype (M2; 10 ng/mL IL-4 and IL-13, Thermo Fisher Scientific, Waltham, MA, USA) 
or left unstimulated (M0) in the presence or absence of imatinib (1 μM, Novartis, Basel, Switzerland) for 6 hours.

Gene expression analysis.  RNA was isolated using NucleoSpin RNA kit (Macherey Nagel, Düren, 
Germany) and RNeasy Plus Universal Mini kit (QIAGEN, Düsseldorf, Germany). Reverse transcription was 
performed with SuperScriptII Reverse Transcriptase kit (Thermo Fisher Scientific). GoTaq qPCR Master Mix 
(Promega, Madison, WI, USA) was used for real-time PCR (ViiA7, Thermo Fisher Scientific). Primer sequences 
(Microsynth, Balgach, Switzerland) are listed in Supplementary Table S1.
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Protein expression analysis.  Plasma insulin, TNF-α and IL-6 were quantified by electrochemilumines-
cence (MESO SECTOR S 600) using kits from MesoScale Diagnostics (MSD, Rockville, MD, USA).

Acute in vivo inflammation model.  Imatinib (100 mg/kg) or water was administered by gavage three 
times during 24 h prior to a single i.p. LPS-injection (1 mg/kg). Analysis was performed 2 h post LPS and perito-
neal cells and macrophages assessed by PCR.

Chronic in vivo inflammation model.  Mice on high fat diet (HFD containing 58% fat, 16.4% protein and 
25.6% carbohydrate, Research diet, New Brunswick, NJ, USA; start at 4–5 weeks of age for 14–27 weeks) and mice 
on HFD with a single i.p. injection of streptozocin (at week three of HFD STZ 130 mg/kg, Sigma-Aldrich) were 
treated with oral imatinib (gavage 100 mg/kg) or water for one or three months. A dose of 100 mg/kg imatinib has 
been reported to reach slightly lower steady state plasma concentrations (1 μM at 8 hours46) compared to humans 
treated with 400 mg imatinib daily (1.46 μM at 24 hours47) due to faster clearance in mice. Insulin and glucose tol-
erance tests (ITT/ GTT) were performed at 4 or 8 weeks of imatinib treatment with blood samplings from the tail 
vein before and 15, 30, 60 and 90 minutes after i.p. injection of 2 g/kg body weight glucose or 2U/kg body weight 
insulin. Peritoneal cells and macrophages were harvested as described for in vitro experiments. Other readout 
measures are specified below.

Seahorse XF flux analysis.  Glycolysis (ECAR; extracellular acidification rate) and mitochondrial res-
piration (OCR, oxygen consumption rate) were measured by XF96 Seahorse Metabolic Analyzer (Seahorse 
Bioscience, North Billerica, MA, USA) in peritoneal macrophages ex vivo as previously described48.

Flow cytometry of adipose tissue macrophages.  Epididymal adipose tissue was minced and digested 
using collagenase IV (Worthington, OH, USA) and DNAse I (Sigma-Aldrich) at 37 °C for 25–30 min. To identify 
adipose tissue macrophages (ATMs), cells were stained with specific surface markers (Supplementary Table S2) 
and analyzed using the BD LSRII instrument (BD Biosciences, Franklin Lakes, NJ, USA) and FlowJo software 
(TreeStar Inc., Ashland, OR, USA). Among single (Singlets), live (DAPI−) leukocytes (CD45+) and after excluding 
eosinophils (CD45+F4/80lowSiglecF+) ATMs (non-eosinophils CD11b+F4/80+) were classified as double negative 
(DN), monocyte-derived M1a (CD11c+CD206−), inflammatory M1b (CD11c+CD206mid) and anti-inflammatory 
M2 (CD11c− to lowCD206high) (gating strategy: Supplementary Fig. S4a–c).

Liver histology.  Hematoxylin-eosin (H&E) was performed according to established protocols and the 
NAS-score49 assessed in a blinded fashion. Immunohistochemistry (IHC) for F4/80, CD3, B220, and Ly-6G (anti-
bodies in Supplementary Table S3) was performed on paraffin-embedded liver sections. For quantification of 
immune cells, liver sections were scanned by a Prior robot/Nikon slide scanner. Three independent visual fields 
were semi-automatically quantified for area fraction (F4/80) or number of cells per DAPI-positive parenchymal 
cells (CD3, B220, Ly-6G) using the Nikon software (NIS) tool.

In situ hybridization (ISH).  Mouse TNFα (VB1-10175-VT) and Emr1 (VB6-12917-VT) genes were 
detected in formalin fixed, paraffin embedded (FFPE), 5μm liver sections using the ViewRNA ISH system 
(Affymetrix, Santa Clara, CA, USA) as previously described50. Brightfield and fluorescent images were acquired 
using a laser scanning confocal microscope (LSM710, Zeiss, Oberkochen, Germany) and Zen2 software (Zeiss) 
and subjected to image processing with ImageJ software.

Liver enzymes and lipids.  Liver enzymes and blood lipids were measured in mouse plasma using a Cobas 
8000 modular analyzer (Roche Diagnostics, Basel, Switzerland) according to the manufacturer’s protocol.

Human monocytes.  Study approval was obtained from the local ethics committee (Ethics Committee of 
northwest and central Switzerland, EKNZ). The human study was conducted in accordance with the Declaration 
of Helsinki and relevant guidelines and regulations. All diabetic subjects (HbA1c > 6.5%) and healthy volun-
teers (BMI 18–25 kg/m2) gave written, informed consent. Detailed medical history and baseline characteristics 
were obtained at the day of the blood draw. Monocytes were enriched using MagniSort® Human Pan-Monocyte 
Enrichment kit (Thermo Fisher Scientific) from peripheral blood mononuclear cells (PBMCs). Human mono-
cytes were kept for 2 h to attach and then activated towards a pro-inflammatory phenotype (M1; 10 ng/mL IFNγ, 
ImmunoTools, Friesoythe, Germany, 100 ng/mL Lipopolysaccharide (LPS) E. coli 0111:B4, Sigma-Aldrich, Saint 
Louis, MO, USA) or left unstimulated (M0) in the presence or absence of imatinib (1 μM) for 24 h.

Data analysis.  Data are expressed as mean ± SEM. Unpaired Mann-Whitney test was used for statistical 
significance (GraphPad Prism). A p-value < 0.05 was considered as statistically significant.
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SUPPLEMENTARY TABLES 
 

Gene Forward Primer Reverse Primer 
Mouse HKG and M1- and M2 -markers 
B2m 5′ TTCTGGTGCTTGTCTCACTGA 5′ CAGTATGTTCGGCTTCCCATTC 
Ppia 5′ GAGCTGTTTGCAGACAAAGTTC 5′ CCCTGGCACATGAATCCTGG 
TNF-α 5′ ACTGAACTTCGGGGTGATCG 5′ TGAGGGTCTGGGCCATAGAA 
IL-6 5′ GGATACCACTCCCAACAGACCT 5′ GCCATTGCACAACTCTTTTCTC 
IL-1β 5′ GCAACTGTTCCTGAACTCAACT 5′ ATCTTTTGGGGTCCGTCAACT 
iNOS 5′ GTTCTCAGCCCAACAATACAAGA 5′ GTGGACGGGTCGATGTCAC 
KC 5′ CTGGGATTCACCTCAAGAACATC 5′ CAGGGTCAAGGCAAGCCTC 
Mrc1 5′ CTCTGTTCAGCTATTGGACGC 5′ CGGAATTTCTGGGATTCAGCTTC 
Mgl1 5′ TGAGAAAGGCTTTAAGAACTGGG 5′ GACCACCTGTAGTGATGTGGG 
Rentla  5′ CCAATCCAGCTAACTATCCCTCC 5′ CCAGTCAACGAGTAAGCACAG 
Chil3 5′ AGGAAGCCCTCCTAAGGACA 5′ CTCCACAGATTCTTCCTCAAAAGC 
IL-10 5′ AGGCGCTGTCATCGATTTCTC 5′ GCCTTGTAGACACCTTGGTCTT 
CD68 5′ GCAGCACAGTGGACATTCAT 5′ AGAGAAACATGGCCC GAAGT 
Adgre1 
(F4/80 or Emr1) 

5′ GCC CAG GAGTGGAATGTCAA 5′ CAGACACTCATCAACATCTGCG 

Mouse sterol regulatory element-binding protein (SREBPs) genes 
Srebp1a 5′ GCCGGCGCCATGGACGAGCTGGCC 5′ CAGGAAGGCTTCCAGAGAGGAGGC 
Nlrp1a 5′ AGGCTCTTTACCCTCTTCTA 5′ ATGTGCTTCTTCTTCTGGTA 
Nlrp1c 5′ GAATCTTTACTCCACCCAGC 5′ CTTTTCCTGGCAAATGTCTT 
Srebp1c 5′ GGAGCCATGGATTGCACATT 5′ GGCCCGGGAAGTCACTGT 
Elovl5 5′ CTGAGTGACGCATCGAAATG 5′ CTTGCACATCCTCCTGCTC 
Scd2 5′ TGCCTTGTATGTTCTGTGGC 5′ TCCTGCAAGCTCTACACCTG 
Fads1s 5′ TGGTGCCCTTCATCCTCTGT 5′ GGTGCCCAAAGTCATGCTGTA 
Acc1 5′ CCTCCGTCAGCTCAGATACA 5′ TTTACTAGGTGCAAGCCAGACA 
Scd1 5′ CTGTACGGGATCATACTGGTTC 5′ GCCGTGCCTTGTAAGTTCTG 
Fasn 5′ AGCGGCCATTTCCATTGCCC 5′ CCATGCCCAGAGGGTGGTTG  
Acacb 5′ CCCAGGAGGCTGCATTGA 5′ AGACATGCTGGGCCTCATAGTA 
LDLR 5′ ACCTGCCGACCTGATGAATTC 5′ GCAGTCATGTTCACGGTCACA 
Hmgcs1 5′ TTTGATGCAGCTGTTTGAGG 5′ CCACCTGTAGGTCTGGCATT 
Fdps 5′ GAGTCTGCCCGATCTCTGTC 5′ TGAACCTGCTGGAGCTCTTT 
mvk 5′ GAAGACATCGTCCCTTGCTG 5′ AAC CCT TCT GGT GTGGACA 
Pmvk 5′ GCTCGCATCCAGAAGTCTCT 5′ GCTCTCTGGTCCACTCAAGG 
Hmgcr 5′ GGCCTCCATTGAGATCCG 5′ CACAATAACTTCCCAGGGGT 

Mouse PPAR-g phosphorylation-related genes 
Rarres2 5′ GCCTGGCCTGCATTAAAATGG 5′ CTTGCTTCAGAATTGGGCAGT 
Txnip 5′ TCTTTTGAGGTGGTCTTCAACG 5′ GCTTTGACTCGGGTAACTTCACA 
Nr1d1 5′ TACATTGGCTCTAGTGGCTCC 5′ CAGTAGGTGATGGTGGGAAGTA 
CD24a 5′ GTTGCACCGTTTCCCGGTAA  5′ CCCCTCTGGTGGTAGCGTTA 
Peg10 5′ TGCTTGCACAGAGCTACAGTC 5′ AGTTTGGGATAGGGGCTGCT 
Acyl 5′ CAGCCAAGGCAATTTCAGAGC 5′ CTCGACGTTTGATTAACTGGTCT 
Cidec 5′ ATGGACTACGCCATGAAGTCT 5′ CGGTGCTAACACGACAGGG  
Nr1d2 5′ TGAACGCAGGAGGTGTGATTG 5′ GAGGACTGGAAGCTATTCTCAGA 
Ddx17 5′ TCTTCAGCCAACAATCCCAATC 5′ GGCTCTATCGGTTTCACTACG 
Rybp 5′ CGACCAGGCCAAAAAGACAAG 5′ CACATCGCAGATGCTGCATT 
Nr3c1 5′ AGCTCCCCCTGGTAGAGAC 5′ GGTGAAGACGCAGAAACCTTG 
Aplp2 5′ GTGGTGGAAGACCGTGACTAC 5′ TCGGGGGAACTTTAACATCGT 
Slenbp2 5′ ATGGCTACAAAATGCACAAAGTG 5′ CCTGTGTTCCGGTAAATGCAG 
Cycp2f2 5′ GTCGGTGTTCACGGTGTACC 5′ AAAGTTCCGCAGGATTTGGAC 
Car3 5′ TGACAGGTCTATGCTGAGGGG 5′ CAGCGTATTTTACTCCGTCCAC 
Adipsin 5′ CATGCTCGGCCCTACATGG 5′ CACAGAGTCGTCATCCGTCAC 
Adiponectin 5′ TGTTCCTCTTAATCCTGCCCA 5′ CCAACCTGCACAAGTTCCCTT 
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Mouse adipose tissue browning markers 
CPT1b 5′ TGCCTTTACATCGTCTCCAA 5′ GGCTCCAGGGTTCAGAAAGT 
UCP1 5′ CTTTGCCTCACTCAGGATTGG  5′ ACTGCCACACCTCCAGTCATT 
PGC1α 5′ TATGGAGTGACATAGAGTGTGCT 5′ CCACTTCAATCCACCCAGAAAG 
Dio2 5′ AATTATGCCTCGGAGAAGACCG  5′ GGCAGTTGCCTAGTGAAAGGT 
Cox5b 5′ ATCAGCAACAAGAGAATAGTGGG 5′ GTAATGGGTTCCACAGTTGGG 

Human HKG and M1- and M2- markers 
B2m 5′ GCTCGCGCTACTCTCTCTTT 5′ TGTCGGATGGATGAAACCCA 
Ppia 5′ GCATACGGGTCCTGGCATCTTGTCC 5′ ATGGTGATCTTCTTGCTGGTCTTGC 
TNF-α 5′ CAGAGGGCCTGTACCTCATC 5′ GGAAGACCCCTCCCAGATAG 
MCP-1 5′ CCCCAGTCACCTGCTGTTAT 5′ TGGAATCCTGAACCCACTTC 
Mrc1 5′ CGAGGAAGAGGTTCGGTTCACC 5′ GCAATCCCGGTTCTCATGGC 
CD163 5′ TTGCCAGCAGCTTAAATGTG 5′ AGGACAGTGTTTGGGACTGG 

Supplementary Table 1: Primers sequences used for quantitative real time-PCR  

 

 

 

Antibody Clone Fluorophore Source 
CD45 30-F11 PerCP/Cy5.5 Biolegend 
Siglec-F E50-2440 BV510 BD Biosciences 
CD11b M1/70 BV421 Biolegend 
F4/80 BM8 PE Biolegend 
CD11c N418 PE/Cy7 Biolegend 
CD206 C068C2 A647 Biolegend 

Supplementary Table 2: List of Antibodies for flow cytometry in adipose tissue 

 

 

 

IHC Primary antibody Diluent Visualization 

F4/80 F4/80 T-2006 clone BM8 
BMA Biomedicals 

1/50 Performed on Discovery Ventana 
UltraMap anti Rat DAB Kit 

B220 B220 553084 clone RA3-6B2, 
BD Biosciences 

1/4000 Performed on Discovery Ventana 
UltraMap anti Rat DAB Kit 

CD3 CD3 MA1-90582 clone SP7, 
Thermo Fisher Scientific 

1/300 Performed on Bond Leica DAB Kit 

Ly-6G Ly-6G 551459 clone 1A8, 
BD Biosciences 

1/600 Performed on Bond Leica DAB Kit 

Supplementary Table 3: Antibodies for IHC of immune cells in paraffin liver sections 
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Supplementary Table 4: Baseline characteristics of healthy, adequately and inadequately 
controlled diabetics. Statistical differences between adequately and inadequately controlled 
diabetics are indicated in bold font. Data presented as mean±SEM, na: not applicable, *p<.05, 
**p<.01.  

 
Healthy 
Controls 

(n=6) 

Diabetics,  
adequate control 

(n=5) 

Diabetics, inadequate 
control 
(n=7) 

General parameter    
Sex (M/F) 6/0 3/2 4/3 
Age (years) 29.5±3.3 57.0±5.0 52.7±5.5 
BMI (kg/m2) 22.8±1.5 33.5±1.9 37.4±4.5 
Weight (kg) 74.8±4.6 100.0±7.6 111.3±16.8 
Waist-to-hip Ratio  0.86±0.02 0.99±0.05 1.04±0.05 
Glc metabolism     
HbA1c (mmol/mol (%)) na 52.6±5.5 (7.0±0.5) 114.5±6.5(12.6±0.6)** 
Fasting plasma glucose 
(mmol/l), average na 8.3±1.2 16.0±1.3** 

Diabetes duration (years) na 7.2±3.9 12.9±4.9 
Antidiabetics  
- Oral/GLP1-Anal. (%) 
- Insulin (%) 

 
na 
na 

 
80 
20 

 
85.7 
85.7 

Inflammation     
CRP (mg/dl)  3.9±0.6 10.0±4.6 
Leukocytes (x109/l)  6.4±0.4 8.3±0.7* 
Other Cv-Risks    
Blood Pressure  
- Antihypertensive drug (%) 
- Systolic (mmHg) 
- Diastolic (mmHg) 

 
0 

125±4 
72±4 

 
40 

126±9 
80±6 

 
85.7 

143±7 
83±5 

Family History  
- Diabetes (%) 
- Obesity (%) 
- CV disease (%) 

 
16.7 
16.7 
16.7 

 
100 
80 
40 

 
57.1 
57.1 
42.9 

Smoking (%) 0 0 42.9 
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1. Optimization of in vitro set-up. Due to the highly dynamic 

behavior of macrophages, in vitro readouts were optimized for macrophage housekeeping genes 

(HKGs), the optimal time point for macrophage activation and imatinib dose. (a) Average 

expression stability of HKGs 18S, GAPDH, Rplp0, Actb, Ppib, Rpl13a, B2m, Ppia according 

to the geNorm algorithm with B2m and Ppia most stably expressed. (b) The 6-hour time point 

was chosen for peritoneal macrophages when fold gene expression of pro-inflammatory M1-

markers was most pronounced, while fold gene expression of anti-inflammatory M2-markers 

was similar at 6 and 24 hours after stimulation. (c) Flow cytometry for cell cycle with G1-phase 

arrest of the CML-cell line K562 at both 1uM and 5uM imatinib compared to PBS-treated cells. 
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Supplementary Figure 2. Anti-inflammatory gene expression and metabolic flux in 

peritoneal macrophages of imatinib-treated mice. Fold change of anti-inflammatory genes 

in peritoneal macrophages of the acute inflammation model (a), diabetic (b) and obese mice (c) 

treated with imatinib compared to their respective controls. (d) Seahorse flux analysis with 

OCR (metabolic oxidation) and calculated non-mitochondrial and maximum respiration 

(pmoles/min) in peritoneal macrophages of HFD-fed mice treated for 3 months with imatinib 

or vehicle. Gluc: Glucose, HFD: High fat diet, IM: imatinib, OM: oligomycin, PC: peritoneal 

cells, PM: peritoneal macrophages, Rot: rotenone, STZ: Streptozocin. Data expressed as 

mean±SEM, *=p<.05. 
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Supplementary Figure 3. Liver sections of individual mice regarding steatosis. 

Representative H&E liver sections of 5-6 individual mice of the chow, HFD and HFD+IM-

groups. HFD: high fat diet; IM: imatinib. Scale bar represents 100µm. 
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Supplementary Figure 4. Adipose tissue macrophages upon imatinib treatment. (a) 

Quantification of adipose tissue macrophages (ATMs) as percentage of live cells by flow 

cytometry of chow, HFD and HFD+IM-treated mice (n = 4-6). (b) Gating strategy to identify 

ATMs (single live non-eosinophils CD45+CD11b+F4/80+) by flow cytometry. (c) 

Representative flow cytometry plots for ATM subpopulations (DN: CD11c-CD206-; monocyte-

derived M1a: CD11c+CD206-; inflammatory M1b: CD11c+CD206mid; anti-inflammatory M2: 

CD11c-to lowCD206high). (d) Quantification of absolute cell numbers of ATM subpopulations 

M1a, M1b and M2 in chow, HFD and HFD+IM-treated mice (n = 4-6). ATM: adipose tissue 

macrophage, HFD: high fat diet, IM: imatinib, DN: double-negative. 
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Supplementary Figure 5. PPARγ-phosphorylation-regulated genes in adipose tissue and 

peritoneal cells. (a) Effect of HFD on PPARγ-phosphorylation-regulated genes in adipose 

tissue compared to chow after one (left) and three (months) (n=3-9). (b) Effect of imatinib on 

PPARγ-phosphorylation-regulated genes in peritoneal cells in mice on HFD after one (left) and 

three months of imatinib treatment (right) (n= 5-10). (c) Fold change gene expression of genes 

related to adipose tissue browning after three months of imatinib treatment. HFD: High fat diet, 

IM: imatinib. Data are presented as mean±SEM. *p<.05, **=p<.01. 
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6. Discussion 
NAFLD has developed to a serious growing health problem in recent years. So far, no 

therapeutic drug has been approved for NAFLD. NAFLD has been linked to insulin resistance 

related diseases such as obesity and diabetes. Due to the role of macrophages in NAFLD 

development, recent studies postulate that targeting of immune cells – especially macrophages 

– could be a potential treatment strategy for NAFLD. One promising therapeutic approach 

would be to attenuate macrophage activation during NAFLD onset and progression, thereby 

limiting inflammation and as a consequence improving liver function. Imatinib, a tyrosine 

kinase inhibitor that was originally developed to treat CML, has shown to have anti-diabetic 

and anti-inflammatory effects. Therefore, we hypothesized that imatinib could potentially be 

such a therapeutic drug to target macrophage activation in NAFLD. In this study, we assessed 

whether imatinib attenuates liver macrophages and thereby improves NAFLD outcomes. To 

test our hypothesis, we used well-established in vitro and in vivo models as well as human cells. 

 

6.1 Imatinib modulates pro-inflammatory macrophage 
activation in vitro 
Imatinib was shown to exert anti-inflammatory effects in tumor-associated macrophages in a 

gastrointestinal stromal tumor model1. To test the concept of an immune-modulatory effect of 

imatinib directly on macrophages primed to either a pro- or anti-inflammatory phenotype in 

vitro, we used two different types of macrophages: peritoneal macrophages and BMDM. We 

found that pro-inflammatory macrophages responded to imatinib as shown by reduced pro-

inflammatory gene and protein expression, most prominently TNF-α. In contrast, unstimulated 

and anti-inflammatory macrophages were not affected by imatinib. As in metabolic disease 

including obesity and diabetes macrophages predominantly exhibit a pro-inflammatory 

phenotype2, targeting specifically pro-inflammatory - but not unstimulated or anti-

inflammatory - macrophages seems to be a favorable strategy as their homeostatic function is 

left unaltered. The attenuation of pro-inflammatory phenotype by imatinib was slightly less 

pronounced in BMDMs, most likely due to the artificial differentiation by exogenous M-CSF 

over one week in BMDM. 
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6.2 Imatinib attenuates activation of peritoneal 
macrophages in acute inflammation and metabolic disease 
models  
Next, we asked whether this immune-dampening effect of imatinib on macrophages also occurs 

in vivo. To address this question, we used an LPS-induced acute inflammation model and two 

chronic low-grade inflammation models, one inducing inflammation by HFD-induced obesity, 

the other by a combination of the beta-cell toxin STZ and HFD (diabetes model).  

Imatinib has been reported to reduce inflammation in a LPS-induced liver injury model as 

shown by lowering systemic TNF-α and IL-63, 4. However, the cell type responsible for the 

reduction in these inflammatory markers was not assessed. When specifically testing peritoneal 

macrophages/ cells in our LPS-induced inflammation model with imatinib pretreatment, we 

observed a significantly diminished TNF-α gene expression in peritoneal macrophages already 

2 hours after the LPS injection. Similarly, TNF-α was reduced in peritoneal macrophages/ cells 

in both diabetic and obese models treated with imatinib.  

In contrast, IL-6 was not affected by imatinib in the peritoneal macrophages/ cells in the acute 

inflammation model and diabetic mice, respectively. It is believed that imatinib exerts its anti-

inflammatory effect via inhibition of NF- kB5, a downstream signaling of the LPS/TLR4 

pathway. IL-6 can be induced via the activation of LPS/ TLR4 or IL-6/ sIL-6R (IL-6 receptor)/ 

STAT3 trans signaling pathways in the LPS-induced inflammation model6. Therefore, IL-6 

might evade imatinib action via IL-6/ sIL-6R / STAT3 trans signaling pathways (Fig. 3).   

 

 

 

 

 

 

 

 
Figure 3| Model of IL-6 upon LPS stimulation. LPS can induce IL-6 via LPS/TLR4 pathway  
or through upregulation of IL-6 / sIL-6R complexes (trans signaling) and the gp130Y757F receptor, which in turn 
boosts STAT3 activation. Hyperactivation of STAT3 directly upregulates IL-6 production or indirectly via 
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LPS/TLR4 pathway. We speculate that LPS-induced IL-6 might evade imatinib action through IL-6 trans 
signaling pathway. Adapted from Greenhill, C. J et al6. 
 
Imatinib has been shown to decrease glycolysis in human leukemia BCR-ABL-positive cells7. 

A recent study reported that immunometabolism of macrophages depends on the cell type and 

tissue localization. For example, BMDMs or peritoneal macrophages have a distinct 

immunometabolism despite both being macrophages: Peritoneal macrophages activated in 

vitro with LPS enhance both glycolysis and mitochondrial oxidation, while activated BMDMs 

shows increased glycolysis and reduced mitochondrial oxidation8. Thus, we assessed 

immunometabolism upon imatinib treatment as another readout measure for macrophage 

activation and found that imatinib decreased metabolic oxidation in peritoneal macrophages 

from the chronic low-grade inflammation HFD model, confirming an altered activation state 

upon imatinib treatment. 

 

6.3 Imatinib reduces the number of liver macrophages via 
modulation of the TNF-α pathway 
Hepatic macrophages are crucial contributors to the development of fatty liver in obesity and 

NAFLD9, 10. KCs that accumulate lipids exhibit a pro-inflammatory phenotype characterized 

by secretion of TNF-α at an early stage of steatohepatitis in the HFD model11. In the liver, 

TNF-α is released by both hepatocytes and KCs13. To study the effect of imatinib on the pro-

inflammatory macrophages in the fatty liver, we performed a time-resolved study up to three 

months, which allowed us to study the impact of imatinib over time. We found early down-

regulation of TNF-α in liver tissue. TNF-α co-localized with liver macrophages, which 

decreased at the later time points as shown by lower F4/80 area fraction and CD68 gene 

expression. Thus, it is likely that the down-regulation of TNF-α by imatinib interferes with the 

vicious cycle of monocyte recruitment and/or macrophage activation in the liver, subsequently 

lowering their number and/or activation.  

Several studies have shown that imatinib also inhibits T-cell proliferation14 and increases the 

number of circulating B-cells and neutrophils in CML patients and infectious models, 

respectively15, 16. However, in our study, we did not observe any changes in T-cells (CD3), B-

cells (B220) and neutrophils (Ly6-G) in liver tissue after 3 months of treatment. Thus, 3 months 

of imatinib treatment in mice suffering from NAFLD results first in a reduction of TNF-α in 

the liver, which is later followed by a decrease in liver macrophages, while other immune cells 

of the liver are not affected.  
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6.4 Imatinib alters lipid metabolism early on, followed 
later by markedly decreased hepatic steatosis  
HFD-induced obesity and NAFLD often go along with hyperlipidemia, which is characterized 

by an increase in triglycerides and low-density lipoprotein (LDL) and a decrease in high-

density lipoprotein HDL in the plasma17, 18. Besides early reduction of TNF-α in the liver, the 

other earliest change we found in our time-resolved study upon imatinib treatment was a 

reduction in systemic lipids, such as cholesterol and high-density lipoprotein (HDL) followed 

by a reduction in triglycerides.  

Increased hepatic fatty acids synthesis (triglycerides) in obesity results in increased steatosis 

and thus NAFLD19. Therefore, we asked whether the reduced lipid levels by imatinib improves 

liver steatosis in the obese model. The liver sections from obese mice revealed that imatinib 

indeed reduced steatosis and NAFLD severity, which occurred at the late time point together 

with decreased systemic triglycerides and TNF-α. Thus, the simultaneous action of imatinib on 

TNF-α and systemic lipid levels could be an indication for an interplay between innate 

immunity and lipid metabolism, which eventually leads to a reduction in hepatic steatosis. 

 

6.5 Imatinib lowers adipose tissue inflammation and 
increases insulin sensitivity after three months of 
treatment 
Different studies support a role of adipose tissue inflammation in the development of NAFLD 

through an increased influx of FFAs to the liver, recruitment of pro-inflammatory macrophages 

and secretion of cytokines and adipokines20, 21. Accordingly, we have investigated the effect of 

imatinib on adipose tissue macrophages (ATMs) and inflammatory cytokines. As reported by 

Choi et al.22, imatinib significantly reduced macrophages and pro-inflammatory markers in 

the adipose tissue. However, we observed this only after 3 months of treatment in our obese 

cohort. Our findings suggest that the beneficial effect of imatinib treatment first starts in the 

liver as TNF-α was reduced after one month of treatment in the liver, which was only later 

followed by reduced adipose tissue inflammation at three months.  

Like inflammation, insulin resistance is also a crucial hit for the development of NAFLD23.  In 

previous studies, imatinib was shown to increase both insulin sensitivity and insulin secretion 

in obesity22 and diabetic24 mouse models within a treatment duration ranging from 7 days22 to 

1 month 24. In the present study, we found an improvement in insulin resistance in both diabetic 
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and obese model after 1 month and 3 months of imatinib treatment, respectively. As TNF-α is 

associated with insulin resistance in the HFD-induced obesity model25, 26, it is likely that TNF-

α reduction overtime in both liver and adipose tissue and blunted hepatic steatosis led to the 

improvement of insulin resistance. In contrast to the previous studies mentioned above, 

however, we could not detect an improvement in insulin secretion. This difference might be 

explained by differences in the experimental set-up like different routes of administration (oral 

in our study verus i.p. administrations22, 24), drug concentration (100 mg/kg in our study versus 

25 mg/kg in22, 24), treatment period (1-3 months in our study versus 1 week22) and animal 

models (HFD model versus db/db mice in24).  

 

6.6 Time-resolved assessment of transcription factors 
suggests that imatinib targets SREBP, while restoration of 
PPARγ-phosphorylation is a secondary phenomenon  
As we found that imatinib affected innate immunity and steatosis in a time dependent manner, 

we assessed common mechanisms involving both inflammation and lipogenesis. We first 

focused on the SREBP transcription factor family, which is known to activate lipogenic 

transcriptional programs, but has also been shown to control transcriptional regulation that 

extends beyond lipid synthesis27: For example, SREBP1a is highly expressed in immune cells 

such as macrophages and dendritic cells, where it not only activates genes required for 

lipogenesis but also a gene encoding Nlrp1, a core component of the inflammasome28. Thus, 

SREBP links lipid metabolism and the innate immune response and could therefore explain the 

simultaneous effects on inflammation and lipid levels we observed upon imatinib treatment.  

Indeed, we found early reductions of SREBP1c-target genes in the liver and partially in 

peritoneal macrophages. These downregulations were gone after three months of imatinib 

treatment, most likely due to compensatory mechanisms. We speculate that the SREBP 

transcriptional program of the target cell determines the phenotypic alteration induced by 

imatinib: In macrophages, imatinib has preferentially an immune-dampening effect, while in 

the liver also lipogenesis is affected. Thus, improvements in metabolic disease manifestations 

likely arise from a combination of the immune-dampening effect on macrophages and reduced 

lipogenesis induced by imatinib. Hence, in the long-term, reduced SREBP target gene 

expression upon imatinib was associated with reduced hepatic steatosis, systemic and adipose 

tissue inflammation and increased insulin sensitivity. 
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Another  transcription factor involved in both inflammation and lipid metabolism is PPARγ29. 

In obesity and insulin resistance, PPARγ was shown to become phosphorylated at serine273 

(pS273) with subsequent dysregulation of metabolically important genes30.  

Interestingly, a recent study showed that PPARγ-phosphorylation at serine273 was blocked by 

imatinib, thereby restoring dysregulated diabetes-genes and reducing insulin resistance22. 

However, in our time-resolved study the early immune-dampening effect on macrophages and 

the reduction in lipid levels clearly preceded restoration of PPARγ-phosphorylation-related 

genes in adipose tissue, indicating that restored PPARγ-phosphorylation might be a secondary 

phenomenon. Restoration of PPARγ-phosphorylation-related genes in adipose tissue 

potentially develops as less TNF-α is available to engage in PPARγ-phosphorylation and its 

deleterious metabolic downstream effects. A recent study demonstrated that imatinib interferes 

with the interaction between the histone H3 lysine 4 methyltransferase MLL4 and PPARγ, 

thereby dampening steatotic target genes in short-term experiments31. Thus, dampened SREBP 

transcriptional programs as observed in our study could ultimately be due to imatinib 

interfering with the MLL4-PPARγ axis with subsequently reduced transcription of SREBP 

target genes. 

 

As a third potential mechanistic pathway, we assessed browning of adipose tissue by imatinib, 

however, we were not able to find consistent upregulation of cold-induced thermogenesis 

genes. This is in contrast to the publication by Choi and colleagues22, which could be explained 

by differences in the experimental set-up (administration of imatinib i.p. versus oral; treatment 

duration and genetic background (C57BL/6J versus C57BL/6N)). The latter is insofar 

important as genetic variability is known to affect cold-induced thermogenesis32.  

 

6.7 Imatinib lowers pro-inflammatory activation in human 
monocytes, but hyperglycemia alters their responsiveness  
To translate our findings to human disease, we probed the effect of imatinib on human 

monocytes. Especially, as previous studies showed a heightened inflammatory state in human 

myeloid cells with hyperglycemia33, 34, diabetic patients could exhibit altered susceptibility to 

immune-modulatory drugs like imatinib. Human monocytes responded to imatinib treatment 

by down-regulation of pro-inflammatory markers also in a non-activated state. This is 

consistent with previous studies showing that monocytes have a “pre-activated” basal condition 

that requires only a single stimulation, while macrophages depend on a second signal to be 
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activated35. In activated monocytes, however, the immune-dampening effect of imatinib was 

lost with deranged glycemic control, suggesting altered susceptibility to the drug with 

hyperglycemia, this phenomenon could not be overcome with increasing doses of imatinib. 

Although the overstimulation as achieved by ex vivo LPS/IFNγ-stimulation might not represent 

the in vivo situation, it uncovers altered susceptibility to immune-modulation with 

hyperglycemia. 

 

6.8 Strength and limitations 
The strength of our study is that the long-term follow-up and time-resolved approach allowed 

us to distinguish early from later effects of imatinib on different cells and organs. Hence, it 

became clear that imatinib simultaneously affects inflammatory and lipogenic signals in 

macrophages and in the liver before reducing metabolic disease manifestations such as 

NAFLD, systemic and adipose tissue inflammation or insulin resistance. Our findings expand 

on previous literature by linking SREBP-signaling not only to lipogenesis, but also to innate 

immunity in the context of NAFLD. A more profound understanding of integrated pathways 

between inflammation and lipid metabolism could pave the way for the development of novel 

therapeutics in NAFLD. The limitation of the present study is that our models allowed us to 

study the impact of imatinib on the initiation stage (steatosis and inflammation), but not the 

progression stage of the disease. Therefore, using fibrosis/ cirrhosis models could help us to 

understand the impact of imatinib on innate immunity in the final stages of NAFLD. 

 

6.9 Clinical Relevance 
The clinical significance of our findings lies in the scarcity of therapeutic measures available 

for NAFLD patients. Imatinib has generally a mild adverse effect profile and a long-term safety 

record. In rare instances, however, imatinib has been associated with acute liver injury often in 

connection with hepatotoxic agents interfering with cytochrome P450 enzymes, leading to 

increased imatinib concentrations36. Thus, taking this into account, clinical trials could be 

envisaged in the context of NAFLD. Imatinib has already been tested in the setting of type 1 

diabetes mellitus, however, the results have not yet been published37. In the light of our findings 

that imatinib exerts effects on both the innate immunity and lipid metabolism, clinical studies 

involving patients with metabolic disease – preferentially with chronic low-grade inflammation 

and NAFLD – could yield promising results in the future. 
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7. Conclusion 
In brief, our findings show that imatinib improves NAFLD by modulating hepatic pro-

inflammatory macrophages and lipid metabolism in the liver. In line with previous studies, the 

present study confirms the critical roles of TNF-α, hepatic macrophages and lipid accumulation 

in the initiation of NAFLD. In parallel, our data supports the concepts of targeting innate 

immunity and lipid metabolism during disease development. Thus, understanding the 

pathophysiological signaling between innate immunity and lipogenic pathway could be 

beneficial to develop novel therapeutic agents to attenuate or even prevent NAFLD in future. 
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