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ACOUSTIC SCATTERING IN CASE OF RANDOM OBSTACLES

HELMUT HARBRECHT, NICOLA ILIĆ, AND MICHAEL D. MULTERER

Abstract. In this article, we deal with the numerical solution of acoustic scatter-

ing problems in case of random obstacles. We compute the second order statistics,

i.e. the expectation and the variance, of the solution’s Cauchy data on an artificial,

deterministic interface by means of boundary integral equations. As a consequence,

we are able to rapidly evaluate statistics of the scattered wave everywhere in the

exterior domain, including the expectation and the variance of the far-field. By

using a low-rank approximation of the Cauchy data’s two-point correlation func-

tion, the cost of the computation of the scattered wave’s variance is drastically

reduced. Numerical results are given to demonstrate the feasibility of the proposed

approach.

1. Introduction

The propagation of an acoustic wave in a homogeneous, isotropic, and inviscid fluid is

approximately described by a velocity potential U(x, t) satisfying the wave equation

Utt = c2∆U.

Here, c denotes the speed of sound, v = ∇U is the velocity field, and p = −Ut is

the pressure, see [4] for instance. If U is time harmonic, that is

U(x, t) = Re
(
u(x)e−iωt

)
, ω > 0,

in complex notation, then the complex-valued space-dependent function u satisfies

the Helmholtz equation

∆u+ κ2u = 0 in R2 \D.

Here, D ⊂ R2 describes an obstacle and κ = ω/c is the wavenumber. We assume

that D is bounded and simply connected, having a smooth boundary Γ = ∂D.

For sound-soft obstacles the pressure p vanishes on Γ, which leads to the Dirichlet

boundary condition

u = 0 on Γ.

We shall consider the situation that the total wave

u = ui + us

1
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is comprised of a known incident plane wave ui(x) = eiκ〈d,x〉 with direction d, where

‖d‖2 = 1, and a scattered wave us. Then, if we impose the Sommerfeld radiation

condition

(1.1)
√
r

(
∂us

∂r
− iκus

)
→ 0 as r := ‖x‖2 → ∞,

for the scattered wave, we obtain a unique solution to the acoustic scattering problem

(1.2)

∆u+ κu = 0 in R2 \D,

u = 0 on Γ,

√
r

(
∂us

∂r
− iκus

)
→ 0 as r = ‖x‖2 → ∞,

see [4]. Note that the Sommerfeld radiation condition implies the asymptotic behav-

ior

(1.3) us(x) =
eiκr

r

{
u∞

(x
r

)
+O

(1
r

)}
, r → ∞.

A function which satisfies (1.2) is called a radiating solution to the Helmholtz equa-

tion. The function

u∞ : S1 := {x̂ ∈ R2 : ‖x̂‖2 = 1} → C

is called the far-field pattern, which is always analytic in accordance with [4].

In this article, we consider the situation that the scatterer D is randomly shaped,

i.e. D = D(y) for a random parameter y ∈ Γ ⊂ RN. Hence, the scattered wave

itself becomes a random field us(y). We will model a class of random domains and

compute the associated expected scattered wave E[us] and also the expected far-field

E[u∞]. Instead of employing the domain mapping method, which maps the deformed

scatterer onto a fixed reference domain, as in e.g. [10], we will compute all samples

for the deformed scatterer by means of the boundary element method. This approach

is much cheaper since we do not require a very fine triangulation for D in order to

ensure that the domain deformation field is properly resolved. Consequently, we are

also able to deal with large variations without the need of a very fine discretization.

Furthermore, we demonstrate how to compute the scattered wave’s second order

statistics in a deterministic fashion from its Cauchy data’s second order statistics

on an artificial, deterministic interface Σ, which almost surely contains the domain

D(y). The application of a low-rank approximation for the correlation function

greatly decreases the cost to compute the expected scattered field and its variance.

The advantages of the proposed approach are thus as follows:
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(i) The use of boundary integral equations facilitates a straightforward treat-

ment of the unbounded exterior domain. Especially, it avoids expensive mesh

generation procedures in case of strongly varying scatterers.

(ii) Since the artificial interface is bounded and has one dimension less compared

to exterior domain, the impact of the high dimensionality of the random

scattering problem is drastically reduced.

We like to emphasize that the present approach will also be suitable to treat sound-

hard scatterers, where the Dirichlet boundary condition in (1.2) becomes a Neumann

condition. Also scatterers with a different diffractive index κ can be considered.

The latter leads to a transmission condition at the scatterer’s surface instead of a

boundary condition. The presented ideas remain valid in this situation except for

modifying the boundary integral equations accordingly. Moreover, all concepts can

be transferred to the three-dimensional situation, but technicalities will increase.

The rest of the article is organized as follows. In Section 2, we discuss the formu-

lation of the scattering problem under consideration for a deterministic scatterer

by means of boundary integral equations and provide a representation of the to-

tal wave and the far field pattern. Then, in Section 3, we introduce the random

scatterer and provide the expressions to compute the scattered wave’s expectation

and variance, including the far-field pattern. Section 4 is dedicated to numerical

results which quantify and qualify our approach. The boundary integral equations

are discretized by the Nyström method which converges exponentially in case of an-

alytic boundaries. Especially, we discuss the efficient computation of the scattered

wave’s variance by using a low-rank approximation. Finally, in Section 5, we state

concluding remarks.

2. Boundary integral equations

2.1. Computing the scattered wave. We shall recall the solution of the bound-

ary value problem (1.2) by means of boundary integral equations. To that end, for

sake of simplicity in representation, we assume here that the domain D is fixed with

a smooth boundary Γ = ∂D.

We introduce the acoustic single layer operator

V : H−1/2(Γ) → H
1/2(Γ), Vρ :=

∫

Γ

Φ(·, z)ρ(z) dσz

and the acoustic double layer operator

K : L2(Γ) → L2(Γ), Kρ :=

∫

Γ

∂Φ(·, z)
∂nz

ρ(z) dσz.
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Here, Φ(·, ·) denotes the fundamental solution of the Helmholtz equation. It reads

in two spatial dimensions as

Φ(x, z) =
i

4
H

(1)
0 (κ‖x− z‖2),

where H
(1)
0 denotes the zeroth order Hankel function of the first kind.

Being given the incident wave ui(x) = eiκ〈d,x〉, the Neumann data of the total wave

u = ui+us at the boundary Γ can be determined by the boundary integral equation

(2.1)

(
1

2
+K⋆ − iηV

)
∂u

∂n
=

∂ui

∂n
− iηui on Γ,

see [4].

From the Cauchy data of u at Γ, we can determine the scattered wave us in any

point in the exterior of the scatterer by applying the potential evaluation

(2.2) us(x) =

∫

Γ

Φ(x, z)
∂u

∂n
(z) dσz, x ∈ R2 \D.

By letting ‖x‖2 tend to infinity in (2.2), we derive a closed expression for the far-field

of the total field u. Namely, the far-field at a point x̂ ∈ S1 is given in accordance

with

(2.3) u∞(x̂) =

∫

Γ

Φ∞(x̂, z)
∂u

∂n
(z) dσz.

Herein, the far-field kernel Φ∞(·, ·) reads as

Φ∞(x̂, z) = − eiπ/4√
8κπ

e−iκ〈x̂,z〉.

2.2. Alternative representation of the scattered wave. We shall introduce

the circle

Σ := {x ∈ R2 : ‖x‖2 = R}
of radius R > 0, being sufficiently large to guarantee that Σ encloses the domain D.

By differentiating (2.2), it is seen that the gradient of the scattered wave can simply

be computed by

∇us(x) =

∫

Γ

∇xΦ(x, z)
∂u

∂n
(z) dσz, x ∈ Σ.

Thus, we can compute the Cauchy data of the scattered wave at the artificial inter-

face Σ. It especially holds

∂us

∂n
(x) =

∫

Γ

∂Φ(x, z)

∂nx

∂u

∂n
(z) dσz, x ∈ Σ,

where nx = x/‖x‖2 is the outward normal of Σ at the point x ∈ Σ.
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For any x ∈ R2 with ‖x‖2 > R, we can now either use the representation formula

(2.2) or the representation formula

(2.4) us(x) =

∫

Σ

{
Φ(x, z)

∂us

∂n
(z) +

∂Φ(x, z)

∂nz
us(z)

}
dσz

to compute the scattered wave us in any point x ∈ R2 with ‖x‖2 > R. In particular,

letting R → ∞, we obtain for the far-field the formula

(2.5) u∞(x̂) =

∫

Σ

{
Φ∞(x̂, z)

∂u

∂n
(z) +

∂Φ∞(x, z)

∂nz
u(z)

}
dσz, x̂ ∈ S1.

As we will see, the major advantage of (2.4) and (2.5) over (2.2) and (2.3) is that

the circle Σ is fixed in contrast to the shape of the random scatterer later on.

We emphasize that an artificial interface being different from a circle can of course

be chosen as well.

3. Random obstacles

3.1. Star-like obstacles. From now on, without loss of generality, we restrict our-

selves to scatterers D which are star-like with respect to the origin 0 ∈ R2. Then,

we can represent the boundary Γ by the parametrization of the form

(3.1) γ : [0, 2π] → R2, γ(φ) = r(φ)er(φ),

where er(φ) = [cos(φ), sin(φ)]⊤ denotes the radial direction and r ∈ C2
per([0, 2π])

is a radial function such that r > 0. In particular, we may assume that the radial

function is given by the possibly infinite Fourier series

r(φ) =
a0
2

+

∞∑

k=1

{
a2k−1 sin(kφ) + a2k cos(kφ)

}

with certain coefficients ak ∈ R. Especially, from

‖ cos(kφ)‖Wn,∞([0,2π]) ≤ c(n)kn, ‖ sin(kφ)‖Wn,∞([0,2π]) = c(n)kn

for all k ∈ N, we conclude r ∈ Cn
per([0, 2π]) if and only if

∞∑

k=1

kn
{
|a2k−1|+ |a2k|

}
< ∞.
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3.2. Random boundaries. In what follows, let (Ω,F ,P) denote a complete and

separable probability space with σ-algebra F and probability measure P. Here, com-

plete means that F contains all P-null sets. Then, for a given complex Banach space

X , we introduce the Lebesgue-Bochner space Lp
P(Ω;X), 1 ≤ p ≤ ∞, which consists

of all equivalence classes of strongly measurable functions v : Ω → X whose norm

‖v‖Lp
P(Ω;X) :=





(∫

Ω

‖v(·, ω)‖pX dP(ω)
)1/p

, p < ∞

ess sup
ω∈Ω

‖v(·, ω)‖X, p = ∞

is finite. If p = 2 and X is a separable Hilbert space, then the Bochner space

is isomorphic to the tensor product space L2
P(Ω) ⊗ X . Note that, for notational

convenience, we will always write v(x, ω) instead of
(
v(ω)

)
(x) if v ∈ Lp

P(Ω;X). For

more details on Lebesgue-Bochner spaces, we refer the reader to [9].

For p ≥ 2 and a given random field v ∈ Lp(Ω;X), we can introduce the expectation

E[v](x) :=
∫

Ω

v(x, ω) dP(ω)

and its variance

V[v](x) :=
∫

Ω

v(x, ω)v(x, ω) dP(ω)− E[v](x)E[v](x).

With straighforward modifications, these definitions remain valid for real valued

random fields.

We assume that the random boundary is determined by replacing the radius function

in (3.1) by a real valued random field r ∈ L2
(
Ω;Cn

per([0, 2π])
)
.

To make a given random field r computationally feasible, we assume that we know

in addition to its mean also its covariance function

Cov[r](φ, φ′) :=

∫

Ω

(
r(φ, ω)− E[r](φ)

)(
r(φ′, ω)− E[r](φ′)

)
dP(ω).

Then, we can compute the Karhunen-Loève expansion, cf. [17],

r(φ, ω) = E[r](φ) +
∞∑

k=1

√
λkrk(φ)Xk(ω),

where {(λk, rk)}k are the eigenpairs of the integral operator with kernel Cov[r] and
{Xk}k are uncorrelated and centered random variables. An efficient way to compute

the Karhunen-Loève expansion is given by the pivoted Cholesky decomposition, see

[7, 8].
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We make the usual assumption that the random variables {Xk}k are also indepen-

dent and uniformly distributed, i.e. Xk ∼ U(−1, 1). Thus, we can replace the random

variable Xk by their image yk ∈ [−1, 1] and obtain the parametrized random field

r(φ,y) = E[r](φ) +
∞∑

k=1

√
λkrk(φ)yk.

The corresponding image measure µ is given by the product of the push forward

measure ν = dy/2 according to µ := ⊗∞
k=1ν.

To be consistent with the representation of the radius function in Paragraph 3.1, we

shall assume in what follows that the random radius function under consideration

ist given by

(3.2) r(φ,y) = r0(φ) +
∞∑

k=1

{
a2k−1y2k−1 sin(kφ) + a2ky2k cos(kφ)

}
.

Herein, y ∈ [−1, 1]N is the image of the random variables, the numbers {a2k}k to the

eigen values of the covariance operator and the functions {sin(kφ), cos kφ}k to its

eigen functions.

By construction, the random fluctuations of the radius (3.2) are centered, i.e., their

mean vanishes, and we conclude

E[r](φ) =
∫

[−1,1]N
r(φ,y) dµ = r0(φ).

In order to guarantee that each realization y ∈ [−1, 1]N results in a domain D(y),

we shall further assume

(3.3) 0 < r ≤ r(φ,y) ≤ r < ∞ for all φ ∈ [0, 2π] and y ∈ [−1, 1]N.

Moreover, it is assumed that r0 ∈ C2
per([0, 2π]) as well as that the sequence (ak)k

decays sufficiently fast to ensure r(·,y) ∈ C2
per([0, 2π]) for all y ∈ [−1, 1]N.

The random boundary Γ = Γ(y) is hence given by

Γ(y) =
{
r(φ,y)er(φ) ∈ R2 : φ ∈ [0, 2π]

}

with the associated random scatterer D = D(y). The expectation of the random

scatterer is obviously given by the domain which is bounded by Γ(0).
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Having the incident wave ui at hand, the boundary value problem for the total field

u(y) = us(y) + ui for any y ∈ [−1, 1]N reads

(3.4)

∆u(y) + κu(y) = 0 in R2 \D(y),

u(y) = 0 on Γ(y),

√
r

(
∂us

∂r
− iκus

)
→ 0 as r = ‖x‖2 → ∞.

By the construction of Γ(y), the random scattering problem (3.4) exhibits a unique

solution for each realization y ∈ [−1, 1]N of the random parameter. Moreover, it has

been shown in [10] the case of the Helmholtz transmission problem that the total

wave u(y) exhibits an anlytic extension into a certain region of the complex plane

with respect to the parameter y ∈ [−1, 1]N. This particularly allows for the use

of higher order quadrature methods, like the quasi-Monte Carlo methods, see e.g.

[2], or sparse quadrature methods, see e.g. [6, 10] in order to compute quantities of

interest, such as expectation and variance.

3.3. Expected scattered wave. We can compute the scattered wave’s expectation

for a given point x ∈ R2 via the potential evaluation (2.2), which leads to

(3.5) E[us](x) = E
[ ∫

Γ(y)

Φ(x, z)
∂us

∂n
(z, ·) dσz

]
.

Of course, (3.5) makes only sense if ‖x‖ > r since otherwise there might be instances

y ∈ [−1, 1]N such that x ∈ D(y), i.e., the point x does not lie outside the scatterer

almost surely, compare (3.3). Nonetheless, if we want to compute the expectation in

many points, it is much more efficient to exploit the artificial but fixed boundary Σ

in order to consider expression (2.4). For any x ∈ R2 with ‖x‖ > R, it holds

(3.6) E[us](x) =

∫

Σ

{
Φ(x, z)E

[
∂us

∂n

]
(z) +

∂Φ(x, z)

∂nz

E[us](z)

}
dσz.

Therefore, the scattered wave’s expectation is completely encoded in the Cauchy

data on the artificial boundary Σ. This means that we only need to compute the

expected Cauchy data

(3.7) E[us] =

∫

[−1,1]N

{∫

Γ(y)

Φ(x, z)
∂u

∂n
(z,y) dσz

}
dµ

and

(3.8) E
[
∂us

∂n

]
=

∫

[−1,1]N

{∫

Γ(y)

Φ(x, z)

∂nz
u(z,y) dσz

}
dµ

of the scattered wave on the artificial boundary Σ, which is of lower spatial dimension

than the exterior domain.
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In complete analogy to (3.6), the expected far-field pattern is likewise computed by

using (2.5):

E[u∞](x̂) =

∫

Σ

{
Φ∞(x̂, z)E

[
∂us

∂n
(z)

]
+

∂Φ∞(x, z)

∂nz
E[us](z)

}
dσz.

3.4. Computing the solution’s variance. The variance V[us] of the scattered

wave us at a point x with ‖x‖ ≥ R depends nonlinearly on the Cauchy data of us

at the artificial interface Σ. Nonetheless, we can use the fact that the variance is the

trace of the covariance function:

(3.9) V[us](x) = Cov[us](x,x
′)
∣∣
x=x′ = Cor[us](x,x

′)
∣∣
x=x′ − |E[us](x)|2.

Here, the covariance function is given by

Cov[us](x,x
′) = E

[(
us(x, ·)− E[us](x)

)(
us(x′, ·)− E[us](x′)

)]

= E
[
us(x, ·)us(x′, ·)

]
− E[us](x)E[us](x′),

and, hence,

Cor[us](x,x
′) = E

[
us(x, ·)us(x′, ·)

]
.

The two-point correlation function is a higher-dimensional object, though. But it

depends linearly on the second moments of the Cauchy data of the scattered wave on

the artificial interface Σ, which greatly simplifies its computation. Namely, defining

for x,x′ ∈ Σ the quantities

Cor[us](x,x
′) = E

[(∫

Γ(y)

Φ(x, z)
∂us

∂n
(z,y) dσz

)(∫

Γ(y)

Φ(x′, z)
∂us

∂n
(z,y) dσz

)]
,

Cor
[
∂us

∂n

]
(x,x′) = E

[(∫

Γ(y)

∂Φ(x, z)

∂nz
us(z,y) dσz

)(∫

Γ(y)

∂Φ(x′, z)

∂nz
us(z,y) dσz

)]
,

and

Cor
[
us,

∂us

∂n

]
(x,x′) = Cor

[
∂us

∂n
, us

]
(x′,x)

= E
[(∫

Γ(y)

Φ(x, z)
∂us

∂n
(z, ω) dσz

)(∫

Γ(y)

∂Φ(x′, z)

∂nz
us(z,y) dσz

)]
,
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we have for any ‖x‖2, ‖x′‖2 > R the deterministic expression

(3.10)

Cor[us](x,x
′) =

∫

Σ

∫

Σ

{
Φ(x, z)Φ(x′, z′)Cor

[
∂us

∂n

]
(z, z′)

+ Φ(x, z)
∂Φ(x′, z′)

∂nz′
Cor

[
∂us

∂n
, us

]
(z, z′)

+
∂Φ(x, z)

∂nz
Φ(x′, z′)Cor

[
us,

∂us

∂n

]
(z, z′)

+
∂Φ(x, z)

∂nz

∂Φ(x′, z′)

∂nz′
Cor[us](z, z

′)

}
dσz′ dσz.

4. Numerical results

4.1. Random scatterer. For our numerical experiments, we shall consider a kite-

shaped scatterer as nominal obstacle, described by the parametrization

(4.1) γ : [0, 2π] → Γ ⊂ R2, φ 7→ γ(φ) :=

[
5 cos(φ)− 3.25 cos(2φ)

7.5 sin(φ)

]
.

The random boundary is then defined in accordance with

(4.2) γ(φ,y) = γ(φ) + r(φ,y)

[
cos(φ)

sin(φ)

]
,

where γ(φ) denotes the kite-shaped boundary (4.1) and r(φ,y) is given by the

Fourier series

(4.3) r(φ,y) =
∞∑

k=1

1

k3

{
sin(kφ)y2k−1 + cos(kφ)y2k

}
.

For numerical simulation, we truncate this series after 1000 terms.

Notice that the decay of the coefficients of the random fluctuations (4.3) are at the

limit case. It would hold r(·,y) ∈ C2
per([0, 2π]) if the decay of the series (ak)k was

just a little bit higher. A visualization of 1000 samples of this boundary is found in

Figure 1.

4.2. Statistics at the artificial interface. For the numerical solution of the

boundary integral equation (2.1), we apply the Nyström method to discretize the

acoustic single and double layer operators. Given the parametrization (4.2) for a spe-

cific instance y ∈ [−1, 1]1000, the method applies the trapezoidal rule in the n = 1000

equidistantly distributed points ϕi = 2πi/n, i = 1, . . . , n, and is along the lines of [16].

An appropriate desingularization technique based on trigonometric Lagrange poly-

nomials is employed to deal with the singularities of the acoustic single and double
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Figure 1. The kite-shaped boundary (thick black line) and 1000

random perturbations (in colour).

layer operators. The method converges exponentially provided that the boundary

under consideration is analytical. We refer the reader to [16] for all the details.

We likewise subdivide the artificial interface

Σ = {x ∈ R2 : ‖x‖2 = R}

in n = 1000 equidistantly distributed points

zj =
[
R cos(2πj/n), R sin(2πj/n)

]⊤
, j = 1, . . . , n.

In these points, we compute the expectations E[us](zj) and E[∂us/∂n](zj) in accor-

dance with (3.7) and (3.8), respectively, by the quasi-Monte Carlo method based on

10 000 Halton points, cf. [18]. Moreover, we compute the related two-point correla-

tion matrix

(4.4) C =

[
C1,1 C1,2

C⋆
1,2 C2,2

]
∈ C2n×2n,

where

C1,1 :=
[
Cor[us](zj , zj′)

]n
j,j′=1

, C2,2 :=

[
Cor

[
∂us

∂n

]
(zj, zj′)

]n

j,j′=1

and

C1,2 :=

[
Cor

[
us,

∂us

∂n

]
(zj, zj′)

]n

j,j′=1

.

4.3. Low-rank approximation of the two-point correlation. While the com-

putation of E[us](x) at a point x with ‖x‖2 > R by (3.6) is straightforward, the
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computation of the variance V[us](x) in accordance with (3.9) amounts to the com-

putation of Cor[us](x,x). This requires the approximation of the double integral

over Σ. We apply again the trapezoidal rule, having thus to evaluate

Cor[us](x,x) ≈
1

(2Rπn)2

n∑

j,j′=1

{
Φ(x, zj)Φ(x, zj′)Cor[us](zj, zj′)

+ Φ(x, zj)
∂Φ(x, zj′)

∂nzj′
Cor

[
us,

∂us

∂n

]
(zj, zj′)

+ Φ(x, zj)
∂Φ(x, zj′)

∂nzj′
Cor

[
us,

∂us

∂n

]
(zj′, zj)

+
∂Φ(x, zj)

∂nzj

∂Φ(x, zj′)

∂nzj′
Cor

[
∂us

∂n

]
(zj , zj′)

}
.

The respective evaluations of the two-point correlation functions of the Cauchy data

on Σ are stored in the matrix C from (4.4). We conclude that the cost of this naive

evaluation scales quadratically in the number of degrees of freedom used on the

artificial interface Σ.

In order to speed-up the computations if the variance V[us](x) has to be computed

in many points, we propose to compute first a low-rank approximation of the two-

point correlation function of the Cauchy data at Σ. In accordance with [7], we apply

the pivoted Cholesky decomposition to get a low-rank approximation

(4.5) C ≈ LL⋆ =

m∑

i=1

ℓiℓ
⋆
i

where L = [ℓ1, . . . , ℓm] ∈ C2n×m with m ≤ n. Note that the truncation error can

rigorously be controlled with respect to the trace norm.

Having the low-rank approximation (4.5) at hand, we arrive at

(4.6) Cor[us](x,x) ≈
1

(2Rπn)2

m∑

i=1

∣∣∣∣∣
n∑

j=1

[
Φ(x, zj)ℓi,j +

∂Φ(x, zj)

∂nzj

ℓi,n+j

]∣∣∣∣∣

2

.

Therefore, the evaluation of Cor[us](x,x
′) requires only O(nm) operations instead

of O(n2) operations. If m ≪ n, this reduces the computational cost considerably,

especially since m depends only on the desired accuracy and thus only weakly on n.

In order to demonstrate the effect of the low-rank approximation, we consider again

the randomly perturbed kite-shaped scatterer, given by (4.2) and (4.3). The radius

of the artificial interface is varying in accordance with R = 11, 12, . . . , 15 and the
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rank of the low-rank approximation

R κ = 1 κ = 2 κ = 4 κ = 8 κ = 16

11 48 56 85 131 193

12 39 51 83 131 194

13 35 49 84 132 195

14 32 49 83 131 195

15 31 49 84 132 194
Table 1. Ranks m of the low-rank approximation of the two-point

correlation of the Cauchy data on Σ for varying radius R and

wavenumber κ.

wavenumber is varying in accordance with κ = 1, 2, 4, 8, 16. The number of equidis-

tant points on Σ is 1000 and and the number of boundary elements on Γ(y) is also

1000. Note that the incident wave was chosen to come from the left, i.e., d = [1, 0]⊤,

and the relative truncation error was 10−12.

4.4. Scattered field computation. We choose R = 11 and compute the expec-

tation and variance of the scattered field on the disc {x ∈ R2 : R ≤ ‖x‖2 ≤ 50} in

accordance with (3.6) and (3.9) using (4.6), where the incident wave comes again

from the left, i.e., d = [1, 0]⊤. The results are found in Figure 2. For comparison, the

scattered wave in case of the unperturbed kite-shaped scatterer is found in the first

column. In the second column, the expected scattered wave is found. Finally, the

variance of the scattered wave is found in the third column. The rows correspond to

the wavenumber: the first row corresponds to κ = 1, the second row corresponds to

κ = 2, the third row corresponds to κ = 4, and the fourth row corresponds to κ = 8.

One observes that, compared to the scattered wave of the unperturbed scatterer, the

expected scattered wave is smoothed towards the left, i.e., contrary to the direction

of the incoming wave. This issues from the different reflections at the perturbed

scatterer which interfere. In the shadow region, i.e., towards the right, the expected

scattered wave and the scattered wave of the unperturbed scatterer basically coin-

cide. This observation is also underpinned by the variance of the scattered wave,

which is maximal on the left of the scatterer and nearly 0 in the shadow region. No-

tice that described smoothing effect becomes stronger as the wavenumber increases.

4.5. Far-field pattern. We shall next consider the far-field pattern of the randomly

perturbed kite-shape scatterer for the wavenumbers κ = 1, 2, 4, 8. The far-field has

been evaluated in n = 1000 equidistant points on S1. The results of the computations
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Figure 2. The scattered field of a kite-shaped scatterer is found in

the left column. The expected scattered field in case of random pertur-

bations is found in the middle column and the associated variance in

the right column. The wavenumbers are κ = 1, 2, 4 and 8, associated

with the 1st, 2nd, 3rd, and 4th row.
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are found in Figure 3, where we plotted the expected farfield (blue line) and the

deviation of the farfield (dash-dotted line). We again observe that the expected

farfield pattern does only oscillate in the shadow region, which is in clear contrast

to the farfield of the unperturbed kite-shaped scatterer (red line).

0 1 2 3 4 5 6
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0

0 1 2 3 4 5 6

-10

-5

0

0 1 2 3 4 5 6

-10

-5

0
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Figure 3. The real part of the expected far-field (blue line) with

dispersion (blue dash-dotted line) and the far-field of the unperturbed

kite shape (red line) in case of κ = 1 (top left), κ = 2 (top right), κ = 4

(bottom left) and κ = 8 (bottom right).

5. Conclusion

In the present article, acoustic scattering has been considered in case random obsta-

cles. The random scattering problem has been parametrized over the high-dimensional

unit cube. We reformulate this random problem, posed in the exterior domain, as

a boundary integral equation which yields a dimension reduction. The Nyström

method is applied to solve the boundary integral equation for each particular real-

ization. By computing the solution’s second order statistics on an artificial, determin-

istic boundary, the scattered wave’s second order statistics can be deterministically

determined everywhere, where a low-rank approximation of the covariance matrix

greatly improves the efficiency.

The method proposed here can also be formulated for the scattering at sound-

hard obstacles. Moreover, it can be extended to other boundary value problems for

which a Green’s function is available. The observation that the solution’s second
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order statistics is determined by the second order statistics of the Cauchy data on a

deterministic interface holds even for arbitrary second order elliptic boundary value

problems.
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