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On multilevel quadraturefor eliptic stochastic
partial differential equations

Helmut Harbrecht, Michael Peters, and Markus Siebenmorgen

Abstract In the present article, we show that the multilevel Montel@€arethod
for elliptic stochastic partial differential equationsnche interpreted as a sparse
grid approximation. By using this interpretation, the nuetttan straightforwardly
be generalized to any given quadrature rule for high dinmarvadiintegrals like the
quasi Monte Carlo method or the polynomial chaos approaesidgs the multilevel
quadrature for approximating the solution’s expectatiosimple and efficient mod-
ification of the approach is proposed to compute the stoichssiution’s variance.
Numerical results are provided to demonstrate and quathigfapproach.

1 Introduction

The present article is dedicated to the numerical solutioelliptic second order
boundary value problems with stochastic diffusion coedfiti A principal approach
to solve such stochastic boundary value problems is the &Gatlo approach, see
e.g. [15] and the references therein. However, it is extigr@epensive to gener-
ate a large number of suitable samples and to solve a deistiminoundary value
problem on each sample. To overcome this obstruction, tHelevel Monte Carlo
method (MLMC) has been developedin [1, 7, 8, 11, 12]. Fronstbehastic point
of view, it is a variance reduction technique which consathéy decreases the com-
plexity. The idea is to combine the Monte Carlo quadratutéeftochastic variable
with a multilevel splitting of the Bochner space which cangthe random solution.
Then, to compute the solution’s statistics, most sampledegerformed on coarse
spatial discretizations while only a few samples must béopered on fine spa-
tial discretizations. As we will show, this proceeding canifiterpreted as a sparse
grid approximation of the expectation and variance. Byaeiplg the Monte Carlo
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quadrature by another quadrature rule for high dimensiotedrals yields e.g. the
multilevel quasi Monte Carlo method (MLQMC) or the multipolynomial chaos
method (MLPC).

2 Sparsegrids

Let i i _
Volev vl cocu, i=12,

denote two sequences of nested, finite dimensional spatle$naieasing approx-
imation properties in some abstract spacgs To approximate a given object
of the spacesq x 7% one canonically considers tHall tensor product spaces
Uj = vV @ V®. However, the cost ditdj = dimv Y ~dimVj<2) are often too ex-
pensive. This drawback can be avoided by considering theogjpation in so-
called sparse gridor sparse tensor product spaceko this end, one defines for
j > 1 the complement spaces

0y gy
wl=viievl =12

and gains the multilevel decompositions
vl —pw®", w =y i=12 (1)

Thus, the sparse grid space is defined by
6= 5 wew? 2)
(+0<

It contains, up to logarithmic factors, only rr@«'mvj(l) , dimVj(Z) 1 degrees of free-
dom but offers nearly the same approximation powedagrovided that the object
to be approximated offers some extra smoothness by meansed megularity.

Sparse grids are used for the approximation of high-dinoerasdata or functions
[10] and for the numerical solution of partial differentijuations [18]. Another ap-
plication issues from the construction of quadrature fdem(i5]. For all the details
we refer the reader to the survey [2] and the referencesithere

In the present context of stochastic partial different@lations, the sequence

{Vj(l)} will correspond to a sequence of Bochner spaces which mapdhalimen-

sional unit cubé&] onto nested finite element spaces. Whereas, the seq{l\éﬁ&}a
will correspond to a sequence of quadrature rules which coenihe Bochner inte-

1 This holds under the assumptions that the dimensionezéj(ﬁf ande(z) scale like geometric
sequences.
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W4(1) VO(Z)

Fig. 1 Different representations of the sparse grid s;ﬁ),ce

gral. To arrive at thenultilevel quadrature methasle will make use of the following
equivalent representation of the sparse grid space (2)ewnaf (1), one can rewrite
(2) according to

i it j
g — 1) 2\ _ D oy @
Uj= Z W7 ® <FZOV\/€, ) = Z W, " @V,

(see Fig. 1 for an illustration). This makes the specificatid the complement

spacesv\/j<2) obsolete. Indeed, even the nestedness of the quadratunts pan be
neglected since it is sufficient that the error of quadratie@eases as the dimension

of VJ-(Z) increases.

The rest of this article is organized as follows. We intragltiee elliptic model
problem of interest in Section 3 and transform it to a paraimdtffusion problem
in Section 4. The next two sections are dedicated to theetigation, namely the
quadrature rule for the stochastic variable (Section 5)taadinite element method
with respect to the physical domain (Section 6). The muileuadrature for the
random solution’s expectation is proposed in Section 7.ctimeputation of its vari-
ance requires some modifications which are carried out inic®e8. Finally, in
Section 9, we provide numerical results to demonstrate aadtify the approach.
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3 Problem setting

In the following, letD ¢ R" for n = 2,3 be a polygonal or polyhedral domain and
let (Q,2,P) be a probability space witb-field = c 22 and a complete probability
measuré, i.e., for allA C BandB € X with P[B] =0 it follows A € X andP[A] = 0.
We intend to compute the expectatiBp := E(u) and the varianc&\, := V(u) of
the random function(w) € H}(D) which solves for aimost atb € Q the stochastic
diffusion problem

—div (a(w)Ou(w)) = fin D. (3)

To guarantee unique solvability of (3), we assume th@b) is almost surely uni-
formly elliptic and bounded

0 < Omin < a(w) < Amax < @ in D. (4)

For sake of simplicity, we further assume that the stocbastiusion coefficient is
given by a finite Karhunen-Loéve expansion

0. ) = Ea()+ 3 /A h() ©)
k=1

with pairwise orthonormal functiongy € L*(D) and stochastically independent
random variablegi(w) € [—1,1]. Especially, it is assumed that the random vari-
ables admit continuous density functiopg: [-1,1] — R with respect to the
Lebesgue measure.

In practice, one generally has to compute the expansiorrds) the given co-
variance kernel

Cova(x,y) = /Q {a(x, @) — Ea(x) }{a(y, ) — Ea(y) } dP(c0).

If it contains infinitely many terms, it is appropriately treated which will induce
an additional discretization error. For all the details eker the reader to [6, 13, 16].

4 Deterministic reformulation

The assumption that the random variablgs(w)} are stochastically independent
implies that the respective joint density function and thietj distribution of the
random variables are given by

m

py) = |!_| pr(yk) and  dPp(y) == p(y)dy.
=1

Now we are able to reformulate the stochastic problem (3)gmrametric determin-
istic problem by replacing the spatg(Q) by L%(D) where( := [-1,1]™. Thus,



On multilevel quadrature for elliptic SPDEs 5

the stochastic space is identified with its imagé&] with respect to the measurable
mapping
Q=0 w-yY(w) = (Y(w),. .. pu(w).

Hence, the random variablgg are substituted by coordinatgs= [—1, 1]. With this
construction at hand, we define the parameterized and tieshdédfusion coefficient
a:DxO—Rvia

a(x.y) = Ea(x) + k§ N
=1

for all x € D andy = (y1,Y2,...,Ym) € 0. This leads to the following parametric
diffusion problem:

find u € L5 (0;Hg (D)) such that (6)
—div(a(y)Ou(y)) = finDforally € 0.

Here and in the sequel, for a given Banach spgaaée Bochner spadf;g(D; X),
1< p < oo, consists of all functiong: (1 — X whose norm

(/D Ivy)lI%e(y) dy) 1/p, p<oo

esssufiv(y)p(y)llx, p=oo
yed

HV|||_2(D;><) =

is finite. If p=2 andX is a Hilbert space, the Bochner space is isomorphic to the
tensor product spad.(%(D) ® X. Finally, the Bochner spad&([J; X) consists of all
continuous mappings: [0 — X.

By the Lax-Milgram theorem, unique solvability of the paswnic diffusion
problem (6) inL,%(D;H&(D)) follows immediately from the condition (4) on the
stochastic diffusion coefficient. In [17], it has furthereoeproven that the solu-
tion u of (6) is analytical as mapping : [0 — Hol(D). At least in case of uni-
formly distributed random variablgsyy}, it is even analytical as mapping O —
H&(D)NH?(D), provided that the functionigpy} in the Karhunen-Loéve expansion
(5) are inW'=(D), see [3].

5 Quadraturein the stochastic variable

Having the solutiomu € L,% (D; H&(D)) of (6) at hand, then its expectation and vari-
ance are given by the high dimensional integrals

Eu(x) = [ ulxy)p(y)dy € H(D) ™
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and
Vulx) = B0~ E30) = [ lxy)ply)dy—EZ(0 ewgh(D). (@)

To compute these integrals, we shall provide a sequenceadrgture formulae
{Q} for the Bochner integral

Ly (O;X) = X, Iv= '/D.v(-,y)p(y)dy

whereX C L?(D) denotes a Banach space. The quadrature formula

N,
QL (5 X) — X, QEV:_Zwe,iV(',fe,i)P(Ee,i) (©)

is supposed to provide the error bound
(1= Qe)VIIx < &rllVlleoix) (10)

uniformly in ¢ € N, where{g} is a null sequence and?([J; X) C L%(D,X) a
suitable Bochner space. For our purpose, we assume thatrhigen of points\, of
the quadrature formul@, are chosen such that

g=2" (11)

The following particular examples of quadrature rules (8 eonsidered in our
numerical experiments:

e Inthe mean, the Monte Carlo method satisfies (10) gjith N[l/z and. (00; X) =
L%(D;X).
e The standard quasi Monte Carlo method lead typicallyite- N;l(logNg)m

and the Bochner spac#’([J; X) :Wﬁl]’ii(D;X) which consists of all functions
v : O — X with finite norm

ollala
Om V(y)

O dy < oo, 12

X

||VHW1,.1 ax) = /
mix( =) Hfﬂ\gél =

see e.g. [14]. Note that this estimate requires that theitilensatisfy px €
Wi ([-1,1]).

e If v:[ — X is analytical with respect to the variabje then one can apply a
tensor product Gaussian quadrature rule, yielding an exqtal convergence
rateg, = exp(—bNél/m) andsZ (0; X) = L*(O; X). In fact, the polynomial chaos
approach introduced in [4] can be interpreted as a dimensieighted ten-
sor product Gaussian quadrature rule (with weights depgnali the numbers

{V Al bl o) 1)-
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6 Finite element approximation in the spatial variable

In order to apply the quadrature formula (9), we shall cataithe solutionu(y) €
Hol(D) of the diffusion problem (6) in certain poinyse [1. To this end, consider a
coarse grid triangulation/tetrahedralizatigh = { 7o} of the domairD. Then, for
¢ > 1, a uniform and shape regular triangulation/tetrahezltin .7, = {1/} is
recursively obtained by uniformly refining each triangi¢rahedrorr,_q  into 2"
triangles/tetrahedrons with diameter~ 2-¢

Define forp > 1 the finite element spaces

ZP(D):={veC(D):V|sp =0andv|; € Z,forall T € 7} C H3(D),

where &, denotes the space of all polynomials of total degpee 0. Then, the
solutionu(y) € .#(D) of a finite element method in the spage”(D) admits the
following approximation properties.

Lemma 1. Let the domain D be convex and<fL?(D). Then, the finite element
solution u(y) € %p(D) of the diffusion problen6) satisfies the error estimates

lu(y) = ) lInyo) S 2~ Iu) e, (13)

and
I (y) = ) oy < 27U 32 o) (14)

Here, the constants hidden {&3) and (14) depend ormin and dmax, but not on
y e .

Proof. The parametric diffusion problem (6) K2-regular sinceD is convex and
f € L2(D). Hence, the first error estimate immediately follows frore gtandard
finite element theory. We further find

() = UEY) o) = | (u(y) = e(¥) (UY) + Uey)) (o)
S u(y) = uey) oy IU(y) +uey) 2oy
+[lu(y) = uy)ll2(oy 1Uy) + U)oy

By using
[ueY)l2oy < U 3oy + 1UY) = Uy lhr o) S (2+27 U llzp)

and the corresponding estimatelif(D), we arrive at the desired estimate (14

2 Error estimates in respectively?(D) andL*(D) are derived by straightforward modifications,
yielding the convergence rate 4 Then, the error analysis of the multilevel quadrature can b
performed with respect to these norms, provided that theigpom of the quadrature (10) is also
chosen as; = 4°*.
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7 Multilevel quadrature method for the expectation

We now have to combine the quadrature method with the mudtiliinite element
discretization. To this end, we define the ansatz spaces

VY= {Gj(y)v(x.y) : ve C(T;HE(D)) andy € O} € L2(0;.#P(D)).  (15)
Herein,G;(y) denotes the Galerkin projection
Gj(y) : H3(D) = .#P(D), v,
defined via the Galerkin orthogonality

/[; a (x,y)0(v(x) — vj(x)) Owj(x) dx = O for all w; € (D).

Note that this bilinear form issues from the weak formulatd (6) in H} (D).
To compute the expectation (7) we shall apply the quadratle®); to the finite
element solution ir:Vjp(D) which yields

Nj
Ey(x) = Qj (Gj(y)u(x,y)) = _;wj,iej (§5)ux &P (&) (16)

This can be interpreted as thi@l tensor approximation of the functidy, in the
product space'j(l> ®Vj(2) where the quadrature ru@; serves as “space}’j(z).

In contrast to this, settinG_1(y) := 0 for all y € [J, the sparsetensor product

ZéZOV\Q(l) ®Vj(f)£ is performed with the help of the complement spaces

WY = {(Guly) — Gr_a(y))V(x,y) : ve C(T;HE(D)) andy e O} c VY.

Namely, we consider the sparse tensor approximation

j
Eu(X) ~ /;ijz(Ge(Y)U(X,Y) —Gra(y)u(x,y)) (7)

i Njr

= /; ; @i (Ge(& - p)u(X: &) = Go-1(& e )UX, & 1)) P(Ej_)-

3 There holds the identityj(l) = Pj (L3 (T; H3(D)) ) whereP; : L3 (T;H3 (D)) — L3 (03;.#(D))
is the Galerkin projection with respect to the bilinear fokmL_2 (0;H3 (D)) x L2 (0; H}(D)) — R
given by

Alv,w) := /D /Da(x,y)va(x,y)wa(x,y)p(y) dxdy.

This bilinear form stems from the weak formulation of thegraetric diffusion problem (6) in the
Bochner spacef,([]; H&(D)). The equivalence of thiweak definitiorto the pointwise definition
(15) follows immediately from the analyticity of the solaitis to (6) in the parametgr



On multilevel quadrature for elliptic SPDEs 9

Loosely speaking, the functiane L%(D; H&(D)) is divided intoj slices in accor-
dance with the modulus of its entity. Then, for every slite precision of quadra-
ture is properly chosen. We refer to Fig. 2 for a graphicakiitation.

precision -
wiY Qs
w Qs
w Q2
w Q1
wb | Q

Fig. 2 Visualization of the multilevel quadrature.

Theorem 1. Letue 27 (0;H(D)NH?(D)) and let{Q,} be a sequence of quadra-
ture rules which satisff10)and(11). Then, it holds

Proof. Sinceu € 57 (0;H3(D) NH?(D)), the estimate (13) implies the decay

<27 j|lull im0y
HL(D)

j
Ey(x) — /z Qj—¢(Ge(y)u(x,y) — Ge_1(y)u(x,y))
~o

IGe(Y)uX,y) = G 1)UV imtoy) S 27Ul oz o))

This, together with (10), (11), and (13), yields
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;QJ —e(Ge(Y)u(x,y) — Gr_1(y)u(x,y))

S [Eu) = 1G5 (U06)) s o)
j

< 2 ullig o)) +%2£7j27€”u”f<5:'*2@>>

HY(D)

(I = Qj—e) (Ge(Y)u(x,y) — Gr_1(y)u(x,y))

H*(D)

S 27§l ez o)) -
|

Remark 1The convergence rate of the full tensor approximation (4&){. There-
fore, the convergence rate of the sparse tensor approximiv) is only the loga-
rithmic factor j smaller. This factor can be removed, if the precision of qaade
g, is chosen ag~ (192! for somed > 0 since

j j
; 257]27[0‘ _ é)*(l‘f’é) _ 27] /z [*(1+5) 5 27]
/=0 (=0

This choice was proposed in [1].

8 Multilevel quadrature method for the second moment

The determination of the random solution’s variance (8unexs the computation
of its second momeri . € Wol’l(D) which can be performed similarly to the ex-
pectation. The full tensor approximation

( ) QJ( %fﬂ X EJ |)) (Ej,i)

corresponds to the approximation in the product “sp&f@’@Vj(z) with

V= {(Gjly)v(x.,y))?: ve C(T;HE(D)) andy € O} C L2 (0,.77°(D)).

To define the related sparse tensor approximation, we set

= {(Guy)V(x,y))* = (Gr1(y)V(x,y))’:
ve C(O;H(D)) andy € O} € \7j(1)
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Then, the approximation df . in the sparse product “spacgizoVN\/j(})é 2V is
given as

i
Be(0~ ¥ Qu-r((Gu0y)’ - (Gra)uixy)’)

i N

J
=2 2 9 ((Gi(&;-cutx.E )
~ (Gea(Eji)ulx, El'*ﬂi))z)p(sj—é,i)'

To estimate the discretization error of this sparse tengomimation, we will need
to further estimate the expression

(1-Qj—0) (GE(Y)U(XaY))Z— (szl()’)u(xa)’))z -
WHi(D))

<27 (Guy)uxy)? = (Braly)ux.y))?

(18)

2 (OWLH(D))

If ue 7 (0;H}(D)NH?(D)), then this is clearly possible by using (14) but requires
some further specification of the Bochner spat&(]). For example, it77(0) =
L2(0), we arrive at

H (Gé(y)u(xay))z - (Gg,l(y)U(X,Y))ZHL%(D;W;M(D)) S 27£||u||ff,(D;H2(D))'

Whereas, it7(0) = W-1(0), one gets, in view of (12), the estimate

mix

H (GZ(Y)U(X,Y))Z - (fol(y)u(xvy))ZHWr%]&(D;Wl,l(D)) ,S 27z|‘u|‘a%ix(D;H2(D))’

where the norm irH,}ﬂx(D;X) is defined in complete analogy to (12). Finally, in

case of7’(0J) = L (0J) we obtain

| (Gé(}’)u(xa)’))z - (fol(y)u(x’y))ZHL"g(D;WM(D)) S 27€||U||52,°(D;H2(D))'

These examples cover the three quadrature formulae speicifigection 5. There-
fore, itis reasonable to make the assumption that a secociti@ospaces (;H?(D)) C
2 (0;H?(D)) exists with which we can bound the right hand side in (18).

Theorem 2. Let ue 7 (0;H}(D)NH?(D)) and let{Q,} be a sequence of quadra-
ture rules which satisf{10)and(11). Moreover, assume that

H (Gf(y)u(xay))z - (Géfl(y)u(xay))ZHL;f(D;Wm(D)) 5 27[”u|‘2j(D;H2(D))' (19)

Then, there holds the following error estimate:
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Proof. Analogously to the proof of the sparse tensor approximatdhe expecta-
tion, we find

] 2 2
B2~ 3 Qr((Gryuy)’ - (Gray)utey)’)

WL1(D)

<2711l ey + I o)

j 2 2
B0~ 3 Qr((Bry)uy)’ - (Gr-ay)utey)’)

WL1(D)
’S ||IEU2 = (GJ (y)U(X7y))2HW1~1(D)

Wl’l(D)

j 2 2
+3 [0 - Qi ((@ryuxy)’ - (Gr-sutxy))’)|
Herein, the first term is estimated by

HEUZ -1 (GJ (y)U(X,y))ZH\NLl(D) /S 27] ”u”Eﬁ(D;HZ(D))'

By bounding the second term by (18), (19), we derive the ddsérror estimatell

9 Numerical results

In the implementation of our numerical examples we congiuet -shaped domain
D = (-1,1)?\ (—1,0]? c R? and choose piecewise linear finite elements on trian-
gles for the discretization (i.e., the spac{egjl(D)}). Then, the variance will be
a piecewise quadratic finite element function which liveshia spacei?f(D)}.
Therefore, the multilevel mesh transfer can be performedumdratic prolonga-
tions.

It is well known that an approximation of the diffusion coeiint by element-
wise constant functions sustains the over-all approximnadrder achieved by the
piecewise linear finite elements on the finest mesh. On theseomeshes, the dif-
fusion coefficient is successively replaced by its meanevalith respect to the
current triangulation. This does not affect the stiffnesarines but simplifies the
computations considerably.

In the following tests, we compare the multilevel Monte @arlethod, the multi-
level polynomial chaos method, and the multilevel quasi Mddarlo method. The
quasi Monte Carlo method is based on the Halton sequencevii¥fe the num-
ber of quadrature points is chosen equally to the number afligiure points of
the multilevel Monte Carlo method. The polynomial chaoshnodtis implemented
along the lines of [4], but the choice of the polynomial degeecoupled to the exact
behaviour of the eigenvalues.
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9.1 Finite dimensional stochastics

The first example treats the stochastic diffusion probleth wiffusion coefficient
determined by the statistics

Eq(X) = 6.5+ c1(X) 4+ Cc2(X) + c3(X),

Cova(x,y) = C1(X)ca(y) + Ca(X)Caly) + Ca(x)ca(y). (20)

where the coefficient functions are given by
Ci(X) =x1Xz, Co(X) =—X(l=X1), Co(X)=—X(1—X2).

By assuming further that the emerging random variableseoKérhunen-Loeve ex-
pansion are independent and uniformly distributed-eh 1], we obtain the unique-
ness of the respective diffusion coefficient. Note that theadance function is in-
trinsically of rank 3 which results in the stochastic dimiensn = 3. Hence, this
example fits perfectly into the considered setting of thicker and is especially
well suited for the use of the MLQMC method.

We consider two different load vectors for our computatjaranely

f(x) = exp(0.5%1 + xp) and f (x) = 277 sin(11x1) sin(7x2).

Fig. 3 shows an illustration of the mean and the standarcatieni of the solution
which corresponds to the first load vector. Whereas, Figodvshihe mean and the
standard deviation of the solution which corresponds ts#wend load vector.

i
A

AN
/ "”d’fﬂg;‘ﬁg@gm\\\r

1
il

Fig. 3 The expectation and the standard deviation of the soluti@ase of the load vectdr(x) =
2112 sin(11x1 ) Sin(71x2).

We use the pivoted Cholesky decomposition to calculate Hrakhen-Loeve ex-
pansion of the diffusion coefficient. The pivoted Choleskgamposition provides
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oS

o
A5
%

Fig. 4 The expectation and the standard deviation of the soluti@ase of the load vectdr(x) =
exp(0.5x1 +X2).

a simple method to compute a low-rank approximation to tivaigance operator. It
converges optimally if the eigenvalues of the covariancalpr decay sufficiently
fast. In particular, if the rank of the covariance operasgdinite, this is captured by
the algorithm. The major advantage of this approach is #iany time, the cut-off
error of the Karhunen-Loéve expansion is rigorously caligd in terms of the trace
norm, cf. [9].

In the following, we denote the discretized expectationthedliscretized covari-
ance operator of the diffusion coefficient By, € RY andA € R%<9, respectively.
The arising mass matrix is neglected due to the choité-afrthonormalized ansatz
and test functions. Now the pivoted Cholesky decompositieluls the approxima-
tion

[A-LLT[lr<e

for some prescribed precisian> 0 and a low-rank matrix. € R9™ with m < d.
Since the eigenvalues afL. T € R9*¢ coincide with those of TL € R™™, only
a small eigenvalue problem has to be solved. Here, a reasospded-up can be
achieved in comparison with other subspace methods fonedd@e computation. If
V1,Vao,...,Vm denote the orthonormal eigenvectors of the small probleenetgen-
vectors of the large matrix are given hy1,Lv»,...,Lvy. Obviously, we have

LLT(Lvi) =L(LTLv;) = Ai(Lv})
foralli=1,2,....m Dueto
(LVi)T(LVj) :ViTLTLVj,: )\id,j

with & ; being the Kronecker symbol, a rescaling of the eigenvettasso be per-
formed. Consequently, the discretized Karhunen-Loeyaesion of the diffusion
coefficient is simply given by
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m
aly) =Ea+ ) LVivk-
k=1

Fig. 5 shows an illustration of the computed elementwisestaomt eigenfunctions
of the covariance operator.

Fig. 5 The eigenfunctions of the covariance operator given by. (20)

For the analysis of the convergence rates of the differeatiaiure rules, we
average the solutions of two runs of the multilevel Montel@€anethod on level
8 with a fairly large number of samples on the related cogpatial mesh. As we
pointed out in this article, this reference solution is, amtlogarithmic factor, as
accurate as the standard Monte Carlo method for the finiteeziediscretization on
level 8 with the same number of samples.

Fig. 6 shows the convergence of the solution’s expectatidrita second moment
in case of the load vectdi(x) = 27 sin( 7 ) sin(71xz). The dashed line corresponds
to the expected convergence raté ZThe plot implies that the convergence rate is
even about 4/ and thus much better than expected.



16 Helmut Harbrecht, Michael Peters, and Markus Siebenemorg

10 T T T T 10

1079

g 2 107 T
0 0 T
10°
10°
10 —=—mLQme “o-MLQMC
—s—MLPC : —s—MLPC
——MLMC : ——MLMC
_|l=~ Asymptotics 27| |-~ Asymptotics 27!
10 : ‘ : ‘ 10 : ‘ : ‘
2 3 4 5 6 7 2 3 4 5 6 7
Level Level

Fig. 6 Relative errors to the expectation and the second momehedafdlution in case of (x) =
271 sin(T1¢1 ) Sin(T1X ).
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Fig. 7 Relative errors to the expectation and the second momehecddlution in case of (x) =
exp(0.5x1 +X).

Fig. 7 presents the convergence of the considered methddgegpect to the
load vectorf (x) = exp(0.5x1 + x2). Here, likewise nearly the double order of con-
vergence can be observed.

9.2 Infinite dimensional stochastics

The second example involves a covariance function of igfirsink. Namely, we
consider

10 100
Ba() =10, Cowa(y) = Top( Gglx-viE). (@)
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Thus, we have to compute a finite approximation to the coardimg Karhunen-
Loéve expansion. How the approximation error effects tteton of the respective
diffusion problem is investigated in [16]. The load vectoder consideration is

f(x) = exp(0.1x1 + 0.2x7).

The computations for this example are carried out analdgdoghe previous ex-
ample. The only difference is that the Karhunen-Loéve agmm needs to be ap-
propriately truncated. For example, it consists of 46 teomghe finest level.

7
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Fig. 8 The expectation and the standard deviation of the solution.
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Fig. 9 Relative errors to the expectation and the second momehedafdlution.
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Fig. 9 shows the convergence behaviour of the different guack rules under

consideration. Now, the convergence rate fits exactly tipeeted decay 2 of the
error. This is even observed in case of MLQMC although theéaghof the number
of quadrature points is heuristically.
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