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ON THE BEST APPROXIMATION OF THE HIERARCHICAL

MATRIX PRODUCT

JÜRGEN DÖLZ, HELMUT HARBRECHT, AND MICHAEL D. MULTERER†

Abstract. The multiplication of matrices is an important arithmetic opera-

tion in computational mathematics. In the context of hierarchical matrices,
this operation can be realized by the multiplication of structured block-wise

low-rank matrices, resulting in an almost linear cost. However, the computa-

tional efficiency of the algorithm is based on a recursive scheme which makes
the error analysis quite involved. In this article, we propose a new algorithmic

framework for the multiplication of hierarchical matrices. It improves cur-

rently known implementations by reducing the multiplication of hierarchical
matrices towards finding a suitable low-rank approximation of sums of matrix-

products. We propose several compression schemes to address this task. As
a consequence, we are able to compute the best-approximation of hierarchical

matrix products. A cost analysis shows that, under reasonable assumptions

on the low-rank approximation method, the cost of the framework is almost
linear with respect to the size of the matrix. Numerical experiments show

that the new approach produces indeed the best-approximation of the prod-

uct of hierarchical matrices for a given tolerance. They also show that the
new multiplication can accomplish this task in less computation time than the

established multiplication algorithm without error control.

1. Introduction

Hierarchical matrices, H-matrices for short, historically originate from the dis-
cretization of boundary integral operators. They allow for a data sparse approxi-
mation in terms of a block-wise low-rank matrix. As first shown in [21], the major
advantage of the H-matrix representation over other data sparse formats for non-
local operators is that basic operations, like addition, multiplication and inversion,
can be performed with nearly linear cost. This fact enormously stimulated the
research on H-matrices, see e.g. [5, 6, 13, 17, 22, 24] and the references therein, and
related hierarchical matrix formats like HSS, see [9,30,32], HODLR, see [1,2], and
H2-matrices, cf. [7, 23].

The applications for H-matrices are manifold: They have been used for solving
large scale algebraic matrix Riccati equations, cf. [18], for solving Lyapunov equa-
tions, cf. [3], for preconditioning, cf. [19,27] and for the second moment analysis of
partial differential equations with random data, cf. [10, 11], just to name a few.

In this context, the matrix-matrix multiplication of H-matrices is an essential
operation. Based on the hierarchical block structure, the matrix-matrix multipli-
cation is performed in a recursive fashion. To that end, in each recursive call, the
two factors are considered as block-matrices which are multiplied by a block-matrix
product. The resulting matrix-block is then again compressed to the H-matrix for-
mat. To limit the computational cost, the block-wise ranks for the compression are
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usually priorily bounded by a user-defined threshold. For this thresholding pro-
cedure, no a-priori error estimates exist. This fact and the recursive structure of
the matrix-matrix multiplication render the error analysis difficult, in particular,
since there is no guarantee that intermediate results provide the necessary low-rank
structure.

To reduce the number of these time-consuming and error-introducing truncation
steps, different modifications have been proposed in the literature: In [8], instead of
applying each low-rank update immediately to an H-matrix, multiple updates are
accumulated in an auxiliary low-rank matrix. This auxiliary matrix is propagated
as the algorithm traverses the hierarchical structure underlying the H-matrix. This
greatly improves computation times, although the computational cost is not im-
proved. Still, also in this approach, multiple truncation steps are performed. Thus,
it does not lead to the best approximation of the low-rank block under considera-
tion.

As an alternative, in [10], it has been proposed to directly compute the low-rank
approximation of the output matrix block by using the truncated singular value
decomposition, realized by means of a Krylov subspace method. This requires only
the implementation of matrix-vector multiplications and is hence easy to realize.
Especially, it yields the best approximation of the low-rank blocks to be computed.
But contrary to expectations, it does not increase efficiency since the eigensolver
converges very slowly in case of a clustering of the eigenvalues. Therefore, comput-
ing times have not been satisfactory.

In the present article, we pick up the idea from [10] and provide an algorithm
that facilitates the direct computation of any matrix block in the product of two
H-matrices. This algorithm is based on a sophisticated bookkeeping technique in
combination with a compression based on basic matrix-vector products. This new
algorithm will naturally lead to the best approximation of the H-matrix product
within the H-matrix format. In particular, we cover the cases of an optimal fixed
rank truncation and of an optimal adaptively chosen rank based on a prescribed
accuracy.

Our numerical experiments show that both, the fixed rank and the adaptive
versions of the used low-rank techniques, are significantly more efficient than the
traditional arithmetic with fixed rank. In particular, the numerical experiments
also validate that the desired error tolerance can indeed be reached when using the
adaptive algorithms.

For the actual compression of a given matrix block, any compression technique
based on matrix-vector products is feasible. Exemplarily, we shall consider here
the adaptive cross approximation, see [4,16], the Golub-Kahan-Lanczos bidiagonal-
ization procedure, see [14], and the randomized range approximation, cf. [25]. We
will employ these methods to either compute approximations with fixed ranks or
with adaptively chosen ranks. We remark that, in the fixed rank case, a similar
algorithm for randomized range approximation, has successively been applied to di-
rectly compute the approximation of the product of two HSS or HODLR matrices
in [28,29].

The rest of this article is structured as follows. In Section 2, we briefly recall the
construction and structure of H-matrices together with their matrix-vector mul-
tiplication. Section 3 is dedicated to the new framework for the matrix-matrix
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multiplication. The three example algorithms for the efficient low-rank approxi-
mation are then the topic of Section 4. Section 5 is concerned with the analysis
of the computational cost of the new multiplications, which shows that the new
matrix-matrix multiplication has asymptotically the same computational cost as
the standard matrix-matrix multiplication, i.e., almost linear in the number of de-
grees of freedom. Nonetheless, as the numerical results in Section 6 show, the
constants in the estimates are significantly lower for the new approach, resulting in
a remarkable speed-up. Finally, concluding remarks are stated in Section 7.

2. Preliminaries

The pivotal idea of hierarchial matrices is to introduce a tree structure on the
cartesian product I ×I, where I is a suitable index set. The tree structure is then
used to identify sub-blocks of the matrix which are suitable for low-rank represen-
tation. We follow the the monograph [22, Chapter 5.3 and A.2] and first recall a
suitable definition of a tree.

Definition 2.1. Let V be a non-empty finite set, call it vertex set, and let child
be a mapping from V into the power set P(V ), i.e., child : V → P(V ). For any
v ∈ V , an element v′ in child(v) is called child, whereas we call v the parent of v′.
We call the structure T (V, child) a tree, if the following properties hold.

(1) There is exactly one element r ∈ V which is not a child of a vertex, i.e.,
⋃

v∈V
child(v) = V \ {r}.

We call this vertex the root of the tree.
(2) All v ∈ V are successors of r, i.e., there is a k ∈ N0, such that v ∈ childk(r).

We define childk(v) recursively as

child0(v) = {v} and childk(v) =
⋃

v′∈childk−1(v)

child(v′).

(3) Any v ∈ V \ {r} has exactly one parent.

Moreover, we say that the number k is the level of v. The depth of a tree is the
maximum of the levels of its vertices. We define the set of leaves of T as

L(T ) = {v ∈ V : child(v) = ∅}.
We remark that for any v ∈ T , there is exactly one path from r to v, see [22,

Remark A.6].

Definition 2.2. Let I be a finite index set. The cluster tree TI is a tree with the
following properties.

(1) I ∈ TI is the root of the tree TI ,
(2) for all non-leaf elements τ ∈ TI it holds

⋃̇

σ∈child(τ)

σ = τ,

i.e., all non-leaf clusters are the disjoint union of their children,
(3) all τ ∈ TI are non-empty.

The vertices of the cluster tree are referred to as clusters.
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To achieve almost linear cost for the following algorithms, we shall assume that
the depth of the cluster tree is bounded by O(log(#I)) and that the cardinality
of the leaf clusters is bounded by nmin. Various ways to construct a cluster tree
fulfilling this requirement along with different kinds of other properties exist, see [22]
and the references therein.

Obviously, by applying the second requirement of the definition recursively, it
holds τ ⊂ I for all τ ∈ TI . Consequently, the leaves of the cluster tree form a
partition of I.

Definition 2.3. An admissibility condition for I is a mapping

adm: P(I)× P(I)→ {true, false}
which is symmetric, i.e., for τ × σ ∈ P(I)× P(I) it holds

adm(τ, σ) = adm(σ, τ),

and monotone, i.e., if adm(τ, σ) = true, it holds

adm(τ ′, σ′) = true, for all τ ′ ∈ child(τ), σ′ ∈ child(σ).

Different kinds of admissibility exist, see [22] for a thorough discussion and ex-
amples. Based on the admissibility condition and the cluster tree, the block-cluster
tree forms a partition of the index set I × I.

Algorithm 1 Construction of the block-cluster tree B, cf. [22, Definition 5.26]

function BuildBlockClusterTree(block-cluster b = τ × σ)
if adm(τ, σ) = true then

child(b) := ∅
else

if τ and σ have sons then
sons(b) := {σ′ × τ ′ : τ ′ ∈ child(τ), σ′ ∈ child(σ)}
for b′ ∈ child(b) do

BuildBlockClusterTree(b′)
end for

else
child(b) := ∅

end if
end if

end function

Definition 2.4. Given a cluster-tree TI , the tree structure B constructed by Algo-
rithm 1 invoked with b = I × I is referred to as block-cluster tree.

For notational purposes, we write p = depth(B) and refer to N as the set of
inadmissible leaves of B and call it the nearfield. In a similar fashion, we will refer
to F as the set of admissible leaves of B and call it the farfield. We remark that the
depth of the block-cluster tree is bounded by the depth of the cluster tree and that
our definition of the block-cluster tree coincides with the notion of a level-conserving
block-cluster tree from the literature.
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Definition 2.5. For a block-cluster b = τ × σ and k ≤ min{#τ,#σ}, we define
the set of low-rank matrices as

R(τ × σ, k) =
{
M ∈ Rτ×σ : rank(M) ≤ k

}
,

where all elements M ∈ R(τ × σ, k) are stored in low-rank representation, i.e.,

M = LMRᵀ
M

for matrices LM ∈ Rτ×k and RM ∈ Rσ×k.

Obviously, a matrix in R(τ × σ, k) requires k(#τ + #σ) units of storage instead
of #τ ·#σ, which results in a significant storage improvement if k � min{#τ,#σ}.
The same consideration holds true for the matrix-vector multiplication.

With the definition of the block-cluster tree at hand, we are in the position to
introduce hierarchical matrices.

Definition 2.6. Given a block-cluster tree B, the set of hierarchical matrices, in
short H-matrices, of maximal block-rank k is given by

H(B, k) :=
{

H ∈ R#I×#I : H|τ×σ ∈ R(τ × σ, k) for all τ × σ ∈ F
}
.

A tree structure is induced on each element of this set by the tree structure of the
block-cluster tree. Note that all nearfield blocks H|τ×σ, τ × σ ∈ N , are allowed to
be dense matrices.

The tree structure of the block-cluster tree provides the following useful recursive
block matrix structure on H-matrices. Every matrix block H|τ×σ, corresponding
to a non-leaf block-cluster τ × σ, has the structure

H
∣∣
τ×σ =




H
∣∣
child(τ)1×child(σ)1

. . . H
∣∣
child(τ)1×child(σ)#child(σ)

...
...

H
∣∣
child(τ)#child(τ)×child(σ)1

. . . H
∣∣
child(τ)#child(τ)×child(σ)#child(σ)


 .

(1)

If the matrix block H|τ ′×σ′ , τ ′ ∈ child(τ), σ′ ∈ child(σ), is a leaf of B, the matrix
block is either a low-rank matrix, if τ ′ × σ′ ∈ F , or a dense matrix, if τ ′ × σ′ ∈ N .
If the matrix block is not a leaf of B, it exhibits again a similar block structure as
H|τ×σ. The required ordering of the clusters relies on the order of the indices in the
clusters. A possible block structure of an H-matrix is illustrated in Figure 1. Of
course, the structure may vary depending on the used cluster tree and admissibility
condition.

Having the block structure (1) available, an algorithm for the matrix-vector mul-
tiplication, as listed in Algorithm 2, can easily be derived. Note that the matrix-
vector multiplication for the leaf block-clusters involves either a dense matrix or a
low-rank matrix. In accordance with [22, Lemma 7.17], the matrix-vector multipli-
cation of an H-matrix block H|τ×σ with H ∈ H(B, k) can be accomplished in at
most

NH·v(τ × σ, k) ≤ 2Csp max{k, nmin}
((

depth(#τ) + 1
)
#τ +

(
depth(#σ) + 1

)
#σ
)

operations, where the constant Csp = Csp(B) is given as

Csp(B) := max
τ∈TI

#
{
σ ∈ TI : τ × σ ∈ B

}
.
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Figure 1. Illustration of the recursive block structure of an H-
matrix. Only the smallest blocks are allowed to be dense matrices
while all other blocks are represented by low-rank matrices.

Algorithm 2 H-matrix-vector multiplication y+=Hx, see [22, Equation (7.1)]

function HtimesV(y|τ , H|τ×σ, x|σ)
if τ × σ /∈ L(B) then

for τ ′ × σ′ ∈ child(τ × σ) do
HtimesV(y|τ ′ , H|τ ′×σ′ , x|σ′)

end for
else

y|τ+=H|τ×σx|σ
end if

end function

Given a cluster τ ∈ TI , the quantity Csp is an upper bound on the number of
corresponding block-clusters τ × σ ∈ B. Thus, it is also an upper bound for the
number of corresponding matrix blocks H|τ×σ in the tree structure of an H-matrix
corresponding to B.

3. The multiplication of H-matrices

Instead of restating the H-matrix multiplication in its original form from [21], we
directly introduce our new framework. The connection between the new framework
and the traditional multiplication will be discussed later in this section.

We start by introducing the following sum-expressions, which will simplify the
presentation and the analysis of the new algorithm.

Definition 3.1. Let τ × σ ∈ B. For a finite index set JR, the expression

SR(τ, σ) =
∑

j∈JR
AjB

ᵀ
j ,
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is called a sum-expression of low-rank matrices, if it is represented and stored as a
set of factorized low-rank matrices

{
AjB

ᵀ
j ∈ R(τ × σ, kj) : j ∈ JR}.

Similarly, for a finite index set JH, the expression

SH(τ, σ) =
∑

j∈JH
HjKj

is called a sum-expression of H-matrices, if it is represented and stored as a set of
pairs of H-matrix blocks

{(
Hj ,Kj

)
=
(
H|τ×ρj ,K|ρj×σ

)
: τ × ρj , ρj × σ ∈ B, j ∈ JH

}
,

with H,K ∈ H(B, k) and H|τ×ρj , H|τ×ρj , j ∈ JH, being either dense matrices or
providing the block-matrix structure (1).

The expression

S(τ, σ) = SR(τ, σ) + SH(τ, σ)

is called a sum-expression and a combination of the two previously introduced expres-
sions. In particular, we require that SR is stored as a sum-expression of low-rank
matrices and SH is stored as a sum-expression of H-matrices.

SR(τ, σ) = ·
+
·

+
·

+
·

SH(τ, σ) = · + · + ·

S(τ, σ) = ·
+ · + · +

·

Figure 2. Examples for the introduced sum-expressions. SR(τ, σ)
is a sum of low-rank matrices, SH(τ, σ) a sum of H-matrix prod-
ucts, and S(τ, σ) a mixture of both.

Examples of sum-expressions are illustrated in Figure 2. A sum-expressions may
be considered as a kind of a queuing system to store the sum of low-rank matrices
and/or H-matrix products for subsequent operations.

We remark that the sum of two sum-expressions is again a sum-expression and
shall now make use of this fact to devise an algorithm for the multiplication of
H-matrices. For simplicity, we assume that all involved H-matrices are built upon
the same block-cluster tree B.

3.1. Relation between H-matrix products and sum-expressions. We start
with two H-matrices H,K ∈ H(B, k) and want to represent their product L := HK
in H(B, k). To that end, we rewrite the H-matrix product as a sum-expression

L = HK =: SH(I, I) =: S(I, I).

The task is now to find a suitable low-rank approximation to L|τ×σ inR(τ×σ, k) for
all admissible leafs τ×σ of B. If τ×σ is a child of the root, i.e., τ×σ ∈ child(I×I),
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L

=

H K

·
τ
σ

τ

σ

(a) Matrix blocks of H and K which have to be taken into

account for L|τ×σ .

L|τ×σ
τ
σ

= · +
· · · + · · +

· · ·

· · ·

SH(τ × σ)+ SR(τ × σ) = S(τ × σ)

(b) Computation of the sum-expression for L|τ×σ .

Figure 3. Illustration why a block L|τ×σ on the coarsest level of
the targetH-matrix can be represented as a sum-expression S(τ, σ).

we have that

L|τ×σ = SH(I, I)|τ×σ
=

∑

ρ∈child(I)

H|τ×ρK|ρ×σ

=
∑

ρ∈child(I) :
τ×ρ∈F

or
ρ×σ∈F

H|τ×ρK|ρ×σ +
∑

ρ∈child(I) :
τ×ρ∈B\F
ρ×σ∈B\F

H|τ×ρK|ρ×σ,

due to the block-matrix structure (1) of H and K, see also Figure 3 for an illustra-
tion.

The pivotal idea is now that L|τ×σ can be written as a sum-expression itself, for
which we treat the two remaining sums as follows:

• The products in the first sum involve at least one low-rank matrix, such
that the product in low-rank representation can easily be computed using
matrix-vector multiplications. Having these low-rank matrices computed,
we can store the first sum as a sum-expression of low-rank matrices SR(τ, σ).
• Both factors of the products in the second sum correspond to inadmissible

block-clusters. Thus, they are either dense matrices or H-matrices. Since
a dense matrix is just a special case of an H-matrix, the second sum can
be written as a sum-expression of H-matrices SH(τ, σ).

It follows that L|τ×σ can be represented as a sum-expressions by setting

L|τ×σ = SR(τ, σ) + SH(τ, σ) =: S(τ, σ),

see also Figure 3 for an illustration.
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We can thus represent all children of the root of the block-cluster tree by sum-
expressions. However, we will require to represent all leaves of the block-cluster
tree as sum-expressions. It thus remains to discuss how to represent matrix blocks
L|τ×σ when τ × σ is not a child of the root.

Remark 3.2. The representation of any L|τ×σ in terms of sum-expressions is not
unique. For example, assuming that τ × σ is on level j, one may refine the block-
matrix structure of H and K by modifying the corresponding admissibility condition.
When the admissibility condition is set to false on all levels smaller or equal to
j, one can construct a finer partitioning for H and K to which one can apply
the same strategy as above to obtain a sum-expression for L|τ×σ. In particular,
the conversions to the finer partitioning can be achieved without introducing any
additional errors. However, we will show in Section 5 that we require the following
more sophisticated strategy to obtain an H-matrix multiplication in almost linear
complexity.

3.2. Restrictions of sum-expressions. The main difference between the sum-
expressions for L and its restriction L|τ×σ from the previous subsection is the
presence of SR(τ, σ). Given a block-cluster τ ′ × σ′ ∈ child(τ × σ), it then holds

L|τ ′×σ′ =
(
L|τ×σ

)
|τ ′×σ′

= S(τ, σ)|τ ′×σ′
= SR(τ, σ)|τ ′×σ′ + SH(τ, σ)|τ ′×σ′ ,

where SH(τ, σ)|τ ′×σ′ can be rewritten as

SH(τ, σ)|τ ′×σ′ =
∑

ρ∈TI :
τ×ρ∈B\F
ρ×σ∈B\F

(
H|τ×ρK|ρ×σ

)∣∣
τ ′×σ′

=
∑

ρ∈TI :
τ×ρ∈B\F
ρ×σ∈B\F

∑

ρ′∈child(ρ)

H|τ ′×ρ′K|ρ′×σ′

=
∑

ρ′∈TI :
τ ′×ρ′∈B
ρ′×σ′∈B

H|τ ′×ρ′K|ρ′×σ′ .

Each of the products in the last sum can be treated in the same manner as for the
root. Thus, SH(τ, σ)|τ ′×σ′ can be represented as a sum-expression

SH(τ, σ)|τ ′×σ′ = S(τ ′, σ′) = SR(τ ′, σ′) + SH(τ ′, σ′),

where SR(τ ′, σ′) and SH(τ ′, σ′) may be both non-empty.
The restriction of SR(τ, σ) to τ ′ × σ′ can be accomplished by the restriction of

the corresponding low-rank matrices. In actual implementations, the restriction
of the low-rank matrices can be realized by index-shifts, and thus without further
arithmetic operations.

Since the sum of two sum-expressions is again a sum-expression, we have shown
that each matrix block L|τ×σ can be represented as a sum-expression. A recursive
algorithm for their construction is listed in Algorithm 3. When the algorithm is
initialized with S(I, I) = SH(I, I) = HK and is applied recursively to all elements
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of B, it creates a sum-expression for each block-cluster in B, in particular for all
leaves of the farfield and the nearfield.

Algorithm 3 Given S(τ, σ), construct S(τ ′, σ′) for τ ′ × σ′ ∈ child(τ × σ).

function S(τ ′, σ′) = restrict(S(τ, σ), τ ′ × σ′)
Set SR(τ ′, σ′) =

∑
i

(
AiB

ᵀ
i

)∣∣
τ ′×σ′ , given SR(τ, σ) =

∑
i AiB

ᵀ
i

Set SH(τ ′, σ′) as empty
for H|τ×ρK|ρ×σ ∈ SH(τ, σ) do

for ρ′ ∈ child(ρ) do
if τ ′ × ρ′ ∈ F or ρ′ × σ′ ∈ F then

Compute low-rank matrix ABᵀ = H|τ ′×ρ′K|ρ′×σ′
Set SR(τ ′, σ′) = SR(τ ′, σ′) + ABᵀ

else
Set SH(τ ′, σ′) = SH(τ ′, σ′) + H|τ ′×ρ′K|ρ′×σ′

end if
end for

end for
Set S(τ ′, σ′) = SR(τ ′, σ′) + SH(τ ′, σ′)

end function

3.3. H-matrix multiplication using sum-expressions. The algorithm from the
previous section provides us, when applied recursively, with exact representations in
terms of sum-expressions for each matrix block L|τ×σ for all block-clusters τ×σ ∈ B.
In order to compute an H-matrix approximation of L, we only have to convert
these sum-expressions to dense matrices or low-rank matrices. This leads to the
H-matrix multiplication algorithm given in Algorithm 4, which is initialized with
S(I, I) = SH(I, I) = HK. The evaluate()-routine in the algorithm computes
the representation of the corresponding sum-expression as a full matrix, whereas
the T()-routine is a generic low-rank approximation or truncation operator.

Algorithm 4 H-matrix product: Compute L|τ×σ = (HK)|τ×σ from S(τ, σ)

function L|τ×σ = Hmult(S(τ, σ))
if τ, σ is not a leaf then . L|τ×σ is an H-matrix

for τ ′ × σ′ ∈ child(τ × σ) do
Set S(τ ′, σ′) = restrict(S(τ, σ), τ ′ × σ′)
L|τ ′×σ′ = Hmult(S(τ ′, σ′))

end for
else

if τ × σ ∈ F then . L|τ×σ is low-rank
L|τ×σ = T(S(τ, σ))

else . L|τ×σ is a dense
L|τ×σ = evaluate(S(τ, σ))

end if
end if

end function
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Algorithm 5 SVD of a low-rank matrix LRᵀ, see [22, Algorithm 2.17]

function UΣVᵀ=LowRankSVD(LRᵀ)

QLRL = QR-decomposition of L, QL ∈ Rτ×k̃, RL ∈ Rk̃×k̃

QRRR = QR-decomposition of R, QR ∈ Rσ×k̃, RR ∈ Rk̃×k̃
ŨΣṼ

ᵀ
= SVD(RLRR

ᵀ)

U = QLŨ
V = QRṼ

end function

The algorithm can be seen as a general framework for the multiplication of H-
matrices, although several special cases are stated in the literature using different
algorithmic implementations.

3.3.1. No truncation. In principle, the truncation operator could act as an identity.
For this implementation, it was shown in [17] that the rank k̃ of low-rank matrices
in the product is bounded by

k̃ ≤ CidCsp(p+ 1)k,

where the constant Cid = Cid(B) is given by

Cid(τ × σ) := #{τ ′ × σ′ : τ ′ ∈ successor(τ), σ′ ∈ successor(σ) such that

there exists ρ′ ∈ TI such that

τ ′ × ρ′ ∈ B, ρ′ × σ′ ∈ B},
Cid(B) := max

τ×σ∈L(B)
Cid(τ × σ).

Although the rank of the product is bounded from above, the constants in the
bound might be large. Hence one is interested in truncating the low-rank matrices to
lower rank in a best possible way. Depending on the employed truncation operator
T, different implementations of the multiplication evolve.

3.3.2. Truncation with a single low-rank SVD. Traditionally, the used truncation
operators are based on the singular value decomposition, from which several imple-
mentations have evolved. The most accurate implementation is given by computing
the exact product in low-rank format and truncating it to a lower rank by using a
singular value decomposition for low-rank matrices as given in Algorithm 5. The
number of operations for the H-matrix multiplication, assuming nmin ≤ k, is then
bounded by

43C3
idC

3
spk

3(p+ 1)3 max{#I,#F + #N},
see [17]. However, it turns out that, for more complex block-cluster trees of practical
relevance, the numerical effort for this implementation of the multiplication is quite
high.

3.3.3. Truncation with multiple low-rank SVDs — fast truncation. Therefore, one
may replace the the above truncation by the fast truncation of low-rank matrices,
which aims at accelerating the truncation of sums of low-rank matrices by allowing
a larger error margin. The basic idea is that in many cases

MnNᵀ
n = T

( n∑

i=1

AiB
ᵀ
i

)
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can be sufficiently well be approximated by computing

M2N
ᵀ
2 = T

(
A1B

ᵀ
1 + A2B

ᵀ
2

)

MiN
ᵀ
i = T

(
Mi−1N

ᵀ
i−1 + AiB

ᵀ
i

)
, i = 3, . . . , n.

If the fast truncation is used as a truncation operator, the number of operations
for the H-matrix multiplication, assuming nmin ≤ k, is bounded by

56C2
sp max{Cid, Csp}k2(p+ 1)2#I + 184CspCidk

3(p+ 1)(#F + #N ),

see [17]. Numerical experiments confirm that the H-matrix multiplication using
the fast truncation is indeed faster, but also slightly less accurate than the previous
version of the multiplication.

3.3.4. Truncation with accumulated updates. Recently, in [8], a new truncation op-
erator was introduced, to which we will refer to as truncation with accumulated
updates. Therefore, we slightly modify the definition of the sum-expression and
denote the new object by Sa.

Definition 3.3. For a given block-cluster τ × σ ∈ B, we say that the sum of a
low-rank matrix ABᵀ ∈ R(τ × σ, k) and a sum-expression of H-matrices SH(τ, σ)
is a sum-expression with accumulated updates and write

Sa(τ, σ) = ABᵀ + SH(τ, σ).

In particular, we write SaR(τ, σ) = ABᵀ and, for a second low-rank matrix ÃB̃ᵀ ∈
R(τ × σ, k), we define the sum of these expressions with a low-rank-matrix as

SaR(τ, σ) + ÃB̃ᵀ = T
(
ABᵀ + ÃB̃ᵀ)

Sa(τ, σ) + ÃB̃ᵀ = T
(
ABᵀ + ÃB̃ᵀ)+ SH(τ, σ),

i.e., instead of adding the new low-rank matrix to the list of low-rank matrices in
Sa(τ, σ), we perform an addition of low-rank matrices with subsequent truncation.

Obviously, every sum-expression with accumulated updates is also a sum-expression
in the sense of Definition 3.1. The key point is that the addition with low-rank ma-
trices is treated differently. By replacing the sum-expressions in Algorithm 4 by
sum-expressions with accumulated updates, we obtain the H-matrix multiplication
as stated in [8]. The number of operations for this algorithm is bounded by

3CmmC
2
spk

2(p+ 1)2#I.
The constant Cmm consists of several other constants which exceed the scope of this
article and we refer to [8] for more details. However, the numerical experiments
in [8] indicate that the truncation operator with accumulated updates is faster than
the fast truncation operator.

An issue of both, the fast truncation and the truncation with accumulated up-
dates, is a situation where the product of H-matrices has to be converted into a
low-rank matrix. Here, both implementations rely on a hierarchical approximation
of the product of the H-matrices. That is, the product is computed in H-matrix
format and then, starting from the leaves, recursively converted into low-rank for-
mat, which is a time-consuming task and requires several intermediate truncation
steps. This introduces additional truncation errors, although the truncation with
accumulated updates somehow reduces the number of conversions.
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A slightly different approach than the fast truncation with hierarchical approx-
imation was proposed in [10]. There, the H-matrix products have been truncated
to low-rank matrices using an iterative eigensolver based on matrix-vector multi-
plications before applying the fast truncation operator. The numerical experiments
prove this approach to be computationally efficient, while providing even a best
approximation to the product of the H-matrices in low-rank format.

We summarize by remarking that all of the common H-matrix multiplication
algorithms are variants of Algorithm 4, employing different truncation operators.
Therefore, in order to improve the accuracy and the speed of the H-matrix multi-
plication, efficient and accurate truncation operators have to be used.

Since approaches based on the singular value decomposition of dense or low-rank
matrices have proven to be less promising, we focus in the following on low-rank
approximation methods based on matrix-vector multiplications. The idea behind
this approach is that the multiplication of a sum-expression S(τ, σ) with a vector v
of length #σ can be computed efficiently by

S(τ, σ)v =
∑

j∈JR
Aj

(
Bᵀ
jv
)

+
∑

j∈JH
Hj

(
Kjv

)
.

Although this idea has already been mentioned in [10], the used eigensolver in [10]
seemed to be less favourable for this task. In the next section, we will discuss
several approaches to compute low-rank approximations to sum-expressions using
matrix-vector multiplications. In particular, we will discuss adaptive algorithms,
which compute low-rank approximations to sum-expressions up to a prescribed error
tolerance. The adaptive algorithms will allow us to compute the best-approximation
of H-matrix products.

4. Low-rank approximation schemes

In addition to the well known hierarchical approximation for the approximation
of H-matrices by low-rank matrices, we consider here three different schemes for
the low-rank approximation of a given matrix. All of them can be implemented in
terms of elementary matrix-vector products and are therefore well suited for the
use in our new H-matrix multiplication. In what follows, let A := H|τ×σ ∈ Rm×n,
m = #τ , n = #σ, always denote a target matrix block, which might be implicitly
given in terms of a sum-expression S(τ, σ).

4.1. Adaptive cross approximation. In the context of boundary element meth-
ods, the adaptive cross approximation (ACA), see [4], is frequently used to find
H-matrix approximations to system matrices. However, one can prove, see [12],
that the same idea can also be applied to the product of pseudodifferential opera-
tors. Since the H-matrix multiplication can be seen as a discrete analogon to the
multiplication of pseudodifferential operators, we may use ACA to find the low-
rank approximations for the admissible matrix blocks. Concretely, we approximate
A = H|τ×σ by a partially pivoted Gaussian elimination, see [4] for further details.
To this end, we define the vectors `r ∈ Rm and ur ∈ Rn by the iterative scheme
shown in Algorithm 6, where A = [ai,j ]i,j is the matrix-block under consideration.

A suitable criterion that guarantees the convergence of the algorithm is to choose
the pivot element located in the (ir, jr)-position as the maximum element in mod-
ulus of the remainder A − Lr−1Ur−1. Unfortunately, this would compromise the
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Algorithm 6 Adaptive cross approximation (ACA)

for r = 1, 2, . . . do
Choose the element in (ir, jr)-position of the Schur compolement as pivot

ûr = [air,j ]
n
j=1 −

∑r−1
j=1[`j ]iruj

ur = ûr/[ûr]jr
`r = [ai,jr ]

m
i=1 −

∑r−1
i=1 [ui]jr`i

end for
Set Lr := [`1, . . . , `r] and Ur := [u1, . . . ,ur]

ᵀ

overall cost of the approximation. Therefore, we resort to another pivoting strategy
which is sufficient in most cases: we choose jr such that [ûr]jr is the largest element
in modulus of the row ûr.

Obviously, the cost for the computation of the rank-k-approximation LkUk to
the block A is O

(
k2(m + n)

)
and the storage cost is O

(
k(m + n)

)
. In addition,

if A is given via a sum-expression, we have to compute eᵀ
im

A and Aejm in each
step, where ei denots the i-th unit vector, in order to retrieve the row and column
under consideration. The respective computational cost for the multiplication of a
sum-expression with a vector is estimated in Lemma 5.3.

4.2. Lanczos bidiagonalization. The second algorithm we consider for compress-
ing a given matrix block is based on the Lanczos bidiagonalization (BiLanczos), see
Algorithm 7. This procedure is equivalent to the tridiagonalization of the corre-
sponding, symmetric Jordan-Wielandt matrix[

0 A
Aᵀ 0

]
,

cf. [15].

Algorithm 7 Golub-Kahan-Lanczos bidiagonalization

Choose a random vector w1 with ‖w1‖ = 1 and set q0 = 0, β0 = 0
for r = 1, 2, . . . do

qr = Awr − βr−1qr−1

αr = ‖qr‖2
qr = qr/αr
wr+1 = Aᵀqr − αrwr

βr = ‖wr+1‖2
wr+1 = wr+1/βr

end for

The algorithm leads to a decomposition of the given matrix block according to

QᵀAW = B :=




α1 β1

α2 β2
. . .

. . .

αn−1 βn−1

αn




with orthogonal matrices QᵀQ = Im and WᵀW = In, cf. [15]. Note that although
the algorithm yields orthogonal vectors qr and wr by construction, we have to
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perform additional reorthogonalization steps to obtain numerical stability. Since
the algorithm, like ACA, only depends on matrix-vector multiplications, it is well
suited to compress a given block A.

Truncating the algorithm after k steps results in a low-rank approximation

A ≈ QkBkW
ᵀ
k = Uk




α1 β1

α2 β2

. . .
. . .

αk−1 βk−1

αk




Vᵀ
k .

It is then easy to compute a singular value decomposition Bk = ŨSṼᵀ and to
obtain the separable decomposition

A ≈ (QkŨS)(WkṼ)ᵀ = LkUk.

As in the ACA case, the algorithm only requires two matrix-vector products with
the block A in each step.

4.3. Randomized low-rank approximation. The third algorithm we consider
for finding a low-rank approximation to A is based on successive multiplication
with Gaussian random vectors. The algorithm can be motivated as follows, cf. [25]:
Let yi = Aωi for i = 1, . . . , r, where ω1, . . . ,ωr ∈ Rn are independently drawn
Gaussian random vectors. The collection of these random vectors is very likely to be
linearly independent, whereas it is very unlikely that any linear combination of them
falls in the null space of A. As a consequence, the collection y1, . . . ,yr is linearly
independent and spans the range of A. Thus, by orthogonalizing [y1, . . . ,yr] =
LrR, with an orthogonal matrix Lr ∈ Rm×r, we obtain A ≈ LrUr with Ur = Lᵀ

rA,
see Algorithm 8. Employing oversampling, the quality of the approximation can
be increased even further. For all the details, we refer to [25]. As the previous

Algorithm 8 Randomized low-rank approximation

Set L0 = [ ]
for r = 1, 2, . . . do

Generate a Gaussian random vector ω ∈ Rn
`r = (I− Lr−1L

ᵀ
r−1)Aω

`r = `r / ‖`r‖2
Lr = [Lr−1, `r]
Ur = Lᵀ

rA
end for

two algorithms, the randomized low-rank approximation requires only two matrix-
vector multiplications with A in each step.

In contrast to the other two presented compression schemes, the randomized
approximation allows for a blocked version in a straightforward manner, where
instead of a single Gaussian random vector, a Gaussian matrix can be used to
approximate the range of A. Although there also exist block versions of the ACA
and the BiLanczos, as well, they are know to be numerically very unstable.

Note that there exist probabilistic error estimates for the approximation of a
given matrix by Algorithm 8, cf. [25]. Unfortunately, these error estimates are with
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respect to the spectral norm and therefore only give insights on the largest singular
value of the remainder. To have control on the actual approximation quality of a
certain matrix block, we are thus rather interest in an error estimate with respect to
the Frobenius norm. To that end, we propose a different, adaptive criterion which
estimates the error with respect to the Frobenius norm.

4.4. Adaptive stopping criterion. In our implementation, the proposed com-
pression schemes rely on the following well known adaptive stopping criterion, which
aims at reflecting the approximation error with respect to the Frobenius norm. We
terminate the approximation if the criterion

(2) ‖`k+1‖2‖uk+1‖2 ≤ ε‖LkUk‖F
is met for some desired accuracy ε > 0. This criterion can be justified as follows.
We assume that the error in each step is reduced by a constant rate 0 < ϑ < 1, i.e.,

‖A− Lk+1Uk+1‖F ≤ ϑ‖A− LkUk‖F .
Then, there holds

‖`k+1‖2‖uk+1‖2 = ‖Lk+1Uk+1 − LkUk‖F
≤ ‖A− Lk+1Uk+1‖F + ‖A− LkUk‖F
≤ (1 + ϑ)‖A− LkUk‖F

and, vice versa,

‖Lk+1Uk+1 − LkUk‖F ≥ ‖A− LkUk‖F − ‖A− Lk+1Uk+1‖F
≥ (1− ϑ)‖A− LkUk‖F .

Therefore, the approximation error is proportional to the norm

‖`k+1uk+1‖F = ‖`k+1‖2‖uk+1‖2
of the update vectors, i.e.,

(1− ϑ)‖A− LkUk‖F ≤ ‖`k+1‖2‖uk+1‖2 ≤ (1 + ϑ)‖A− LkUk‖F .
Thus, together with (2), we can guarantee a relative error bound

(3) ‖A− LkUk‖F ≤
ε

1− ϑ‖LkUk‖F ≤
ε

1− ϑ‖A‖F .

Based on this blockwise error estimate, it is straightforward to assess the overall
error for the approximation of a given H-matrix.

Theorem 4.1. Let H be the uncompressed matrix and H̃ be the matrix which is
compressed by one of the aforementioned compression schemes. Then, with respect
to the Frobenius norm, there holds the error estimate

‖H− H̃‖F . ε‖H‖F
provided that the blockwise error satisfies (3).

Proof. In view of (3), we have

‖H− H̃‖2F =
∑

τ×σ∈F

∥∥H|τ×σ − H̃|τ×σ
∥∥2

F

.
∑

τ×σ∈F
‖H|τ×σ‖2F

= ε2‖H‖2F .
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Taking square roots on both sides yields the assertion. �

4.5. Fixed rank approximation. The traditionalH-matrix multiplication is based
on low-rank approximations to a fixed a-priori prescribed rank. We will therefore
shortly comment on the fixed rank versions of the introduced algorithms which we
will later also use in the numerical experiments. Since ACA and the BiLanczos
algorithm are intrinsically iterative methods, we stop the iteration whenever the
prescribed rank is reached. For the randomized low-rank approximation we may
use a single iteration of its blocked variant. The corresponding algorithm featur-
ing also additional q ∈ N0 subspace iterations to increase accuracies is listed in
Algorithm 9, cp. [25]. For practical purposes, when the singular values of A decay

Algorithm 9 Randomized rank-k approximation with subspace iterations

Generate a Gaussian random matrix Ω ∈ Rn×k
L = AΩ
Orthonormalize columns of L
for ` = 1, . . . , q do

U = AᵀL
Orthonormalize columns of U
L = AU
Orthonormalize columns of L

end for
U = AᵀL

sufficiently fast, a value of q = 1 is usually sufficient. We will therefore use q = 1
in the numerical experiments. For a detailed discussion on the number of subspace
iterations and comments on oversampling, i.e., sampling at a higher rank with a
subsequent truncation, we refer to [25].

5. Cost of the H-matrix multiplication

The following section is dedicated to the cost analysis of the H-matrix multipli-
cation as introduced in Algorithm 4. We first estimate the cost for the computation
of the sum-expressions and then proceed by analyzing the multiplication of a sum-
expression with a vector. Having these estimates at our disposal, the main theorem
of this section confirms that the cost of the H-matrix multiplication scales almost
linearly with the cardinality of the index set I.

Lemma 5.1. Given a block-cluster τ × σ ∈ B with sum-expression S(τ, σ), the
sum-expression S(τ ′, σ′) for any block-cluster τ ′×σ′ ∈ child(τ×σ) can be computed
in at most

Nupdate,S(τ ′, σ′) ≤
∑

ρ′∈TI :
τ ′×ρ′∈B\F
ρ′×σ′∈F

kNH·v(τ
′ × ρ′, k) +

∑

ρ′∈TI :
τ ′×ρ′∈F
ρ′×σ′∈B\F

kNH·v(ρ
′ × σ′, k)

+
∑

ρ′∈TI :
τ ′×ρ′∈F
ρ′×σ′∈F

k
(
#ρ′ + min{#τ ′,#σ′}

)

operations.
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Proof. We start with recalling that S(τ ′, σ′) is recursively given as

S(τ ′, σ′) = S(τ, σ)|τ ′×σ′
= SR(τ, σ)|τ ′×σ′ + SH(τ, σ)|τ ′×σ′
= SR(τ, σ)|τ ′×σ′ +

∑

ρ′∈TI :
τ ′×ρ′∈B
ρ′×σ′∈B

H|τ ′×ρ′H|ρ′×σ′ ,(4)

with SR(I, I) = ∅. Clearly, the restriction of SR(τ, σ) to τ ′ × σ′ comes for free,
and we only have to look at the remaining sum. It can be decomposed into

∑

ρ′∈TI :
τ ′×ρ′∈B
ρ′×σ′∈B

H|τ ′×ρ′H|ρ′×σ′ =
∑

ρ′∈TI :
τ ′×ρ′∈B\F
ρ′×σ′∈B\F

H|τ ′×ρ′H|ρ′×σ′(5)

+
∑

ρ′∈TI :
τ ′×ρ′∈B\F
ρ′×σ′∈F

H|τ ′×ρ′H|ρ′×σ′(6)

+
∑

ρ′∈TI :
τ ′×ρ′∈F
ρ′×σ′∈B\F

H|τ ′×ρ′H|ρ′×σ′(7)

+
∑

ρ′∈TI :
τ ′×ρ′∈F
ρ′×σ′∈F

H|τ ′×ρ′H|ρ′×σ′ .(8)

The products on the right-hand side in (5) are not computed, thus, no numeri-
cal effort has to be made. The products in (6), (7), and (8) must be computed
and stored as low-rank matrices. The computational effort for this operation is
kNH·v(τ ′ × ρ′, k) for (6), kNH·v(ρ′ × σ′, k) for (7), and k2(#ρ′ + min{#τ ′,#σ′})
for (8). Thus, given S(τ, σ), the computational cost to compute S(τ ′, σ′) is

∑

ρ′∈TI :
τ ′×ρ′∈B\F
ρ′×σ′∈F

kNH·v(τ
′ × ρ′, k)+

∑

ρ′∈TI :
τ ′×ρ′∈F
ρ′×σ′∈B\F

kNH·v(ρ
′ × σ′, k)

+
∑

ρ′∈TI :
τ ′×ρ′∈F
ρ′×σ′∈F

k
(
#ρ′ + min{#τ ′,#σ′}

)
,

which proves the assertion. �

Lemma 5.2. The H-matrix multiplication as given by Algorithm 4 requires at most

NS(B) ≤ 16C3
spkmax{k, nmin}(p+ 1)2#I

operations for the computation of the sum-expressions.

Proof. We consider a block-cluster τ × σ ∈ B \ F on level j. Then, the numerical
effort to compute the sum-expression S(τ ′, σ′) for τ ′×σ′ ∈ child(τ ×σ) is estimated
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by Lemma 5.1, if the sum-expression S(τ, σ) is known. Therefore, it is sufficient to
sum over all block-clusters in B as follows:∑

τ×σ∈B
Nupdate,S(τ, σ)

≤
∑

τ×σ∈B

(
2

∑

ρ∈TI :
τ×ρ∈B\F
ρ×σ∈F

kNH·v(τ × ρ, k) +
∑

ρ∈TI :
τ×ρ∈F
ρ×σ∈F

k
(
#ρ+ min{#τ,#σ}

))

= 2
∑

τ×σ∈B

∑

ρ∈TI :
τ×ρ∈B\F
ρ×σ∈F

kNH·v(τ × ρ, k) +
∑

τ×σ∈B

∑

ρ∈TI :
τ×ρ∈F
ρ×σ∈F

k
(
#ρ+ min{#τ,#σ}

)
.

To estimate the first sum, consider
∑

τ×σ∈B

∑

ρ∈TI :
τ×ρ∈B\F
ρ×σ∈F

kNH·v(τ × ρ, k) ≤
∑

τ×σ∈B

∑

ρ∈TI :
τ×ρ∈B\F

kNH·v(τ × ρ, k)

≤ Csp

∑

τ×ρ∈B
kNH·v(τ × ρ, k)

≤ 2C2
spkmax{k, nmin}(p+ 1)

∑

τ×ρ∈B
(#τ + #ρ)

≤ 4C3
spkmax{k, nmin}(p+ 1)2#I,

due to the fact that ∑

τ×σ∈B
(#τ + #σ) ≤ 2Csp(p+ 1)#I,

see, e.g., [17, Lemma 2.4]. Since the second sum can be estimated by
∑

τ×σ∈B

∑

ρ∈TI :
τ×ρ∈F
ρ×σ∈F

k
(
#ρ+ min{#τ,#σ}

)
≤

∑

τ×ρ∈B
ρ×σ∈B

k
(
#ρ+ min{#τ,#σ}

)

≤
∑

τ×ρ∈B
ρ×σ∈B

k
(
2#ρ+ #τ + #σ

)

≤ 2Cspk(p+ 1)#I,
summing up yields the assertion. �

Lemma 5.3. For any block-cluster τ × σ ∈ B, the multiplication of S(τ, σ) with a
vector of length #σ can be accomplished in at most

4Csp max{k, nmin}(p+ 1)
∑

ρ∈TI :
τ×ρ∈B\F
ρ×σ∈B\F

(#τ + #ρ+ #σ)

operations.

Proof. We first estimate the number of elements in SR(τ, σ) and SH(τ, σ). There-
fore, we remark that, for fixed τ , there are at most Csp block-cluster pairs τ×ρ in B
and that the same consideration holds for σ. Thus, looking at the recursion (4), the
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recursion step from S
(

parent(τ),parent(σ)
)

to S(τ, σ) adds at most Csp low-rank
matrices. Thus, considering that S(I, I) = ∅, we have at most Csp level(τ × σ)
low-rank matrices in S(τ, σ). Summing up, the multiplication of S(τ, σ) with a
vector requires at most

Cspk level(τ × σ)(#τ + #σ) +
∑

ρ∈TI :
τ×ρ∈B\F
ρ×σ∈B\F

(
NH·v(τ × ρ, k) +NH·v(ρ× σ, k)

)

≤ Cspk(p+ 1)(#τ + #σ)

+
∑

ρ∈TI :
τ×ρ∈B\F
ρ×σ∈B\F

2Csp max{k, nmin}(p+ 1)(#τ + 2#ρ+ #σ)

≤ 4Csp max{k, nmin}(p+ 1)
∑

ρ∈TI :
τ×ρ∈B\F
ρ×σ∈B\F

(#τ + #ρ+ #σ)

operations. �

With the help of the previous lemmata, we are now able to state our main
result, which estimates the number of operations for the H-matrix multiplication
from Algorithm 4.

Theorem 5.4. Assuming that the range approximation scheme T(M, k?) requires
`k?, ` ≥ 1, matrix-vector multiplications of M and additionally NT(k?) operations
to find a rank k? approximation to a matrix M ∈ Rm×n, then the H-matrix multi-
plication as stated in Algorithm 4 requires at most

8C2
sp(`k? + nmin + 2Csp)kmax{k, nmin}(p+ 1)2#I + Csp(2#I − 1)NT(k?)

operations.

Proof. We start by estimating the number of operations for a single far-field block
τ × σ ∈ F . Using Lemma 5.3, this requires at most

4Csp`k
? max{k, nmin}(p+ 1)

∑

ρ∈TI :
τ×ρ∈B\F
ρ×σ∈B\F

(#τ + #ρ+ #σ) +NT(k?)

operations. Summing up over all farfield blocks yields an effort of at most

∑

τ×σ∈F

(
4Csp`k

? max{k, nmin}(p+ 1)
∑

ρ∈TI :
τ×ρ∈B\F
ρ×σ∈B\F

(#τ + #ρ+ #σ) +NT(k?)

)

≤ 4Csp`k
? max{k, nmin}(p+ 1)

∑

τ×ρ∈B
ρ×σ∈B

(#τ + 2#ρ+ #σ) +
∑

τ×σ∈F
NT(k?)

≤ 8C2
sp`k

?kmax{k, nmin}(p+ 1)2#I + Csp(2#I − 1)NT(k?),

where we have used that #F ≤ Csp(2#I − 1), cf. [22, Lemma 6.11]. Assuming
that a nearfield block τ × σ ∈ N is computed by applying its corresponding sum-
expression S(τ, σ) to an identity matrix of size at most nmin × nmin, the nearfield
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blocks of the H-matrix product can be computed in at most

8C2
spkmax{k, nmin}nmin(p+ 1)2#I

operations. Summing up the operations for the farfield, the nearfield, and the
operations of the sum-expressions from Lemma 5.2 yields the assertion. �

We remark that, with the convention p = depth(B) = O(log(#I)), the previous
theorem states that the H-matrix multiplication from Algorithm 4 has an almost
linear cost with respect to #I. To that end, for given I, we require that the block-
wise ranks of the H-matrix are bounded by a constant k?. That constant may
depend on I. According to [12], this is reasonable for H-matrices which arise from
the discretization of pseudodifferential operators. In particular, it is well known
that k? depends poly-logarithmically on #I for suitable approximation accuracies
ε.

6. Numerical examples

The following section is dedicated to a comparison of the new H-matrix mul-
tiplication to the original algorithm from [21], see also Section 3.3.3. Besides the
comparison between these two algorithms, we also compare different truncation
operators. The considered configurations are listed in Table 1. Note that, in or-
der to compute the dense SVD of a sum-expression, we compute the SVD of the
sum-expression applied to a dense identity matrix.

traditional multiplication new multiplication

sum of low-rank
matrices

truncation with SVD of
low-rank matrices, see

Algorithm 5
—

conversion of
products of

H-matrix blocks
to low rank

• Hierarchical approxima-
tion, see [21]
• ACA, see Section 4.1
• BiLanczos, see Section 4.2
• Randomized, see Setion 4.3
• Reference: dense SVD

—

conversion of
sum-expressions

to low rank

combination of the
operations above, see

discussion in Section 3

• ACA, see Section 4.1
• BiLanczos, see Section 4.2
• Randomized, see Setion 4.3
• Reference: dense SVD

Table 1. Considered configurations of the H-matrix multiplica-
tion for the numerical experiments.

We would like to compare the different configurations in terms of speed and
accuracy. For computational efficiency, the traditional H-matrix arithmetic puts
an upper bound kmax on the truncation rank. However, for computational accuracy,
one should rather put an upper bound on the truncation error. This is also referred
to as ε-rank, where the truncation is with respect to the smallest possible rank such
that the relative truncation error is smaller than ε. We perform the experiments
for both types of bounds, with kmax = 16 and ε = 10−12.
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6.1. Example with exponential kernels. For our first numerical example, we
consider the Galerkin discretizations K1 and K2 of an exponential kernel

k1(x,y) = exp(−‖x− y‖)
and a scaled exponential kernel

k2(x,y) = x1 exp(−‖x− y‖)
on the unit sphere with boundary Γ. This means that, for a given finite element
space VN = span{ϕ1, . . . , ϕN} on Γ, the system matrices are given by

[
K`

]
ij

=

∫

Γ

∫

Γ

k`(x,y)ϕj(x)ϕi(y) dσx dσy

for all i, j = 1, . . . , N and ` = 1, 2.
It is then well known that K1, K2 and their product K1K2 is compressible by

means of H-matrices, see [12,22]. For our numerical experiments, we assemble the
matrices by using piecewise constant finite elements and adaptive cross approxi-
mation as described in [26]. The computations have been carried out on a single
core of a compute server with two Intel(R) Xeon(R) E5-2698v4 CPUs with a clock
rate of 2.20GHz and a main memory of 756GB. The backend for the linear algebra
routines is version 3.2.8 of the software library Eigen, see [20].

Figure 4 depicts the computation times per degree of freedom for the different
kinds of H-matrix multiplication for the fixed rank truncation, whereas Figure 5
shows the computations times for the ε-rank truncation. The cost of the fixed rank
truncation seems to be O(N log(N)2), in accordance with the theoretical cost es-
timates. We can also immediately infer that it pays off to replace the hierarchical
approximation by the alternative low-rank approximation schemes to improve com-
putation times. For the ε-rank truncation, no cost estimates are known. While the
asymptotic behaviour of the computation times for the traditional multiplication
seems to be in the preasymptotic regime in this case, the new multiplication scales
almost linearly. Another important point to remark is that the new algorithm with
ε-rank truncation seems to outperform the frequently used traditional H-matrix
multiplication in terms of computational efficiency. Therefore, we shall now look
whether it is also competitive in terms of accuracy.

To estimate the error of the H-matrix multiplication, we apply ten subspace
iterations to a subspace of size 100, using the matrix-vector product

(K1K2)v −K1(K2v),

and compute an approximation to the Frobenius norm. Looking at the corre-
sponding errors in Figures 6 and 7, we see that the accuracies of the fixed rank
arithmetic behave similar. However, the new multiplication reaches these accura-
cies in a shorter computation time. For the ε-rank truncation, we observe that
the traditional multiplication cannot achieve the prescribed ε-rank of ε = 10−12.
This accuracy is only achieved by the new multiplication with an appropriate low-
rank approximation method. The computation times for these accuracies are even
smaller than the fixed-rank version of the traditionalH-matrix multiplication. Con-
cerning the low-rank approximation methods, it seems as if ACA and the random-
ized algorithm are more robust when applied to smaller matrix sizes, although this
difference vanishes for large matrices.
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Figure 4. Computation times in seconds per degree of freedom
for the product of the matrices occurring from the exponential
kernels using fixed rank truncation with corresponding asymptotics
N log2N , N log3N , and N log4N .
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Figure 5. Computation times in seconds per degree of freedom for
the product of the matrices occurring from the exponential kernels
using ε-rank truncation with corresponding asymptotics N log2N ,
N log3N , and N log4N .
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Figure 6. Error using fixed rank truncation for the product of
the matrices occurring from the exponential kernels.
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Figure 7. Error using ε-rank truncation for the product of the
matrices occurring from the exponential kernels.
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Since the approximation quality of the low-rank methods crucially depends on
the decay of the singular values of the off-diagonal blocks, we repeat the experiments
on a different example.

6.2. Example with matrices from the boundary element method. The sec-
ond example is concerned with the discretized boundary integral operator

[V]ij =

∫

Γ

∫

Γ

ϕj(x)ϕi(y)

‖x− y‖ dσx dσy,

which is frequently used in boundary element methods, see also [31]. The com-
putation times for the operation VV can be found in Figures 8 and 9 and the
corresponding accuracies can be found in Figures 10 and 11. We can see that the
behaviour of the traditional and the new H-matrix multiplication is in large parts
the same as in the previous example, i.e., the new multiplication with ε-rank trun-
cation can reach higher accuracies in shorter computation time than the traditional
multiplication with an upper bound on the used rank. However, we shortly com-
ment on the right figure of Figure 11. There, we see, as in the previous example,
that the ACA and the randomized low-rank approximation method are more ro-
bust on small matrix sizes than the BiLanczos algorithm. We also see that the
ACA and the randomized low-rank approximation method are even more robust
than assembling the full matrix and applying a dense SVD to obtain the low-rank
blocks.

7. Conclusion

The multiplication of hierarchical matrices is a widely used algorithm in engineer-
ing. The recursive scheme of the original implementation and the required upper
threshold for the rank make an a-priori error analysis of the algorithm difficult.
Although several approaches to reduce the number of error-introducing operations
have been made in the literature, an algorithm providing a fast multiplication of H-
matrices with a-priori error-bounds is still not available nowadays. By introducing

100 101 102 103 104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

#I

s
/

#
I

truncation to rank 16, traditional multiplication

ACA
BiLanczos
Randomized
SVD
Hier. Approx.

100 101 102 103 104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

#I

s
/

#
I

truncation to rank 16, new multiplication

ACA
BiLanczos
Randomized
SVD

Figure 8. Computation times in seconds per degree of freedom
for the product of the boundary integral operator matrices using
fixed rank truncation with corresponding asymptotics N log2N ,
N log3N , and N log4N .
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Figure 9. Computation times in seconds per degree of freedom
for the product of the boundary integral operator matrices us-
ing ε-rank truncation with corresponding asymptotics N log2N ,
N log3N , and N log4N .
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Figure 10. Error using fixed rank truncation for the product of
the boundary integral operator matrices.

sum-expressions, which can be seen as a queuing system of low-rank matrices and
H-matrix products, we can postpone the error-introducing low-rank approximation
until the last stage of the algorithm. We have discussed several adaptive low-rank
approximation methods based on matrix-vector multiplications which make an a-
priori error analysis of the H-matrix multiplication possible. The cost analysis
shows that the cost of our new H-matrix multiplication algorithm is almost linear
with respect to the size of the matrix. In particular, the numerical experiments
show that the new approach can compute the best approximation of the H-matrix
product while being computationally more efficient than the traditional product.

Parallelization is an important topic on modern computer architectures. There-
fore, we remark that the computation of the low-rank approximations for the target
blocks is easily parallelizeable, once the necessary sum-expression is available. We
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Figure 11. Error using ε-rank truncation for the product of the
boundary integral operator matrices.

also remark that the computation of the sum-expressions does not require concur-
rent write access, such that the parallelization on a shared memory machine should
be comparably easy.
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