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Abstract

In this thesis, anisotropic etching of graphite and graphene in a hydrogen (H) plasma is

investigated. The exposure of graphite flakes at different plasma pressures and sample-

plasma distances reveals the existence of two different plasma regimes: the direct and

the remote regime. In the direct regime, high energetic H-ions continuously induce new

defects into the graphite surface during the etching process, thus leading to a perforated

surface. In the remote plasma regime, on the other hand, well-defined hexagonal etch

pits evolve, which grow in size, while their number remains constant. This indicates

anisotropic etching, which takes place only at pre-existing defects and edges and leaves

the graphite basal plane pristine.

In a second step of the experiment, the substrate dependence of single layer graphene

etching in the remote plasma regime is investigated. Interestingly, the etching is only

anisotropic for hexagonal boron nitride substrates but isotropic if graphene is placed

on Si/SiO2. It was previously found that the edges of H plasma defined hexagons on

graphite run along the zigzag (ZZ) direction of the crystal lattice. Hence, by inducing

artificial defects into a graphene flake, one can tailor diverse graphene nano-structures

with presumably well-defined ZZ edges, such as e.g. graphene nano ribbons.

However, it is not exactly known how good the quality of as-fabricated graphene edges

really is. This open question is addressed in the second work, where the quality of H

plasma defined graphene edges is investigated by means of atomic resolution atomic

force microscopy (AFM), Raman spectroscopy and low-temperature electronic trans-

port experiments. AFM measurements on hexagons created on graphite surfaces reveal

that the edges are aligned to the ZZ direction and the absence of the Raman D-peak sug-

gests that these edges are high quality ZZ edges. In contrast, hexagons created in single

layer graphene on hexagonal boron nitride exhibit a relatively large D-peak, pointing

towards the presence of edge disorder or armchair segments. Polarization-dependent

Raman experiments indicate that the edges consist of a mixture of armchair and ZZ
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segments. Furthermore, electronic transport measurements, combined with quantum

transport simulations, support the findings from the Raman experiments. Hence, H

plasma defined edges still suffer from edge disorder and the etching process needs to

be further optimized in order to get high quality crystallographic graphene edges.

In addition to the graphene experiments, investigations on Ge/Si core/shell nano wires

are conducted. In particular, single, double, and triple quantum dots (QDs) of various

sizes and with low occupation numbers are formed. In the single QD regime, indications

for the last hole state are found. Moreover, Pauli spin blockade is observed in the double

QD regime. These results open the door for exploring Ge/Si core/shell nano wires as

a potential platform for hole spin-qubit experiments.
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1. Introduction 1

1 Introduction

The invention of the computer in the early 1940s has since had a major influence on

many different aspects of our lives and is omnipresent in the modern world. With the

increase in computational power, new fields of application became accessible. Today,

computers are essential elements in many areas of our daily lives, mostly in custom-

tailored form and adapted to specific purposes. Examples are embedded systems for

control of everyday devices such as, e.g. washing machines, TVs and cars. Personal

computers are used in smart phones and laptops and have their application area, among

other things, in data processing in economy and industry. Super-computers with large

computational power are used to simulate complex processes such as, e.g. climate

developments or medical procedures.

Although there was a continuous development and increase of computational power in

the past 70 years, fundamental limits are anticipated, which slow down and eventually

stop a further rise in computational capacity. Increasing the computational capacity

is connected to miniaturization of transistors, the basic building blocks of computers.

However, there are physical limits in miniaturization, and already in current devices,

quantum mechanical effects become perceptible and can interfere with device function-

ality. Interestingly, it is these quantum mechanical effects which seem to provide a

solution for further development and increase in computational power. In particular, a

quantum computer was proposed by Feynman in the 1980s [1, 2] and triggered a whole

new field of research, which focuses on its realization and development.

In a quantum computer, the fundamental building block is a two-level system, which

in analogy to the classical bit, is called a quantum bit (qubit). In contrast to a clas-

sical bit, which encodes only two states (i.e. "1" and "0"), a qubit can, in addition

to the two eigenstates of the system, be in any superposition thereof. Furthermore,

quantum physics allows for profound correlations between two qubits, which is called

entanglement and is not possible in classical physics. The principles of superposition
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and entanglement are the ingredients which make a quantum computer much more

powerful than a classical computer.

The realization of a quantum computer requires the physical implementation of qubits.

To this aim, several approaches have been pursued such as, e.g. cold-ion traps [3] liquid-

phase nuclear spins [4] and atoms in optical lattices [5]. An important property of a

qubit implementation approach is its scalability, i.e. the feasibility of fabricating large

arrays of qubits within a relatively small space. A particularly promising approach,

in this regard, was proposed by Loss and DiVincenzo in 1998 [6], where electron spins

in solid state structures encode qubits, hence also called spin-qubits. In addition, this

approach is interesting because the fabrication techniques of such solid state qubits

have similarities to the well established semiconductor fabrication technologies, which

could therefore be adapted and used for the fabrication of solid state qubit systems.

Early realizations of solid state qubits were shown in III-V heterostructures such as

GaAs. In 1996 Tarucha et al. have investigated a few-electron quantum dot and

observed shell-filling effects [7]. Moreover, qubit initialization and read-out [8] and

coherent manipulation of spin states [9] was shown. However, it soon became clear

that qubit coherence is intrinsically limited in these III-V materials, which turned out

to be associated to the interaction of the nuclear spins with the electrons, also called

hyperfine coupling. This understanding triggered the search for new materials with

fewer/no nuclear spins. The elements from group IV of the periodic table generally

consist of isotopes with no nuclear spins and the natural abundance of spin-containing

isotopes is rather small. Hence, elements like carbon (C), silicon (Si) and germanium

(Ge) are promising candidates for hosting materials of long-coherence spin-qubits.

The first part of this thesis focuses on the investigation of quantum states of matter

in graphene systems. In particular, narrow strips of graphene, also called graphene

nanoribbons (GNRs), are predicted to exhibit interesting physical phenomena. A few

examples are ferro- and anti-ferromagnetic electron spin-order [10], helical states and

topological phases containing Majorana fermions [11] and spin qubits in quantum dots
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(QDs) [12]. According to the crystal lattice of graphene, two main crystallographic

directions exist: zigzag (ZZ) and armchair (AC). The above mentioned phenomena are

expected only for crystallographic ribbons following either one of these directions, and,

very importantly, the edges need to be of high quality. Several different fabrication

techniques have been investigated to achieve edge qualities as high as possible. The

work presented in this thesis follows an approach where an anisotropic etching method

of graphite and graphene in a hydrogen (H) plasma is developed and investigated.

Furthermore, characterization of the H plasma defined graphene edges is performed by

means of Raman spectroscopy, atomic resolution atomic force microscopy (AFM), and

low-temperature electronic transport measurements.

In the second part of this thesis, Ge/Si core/shell nano wires (NWs) are investigated

as potential hosts for spin-qubit experiments. As mentioned above, both Si and Ge

have a low abundance of non-zero nuclear spins and are, thus, promising candidates

for spin-qubits with long coherence times. In addition to the small hyperfine coupling,

theoretical predictions suggest a strong and tunable spin-orbit interaction (SOI) of

Rashba type, which is called direct Rashba SOI (DRSOI) [13]. The large SOI enables

fast and all-electrical spin manipulation, which is an important ingredient for quantum

computation schemes. Moreover, helical modes and phases hosting Majorana fermions

are theoretically predicted [13]. Next to the strong and tunable SOI, an anisotropic

and tunable g-factor is predicted [14], and was observed in experiment [15]. A tunable

g-factor is especially interesting because it allows for selectively tuning the coupling

to externally applied electrical driving fields. All of the above mentioned properties

make Ge/Si core/shell NWs a promising platform for the realization of spin-qubits.

The work presented in this thesis focuses on the investigation of QDs of different sizes,

which can be tuned to low occupation numbers. Furthermore, double and triple QDs

can be formed and Pauli spin blockade (PSB) is observed in the double QD regime.
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This thesis is organized as follows:

• Chapter 2: In this chapter the theoretical and experimental background for the

experiments presented in this thesis is addressed. In a first part, the structure

and properties of graphene are explained. GNRs are introduced and a brief

review of fabrication methods and their results is given. The generation of a H

plasma and possible reaction mechanisms of H radicals with graphitic species is

explained. Moreover, the working principle of Raman spectroscopy and its use

for insight into the quality of graphene edges is discussed. In addition, electronic

transport in graphene samples and the formation of pn-junctions is addressed.

Furthermore, sample fabrication techniques and methods are presented.

In a second part, Ge/Si core/shell NWs are introduced and a brief review of

important experimental achievements in the field is given. Moreover, single and

double QDs are addressed and the mechanism of PSB is explained.

• Chapter 3: Presentation of the experimental results on anisotropic etching of

graphite and graphene in a remote H plasma. Important etching parameters such

as pressure, sample-plasma distance, and substrate influence are identified.

• Chapter 4: Based on the findings presented in chapter 3, graphene nano struc-

tures are fabricated by means of anisotropic etching in a remote H plasma. Their

edges are investigated with atomic resolution AFM, Raman spectroscopy and

low-temperature electronic transport measurements.

• Chapter 5: In this chapter low-temperature transport experiments in Ge/Si

core/shell NWs are presented. In particular, the formation of single QDs of

different sizes and the formation of double and triple QDs is shown. In the

double QD regime, PSB is observed.

• Chapter 6: Summary of presented work and outlook on future experiments.
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2 Theoretical and Experimental Background

2.1 Graphene

Graphene is a truly two-dimensional material composed of carbon atoms arranged in

a honeycomb lattice. It is the basic building block for further carbon allotropes like

graphite, carbon nano tubes and fullerenes. First, it was believed that a single layer

(SL) of graphene would be thermodynamically unstable and hence not possible to

isolate in a free state [16, 17]. Nevertheless, it was extensively investigated in theory

[18–20]. Finally, in 2004 A. K. Geim and K. S. Novoselov showed for the first time

that it is possible to isolate a single layer of graphene [21]. This discovery triggered

experimental graphene research in many research groups around the globe.

Graphene turned out to be an extraordinary material for fundamental research and

holds great potential for practical applications. Despite the fact that graphene is

only one atom thick, it exhibits outstanding mechanical strength [22]. Furthermore,

graphene shows exceptionally high thermal [23] and electric conductivities [21, 24].

The charge carriers in graphene behave as massless Dirac fermions which leads to

many interesting physical phenomena such as e.g. the anomalous quantum Hall effect

[25] and the Klein paradox [26].

2.1.1 Structure and Properties of Graphene

A free standing carbon atom has the chemical configuration 1s22s22p2. As carbon

atoms are brought together to form graphene, the 2s and 2p-orbitals hybridize and

form three sp2-orbitals and one p-orbital (see Fig. 2.1 (a)). The sp2-orbitals form the

σ-bonds and lie in a plane where they have 120 ◦ angles in between them, which leads

to the hexagonal lattice shown in Fig. 2.1 (b). It can be seen as two inter-penetrating

triangular lattices with a two-atomic unit cell spanned by the unit vectors
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~a1 = a0

2

 3
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where a0 = 1.42Å is the distance between two adjacent carbon atoms. The corre-

sponding Brillouin zone is depicted in Fig. 2.1 (c) with the reciprocal lattice vectors

~b1 = 2π
3a0

 1
√

3

 and ~b2 = 2π
3a0

 1

−
√

3

 (2.2)

and the high symmetry points Γ, M , K ′ and K. The p-orbitals form the conductive

π and π∗ bands in which the charge carriers are delocalized over the hole graphene

sheet. The corresponding band structure was first calculated by Wallace [18] with a

tight-binding approach and is sketched in the following, based on ref. [27].

(a) (c)(b)

a

a

1

2

b

b

1

2

K
Γ

k

k

x

y

1

2

3

M

δ δ

δ

A B

K’

p

sp2

sp2 sp2

Figure 2.1: Graphene crystal lattice and Brillouin zone. (a) Atomic orbitals
of sp2-hybridized carbon atoms. Fig. taken from [28]. (b) Crystal lattice of graphene.
The two-atomic unit cell with A (blue) and B (yellow) atoms is spanned by the unit
vectors ~a1 and ~a2 and the nearest-neighbor vectors ~δ1,2,3 are indicated. (c) Brillouin
zone of graphene. The high symmetry points Γ andM and the two in-equivalent valleys
K and K ′ are marked. ~b1 and ~b2 are the unit vectors in reciprocal space. Fig. in panel
(b) and (c) are taken from [27].

The charge carriers in the p-orbitals can hop to their nearest-neighbor sites

~δ1 = a

2

 1
√

3

 and ~δ2 = a

2

 1

−
√

3

 and ~δ3 = −a

1

0

 (2.3)
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and the next-nearest-neighbors ~δ′1 = ±~a1, ~δ′2 = ±~a2 and ~δ′3 = ±(~a2 − ~a1). The corre-

sponding tight-binding Hamiltonian reads

H = −t
∑
〈i,j〉,σ

(a†σ,ibσ,j + h.c.)− t′
∑
〈〈i,j〉〉,σ

(a†σ,iaσ,j + b†σ,ibσ,j + h.c.) (2.4)

where aσ,i annihilates and a†σ,i creates an electron with spin σ = ↑ or σ = ↓ on site

Ri on sublattice A (equivalent notation for sublattice B). t and t′ denote the nearest-

neighbor and the next-nearest-neighbor hopping energies, respectively. Note that units

were used such that ~ = 1. The resulting energy bands are given by:

E±(k) = ±t
√

3 + f(k)− t′f(k) (2.5)

where f(k) is given by

f(k) = 2 cos
(√

3kya
)

+ 4 cos
(√

3
2 kya

)
cos
(3

2kxa
)

(2.6)

The corresponding dispersion relation is plotted in Fig. 2.2 (a). In panel (b) a 2D-

representation of the dispersion relation is shown here for a system at the charge

neutrality point.

An expansion close to the K ′ or K point (k = K + q with |q| � |K|) leads to the

following expression

E±(q) ≈ ±vF |q|+O(q/K)2 (2.7)

where vF = 3ta/2 ' 1 · 106 m/s is the Fermi velocity. Hence, the dispersion relation of

the charge carriers in graphene can be well approximated by a linear function at low

energy and q values, respectively (see inset of Fig. 2.2 (a)). The conduction and valence

bands touch each other at zero energy in six points whereof two are different from each

other (K andK ′). This leads to the so-called valley degeneracy of two in addition to the
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Figure 2.2: Tight-binding band structure of graphene. (a) Calculated energy
bands in units of t for t = 2.7 eV and t′ = −0.2 t. The zoom-in shows the region close
to a Dirac point where the linear nature of the dispersion relation is visible for small
energy values. Fig. adapted from [27]. (b) Dispersion relation of graphene where the
bonding σ-bands and anti-bonding σ∗-bands are shown in gray and the π and π∗-bands
are shown in black. The Fermi energy is indicated by the horizontal dashed line. Fig.
taken from [29].

spin degeneracy which also counts two. Graphene is a zero-gap semiconductor where

the Fermi level can be tuned, for example by electric field gating, continuously from

holes to electrons or vice versa. This allows charge carriers to travel across regions of

different polarity (pn-junctions) which are electronic counter parts to semi-transparent

mirrors in classical optics and hence enable to perform many exciting electron-optic

experiments, some of which are discussed in more detail in section 2.1.5. Due to its high

electronic quality, graphene was considered as a suitable material to build transistors.

However, the absence of an electronic band gap disables the possibility to tune the

transistor into an off-state. This obstacle can in principle be overcome if graphene is

cut into narrow stripes (GNRs) where the spatial confinement is expected to lead to the

opening of a band gap. Furthermore, many theoretical proposals which predicted the

appearance of interesting physical phenomena in GNRs with crystallographic edges

motivated the research in this field. In the following section, an overview of GNR

fabrication methods and the experimental findings will be given.
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2.1.2 Graphene Nano Ribbons

If graphene is laterally confined into a narrow strip, where the width of the strip is

equal or smaller than the Fermi wavelength of the charge carriers, it forms a quasi-1D

structure, also called GNR. Interestingly, the electronic properties of GNRs depend

strongly on the nature of their edges. According to the graphene crystal lattice struc-

ture, there are two types of crystallographically clean edge types: Zigzag (ZZ) and

armchair (AC). Fig. 2.3 (a) shows the lattice structure of a ZZ-GNR and in panel (b)

the corresponding electronic band structure is plotted for different ribbon widths (N

= 4, 5, 6; where N corresponds to the number of ZZ lines). As seen in the Fig., the

highest valence band and the lowest conduction band touch each other at zero energy

and turn into essentially flat bands, thus producing a peak in the density of states.

(a) (b)

Figure 2.3: Crystal structure and tight-binding band structure of a ZZ-
GNR. (a) Schematic of the crystal lattice structure of a ZZ-GNR. N denotes the width
of the ribbon in amount of ZZ lines. (b) Tight-binding band structure calculations for
ZZ-GNRs of different widths (N = 4, 5, 6). Fig. adapted from [27].

Taking electron-electron interactions into account, an electronic band gap opens and

turns the otherwise metallic system into a semiconductor [29]. It turns out that these

low-energy states are localized at the edges of the ribbon and give rise to magnetic

ordering of the respective spin states [29]. In particular, the spins align parallel at

each edge (ferromagnetic ordering) and anti-parallel between the two ribbon edges

(anti-ferromagnetic ordering). These predictions have interesting implications which
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triggered exciting proposals for the realization of e.g. spin-filters [30] and magnetic

field sensors [31].

GNRs with edges of the AC type have fundamentally different electronic properties

compared to ZZ-GNRs. Fig. 2.4 (a) shows the crystal structure of an AC-GNR and

panel (b) shows the corresponding tight-binding band structures for different ribbon

widths (N = 4, 5, 6; where N corresponds to the number of dimer lines). AC-GNRs

change their electronic property from metallic to semiconducting, depending on the

ribbon width. If the width is equal to N = 3M − 1, where M ∈ N the ribbon

is metallic and semiconducting otherwise. In contrary to the ZZ case, there are no

edge states present in AC-GNRs. Nevertheless, many interesting proposals based on

AC-GNR systems exist as for example the realization of helical modes and Majorana

fermions [11] and the implementation of spin quibits [12].

(a) (b)

Figure 2.4: Crystal structure and tight-binding band structure of an AC-
GNR. (a) Schematic of the crystal lattice structure of an AC-GNR. N denotes the
width of the ribbon in amount of dimer lines. (b) Tight-binding band structure calcu-
lations for AC-GNRs of different widths (N = 4, 5, 6). Fig. adapted from [27].

For ballistic GNRs with perfect edges the conductance is expected to be quantized ac-

cording to the sub-mode spacing arising due to the spatial confinement. For GNRs with

AC edges the valley degeneracy is lifted and the theoretical predictions for the conduc-

tance exhibit steps of 2 e2/h because of the two degenerate spin channels. Ribbons of

the ZZ type, on the other hand, have their valley and spin degeneracy conserved and

are therefore expected to show steps of 4 e2/h [29, 32]. However, only a small amount

of edge-disorder suppresses conductance quantization [33–35] and prevents the occur-
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rence of interesting physical phenomena which were predicted to arise in systems with

perfect edges. Hence, it is crucial to be able to fabricate GNRs with well-defined crys-

tallographic orientations and low edge-disorder. It has proven to be very challenging to

create GNRs which are sufficiently clean (in terms of bulk as well as edge-disorder) in

order to observe the theoretically predicted physical effects in experiment. A number

of different fabrication methods were attempted such as:

• Carbon nano tube unzipping [36, 37]

• Ultrasonication of intercalated graphite [38]

• Chemical bottom-up synthesis [39–45]

• Anisotropic etching by nickel nano particles [46]

• Anisotropic etching during CVD processing [47–50]

• Carbothermal etching of graphene sheets [51–54]

• Helium ion beam lithography [55, 56]

• TEM Nanosculpting [57]

• GNR growth on SiC step-edges [58]

• Current annealing of suspended GNRs [32]

• STM cutting [59]

• Hydrogen plasma etching [60–67]

Different fabrication techniques probably create different edge configurations and it

is important to develop an understanding of this connection in order to optimize the

edge quality towards perfectly clean crystallographic edges. In order to experimen-

tally investigate graphene edges, a range of different methods is pursued. On the

one hand, direct experimental imaging of graphene edges can be tried, while on the
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other hand features in electronic transport measurements can be analyzed and used

to draw conclusions about the edge quality and configuration. Visualization of the

edges was attempted with different techniques such as TEM imaging [36, 57, 68–76],

STM imaging [40, 62, 77–83] and more recently by means of tip-functionalized AFM

imaging [84, 85] where even information on the chemical structure is possible. For each

method there are advantages and disadvantages. For TEM investigations the samples

need to be suspended on a special grid and the high energetic electrons can change the

edge structure while imaging. For STM experiments, on the other hand, conductive

substrates are needed and the samples need a very clean surface. Indeed atomically

resolved AFM imaging is a rather noninvasive method and does not require special

sample preparation apart from proper cleaning of the investigated GNRs.

Another technique to gain information about the edge configuration is Raman spec-

troscopy. Since we used Raman spectroscopy for the investigation of graphene edges

in the work presented in this thesis, the technique will be introduced in more detail in

an own section 2.1.4.

Most fabrication methods in the list above turned out to produce disordered edges

which are either a mixture of ZZ and AC segments or are disordered in such a way

that not even small AC or ZZ segments are present at all. In electronic transport

experiments, performed in narrow GNRs at low temperatures, this manifests itself in

the occurrence of suppressed conductance and localization features such as Coulomb

blockade diamonds [86–91]. However, in a small minority of electronic transport exper-

iments or STM studies, indications of conductance quantization or other edge related

physics were observed. These experiments will be briefly described in the following.

• Quantized conductance

Tombros et al. [32] have shown transport through a suspended and current-

annealed GNR at zero magnetic field which exhibited indications of conductance

plateaus arising from the spatial confinement. However, to my knowledge, it was

not possible to fabricate such devices in a reproducible manner.
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Another experiment performed by Baringhaus et al. [58] showed high conduc-

tance through the first mode of a GNR grown on a SiC step-edge. No localization

features were observed and the authors claimed ballistic transport over a distance

of 16µm at room temperature. However, the underlying transport mechanism

is not yet fully understood and it is not exactly clear how the SiC substrate

influences the transport properties of the ribbons.

In another publication the ability to fabricate GNRs on SiC sidewalls with certain

dimensions and edge shapes (ZZ and AC terminations) is presented [92].

In a more recent work [93] transport through GNRs epitaxially grown on the

sidewalls of SiC mesa structures is investigated in a spatially-resolved two-point

probe setup. This allows to selectively access and directly image a range of

individual transport modes which give rise to a sequence of quantized conductance

plateaus. The individual transport modes are believed to result from an interplay

between edge-magnetism and asymmetric terminations at opposite ribbon edges

due to the underlying SiC structure morphology.

Size quantization of Dirac fermions was observed in graphene constrictions en-

capsulated in two hexagonal boron nitride (hBN) flakes [94]. At high charge

carrier densities, clear quantization features are present, while at lower densities

deviations from the ballistic transport behavior allow for probing the density of

localized states at the edges. The edges of these devices were defined with reactive

ion etching (RIE) and presumably have a relatively high degree of edge disorder,

which probably turns the quantization features into kinks in the conductance

rather than clean plateaus.

• Edge states

Ruffieux and coworkers [39–42] have developed bottom-up fabrication methods

where chemically synthesized ribbons with atomic precision are created. By

means of STM they map the local density of states and observe edge states which

could potentially be spin polarized according to theoretical predictions [95].
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• Magnetic ordering

Narrow GNRs with well defined crystallographic orientations and low edge dis-

order are fabricated with a STM cutting method [59]. Scanning tunneling spec-

troscopy is performed on ZZ edged GNRs where a semiconductor-metal transition

is observed as the ribbon width is increased. This is in agreement with theoreti-

cal expectations which predict the opening of a band gap and the occurrence of

magnetic ordering of the edge states for narrow ribbons due to electron-electron

interactions. As the ribbon width exceeds a certain threshold, the intra-edge

coupling becomes too small and the system turns metallic, presumably resulting

in the loss of its magnetic structure. It is noteworthy that these effects were

observed at room temperature.

The work presented in this thesis focuses on the approach to fabricate GNRs with

high quality crystallographic edges by means of anisotropic etching of graphite and

graphene in a remote H plasma [60–67]. The generation methods and properties of

such a H plasma are explained in the next section 2.1.3.

2.1.3 Hydrogen Plasma

Already in 1970 McCarroll and McKee have investigated the reactivity of graphite

surfaces with atoms and molecules of H, oxygen and nitrogen [60, 61]. They found

graphite exposed to molecular H and nitrogen to be inert in a temperature range

from 300 ◦C - 1200 ◦C. Interestingly, atomic H and nitrogen lead to the appearance

of hexagonal etch pits on the graphite surfaces upon exposure. It was found that

hexagons created with H atoms have sides parallel to the ZZ direction of the crystal

lattice, whereas atomic nitrogen produces hexagons oriented along the AC direction.

While both, ZZ and AC terminated GNRs are in principle interesting for their own,

different reasons, we focus on the fabrication of ZZ edges in this thesis. Hence we need

to have a source of atomic H to perform the desired etching along the ZZ direction.

One possibility to produce atomic H is to employ a H plasma. In the following a brief



2. Theoretical and Experimental Background 15

description will be given of how such a H plasma can be generated and of which plasma

species it is composed of. Furthermore, possible reaction mechanisms of graphite with

atomic H will be discussed.

Generation of Hydrogen Plasmas

A H plasma can be generated by using a surface launcher, also called surfatron, which

is mounted on the outside of a plasma chamber (e.g. a quartz tube). The generation

method via a surfatron has several advantages over other plasma generation methods

as e.g. the positive column of a DC discharge. Namely, no electrodes are in direct con-

tact with the plasma which could lead to gas contamination and electrode corrosion.

Furthermore, the relatively small surfatron allows to generate long plasma columns

without the need of axial magnetic fields or external structure extending along the

entire chamber. Moreover, it works over a large frequency range, has a low rate of elec-

tron density fluctuation, exhibits high stability and is reliably reproducible. Fig. 2.5 (a)

shows a photograph of the used quartz tube with the surfatron. In panel (b) a schematic

of the setup is shown.

Figure 2.5: Plasma generation with a surfatron. (a) Photograph of the Suprasil
quartz tube with the surfatron mounted. (b) Schematic of the plasma setup. The blue
arrows indicate the electric RF field oscillating between the outer and inner plates of
the surfatron.

A surface wave plasma is generated by coupling a radio frequency (RF) signal over the

surfatron to the gas molecules in the quartz tube. The oscillation of the electric RF

field induces waves which have their charges in the plasma compensated by polarization
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charges in the dielectric material, i.e. in the quartz tube. These waves can travel

along the interface between the plasma and the quartz tube and sustain the plasma

also away from the surfatron. In MHz discharges as ours (13.56MHz) the condition

ωpi < ωRF < ωpe is fulfilled, with ωpi and ωpe being the plasma frequency of the ions

and electrons, respectively. This means that the ions are too slow to follow the electric

field oscillations, whereas the electrons move with the applied RF frequency. When the

moving electrons scatter with the neutral gas particles, they get out of phase with the

applied electric field. This process allows the electrons to gain energy until ionization

and plasma ignition occurs. As the surface wave travels along the plasma/quartz tube

interface away from the surfatron, it transfers energy into the gas and thereby ionizes

it and sustains itself. Due to scattering events of the electrons with ions and neutrals

and scattering at the quartz tube walls, the energy of the surface wave decreases with

the distance from the surfatron. This leads to a linear decrease of the electron and ion

density away from the surfatron, until the energy is too low to sustain the discharge,

leading to the breakdown of the plasma column. Hence, the plasma column length

can be tuned with the applied RF power, in particular longer plasma columns can be

generated with higher power. Another parameter which influences the length of the

plasma column is the gas pressure inside the quartz tube. The gas pressure influences

the amount of scattering events which in turn is proportional to the amount of energy

loss of the surface wave. In particular, a higher pressure would lead to more scattering

and higher energy loss and therefore a shorter plasma column would result.

In a H plasma as described above, the following species are present: H2, H, H+, H+
2 ,

H+
3 , electrons and higher vibrational states of the respective molecules. Basically, two

plasma regimes can be distinguished, the direct and the remote plasma (see Fig. 2.6).

In the direct plasma regime, the surface wave energy is large enough to sustain the

discharge and ionization takes place which leads to the optically visible glow. The re-

mote plasma regime, on the other hand, lies downstream of the glowing part where the

surface wave has not enough energy anymore to ionize the H gas. In the direct plasma



2. Theoretical and Experimental Background 17

direct plasma remote plasma

H2, H, H+, H2
+, H3

+, e- H2, H

surfatron

H2

Figure 2.6: Direct and remote plasma regions. The direct and remote plasma
regions are marked with the molecular and ionic species present in the respective re-
gions. The red strips are glass plates which hinder the plasma to interact with the
metallic closures of the quartz tube plasma chamber.

regime, all the above mentioned species are present. In the remote plasma regime,

the abundance of the individual species depends on the respective recombination rate.

Ions and electrons recombine relatively efficiently inside the gas, whereas the collision

of H radicals needs a third body to carry away the excess energy for recombination.

Hence the recombination of H radicals mainly takes place at the tube walls and de-

pends strongly on the material of the plasma tube. It was found that quartz has a

relatively low H radical recombination coefficient [96, 97] which makes it possible to

create a region where essentially all ions have already recombined and only H radicals

and molecules are present, as needed for the desired etching effect. The influence of

the sample positioning, regarding the direct/remote plasma regions, on the etching

character and the optimization of the plasma parameters in order to reach etching con-

ditions which are useful to fabricate graphene nano structures with well defined edges

is subject of the work presented in section 3. In the next section, possible reaction

mechanisms of H radicals with graphitic material are discussed.

Reaction Mechanisms of Hydrogen Radicals with Graphite and Graphene

If graphite or graphene is exposed to a remote H plasma an anisotropic etching effect

can be observed. This anisotropic etching manifests itself in the formation of hexagonal
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shaped etch pits. Interestingly, the etching takes place only at preexisting defects or

trenches and leaves the basal plane untouched. The formation of hexagonal etch pits

upon exposure to remote H plasma was observed in many experiments [60–63, 65–67]

and is believed to be based on a chemical reaction of H radicals with the graphitic

material. However, the reaction mechanism which leads to the anisotropic etching

is not exactly known and different ideas and speculations exist. In the following, two

possible reaction mechanisms are described in detail. The first mechanism is sketched in

Fig. 2.7 where the four reaction steps are labeled with red numbers and are discussed

in the sequence of reaction: (1) Starting from a two-carbon entity of the graphene

plane, the impact of H radicals leads to the breakage of the C-C double bond and the

hydrogenation of the left C atom which thereby undergoes an sp2 to sp3 transformation.

The other C atom of the former double bond remains in an spx state as only one of the

carbon atoms can be hydrogenated at a time. (2) Multiple hydrogenation steps can

lead to the intermediate product at the top of the Fig., featuring a methyl group. (3)

Further impact of H radicals leads to the release of molecular H and the formation of

the intermediate product shown on the right of the Fig. (4) For temperatures above

400K the methyl group can split-off and a fresh C-C double bond is formed.

This last step incorporates the removal of a C-atom-containing-species and therefore to

the chemical erosion of the graphene sheet. This could explain how etching of graphene

under H radical impact happens in general, but gives no lead why the etching could

form straight edges and be anisotropic. The next described mechanism incorporates

ideas of how the etching could form straight lines with low edge roughness, as it would

be desired for the fabrication of crystallographic GNRs.

In Fig. 2.8 an etching mechanism proposed by Davydova et al. [99] is shown. The

mechanism is based on a molecular dynamics study of a ZZ GNR in a downstream

H plasma, as it was used in the studies presented in section 3 and 4 and can be

subdivided into three phases: Phase 1: The GNR edges are hydrogenated and form

C-H and C-H2 groups (see panel (a) to (c)). This lowers the surface potential barriers
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Figure 2.7: Possible
reaction mechanism
of H radicals with
graphitic material.
On the left hand side
hydrogenation of car-
bon atoms is sketched
and on the right hand
side the chemical ero-
sion of graphite via
the release of a methyl
group is shown. The
red numbers indicate
the four reaction steps
between the interme-
diate products. Fig.
adapted from [98].

for H chemisorption on inner C atoms from the 1st and 2nd carbon rows. Thus,

hydrogenation of C-C dimers from the 1st and 2nd rows takes place and leads to

stress between the fist two carbon rows, initiating phase 2. Phase 2: The increasing

stress between the 1st and 2nd carbon rows finally leads to the rupture of C-C dimer

bonds and unzipping of the 1st row from the 2nd carbon row (see panel (d) to (i)).

Phase 3: If the suspended carbon rows reach a critical length regarding their stability,

they rupture. The ruptured C chains are bombarded by impinging H atoms and are

successively sputtered away (see panel (j) to (n)). This mechanism leaves straight edges

with a low line edge roughness and would be desirable to realize in experiment.

As discussed above, the quality of the edges of GNRs is essentially determining the

electronic properties of the systems and thus important to control and characterize. A

rather straight forward and quite powerful method to gain information on the quality

of graphene edges is Raman spectroscopy which is explained in the next section 2.1.4.
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Figure 2.8: Possible reaction mechanism of GNR etching in a downstream
H plasma. (a) to (c) Phase 1 of the etching mechanism where hydrogenation takes
place , indicated with the greed spheres being H atoms bound to the edge C atoms.
(d) to (i) Phase 2: hydrogenation of inner C atoms and unzipping of the 1st from the
2nd carbon rows. The red and blue ovals highlight regions where a C-C dimer ruptures.
(j) to (n) Phase 3: Rupture and sputtering of suspended C chains. The blue ovals
highlight the location at which the C chain ruptures. Fig. adapted from [99].
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2.1.4 Raman Spectroscopy

Raman spectroscopy is a versatile tool for the surface investigation of many different

materials and sample types (e.g. biological samples, solid state samples). In particular,

it can be used to investigate carbon materials such as graphite [100], carbon nanotubes

[101], fullerenes [102] and graphene [103]. Raman spectroscopy of graphene can provide

information on many important properties of graphene such as e.g. the number of layers

[104], the amount of defects [105, 106], the chirality and quality of edges [52, 107–109],

strain [110, 111], electronic doping [112, 113] and bulk hydrogenation [114].

The Raman spectrum of graphene exhibits three main peaks which are important for

gaining information on the above mentioned quantities: the G-peak, the D-peak and the

2D-peak. The according processes are shown in Fig. 2.9. Basically all Raman processes

include the creation of an electron-hole pair upon laser irradiation, the interaction

with one or more phonons and the subsequent recombination of the electron-hole pair

which leads to the emission of light. Since the inelastic scattering with phonons leads

to energy loss of the electron (or the hole), the emitted light has a lower frequency

compared to the light which was used to excite the electron-hole pair. This shift

in light frequency is called Raman shift and is characteristic for the material and the

specific lattice vibrations thereof. In the following the three main peaks of the graphene

spectrum are explained in detail.

The G-peak arises due to an inelastic first order Raman scattering process, as shown

in Fig. 2.9 (a). The excited electron-hole pair interacts with the doubly degenerate

phonon modes (iTO and iLO) at the Brillouin zone center, i.e. at the Γ-point (see

Fig. 2.10 (c)). These two phonon modes are in-plane vibrations of sp2-bonded carbon

atoms and are schematically depicted in Fig. 2.10 (a). The corresponding Raman shift

of the G-peak is 1580 cm−1. The G-peak intensity holds information about the presence

and amount of graphene, i.e. if properly calibrated it can be used to deduce the number

of graphene layers present in a sample [116]. However, the line shape of the 2D-peak is

a more common used criterion for the determination of the number of graphene layers,
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Figure 2.9: Raman processes in
graphene. (a) G-mode Raman pro-
cess depicted in k-space. The green
arrows denote the incoming laser light
and the excitation of the electron-hole
pair, q stands for the momentum of the
phonon and EF is the Fermi energy of
the system. The process takes place
close to the middle of the Brillouin zone
(the Γ-point). (b) 2D-mode Raman
process with the K and K’ points. The
black arrows indicate the inelastic scat-
tering events of the electron with the
phonons. (c) D-mode Raman process.
The solid arrow indicates the inelastic
scattering event with an iTO phonon
and the dashed arrow denotes an elas-
tic scattering event with a defect or the
edges. Fig. adapted from [115].
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as described below. Furthermore, the width of the G-band can be used to measure the

deformation and strain on a sample [111].

The 2D-peak is activated by an inelastic double resonance Raman process with two

iTO phonons sitting close to the K-point, as indicated in Fig. 2.9 (b) and Fig. 2.10 (c).

The lattice vibrations of the iTO phonons are schematically shown in Fig. 2.10 (b) and

remind of a breathing-like mode of the carbon rings. The according Raman shift is

dispersive and measures ∼ 2700 cm−1 for a laser excitation energy of 2.41 eV. The

2D-peak reflects the electronic band structure of graphene which allows to distinguish

between SL graphene (a single Lorentzian), bilayer (BL) graphene (four Lorentzians)

and graphite (two Lorentzians). Furthermore, the position of the 2D-peak holds infor-

mation on the strain of graphene [110].

The D-peak originates from a double resonance Raman process with one inelastic

scattering event with an iTO phonon around the K-point and one elastic scattering

event with a defect or the edges (Fig. 2.9 (c) and Fig. 2.10 (b) and (c)). The correspond-

ing Raman shift is ∼ 1350 cm−1, which is half of the 2D Raman shift. This is based on

the fact that the D-mode only includes one inelastic phonon scattering event, whereas



2. Theoretical and Experimental Background 23

the 2D-mode undergoes two scattering events with iTO phonons. The D-peak holds

information on defect density, chirality and quality of the edges.
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Figure 2.10: Graphene phonon modes and dispersion. (a) Schematic illustra-
tion of the lattice vibrations of the iTO and iLO phonons at the Γ-point which give rise
to the Raman G-mode. (b) Illustration of the breathing-like lattice vibrations of the
iTO phonons at the K-point which induce the D and 2D Raman modes. (c) Phonon
dispersion relation of graphene with the six branches iLO, iTO, oTO, iLA, iTA, oTA
where the first letter stands for in-plane (i) and out-of-plane (o), the second letter
stands for longitudinal (L) and tangential (T), and the third letter stands for acoustic
(A) and optic (O). The phonon states which are involved in the Raman processes for
the G-, D- and 2D-peaks are indicated and labeled in red. Fig. adapted from [115].
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Raman Spectroscopy at Graphene Edges

As mentioned above, Raman spectroscopy is a suitable tool to investigate the chi-

rality and quality of graphene edges. Since Raman spectroscopy was used for this

purpose in the work presented in this thesis (mainly in section 4), the aspect of edge-

characterization by means of Raman spectroscopy will be described in the following.

The information about the chirality and quality of the edge is captured in the D-peak

of the Raman spectrum. After the incoming laser light has excited an electron-hole

pair and an inelastic scattering process has sent the electron (or the hole) to the other

valley, an elastic scattering process with the right momentum direction and absolute

value is needed to complete the round trip in k-space and send out light with the ac-

cording red-shift, giving rise to the D-peak. The elastic scattering process can happen

at a graphene edge and has different momenta for ZZ and AC edges (see Fig. 2.11 (a)).

Whereas an AC edge is able to connect the two valleys in k-space, the momentum as-

sociated to the scattering event happening at a ZZ edge has a different direction, which

does not allow momentum conservation (see Fig. 2.11 (b) and (c)). Hence, scattering

at a AC edge is D-peak active and scattering at a pure ZZ edge is D-peak inactive.

Thus, if a graphene edge exhibits no D-peak it can be concluded that the investigated

edge is a pure ZZ edge. If, on the other hand, a finite D-peak intensity is measured,

it is indicative of edge disorder and AC segments. Further information on the disorder

type (point defects, AC segments of different orientations) can be obtained by polarized

Raman studies [107, 117]. Different types of edge disorder have different polarization

dependencies. Hence, it is possible to gain information on the relative weight of the

different defect types by measuring the D-peak intensity as a function of the angle of

the laser polarization relative to the edge. This method was applied to characterize H

plasma defined graphene edges and the results are presented in section 4.
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(a) (b)

(c)

Figure 2.11: Raman scattering at pure graphene edges. (a) Schematic illustra-
tion of a section of a SL graphene flake with ZZ (red) and AC (blue) edges. ~dA and ~dZ
denote the respective momentum vectors of the elastic scattering processes at the edge.
(b) Schematic of the graphene dispersion relation close to the K and K’ points, which
are involved in the Raman D-mode process. The black vector ~q denotes the inelastic
scattering with a phonon and the blue vector ~d indicates the momentum change due to
an elastic scattering process at the edge. (c) Illustration of scattering processes taking
place at a ZZ (red vector ~dZ) and a AC (blue vector ~dA) edge in k-space. The scattering
event happening at an AC edge is able to connect the two valleys and therefore to give
rise to a D-peak, whereas the ZZ edge does not fulfill momentum conservation and is
D-peak inactive. Fig. taken from [52].

2.1.5 Electronic Transport

This section treats basic concepts and methods of electronic transport in graphene

samples which were used in the work presented in this thesis. First, basic characteriza-

tion methods and quantities are introduced, such as e.g. the conductivity, the mobility

and the residual disorder density. Afterwards, an introduction to pn-interfaces will
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be given and physical effects arising in such systems (e.g. Fabry-Pérot oscillations,

valley-isospin oscillations) will be examined.

Electronic Characterization of Graphene Devices

Basically one can discriminate between the diffusive and the ballistic regime. In the

diffusive regime, the path between two consecutive scattering events, also called the

mean-free-path (lmfp), is much smaller than the device dimensions (i.e. the distance

between the contacts L or the width of the junction W ). Hence the relation lmfp �

L,W holds for the diffusive regime. In the ballistic regime, on the other hand, lmfp ≥

L,W ; this case will be discussed further down. In the diffusive regime, the conductivity

is given by the Drude model:

σ = ne2τ

m
= 2e2τvF

√
πn

h
(2.8)

where the relation m = ~| ~kF |/vF was used and e denotes the electronic charge, τ is

the momentum scattering time, ~k the Fermi wave vector, vF the Fermi velocity, h

is Plancks constant and n is the charge carrier density. Depending on the nature of

the scattering events, τ can have different dependencies on | ~kF | [118]. Usually charge

impurity scattering dominates and leads to a linear relation of the conductivity with

the charge carrier density:

σ = µne (2.9)

where µ is the electronic mobility, a quantity which is often referred to regarding device

cleanliness and performance. In experiment, the charge carrier density can be varied via

the electric field effect by applying a voltage to a nearby gate. To convert gate voltage

to charge carrier density, the so-called plate-capacitor model can be used. Thereby the

conductive back gate and the graphene sheet are the two plates which are separated

by a dielectric, here SiO2 and a hBN flake. The corresponding relation reads:
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n = εdε0

de
(Vbg + Voffset) (2.10)

where Vbg is the back gate voltage, Voffset is the offset voltage of the location of the

charge neutrality point, εd and ε0 are the dielectric constants of the material and free

space, respectively. Hence, the conductance can be measured as a function of applied

gate voltage which is then converted to charge carrier density using Equation 2.10, see

Fig. 2.12 (a). An alternative possibility to convert back gate voltage to charge carrier

density would be to use the following relation in the Hall regime:

n = 1
e

dB

dρxy
(2.11)

where ρxy is the Hall resistivity and B is the magnetic field strength. The right hand

side of Equation 2.11 can be extracted from a linear fit to ρxy plotted versus B in the

linear regime. This can be done for each back gate voltage to obtain n(Vbg).

Once back gate voltage is converted to charge carrier density (using either Equation

2.10 or 2.11), Equation 2.9 could now be used to extract µ from the experimental data.

However, since it is a two-point measurement, a series resistance ρS which is composed

of the contact and cryostat line resistances, needs to be included in Equation 2.9 which

then leads to the following equation:

σ(n) =
(

1
µne

+ ρS

)−1

(2.12)

Note that what is measured in experiment is the conductance g which needs to be

converted to conductivity in order to be able to apply Equation 2.12. For this conver-

sion the following relation can be used: σ = g L
W

with L being the length and W the

width of the device. By fitting Equation 2.12 to the experimental data, it is possible

to extract µ and ρS, see Fig. 2.12 (a).
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Figure 2.12: Mobility, contact resistance and residual disorder density. (a)
Conductivity as a function of charge carrier density. The red curve is the experimental
data, the blue and green curves are fits to Equation 2.12. The fitting parameters for
the hole and electron side are marked to the left and to the right of the conductivity
curve, respectively. (b) Conductivity as a function of charge carrier density plotted in
a log-log representation. The dashed black lines are guides for the eye and the arrow
indicates the location of the kink of the conductivity curve. The location of this kink
on the charge carrier density axis marks the residual disorder density n0, which in this
case is ∼ 3·1010 cm−2.

In real devices, there is typically a residual disorder density n0 which is due to charge

puddles caused by impurities. This residual disorder density can be extracted directly

from the experimental data by plotting conductivity versus charge carrier density in a

log-log representation and determining the position of the kink, after which a decrease

in density has no influence on the conductivity anymore; see Fig. 2.12 (b).

An alternative possibility to extract the mobility from experimental data is to evaluate

the device behavior under magnetic field. In particular, the onset of conductance

quantization at a certain B-field yields an estimation of the mobility. Theoretically,

this onset can be observed if τ > 1/ωC , with the cyclotron frequency ωC = eB/m.

Using Equation 2.8 and 2.9 one ends up with µ = 1/B. This access to the mobility

is particularly useful if the device dimensions are not known, as they are required to

make use of the above described extraction of the mobility at zero magnetic field.
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So far, we assumed to be in the diffusive transport regime. Once the mean free path is

equal or larger than the device dimensions, one enters the ballistic transport regime.

In this regime, the conductance is limited by the width of the sample which determines

how many quantum modes fit through the channel. According to the Landauer theory,

the conductance is then given by [94]:

G = 4e2

h

∞∑
m=0

Θ
(
WkF
π
−m

)
(2.13)

where Θ is the step function. Note that one mode gives a conduction of 4 e2/h due

to valley and spin degeneracy. However, as mentioned in section 2.1.2 the conduction

through a graphene constriction is strongly dependent on the nature of the edges. In

particular, ribbons with AC edges have their valley degeneracy lifted and exhibit steps

of 2 e2/h, while ZZ ribbons maintain both degeneracies and show steps of 4 e2/h.

Graphene pn-junctions

Most transport experiments presented in section 4 include the formation of pn-junctions

and rely on the basic physics arising in such systems. Therefore, fundamental concepts

associated to pn-interfaces in graphene devices are introduced in the following. As

previously mentioned, graphene is a zero-bandgap semiconductor. Consequently there

are states at all energies, and hence, charges can travel across boarders between regions

of different doping (i.e. n and p). However, the transmission of the charge carriers

depends on the incident angle relative to the pn-interface. For an incident angle of

θ = 0 the so-called Klein tunneling effect appears [26], meaning that the transmission

for charge carriers hitting the interface perpendicularly equals 1. For incident angles

θ 6= 0, on the other hand, the transmission has values in between zero and one and

Snell’s law for graphene applies [119]:

En · sin(θn) = Ep · sin(θp) (2.14)
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where En and Ep denote the Fermi energies in the negatively and positively doped

regions, and θn and θp denote the angles of the incident (n-doped region) and trans-

mitted (p-doped region) states, respectively. Since the refractive index n is given by

n = En/Ep = sin(θp)/sin(θn), it has a negative sign1, which is very much different

from the situation known from classical optics.

Generally speaking, a pn-interface is a semi-transparent mirror for charge carriers.

Hence it is possible to realize Fabry-Pérot-resonator-type of experiments in a graphene

junction. A possible device geometry is schematically shown in Fig. 2.13 (a). With a

global bottom gate and a local top gate it is possible to create two pn-interfaces which

form a cavity for the charge carriers. Whenever the path difference of two different

trajectories (see Ψ1 and Ψ2 in panel (a)) is a integer multiple of the Fermi wavelength

of the charge carries (λF ), constructive interference appears. This relation translates

into the following equation: 2L = jλF , with L being the cavity length. By using

λ = 2π/
√
πn we get L√nj = j

√
π for the j-th Fabry-Pérot oscillation appearing at

density nj. Hence, the difference between two consecutive peaks reads:

L =
√
π

√
nj+1 −

√
nj

(2.15)

This relation can be used to extract L, which is a lower bound for the mean-free-path,

and thus provides a method to characterize the device regarding its cleanliness (see

panel (b)). This method was used in the work presented in section 4. Fig. 2.13 (c)

shows a map of the conductance as a function of nin and nout. Four quadrants are

observable which are separated by the charge neutrality points of the inner and outer

regions, respectively. In the two quadrants where the system is in a bi-polar regime

(i.e. pnp or npn) clear fringes due to Fabry-Pérot resonances are observed. In the

uni-polar regimes (i.e. nn’n or pp’p) no pn-interfaces are formed and hence no cavity

for the charge carriers is present.
1The energies En and Ep are measured from the charge neutrality point, i.e. En > 0 and Ep < 0.
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Figure 2.13: PN-junctions and Fabry-Pérot oscillations in graphene. (a)
Schematic illustration of a graphene device with two pn-junctions (black vertical lines)
which separate the device into three regions as indicated at the top. Ψ1 and Ψ2 are two
wave functions taking two different trajectories, where Ψ2 traverses the middle region
2 straight and Ψ1 is reflected back and forth inside region 2. L denotes the distance
between the two pn-interfaces and nin and nout the inner density (region 2) and the
outer density (region 1 and 3), respectively. The black horizontal lines at the bottom
indicate the region of influence of the global back gate and the local top gate. (b)
Cut along the blue solid line in (c). Clear Fabry-Pérot oscillations are visible. The
black vertical lines and arrows mark the density difference between two consecutive
peaks, which can be used to extract the cavity length L, as described in the main text.
(c) Conductance as a function of the inner and outer densities. Four quadrants are
observable which correspond to different doping combinations of the inner and outer
regions, as labeled inside the graph.



32

So far no external magnetic field was applied. In the following, effects which appear

at finite magnetic field, when the system enters the quantum Hall regime, will be dis-

cussed. As mentioned previously, charge carriers in graphene possess spin and valley

degeneracy. Not only the spin degree of freedom can be used for information process-

ing, but also the valley degree of freedom was proposed as a potential resource for

applications [120]. The valley degree of freedom can be described by a two-component

spinor wave function:

|ν〉 =

 cos(θ/2)

exp(iα) sin(θ/2)

 (2.16)

where α denotes the angle in the equatorial plane and θ the angle with respect to the

vertical axis connecting the north and south pols on the Bloch sphere which correspond

here to the K and K’ point, respectively; see Fig. 2.14 (a).

Figure 2.14: Valley-Isospin in a Bloch sphere representation. (a) Illustration
of a Bloch sphere with the K and K’ points indicated at the north and south pole,
respectively. An arbitrary state |ν〉 can be described with the two angles α and θ. (b)
and (c) Two-terminal GNR devices with a pn-interface. The valley-isospin states at
the bottom | ~νB〉 and top edges | ~νT 〉 are indicated and drawn on the Bloch spheres to
right of the ribbon models. Depending on the relative orientation of | ~νB〉 and | ~νT 〉, the
charge carriers are either guided to the left or to the right at the top edge, as indicated
with the blue and red arrows. Panel (a) is taken from [121] and panel (b) and (c) from
[122].
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In the quantum Hall regime, when only the lowest Landau level (LLL) is occupied,

the sub-lattice degree of freedom (A and B atoms) is linked to the valley degree of

freedom (K and K’) [123]. This has the consequence, that for ZZ GNRs, which have

only one type of sub-lattice atoms at their edges, the valley-isospin is fully polarized

to either the K or K’-point inside the LLL edge state. For AC GNRs, on the other

hand, the edges consist in equal amount of sub-lattice atoms A and B. Hence, the

valley-isospin lies in the equatorial plane on the Bloch sphere (see Fig. 2.14), which

means that it is a superposition of K and K’-states. Tworzydlo et al. [124] proposed

to build a valley-filter on the basics of the above mentioned valley-isospin physics in

GNRs. In particular, a two-terminal GNR with a vertical pn-interface, connecting the

two ribbon edges, is suggested; see Fig. 2.14 (b) and (c). At high magnetic field, the

charge carriers move along the edges and the pn-interface [125, 126]. The conductance

through the GNR is dependent on the relative orientation of the valley-isospins at the

two edges, i.e. for an AC ribbon, on the angle α in between them. It is noteworthy that

the valley-isospin needs to be conserved when traveling along the pn-interface from one

edge to the other, i.e. clean samples without intervalley scattering are required. The

conductance as a function of α for an AC GNR is then given by:

G = e2

h
(1− cos(α)) (2.17)

A similar formula can be derived for the ZZ case [124]. The parameter α is related

to the ribbon width, as explained below for the AC and ZZ cases; see Equation 2.18

and 2.19. In the proposed experiment [124] ribbons with step edges are considered and

the pn-interface position can be changed by electrostatic gating of the n and p doped

regions, respectively. Shifting the pn-interface across a step edge, which effectively

changes the ribbon width and thus α, is expected to change the conduction according to

Equation 2.17. Fig. 2.14 (b) illustrates the case where the valley-isospin at the bottom

edge (| ~νB〉) and at the top edge (| ~νT 〉) have a relative angle of α = π, which leads to

full transmittance of the LLL state across the pn-interface at the top edge and to the
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right contact. If the pn-interface is moved to the right across a step, see panel (c),

the ribbon width changes and thus the relative angle between | ~νB〉 and | ~νT 〉 changes as

well, here becoming smaller. Hence, the LLL state is partially transmitted and partially

reflected which leads to an intermediate conductance through the device, according to

Equation 2.17. To summarize, in AC GNRs, the following conductance values are

expected depending on the ribbon width, given in the number of unit cells N between

the bottom and top edge:

GAC =


2 e2/h N mod 3 = 2 (α = π)

0.5 e2/h N otherwise (α = ±π/3)
(2.18)

For the ZZ case a similar derivation leads to the following conductance values:

GZZ =


2 e2/h N odd (α = 0)

0 e2/h N even (α = π)
(2.19)

With the above described physics and the device proposal of Tworzydlo [124], it is thus

possible to scan the pn-interface along the edge and thereby gain information on the

edge configuration and roughness, by analyzing the conductance through the device.

This method was used in this thesis to acquire insight into the edge quality of H plasma

defined GNRs, see section 4.

2.1.6 Sample Fabrication

This section describes the fabrication techniques which were used to produce the

graphene samples investigated in this thesis. In particular, the transfer technique

of graphene onto a hBN substrate [127] and a technique used for full encapsulation of

graphene into hBN flakes, will be described.

For the fabrication of SL graphene on hBN samples, one starts with two Si/SiO2 wafer

pieces. On one of them, hBN is exfoliated directly via the scotch tape method [21].
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On the second wafer piece, a polymer stack consisting of a water-soluble layer (either

polyvinyl alcohol (PVA) or dextrane) and a PMMA layer, are spin coated consecutively.

Afterwards, graphene is exfoliated on top of the polymer stack with the scotch tape

technique. This second wafer is put into de-ionized (DI) water, where the water soluble

layer is dissolved and the PMMA layer with the graphene flakes on top floats on the

water surface (see Fig. 2.15 (a) and (b)). In a next step, the PMMA layer is fished with

a glass plate which has a hole in the middle. In doing so, the graphene flake should be

inside the hole of the glass plate, see panel (c). Afterwards, the graphene flake can be

aligned to the hBN flake from the first chip and transferred on top via a mask aligner

setup, see panel (d).

Figure 2.15: Transfer process of graphene onto a hBN flake. (a) The chip
with the polymer stack and the graphene on top is put into a petri dish filled with DI
water and the water-soluble layer is dissolved. (b) The PMMA layer with graphene
on top floats on the water surface and the chip sinks to the ground. (c) A glass slide
with a hole in the middle is used to fish the PMMA layer with graphene on top. (d)
A mask aligner setup is used to align the graphene and hBN flakes and bring them
together. Fig. taken from [127].

Subsequently, a PMMA etch mask is fabricated and round shaped defects are intro-

duced into the SL graphene flake by means of RIE in an Ar/O2 plasma. After lift-off
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the sample is etched in the H plasma setup to create hexagonal shaped etch pits which

can be studied with AFM and Raman spectroscopy to get inside into their edge quality,

as done and presented in section 4.

A second type of devices to study the electronic transport properties in H plasma

defined GNRs, is fabricated as follows. First, a SL graphene flake is transferred onto a

hBN flake as described above. In a second step, the graphene flake is structured in such

a way that it forms GNRs after H plasma etching, i.e. round defects are introduced in

close proximity (see Fig. 2.16 (a)) or strips following the ZZ direction of the graphene

lattice are defined by means of RIE in an Ar/O2 plasma (see panel (c)). Upon H

plasma exposure, the roundish defects transform into hexagons which define a GNR

(type 1) in between them which has H plasma defined edges (see panel (b)).

A strip following the ZZ direction is etched from the edges to form a H plasma defined

GNR (type 2), as shown in panel (d). Note that type 1 GNRs have self aligned edges,

while type 2 GNRs rely on an initial alignment to the ZZ direction of the graphene

lattice which is as good as possible. H plasma defined graphene edges were seen to

follow the ZZ direction and are presumably of high quality [62, 63]. However, how good

the quality of the edges really is, is subject of ongoing research. The results presented

in section 4 shed light on this open question.

Once the desired GNR structures are etched into the graphene flake, it is encapsulated

by transferring a second hBN flake on top. This is done to preserve the cleanliness of

the devices while electrical contacts are fabricated. Encapsulated samples also show a

higher stability in device performance compared to open devices where residues can be

introduced directly onto the graphene surface.
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Figure 2.16: Formation of H plasma defined GNRs. (a) Schematic of RIE
defined roundish defects etched into the graphene layer, which is demarcated in red. (b)
H plasma anisotropic etching transforms the artificial defects into hexagons terminated
with ZZ edges and thus forms a GNR with ZZ edges in between the hexagons. (c)
RIE defined GNR running along the ZZ direction but with rough edges. (d) H plasma
exposure etches the GNR only from the edges and heals out defects to form a ZZ
terminated GNR.

The encapsulation process is shown in Fig. 2.17 and described in the following. In a

first step, a Si/SiO2 wafer is covered with a layer of poly-propylene carbonate (PPC)

with a thickness of ∼ 1µm. A scotch tape with a window is placed on top and hBN

is exfoliated onto the PPC layer (see panel (a) and (b)). Thereafter, a suitable hBN

flake is chosen by means of optical microscopy (OM). From the color of the flakes one
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can estimate the flake thicknesses and in dark field OM mode it is possible to see

if the flake has any cracks or larger impurities on its surface. Afterwards, the PPC

layer is carefully peeled off the substrate by removing the scotch tape, and placed on

a polydimethylsiloxane (PDMS) cube which lies on a glass slide; see panel (c). The

chosen hBN flake is then aligned to the graphene flake which has a GNR structure

inscribed and was fabricated as described in Fig. 2.15 and 2.16. With a mask aligner

setup the top hBN flake (t-hBN) is brought into contact with the structured graphene

layer which lies on the bottom hBN flake (b-hBN); see panel (d). Due to adhesive

Van-der-Waals forces, which are strong between 2D-materials, the flakes stick together

and build a complete stack as shown in panel (e).

graphene/hBN sample

(e)

Si++

SiO2

b-hBN

t-hBN

graphene

(a)

(b)

(c)

(d)

exfol. hBN

scotch tape

SiO2 + PPC

t-hBN
PPC

PDMS

Figure 2.17: Schematic illustration of the encapsulation technique. (a)
Scotch tape with a window is pressed on SiO2/PPC chip. (b) hBN is exfoliated on
the PPC layer. (c) The PPC layer is removed by carefully peeling off the scotch tape
and subsequently placed on a glass plate with a PDMS cube on top to form a stamp.
(d) A suitable hBN flake is chosen and aligned to the graphene/hBN sample with the
GNR structure. With a mask aligner setup the layers are brought into contact. (e)
Cross section of the complete stack along the black dashed line in (d) after lift-off of
the PPC layer. Fig. adapted from [128].
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When 2D-materials are assembled as described above, a common phenomenon is the

formation of bubbles, which are presumably dirt residues and/or air trapped in between

the layers. These can introduce scattering and lower the electronic quality of devices.

To get rid of these bubbles, an annealing of the entire stack can help. The annealing

does not eliminate the trapped dirt particles, but it makes them aggregating in smaller

spaces, which in turn leads to larger clean spaces.

After the stack is assembled, electrical contacts need to be fabricated in order to inves-

tigate electronic transport through the GNRs. Since the graphene layer is encapsulated

inside the hBN flakes and therefore not accessible for top-contacts, a special technique

needs to be applied, which is the fabrication of so-called 1D-side-contacts [129]. After

etching through the stack with an SF6/Ar/O2-plasma the graphene edges are accessi-

ble. Subsequent evaporation of Cr/Au-contacts creates relatively low-resistive ohmics,

generally in the range of a few hundreds of Ωµm. Details on the fabrication processes

described in this section are given in the Appendix A.
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2.2 Ge/Si Core/Shell Nanowires

2.2.1 Special Characteristics of Ge/Si Core/Shell Nanowires

In this section, Ge/Si nanowires (NWs) are introduced and their special characteristics

are described. The wires investigated in this thesis were grown by our collaborators A.

Li and E. Bakkers at the Technical University Eindhoven. The growth process basically

comprises three steps, see illustration in Fig. 2.18 (a). First, Au colloids are distributed

on a [111] Ge substrate and act as nucleation centers for the NW growth. In a vapor-

liquid-solid growth process, with germane gas introduced into the growth chamber,

mono-crystalline Ge wires with lengths between 1 - 10µm grow perpendicularly to the

substrate wafer surface. During this process, important parameters such as pressure

and temperature are tuned in order to have growth only vertically and no growth in

radial direction is happening. In the second step, the process gas is changed to silane

gas and a Si separation segment is grown which prevents the diffusion of Au from the

nucleation center into the Ge NW. In the last step, the growth parameters are changed

such that side-wall growth of Si occurs and a Si shell of variable thickness can be

produced.

It is important to note that, despite the [111] Ge substrate, three different growth

directions are obtained: [110], [111], and [112]. It was found [130] that NWs in [110]

growth direction have the lowest amount of defects and exhibit the highest electronic

mobility compared to the other two crystal directions. In Fig. 2.18 (b) a TEM image of

a longitudinal cross section of a Ge/Si core/shell NW is depicted and shows the high

epitaxial quality of the material layers. Due to the valence band offset of Ge and Si

of 0.5 eV, the Fermi level lies inside the Si band gap but below the valance band edge

of the Ge core, thus allowing for holes to accumulate and generate a 1D-hole gas, see

Fig. 2.18 (c). It is notable that no dopants are necessary to form this hole gas which

is advantageous because dopants introduce potential scattering centers and can lower

the electronic mobility of devices.
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Figure 2.18: Growth process and band structure of a Ge/Si core/shell NW.
(a) Illustration of the 3-step growth process of Ge/Si core/shell NWs. (i) Growth of
the Ge core. (ii) Formation of Si-separation layer at low temperature. (iii) Growth
of Si shell at high temperature. Fig. adapted from [130]. (b) Transmission electron
microscopy (TEM) image of a region as marked by the dashed rectangle in panel (a).
The highly uniform and defect-free shell structure is visible. Fig. taken from [130]. (c)
Illustration of the wire architecture and the electronic band structure. The Fermi level
(EF ) lies within the valence band (VB) inside the Ge core but lies in the band gap of
the Si shell, thus forming a highly confined 1D-hole gas. Fig. adapted from [131].

This high-mobility hole gas has interesting electronic properties arising from the strong

transverse confinement and fundamental properties of the charge carriers. In particu-

lar, a strong and tunable spin-orbit interaction (SOI) of Rashba-type is theoretically

predicted [13]. Direct dipolar coupling to a moderate electric field (≈ V/µm) leads to

the so-called direct Rashba SOI (DRSOI) which is on the order of meV and hence 10

- 100 times larger compared to the conventional Rashba SOI. This large SOI enables

the creation of helical modes with large spin-orbit energies where holes of opposite spin

move in opposite directions, hence enabling electrical spin control. In Fig. 2.19 (a) the

dispersion relation for holes in a Ge NW is shown for different electric field strengths

applied across the wire. As can be seen in the Fig., the DRSOI has qualitatively a

similar effect on the band structure as the conventional Rashba SOI, i.e. horizon-

tal shifting of the two parabolas for the different spin species. When combined with

a superconductor, Ge/Si NWs provide a useful platform for Majorana fermions [13].
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In addition to the DRSOI, an electric field tunable g∗-factor2 is predicted to arise in

this system [14], and was experimentally observed by Brauns and co-workers [15]. In

Fig. 2.19 (b) g∗ is plotted against the magnetic field angle Θ for different orientations

of the electric field (E ‖ x̂ and E ‖ ŷ) and different field strengths. It can be seen

that the magnitude of the g∗-factor depends on both, the orientation of the electric

field and the orientation of the magnetic field relative to the NW. Furthermore, the

g∗-factor can be tuned by the applied electric field strength, generally being lower at

higher fields.

Both, the strong SOI and a tunable g∗-factor are essential ingredients for the real-

ization of quantum computation schemes with spin-qubits [6]. Namely, a strong and

tunable SOI facilitates fast and all-electrical spin manipulation and a locally tunable

g∗-factor allows to selectively couple individual spin-qubits to microwave cavities [132].

A notable advantage of group IV materials, such as Ge and Si, is their relatively low

nuclear spin content. Hence, decoherence due to hyperfine interaction is anticipated to

be small which is advantageous for spin-qubit applications where long coherence times

are desired. Ge and Si could in principle be isotopically purified to lower the amount

of naturally abundant nuclear spins even further. Moreover, there is no contact hyper-

fine interaction due to the p-type character of holes, which is again beneficial for the

coherence of the system.
2Since the spin states are mixtures of heavy hole and light hole states, the spin quantum number

ms 6= 0. This is accounted for in the effective g-factor g∗.
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Figure 2.19: Tunable SOI and g∗-factor anisotropy. (a) Effect of an external
electric field (Ex) on the electronic band structure of a Ge wire with radius R = 10 nm.
The direct Rashba SOI shifts the spin-degenerate bands on the k-axis and in principle
allows to tune the system into a helical regime where opposite spins travel in opposite
directions. Fig. adapted from [13]. (b) Electric-field dependent g∗-factor anisotropy.
Left panel: effective g-factor as a function of the angle (Θ) of the magnetic field ~B
with respect to the z-axis/wire-axis for an externally applied electric field E along the
x-axis. Right panel: Similar plot as in the left panel, but with E aligned along the y-
axis. The color coding represents different electric field strengths as labeled in between
the panels. Fig. taken from [14].
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2.2.2 State of the Art

In this section a brief review of important experiments performed with Ge/Si core/shell

NWs is given. The list is chronologically ordered and not meant to be exhaustive.

In 2002, growth of the first Ge/Si core/shell NWs by means of a chemical vapor

deposition method was reported [133].

In 2005, Lu and co-workers [131] have shown the accumulation of a 1D-hole gas with-

out the use of dopants in Ge/Si NWs. Moreover, they have fabricated transparent

contacts and observed ballistic transport at liquid He and room temperature, mani-

fested in conductance quantization.

In 2006, results on the fabrication and characterization of NW field effect transistors

(NW-FETs) based on Ge/Si core/shell NWs were published. The device characteristics

were shown to out-perform standard Si MOSFET devices by far [134].

In 2007, the formation of a double QD with a charge sensor in form of an adjacent

wire was reported [135].

In 2008, Roddaro et al. [136] have observed sequential spin-filling in single quantum

dots (QDs) in a Ge/Si NW. Furthermore, they extracted g-factor values and tentatively

identified a hole exchange interaction strength.

In 2010, magneto-conductance measurements were presented which revealed an

electric-field tunable SOI. In addition, phase coherence times and SOI strengths were

extracted from fitting of weak-antilocalization peaks [137].

In 2012, measurements of relaxation times and the integration of a charge sensor via

a floating gate was reported [138].

In 2014, Higginbotham and co-workers [139] have measured relaxation and decoher-

ence times in a Ge/Si double QD. In the same year, they published a work on Coulomb

blockade antilocalization from which they extracted a SOI length [140].
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In 2016, Brauns et al. published three papers on the investigation of Ge/Si NWs. In

a first work, highly tunable hole QDs were presented [141]. In the second work [15], an

electric field dependent g-factor anisotropy was observed, which is in good agreement

with theoretical predictions from [14]. Furthermore, they observed shell-filling and

anisotropic PSB in a double QD [142].

In 2017, a thorough study on the correlation of electronic mobility, crystal direction,

wire diameter and coherent strain was published [130]. In the same year, the electrical

modulation of weak-antilocalization and SOI in dual gated Ge/Si NWs was reported

[143]. Furthermore, Zarassi et al. investigated the magnetic field evolution of PSB and

extracted an upper bound for the SOI length [144].

In 2018, Watzinger and co-workers reported results on the investigation of Ge hut

wires. These hut wires have a triangular cross-section and exhibit a strain pattern

which leads to a large heavy hole - light hole splitting and thus to a low mixing of the

respective states. This leads to an Ising-type hyperfine interaction which is favorable

for long coherence times [145].

2.2.3 Single Quantum Dots

A QD is a small solid-state object in which charge carriers (i.e. electrons or holes)

are confined in all three dimensions of space. Thus, QDs resemble atoms and are also

called artificial atoms. The charging energy EC = e2/C, where e is the elementary

charge and C is the capacitance of the QD, needs to be provided to load one additional

charge carrier onto the QD. In order to observe charging effects, EC needs to be much

larger than the thermal energy kBT and the energy associated to the tunnel coupling

hΓ, hence EC � kBT, hΓ.

In addition to the classical charging energy, the spatial confinement of charge carriers

leads to quantized energy levels in the QD, which is a purely quantum mechanical

effect. The energy difference between two consecutive orbital states Eorb gives rise to

a shell-filling effect. Due to the Pauli exclusion principle [146] at most two fermions
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(e.g. holes or electrons) with opposite spin can occupy the same orbital. Hence the

addition energy Eadd, which needs to be paid to add an additional charge carrier to the

QD, equals the charging energy for additions of charge carriers into the same orbital

and Eadd = EC +Eorb if a new orbital is getting populated. In order to observe effects

associated to Eorb, again temperature and tunnel-coupling need to be smaller than

Eorb: Eorb � kBT, hΓ.

In Fig. 2.20 (a) a schematic diagram of the chemical potentials and the relevant quan-

tities in a QD is shown. At zero source-drain bias, i.e. VSD = µS − µD ≈ 0, current

can only flow through the QD if the chemical potential of a certain QD-level µdot is

aligned with the chemical potentials of source µS and drain µD, hence µS = µdot = µD;

otherwise current flow is suppressed and the system is in Coulomb blockade. The chem-

ical potentials of the QD levels can be tuned via the electric field effect by applying a

voltage Vg to a nearby gate which is capacitively coupled to the QD. A typical measure-

ment of the differential conductance dI/dV through a QD versus gate voltage is shown

in Fig. 2.20 (b) where regularly spaced Coulomb peaks are observed. The separation

of two consecutive Coulomb peaks in gate voltage can be translated to energy via the

lever-arm α and corresponds to Eadd = α∆Vg.

If a finite source-drain bias is applied, i.e. VSD = µS − µD > 0, a transport window

exists which allows a current to flow only when at least one QD-level lies inside this

window (µS > µdot > µD). A typical measurement of the differential conductance

dI/dVSD versus VSD and Vg is schematically drawn in Fig. 2.20 (c). The gray areas

form the so-called Coulomb diamonds where the system is in Coulomb blockade and no

current flows through the QD. The contours of these areas correspond to configurations

where a certain QD-level is aligned with either µS or µD. The height of the Coulomb

diamonds corresponds to Eadd and the width is related to Eadd, again via the lever arm

as α∆Vg = Eadd. If VSD ≥ Eorb transport trough excited states is enabled, see the blue

and purple dashed lines in panel (a) and (c).
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Figure 2.20: Single quantum dot level and stability diagrams. (a) QD level
diagram with the chemical potential of the source (µS) and the drain (µD) indicated.
The black horizontal lines depict ground states (GS) whereas the blue and purple
dashed lines illustrate excited states (ES). Consecutive ground states are separated
by the addition energy (Eadd) and the energy separation of an excited state to its
ground state is the orbital energy (Eorb). Fig. adapted from [147]. (b) Differential
conductance dI/dV as a function of gate voltage at zero source-drain bias (i.e. VSD =
0). Clear Coulomb peaks are visible which are separated by regions of zero conductance
corresponding to Coulomb blockade. The relative occupation numbers are inscribed.
(c) Schematic illustration of the QD stability diagram at finite source-drain bias (i.e.
VSD 6= 0). The gray areas correspond to combinations of bias and gate voltage values
which prohibit conduction through the quantum dot which is due to Coulomb blockade.
The contours of these Coulomb blockade areas correspond to conditions where a QD
level is in resonance with either the source or drain chemical potential and current can
flow through the QD. The blue and purple dashed lines correspond to excited states
as marked in panel (a). From the height and width of a diamond the addition energy
and the lever arm can be extracted. Fig. adapted from [147].
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2.2.4 Double Quantum Dots

Double QDs are systems where two single QDs are tunnel coupled and capacitively

coupled to each other. The corresponding electric circuit diagram of a serial double

QD is shown in Fig. 2.21. In addition to the coupling between the dots, a coupling to

the source (S) and drain (D) reservoirs as well as a purely capacitive coupling to two

nearby gates is given. By applying voltages to these gates it is possible to tune the

electrochemical potentials of the individual QDs (µ1 and µ2) and therefore to modulate

the respective occupation numbers (N1 and N2).

Vg1
Vg2

N1 N2S D
RS, CS RD, CDRM, CM

=

C1 C2

Figure 2.21: Double quantum dot circuit. Two QDs with occupation numbers
N1 and N2 are tunnel coupled (RM) and capacitively coupled (CM) to each other and
to the source (S) and drain (D) reservoirs. In addition the two QDs are capacitively
coupled (C1,2) to nearby gates which allow to individually tune the electrochemical
potentials of the QDs. Fig. adapted from [148].

By measuring the conductance through the double QD as a function of the gate volt-

ages Vg1 and Vg2, a so-called charge stability diagram (CSD) can be recorded. The

appearance of such a CSD depends on the mutual capacitive coupling CM between the

two QDs and on the applied source-drain bias. In Fig. 2.22, three CSDs are shown, each

for a different regime of CM and all for zero source-drain bias. If CM ≈ 0, conduction

through the double QD is only possible if all four chemical potentials (µS, µ1, µ2 and

µD) are aligned. This results in the situation depicted in panel (a), hence only at the

black points conduction can be observed. However, if only one dot level is resonant
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with a reservoir potential, the occupation number of the respective dot can be changed

without current flow through the whole double QD (black dashed lines in panel (a)).
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Figure 2.22: Double quantum dot stability diagrams. (a) Charge stability
diagram for CM ≈ 0. Conduction is only possible at the black dots, where all chemical
potentials, µS, µD , µ1, µ2, are aligned. The dashed lines correspond to situations
where only one dot level is aligned with a reservoir potential. The occupation numbers
of the double QD are indicated inside regions of constant charge states. (b) Charge
stability diagram for 0 < CM < C1,2. The points of finite conductance split up into
triple-points where three charge states are degenerate. (c) Charge stability diagram for
CM ≈ C1,2. The double QD effectively behaves as a large single QD with occupation
N1 + N2. Conduction is possible along the solid diagonal lines. Fig. adapted from
[148].

For intermediate values of CM , i.e. 0 < CM < C1,2, the points where conduction

through the double QD is possible split up into triple-points, see panel (b). Here, three

charge states are degenerate. Again the dashed lines correspond to situations where

only one of the two dots is in resonance with a reservoir potential. The rectangular

pattern for CM ≈ 0 is thus transformed into a hexagonal pattern when a finite interdot

coupling CM is switched on.

The third regime, where CM ≈ C1,2, resembles a large single QD with an occupation of

N1 + N2. The corresponding charge stability diagram is shown in panel (c). Transport

trough the double QD is possible on the solid black lines which run diagonally through

the charge stability diagram.
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So far the discussion only considered transport at zero source-drain bias, i.e. VSD =

µS−µD ≈ 0. When a finite source-drain bias is applied, the triple points in Fig. 2.22 (b)

evolve into triangular areas where finite conductance is possible, see Fig. 2.23. Trans-

port inside the triangles is governed by inelastic processes [149] and co-tunneling [150].

The blue dashed line indicates an excited state which would appear as a current step

inside the bias triangle.

μ1(1,0)

μ2(0,1)

μ1(1,0) μ2(0,1)

μ1(1,0) μ2(0,1)

(0,0)

(0,1)

(1,0)

(1,1)

Figure 2.23: Double quantum dot bias triangles. Grey triangular areas mark
regions where finite conductance is possible. At the three corners of the upper triangle,
the corresponding level diagrams are shown. The blue dashed line depicts an excited
state which is apparent inside the bias triangles as a step of increased conductance.
Fig. adapted from [148].

2.2.5 Pauli Spin Blockade

Pauli spin blockade (PSB) is a phenomenon which can be observed in double QD

systems and is based on the Pauli exclusion principle [146]. The effect was first shown

in 2002 by Ono and co-workers [151] and has become a valuable method for spin-
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state detection via spin-to-charge conversion. PSB is an effect which leads to selective

current rectification, hence transport is possible through the double QD for one sign

of applied source-drain bias VSD and blocked for the inverted direction. The basic

mechanism is schematically depicted in Fig. 2.24. In the unblocked situation (see panel

(a)), VSD > 0 and a current flows from left to right. Assuming the left QD is filled with

a spin-up hole, the second hole which is filled into this QD can either be a spin-down

hole and thus form a singlet state S(2,0)3, or it can be a spin-up hole and form a triplet

state T(2,0)4. While the S(2,0) state requires only the charging energy to be paid, the

T(2,0) can only be formed if the second hole can access a new orbital and therefore

needs the charging energy EC plus the orbital energy Eorb to be energetically accessible.

In addition, a finite exchange energy Eex is present, thus the energy difference between

the singlet and triplet states reads ∆ST = Eorb-Eex. However, for the positive bias-

direction both, the S(2,0) and the T(2,0) state, lie inside the bias window and are thus

accessible for transport. If a hole tunnels to the second dot again a singlet S(1,1) or a

triplet T(1,1) state can be formed. At zero magnetic field, the S(1,1) and T(1,1) are

spaced by an exchange energy J which is arising due to the finite tunnel-coupling t

between the dots: J = 4t2/EC . Because typically, t � EC , J is small on the scale of

the energy difference between the S(2,0) and T(2,0) states. Since both the S(1,1) and

T(1,1) states are above the drain chemical potential, a hole can exit the dot and finish

a transport cycle.

If the bias direction is reversed, i.e VSD < 0, the situation encountered is depicted in

panel (b). Again assuming a permanent spin-up hole in the left dot, a hole entering

the right dot can either form a singlet S(1,1) or a triplet T(1,1) state with the first

hole. If a S(1,1) state is formed, the hole on the right dot can tunnel to the left dot,

thus forming a S(2,0) state and then exit the dot which leads to current flow. If, on the

other hand, a spin-up hole enters the right dot and forms a T(1,1) state, it can only

tunnel to the T(2,0) state because of spin-conservation. However, the T(2,0) state lies
3In terms of the single-particle spins, the singlet state can be defined as S = 1/

√
2 |↑↓ − ↓↑〉

4The three triplet states T0, T+ and T− are degenerate at zero magnetic field and can be written
as T0 = 1/

√
2 |↑↓ − ↓↑〉, T+ = |↑↑〉 and T− = |↓↓〉
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Figure 2.24: Pauli spin blockade. (a) Unblocked transport through the double
QD for VSD > 0. The green spins form singlet states with the initially present black
spin while the red spins form triplet states. All states are available for transport. (b)
Spin-blocked transport for the opposite bias direction VSD < 0. Transport is only
possible for the singlet states but blocked for the triplet states. Fig. adapted from
[152].

higher in energy and is thus not accessible, i.e. as soon as a spin-up hole enters the

right dot and a T(1,1) state is formed, the system is trapped in spin-blockade.

The blockade can be lifted if the detuning ε, defined as the energy difference between

the S(1,1) and S(2,0) states, is larger than ∆ST − J . However, also for zero detuning,

processes exist which can change the spin orientation and thus lead to the transition

from a T(1,1) to a S(1,1) state which is then able to lead to transport through the dot

via the S(2,0) state, hence giving rise to a leakage current Ileak. Mainly three mecha-

nisms are important which lead to spin-relaxation and lifting of the spin-blockade:

• Hyperfine interaction

Spin-relaxation can be caused by coupling to nuclear spins which produce ran-

domly fluctuating magnetic fields [153]. These magnetic fields mix spin-up and

spin-down states and therefore allow for transitions from T(1,1) to S(1,1). How-

ever, in Ge/Si NWs hyperfine interaction is expected to be small because the

natural abundance of spin-carrying nuclei is low, i.e. 4.7 at.% of 29Si in natu-

ral Si [154] and 7.8 at.% of 73Ge in natural Ge [155]. Furthermore, the contact
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hyperfine interaction is expected to be small due to the p-type wave function of

holes [156].

• Spin-flip cotunneling

Spin-flip cotunneling describes the process where a trapped spin (from the T(1,1)

state) is exchanged with a spin of opposite orientation from the closest lead

reservoir, and thus forms a S(1,1) state giving rise to a leakage current [157].

Further insight into the process can be gained by B-field dependent measurements

of the leakage current. At finite magnetic field, the triplet states T−(1,1) and

T+(1,1) are split by the Zeeman energy EZ from the T0(1,1) state. Since both, the

virtual intermediate state and the state of the hole tunneling into the dot, come

from the temperature-broadened Fermi level in the lead reservoir, the process

is suppressed if EZ > kBT , where kB is the Boltzmann constant and T the

temperature [158].

• Spin-orbit interaction

Spin-orbit interaction effectively introduces non-spin conserving tunneling and

thereby couples the T(1,1) and S(2,0) states [159]. Insight into the process can

be gained by investigation of the magnetic field dependence of the leakage current.

The SOI mixes all four (1,1) states and creates four new eigenstates of the system.

At zero magnetic field, three out of four eigenstates are blocked and the leakage

current is given by the relaxation rate Γrel of the blocked states to the unblocked

state, i.e. Ileak = 4/9·Γrel. At high magnetic field, only one out of four eigenstates

is blocked which increases the leakage current by a factor of nine, i.e. Ileak = 4Γrel.

Hence, the magnetic field dependence of the leakage current shows a dip around

zero field, which can be analyzed and used to gain information on the strength

of the SOI [144, 159].
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Abstract

We investigate the etching of a pure hydrogen plasma on graphite samples

and graphene flakes on SiO2 and hexagonal Boron-Nitride (hBN) substrates. The

pressure and distance dependence of the graphite exposure experiments reveals

the existence of two distinct plasma regimes: the direct and the remote plasma

regime. Graphite surfaces exposed directly to the hydrogen plasma exhibit nu-

merous etch pits of various size and depth, indicating continuous defect creation

throughout the etching process. In contrast, anisotropic etching forming regular

and symmetric hexagons starting only from preexisting defects and edges is seen

in the remote plasma regime, where the sample is located downstream, outside

of the glowing plasma.

This regime is possible in a narrow window of parameters where essentially

all ions have already recombined, yet a flux of H-radicals performing anisotropic

etching is still present. At the required process pressures, the radicals can re-

combine only on surfaces, not in the gas itself. Thus, the tube material needs to

exhibit a sufficiently low H radical recombination coefficient, such as found for

quartz or pyrex. In the remote regime, we investigate the etching of single layer

and bilayer graphene on SiO2 and hBN substrates. We find isotropic etching

for single layer graphene on SiO2, whereas we observe highly anisotropic etching

for graphene on a hBN substrate. For bilayer graphene, anisotropic etching is

observed on both substrates. Finally, we demonstrate the use of artificial defects

to create well defined graphene nanostructures with clean crystallographic edges.
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3.1 Introduction

Graphene nanoribbons (GNRs) have emerged as a promising platform for graphene

nano devices, including a range of intriguing quantum phenomena beyond opening of a

confinement induced band gap [10, 12, 30, 95, 160]. In armchair GNRs, giant Rashba

spin-orbit coupling can be induced with nanomagnets, leading to helical modes and

spin filtering [11]. Further, Majorana fermions localized at the ends of the ribbon

were predicted in proximity of an s-wave superconductor [11]. Zigzag ribbons, on the

other hand, were proposed as a promising system for spin filters [160]. Theory showed

that electronic states in zigzag ribbons are strongly confined to the edge [10, 95, 160],

recently observed in experiments [79, 81, 82, 161]. Further, edge magnetism was pre-

dicted to emerge at low temperatures [10, 29, 30, 59, 95], with opposite GNR edges

magnetized in opposite directions. High quality, crystallographic edges are very im-

portant here, since edge disorder suppresses magnetic correlations [29] and tends to

cause electron localization, inhibiting transport studies. GNRs fabricated with stan-

dard electron beam lithography (EBL) and Ar/O2 etching typically exhibit pronounced

disorder [86, 87, 89, 162–165], complicating transport studies.

Fabrication methods creating ribbons with clean crystallographic edges were recently

developed, including carbon nanotube unzipping [36, 37], ultrasonication of interca-

lated graphite [38], chemical bottom up approaches [39, 40], anisotropic etching by

nickel nanoparticles [46], or during CVD processing [47–49], or carbothermal etching

of graphene sheets [51–54]. Here, we use a hydrogen (H) plasma etching technique

[60, 62–65] because it allows precise, top-down and on-demand positioning and tailor-

ing of graphene nanostructures. Such nanostructures can easily be designed to spread

out into larger graphene areas incorporated into the same graphene sheet, thus provid-

ing for a relatively easy way to make electrical contacts.
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3.2 Main Experimental Findings

In this work, we investigate the anisotropic H plasma etching of graphite surfaces

in dependence of the gas pressure and the sample - plasma distance (see Methods).

We find that the etching characteristics can be divided into a direct and a remote

plasma regime. In the direct plasma regime, the sample is placed within the glowing

plasma, and surfaces show many hexagons of various sizes indicating a continuous defect

induction throughout the etching process. In the remote plasma regime, on the other

hand, the sample is placed downstream of the glowing plasma, and etching occurs

only from preexisting defects which makes the fabrication of well defined graphene

nanostructures possible. Further, we have prepared single layer (SL) and bilayer (BL)

graphene flakes on SiO2 and hexagonal boron nitride (hBN) substrates and exposed

them to the remote H plasma. We observe a strong dependence of the anisotropy

of the etch on the substrate material. SL graphene on SiO2 is etched isotropically,

confirming previous findings [63, 66], whereas we observe highly anisotropic etching of

SL graphene on hBN [65], producing very regular and symmetric hexagonal etch pits.

Anisotropic etching of SL graphene on hBN offers the possibility to fabricate diverse

graphene nanostructure with well defined edges (e.g. GNRs) and allows investigation

of their intrinsic electronic transport properties.

3.3 Results and Discussion

3.3.1 Distance Dependance

We first investigated graphite flakes, allowing for rather simple and fast processing.

The graphite specimen [166] were cleaned by peeling with scotch tape and subsequently

exposed for one hour to a pure H plasma at a temperature T = 400 ◦C and a distance

d from the end of the surfatron. We first present the distance dependence of the H

plasma process. Figure 3.1a shows AFM topography scans for exposures of one hour

at four different distances at constant pressure p = 1mbar. At the larger distances,
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etch pits of monolayer step height are created upon plasma exposure, exhibiting a

regular hexagonal shape and demonstrating a strongly anisotropic process [60, 62]. All

observed hexagons exhibit the same orientation. From previous studies, it is known

that hexagons created by exposure to a remote H plasma exhibit edges pointing along

the zigzag direction [60, 62]. As the sample is brought closer to the plasma, significantly

more etch pits appear, often located at the border of existing holes, sharing one common

hexagon side (see Figure 3.1a, d = 42 cm). For the closest position d = 37 cm – unlike

the larger distances – the sample is located within the visible plasma glow region,

resulting in a strong and several layers deep scarring of the entire surface.

To quantitatively study the distance dependence, we evaluated larger images to gather

better statistics and plot histograms showing the number of holes as a function of

diameter, see Figure 3.1b-d. The overall number of holes obviously increases strongly

with decreasing sample-surfatron distance d. For small distances, a wide distribution of

diameters is seen, ranging from several 100 nm down to nearly vanishing hexagon size,

suggesting that new defects serving as etch seeds are created throughout the exposure

time. The width of the hole diameter distribution is given by the anisotropic etch rate

and the exposure duration in this regime. For larger d, on the other hand, the few holes

seen have comparable diameters, consistent with etching proceeding predominantly

from preexisting graphite defects, without adding new defects. This results in a narrow

width of the distribution of hole sizes. As previously reported [60, 62, 63], exposure

to energetic ions seems to create defects, while exposure to hydrogen radicals appears

to result in anisotropic etching and growth of hexagons centered around preexisting

defects and borders.
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Figure 3.1: Distance dependence of graphite exposures (a) AFM images (tap-
ping mode) of graphite surfaces for various distances d, as labeled, all exposed to the
plasma for 1 h at p = 1mbar and T = 400◦C, all shown on the same color scale. Main
panels are 3×3µm2, scale bar is 1µm, insets (dashed white boxes) are 0.25×0.25µm2.
Slight hexagon distortion at 42 cm is an imaging artefact due to drift. See SOM for the
complete distance and pressure matrix. (b-d) Histograms obtained from 10 × 10µm2

scans, showing the number of holes against hole diameter (bin size 20 nm). (e) The
size of the circle markers corresponds to the width of the diameter distribution. The
color indicates the number of holes, with red corresponding to large number of holes.
For samples located within the glowing plasma (red circles), a lower bound of 300 holes
and a minimum width of distribution of diameter of 600 nm is shown.
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3.3.2 Pressure Dependance

Next, we turn to the pressure dependence. In Figure 3.2a, AFM topography images

are shown at four different pressures p at constant distance d = 52 cm. The number of

holes increases with decreasing pressure, similar to decreasing distance, giving rise to

etch pits of monolayer step height at intermediate pressures. At the highest pressures,

however, no etch pits were observed, in strong contrast to the lowest pressure, where

ubiquitous and deep etching is seen, demonstrating the strong influence of p. Analyzing

the etch pits using histograms confirms that p and d have a similar influence on the

etching process (compare Figure 3.2b, c with Figure 3.1b-d). Figure 3.1e summarizes

the histograms of all investigated graphite samples (see supplementary online material

(SOM)), using color to represent the number of holes, while the size of each marker

is proportional to the width of the distribution of hole diameters. A clear correlation

between the number of holes and the width of the distribution is seen: the largest

circles are red, while the small circles are purple.

The analysis of the graphite exposure data leads to two qualitatively different types of

processes: the direct and the remote plasma regime. In the direct plasma regime (large,

red circles, Figure 3.1e), the sample is located directly within the plasma discharge

region, hence exposing it to large densities of radicals and ions, capable of inducing

defects throughout the exposure, giving a broad hole diameter distribution. In the

remote plasma regime (small, purple circles, Figure 3.1e), on the other hand, the sample

is positioned outside, downstream of the plasma generation region, where ions have

recombined and only a residual flux of radicals is present. There, etching proceeds

predominantly from preexisting defects and edges, leaving the basal planes mostly

untouched. In this regime, a narrow distribution of hole diameters results, centered

around the diameter given by the anisotropic etch rate and the exposure time. See

SOM for more details.
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Figure 3.2: Pressure dependence of graphite exposures (a) AFM images (tap-
ping mode) of graphite surfaces for various p, as indicated, exposed for one hour at
d = 52 cm and T = 400◦C, all shown on the same color scale. All panels are 3× 3µm2,
scale bar is 1µm. (b,c) Histograms from 10 × 10µm2 scans, displaying the number
of holes against hole diameter (bin size 20 nm) for p as labeled. (d) Length Lg of the
optically visible plasma as a function of p. The dashed curve is a 1/√p fit. (e) Number
of holes versus distance from plasma edge d− Lg. A lower bound of 300 holes is given
for the heavily etched cases where an exact hole-count was not feasible. The dashed
black line is an exponential fit to the data with < 300 holes with 1/e decay length
∼ 5 cm.
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Further, there is an intimate connection between distance and pressure: lower pres-

sure results in a longer gas mean free path and therefore a larger average distance

for recombination in the diffusive gas. This results in a larger length of the plasma

column Lg(p), measured from the edge of the visibly glowing plasma to the surfatron,

see Figure 3.2d. Thus, changing the pressure with fixed sample position modifies the

distance between sample and plasma edge. Hence, it is useful to introduce an effective

distance d′ = d−Lg(p), the distance from the sample to the edge of the glowing plasma.

Thus, d′ . 0 roughly marks the direct plasma regime while d′ � 0 signifies the remote

plasma regime. Reactive particles are generated inside the plasma column and start

recombining once they have left the plasma generation region.

The reaction kinetics in low temperature H plasmas are highly non-trivial despite the

relatively simple chemical composition [167]. Nevertheless, it is well known that at the

pressures used here (p ∼ 1mbar), the predominant radical decay mechanism is surface

mediated association rather than gas collisions. Two colliding H atoms require a third

body to carry away the excess energy for association to occur [168]. However, under

the present conditions, three body collisions are very unlikely, thus leaving only the

surface assisted process (which also leads to surface heating [96]). Recombination of

ions, in contrast, can also occur through an additional collisional channel, in absence of

a surface. Which species – ions or radicals – decay on a shorter length scale downstream

of the plasma edge thus depends on both the surface properties and gas parameters.

For anisotropic etching without defect creation, a flux of H radicals in absence of ions

is needed, as previously reported [60, 62, 63], thus requiring the ion density to decay

on a shorter length than the radicals.

The surface attenuation of H radicals thus plays an important role, and was previously

studied [96, 97]. Some glasses such as pyrex or quartz – as used in our experiments –

were identified as materials with a low recombination coefficient, particularly compared

to some common metallic surfaces such as stainless steel and aluminum. This weak

surface attenuation can open a downstream window offering a flux of H radicals while
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essentially all ions have already recombined, as desired and achieved here, see e.g.

Figure 3.1b, 3.2b and 3 (below). Nevertheless, the etch rate in the downstream window

was observed to decrease slowly over long periods of time, reaching a vanishingly small

etch rate after more than 100 hours of plasma exposure. The elevated temperatures in

the furnace may enhance impurity migration towards the surfaces of the tube, possibly

amplifying the surface attenuation of H radicals. Larger anisotropic etch rates were

observed when utilizing higher purity quartz tubes manufactured from synthetic fused

silica [169], supporting the assumption of the role of impurities. High impurity content

and even small amounts of metallic deposition on the tube wall give wave damping due

to dielectric losses and result in an enhanced decay of radicals.

To study the decay of reactive species, we note that the ion flux is proportional to

the number of holes created. We find a roughly exponential decrease of the number of

holes with distance, see Figure 3.2e and SOM, with a 1/e decay length of about 5 cm.

The anisotropic etch rate, on the other hand, is related to the flux of H radicals. We

extract the anisotropic etch rate, defined as the growth per unit time of the radius of

a circle inscribed to the hexagonal etch pit, averaged over a number of holes, shown

in Figure 3.4a. Only the largest set of hexagons of each exposed graphite sample were

evaluated to obtain the etch rate, since smaller holes might not have etched from the

beginning of the exposure. As expected, the anisotropic etch rate is largest for small

distances, falling off quickly with increasing separation from the plasma edge. There

is also an apparent pressure dependence, with larger pressures tending to give lower

etch rates, see Figure 3.4a. Given only two or three points along the d-axis for each

pressure, and only few holes for some parameter sets (d, p), a reliable H-radical decay

length cannot be extracted from these data. A theoretical estimate gives an H-radical

decay length of ∼ 12 cm, see SOM, in agreement with observations in Figure 3.4a, and

longer than the ion decay length of 5 cm, as observed. The etch rates we extract are a

few nm per min at 400 ◦C, consistent with previous reports [62, 63].
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3.3.3 Substrate Dependance

Next, we study the plasma exposure of SL and BL graphene exfoliated onto a SiO2 sub-

strate using the established tape method [21]. We patterned disks using standard EBL

and reactive ion etching with an Ar/O2 plasma, resulting in circular graphene holes

which were subsequently exposed to the remote H plasma in the regime where H radi-

cals but essentially no ions are present, as determined from the graphite experiments.

BL graphene grows regular hexagons with parallel sides (see Figure 3.3b), as expected

from the graphite results. SL graphene, on the other hand, displayed mostly round

holes (see Figure 3.3a), though some weakly developed, irregular hexagonal shapes are

also occasionally seen. Further, several additional, not EBL defined holes appear on

the SL after exposure, all smaller than the EBL initiated etch pits. After a second

plasma exposure, the number of holes on the SL increased further, indicating gener-

ation of new defects, while only EBL defined holes appear on the BL. Note that the

SL and BL regions shown in Figure 3.3a and b are located on the same graphene flake,

ensuring identical plasma conditions.

In addition, the average hole diameter on SL is visibly larger than on the BL (Fig-

ure 3.3a and b) after the same exposure time, indicating a faster etch rate on SL. Thus,

SL on SiO2 is more reactive when exposed to the plasma and no longer anisotropic

when exposing. This is consistent with previous reports [63, 65, 66], and is suspected

to arise from charge inhomogeneities in the SiO2 substrate [170–172] or other SiO2

surface properties. A broad range of plasma parameters in the remote regime were in-

vestigated for SL and BL samples on SiO2, giving qualitatively similar results (isotropic

SL etching).
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SL on SiO2a
1 h

BL on SiO2b
1 h

substrate dependence
840-4

phase [°], height [nm]p = 1 mbar, d = 52 cm

p = 1.7 mbar, d = 42 cm

SL on hBNc
5 h

BL on hBNd
22 h

Figure 3.3: Substrate dependence of SL/BL graphene (a,b) AFM phase con-
trast images of a SL (a) and BL (b) section of the same flake on a SiO2 substrate, etched
for 1 h at T = 450 ◦C. Round holes of 50 nm diameter were defined before H-etching.
AFM topography image of a SL (c) and BL (d) flake on hBN etched for 5 h and 22 h,
respectively. Holes of 200 nm (SL) and 100 nm (BL) were defined before etching. For
(d) the color scale values are divided by four. The scale bars on all images are 1µm.

The etch rate for SL and BL on SiO2 is shown in Figure 3.4b. For the SL samples,

only the EBL defined holes were evaluated, ignoring the plasma induced defects, since

these do not etch from the beginning of the exposure. Clearly, for all plasma param-

eters studied, SL exhibits a significantly larger etch rate compared to BL [62, 66], as

already visible from the AFM images in Figure 3.3a and b. The temperature depen-

dence of the etch rate for both SL and BL on SiO2 is shown in Figure 3.4c. The etch

rates are strongly reduced at temperatures far above and below the process tempera-

ture, consistent with previous reports [62, 66], and consistent with reported hydrogen

recombination rates on quartz increasing dramatically with temperature [173].
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Figure 3.4: Anisotropic etch rates (a) Graphite anisotropic etch rate versus
distance from plasma d − Lg for several configurations. (b) Etch rate of SL and BL
on SiO2 at indicated parameters. (c) Temperature dependence of the etch rate of SL
and BL samples on SiO2. Error bars are standard deviations. (d) Average radius of a
circle inscribed to the hexagonal etch pits as a function of exposure time for SL on hBN.
Several etch pits were evaluated in order to obtain average size and standard deviation,
where the latter is smaller than the diameter of the marker circle. The dashed red line
is a linear fit to the points at ≤ 5 h, the blue curve is a tanh-fit shown as a guide for
the eye.

To study the substrate dependence, we use high-quality hBN crystals as grown in

Ref. [174]. SL and BL graphene were aligned and deposited onto areas covered with

several 10 nm thick hBN lying on a SiO2 substrate, following the recipe of Ref. [127].

Then, the same fabrication steps were repeated as before to fabricate circular graphene

holes. Figure 3.3c shows an AFM topography image of SL graphene on hBN after 5 h

of remote H plasma exposure. Clearly, very regular and well aligned hexagonal holes

are visible, indicating a highly anisotropic etch. Etching of the hBN substrate by the H

plasma was not observed, see profiles in SOM.We observed this anisotropic SL graphene
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etching on hBN in more than 10 samples demonstrating the high reproducibility of the

process.

In Figure 3.3d we present an AFM topography image of a BL graphene flake on hBN

which was exposed to the H plasma for 22 h. We observe anisotropic etching of the

BL flake with a slightly higher etch rate for the top layer (∼ 0.3 nm/min) compared

to the bottom layer (∼ 0.2 nm/min), leading to a staircase-like structure at the etch

pit borders. As seen in Figure 3.3d, the hexagons in the bottom and the top layer

are of the same orientation. We note that the bottom layer is on hBN while the top

layer is laying on graphene. The situation of the top layer is comparable to the SL

etching on a graphite surface, where it was shown that the edges of the hexagons are

aligned with the zigzag direction of the graphite lattice [60, 62]. Since the bottom layer

exhibits hexagons oriented in the same direction as the hexagons emerging on the top

layer, this further confirms that the etching of SL graphene on hBN is yielding etch

pits oriented along the zigzag direction. The ribbon defined by the two left hexagons

in Figure 3.3d has a width of about 20 nm, demonstrating the fabrication of nanoscale

graphene structures with a remote H plasma.

The size of the SL hexagons as a function of exposure time is shown in Figure 3.4d. A

linear fit (dashed red) is clearly over estimating the etch rate for long exposure times,

deviating from the data by several standard deviations for the longest times. This

hints towards either an insufficient H atom collection mechanism as the etch pits are

growing larger or an aging effect of the tube as discussed above.

Raman spectroscopy on SL and BL samples on hBN was performed before and after H

plasma etching. TheD andD′ disorder peaks were not seen (see SOM), both before and

after H plasma etching. This suggests that neither defect formation nor hydrogenation

[104, 114, 175, 176] is occurring in the bulk 2D during plasma etching, taking into

account the annealing of the sample during the cool down phase [114], opening the

door for high quality electrical properties.

The EBL defined circles stand very clearly visible in the center of the hexagons as an
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elevated region, as seen in Figure 3.3c and d, growing in height but not diameter upon

further H plasma exposure. These discs appear also away from the graphene flakes

directly on the hBN, wherever circles were EBL/Ar/O2-plasma defined. However,

these elevated regions are also observed to shrink in height in ambient conditions. For

a better understanding of the composition and behaviour of these surface structures,

further investigations are required, which are however beyond the scope of this work.

In addition, the adhesion between graphene and hBN often appears to be rather poor.

Graphene flakes of several micrometres in length seem to be tilted with respect to the

circular pillars induced by EBL. AFM tip forces or elevated temperatures may have

shifted the flakes from their original position [177, 178].

3.4 Conclusion

In conclusion, we have investigated the pressure and distance dependence of the

anisotropic etching of graphite surfaces in a H plasma. We have found that the etching

characteristics can be divided into two regimes, the remote and the direct plasma

regime. In the remote region of the plasma (d′ > 0) etching only occurs at preexisting

defect sites whereas for d′ < 0 new defects are induced. Further, we have prepared SL

and BL graphene flakes on SiO2 and hBN substrates and exposed them to the remote

H plasma. We observed isotropic etching of SL graphene on SiO2, whereas on hBN

it is highly anisotropic, exhibiting very regular and symmetric hexagonal etch pits.

BL graphene, on the other hand, did not show a substrate dependence of the etching

character and was anisotropic for both substrates.

By inducing artificial defects by lithographic means it becomes possible to pattern

graphene nanostructures of various geometries with clean crystallographic edges defined

by the etching in a remote H plasma. This leads to the opportunity to fabricate GNRs

with well defined edges on a well suited substrate for electronic transport experiments,

such as hBN. It would be interesting to study the etching process in dependence of

the graphene electrochemical potential, which can be adjusted in-situ with a back gate
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during the etching process. Also, a remote nitrogen plasma [179] could be investigated

to be potentially used in a similar way to define armchair edges via anisotropic etching

of atomic nitrogen.

3.5 Materials and Methods

A pure H plasma was created in a quartz tube through a matching network by a

13.56MHz radio frequency (RF) generator at a typical power of 30W. See Figure 3.5 for

a sketch of the setup. This RF power was capacitively coupled to the 80mm diameter

tube by an outer electrode acting as a surfatron [180]. The pressure was regulated

using a needle valve for 20 SCCM H gas flow of purity 6N. The sample was placed at

a distance d from the end of the surfatron, was electrically floating and a three-zone

furnace controlled the temperature T . The ion impact energy is roughly the difference

between the plasma potential and the floating potential and is around 10− 15 eV with

an average ion mass of 2 amu. We estimate the ion flux to be significantly lower than

1015 ions/cm2s measured for a similar plasma setup but at lower pressure [176]. In order

to characterize and optimize the anisotropic etching process, we studied the influence

of pressure, distance, and temperature on the etching process, generally finding good

repeatability. In particular, the graphene on hBN exposures have been reproduced

more than ten times. Data points where a technical malfunction has occurred are not

included in the evaluation.
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Figure 3.5: Setup of the plasma furnace. The quartz tube has a length of ca. 1 m
and a diameter of 80 mm (drawing not to scale).
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3.8 Supplementary Information

3.8.1 Direct and remote plasma region

In Figure 3.6, AFM scans acquired after exposure of natural graphite samples for 1

hour to a pure hydrogen (H) plasma at a power of 30W depict the influence of the
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pressure and distance on the etching strength and type. For every pressure and distance

combination a new graphite sample was fabricated as described in the main text. The

matrix representation of the AFM scans of the complete set of investigated parameters

remarkably demonstrates the transition from soft anisotropic etching (above or to the

right of the cyan line) including only H atoms, to strong etching parameters (below

or to the left of the cyan line) comprising also ions. The separation between the two

regimes is based upon the size distribution of the hexagonal pits as ions are expected to

induce defects acting as new etch sites throughout the whole exposure time. Lowering

the pressure as well as decreasing the distance has the effect to increase the number

of holes as well as the size distribution and depth of the etch pits, demonstrating an

increase of the reactive particle density. On some of the AFM images, unintentional

growth or deposition of some additional nanostructures such as worms or particles is

seen, e.g. d = 42 cm and p = 1.4mbar or p = 0.7mbar.

For all AFM scans shown in Figure 3.6, the number of holes and their respective

diameters are evaluated and plotted in histograms shown in Figure 3.7, describing a

comparable picture as the AFM topography scans. Again, not only the amount of

holes but also the width of the diameter distribution shows a strong dependence on

pressure and distance. As for the AFM scans, the remote (upper right) and the direct

(lower left) plasma region can be distinguished using the widths of the distributions in

the histograms. In the lower right panels we estimated the number of holes for each

diameter to > 12 and the width of the diameter distribution to be at least 600 nm, since

an exact investigation of the hole number and diameter was not feasible (see Figure

3.6).

The number of hexagons etched into the graphite surface as well as the width of the

hole diameter distribution reflect the number of ions inducing defects on the graphitic

surface, assuming a low intrinsic defect density on the surface of the graphite samples.
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Figure 3.6: Distance and pressure dependence of graphite plasma exposure.
AFM topography scans at all parameters investigated in Figure 1E in the main paper.
All AFM images are 2 × 2µm2 in size. The cyan curve marks the transition from
the remote (upper right) to the direct (lower left) plasma region. On some surfaces,
particles are visible which probably are amorphous carbon residues, either grown or
deposited during the etching process (see AFM scans for p = 0.7mbar and d = 37 cm
or p = 1.4mbar and d = 42 cm).
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Figure 3.7: Distance and pressure dependence of graphite plasma exposure.
Histograms (10 nm bin size) showing the number of holes for all pressure and distance
parameters corresponding to Figure 3.6, obtained from 10 × 10µm2 AFM scans. For
AFM scans of strongly etched surfaces, we plot 12 holes for every hole diameter.

3.8.2 Exponential decay of reactive particles

The number of holes (purple) and the width of the diameter distribution (orange) is

shown in Figure 3.8 against the distance between the plasma edge and the sample,

d′ = d − Lg. For d′ < 0 the sample is directly exposed to the glowing plasma, hence

experiencing the impact of ions perforating the graphite surface with uncountable,
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several layers deep holes. For d′ > 0 on the other hand, the hole number and the

width of the hole distribution both appear to roughly decay exponentially with larger

sample-plasma distance, with an 1/e decay length of ∼ 5 cm extracted from a fit to an

exponential (dashed lines).
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Figure 3.8: Number of holes (purple, left axis) and width of diameter distribution
(orange, right axis) as a function of effective distance d′ = d− Lg.

The radical concentration is decaying exponentially when moving down the axis of the

tube, and is given by [96, 173]

[H] = [H]0 · exp{(−a√pd′)} (3.1)

with sample-plasma edge distance d′, concentration [H]0 at d′ = 0, pressure p, and the

geometrical factor a:

a =
√
vthermγ

R ·D′
. (3.2)

Here, vtherm =
√

8kBT/(πm) ≈ 2′750m/s is the molecular H2 thermal velocity, with

Boltzmann constant kB, hydrogen massm and temperature T . The material dependent
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recombination coefficient [96, 173] of the radicals is γ ≈ 7.5·10−4, R = 4 cm is the radius

of the quartz tube and D′ = 7.39 atm cm2/s is the temperature dependent diffusion

coefficient [181, 182] taken here at ∼ 700K from Ref. [181]. Note the explicit pressure

dependence of the decay length. Here, this results in a decay length of ≈ 12 cm at

p = 1mbar, which is consistent with our data. As mentioned in the main manuscript,

the recombination of the radicals in the gas phase is expected to be irrelevant and

the radicals only recombine at the surface of the quartz tube for the pressure range

p ∼ 1mbar used here.

8h 12h 18h
0.8 nm

-1.0 nm

-0.6

-0.3

0.0

0.3

he
ig

ht
 [n

m
]

1.00.80.60.40.20.0
line cut length [µm]

3.0

2.0

1.0

0.0

-1.0

he
ig

ht
 [n

m
]

8 h
12 h

18 h

8 h
12 h

18 h

8 h

18 h

Figure 3.9: AFM images of BL graphene on an hBN substrate time series
after 8 h, 12 h and 18 h of remote H-plasma exposure (upper panel). AFM profiles
(lower panel) taken along paths indicated in upper panel (color coded). Averaging
over the vertical range as indicated by the finite vertical width bars in the upper panel
is performed to obtain an improved signal. These cuts demonstrate that the hBN
substrate is not etched by the H-plasma, since the graphene step height is independent
of exposure time. The center pillar appears to be growing with exposure time.
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3.8.3 Raman measurements before and after plasma exposure

The influence of the H atoms on the graphene quality was further investigated by

performing Raman measurements before, after 3 h and after 5 h of plasma exposure, as

shown in Figure 3.10. To compare the Raman traces, we subtracted the background

before normalizing the traces with the graphene G peak height at ≈ 1582cm−1. The

Raman scans taken on the bare hBN substrate in panel D are normalized to the SiO2

peak (not visible) to allow comparison. All Raman measurements presented in this

work were acquired with a green laser with a wavelength of λ = 533 nm, where the

bulk hBN E2g peak at 1366 cm−1 and the graphene D-peak at 1350 cm−1) are close to

each other. Nevertheless, in many cases a weak D-peak can still be reliably extracted.

Panel D shows Raman spectra of the hBN flake before (yellow), after 3 h (blue) and

after 5 h (red) of remote H plasma etching. The hBN E2g peak [183] shape, height and

position does not significantly change, indicating no or only insignificant interaction of

the hBN with the H plasma. Panel E shows Raman spectra acquired on bulk graphene,

again before (yellow), after 3 h (blue) and after 5 h (red) of H plasma etching. We

did not observe a D-peak in the bulk of the graphene flakes even after 15 h of plasma

etching (not shown), indicating no induction of defects or hydrogenation of our samples

[104, 114]. Note that after the end of the plasma exposure, the samples are annealed in

vacuum while the oven is cooling down from process temperature to room temperature.

Significant information about the type and quality of edge can in principle be obtained

from Raman spectra of the graphene edge [52]. However, care needs to be taken to

not overheat and possibly reconstruct or otherwise change the edge with the laser [184]

when illuminating the graphene edge on SiO2 at a laser power of 1.5mW or more. Our

spectra do not meet these low power requirements. The damage threshold for graphene

on hBN is not known, and study of these effects goes beyond the scope of this work.
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Figure 3.10: Raman spectra and spatially resolved Raman scans of the hBN
sample in the main paper. Panel A: optical image of a graphene on hBN sample.
Panel B: Raman map of the 2D peak of the same graphene flake before H plasma
exposure. Panel C: AFM topography scan showing the region where the Raman single
spectra were taken. The scale bars in Panel A to C are 2µm. Panel D and E: Raman
spectra of the bare hBN flake (panel D) and bulk graphene on hBN (panel E) before
(yellow), after 3 h (blue) and after 5 h (red) of remote plasma exposure. The Raman
spectra are vertically shifted for clarity. Panel F and G: 2D maps of the G peak (panel
F) and D peak (panel G) of the flake region shown in panel C.
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Abstract

We investigate the quality of hydrogen plasma defined graphene edges by

Raman spectroscopy, atomic resolution AFM and low temperature electronic

transport measurements. The exposure of graphite samples to a remote hydro-

gen plasma leads to the formation of hexagonal shaped etch pits, reflecting the

anisotropy of the etch. Atomic resolution AFM reveals that the sides of these

hexagons are oriented along the zigzag direction of the graphite crystal lattice

and the absence of the D-peak in the Raman spectrum indicates that the edges

are high quality zigzag edges. In a second step of the experiment, we investigate

hexagon edges created in single layer graphene on hexagonal boron nitride and

find a substantial D-peak intensity. Polarization dependent Raman measure-

ments reveal that hydrogen plasma defined edges consist of a mixture of zigzag

and armchair segments. Furthermore, electronic transport measurements were

performed on hydrogen plasma defined graphene nanoribbons which indicate a

high quality of the bulk but a relatively low edge quality. These findings are

supported by tight-binding transport simulations. Hence, further optimization

of the hydrogen plasma etching technique is required to obtain pure crystalline

graphene edges.
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4.1 Introduction

Graphene edges play an important role in many physical phenomena [10, 95]. In

particular, the edge shape defines the electronic properties of graphene nanoribbons

(GNRs). Crystallographic edges of the armchair (AC) type are predicted to enable the

creation of helical modes and Majorana fermions [11] and to be excellent candidates for

the implementation of spin qubits [12]. For pure zigzag (ZZ) edges, edge-magnetism

was predicted to emerge which can be used for spin filtering [30]. For these effects

to be observable in experiment, high quality edges are necessary because edge dis-

order suppresses magnetic correlations [29] and leads to electron localization which

complicates transport studies [86, 89, 162–165]. It has been observed, that GNRs

fabricated by ebeam lithography and reactive ion etching (RIE) in an Ar/O2 plasma

have a high degree of edge disorder [86, 89, 163–165]. Hence, other approaches to

create GNRs with high quality edges are pursued such as carbon nanotube unzipping

[36, 37, 185], ultrasonication of intercalated graphite [38], chemical bottom up synthe-

sis [39, 40], anisotropic etching by nickel nanoparticles [46], anisotropic etching during

CVD processing [47–50], or carbothermal etching of graphene sheets [51–54, 54]. An-

other promising approach which was considered to create high quality crystallographic

graphene edges is to employ a hydrogen (H) plasma to perform anisotropic etching of

graphite and graphene [60–67, 79, 186].

4.2 Main Experimental Findings

In this study, we characterize H plasma defined graphene edges on graphite and sin-

gle layer (SL) graphene on hexagonal boron nitride (hBN) by means of atomic force

microscopy (AFM), Raman spectroscopy and low temperature electronic transport

measurements. We find high quality ZZ edges on graphite surfaces, manifested by the

absence of the D-peak in the Raman spectrum [187, 188]. In contrast, SL graphene on

hBN edges exhibit a large D-peak which is indicative of the presence of edge disorder
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and AC segments. In comparison, the D-peak intensity measured at H plasma defined

edges is twice as large as on edges created with RIE. Polarization dependent Raman

measurements reveal an edge configuration which consists of approx. 60% ZZ and

40% AC segments. Moreover, electronic transport measurements performed across a

pnp junction of a H plasma treated graphene flake exhibit Fabry-Pérot oscillations, re-

flecting the high electronic quality of the bulk graphene flake after H plasma exposure.

However, at high magnetic field valley-isospin oscillations appear and indicate a rather

low edge quality. In a second device we investigate transport through narrow GNRs

with RIE defined edges and H plasma defined edges and find comparable mobilities for

these two edge types.

The results from the Raman experiments and the electronic transport studies give a

consistent picture, indicating the presence of disorder at H plasma defined graphene

edges and thus the need for optimization of the etching process to enable the creation

of high quality ZZ edges.

4.3 Results and Discussion

4.3.1 High Quality ZZ Edges on Graphite

In a first step of the experiment, we intend to visualize the edge of a hexagon created by

H plasma exposure, to learn its crystallographic direction and its atomic configuration.

Therefore, we record topography and force images by means of ambient qPlus based

atomically resolving AFM [189] (Figure 4.1a - c) on a graphite surface which shows

several hexagons. In panel a we show one corner of a hexagon, and its edges are

demarcated with white dashed lines. From a to c, black squared regions are scanned

with higher resolution with the same sample orientation. Figure 4.1c is a constant

height atomic resolution force image of the graphite surface close to the edge and the

hexagonal lattice structure is superimposed on the image. The green dashed line in

panel c is drawn parallel to the white dashed lines in panel a and b. This picture clearly
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shows that the edge is in parallel to the ZZ direction, in agreement with recent findings

[62]. Although the above discussed AFM measurements allow to unambiguously assign

the macroscopic edge orientation of the hexagons to the ZZ direction, thermal drift

hindered to position the edge inside the scan range for the atomic resolution imaging,

hence it was not possible to actually visualize the atomic configuration of the hexagon

edge.

To access information about the edge configuration on the atomic level, Raman mea-

surements are conducted on a graphite flake which was exposed to H plasma under

similar conditions as the sample investigated in Figure 4.1a to c. 41 Raman spectra are

taken over a 5×5µm2 region, covering the whole area as shown in Figure 4.1d with the

grid of black circles. This web of spectra makes sure that the surface is fully covered.

The resulting 41 spectra are laid on top of each other in panel e. These 41 spectra are

essentially the same; in particular, the G and 2D-peaks fit to each other and there is

no D-peak as seen in Figure 4.1e. The absence of the D-peak in any of these spectra

indicates high quality ZZ edges since any edge disorder would result in some D-peak

intensity [107–109, 187, 188].
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Figure 4.1: AFM maps and Raman spectra of H plasma etched graphite (a)
AFM height image of a section of a hexagonal shaped etch pit on a graphite flake which
was exposed to a remote hydrogen plasma. (b) Zoom-in on data shown in panel a. (c)
Atomic resolution AFM force image of the black squared region in b. The graphene
lattice is superimposed in white. The green dashed line indicates the ZZ direction and
is parallel to the hexagon edges (white dashed lines in a and b). (d) Tapping mode
AFM image of a 5× 5µm2 area of a graphite flake. The black circles with a diameter
of 800 nm, given by the laser spot size, indicate the locations at which Raman spectra
were taken. (e) 41 Raman spectra laid on top of each other, all recorded with circularly
polarized light.
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4.3.2 Raman Spectroscopy on SL Graphene Hexagons on hBN

Next, we investigate the edge quality of hexagons created in SL graphene flakes on a

hBN substrate. In a previous work [67], we showed that the character of the etch is

substrate dependent and that it is also possible to get highly anisotropic etching if SL

graphene is placed on a hBN substrate. However, it remains unclear how good the edge

quality is on a microscopic level. To find out, we prepare a SL graphene flake on a hBN

substrate and etch it for 4 h in a remote H plasma to perform Raman measurements

at the created graphene edges.

Figure 4.2a shows an AFM height image of a SL graphene flake on a hBN substrate.

The two darker disks are induced defects which we fabricated by means of ebeam

lithography and RIE in an Ar/O2 plasma. Upon H plasma exposure, they transform

into regular hexagonal shaped etch pits. Moreover, smaller hexagons grow next to the

two big ones. Those smaller hexagons are either grown from lattice defects already

present after exfoliation or induced during H plasma exposure (i.e. by highly energetic

ions). To learn about the edge quality of such SL graphene edges, we record Raman

spectra at the locations indicated by the red and green dashed circles in panel a and

show them in panel b. We observe the graphene related G and 2D-peaks and the hBN

peak coming from the substrate. More importantly, the graphene D-peak appears to

the left of the hBN peak at both measurement locations. The difference in intensity

could stem from differences of the probed edge segment length. Further, we overlay a

spectrum taken on the graphite sample shown in Figure 4.1 (blue curve). Apparently,

there is no D-peak for the graphite case whereas we do observe a D-peak for the SL

graphene on hBN edges. This indicates, that there is a significant amount of disorder

present at the hexagon edges in SL graphene.
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Figure 4.2: AFM height image and Raman spectra of H plasma defined SL
graphene edges (a) AFM height image of a SL graphene flake on a hBN substrate after
4 h of remote H plasma exposure. Two round shaped defects of a diameter of 600 nm
were created by ebeam lithography and RIE etching in a Ar/O2 plasma. They serve as
nucleation centers for the anisotropic etch which transforms them into hexagonal etch
pits. Besides the two patterned defects, there are defects which grow into the smaller
hexagons visible next to the larger ones. The red and green dashed circles indicate the
locations at which the Raman spectra shown in b were recorded. The black numbers
denote the different investigated edge segments of which the measurements are shown in
Figure 4.3f. (b) Raman spectra of graphite (blue) and of SL graphene edges encircled
by the green and red dashed circles in panel a. The inset shows the region of the
D-peak. All spectra are recorded with circularly polarized light.
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Obviously, the hexagon edges created in SL graphene on hBN are of different quality

compared to the edges of hexagons formed on graphite. Already in our previous study

[67] we have observed that the substrate has a big influence on the etching character.

Although hBN as a substrate allows for highly anisotropic etching, the edge configura-

tion on a microscopic level is different from the one on graphite surfaces. This could be

due to several reasons, e.g. the different lattice constants of graphene and hBN could

potentially lead to strain effects [190] or to the appearance of Moiré superlattice effects

[172] which could influence the quality of the H plasma etching process.

4.3.3 Evolution of the Raman D-mode from RIE to H Plasma Defined

Graphene Edges

Next, we study the evolution of the observed D-peak over a time sequence of the

etching process. This series of measurements shows how the edge quality evolves from

a RIE defined circular hole to H plasma defined edges and further studies the effect of

annealing. We started with defining circular holes by means of ebeam lithography and

RIE with an Ar/O2 plasma, which creates disordered edges without any defined crystal

orientation [86, 89, 163–165, 191]. The AFM image of this RIE defined circular hole

is shown in Figure 4.3a. Raman single spectra were recorded with circularly polarized

light at the bottom edge of the hole indicated by the black dashed circle. Circular

polarization ensures that the Raman signal is collected equally at every point of the

edge, regardless of the edge direction. After the measurements, the sample is exposed

to the remote H plasma first for 2 hours and then 2 more hours, creating hexagonal

etch pits of increasing diameter as shown in Figure 4.3b and c. As a final step, we

annealed the sample in vacuum. After each step, Raman spectra are measured at the

same location.
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Figure 4.3: Comparison of RIE defined edges with H plasma defined edges
(a) to (d) AFM height images of ebeam defined defects in SL graphene on hBN, after
RIE a, after 2 h b and 4 h c of remote H plasma etching and after annealing at T =
700 ◦C for 30min at a pressure of 1.6 · 10−3 mbar d. The black dashed circles indicate
the spot size of the Raman measurements. (e) Raman spectra recorded with circularly
polarized light at the bottom edge of the right hole (edge segment #2, see Figure 4.2a
after RIE, 2 h, 4 h and after annealing at T = 700 ◦C. The spectra are normalized to
the G-peak and each curve is an average of five measurements. (f) Normalized D-peak
intensities recorded at different edge segments as labeled in Figure 4.2a. The blue and
red shaded bands are the standard deviations from all the corresponding measurements.

In Figure 4.3e, four Raman spectra measured at different stages shown in a to d are

plotted, normalized to the G-peak height. All spectra are averages over five measure-

ments recorded under same conditions and looking all very similar. As expected, the

RIE defined hole shows a D-peak (blue curve). After the first H plasma etching (red

curve) the D-peak intensity surprisingly increases approximately by a factor of two and

stays at this level for further etching (green curve). Finally, annealing at an elevated

temperature of 700 ◦C again increases the D-peak (black curve), suggesting structural

edge defects as the D-peak origin, since annealing likely would reduce, not increase, the

amount of edge hydrogenation. We note also that when investigating bulk graphene

with Raman spectroscopy, where no edge segments are inside the laser spot, we do not

observe any D-peak, consistent with previous work [114], indicating the absence of bulk
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hydrogenation (see supplementary online material (SOM) S1), though it is in principle

possible that annealing at even higher temperatures might be required to remove hy-

drogen from the edge. The bright circular rim of the RIE defined circular hole on hBN

(Figure 4.3b - d) does not contribute to the graphene bands in the Raman spectrum

(see SOM S1). Further, changes in both graphene area and edge length enclosed in

the laser spot are giving negligible contributions to the evolution of the D-peak; see

SOM S5 for details. In Figure 4.3f we find the same trend in D-peak intensity for all

four different edge segments which are indicated in Figure 4.2a by the black arrows

and numbers. The values for different edge segments stay in a narrow window, giving

consistent results.

The increase of the D-peak upon the first H plasma exposure could stem from the

formation of AC segments at the edges, since AC edges are highly D-peak active [107–

109, 187, 188]. From previous studies [67], it is clear that the direction of the edge

generally goes along the ZZ direction. Hence, we conclude that the SL graphene edges

on hBN run along the ZZ direction but have a substantial amount of disorder, probably

at least partially in form of AC segments. To test this hypothesis, we study the edge

disorder with the angular dependence using linearly polarized light [107, 117].

4.3.4 Polarization Angle Dependent Raman Measurements

Xu and coworkers in ref. [117] have observed edge reconstruction on ZZ edges due

to thermal treatment. Since we etch our samples at a temperature of T = 400 ◦C, it

might be that also our graphene edges experience thermal reconstruction. Indeed, it is

theoretically predicted that an AC edge has lower energy compared to a ZZ edge [192].

A model to extract the relative abundance of AC-30◦ segments and point defects was

proposed in ref. [117]. We apply this model to our data and see that the observed D-

peak signal only comes from AC-30◦ segments and that essentially no point defects are

present (see SOM S4). Furthermore, Casiraghi et al. in ref. [107] proposed a theory to

calculate the ratio of ZZ segments to AC-30◦ segments which we apply to our data; see
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Figure 4.4. Panel a shows an AFM height image of a hexagon created in SL graphene

supported on a hBN substrate. The Raman spectra were recorded at the laser spot

indicated by the white dashed circle. The angle θ of the polarization with respect to

the edge is marked in light blue. In panel b we plot the normalized D-peak intensities

as a function of θ. The blue curve is a fit to equation 1 of ref. [107]. Since our hexagons

exhibit rather straight edges, we take an equal amount of +30◦ and -30◦ AC segments.

We find that our graphene edge consists of about 59 ± 2 % ZZ and 41 ± 2 % AC-30◦

segments. This is in excellent agreement with a second data set acquired on a different

hexagon on the same graphene flake (see SOM S4 for data taken at different stages of

the etching process).
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Figure 4.4: Polarization angle dependence of a SL/hBN graphene edge (a)
AFM height image of a hexagonal etch pit in a SL graphene flake on a hBN substrate
after 6 h of remote H plasma exposure. The white dashed circle indicates the laser
spot where the Raman spectra were recorded and θ denotes the angle of the laser light
polarization with respect to the graphene edge. (b) Normalized D-peak intensity for
different polarization angles θ. The blue curve is a fit to equation 1 of ref. [107] yielding
I(D)min = 38± 2, I(D)max = 120± 2 and θmax = −8± 1.

Besides the polarization dependence of the D-peak, the G-peak can also serve to get

insight into the structure of graphene edges [193, 194]. In particular, a clean AC edge

is expected to exhibit a cos2(θ) dependence and a clean ZZ edge a sin2(θ) dependence.

An edge with a mixture of ZZ and AC segments would result in a corresponding mixed

angular dependence with a weak amplitude of modulation. This is what is seen in our

data and is thus again consistent with a similar mixture of ZZ and AC segments.
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4.3.5 Fabry-Pérot Interference in a H Plasma Defined GNR pnp Junction

Next, we investigate the influence of H plasma treatment on the electronic property of

graphene. In particular, we address the quality of bulk graphene and features arising

from the H plasma defined graphene edges. To this end, we fabricate a SL GNR

with H plasma defined edges following the ZZ direction of the crystal lattice, done as

follows. After a first exposure of the graphene flake to the remote H plasma, a few

hexagons grow from which we can learn the crystallographic orientation of the flake.

Next, the graphene flake is cut into stripes which run parallel to the hexagon sides and

hence parallel to the ZZ direction of the crystal lattice (see Figure 4.5a). Subsequently,

another H plasma exposure leads to etching from the ribbon edges and thus leaves a

GNR with H plasma defined graphene edges. We note that the investigated GNR is free

of defects in form of missing carbon atoms, because otherwise these defects would have

grown into hexagons (see panel b). The white dashed rectangle in panel b indicates

the location of the top gate which was fabricated after encapsulation with hBN [129].

In panel c, a schematic of the cross section of the device is shown.

The local top gate and the global back gate allow to tune the charge carrier densities

inside and outside the top gated regions individually. This enables the possibility to

tune the system into bipolar regimes, i.e. pnp or npn, thus creating two pn junctions

which can form a resonance cavity for the charge carriers. If the charge carriers move

ballistically inside such a cavity, Fabry-Pérot resonances appear [195–197]. In panel

d, we show the conductance as a function of back gate voltage VBG and top gate

voltage VTG in the pnp regime, at zero magnetic field. Clear fringes due to Fabry-

Pérot resonances are seen to be parallel to the diagonal white dashed line which marks

the zero carrier density in the dual-gated region. This indicates that the observed

fringes come from Fabry-Pérot interferences within the topgated cavity. The grayscale

inset overlaid on Figure 4.5d is obtained by a quantum transport simulation based on an

infinitely wide graphene lattice [197, 198], with the electrostatically simulated barrier

profile following the geometry of the device implemented. The simulation is obtained
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without fit parameters and matches very well with the experiment.
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Figure 4.5: Electronic transport measurements of encapsulated GNR with
H plasma defined edges (a) AFM height image of a SL GNR. The white dashed lines
indicate that the hexagon edges are well aligned with the GNR edges. (b) AFM height
image of the GNR on which electronic transport was measured. The white dashed lines
indicate the location of the 200 nm top gate which was evaporated on top of a hBN
capping layer. The length L of the charge carrier cavity is tunable with gate voltages.
(c) Device schematic of the encapsulated GNR with a global back gate and a local top
gate. The black dashed line indicates the SL GNR. (d) Differential conductance as a
function of back gate VBG and top gate VTG voltage at B = 0T in the pnp region (n
under the top gate). The greyscale inset is obtained by a simulation and matches very
well with the experiment. The white dashed line marks the charge neutrality point in
the dual gated regime. (e) Similar map as in d but recorded at B = 8T and in the
npn regime. In the bi-polar regime, resonances fanning out linearly from the charge
neutrality point are visible. (f) Cut along the blue line in e and an additional curve
recorded at same gate voltages but at B = 7T. The x-axis was converted from VBG
to the np-interface location relative to the physical top gate edge ∆Xnp; see SOM S7
and S8 for details. (g) Calculation of the conductance through a GNR following the
ZZ direction with disorder in form of AC-30◦ segments and a bulk disorder of 35meV
plotted versus ∆Xnp.

The oscillation frequency of the Fabry-Pérot resonances is linked to the cavity length

L. We extract values for L in the range of L = 160 nm to 330 nm (see SOM S3 for

details about the cavity length extraction). Since L represents a lower bound for the

mean free path, we can calculate the corresponding lower bound of the mobility, which
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is approximately 60 000 cm2/Vs, reflecting the high electronic quality of graphene after

H plasma exposure.

4.3.6 Valley-Isospin Dependent Conductance Oscillations in a H Plasma

Defined GNR

We continue with high-field magnetotransport measurements, and follow an analysis

based on ref. [122] to study the edge quality of our GNR sample. At high magnetic

field, the edge state of the lowest Landau level is valley-isospin-polarized depending

on the edge of the GNR [124]. By tuning the gate voltages, the zero-density region,

i.e., the pn and np interfaces, can be controllably moved along the edges of the GNR,

revealing the edge-specific conductance oscillations [122].

The conductance map g(VBG, VTG) at B = 8T is shown in Figure 4.5e, where the

fringes fanning out from the origin seen in the npn regime (bottom left part) behave

qualitatively similar as those reported in ref. [122], indicating the emergence of the

valley-isospin physics. Similar behavior is also found in the pnp regime (not shown). In

Figure 4.5f, we show a cut (blue curve) from the map of panel e at VTG = −4V (marked

by the blue line) showing weak oscillations around ∼ 0.5 e2/h. We re-interpret the back

gate voltage values in terms of ∆xnp: the change of the position of the gate-defined

np interface with respect to the left edge of the top gate based on our electrostatic

simulation (see SOM S7 and S8). Another cut (red curve) recorded at B = 7T shows a

rather similarly oscillating curve, indicating that the oscillations have already developed

at lower field. This further gives a sign that the observed oscillations originate from

the edge-specific valley-isospin.

To further confirm the origin of the experimentally observed conductance oscillations

shown in Figure 4.5f, we have performed quantum transport simulations for both AC

and ZZ edges with various types of disorder, see Figure 4.6; see SOM S7 for details.
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Figure 4.6: Quantum transport simulations (a1) Ribbon with a perfect ZZ edge
at the bottom and one-atom steps at the top edge. (b1) Similar case as in a1 but
following the AC direction. (c1) Ribbon following the ZZ direction but with a large
amount of edge disorder on both edges. (d1) ZZ edge ribbon with 40% fraction of
randomly distributed AC-30◦ segments on both sides (as found in experiment) with a
depth of 1 nm. The red and green circles are zoom-ins on the top and bottom edges
of the ribbons,respectively. (a2) to (d2) Conductance as a function of ∆Xnp with and
without disorder, as labeled. Only the ZZ with AC-30◦ segments case qualitatively
agrees with the experiment.

Ideal ZZ or AC GNRs with perfect edges result in a constant conductance. In presence

of edge disorder with one-atom steps on either only one edge (see Figure 4.6a1 and b1)

or on both edges (see Figure 4.6c1 and d1), the conductance alternates between 0 and

∼ 2 e2/h whenever the np-interface sweeps across a single atom step for both ZZ (panel

a2) and AC (panel b2) edges with zero bulk disorder. Stronger edge disorder with more
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frequent steps at the edges results in a correspondingly higher frequency of oscillation

of the conductance, see Figure 4.6c2 and d2. When a realistic bulk disorder of 35meV

strength is added (extracted from the experiment based on the width of the Dirac

peaks), the oscillations in the ZZ case collapse to a roughly constant conductance of

∼ 0.5 e2/h, while the conductance in the AC case remains strongly oscillating. Both of

these behaviors are not consistent with the experiment. A ribbon which follows the ZZ

direction with disorder in form of AC-30◦ segments shows oscillations in the simulations

which are relatively robust against bulk disorder and which look qualitatively similar to

the ones found in experiment (see Figure 4.5g and Figure 4.6d2). Hence, these findings

are in agreement with AFM data indicating edges along the ZZ direction and are also

in agreement with the Raman results presented above, i.e. graphene edges on hBN

created by remote H plasma exposure follow the ZZ direction but contain significant

edge disorder in form of AC-30◦ segments.

4.3.7 Electronic Transport Through H Plasma Defined Constrictions

In Figure 4.7, we show transport measurements for narrower and shorter graphene

constrictions fabricated in a different way. Prior to encapsulation, we define two round

holes of small diameter into the graphene layer with Ar/O2 plasma and expose these to

the remote H plasma to create hexagons sandwiching a GNR with ZZ edges between

them, see Figure 4.7b. Here, the round seed hole is relatively small, only about 100 nm

in size, and most of the ∼ 500 nm hexagon was etched with the H plasma process

in an exposure of about 5 hours. For the Fabry-Pérot sample, in contrast, only a

relatively small amount of H plasma etching was performed (about 1 hour), enlarging

the Ar/O2 plasma defined structures only slightly. It would be interesting to compare

in transport experiments ribbons with long and short H plasma exposure, even tough

no time dependence of the edge quality was observed on the Raman samples (see

Figure 4.3). It is plausible that longer exposure has a healing effect on the edge, such

that it removes defects more efficiently and creates less disordered atomic arrangements.
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Plus, for longer exposures the ribbon direction is solely determined by the graphene

lattice since the etching starts from a round defect and evolves naturally to a hexagon

with edges along the ZZ crystal axis. In the Fabry-Pérot sample (short exposure), a

small misalignment between the overall ribbon direction and the ZZ crystal axis may

remain after the H plasma etching. Also, the ebeam defined circles are clearly visible

as an elevated region. Such regions are known to appear after H plasma exposure and

have been observed in many samples [67]. However, further investigation is required

to better understand these features.
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Figure 4.7: Comparison between H plasma and RIE ribbon. (a) Four-wire
conductivity σ as a function of gate voltage for two GNRs etched in the same en-
capsulated sample, fabricated as labeled. A series resistance is subtracted from each
curve, consistent with the the number of squares between the ribbon and the contacts
(∼ 200 Ω for blue and ∼ 400 Ω for black curve). (b) AFM height image of H plasma
etched GNR with a width of ∼ 300 nm. Two Cr/Au edge contacts (not shown) are
evaporated on each side of the ribbon after encapsulation and the black dashed regions
are etched out to prevent short circuiting of the ribbon.

Figure 4.7 shows an example of such a ZZ GNR, with 4-wire conductivity as a function

of global back gate voltage plotted in panel a, comparing a H plasma defined ribbon

(blue) with a RIE defined ribbon (black). Both ribbons are fabricated on the same

graphene flake, allowing direct comparison. As seen, the two curves are very simi-

lar, resulting in comparable mobilities, and no plateaus of quantized conductance are

clearly evident. We note that for most of the gate voltage range the mean free path is

larger than 500 nm in bulk, determined from a separate Hall bar sample, see SOM S6.

Even tough the ribbons are about a factor of 2 shorter than the bulk mean free path,
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conductance quantization is not observed. Thus, we conclude that the edges are the

dominant source of scattering, irrespective of whether they are defined with H plasma

or RIE. We note that none of the wiggles seen in these conductivity traces obviously

develop into a conductance plateau even under application of a magnetic field.

4.4 Conclusion

In conclusion, we have found that H plasma defined hexagons on graphite did not

show any D-peak intensity, and thus seem to display high quality ZZ edges. In con-

trast, in SL graphene on hBN, a relatively large D-peak is seen on H plasma defined

edges. Polarization dependent Raman measurements revealed an edge configuration

consisting of approximately 60% ZZ and 40% AC-30◦ segments. Valley-isospin oscilla-

tions in quantum transport are again consistent with edge disorder with 40% AC-30◦

segments. Moreover, transport through narrow graphene constrictions showed similar

mobilities for RIE defined edges and H plasma edges. Interestingly, bulk graphene

shows high electronic quality after H plasma exposure, manifested in Fabry-Pérot res-

onances. Thus, exposure of graphene to the remote H plasma is an excellent cleaning

method, since it removes residues very efficiently without degrading the quality of the

graphene crystal lattice. This is further confirmed by Raman spectroscopy (no D-

peak in the bulk), AFM (very clean surfaces without PMMA residues) and electronic

transport measurements (high electronic mobility).

Further investigations are needed to identify possible origins of the disorder such as

e.g. hBN-graphene interactions where the relative rotation angle could play a role

[172, 199], or a too high thermal energy leading to edge reconstruction [117]. Thus,

further optimization of the H plasma etching process is required in order to obtain high

quality crystallographic graphene edges.
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4.5 Methods

AFM specifications: Two different AFM instruments were used for the measure-

ments presented in this work. The data shown in Figure 4.1a to c was obtained by

means of ambient qPlus based atomically resolving AFM [189], namely with a quartz

force sensor with resonance frequency f0 = 33 kHz, stiffness k = 1800N/m and quality

factor Q = 3000. Coarse topography images in Figure 4.1a and b were acquired in the

frequency-modulated mode while Figure 4.1c shows an atomically resolved frequency

shift image acquired in the constant height mode. The details of the setup are described

elsewhere [200]. For all other AFM data a Bruker Dimension 3100 was used. All data

measured with this instrument was acquired in intermittent contact mode (amplitude

modulated).

H plasma parameters: The following parameters were used for the exposures of all

samples presented in this work: T = 400 ◦C, p = 1.7mbar, H2 gas flow of 20 SCCM.

The details of the setup are described elsewhere [67].

Raman microscope: The Raman measurements were acquired with a WITEC al-

pha300 Raman system. The wavelength of the He-Ne laser was 633 nm and the used

objective was 100x with NA = 0.9. The laser power was set to 1.5mW or below for

all measurements. This power is low enough to exclude any laser induced structural

changes (see SOM S2). To extract the peak heights, we first subtract the background

and fit single Lorentzains (for the G and 2D-peaks) and a double Lorentzian for the D

and hBN peaks.

Sample fabrication: We used graphite flakes from NGS Naturgraphit GmbH. SL

flakes were obtained by the scotch tape method [21] and transferred on top of hBN

crystals by the wet transfer technique described in ref. [127]. High quality hBN crystals

[174] were exfoliated on top of a p++ doped Si wafer covered by 300 nm SiO2 following

the same scotch tape method. For the sample in Figure 4.7, we used an hBN flake

from HQ-Graphene. After H plasma etching, the electronic transport samples were in
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addition encapsulated by a top hBN flake to ensure high cleanliness and stability of

the devices. To cut the hBN/graphene/hBN stack in order to shape it or define control

ribbons an SF6/Ar/O2 gas mixture was used in an RIE process. Cr/Au side-contacts

were fabricated following ref. [129] with an additional RIE step with CHF3/O2 gas

prior to metalization. The GNR presented in Figure 4.5 is 600 nm wide and measures

1.6µm in length between the source and drain contacts. The bottom and top hBN

layers have a thickness of 42 nm and approx. 35 nm, respectively.

Electronic transport measurements: Standard low frequency lock-in measure-

ments were performed in a variable temperature insert at T = 4K.

Quantum transport simulations: All quantum transport simulations are done with

the following parameters. Magnetic field is fixed at B = 16T, the distance between

two pn-interfaces is set to 20 nm, the ribbon is about 40 nm wide, and the smoothness

of the pn and np regions is approximately 5 nm. Device scaling is necessary due to

computational capacity reasons and the strong magnetic field is required to ensure

that the Landau levels are well developed in such a narrow ribbon. All calculations

with disorder are averaged over 200 different configurations of Anderson-type disorder

potential. All calculations are done at zero temperature.
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4.7 Supplementary Information

4.7.1 S1 High Quality Bulk Graphene after Hydrogen Plasma Exposure

In order to investigate the influence of remote hydrogen (H) plasma exposure on the

graphene flake, we recorded Raman maps (see Figure 4.8). In panel a) and b) we show

the integrated 2D- and D-peak intensities, respectively. It is nicely visible, that the D-

peak intensity is only high at the edges of the flake and the hexagons and very low in the

bulk, showing that exposure of graphene to remote H plasma only edges from defects

and the edges and leaves the bulk intact. Furthermore, we can exclude hydrogenation

of bulk graphene because this would lead to D-peak intensity [114]. Panel c) shows an

AFM height image of the region where the Raman maps in a) and b) were recorded.

The green, red and purple crosses are drawn at the same location on the flake through

a) - c), namely the green cross lays inside the hexagon, the red cross at the edge and

the purple cross on bulk graphene.

Raman spectra were recorded at the location of these crosses and are shown in panel

d) with the corresponding color coding. We observe the graphene related D-, G-, and

2D-peaks, as well as the hBN-peak coming from the substrate. Looking at the G- and

2D-peaks, the intensity is highest for the measurement on bulk graphene, decreases to

about half the intensity for the measurement at the hexagon edge and almost vanishes

for the measurement taken inside the hexagon. Since the laser spot size is on the order

of the hexagon size, the G- and 2D-peak intensities do not fully vanish because the tails

of the Gaussian beam shape still excite a small fraction of graphene. Interestingly, the

D-peak intensity is only high for the measurement taken at the edge and zero inside and

outside the hexagon (see panel e) for the zoom-in). This shows, that the rim initially

created when the starting defect was fabricated by reactive ion etching (RIE) in an

Ar/O2 plasma does not contribute to the graphene D-band in the Raman spectrum. In

Figure 4.8 f) we show the intensity profile of the 2D-peak, recorded along the red solid

line in panel a). From this profile we extract a laser spot diameter of ∼ 860 nm. This
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Figure 4.8: High quality bulk graphene after H plasma exposure Integrated
2D-intensity (a)) and integrated D-peak intensity (b)) of a section of a single layer (SL)
graphene flake on a hexagonal boron nitride (hBN) substrate after 4 h of H plasma
exposure. c) AFM height image of the region where the Raman maps in a) and b)
were recorded. d) Raman spectra recorded at the locations indicated by the colored
crosses in a) - c). e) Zoom-in on the region of the D-peak. f) 2D-peak intensity as a
function of distance measured along the red solid line in panel a).

is well in agreement with the theoretically expected diffraction-limited spot diameter

(1.22∗λ/NA = 858 nm, with the numerical apertureNA = 0.9 and the laser wavelength

λ = 633 nm).

4.7.2 S2 Laser Power Test

A crucial condition for the investigation of the edge constitution by means of Raman

spectroscopy is that the edge is not changed upon laser irradiation. Indeed it has

been observed experimentally [184] that edge reconstruction due to laser annealing can

happen at graphene edges. To ensure, that our graphene edges are not altered upon

laser irradiation we performed a laser power test. In Figure 4.9 a) we show an AFM

height image of the sample on which we performed the laser power test. In panel b) we

plot the normalized D-peak intensities measured at different stages of the laser power

test (measurement # 1 to 5).
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Figure 4.9: Laser power test a) AFM height image of a SL graphene flake on hBN
after 4 h of remote H plasma exposure. The blue and red dashed circles indicate the
laser spot where the Raman spectra shown in panel b) were recorded. b) Normalized
D-peak intensity recorded at different stages of the laser power test. Measurement
# 1, 3, 4 and 5 were acquired with a laser power of 0.5mW. Only hexagon 2 was
exposed to a laser power of 1.5mW, see measurement # 2 (green dashed area indicates
exposure to 1.5mW). The red solid and dashed lines at measurement # 3 to 5 indicate
the average and the standard deviations, respectively. They are prolonged to the
left across measurement # 1 and 2 and show that the normalized D-peak intensities
recorded before and after exposure to 1.5mW are comparable. All data points are
averages over five measurements and the error bars are the corresponding standard
deviations.

First we measured at both hexagons with a laser power of 0.5mW (measurement # 1).

In a second step we expose hexagon 2 five times, each time for 1min, to a laser power of

1.5mW (measurement # 2). After this exposure to 1.5mW we measure again at both

hexagons with 0.5mW (measurement # 3 to 5). Comparing the normalized D-peak

intensities recorded before exposure to 1.5mW (measurement # 1) with the intensities

recorded afterwards (measurement # 3 to 5), it is indicated that measuring with a

laser power of 1.5mW does not change the recorded D-peak intensity significantly and

hence the edge is not impaired. Hence we generally measured with a laser power of

1.5mW to have a reasonable signal to noise ratio.

4.7.3 S3 Extraction of the Cavity Length

In order to characterize the electronic quality of our H plasma exposed graphene sam-

ples, we extract a lower bound for the mean free path lmfp of the charge carriers from
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the oscillation period of the Fabry-Pérot oscillations which are only visible if lmfp ex-

ceeds the cavity length L. In particular, L can be calculated from the charge carrier

density values n of two consecutive oscillations:

L =
√
π

√
nj+1 −

√
nj

(4.1)

In Figure 4.10 we present electronic transport data recorded on the sample presented

in Figure 4.5 in the main manuscript. Panel a) shows the conductance as a function

of the inner (nin) and outer (nout) densities, where nin is the density in the top gated

area and nout is the density in the graphene which is only influenced by the global back

gate.

Figure 4.10: Extraction of the cavity length a) conductance as a function of nin
and nout. b) cut along the blue solid line in a). Fabry-Pérot resonances are visible
indicating ballistic transport between the pn-interfaces. c) Extracted cavity lengths L
as a function of nin for three different values of nout.

The conductance map can be divided into four regimes: pnp, pp’p, npn and nn’n. In

the two bipolar regimes (pnp and npn) pn-junctions are formed which build a cavity
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for the charge carriers and lead to Fabry-Pérot resonances (see panel b) for a cut along

the blue line in a)). Using Equation4.1 we extract values for L at different nout, see

panel c). The largest cavity sizes are reached for low values of nout and large values of

nin. In particular, the values for L lay in the range of 160 nm to 330 nm.

4.7.4 S4 Edge Reconstruction

Reconstruction of zigzag (ZZ) edges has been observed experimentally [117, 201] and

predicted theoretically [192]. Among them, Xu et al. [117] proposed a reconstruction

mechanism which leads to four types of edge reconstructions and has the following

form:

ID ∝
1
4f1 + f2 + 1

2f1cos2(θ − φ) (4.2)

where f1 describes the relative weight of armchair (AC)-30◦ segments, f2 are the point

defects, f3 are the ZZ-0◦ segments and f4 are the ZZ-60◦ weights. θ denotes the

polarization angle with respect to the edge and φ is an offset which could stem from

an alignment error. Since only AC-30◦ segments and point defects are D-peak active,

it is possible to learn about their relative abundance (f1/f2) by performing polarized

Raman experiments. In Figure 4.11 a) we plot the normalized D-peak intensity as a

function of θ which was measured at the edge of the hexagon shown in Figure 4.4 a) in

the main manuscript. The blue curve is a fit to Equation 4.2 from which we extract

values for f1 and f2. The extracted values indicate that AC-30◦ segments are much

more abundant than point defects and hence that the edge essentially consists only of

AC-30◦ and ZZ segments.
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Figure 4.11: Edge reconstruction. a) Normalized D-peak intensity as a function of
the polarization angle θ for the hexagon shown in Figure 4.4 a) of the main manuscript.
The blue curve is a fit to Equation 4.2 yielding f1 = 165±6, f2 = −3±3 and φ = −8±1.
b) ρZ as a function of etching time for two different hexagon edges.

In Figure 4.11 b) we plot the ratio of ZZ to AC-30◦ segments ρZ extracted at different

stages of the etching process for two different hexagon edges. The extraction of ρZ

was done following the procedure presented in ref. [107] as also described in the main

manuscript. Within the experimental error bars ρZ is similar for all investigated etching

times.

4.7.5 S5 Effect of the Hole Shape on the D-peak Intensity

As complementary to the discussion of the etching series presented in Figure 4.3 of the

main manuscript, the geometrical change from the circular hole to the hexagonal hole

must be taken into account in order to interpret the increase of the D-peak intensity

correctly. Typically, a change in edge length effects the D-peak intensity and a change

in the graphene area enclosed in the laser spot effects the G-peak intensity. These

shape changes must be normalized such that ID/IG only manifests the edge quality.

First, we look at the change of the shape from the RIE circular hole to the H plasma

etched hexagonal hole. The total edge length enclosed in the laser spot for both shapes

are almost equal to each other (∼ 940 nm). But for the total D-peak intensity, it is

crucial to consider the polarization direction of the light with respect to the orientation

of the edge and the Gaussian intensity profile of the laser spot. We calculate an effective
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D-peak intensity by assuming that every point at the edge allows the second order

scattering process which is responsible for the D-peak signal. This assumption assures

that the following calculation only represents the geometrical changes from a circular

shape to a hexagonal shape. When the laser spot is positioned as seen in Figure 4.12,the

D-peak intensity in a single spectrum measurement is given by:

ID ≈
∫ ∫

dβdrP (β) cos2(θ + β)I(~r). (4.3)

The polarization function, P (β), determines the laser power at an angle β with respect

to the horizontal axis, shown in Figure 4.12. For linear polarization, this function is

maximum at the polarization angle and zero at 90 degrees from the polarization angle.

For general elliptical polarizations, the function is written explicitly in Equation 4.4,

describing laser power for each angle in our single spectrum measurements:

|~P (β)| = P (β) =
√

(2.5 cos β)2 + sin2(β). (4.4)

The coefficient (2.5) describes how much the polarization is deviated from a perfect

circular polarization due to an asymmetry at the beam splitter. For the circular polar-

ization, β is integrated from 0 to π. The second function I(~r) describes the Gaussian

beam shape:

I(~r) = I0e
−2 r2

ω2
0 (4.5)

with ~r being the radial distance from the center of the laser spot to the respective

point at the edge and ω0 being the (Gaussian) beam waist, measured and calculated

to be 430 nm. The third part is the cosine squared function which is a correction due

to that the D-peak intensity is maximum (minimum) when the polarization direction

is parallel (perpendicular) to the edge direction. The argument of this function is the

sum of the polarization angle β and the angle θ of the tangent line with respect to the
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horizontal axis, as shown in Figure 4.12.

In order to calculate the effective D-peak intensity at the RIE hole, we apply this

integral onto the circumference of the circular hole that fits inside the laser spot, as

drawn in Figure 4.12. For ease-of-calculation, the full circular shape is approximated as

a 60-edge-polygon which has an imperceptible effect on the calculation. It should also

be noted that for the calculation with the right integral limits, the integral in Equa-

tion 4.3 is converted into a line integral which runs along the circumference enclosed

by the laser spot.

Figure 4.12: Schematic for the integral in Equation 4.3 In a single spectrum
measurement, the center of the laser spot is located at the circumference. For any
point along the edge, the distance from the center of the laser spot is defined as ~r.
The polarization vector ~P (β), is defined with angle β with respect to the horizontal
axis (green dashed line). The orientation of the edge, which is the tangent line at that
point, is also defined with respect to the horizontal axis with angle θ.

Secondly, we calculate the effective D-peak intensity for the hexagonal hole. This

calculation is easier than the circular case since it includes only 3 edge segments with

angles of 0 and ±60 degrees. The lengths of the hexagonal hole edges are measured on

AFM images and all the dimensions of the holes and the D-peak intensity calculations

are given in Table 1.
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Then we calculate the graphene area enclosed in the laser spot. Obviously, the graphene

area enclosed in the laser spot changes from circular to hexagonal hole. Since we locate

the center of the laser spot at the center of the top or bottom edge, half of the laser

spot always covers the same graphene area but only the side pieces around the hole

are different after each etching step. At this point, we calculate the area by using

simple geometry and write the result again in Table 1. As you can see the change in

area is at most 14%. In this calculation, we assume that the G-peak intensity is only

proportional to the area of graphene enclosed in the laser spot and we do not consider

the Gaussian intensity profile. In fact, the effect of these side areas on the G-peak

intensity is much less than the calculated values since they are further away from the

center.

The resulting ID/IG ratios are given in Table 1. All the values in the table are normal-

ized to the value for the RIE hole of the corresponding quantity. As a result, the top

row (RIE hole values) is always equal to 1 and the values for 2h etching and 4h etching

show the relative change from the RIE case. Apparently, the calculated ID/IG due to

the geometrical change of the edge length and the area (rightmost column) does not

correspond to the measured values of ID/IG in the main text. This means that the

increase of the ID/IG values from the RIE hole to the H plasma etched hole is not due

to that the edge is longer or the graphene area is less but it is due to a change in the

atomic configuration at the edge. In other words, compared to an RIE etched edge of

the same length, an H plasma etched edge has more AC edge segments contributing to

the D-peak signal.

Etching Total Calculated Area Measured Calculated
(x) edge length IxD/I

RIE
D inside ω0 IxD/I

x
G IxD/I

x
G

inside ω0 ≈ IxG/I
RIE
G (main text) (geometry)

RIE ∼ 940nm 1 1 1 1
2h H-plasma ∼ 945nm 1.03 0.89 2.4 1.16
4h H-plasma ∼ 950nm 1.04 0.86 2.4 1.21

Table 1: Calculations for the 600 nm hole with circularly polarized light
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4.7.6 S6 Electronic Mobility of Encapsulated Hall Bar

In this section we present transport data recorded on a SL graphene Hall bar encapsu-

lated between two hBN flakes. In particular we are interested in the cleanliness of the

encapsulated graphene and extract the mean free path lmfp of the charge carriers to

compare it with relevant length scales of the investigated graphene nano ribbon (GNR)

devices discussed in the main manuscript (Figure 4.7). In Figure 4.13 a) an optical mi-

croscopy image of the encapsulated Hall bar is shown with the electronic circuit drawn

on top of it. In panel b) the conductivity σ as a function of the charge carrier density

n is plotted. The blue and green curves are fits to the following equation:

σ(n) =
(

1
µne

+ ρs

)−1

(4.6)

where µ is the mobility, e the electronic charge and ρs a series resistivity which is

composed of the contact resistances and the cryostat lead resistances. The fit to the

electron side (green curve) gives µ = 134′000 cm2/Vs and the fit to the hole side (blue

curve) gives µ = 114′000 cm2/Vs. In panel c) we plot σ as a function of n on a log-log

scale. By looking at the position of the kink, indicated by the black solid and dashed

lines, we extract an estimate of the residual disorder density which is 3 · 1010 cm−2.

Further, we calculate lmfp of the charge carriers for the electron side by using the

following formula:

lmfp(µ, n) = ~
e
· µ ·
√
πn (4.7)

where ~ is the Planck constant.

The mean free path reaches 1µm at n = 4.1·1011 cm−2 which clearly exceeds all relevant

length scales in the GNR devices discussed in the main manuscript (Figure 4.7).
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Figure 4.13: Mobility of an Encapsulated Hall Bar a) Optical microscopy image
of the investigated SL graphene Hall bar encapsulated between two hBN flakes. The
side contacts are yellow and the electronic circuit is indicated. b) Conductivity as a
function of the charge carrier density. The green and blue curves are fits to Equation 4.6.
The following fitting parameters were obtained: electron side, µe = 1.34 · 105 ± 1 ·
103 cm2/Vs, ρS_e = 187±1 Ω; hole side: µh = 1.14·105±1·103 cm2/Vs, ρS_h = 213±1 Ω.
c) Conductivity as a function of the absolute value of the charge carrier density plotted
in a log-log representation. The location of the kink gives the estimate of the residual
disorder density n0 which is 3 ·1010 cm−2. d) Mean free path as a function of the charge
carrier density for the mobility value obtained for the electron side.

4.7.7 S7 Comparison of the Experiment with the Simulation

In this section, the differences between the experimentally measured conductance

g(∆xnp-exp) and the simulated conductance g(∆xnp-sim) are discussed. In the exper-

iment, the positions of the two pn-interfaces can be tuned with gate voltages applied
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to the local top gate and the global back gate. Thereby, the pn-interfaces move always

in opposite directions, i.e. either towards each other or apart from each other, see

Figure 4.14 a). In the simulation, on the other hand, the two pn-interfaces move always

in the same direction, see Figure 4.14 b).

top gate
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Figure 4.14: Experiment vs Simulation a) Schematic of the cross section of the
device on which transport was measured. b) Model which was used for the simulations.

This is equivalent to connecting an np junction with conductance G(xnp) and a pn

junction with conductance G(xpn) in series, and then move the two junctions together

in the same direction. Specifically, we are comparing our simulations for

g(∆xnp-sim) = g(xnp) ∝ G(xpn)G(xnp)

with the experimentally measured

g(∆xnp-exp) = g(xnp − x0
np) ∝ G(xnp − x0

np)G(xpn − x0
pn) ,

where x0
np = −100 nm and x0

pn = 100 nm are the designed positions of the two edges

of the top gate, and xpn = −xnp due to their opposite movement. Despite this subtle

difference, the comparison makes reasonably good sense because the AC-30◦ segments
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of the edge disorder are randomly located. That is, in the simulation, G(xpn) is expected

to be uncorrelated with G(xnp), just like in the experiment, G(xnp − x0
np) is expected

to be uncorrelated with G(xpn − x0
pn), either. Hence, g(∆xnp-exp) ∼ g(∆xnp-sim) and

therefore we introduce the parameter ∆xnp for both, experiment and simulation, as

used in the main paper in Figure 4.5 and Figure 4.6.

4.7.8 S8 Conversion of Backgate Voltage to the pn-interface Location

In order to interpret the valley-isospin oscillations in terms of the pn-interface loca-

tions it is necessary to convert gate voltages to the actual pn-interface locations. In

Figure 4.15 a) a calculation of the electrostatics of the studied device is shown where

the pn-interface position relative to the left edge of the top gate ∆Xnp is plotted as

a function of back gate and top gate voltages. In panel b) a cut along the red solid

line in a) is shown. This curve was used to convert back gate voltage to ∆Xnp for the

curves presented in the main manuscript.

Figure 4.15: Conversion of Backgate Voltage to the pn-interface Location a)
Electrostatic simulation of the device presented in Figure 4.5 in the main manuscript
where the pn-interface location relative to the left edge of the top gate ∆Xnp is plotted
as function of top and back gate voltages. b) Cut along the red solid line in a).
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Abstract

We report highly tunable control of holes in Ge/Si core/shell nanowires. We

demonstrate the ability to create single quantum dots of various sizes, with low

hole occupation numbers and clearly observable excited states. For the smallest

dot size we observe indications of single-hole occupation. Moreover, we create

double and triple tunnel-coupled quantum dot arrays. In the double quantum

dot configuration we observe Pauli spin blockade (PSB). These results open the

way to perform hole spin qubit experiments in these devices.

This chapter was published in Applied Physics Letters 113, 073102 (2018).
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5.1 Motivation

Single hole spins confined in quantum dots (QDs) in Ge/Si core/shell nanowires (NWs)

combine several advantageous properties which makes them potentially very powerful

quantum bits [6, 202]. The natural abundance of non-zero nuclear spins in both silicon

and germanium is relatively small and can be further reduced to a negligible amount

by isotopic purification. Furthermore, hole spins have no contact hyperfine interaction

due to their p-type wavefunction. These properties make hole spin qubits in silicon

and germanium resilient against dephasing via interaction with nuclear spins.

A particularly promising feature of hole spins in Ge/Si core/shell NWs is the nature of

spin-orbit interaction (SOI) in this system. Confinement to one dimension gives rise to

an effective SOI in the valence band, which is predicted to be both strong and tunable

[13, 203], enabling fast all-electrical spin manipulation. An external electric field can

be used to set the strength of this SOI. This promises the capability of electrical gating

of the SOI, allowing to switch to a large SOI for high interaction strengths and fast

quantum operations, or to turn off SOI for increased qubit coherence. Furthermore,

this SOI results in a Landé g-factor that is locally tunable by external electric as well as

magnetic fields [14, 15]. Local control over the g-factor makes it possible to selectively

address individual spin qubits and allows for selective coupling to microwave cavities

[132].

The confinement of single holes in QDs is an important step towards implementation

of the basic ingredients of experimental quantum computation using hole spin qubits

[6]. Single QDs form the fundamental building blocks, and it is therefore imperative to

be able to reliably form and characterize them [141]. Moreover, a high level of control

over the exact position and shape of individual QDs is required to accurately tune level

splittings [13], spin relaxation times [147, 204], and tunnel coupling strengths.
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In addition to single QDs, tunnel-coupled double QDs are of particular interest, since

these are platforms for spin-to-charge conversion schemes facilitating spin read-out

and coupling of spins to microwave cavities [205–207]. Spin states of double and triple

QDs can be used as qubit encodings which are insensitive to fluctuations of a uniform

magnetic field or of magnetic field gradients [208, 209]. Moreover, quantum operations

on these qubits may be performed using different mechanisms than for single spin

qubits, for instance only relying on the Heisenberg exchange interaction [210, 211].

Finally, double as well as triple QDs feature charge states with an increased dipole

moment, potentially leading to enhanced coupling strengths of spin qubits to microwave

cavities [207].

5.2 Main Experimental Findings

In this Letter, we demonstrate a large amount of control over the formation of single,

double and triple QDs in Ge/Si NWs, all with a low hole occupation number. Using

five bottom gate electrodes, we tune the size and position of single QDs defined in the

NW. Furthermore, we form tunnel-coupled double and triple QDs. In the double QD

configuration, we observe Pauli spin blockade [147, 151] (PSB).

5.3 Sample Design

We use a Ge/Si NW [130] with an estimated Ge core radius of 10 nm and Si shell thick-

ness of 2.5 nm (see Fig. 5.1). Five Ti/Pd bottom gate electrodes are lithographically

defined on a p++-doped Si substrate covered with 290 nm thermal oxide. The bottom

gates have a thickness of ∼15 nm, a width of 20 nm, and are equally spaced with a pitch

of 50 nm. On either side of these gates, a plateau gate (green in Fig. 5.1 b) is defined,

which serves to prevent bending of the NW. The bottom gates are subsequently cov-

ered by a layer of Al2O3 of thickness 20 nm through atomic layer deposition at 225 ◦C.

In a next step, the NW is placed deterministically on top of the bottom gates using
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a micromanipulator setup. Electrical contact to the NW is made through two Ti/Pd

(∼0.5/60 nm) contact pads, which are lithographically defined and metallized after a

brief HF dip to strip the NWs native oxide.

(b)

(a)

250nm

VSD Ge
Si

I

g1
g2

g3
g4

g5

Figure 5.1: (a). Scanning electron micrograph of a device similar to the one used
in this work. (b) Schematic overview of device and measurement setup. The NW is
shown in blue, with the core in orange, bottom gates are in yellow and green, and
contacts in purple.

Due to the type-II staggered band alignment of silicon and germanium, a hole gas

accumulates in the core [131]. By applying positive voltages to the gate electrodes, the

hole density can be depleted locally, resulting in the formation of QDs. We perform

transport measurements by applying a dc source-drain bias VSD over the NW and

measuring the differential conductance using standard lock-in techniques with a small

ac excitation in the range of 20-100µV applied to the source contact. All measurements

were performed at a temperature of 1.4K, without application of an external magnetic

field, and with the doped part of the substrate grounded.
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5.4 Single QDs of Different Sizes

Figure 5.2 a gives an overview of the different configurations of biased gates and dot

sizes that were studied. QDs can be formed using two, three, four or five neighboring

gates. For each dot size, the outer two gates (red in Fig. 5.2 a) form tunnel barriers

between the QD and the source and drain reservoirs. The voltage on individual or

multiple middle gates (green in Fig. 5.2 a) are used to tune the electrochemical potential

of the QD. Unused gates (white in Fig. 5.2 a) are grounded. In Figure 5.2 b and c,

measured charge stability diagrams (Coulomb diamonds) are shown for the case of a

single QD formed by two and three neighboring gates, respectively (see Fig. 5.2 a, top

panels). Similar measurements were made for larger QDs formed by four and five gates.

In case of the QD defined by two adjacent gates, we find that sweeping the voltage on

these gates has a large effect on the tunnel barriers defining the dot. As a result, only

a few charge transitions can be observed for this configuration. For the other dot sizes,

the tunnel barriers are much less affected by the voltage on one of the middle gates,

and we observe a large number of regular Coulomb diamonds.



5. Single, Double, and Triple Quantum Dots in Ge/Si Nanowires 117

dI
/d

V 
(1

0-3
e2 /h

)
|d

I/d
V|

 (1
0-3

e2 /h
)

4.84.74.64.54.44.3
-40

-20

0

20

40

150

100

50

0.017

(b)

(c)

(a)

Vg3 (V)

Vg2 (V)

V SD
 (m

V)
V SD

 (m
V)

g1 g2 g3 g4 g5

1.21.11.00.9
-20

-10

0

10

20

12

8

4

0

L = 130 nm L = 180 nm

L = 30 nm L = 80 nm

Figure 5.2: (a). Schematic picture of the gate configurations used to form QDs
(orange) of different lengths using 2, 3, 4 and 5 gates, respectively. (b) Lock-in signal
dI/dV versus VSD and Vg3 of QD formed by two gates. To enhance contrast, values
below the colorscale were given a grey color. Here Vg4 =1700mV. (c) Lock-in signal
dI/dV versus VSD and Vg2 of QD formed by three gates. Here Vg1 =2000mV and
Vg3 =4000mV. Blue dashed rectangle shows an example of an averaging window used
to extract excited state energies. Insets in (b) and (c) schematically show used gate
configurations.
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Table 2 summarizes parameters extracted from the Coulomb diamond measurements.

In Figure 5.3 values of the hole addition energy Eadd are plotted, which were extracted

from the height of the Coulomb diamonds. We find that Eadd is largest for the smallest

dot and decreases for increasing dot size, in agreement with the expectation that both

charging energy and orbital level splittings decrease with dot size.

# gates Eadd (meV) Eorb (meV) L (nm) Nest

2 26 12.8 30 1, see main text
3 17 4.8 80 15
4 13 2.1 130 35
5 10 1.3 180 38

Table 2: Typical extracted single dot parameters: addition energies Eadd, excited state
energies Eorb, lithographically defined distances L between gates creating QD tunnel
barriers, and estimated hole numbers Nest.

The conductance measurements feature additional resonances at higher values of VSD

[136]. We extract energies for these resonances by averaging the difference of the

first resonance and the ground state transition, in windows similar to the one drawn

in Figure 5.2 c. Here we convert the difference in VSD to energy using lever arms

determined from the slopes of each Coulomb diamond. The third column of Table 2

lists typical energies Eorb found in this way for the different dot sizes. Consistent

with the level splitting of orbital hole states [212, 213], Eorb depends strongly on the

longitudinal dot size, with smaller dots featuring higher values of Eorb. Note that

incomplete knowledge of the exact confinement potential and the hole effective mass

makes it difficult to compare our measurements to a theoretical model of orbital level

splitting.
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Figure 5.3: Extracted values of Eadd for various QD lengths as a function of relative
occupation number.

Furthermore, we estimate the lowest measurable hole occupation number Nest for the

different dot sizes by comparing the used gate voltages with pinch-off voltages obtained

at high VSD. For dots formed by 3 to 5 neighboring gates, we find relatively low

occupation numbers ranging from 15 to 38 (see Table 2). This method is not reliable

for QDs defined by only two gates, since both gates directly define the tunnel barriers of

the dot. However, several indications suggest that single-hole occupation is reached in

this case. First of all, the last Coulomb diamond edge visible in Figure 5.2 b increases

linearly up to at least |VSD| = 40mV. Furthermore, even at high VSD, no features

involving tunneling of multiple holes are observed for the last visible Coulomb diamond

(which would appear as lines intersecting the diamond edges on the high gate voltage

side). We do find multiple resonances in the last diamond for low VSD, which could arise

from tunneling involving excited states. However, the splitting of these lines is lower

than that found for the larger dots. Therefore, it is unlikely that these resonances

correspond to excited orbital states in a small QD. Furthermore, we observe (not

shown) that the splitting of the resonances strongly depends on gate voltages applied

to g2 and g5 (flanking the barriers of the dot), again making it implausible that they

correspond to excited orbital states [214]. A likely explanation is that these lines arise
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from modulation of the reservoir density of states [213–215]. Finally, the energy of the

first excited state in the second Coulomb diamond in Figure 5.2 b (around Vg3 =4.35V)

appears to be significantly reduced with respect to that found in the last diamond,

consistent with an exchange energy appearing for two-hole states. More conclusive

evidence of single hole occupation could be obtained by using a charge sensor [135].

Finally, we observed in multiple devices that QDs formed by three or more gates tend

to split up when biasing the center gates too positively. This impedes reaching single-

hole occupation for the larger dot sizes. Moreover, conductance becomes too low to

measure when increasing the gate voltages, again potentially preventing the observation

of single-hole occupation regimes. In the device studied here, this seems to be not the

case for the dot made by two gates. The conductance exceeds 0.1 e2/h on the last

diamond in Figure 5.2 b, thus adding more evidence for the single-hole regime.

5.5 Double QD Formation and Pauli Spin Blockade

Next, we demonstrate controllable formation of double QDs. As shown in the charge

stability diagrams in Figure 5.4 a, a single QD formed by five gates can be continuously

split up into a double tunnel-coupled QD, by increasing the voltage on gate g3. Here,

the voltage on gates g2 and g4 are swept and the current through the NW is measured

for each point. The leftmost charge stability diagram shows single-dot behavior, in

which diagonal lines are Coulomb peaks corresponding to sequential addition of single

holes to the dot. The middle panel shows a charge stability diagram of a double QD

featuring high coupling between the dots, as evidenced by the bending of the charging

lines. The right panel shows conductance only when the electrochemical potentials of

the two dots are aligned, in the form of bias triangles [148]. The absence of conductance

along the charging lines indicates that significant cotunneling with the lead reservoirs

can be avoided. These measurements indicate that we have a large amount of control

over the capacitive coupling and tunnel-coupling between the two QDs.

Pauli spin blockade is a basic ingredient of many spin qubit experiments, in which
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Figure 5.4: (a) Charge stability diagrams for different values of the voltage on g3,
showing a transition from a single QD to a double QD, at VSD = 2 mV. Insets schemati-
cally show QD configurations. (b) Zoom-in of a pair of bias triangles, at Vg3 =3800mV.
Plotted is the dc current for positive and negative VSD. The strong reduction in the
area enclosed by the dashed green line indicates the presence of Pauli spin blockade.
(c) Charge stability diagram with highlighted (shaded blue regions) triple QD features.
White dotted lines indicate the slope of charge transitions of the outer two dots. (d)
Charge stability diagram of triple QD. Dashed blue and dotted pink circles highlight
triple dot resonances. In (c) and (d), Vg1 =2000mV, Vg3 =3800mV, and Vg5 =2800mV.

interdot transitions are blocked for spin triplet but not for singlet states [147, 151].

As such, it forms a means of reading out spin qubit states. When measuring the

conductance through a double QD, the blockade may be observed for one sign of VSD,

but not for the other. In this work, the relevant spin states are those of Kramers

doublets formed by mixed heavy hole and light hole states [13].

We observe signatures of PSB at several interdot transitions when measuring bias

triangles for positive and negative VSD, in the form of a region of reduced conductance

inside the bias triangles for one sign of VSD. Figure 5.4 (b) focuses on one such an



122

interdot transition where the current inside the region indicated by the dashed green

line is suppressed by roughly a factor 10 for positive VSD. The size of the blockaded

region is determined by the singlet-triplet splitting εST in the single dots (see white

arrow in Fig. 5.4 b, right panel). We find εST to be 1meV, which compares well with

other measurements [142, 144]. Moreover, we observe a leakage current that depends on

the detuning of the electrochemical potentials in the two dots and on the magnitude of

an applied magnetic field. In particular, we find a small leakage current at low detuning

that is consistent with an effective T(1,1) to S(0,2) transition, and a larger current at

higher detuning consistent with a T(1,1) to T(0,2) transition. Various processes may

lift PSB, including spin-flip cotunneling, spin-flip reservoir exchange [216], hyperfine

interaction, and SOI [142, 144, 217]. The resulting leakage current thus forms a probe

to detect the strength of these processes, but a detailed study of this goes beyond the

scope of the present work.

5.6 Triple QD

We find that the double QD can be further subdivided into a triple QD, by increasing

the voltage on g4. In this case, the triple dot is likely composed of two small QDs

between gate pairs g3-g4 and g4-g5, as well as a larger QD between g1-g3. In the

charge stability diagram shown in Figure 5.4 c, triple dot features appear as lines with

enhanced conductance with an intermediate slope (see dashed blue lines). Figure 5.4 d

shows a zoomed-in region of the triple QD charge stability diagram. Similar to bias

triangles in a double QD, conductance is enhanced when the electrochemical potential

of the center dot is aligned with that of one of the outer dots (dotted pink circle in

Fig. 5.4 d), or when the electrochemical potentials of all three dots are aligned (dashed

blue circle in Fig. 5.4 d) [218, 219]. The fact that we also observe conductance at points

corresponding to double QD bias triangles suggests that there is cotunneling involving

the center dot present in the measurements, resulting in conductance even when only

the electrochemical potentials of two out of three dots are aligned.
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5.7 Conclusion

The demonstration of tunable single, double, and triple QDs opens the way to per-

form spin qubit experiments with few holes in these devices. Reaching the single-hole

regime is particularly important, as it makes single and two-qubit operations much

more straightforward. Overall, we observe very good repeatability of the measure-

ments, with gate voltage changes of 1 V leading to no observable shifts in charge sta-

bility diagrams. These results enable several follow-up experiments. In particular, the

strength and electric field dependence of the SOI could be determined from magnetic

field dependence of leakage current in a double QD in the PSB regime [142, 144, 217].

Moreover, we expect that a slightly different gate design than used here will enable

reaching single-hole occupation in a controllable way.
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6 Summary and Outlook

In chapter 3 the investigation of a H plasma etching technique, to anisotropically etch

graphite and graphene, was presented. First, graphite samples were used to examine the

influence of important plasma parameters (gas pressure and sample-plasma distance)

on the etching characteristics. Two distinct plasma regimes could be identified: the

remote and the direct regime. In the direct plasma regime, the samples were lying

inside the glowing part of the plasma, where highly energetic ions are present, which

continuously induce new defects during the exposure and lead to perforated sample

surfaces. In contrast, samples placed outside the glowing part of the plasma, i.e. in

the remote regime, showed regular hexagonal etch pits. These etch pits were seen to

grow in size but no new, additional etch pits were created, which indicates that etching

proceeds only from pre-existing defects and leaves the basal plane pristine. Hence, the

remote regime is particularly useful because artificial defects can be used to fabricate

custom-made nano structures with, presumably, well-defined ZZ edges. In a further

step of the experiment, the substrate influence on the etching of SL graphene was

investigated. It was found that graphene on a SiO2 substrate is etched isotropically,

whereas graphene on hBN exhibits anisotropic etching, featuring regular hexagonal

etch pits.

With this anisotropic etching technique at hand, diverse graphene nano structures

such as, e.g. GNRs can be fabricated. In earlier work [62, 63], it was found that H

plasma etched hexagon edges follow the ZZ direction of the graphene lattice. However,

it was not clear how high the edge quality really is on a microscopic level. This

open question is addressed in chapter 4, where H plasma defined graphene edges

were characterized by means of atomic resolution AFM, Raman spectroscopy, and low-

temperature electronic transport measurements. It was found that hexagon edges on

graphite follow the ZZ direction of the crystal lattice, and the absence of the Raman D-

peak indicated a high quality of these edges. Hexagon edges created in SL graphene on
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hBN, on the other hand, exhibited a quite considerable D-peak intensity in the Raman

spectrum. Polarization angle dependent measurements revealed an edge configuration

consisting of approximately 60 % ZZ and 40 % AC-30◦ segments. Furthermore, valley-

isospin conductance oscillations were analyzed and compared to quantum transport

calculations to get insight into the nature of the edges. The calculations for edges with

AC-30◦ segments fit the experimental data best, and, hence, supported the findings

from the Raman measurements. Moreover, transport through H plasma defined and

RIE defined constrictions was found to have similar mobilities, also indicating the

presence of edge disorder at H plasma defined edges.

The above-mentioned findings indicate that the H plasma etching technique of SL

graphene on hBN needs to be further optimized in order to obtain pure crystalline

graphene edges. Temperature induced reconstruction of ZZ edges could play a role

in the H plasma etching process [117]. Hence, future experiments might focus on the

investigation of the edge quality as a function of etching temperature and, possibly,

yield a temperature range, which allows for the etching of higher quality graphene

edges. However, the etching is only working in a quite narrow temperature range and

special care needs to be taken when approaching lower temperatures because graphane

could be formed. A second possible cause for the observed edge disorder could be hBN-

graphene interactions, which negatively influence the quality of the etch. It was shown

that the small lattice offsets of graphene and hBN lead to Moiré super-lattice effects

[172, 199], which, depending on the relative rotation angle of the two material layers,

result in different influences on the electronic structure of graphene. It is plausible that

a change of the electronic structure of graphene has an influence on the quality of the

etch. Hence, future experiments could focus on the enhancement of the edge quality

by optimizing the relative rotation angle between graphene and the hBN substrate.

Once the H plasma etching technique is optimized and enabled to create high quality ZZ

edges, a range of possible experiments comes within reach such as, e.g. the realization

of edge-magnetism and spin-filtering experiments [30].
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In chapter 5 the formation of single QDs of various sizes with low occupation numbers

in Ge/Si core/shell NWs was presented. In the smallest QD, indications for the single-

hole regime were found. Furthermore, important QD parameters, such as addition

energies and orbital energies were extracted. In the same device, double QDs and

triple QDs were formed and PSB was observed in a double QD.

Future experiments could focus on the investigation of the leakage current in the PSB

regime. The dependence of the leakage current on the detuning of the two QDs and

on the externally applied magnetic field can give insight into mechanisms, which lift

the blockade such as, e.g. hyperfine interaction, SOI, and spin-flip co-tunneling.

Next-generation devices are planned to be equipped with side-gates, which allow ap-

plication of electric fields across the NW and, therefore, tuning the strength of the SOI

and the g-factor. Electric-dipole-induced spin resonance (EDSR) experiments could be

performed to investigate the functionality of the electric tuneability of the SOI and the

g-factor.

In a wider context, circuit quantum electrodynamics experiments might be envisaged,

where several spin-qubits are coupled through a transmission line [132]. The tuneability

of the SOI and the g-factor would enable the operation of single and two-qubit gates.



References 127

References

[1] R. P. Feynman. Simulating physics with computers. International Journal of

Theoretical Physics 21, 467 (1982).

[2] R. P. Feynman. Quantum mechanical computers. Foundations of Physics 16, 507

(1986).

[3] J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Physical

Review Letters 74, 4091 (1995).

[4] I. L. Chuang, N. Gershenfeld, and M. Kubinec. Experimental implementation of

fast quantum searching. Physical Review Letters 80, 3408 (1998).

[5] G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch. Quantum logic

gates in optical lattices. Physical Review Letters 82, 1060 (1999).

[6] D. Loss and D. P. DiVincenzo. Quantum computation with quantum dots. Phys-

ical Review A 57, 120 (1998).

[7] S. Tarucha, D. Austing, T. Honda, R. Van der Hage, and L. P. Kouwenhoven.

Shell filling and spin effects in a few electron quantum dot. Physical Review

Letters 77, 3613 (1996).

[8] J. Elzerman, R. Hanson, L. W. Van Beveren, B. Witkamp, L. Vandersypen,

and L. P. Kouwenhoven. Single-shot read-out of an individual electron spin in a

quantum dot. Nature 430, 431 (2004).

[9] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin,

C. M. Marcus, M. P. Hanson, and A. C. Gossard. Coherent manipulation of

coupled electron spins in semiconductor quantum dots. Science 309, 2180 (2005).



128 References

[10] M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe. Peculiar Localized

States at Zigzag Graphite Edge. Journal of the Physical Society of Japan 65,

1920 (1996).

[11] J. Klinovaja and D. Loss. Giant Spin-Orbit Interaction Due to Rotating Magnetic

Fields in Graphene Nanoribbons. Physical Review X 3, 011008 (2013).

[12] B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard. Spin qubits in graphene

quantum dots. Nature Physics 3, 192 (2007).

[13] C. Kloeffel, M. Trif, and D. Loss. Strong spin-orbit interaction and helical hole

states in Ge/Si nanowires. Physical Review B 84, 195314 (2011).

[14] F. Maier, C. Kloeffel, and D. Loss. Tunable g factor and phonon-mediated hole

spin relaxation in Ge/Si nanowire quantum dots. Physical Review B 87, 161305

(2013).

[15] M. Brauns, J. Ridderbos, A. Li, E. P. Bakkers, and F. A. Zwanenburg. Electric-

field dependent g-factor anisotropy in Ge-Si core-shell nanowire quantum dots.

Physical Review B 93, 121408 (2016).

[16] R. Peierls. Quelques proprietes typiques des corpses solides. Annales de le Institut

Poincare 5, 177 (1935).

[17] L. Landau. Zur Theorie der phasenumwandlungen II. Physikalische Zeitschrift

der Sowjetunion 11, 26 (1937).

[18] P. R. Wallace. The band theory of graphite. Physical Review 71, 622 (1947).

[19] J. McClure. Diamagnetism of graphite. Physical Review 104, 666 (1956).

[20] J. Slonczewski and P. Weiss. Band structure of graphite. Physical Review 109,

272 (1958).



References 129

[21] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,

I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon

films. Science 306, 666 (2004).

[22] C. Lee, X. Wei, J. W. Kysar, and J. Hone. Measurement of the elastic properties

and intrinsic strength of monolayer graphene. Science 321, 385 (2008).

[23] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and

C. N. Lau. Superior thermal conductivity of single-layer graphene. Nano Letters

8, 902 (2008).

[24] K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim,

and H. Stormer. Ultrahigh electron mobility in suspended graphene. Solid State

Communications 146, 351 (2008).

[25] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim. Experimental observation of

the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201 (2005).

[26] M. Katsnelson, K. Novoselov, and A. Geim. Chiral tunnelling and the Klein

paradox in graphene. Nature Physics 2, 620 (2006).

[27] A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim. The

electronic properties of graphene. Reviews of Modern Physics 81, 109 (2009).

[28] Https://atomselectrons.com/2012/03/26/alkenes/.

[29] O. V. Yazyev. Emergence of magnetism in graphene materials and nanostruc-

tures. Reports on Progress in Physics 73, 056501 (2010).

[30] Y.-W. Son, M. L. Cohen, and S. G. Louie. Half-metallic graphene nanoribbons.

Nature 444, 347 (2006).

[31] F. Muñoz-Rojas, J. Fernández-Rossier, and J. Palacios. Giant magnetoresistance

in ultrasmall graphene based devices. Physical Review Letters 102, 136810 (2009).



130 References

[32] N. Tombros, A. Veligura, J. Junesch, M. H. Guimarães, I. J. Vera-Marun, H. T.

Jonkman, and B. J. Van Wees. Quantized conductance of a suspended graphene

nanoconstriction. Nature Physics 7, 697 (2011).

[33] T. Li and S.-P. Lu. Quantum conductance of graphene nanoribbons with edge

defects. Physical Review B 77, 085408 (2008).

[34] D. Gunlycke, D. Areshkin, and C. White. Semiconducting graphene nanostrips

with edge disorder. Applied Physics Letters 90, 142104 (2007).

[35] D. A. Areshkin, D. Gunlycke, and C. T. White. Ballistic transport in graphene

nanostrips in the presence of disorder: Importance of edge effects. Nano Letters

7, 204 (2007).

[36] L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai. Facile synthesis of high-

quality graphene nanoribbons. Nature Nanotechnology 5, 321 (2010).

[37] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev,

B. K. Price, and J. M. Tour. Longitudinal unzipping of carbon nanotubes to form

graphene nanoribbons. Nature 458, 872 (2009).

[38] X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai. Chemically derived, ultrasmooth

graphene nanoribbon semiconductors. Science 319, 1229 (2008).

[39] P. Ruffieux, S. Wang, B. Yang, C. Sánchez-Sánchez, J. Liu, T. Dienel, L. Talirz,

P. Shinde, C. A. Pignedoli, D. Passerone, et al. On-surface synthesis of graphene

nanoribbons with zigzag edge topology. Nature 531, 489 (2016).

[40] J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth,

A. P. Seitsonen, M. Saleh, X. Feng, et al. Atomically precise bottom-up fabrication

of graphene nanoribbons. Nature 466, 470 (2010).



References 131

[41] L. Talirz, H. SoÌˆde, T. Dumslaff, S. Wang, J. R. Sanchez-Valencia, J. Liu,

P. Shinde, C. A. Pignedoli, L. Liang, V. Meunier, et al. On-surface synthesis and

characterization of 9-atom wide armchair graphene nanoribbons. ACS Nano 11,

1380 (2017).

[42] P. Ruffieux, J. Cai, N. C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari,

X. Feng, K. Müllen, C. A. Pignedoli, et al. Electronic structure of atomically

precise graphene nanoribbons. ACS Nano 6, 6930 (2012).

[43] M. Koch, F. Ample, C. Joachim, and L. Grill. Voltage-dependent conductance of

a single graphene nanoribbon. Nature Nanotechnology 7, 713 (2012).

[44] H. Huang, D. Wei, J. Sun, S. L. Wong, Y. P. Feng, A. C. Neto, and A. T. S. Wee.

Spatially resolved electronic structures of atomically precise armchair graphene

nanoribbons. Scientific Reports 2, 983 (2012).

[45] J. Van Der Lit, M. P. Boneschanscher, D. Vanmaekelbergh, M. Ijäs, A. Uppstu,

M. Ervasti, A. Harju, P. Liljeroth, and I. Swart. Suppression of electron–vibron

coupling in graphene nanoribbons contacted via a single atom. Nature Commu-

nications 4, 2023 (2013).

[46] L. C. Campos, V. R. Manfrinato, J. D. Sanchez-Yamagishi, J. Kong, and

P. Jarillo-Herrero. Anisotropic etching and nanoribbon formation in single-layer

graphene. Nano Letters 9, 2600 (2009).

[47] D. Geng, B. Wu, Y. Guo, B. Luo, Y. Xue, J. Chen, G. Yu, and Y. Liu. Fractal

etching of graphene. Journal of the American Chemical Society 135, 6431 (2013).

[48] W. Guo, B. Wu, Y. Li, L. Wang, J. Chen, B. Chen, Z. Zhang, L. Peng, S. Wang,

and Y. Liu. Governing rule for dynamic formation of grain boundaries in grown

graphene. ACS Nano 9, 5792 (2015).

[49] Y. Zhang, Z. Li, P. Kim, L. Zhang, and C. Zhou. Anisotropic hydrogen etching

of chemical vapor deposited graphene. ACS Nano 6, 126 (2011).



132 References

[50] Y. Y. Stehle, X. Sang, R. R. Unocic, D. Voylov, R. K. Jackson, S. Smirnov, and

I. Vlassiouk. Anisotropic Etching of Hexagonal Boron Nitride and Graphene:

Question of Edge Terminations. Nano Letters 17, 7306 (2017).

[51] P. Nemes-Incze, G. Magda, K. Kamarás, and L. P. Biró. Crystallographically

selective nanopatterning of graphene on SiO2. Nano Research 3, 110 (2010).

[52] B. Krauss, P. Nemes-Incze, V. Skakalova, L. P. Biro, K. v. Klitzing, and J. H.

Smet. Raman scattering at pure graphene zigzag edges. Nano Letters 10, 4544

(2010).

[53] F. Oberhuber, S. Blien, S. Heydrich, F. Yaghobian, T. Korn, C. Schüller,

C. Strunk, D. Weiss, and J. Eroms. Weak localization and Raman study of

anisotropically etched graphene antidots. Applied Physics Letters 103, 143111

(2013).

[54] F. Oberhuber, S. Blien, F. Schupp, D. Weiss, and J. Eroms. Anisotropic etching

of graphene in inert and oxygen atmospheres. Physica Status Solidi (a) 214

(2017).

[55] M. C. Lemme, D. C. Bell, J. R. Williams, L. A. Stern, B. W. Baugher, P. Jarillo-

Herrero, and C. M. Marcus. Etching of graphene devices with a helium ion beam.

ACS Nano 3, 2674 (2009).

[56] A. N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, and

C. Zhou. Patterning, characterization, and chemical sensing applications of

graphene nanoribbon arrays down to 5 nm using helium ion beam lithography.

ACS Nano 8, 1538 (2014).

[57] Z. J. Qi, J. A. Rodriguez-Manzo, A. R. Botello-Mendez, S. J. Hong, E. A. Stach,

Y. W. Park, J.-C. Charlier, M. Drndic, and A. C. Johnson. Correlating atomic

structure and transport in suspended graphene nanoribbons. Nano Letters 14,

4238 (2014).



References 133

[58] J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A.-P.

Li, Z. Jiang, E. H. Conrad, C. Berger, et al. Exceptional ballistic transport in

epitaxial graphene nanoribbons. Nature 506, 349 (2014).

[59] G. Z. Magda, X. Jin, I. Hagymási, P. Vancsó, Z. Osvath, P. Nemes-Incze,

C. Hwang, L. P. Biró, and L. Tapaszto. Room-temperature magnetic order on

zigzag edges of narrow graphene nanoribbons. Nature 514, 608 (2014).

[60] B. McCarroll and D. McKee. The reactivity of graphite surfaces with atoms and

molecules of hydrogen, oxygen and nitrogen. Carbon 9, 301 (1971).

[61] B. McCarroll and D. McKee. Interaction of atomic hydrogen and nitrogen with

graphite surfaces. Nature 225, 722 (1970).

[62] R. Yang, L. Zhang, Y. Wang, Z. Shi, D. Shi, H. Gao, E. Wang, and G. Zhang.

An anisotropic etching effect in the graphene basal plane. Advanced Materials

22, 4014 (2010).

[63] Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang. Pat-

terning graphene with zigzag edges by self-aligned anisotropic etching. Advanced

Materials 23, 3061 (2011).

[64] L. Xie, L. Jiao, and H. Dai. Selective etching of graphene edges by hydrogen

plasma. Journal of the American Chemical Society 132, 14751 (2010).

[65] G. Wang, S. Wu, T. Zhang, P. Chen, X. Lu, S. Wang, D. Wang, K. Watanabe,

T. Taniguchi, D. Shi, et al. Patterning monolayer graphene with zigzag edges

on hexagonal boron nitride by anisotropic etching. Applied Physics Letters 109,

053101 (2016).

[66] G. Diankov, M. Neumann, and D. Goldhaber-Gordon. Extreme monolayer-

selectivity of hydrogen-plasma reactions with graphene. ACS Nano 7, 1324 (2013).



134 References

[67] D. Hug, S. Zihlmann, M. K. Rehmann, Y. B. Kalyoncu, T. N. Camenzind,

L. Marot, K. Watanabe, T. Taniguchi, and D. M. Zumbühl. Anisotropic etching

of graphite and graphene in a remote hydrogen plasma. Npj 2D Materials and

Applications 1, 21 (2017).

[68] X. Wang, Y. Ouyang, L. Jiao, H. Wang, L. Xie, J. Wu, J. Guo, and H. Dai.

Graphene nanoribbons with smooth edges behave as quantum wires. Nature Nan-

otechnology 6, 563 (2011).

[69] L. Xie, H. Wang, C. Jin, X. Wang, L. Jiao, K. Suenaga, and H. Dai. Graphene

nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spec-

troscopy, and electrical properties. Journal of the American Chemical Society

133, 10394 (2011).

[70] A. Chuvilin, J. C. Meyer, G. Algara-Siller, and U. Kaiser. From graphene con-

strictions to single carbon chains. New Journal of Physics 11, 083019 (2009).

[71] Ç. Ö. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C.-

H. Park, M. Crommie, M. L. Cohen, S. G. Louie, et al. Graphene at the edge:

stability and dynamics. Science 323, 1705 (2009).

[72] X. Jia, M. Hofmann, V. Meunier, B. G. Sumpter, J. Campos-Delgado, J. M.

Romo-Herrera, H. Son, Y.-P. Hsieh, A. Reina, J. Kong, et al. Controlled forma-

tion of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323,

1701 (2009).

[73] P. Koskinen, S. Malola, and H. Häkkinen. Evidence for graphene edges beyond

zigzag and armchair. Physical Review B 80, 073401 (2009).

[74] Z. Liu, K. Suenaga, P. J. Harris, and S. Iijima. Open and closed edges of graphene

layers. Physical Review Letters 102, 015501 (2009).

[75] K. Suenaga and M. Koshino. Atom-by-atom spectroscopy at graphene edge. Na-

ture 468, 1088 (2010).



References 135

[76] R. Zan, Q. M. Ramasse, U. Bangert, and K. S. Novoselov. Graphene reknits its

holes. Nano Letters 12, 3936 (2012).

[77] Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, and H. Fukuyama.

Scanning tunneling microscopy and spectroscopy of the electronic local density of

states of graphite surfaces near monoatomic step edges. Physical Review B 73,

085421 (2006).

[78] K. A. Ritter and J. W. Lyding. The influence of edge structure on the electronic

properties of graphene quantum dots and nanoribbons. Nature Materials 8, 235

(2009).

[79] X. Zhang, O. V. Yazyev, J. Feng, L. Xie, C. Tao, Y.-C. Chen, L. Jiao, Z. Pedram-

razi, A. Zettl, S. G. Louie, et al. Experimentally engineering the edge termination

of graphene nanoribbons. ACS Nano 7, 198 (2012).

[80] Y. Kobayashi, K.-i. Fukui, T. Enoki, and K. Kusakabe. Edge state on hydrogen-

terminated graphite edges investigated by scanning tunneling microscopy. Physical

Review B 73, 125415 (2006).

[81] C. Tao, L. Jiao, O. V. Yazyev, Y.-C. Chen, J. Feng, X. Zhang, R. B. Capaz, J. M.

Tour, A. Zettl, S. G. Louie, H. Dai, and M. F. Crommie. Spatially resolving edge

states of chiral graphene nanoribbons. Nature Physics 7, 616 (2011).

[82] M. Pan, E. C. Girão, X. Jia, S. Bhaviripudi, Q. Li, J. Kong, V. Meunier, and M. S.

Dresselhaus. Topographic and Spectroscopic Characterization of Electronic Edge

States in CVD Grown Graphene Nanoribbons. Nano Letters 12, 1928 (2012).

[83] M. Ijäs, M. Ervasti, A. Uppstu, P. Liljeroth, J. van der Lit, I. Swart, and A. Harju.

Electronic states in finite graphene nanoribbons: Effect of charging and defects.

Physical Review B 88, 075429 (2013).



136 References

[84] S. Kawai, S. Saito, S. Osumi, S. Yamaguchi, A. S. Foster, P. Spijker, and

E. Meyer. Atomically controlled substitutional boron-doping of graphene nanorib-

bons. Nature Communications 6, 8098 (2015).

[85] S. Kawai, S. Nakatsuka, T. Hatakeyama, R. Pawlak, T. Meier, J. Tracey,

E. Meyer, and A. S. Foster. Multiple heteroatom substitution to graphene nanorib-

bon. Science Advances 4, eaar7181 (2018).

[86] C. Stampfer, J. Güttinger, S. Hellmüller, F. Molitor, K. Ensslin, and T. Ihn. En-

ergy gaps in etched graphene nanoribbons. Physical Review Letters 102, 056403

(2009).

[87] M. Han, B. Özyilmaz, Y. Zhang, and P. Kim. Energy Band-Gap Engineering of

Graphene Nanoribbons. Physical Review Letters 98, 206805 (2007).

[88] J. Bai, R. Cheng, F. Xiu, L. Liao, M. Wang, A. Shailos, K. L. Wang, Y. Huang,

and X. Duan. Very large magnetoresistance in graphene nanoribbons. Nature

Nanotechnology 5, 655 (2010).

[89] P. Gallagher, K. Todd, and D. Goldhaber-Gordon. Disorder-induced gap behavior

in graphene nanoribbons. Physical Review B 81, 115409 (2010).

[90] B. Özyilmaz, P. Jarillo-Herrero, D. Efetov, and P. Kim. Electronic transport

in locally gated graphene nanoconstrictions. Applied Physics Letters 91, 192107

(2007).

[91] D. Bischoff, T. Krähenmann, S. Dröscher, M. A. Gruner, C. Barraud, T. Ihn,

and K. Ensslin. Reactive-ion-etched graphene nanoribbons on a hexagonal boron

nitride substrate. Applied Physics Letters 101, 203103 (2012).

[92] M. Nevius, F. Wang, C. Mathieu, N. Barrett, A. Sala, T. Mentes, A. Locatelli,

and E. Conrad. The bottom-up growth of edge specific graphene nanoribbons.

Nano Letters 14, 6080 (2014).



References 137

[93] J. Aprojanz, S. R. Power, P. Bampoulis, S. Roche, A.-P. Jauho, H. J. Zandvliet,

A. A. Zakharov, and C. Tegenkamp. Ballistic tracks in graphene nanoribbons.

Nature Communications 9, 4426 (2018).

[94] B. Terrés, L. Chizhova, F. Libisch, J. Peiro, D. Jörger, S. Engels, A. Girschik,

K. Watanabe, T. Taniguchi, S. Rotkin, et al. Size quantization of Dirac fermions

in graphene constrictions. Nature Communications 7, 11528 (2016).

[95] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus. Edge state in

graphene ribbons: Nanometer size effect and edge shape dependence. Physical

Review B 54, 17954 (1996).

[96] R. Grubbs and S. George. Attenuation of hydrogen radicals traveling under flow-

ing gas conditions through tubes of different materials. Journal of Vacuum Science

& Technology A: Vacuum, Surfaces, and Films 24, 486 (2006).

[97] K. E. Shuler and K. J. Laidler. The Kinetics of Heterogeneous Atom and Radical

Reactions. I. The Recombination of Hydrogen Atoms on Surfaces. Journal of

Chemical Physics 17, 1212 (1949).

[98] A. Horn, A. Schenk, J. Biener, B. Winter, C. Lutterloh, M. Wittmann, and

J. Kueppers. H atom impact induced chemical erosion reaction at CH film sur-

faces. Chemical Physics Letters 231, 193 (1994).

[99] A. Davydova, E. Despiau-Pujo, G. Cunge, and D. B. Graves. Etching mechanisms

of graphene nanoribbons in downstream H2 plasmas: insights from molecular

dynamics simulations. Journal of Physics D: Applied Physics 48, 195202 (2015).

[100] F. Tuinstra and J. L. Koenig. Raman spectrum of graphite. The Journal of

Chemical Physics 53, 1126 (1970).

[101] M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio. Raman spectroscopy

of carbon nanotubes. Physics Reports 409, 47 (2005).



138 References

[102] H. Kuzmany, R. Pfeiffer, M. Hulman, and C. Kramberger. Raman spectroscopy

of fullerenes and fullerene–nanotube composites. Philosophical Transactions of

the Royal Society of London A: Mathematical, Physical and Engineering Sciences

362, 2375 (2004).

[103] L. Malard, M. Pimenta, G. Dresselhaus, and M. Dresselhaus. Raman spectroscopy

in graphene. Physics Reports 473, 51 (2009).

[104] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri,

S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim. Raman Spectrum

of Graphene and Graphene Layers. Physical Review Letters 97, 187401 (2006).

[105] M. M. Lucchese, F. Stavale, E. M. Ferreira, C. Vilani, M. Moutinho, R. B. Capaz,

C. Achete, and A. Jorio. Quantifying ion-induced defects and Raman relaxation

length in graphene. Carbon 48, 1592 (2010).

[106] J.-Y. Hwang, C.-C. Kuo, L.-C. Chen, and K.-H. Chen. Correlating defect density

with carrier mobility in large-scaled graphene films: Raman spectral signatures

for the estimation of defect density. Nanotechnology 21, 465705 (2010).

[107] C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli,

K. Novoselov, D. Basko, and A. Ferrari. Raman spectroscopy of graphene edges.

Nano Letters 9, 1433 (2009).

[108] Y. You, Z. Ni, T. Yu, and Z. Shen. Edge chirality determination of graphene by

Raman spectroscopy. Applied Physics Letters 93, 163112 (2008).

[109] A. K. Gupta, T. J. Russin, H. R. Gutiérrez, and P. C. Eklund. Probing graphene

edges via Raman scattering. ACS Nano 3, 45 (2008).

[110] Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen. Uniaxial

strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano

2, 2301 (2008).



References 139

[111] T. Mohiuddin, A. Lombardo, R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini,

D. Basko, C. Galiotis, N. Marzari, et al. Uniaxial strain in graphene by Raman

spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation.

Physical Review B 79, 205433 (2009).

[112] M. Kalbac, A. Reina-Cecco, H. Farhat, J. Kong, L. Kavan, and M. S. Dressel-

haus. The influence of strong electron and hole doping on the Raman intensity

of chemical vapor-deposition graphene. ACS Nano 4, 6055 (2010).

[113] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. Saha, U. Waghmare,

K. Novoselov, H. Krishnamurthy, A. Geim, A. Ferrari, et al. Monitoring dopants

by Raman scattering in an electrochemically top-gated graphene transistor. Na-

ture Nanotechnology 3, 210 (2008).

[114] D. C. Elias, R. R. Nair, T. Mohiuddin, S. Morozov, P. Blake, M. Halsall, A. Fer-

rari, D. Boukhvalov, M. Katsnelson, A. Geim, et al. Control of graphene’s proper-

ties by reversible hydrogenation: evidence for graphane. Science 323, 610 (2009).

[115] R. Beams, L. G. Cançado, and L. Novotny. Raman characterization of defects

and dopants in graphene. Journal of Physics: Condensed Matter 27, 083002

(2015).

[116] M. Bayle, N. Reckinger, A. Felten, P. Landois, O. Lancry, B. Dutertre, J.-F.

Colomer, A.-A. Zahab, L. Henrard, J.-L. Sauvajol, et al. Determining the number

of layers in few-layer graphene by combining Raman spectroscopy and optical

contrast. Journal of Raman Spectroscopy 49, 36 (2018).

[117] Y. N. Xu, D. Zhan, L. Liu, H. Suo, Z. H. Ni, T. T. Nguyen, C. Zhao, and Z. X.

Shen. Thermal Dynamics of Graphene Edges Investigated by Polarized Raman

Spectroscopy. ACS Nano 5, 147 (2011).



140 References

[118] E. Pallecchi, A. Betz, J. Chaste, G. Fève, B. Huard, T. Kontos, J.-M. Berroir, and

B. Plaçais. Transport scattering time probed through rf admittance of a graphene

capacitor. Physical Review B 83, 125408 (2011).

[119] V. V. Cheianov, V. Fal’ko, and B. Altshuler. The focusing of electron flow and a

Veselago lens in graphene pn junctions. Science 315, 1252 (2007).

[120] A. Rycerz, J. Tworzydło, and C. Beenakker. Valley filter and valley valve in

graphene. Nature Physics 3, 172 (2007).

[121] Https://www.researchgate.net/figure/Bloch-sphere-representation-of-a-

qubit_fig1_317573486.

[122] C. Handschin, P. Makk, P. Rickhaus, R. Maurand, K. Watanabe, T. Taniguchi,

K. Richter, M.-H. Liu, and C. Schönenberger. Giant valley-isospin conductance

oscillations in ballistic graphene. Nano Letters 17, 5389 (2017).

[123] Y. Zheng and T. Ando. Hall conductivity of a two-dimensional graphite system.

Physical Review B 65, 245420 (2002).

[124] J. Tworzydło, I. Snyman, A. Akhmerov, and C. Beenakker. Valley-isospin depen-

dence of the quantum Hall effect in a graphene p- n junction. Physical Review B

76, 035411 (2007).

[125] D. Abanin and L. Levitov. Quantized transport in graphene pn junctions in a

magnetic field. Science 317, 641 (2007).

[126] J. Williams, L. DiCarlo, and C. Marcus. Quantum Hall effect in a gate-controlled

pn junction of graphene. Science 317, 638 (2007).

[127] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe,

T. Taniguchi, P. Kim, K. L. Shepard, et al. Boron nitride substrates for high-

quality graphene electronics. Nature Nanotechnology 5, 722 (2010).



References 141

[128] C. Handschin. Quantum Transport in Encapsulated Graphene P-N Junctions.

Ph.D. thesis, University of Basel (2017).

[129] L. Wang, I. Meric, P. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watan-

abe, L. Campos, D. Muller, et al. One-dimensional electrical contact to a two-

dimensional material. Science 342, 614 (2013).

[130] S. Conesa-Boj, A. Li, S. Koelling, M. Brauns, J. Ridderbos, T. Nguyen, M. Ver-

heijen, P. Koenraad, F. Zwanenburg, and E. P. Bakkers. Boosting Hole Mobility

in Coherently Strained [110]-Oriented Ge–Si Core–Shell Nanowires. Nano Letters

17, 2259 (2017).

[131] W. Lu, J. Xiang, B. P. Timko, Y. Wu, and C. M. Lieber. One-dimensional hole

gas in germanium/silicon nanowire heterostructures. Proceedings of the National

Academy of Sciences 102, 10046 (2005).

[132] C. Kloeffel, M. Trif, P. Stano, and D. Loss. Circuit QED with hole-spin qubits in

Ge/Si nanowire quantum dots. Physical Review B 88, 241405 (2013).

[133] L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber. Epitaxial core–shell

and core–multishell nanowire heterostructures. Nature 420, 57 (2002).

[134] J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C. M. Lieber. Ge/Si nanowire

heterostructures as high-performance field-effect transistors. Nature 441, 489

(2006).

[135] Y. Hu, H. O. Churchill, D. J. Reilly, J. Xiang, C. M. Lieber, and C. M. Marcus. A

Ge/Si heterostructure nanowire-based double quantum dot with integrated charge

sensor. Nature Nanotechnology 2, 622 (2007).

[136] S. Roddaro, A. Fuhrer, P. Brusheim, C. Fasth, H. Xu, L. Samuelson, J. Xiang,

and C. Lieber. Spin states of holes in Ge/Si nanowire quantum dots. Physical

Review Letters 101, 186802 (2008).



142 References

[137] X.-J. Hao, T. Tu, G. Cao, C. Zhou, H.-O. Li, G.-C. Guo, W. Y. Fung, Z. Ji, G.-P.

Guo, and W. Lu. Strong and Tunable Spin- Orbit Coupling of One-Dimensional

Holes in Ge/Si Core/Shell Nanowires. Nano Letters 10, 2956 (2010).

[138] Y. Hu, F. Kuemmeth, C. M. Lieber, and C. M. Marcus. Hole spin relaxation in

Ge–Si core–shell nanowire qubits. Nature nanotechnology 7, 47 (2012).

[139] A. P. Higginbotham, T. W. Larsen, J. Yao, H. Yan, C. M. Lieber, C. M. Marcus,

and F. Kuemmeth. Hole spin coherence in a Ge/Si heterostructure nanowire.

Nano Letters 14, 3582 (2014).

[140] A. P. Higginbotham, F. Kuemmeth, T. W. Larsen, M. Fitzpatrick, J. Yao, H. Yan,

C. M. Lieber, and C. M. Marcus. Antilocalization of coulomb blockade in a Ge/Si

nanowire. Physical Review Letters 112, 216806 (2014).

[141] M. Brauns, J. Ridderbos, A. Li, W. G. van der Wiel, E. P. Bakkers, and F. A.

Zwanenburg. Highly tuneable hole quantum dots in Ge-Si core-shell nanowires.

Applied Physics Letters 109, 143113 (2016).

[142] M. Brauns, J. Ridderbos, A. Li, E. P. Bakkers, W. G. Van Der Wiel, and F. A.

Zwanenburg. Anisotropic Pauli spin blockade in hole quantum dots. Physical

Review B 94, 041411 (2016).

[143] R. Wang, R. Deacon, J. Yao, C. Lieber, and K. Ishibashi. Electrical modulation

of weak-antilocalization and spin–orbit interaction in dual gated Ge/Si core/shell

nanowires. Semiconductor Science and Technology 32, 094002 (2017).

[144] A. Zarassi, Z. Su, J. Danon, J. Schwenderling, M. Hocevar, B.-M. Nguyen, J. Yoo,

S. A. Dayeh, and S. M. Frolov. Magnetic field evolution of spin blockade in Ge/Si

nanowire double quantum dots. Physical Review B 95, 155416 (2017).

[145] H. Watzinger, C. Kloeffel, L. Vukusic, M. D. Rossell, V. Sessi, J. Kukucka,

R. Kirchschlager, E. Lausecker, A. Truhlar, M. Glaser, et al. Heavy-hole states

in germanium hut wires. Nano Letters 16, 6879 (2016).



References 143

[146] W. Pauli. Über den Zusammenhang des Abschlusses der Elektronengruppen im

Atom mit der Komplexstruktur der Spektren. Zeitschrift für Physik 31, 765

(1925).

[147] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. Vandersypen.

Spins in few-electron quantum dots. Reviews of Modern Physics 79, 1217 (2007).

[148] W. G. Van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha,

and L. P. Kouwenhoven. Electron transport through double quantum dots. Reviews

of Modern Physics 75, 1 (2002).

[149] N. Van der Vaart, S. Godijn, Y. V. Nazarov, C. Harmans, J. Mooij,

L. Molenkamp, and C. Foxon. Resonant tunneling through two discrete energy

states. Physical Review Letters 74, 4702 (1995).

[150] D. Averin and Y. V. Nazarov. Macroscopic quantum tunneling of charge and

co-tunneling. In Single Charge Tunneling, 217–247 (Springer, 1992).

[151] K. Ono, D. Austing, Y. Tokura, and S. Tarucha. Current rectification by Pauli

exclusion in a weakly coupled double quantum dot system. Science 297, 1313

(2002).

[152] F. Rossella, A. Bertoni, D. Ercolani, M. Rontani, L. Sorba, F. Beltram, and

S. Roddaro. Nanoscale spin rectifiers controlled by the Stark effect. Nature

Nanotechnology 9, 997 (2014).

[153] O. N. Jouravlev and Y. V. Nazarov. Electron transport in a double quantum dot

governed by a nuclear magnetic field. Physical Review Letters 96, 176804 (2006).

[154] K. M. Itoh, J. Kato, M. Uemura, A. K. Kaliteevskii, O. N. Godisov, G. G.

Devyatych, A. D. Bulanov, A. V. Gusev, I. D. Kovalev, P. G. Sennikov, et al. High

purity isotopically enriched 29Si and 30Si single crystals: Isotope separation,

purification, and growth. Japanese Journal of Applied Physics 42, 6248 (2003).



144 References

[155] K. Itoh, W. Hansen, E. Haller, J. Farmer, V. Ozhogin, A. Rudnev, and

A. Tikhomirov. High purity isotopically enriched 70 Ge and 74 Ge single crys-

tals: Isotope separation, growth, and properties. Journal of Materials Research

8, 1341 (1993).

[156] E. Fermi. Über die magnetischen Momente der Atomkerne. Zeitschrift für Physik

A Hadrons and Nuclei 60, 320 (1930).

[157] F. Qassemi, W. Coish, and F. Wilhelm. Stationary and transient leakage current

in the Pauli spin blockade. Physical Review Letters 102, 176806 (2009).

[158] W. Coish and F. Qassemi. Leakage-current line shapes from inelastic cotunneling

in the Pauli spin blockade regime. Physical Review B 84, 245407 (2011).

[159] J. Danon and Y. V. Nazarov. Pauli spin blockade in the presence of strong spin-

orbit coupling. Physical Review B 80, 041301 (2009).

[160] Y.-W. Son, M. L. Cohen, and S. G. Louie. Energy Gaps in Graphene Nanoribbons.

Physical Review Letters 97, 216803 (2006).

[161] S. Wang, L. Talirz, C. A. Pignedoli, X. Feng, K. Müllen, R. Fasel, and P. Ruffieux.

Giant edge state splitting at atomically precise graphene zigzag edges. Nature

Communications 7, 11507 (2016).

[162] E. R. Mucciolo, A. C. Neto, and C. H. Lewenkopf. Conductance quantization

and transport gaps in disordered graphene nanoribbons. Physical Review B 79,

075407 (2009).

[163] J. B. Oostinga, B. Sacépé, M. F. Craciun, and A. F. Morpurgo. Magnetotransport

through graphene nanoribbons. Physical Review B 81, 193408 (2010).

[164] X. Liu, J. B. Oostinga, A. F. Morpurgo, and L. M. Vandersypen. Electrostatic

confinement of electrons in graphene nanoribbons. Physical Review B 80, 121407

(2009).



References 145

[165] F. Molitor, C. Stampfer, J. Güttinger, A. Jacobsen, T. Ihn, and K. Ensslin. En-

ergy and transport gaps in etched graphene nanoribbons. Semiconductor Science

and Technology 25, 034002 (2010).

[166] NGS Naturgraphit GmbH.

[167] R. K. Janev, D. Reiter, and U. Samm. Collision Processes in Low-Temperature

Hydrogen Plasmas (Forschungszentrum Juelich GmbH, 2003).

[168] G. Dixon-Lewis, M. M. Sutton, and A. Williams. The kinetics of hydrogen atom

recombination. Discussions of the Faraday Society 33, 205 (1962).

[169] Suprasil 310, Heraeus Quarzglas GmbH.

[170] Y. Zhang, V. W. Brar, C. Girit, A. Zettl, and M. F. Crommie. Origin of spatial

charge inhomogeneity in graphene. Nature Physics 5, 722 (2009).

[171] R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett,

A. Zettl, and M. F. Crommie. Local Electronic Properties of Graphene on a BN

Substrate via Scanning Tunneling Microscopy. Nano Letters 11, 2291 (2011).

[172] J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande,

K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy. Scanning tun-

nelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron

nitride. Nature Materials 10, 282 (2011).

[173] Y. C. Kim and M. Boudart. Recombination of O, N and H atoms on Silica:

Kinetics and Mechanism. ACS Langmuir 7, 2999 (1991).

[174] T. Taniguchi and K. Watanabe. Synthesis of high-purity boron nitride single

crystals under high pressure by using Ba–BN solvent. Journal of Crystal Growth

303, 525 (2007).

[175] J. Sofo, A. Chaudhari, and G. Barber. Graphane: A two-dimensional hydrocar-

bon. Physical Review B 75, 153401 (2007).



146 References

[176] B. Eren, D. Hug, L. Marot, R. Pawlak, M. Kisiel, R. Steiner, D. M. Zumbühl,

and E. Meyer. Pure hydrogen low-temperature plasma exposure of HOPG and

graphene: Graphane formation? Beilstein Journal of Nanotechnology 3, 852

(2012).

[177] C. Woods, F. Withers, M. Zhu, Y. Cao, G. Yu, A. Kozikov, M. B. Shalom,

S. Morozov, M. van Wijk, and A. Fasolino. Macroscopic self-reorientation of

interacting two-dimensional crystals. Nature Communications 7, 10800 (2016).

[178] D. Wang, G. Chen, C. Li, M. Cheng, W. Yang, S. Wu, G. Xie, J. Zhang, J. Zhao,

and X. Lu. Thermally Induced Graphene Rotation on Hexagonal Boron Nitride.

Physical Review Letters 116, 126101 (2016).

[179] L. Zhang, D. A. Pejaković, B. Geng, and J. Marschall. Surface modification of

highly oriented pyrolytic graphite by reaction with atomic nitrogen at high tem-

peratures. Applied Surface Science 257, 5647 (2011).

[180] M. Moisan, Z. Zakrzewski, M. Moisan, and Z. Zakrzewski. Plasma sources based

on the propagation of electromagnetic surface waves. Journal of Physics D: Ap-

plied Physics 24, 1025 (1991).

[181] K. Sancier and H. Wise. Diffusion and Heterogeneous Reaction. XI. Diffusion

Coefficient Measurements for Gas Mixture of Atomic and Molecular Hydrogen.

Journal of Chemical Physics 51, 1434 (1969).

[182] S. Weissman and E. Mason. Estimation of the mutual diffusion coefficient of

hydrogen atoms and molecules. The Journal of Chemical Physics 36, 794 (1962).

[183] R. Geick, C. H. Perry, and G. Rupprecht. Normal modes in hexagonal boron

nitride. Physical Review Letters 146, 543 (1966).

[184] M. Begliarbekov, K.-I. Sasaki, O. Sul, E.-H. Yang, and S. Strauf. Optical control

of edge chirality in graphene. Nano Letters 11, 4874 (2011).



References 147

[185] L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai. Narrow graphene nanorib-

bons from carbon nanotubes. Nature 458, 877 (2009).

[186] S. Wu, B. Liu, C. Shen, S. Li, X. Huang, X. Lu, P. Chen, G. Wang, D. Wang,

M. Liao, et al. Magnetotransport Properties of Graphene Nanoribbons with Zigzag

Edges. Physical Review Letters 120, 216601 (2018).

[187] L. Cancado, M. Pimenta, B. Neves, M. Dantas, and A. Jorio. Influence of the

atomic structure on the Raman spectra of graphite edges. Physical Review Letters

93, 247401 (2004).

[188] D. Basko. Boundary problems for Dirac electrons and edge-assisted Raman scat-

tering in graphene. Physical Review B 79, 205428 (2009).

[189] D. S. Wastl, A. J. Weymouth, and F. J. Giessibl. Optimizing atomic resolution

of force microscopy in ambient conditions. Physical Review B 87, 245415 (2013).

[190] N. J. Couto, D. Costanzo, S. Engels, D.-K. Ki, K. Watanabe, T. Taniguchi,

C. Stampfer, F. Guinea, and A. F. Morpurgo. Random strain fluctuations as

dominant disorder source for high-quality on-substrate graphene devices. Physical

Review X 4, 041019 (2014).

[191] D. Bischoff, J. Güttinger, S. Dröscher, T. Ihn, K. Ensslin, and C. Stampfer.

Raman spectroscopy on etched graphene nanoribbons. Journal of Applied Physics

109, 073710 (2011).

[192] P. Koskinen, S. Malola, and H. Häkkinen. Self-Passivating Edge Reconstructions

of Graphene. Physical Review Letters 101, 115502 (2008).

[193] K.-i. Sasaki, R. Saito, K. Wakabayashi, and T. Enoki. Identifying the orientation

of edge of graphene using G band Raman spectra. Journal of the Physical Society

of Japan 79, 044603 (2010).

[194] C. Cong, T. Yu, and H. Wang. Raman study on the G mode of graphene for

determination of edge orientation. ACS Nano 4, 3175 (2010).



148 References

[195] L. Campos, A. Young, K. Surakitbovorn, K. Watanabe, T. Taniguchi, and

P. Jarillo-Herrero. Quantum and classical confinement of resonant states in a

trilayer graphene Fabry-Pérot interferometer. Nature Communications 3, 1239

(2012).

[196] A. F. Young and P. Kim. Quantum interference and Klein tunnelling in graphene

heterojunctions. Nature Physics 5, 222 (2009).

[197] P. Rickhaus, R. Maurand, M.-H. Liu, M. Weiss, K. Richter, and C. Schönen-

berger. Ballistic interferences in suspended graphene. Nature communications 4,

2342 (2013).

[198] M.-H. Liu, K. Richter, et al. Efficient quantum transport simulation for bulk

graphene heterojunctions. Physical Review B 86, 115455 (2012).

[199] J. R. Wallbank, M. Mucha-Kruczyński, X. Chen, and V. I. Fal’ko. Moiré super-

lattice effects in graphene/boron-nitride van der Waals heterostructures. Annalen

der Physik 527, 359 (2015).

[200] S. Morita, F. J. Giessibl, E. Meyer, and R. Wiesendanger. Noncontact atomic

force microscopy, volume 3 (Springer, 2015).

[201] K. He, A. W. Robertson, Y. Fan, C. S. Allen, Y.-C. Lin, K. Suenaga, A. I.

Kirkland, and J. H. Warner. Temperature Dependence of the Reconstruction of

Zigzag Edges in Graphene. ACS Nano 9, 4786 (2015).

[202] C. Kloeffel and D. Loss. Prospects for spin-based quantum computing in quantum

dots. Annual Review of Condensed Matter Physics 4, 51 (2013).

[203] C. Kloeffel, M. J. Rančić, and D. Loss. Direct Rashba spin-orbit interaction in Si

and Ge nanowires with different growth directions. Physical Review B 97, 235422

(2018).



References 149

[204] L. C. Camenzind, L. Yu, P. Stano, J. Zimmerman, A. C. Gossard, D. Loss,

and D. M. Zumbühl. Hyperfine-phonon spin relaxation in a single-electron GaAs

quantum dot. arXiv:1711.01474 (2017).

[205] N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U. Mendes,

A. Blais, G. Scappucci, and L. Vandersypen. Strong spin-photon coupling in

silicon. Science 359, 1123 (2018).

[206] X. Mi, M. Benito, S. Putz, D. M. Zajac, J. M. Taylor, G. Burkard, and J. R.

Petta. A coherent spin–photon interface in silicon. Nature 555, 599 (2018).

[207] A. Landig, J. Koski, P. Scarlino, U. Mendes, A. Blais, C. Reichl, W. Wegschei-

der, A. Wallraff, K. Ensslin, and T. Ihn. Coherent spin-qubit photon coupling.

arXiv:1711.01932 (2017).

[208] J. Taylor, H.-A. Engel, W. Dür, A. Yacoby, C. Marcus, P. Zoller, and M. Lukin.

Fault-tolerant architecture for quantum computation using electrically controlled

semiconductor spins. Nature Physics 1, 177 (2005).

[209] J. M. Taylor, V. Srinivasa, and J. Medford. Electrically protected resonant ex-

change qubits in triple quantum dots. Physical Review Letters 111, 050502

(2013).

[210] D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B. Whaley. Universal

quantum computation with the exchange interaction. Nature 408, 339 (2000).

[211] J. Medford, J. Beil, J. Taylor, S. Bartlett, A. Doherty, E. Rashba, D. DiVincenzo,

H. Lu, A. Gossard, and C. M. Marcus. Self-consistent measurement and state

tomography of an exchange-only spin qubit. Nature Nanotechnology 8, 654 (2013).

[212] L. P. Kouwenhoven, D. Austing, and S. Tarucha. Few-electron quantum dots.

Reports on Progress in Physics 64, 701 (2001).

[213] C. Escott, F. Zwanenburg, and A. Morello. Resonant tunnelling features in

quantum dots. Nanotechnology 21, 274018 (2010).



150 References

[214] M. Möttönen, K. Tan, K. Chan, F. Zwanenburg, W. Lim, C. Escott, J.-M.

Pirkkalainen, A. Morello, C. Yang, J. Van Donkelaar, et al. Probe and con-

trol of the reservoir density of states in single-electron devices. Physical Review

B 81, 161304 (2010).

[215] M. T. Björk, C. Thelander, A. E. Hansen, L. E. Jensen, M. W. Larsson, L. R.

Wallenberg, and L. Samuelson. Few-electron quantum dots in nanowires. Nano

Letters 4, 1621 (2004).

[216] D. Biesinger, C. Scheller, B. Braunecker, J. Zimmerman, A. Gossard, and

D. Zumbühl. Intrinsic metastabilities in the charge configuration of a double

quantum dot. Physical Review Letters 115, 106804 (2015).

[217] R. Li, F. E. Hudson, A. S. Dzurak, and A. R. Hamilton. Pauli spin blockade of

heavy holes in a silicon double quantum dot. Nano Letters 15, 7314 (2015).

[218] D. Schröer, A. Greentree, L. Gaudreau, K. Eberl, L. Hollenberg, J. Kotthaus,

and S. Ludwig. Electrostatically defined serial triple quantum dot charged with

few electrons. Physical Review B 76, 075306 (2007).

[219] G. Granger, L. Gaudreau, A. Kam, M. Pioro-Ladrière, S. Studenikin,

Z. Wasilewski, P. Zawadzki, and A. Sachrajda. Three-dimensional transport di-

agram of a triple quantum dot. Physical Review B 82, 075304 (2010).



A. Fabrication Recipes 151

A Fabrication Recipes

In this section detailed fabrication recipes used to produce the samples investigated in

this thesis are listed.

A.1 hBN/graphene and hBN/graphene/hBN stacks

A.1.1 hBN/graphene assembly

Cleave two Si++/SiO2 wafer pieces: chip 1 for the exfoliation of hBN and chip 2

for a graphene-transfer wafer, both wafers with ∼ 1 cm side length

• chip 1: hBN substrate wafer

– Cleaning: 3min in acetone and 3min in IPA at 100 % ultrasonication

power; 3min UVO; 3min on hotplate at 120 ◦C

– Exfoliation of hBN: Use Nitto tape to cleave hBN crystals about ∼ 10

times, press on wafer and peel-off slowly

– Choose suitable hBN flake: OM to find suitable hBN flakes regarding

their size, thickness and location on the wafer

– Annealing: Annealing in quartz tube oven for cleaning the hBN surfaces

(see section A.2 for the annealing recipe)

– AFM: Check cleanliness of hBN flake with AFM, surface roughness should

be below 0.1 nm

• chip 2: graphene transfer wafer

– Cleaning: 3min in acetone and 3min in IPA at 100 % ultrasonication

power; 10min UVO; 3min on hotplate at 250 ◦C

– Spin coat dextrane: 5000 rpm, 4 s ramp time, 40 s, bake 1min at 150 ◦C
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– Spin coat PMMA: 4000 rpm, 4 s ramp time, 40 s, ∼ 500 nm thick, bake

2min at 180 ◦C

– Exfoliate graphene on polymer stack: Use Nitto tape to cleave graphite

crystals about ∼ 10 times, press on wafer and peel-off slowly

– Find suitable graphene flake: OM to find suitable graphene flakes re-

garding their size and location on the wafer

– Raman spectroscopy: Use Raman spectroscopy to verify SL character of

flake

– Fish on glass plate: Put chip in petri dish filled with DI water and let

the dextrane layer dissolve. Fish PMMA layer with graphene flake on top

with the glass slide which has a hole in the middle. Let it dry overnight.

• Transfer graphene onto hBN flake:

– Transfer with mask aligner: Mount chip 1 and the glass slide with the

graphene/PMMA layer into a mask aligner setup. Heat chip 1 to 120 ◦C

and bring graphene flake slowly in contact. After contact heat to 180 ◦C

and wait for ∼ 5min, then retract the glass plate and remove the chip

– Lift-off: Remove PMMA layer by lift-off in warm acetone at 50 ◦C for ∼ 1h,

put in room-T IPA and blow dry with N2-gun

A.1.2 hBN/graphene/hBN stacks

In order to encapsulate a graphene on hBN flake, a top hBN flake can be transferred

on top, done as follows.

• chip 1: graphene/hBN sample prepared as described in section A.1.1

• chip 2: hBN transfer wafer

– Cleaning: 5min in acetone and 5min in IPA at 100 % ultrasonication

power; 5min UVO
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– Spin coat Poly-propylene carbonate (PPC): 2500 rpm, 4 s ramp time,

60 s, ∼ 1µm thick, bake 5min at 80 ◦C

– Prepare stamp: Cut-out window in double-layered scotch tape and press

on Si/SiO2/PPC chip

– Exfoliation of hBN: Use Nitto tape to cleave hBN crystals about ∼ 10

times, press on wafer and peel-off slowly

– Choose suitable hBN flake: OM to find suitable hBN flakes regarding

their size, thickness and location on the wafer

– Finish stamp: Peel-off PPC and place on a PDMS cube which lies on a

glass slide

• Transfer hBN onto graphene/hBN sample

– Transfer with mask aligner: Mount chip 1 and the PPC/PDMS stamp

into a mask aligner setup. Align top hBN flake to graphene/hBN sample

and bring them slowly into contact. After contact heat to 80 ◦C to release

PPC from PDMS, then retract the glass plate and remove the chip

– Bake: Put on hotplate for ∼ 5min at 150 ◦C

– Lift-off: Remove PPC layer by lift-off in warm chloroform at 50 ◦C for ∼ 1h,

put in room-T IPA and blow dry with N2-gun

– Annealing: Thermally anneal the whole stack in a rapid-thermal annealer

in an Ar/H2 atmosphere at 300 ◦C for 3 h

A.2 Hydrogen Plasma Etching and Annealing

In the following, a detailed description of the H plasma etching process is given. If

samples should be annealed, the procedure was the same except that no plasma was

ignited.
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• Sample is put on a quartz boat, which is placed at the desired distance from the

surfatron, inside the plasma tube

• Place glass plates which hinder the plasma to interact with the metallic closures

of the quartz tube plasma chamber and close the chamber

• Install the Faraday cage and connect the RF power source to the surfatron.

Ground the surfatron, the Faraday cage and the oven housing.

• Pumping with a scroll pump in combination with a turbo pump to reach a base

pressure < 5·10−3 mbar.

• Slowly turn on the hydrogen flux and fix it at 20 SCCM with a mass flow con-

troller.

• Tune the gas pressure inside the tube to the desired working pressure value. Then

start heating towards the desired operation temperature

• When the operation temperature is reached, ignite the plasma and make sure

that the reflected power is zero.

• After the desired exposure time has passed, the plasma and the oven are switched

off.

• When T<100 ◦C the H flow is stopped and the pumps are switched off. Then

the plasma tube is slowly vented and the samples are removed.

A.3 Electron Beam Lithography

A.3.1 Used PMMA

Generally 950k PMMA from Allresist was used. Depending on the process which

followed (e.g. metal evaporation for contacts, RIE etching) different thicknesses were

desirable and adjusted by the level of dilution of PMMA in its solvent Chlorobenzene.
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In this work, mostly 5% and 2% PMMA was used, which was spin-coated onto the

samples with the following parameters:

• Rotation speed: 4000 rpm

• Ramp time: 4 s

• Duration: 40 s

• Baking: 5min at 180 ◦C

A.3.2 Large Contact Structures

• Acceleration voltage EHT: 20 kV

• Aperture: 120µm

• Working distance: 17.7mm

• Write field: 2000µm

• Area step size: 31.1 nm or 62 nm

• Area dose: 500µC/cm2

A.3.3 Small Contact Structures and Artificial Defects

• Acceleration voltage EHT: 30 kV

• Aperture: 10µm

• Working distance: 9.1mm

• Write field: 250µm

• Area step size: 3.9 nm

• Area dose: 500µC/cm2
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A.3.4 Development

Cold development was performed in order to avoid cracking on top of hBN substrates.

Therefore, the chip is immersed in a mixture of IPA:H2O (ratio 7:3) at ∼5 ◦C for 60 s

and then blown dry.

A.4 Reactive Ion Etching Recipes

For the processes described in the following, an RIE system from Oxford (Plasma 80

Plus) is used.

A.4.1 Cut Graphene

• Base pressure: 5·10−5 mbar

• Ar/O2 contents: 16%/8%

• Power: 30W

• Process pressure: 25mTorr

• Time: 30 s

A.4.2 Cut hBN/graphene/hBN Stack

• Base pressure: 5·10−5 mbar

• SF6/Ar/O2 contents: 76%/3.6%/5%

• Power: 50W

• Process pressure: 25mTorr

• Time: Depending on the thickness of the stack. Etch rate ∼ 600 nm/min.
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A.4.3 Etching Before Side-contact Evaporation

• Base pressure: 5·10−5 mbar

• CHF3/O2 contents: 80%/4%

• Power: 60W

• Process pressure: 60mTorr

• Time: Depending on the thickness of the stack. Etch rate ∼ 20 nm/min.
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