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On multilevel quadrature for elliptic stochastic
partial differential equations

Helmut Harbrecht, Michael Peters, and Markus Siebenmorgen

Abstract In the present article, we show that the multilevel Monte Carlo method
for elliptic stochastic partial differential equations can be interpreted as a sparse
grid approximation. By using this interpretation, the method can straightforwardly
be generalized to any given quadrature rule for high dimensional integrals like the
quasi Monte Carlo method or the polynomial chaos approach. Besides the multilevel
quadrature for approximating the solution’s expectation,a simple and efficient mod-
ification of the approach is proposed to compute the stochastic solution’s variance.
Numerical results are provided to demonstrate and quantifythe approach.

1 Introduction

The present article is dedicated to the numerical solution of elliptic second order
boundary value problems with stochastic diffusion coefficient. A principal approach
to solve such stochastic boundary value problems is the Monte Carlo approach, see
e.g. [15] and the references therein. However, it is extremely expensive to gener-
ate a large number of suitable samples and to solve a deterministic boundary value
problem on each sample. To overcome this obstruction, the multilevel Monte Carlo
method (MLMC) has been developed in [1, 7, 8, 11, 12]. From thestochastic point
of view, it is a variance reduction technique which considerably decreases the com-
plexity. The idea is to combine the Monte Carlo quadrature ofthe stochastic variable
with a multilevel splitting of the Bochner space which contains the random solution.
Then, to compute the solution’s statistics, most samples can be performed on coarse
spatial discretizations while only a few samples must be performed on fine spa-
tial discretizations. As we will show, this proceeding can be interpreted as a sparse
grid approximation of the expectation and variance. By replacing the Monte Carlo
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quadrature by another quadrature rule for high dimensionalintegrals yields e.g. the
multilevel quasi Monte Carlo method (MLQMC) or the multilevel polynomial chaos
method (MLPC).

2 Sparse grids

Let
V(i)

0 ⊂V(i)
1 ⊂ ·· · ⊂V(i)

j ⊂ ·· · ⊂ Hi , i = 1,2,

denote two sequences of nested, finite dimensional spaces with increasing approx-
imation properties in some abstract spacesHi . To approximate a given object
of the spaceH1 ×H2 one canonically considers thefull tensor product spaces

U j := V(1)
j ⊗V(2)

j . However, the cost dimU j = dimV(1)
j ·dimV(2)

j are often too ex-
pensive. This drawback can be avoided by considering the approximation in so-
called sparse gridor sparse tensor product spaces. To this end, one defines for
j ≥ 1 the complement spaces

W(i)
j+1 =V(i)

j+1⊖V(i)
j , i = 1,2,

and gains the multilevel decompositions

V(i)
j =

j⊕

i=0

W(i)
j , W(i)

0 :=V(i)
0 , i = 1,2. (1)

Thus, the sparse grid space is defined by

Û j := ∑
ℓ+ℓ′≤ j

W(1)
ℓ ⊗W(2)

ℓ′ (2)

It contains, up to logarithmic factors, only max{dimV(1)
j ,dimV(2)

j }1 degrees of free-
dom but offers nearly the same approximation power asU j provided that the object
to be approximated offers some extra smoothness by means of mixed regularity.

Sparse grids are used for the approximation of high-dimensional data or functions
[10] and for the numerical solution of partial differentialequations [18]. Another ap-
plication issues from the construction of quadrature formulae [5]. For all the details
we refer the reader to the survey [2] and the references therein.

In the present context of stochastic partial differential equations, the sequence

{V(1)
j } will correspond to a sequence of Bochner spaces which map thehigh dimen-

sional unit cube� onto nested finite element spaces. Whereas, the sequence{V(2)
j }

will correspond to a sequence of quadrature rules which compute the Bochner inte-

1 This holds under the assumptions that the dimensions ofV(1)
j andV(2)

j scale like geometric
sequences.
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Fig. 1 Different representations of the sparse grid spaceÛ j .

gral. To arrive at themultilevel quadrature methodwe will make use of the following
equivalent representation of the sparse grid space (2). In view of (1), one can rewrite
(2) according to

Û j =
j

∑
ℓ=0

W(1)
ℓ ⊗

( j−ℓ

∑
ℓ′=0

W(2)
ℓ′

)
=

j

∑
ℓ=0

W(1)
ℓ ⊗V(2)

j−ℓ

(see Fig. 1 for an illustration). This makes the specification of the complement

spacesW(2)
j obsolete. Indeed, even the nestedness of the quadrature points can be

neglected since it is sufficient that the error of quadraturedecreases as the dimension

of V(2)
j increases.

The rest of this article is organized as follows. We introduce the elliptic model
problem of interest in Section 3 and transform it to a parametric diffusion problem
in Section 4. The next two sections are dedicated to the discretization, namely the
quadrature rule for the stochastic variable (Section 5) andthe finite element method
with respect to the physical domain (Section 6). The multilevel quadrature for the
random solution’s expectation is proposed in Section 7. Thecomputation of its vari-
ance requires some modifications which are carried out in Section 8. Finally, in
Section 9, we provide numerical results to demonstrate and quantify the approach.
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3 Problem setting

In the following, letD ⊂ R
n for n= 2,3 be a polygonal or polyhedral domain and

let (Ω ,Σ ,P) be a probability space withσ -field Σ ⊂ 2Ω and a complete probability
measureP, i.e., for allA⊂B andB∈ Σ with P[B] = 0 it follows A∈ Σ andP[A] = 0.
We intend to compute the expectationEu := E(u) and the varianceVu := V(u) of
the random functionu(ω)∈H1

0(D) which solves for almost allω ∈Ω the stochastic
diffusion problem

−div
(
α(ω)∇u(ω)

)
= f in D. (3)

To guarantee unique solvability of (3), we assume thatα(ω) is almost surely uni-
formly elliptic and bounded

0< αmin ≤ α(ω)≤ αmax< ∞ in D. (4)

For sake of simplicity, we further assume that the stochastic diffusion coefficient is
given by a finite Karhunen-Loève expansion

α(x,ω) = Eα (x)+
m

∑
k=1

√
λkϕk(x)ψk(ω) (5)

with pairwise orthonormal functionsϕk ∈ L∞(D) and stochastically independent
random variablesψk(ω) ∈ [−1,1]. Especially, it is assumed that the random vari-
ables admit continuous density functionsρk : [−1,1] → R with respect to the
Lebesgue measure.

In practice, one generally has to compute the expansion (5) from the given co-
variance kernel

Covα(x,y) =
∫

Ω

{
α(x,ω)−Eα(x)

}{
α(y,ω)−Eα(y)

}
dP(ω).

If it contains infinitely many terms, it is appropriately truncated which will induce
an additional discretization error. For all the details we refer the reader to [6, 13, 16].

4 Deterministic reformulation

The assumption that the random variables{ψk(ω)} are stochastically independent
implies that the respective joint density function and the joint distribution of the
random variables are given by

ρ(y) :=
m

∏
k=1

ρk(yk) and dPρ(y) := ρ(y)dy.

Now we are able to reformulate the stochastic problem (3) by aparametric determin-
istic problem by replacing the spaceL2

P(Ω) by L2
ρ (�) where� := [−1,1]m. Thus,
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the stochastic spaceΩ is identified with its image� with respect to the measurable
mapping

ψ : Ω →�, ω 7→ ψ(ω) :=
(
ψ1(ω), . . . ,ψM(ω)

)
.

Hence, the random variablesψk are substituted by coordinatesyk ∈ [−1,1]. With this
construction at hand, we define the parameterized and truncated diffusion coefficient
α : D×�→R via

α(x,y) = Eα (x)+
m

∑
k=1

√
λkϕk(x)yk

for all x ∈ D andy = (y1,y2, . . . ,ym) ∈ �. This leads to the following parametric
diffusion problem:

find u∈ L2
ρ(�;H1

0(D)) such that (6)

−div
(
α(y)∇u(y)) = f in D for all y ∈�.

Here and in the sequel, for a given Banach spaceX, the Bochner spaceLp
ρ(�;X),

1≤ p≤ ∞, consists of all functionsv : �→ X whose norm

‖v‖Lp
ρ (�;X) :=





(∫

�
‖v(y)‖p

Xρ(y)dy
)1/p

, p< ∞

esssup
y∈�

‖v(y)ρ(y)‖X, p= ∞

is finite. If p= 2 andX is a Hilbert space, the Bochner space is isomorphic to the
tensor product spaceL2

ρ(�)⊗X. Finally, the Bochner spaceC(�;X) consists of all
continuous mappingsv : �→ X.

By the Lax-Milgram theorem, unique solvability of the parametric diffusion
problem (6) inL2

ρ
(
�;H1

0(D)
)

follows immediately from the condition (4) on the
stochastic diffusion coefficient. In [17], it has further been proven that the solu-
tion u of (6) is analytical as mappingu : � → H1

0(D). At least in case of uni-
formly distributed random variables{ψk}, it is even analytical as mappingu : �→
H1

0(D)∩H2(D), provided that the functions{ϕk} in the Karhunen-Loève expansion
(5) are inW1,∞(D), see [3].

5 Quadrature in the stochastic variable

Having the solutionu∈ L2
ρ
(
�;H1

0(D)
)

of (6) at hand, then its expectation and vari-
ance are given by the high dimensional integrals

Eu(x) =
∫

�
u(x,y)ρ(y)dy ∈ H1

0(D) (7)
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and

Vu(x) = Eu2(x)−E
2
u(x) =

∫

�
u2(x,y)ρ(y)dy−E

2
u(x) ∈W1,1

0 (D). (8)

To compute these integrals, we shall provide a sequence of quadrature formulae
{Qℓ} for the Bochner integral

I : L1
ρ(�;X)→ X, Iv =

∫

�
v(·,y)ρ(y)dy

whereX ⊂ L2(D) denotes a Banach space. The quadrature formula

Qℓ : L1
ρ(�;X)→ X, Qℓv=

Nℓ

∑
i=1

ωℓ,iv(·,ξ ℓ,i)ρ(ξ ℓ,i) (9)

is supposed to provide the error bound

‖(I −Qℓ)v‖X . εℓ‖v‖H (�;X) (10)

uniformly in ℓ ∈ N, where{εℓ} is a null sequence andH (�;X) ⊂ L2
ρ(�,X) a

suitable Bochner space. For our purpose, we assume that the number of pointsNℓ of
the quadrature formulaQℓ are chosen such that

εℓ = 2−ℓ. (11)

The following particular examples of quadrature rules (9) are considered in our
numerical experiments:

• In the mean, the Monte Carlo method satisfies (10) withεℓ =N−1/2
ℓ andH (�;X)=

L2
ρ(�;X).

• The standard quasi Monte Carlo method lead typically toεℓ = N−1
ℓ (logNℓ)

m

and the Bochner spaceH (�;X) = W1,1
mix(�;X) which consists of all functions

v : �→ X with finite norm

‖v‖
W1,1

mix(�;X)
:= ∑

‖q‖∞≤1

∫

�

∥∥∥∥
∂ ‖q‖1

∂yq1
1 ∂yq2

2 · · ·∂yqm
m

v(y)

∥∥∥∥
X

dy < ∞, (12)

see e.g. [14]. Note that this estimate requires that the densities satisfyρk ∈
W1,∞([−1,1]).

• If v : � → X is analytical with respect to the variabley, then one can apply a
tensor product Gaussian quadrature rule, yielding an exponential convergence

rateεℓ = exp(−bN1/m
ℓ ) andH (�;X) = L∞(�;X). In fact, the polynomial chaos

approach introduced in [4] can be interpreted as a dimensionweighted ten-
sor product Gaussian quadrature rule (with weights depending on the numbers
{
√

λk‖ϕk‖L∞(D)}).
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6 Finite element approximation in the spatial variable

In order to apply the quadrature formula (9), we shall calculate the solutionu(y) ∈
H1

0(D) of the diffusion problem (6) in certain pointsy ∈ �. To this end, consider a
coarse grid triangulation/tetrahedralizationT0 = {τ0,k} of the domainD. Then, for
ℓ ≥ 1, a uniform and shape regular triangulation/tetrahedralizationTℓ = {τℓ,k} is
recursively obtained by uniformly refining each triangle/tetrahedronτℓ−1,k into 2n

triangles/tetrahedrons with diameterhℓ ∼ 2−ℓ.
Define forp≥ 1 the finite element spaces

S
p
ℓ (D) := {v∈C(D) : v|∂D = 0 andv|τ ∈ Pp for all τ ∈ Tℓ} ⊂ H1

0(D),

wherePp denotes the space of all polynomials of total degreep ≥ 0. Then, the
solutionu(y) ∈ S

p
ℓ (D) of a finite element method in the spaceS

p
ℓ (D) admits the

following approximation properties.2

Lemma 1. Let the domain D be convex and f∈ L2(D). Then, the finite element
solution uℓ(y) ∈ S

p
ℓ (D) of the diffusion problem(6) satisfies the error estimates

‖u(y)−uℓ(y)‖H1(D) . 2−ℓ‖u(y)‖H2(D), (13)

and
‖u2(y)−u2

ℓ(y)‖W1,1(D) . 2−ℓ‖u(y)‖2
H2(D). (14)

Here, the constants hidden in(13) and (14) depend onαmin and αmax, but not on
y ∈�.

Proof. The parametric diffusion problem (6) isH2-regular sinceD is convex and
f ∈ L2(D). Hence, the first error estimate immediately follows from the standard
finite element theory. We further find

‖u2(y)−u2
ℓ(y)‖W1,1(D) =

∥∥(u(y)−uℓ(y)
)(

u(y)+uℓ(y)
)∥∥

W1,1(D)

. ‖u(y)−uℓ(y)‖H1(D)‖u(y)+uℓ(y)‖L2(D)

+ ‖u(y)−uℓ(y)‖L2(D)‖u(y)+uℓ(y)‖H1(D).

By using

‖uℓ(y)‖H1(D) ≤ ‖u(y)‖H1(D)+ ‖u(y)−uℓ(y)‖H1(D) . (1+2−ℓ)‖u(y)‖H2(D)

and the corresponding estimate inL2(D), we arrive at the desired estimate (14).�

2 Error estimates in respectivelyL2(D) andL1(D) are derived by straightforward modifications,
yielding the convergence rate 4−ℓ. Then, the error analysis of the multilevel quadrature can be
performed with respect to these norms, provided that the precision of the quadrature (10) is also
chosen asεℓ = 4−ℓ.



8 Helmut Harbrecht, Michael Peters, and Markus Siebenmorgen

7 Multilevel quadrature method for the expectation

We now have to combine the quadrature method with the multilevel finite element
discretization. To this end, we define the ansatz spaces

V(1)
j :=

{
G j(y)v(x,y) : v∈C

(
�;H1

0(D)
)

andy ∈�
}
⊂ L2

ρ
(
�;S p

j (D)
)
. (15)

Herein,G j(y) denotes the Galerkin projection

G j(y) : H1
0(D)→ S

p
j (D), v 7→ v j ,

defined via the Galerkin orthogonality
∫

D
α(x,y)∇

(
v(x)− v j(x)

)
∇wj (x)dx = 0 for all wj ∈ S

p
j (D).

Note that this bilinear form issues from the weak formulation of (6) in H1
0(D).3

To compute the expectation (7) we shall apply the quadratureruleQ j to the finite
element solution inS p

j (D) which yields

Eu(x)≈ Q j
(
G j(y)u(x,y)

)
=

Nj

∑
i=0

ω j ,iG j(ξ j ,i)u(x,ξ j ,i)ρ(ξ j ,i). (16)

This can be interpreted as thefull tensor approximation of the functionEu in the

product spaceV(1)
j ⊗V(2)

j where the quadrature ruleQ j serves as “space”V(2)
j .

In contrast to this, settingG−1(y) := 0 for all y ∈ �, thesparsetensor product

∑ j
ℓ=0W(1)

ℓ ⊗V(2)
j−ℓ is performed with the help of the complement spaces

W(1)
ℓ :=

{(
Gℓ(y)−Gℓ−1(y)

)
v(x,y) : v∈C

(
�;H1

0(D)
)

andy ∈�
}
⊂V(1)

ℓ .

Namely, we consider the sparse tensor approximation

Eu(x)≈
j

∑
ℓ=0

Q j−ℓ

(
Gℓ(y)u(x,y)−Gℓ−1(y)u(x,y)

)
(17)

=
j

∑
ℓ=0

Nj−ℓ

∑
i=0

ω j−ℓ,i
(
Gℓ(ξ j−ℓ,i)u(x,ξ j−ℓ,i)−Gℓ−1(ξ j−ℓ,i)u(x,ξ j−ℓ,i)

)
ρ(ξ j−ℓ,i).

3 There holds the identityV(1)
j = Pj

(
L2

ρ
(
�;H1

0(D)
))

wherePj : L2
ρ
(
�;H1

0(D)
)
→ L2

ρ
(
�;S p

j (D)
)

is the Galerkin projection with respect to the bilinear formA : L2
ρ
(
�;H1

0(D)
)
×L2

ρ
(
�;H1

0(D)
)
→R

given by

A(v,w) :=
∫

�

∫

D
α(x,y)∇xv(x,y)∇xw(x,y)ρ(y)dxdy.

This bilinear form stems from the weak formulation of the parametric diffusion problem (6) in the
Bochner spaceL2

ρ
(
�;H1

0(D)
)
. The equivalence of thisweak definitionto the pointwise definition

(15) follows immediately from the analyticity of the solutions to (6) in the parametery.
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Loosely speaking, the functionu∈ L2
ρ
(
�;H1

0(D)
)

is divided into j slices in accor-
dance with the modulus of its entity. Then, for every slice, the precision of quadra-
ture is properly chosen. We refer to Fig. 2 for a graphical illustration.

-

precision

W(1)
0

W(1)
1
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2
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3

W(1)
4

Q4

Q3

Q2

Q1

Q0

Fig. 2 Visualization of the multilevel quadrature.

Theorem 1. Let u∈H
(
�;H1

0(D)∩H2(D)
)

and let{Qℓ} be a sequence of quadra-
ture rules which satisfy(10)and (11). Then, it holds

∥∥∥∥Eu(x)−
j

∑
ℓ=0

Q j−ℓ

(
Gℓ(y)u(x,y)−Gℓ−1(y)u(x,y)

)∥∥∥∥
H1(D)

. 2− j j‖u‖H (�;H2(D)).

Proof. Sinceu∈ H
(
�;H1

0(D)∩H2(D)
)
, the estimate (13) implies the decay

‖Gℓ(y)u(x,y)−Gℓ−1(y)u(x,y)‖H (�;H1
0 (D)) . 2−ℓ‖u‖H (�;H2(D)).

This, together with (10), (11), and (13), yields
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∥∥∥∥Eu(x)−
j

∑
ℓ=0

Q j−ℓ

(
Gℓ(y)u(x,y)−Gℓ−1(y)u(x,y)

)∥∥∥∥
H1(D)

.
∥∥Eu(x)− I

(
G j(y)u(x,y)

)∥∥
H1(D)

+
j

∑
ℓ=0

∥∥∥∥(I −Q j−ℓ)
(
Gℓ(y)u(x,y)−Gℓ−1(y)u(x,y)

)∥∥∥∥
H1(D)

. 2− j‖u‖L2
ρ(�;H2(D))+

j

∑
ℓ=0

2ℓ− j2−ℓ‖u‖H (�;H2(D))

. 2− j j‖u‖H (�;H2(D)).

�

Remark 1.The convergence rate of the full tensor approximation (16) is 2−ℓ. There-
fore, the convergence rate of the sparse tensor approximation (17) is only the loga-
rithmic factor j smaller. This factor can be removed, if the precision of quadrature
εℓ is chosen asℓ−(1+δ )2−ℓ for someδ > 0 since

j

∑
ℓ=0

2ℓ− j2−ℓ( j − ℓ)−(1+δ ) = 2− j
j

∑
ℓ=0

ℓ−(1+δ ) . 2− j .

This choice was proposed in [1].

8 Multilevel quadrature method for the second moment

The determination of the random solution’s variance (8) requires the computation
of its second momentEu2 ∈ W1,1

0 (D) which can be performed similarly to the ex-
pectation. The full tensor approximation

Eu2(x)≈ Q j
(
G j(y)u(x,y)

)2
=

Nj

∑
i=0

ωi
(
G j(ξ j ,i)u(x,ξ j ,i)

)2ρ(ξ j ,i)

corresponds to the approximation in the product “space”Ṽ(1)
j ⊗V(2)

j with

Ṽ(1)
j :=

{(
G j(y)v(x,y)

)2 : v∈C
(
�;H1

0(D)
)

andy ∈�
}
⊂ L2

ρ
(
�;S 2p

j (D)
)
.

To define the related sparse tensor approximation, we set

W̃(1)
ℓ :=

{(
Gℓ(y)v(x,y)

)2
−
(
Gℓ−1(y)v(x,y)

)2 :

v∈C
(
�;H1

0(D)
)

andy ∈�
}
⊂ Ṽ(1)

j .
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Then, the approximation ofEu2 in the sparse product “space”∑ j
ℓ=0W̃(1)

j−ℓ⊗V(2)
j is

given as

Eu2(x)≈
j

∑
ℓ=0

Q j−ℓ

((
Gℓ(y)u(x,y)

)2
−
(
Gℓ−1(y)u(x,y)

)2
)

=
j

∑
ℓ=0

Nj−ℓ

∑
i=1

ω j−ℓ,i

((
Gℓ(ξ j−ℓ,i)u(x,ξ j−ℓ,i)

)2

−
(
Gℓ−1(ξ j−ℓ,i)u(x,ξ j−ℓ,i)

)2
)

ρ(ξ j−ℓ,i).

To estimate the discretization error of this sparse tensor approximation, we will need
to further estimate the expression

∥∥∥(I −Q j−ℓ)
((

Gℓ(y)u(x,y)
)2
−
(
Gℓ−1(y)u(x,y)

)2
)∥∥∥

W1,1(D))
(18)

. 2 j−ℓ
∥∥∥
(
Gℓ(y)u(x,y)

)2
−
(
Gℓ−1(y)u(x,y)

)2
∥∥∥

H (�;W1,1(D))
.

If u∈H
(
�;H1

0(D)∩H2(D)
)
, then this is clearly possible by using (14) but requires

some further specification of the Bochner spaceH (�). For example, ifH (�) =
L2

ρ(�), we arrive at

∥∥(Gℓ(y)u(x,y)
)2
−
(
Gℓ−1(y)u(x,y)

)2∥∥
L2

ρ (�;W1,1(D))
. 2−ℓ‖u‖2

L4
ρ(�;H2(D))

.

Whereas, ifH (�) =W1,1
mix(�), one gets, in view of (12), the estimate

∥∥(Gℓ(y)u(x,y)
)2

−
(
Gℓ−1(y)u(x,y)

)2∥∥
W1,1

mix(�;W1,1(D))
. 2−ℓ‖u‖2

H1
mix(�;H2(D))

,

where the norm inH1
mix(�;X) is defined in complete analogy to (12). Finally, in

case ofH (�) = L∞
ρ (�) we obtain

∥∥(Gℓ(y)u(x,y)
)2
−
(
Gℓ−1(y)u(x,y)

)2∥∥
L∞

ρ (�;W1,1(D))
. 2−ℓ‖u‖2

L∞
ρ (�;H2(D)).

These examples cover the three quadrature formulae specified in Section 5. There-
fore, it is reasonable to make the assumption that a second Bochner spaceI

(
�;H2(D)

)
⊂

H
(
�;H2(D)

)
exists with which we can bound the right hand side in (18).

Theorem 2. Let u∈H
(
�;H1

0(D)∩H2(D)
)

and let{Qℓ} be a sequence of quadra-
ture rules which satisfy(10)and (11). Moreover, assume that

∥∥(Gℓ(y)u(x,y)
)2
−
(
Gℓ−1(y)u(x,y)

)2∥∥
H (�;W1,1(D))

. 2−ℓ‖u‖2
I (�;H2(D)). (19)

Then, there holds the following error estimate:
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∥∥∥∥Eu2(x)−
j

∑
ℓ=0

Q j−ℓ

((
Gℓ(y)u(x,y)

)2
−
(
Gℓ−1(y)u(x,y)

)2
)∥∥∥∥

W1,1(D)

. 2− j j
(
‖u‖2

L4
ρ(�;H2(D))

+ ‖u‖2
I (�;H2(D))

)
.

Proof. Analogously to the proof of the sparse tensor approximationto the expecta-
tion, we find

∥∥∥∥Eu2(x)−
j

∑
ℓ=0

Q j−ℓ

((
Gℓ(y)u(x,y)

)2
−
(
Gℓ−1(y)u(x,y)

)2
)∥∥∥∥

W1,1(D)

.
∥∥Eu2 − I

(
G j(y)u(x,y)

)2∥∥
W1,1(D)

+
j

∑
ℓ=0

∥∥∥(I −Q j−ℓ)
((

Gℓ(y)u(x,y)
)2
−
(
Gℓ−1(y)u(x,y)

)2
)∥∥∥

W1,1(D)
.

Herein, the first term is estimated by

∥∥Eu2 − I
(
G j(y)u(x,y)

)2∥∥
W1,1(D)

. 2− j‖u‖2
L4

ρ(�;H2(D))
.

By bounding the second term by (18), (19), we derive the desired error estimate.�

9 Numerical results

In the implementation of our numerical examples we considerthe L-shaped domain
D = (−1,1)2\ (−1,0]2 ⊂ R

2 and choose piecewise linear finite elements on trian-
gles for the discretization (i.e., the spaces{S 1

j (D)}). Then, the variance will be
a piecewise quadratic finite element function which lives inthe spaces{S 2

j (D)}.
Therefore, the multilevel mesh transfer can be performed byquadratic prolonga-
tions.

It is well known that an approximation of the diffusion coefficient by element-
wise constant functions sustains the over-all approximation order achieved by the
piecewise linear finite elements on the finest mesh. On the coarser meshes, the dif-
fusion coefficient is successively replaced by its mean value with respect to the
current triangulation. This does not affect the stiffness matrices but simplifies the
computations considerably.

In the following tests, we compare the multilevel Monte Carlo method, the multi-
level polynomial chaos method, and the multilevel quasi Monte Carlo method. The
quasi Monte Carlo method is based on the Halton sequence [14], where the num-
ber of quadrature points is chosen equally to the number of quadrature points of
the multilevel Monte Carlo method. The polynomial chaos method is implemented
along the lines of [4], but the choice of the polynomial degree is coupled to the exact
behaviour of the eigenvalues.
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9.1 Finite dimensional stochastics

The first example treats the stochastic diffusion problem with diffusion coefficient
determined by the statistics

Eα(x) = 6.5+ c1(x)+ c2(x)+ c3(x),

Covα(x,y) = c1(x)c1(y)+ c2(x)c2(y)+ c3(x)c3(y),
(20)

where the coefficient functions are given by

c1(x) = x1x2, c2(x) =−x2(1− x1), c2(x) =−x1(1− x2).

By assuming further that the emerging random variables of the Karhunen-Loève ex-
pansion are independent and uniformly distributed on[−1,1], we obtain the unique-
ness of the respective diffusion coefficient. Note that the covariance function is in-
trinsically of rank 3 which results in the stochastic dimension m= 3. Hence, this
example fits perfectly into the considered setting of this article and is especially
well suited for the use of the MLQMC method.

We consider two different load vectors for our computations, namely

f (x) = exp(0.5x1+ x2) and f (x) = 2π2sin(πx1)sin(πx2).

Fig. 3 shows an illustration of the mean and the standard deviation of the solution
which corresponds to the first load vector. Whereas, Fig. 4 shows the mean and the
standard deviation of the solution which corresponds to thesecond load vector.
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Fig. 3 The expectation and the standard deviation of the solution in case of the load vectorf (x) =
2π2 sin(πx1)sin(πx2).

We use the pivoted Cholesky decomposition to calculate the Karhunen-Loève ex-
pansion of the diffusion coefficient. The pivoted Cholesky decomposition provides
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Fig. 4 The expectation and the standard deviation of the solution in case of the load vectorf (x) =
exp(0.5x1+x2).

a simple method to compute a low-rank approximation to the covariance operator. It
converges optimally if the eigenvalues of the covariance operator decay sufficiently
fast. In particular, if the rank of the covariance operator is finite, this is captured by
the algorithm. The major advantage of this approach is that,at any time, the cut-off
error of the Karhunen-Loève expansion is rigorously controlled in terms of the trace
norm, cf. [9].

In the following, we denote the discretized expectation andthe discretized covari-
ance operator of the diffusion coefficient byEα ∈ R

d andA ∈ R
d×d, respectively.

The arising mass matrix is neglected due to the choice ofL2-orthonormalized ansatz
and test functions. Now the pivoted Cholesky decompositionyields the approxima-
tion

‖A−LL⊺‖tr ≤ ε

for some prescribed precisionε > 0 and a low-rank matrixL ∈ R
d×m with m≪ d.

Since the eigenvalues ofLL⊺ ∈ R
d×d coincide with those ofL⊺L ∈ R

m×m, only
a small eigenvalue problem has to be solved. Here, a reasonable speed-up can be
achieved in comparison with other subspace methods for eigenvalue computation. If
v1,v2, . . . ,vm denote the orthonormal eigenvectors of the small problem, the eigen-
vectors of the large matrix are given byLv1,Lv2, . . . ,Lvm. Obviously, we have

LL⊺(Lvi) = L(L⊺Lvi) = λi(Lvi)

for all i = 1,2, . . . ,m. Due to

(Lvi)
⊺(Lv j) = v⊺i L⊺Lv j ,= λiδi, j

with δi, j being the Kronecker symbol, a rescaling of the eigenvectorshas to be per-
formed. Consequently, the discretized Karhunen-Loève expansion of the diffusion
coefficient is simply given by
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α(y) = Eα +
m

∑
k=1

Lvkyk.

Fig. 5 shows an illustration of the computed elementwise constant eigenfunctions
of the covariance operator.
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Fig. 5 The eigenfunctions of the covariance operator given by (20).

For the analysis of the convergence rates of the different quadrature rules, we
average the solutions of two runs of the multilevel Monte Carlo method on level
8 with a fairly large number of samples on the related coarse spatial mesh. As we
pointed out in this article, this reference solution is, up to a logarithmic factor, as
accurate as the standard Monte Carlo method for the finite element discretization on
level 8 with the same number of samples.

Fig. 6 shows the convergenceof the solution’s expectation and its second moment
in case of the load vectorf (x) = 2π2sin(πx1)sin(πx2). The dashed line corresponds
to the expected convergence rate 2− j . The plot implies that the convergence rate is
even about 4− j and thus much better than expected.



16 Helmut Harbrecht, Michael Peters, and Markus Siebenmorgen

2 3 4 5 6 7
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Level

E
rr

o
r

 

 

MLQMC
MLPC
MLMC

Asymptotics 2−j

2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

10
0

Level

E
rr

o
r

 

 

MLQMC
MLPC
MLMC

Asymptotics 2−j

Fig. 6 Relative errors to the expectation and the second moment of the solution in case off (x) =
2π2 sin(πx1)sin(πx2).
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Fig. 7 Relative errors to the expectation and the second moment of the solution in case off (x) =
exp(0.5x1+x2).

Fig. 7 presents the convergence of the considered methods with respect to the
load vectorf (x) = exp(0.5x1+ x2). Here, likewise nearly the double order of con-
vergence can be observed.

9.2 Infinite dimensional stochastics

The second example involves a covariance function of infinite rank. Namely, we
consider

Eα (x) = 10, Covα(x,y) =
10
7

exp

(
100
49

‖x− y‖2
2

)
. (21)
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Thus, we have to compute a finite approximation to the corresponding Karhunen-
Loève expansion. How the approximation error effects the solution of the respective
diffusion problem is investigated in [16]. The load vector under consideration is

f (x) = exp(0.1x1+0.2x2).

The computations for this example are carried out analogously to the previous ex-
ample. The only difference is that the Karhunen-Loève expansion needs to be ap-
propriately truncated. For example, it consists of 46 termson the finest level.
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Fig. 8 The expectation and the standard deviation of the solution.
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Fig. 9 Relative errors to the expectation and the second moment of the solution.
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Fig. 9 shows the convergence behaviour of the different quadrature rules under
consideration. Now, the convergence rate fits exactly the expected decay 2− j of the
error. This is even observed in case of MLQMC although the choice of the number
of quadrature points is heuristically.
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