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Second moment analysis for Robin boundary
value problems on random domains

H. Harbrecht

Abstract We consider the numerical solution of Robin boundary valebdlems on
random domains. The proposed method computes the meanewarthnce of the
random solution with leading order in the amplitude of thed@am boundary pertur-
bation relative to an unperturbed, nominal domain. Theavene is computed as the
trace of the solution’s two-point correlation which saéisfa deterministic boundary
value problem on the tensor product of the nominal domainsdliee this moderate
high-dimensional problem by either a low-rank approximatdy means of the piv-
oted Cholesky decomposition or the combination technigath approaches are
presented and compared by numerical experiments withcegptheir efficiency.

1 Introduction

Many problems in physics and engineering sciences leaduodary value prob-
lems for an unknown function. In general, the numerical $ation is well under-
stood provided that the input parameters are given exdsithge, however, exact
input parameters are often not known in engineering, it igrofving interest to
model such parameters as random variables.

A principal approach to solve boundary value problems wathdom input pa-
rameters is the Monte Carlo approach, see e.g. [37] andfitrenees therein. How-
ever, itis hard and extremely expensive to generate a langdar of suitable sam-
ples and to solve a deterministic boundary value problemagh sample. Particu-
larly in the present case of random domains, each new sampksponds to a new
domain which needs to be discretized. Thus, we aim here akatddeterministic
method to compute the random solution.
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Deterministic approaches to solve stochastic partiakdffitial equations have
been proposed in e.g. [1, 11, 13, 14, 25, 32, 38]. Thereiulihgg and coefficients
have been considered as random input parameters. Rederjéy,23, 27, 33, 34,
43], also the underlying domain has been modeled as a rancjom parameter
D(w). For example, this enables the consideration of tolerantéise shape of
products fabricated by line production. Other applicagianse from blurred inter-
faces like cell membranes or molecular surfaces.

The present paper is dedicated to the numerical treatmeRbbin boundary
value problems on random domains which, to the best of ouvladge, is the first
time in the scientific literature. We assume small randontupleations around a
nominal domairD with known second order statistics. Then, following [27f w
can linearize to derive, with leading order in the amplitedi¢he perturbation pa-
rameter, deterministic equations for the random solusierpectation and two-point
correlation

Ey(x) = /Q u(x, ) dP(w)

x,y € D.
Coru(x,y):/Qu(x,oo)u(y,w)dP(w)

From these quantities the variance is derived by
Vu(x) = Coru(x,y)|,_, —E4(x), xe€D.

The solution’s two-point correlation is given by a partidffetential equation
which lives on the tensor product domdinx D. We solve this moderate high-
dimensional problem by either a low-rank approximationthia pivoted Cholesky
decomposition or the combination technique which is a gppeariant of a sparse
tensor product approximation. This way, we are able to cdmpath, the expecta-
tion and the variance by standard finite element techniques.

Besides the modeling and the derivation of the underlyingaéigns, we discuss
in this paper the implementation of the proposed algoritimparticular, we com-
pare the low-rank approximation and the tensor productamation with respect
to their cost-complexities by numerical results.

The rest of the paper is organized as follows. In Section 2nedel the random
domain under consideration. Moreover, for the associateirRboundary value
problem, we derive deterministic boundary value probleongtie expectation and
two-point correlation of the random solution. In Sectiona& introduce the vari-
ational formulations of these deterministic boundary gghuoblems. Section 4 is
dedicated to an abstract overview on the efficient solutibtesor product-type
boundary value problems which arise in the present conid. particular finite
element discretization of the problems under consideraie performed in Sec-
tion 5. In Section 6, numerical experiments are carriedouétidate the theoretical
findings and to compare the low-rank approximation with {h&rse grid approach.
Finally, in Section 7, we state concluding remarks.
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2 Robin boundary value problems on random domains

Let (Q,Z,P) be a suitable probability space. We consider the dorbam) as the
uncertain input parameter of an elliptic boundary valuépm with Robin bound-
ary conditions, i.e.,

—Au(x,w) = f(x), xeD(w)

a(x)u(x, w) + @(x, w)=9g(x), xe€dD(w)

} we Q. Q)
an

Here,a(x) > 0 is a nonnegative function, where the particular chai¢g) = 0
yields the Neumann boundary condition.

To model the random domaid(w), letD denote a smooth reference domain and
consider random boundary variations in the direction ofair normal

U(x, w) = ek (X, w)n(x) : D — R"

with
K(w) € L3(Q,C*1(dD)) suchthat ||k (w)l|caigp) < 1

almost surely. Then, the random domBifrw) will be described via perturbation of
identity

ID(w) = { (I +eU(w))(x) = x+ ek (x,w)Nn(x) : x € ID}.

For what follows we assume that the expectafiagnand the two-point correlation
Cor of the boundary perturbatianare given. Without loss of generality (otherwise
we redefineD correspondingly) we assume that the perturbation kelsicentered,
i.e., thatE, = 0.

For a small perturbation amplitude> 0, one can linearize (1) by means of shape
calculus [12, 40]. This leads to the following stochastiaps Taylor expansion

u(x, ) = U(x) 4 €Uk (w)](x) + O(?), x K eD. (2)

Therein, the compact sé& € D is assumed to satisfit € D(w) almost surely.
Moreover,u € H1(D) denotes the solution to the deterministic Robin boundary
value problem

-AU(x) = f(x), xeD

ot - 3)
%(x) =g(x), xedDb

and the shape derivatiei = du[k| € HY(D) satisfies the following Robin boundary
value problem with random loading (cf. [31])

a(x)u(x) +

Adu(x) =0, xeD

a(x)ou(x) + (i?—ér:J(X) =divr (k(x)0ru(x)) + k(x)h(x), x € dD. )
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Here, we used the abbreviation

d(g—au)

— ), ©)

h(x) := f(x) + 22 (x)(g9(X) — a(x)u(x)) +

where# = (n— 1) is the additive curvature an#’ is the mean curvature of the
surfacel”.

Theorem 1.Assume that the compact seteD satisfies Ke D(w) almost surely.
Then, it holds that

Eu(X) = U(x) + O(£?)
£

Vulx) = £2Corsy (), + () } xek ©

Herein,u € H1(D) and Corgy(x,y) € HY (D x D) := H(D) x H(D) satisfy the
deterministic boundary value problert® and

X=y

(Ax® Ay) Corgy(x,y) =0, X,y €D,
Ay Corsy(x,y) =0, xe€D,yedD,
Ay Corgy(x,y) =0, x€dD,yeD,
(a00+ 50 ) @ (a)+ 55, )| Comutey) = contxymoeny) @
+divr x [Corc(x,y) (Bru(x) ® f(y))] +divr y [Cor(x,y) (h(x) ® Oru(y))]
+ (divr x®divr y) [ Cor(x,y) (Oru(x) ® Oru(y))], X,y € dD.
Proof. By using the shape-Taylor expansion (2), we obtain
Ey(x) =T(X) + €E(Su[k (w)] (X)) + O(€?).

By the linearity of the expectation operaf®y taking the expectation on both sides
of (4), and observing that, (x) = 0, we havef 5,(x) = E(8u[k (w)](x)) =0, which
yields the first claim.

Observe the following estimate

V(a+bX4cY) = b?V(X) 4 2bcCov(X,Y) +c?V(Y)
< b?V(X) + 2bey/V(X)V(Y) + 2V(Y),

whereX andY are two random variables with finite second moments. By cainbi
this estimate with the shape-Taylor expansion (2), we cale!

Vu(x) = €2V (Sulk (w)](x)) + 1/ V(Sulk (w)](x)) O (£3) + O/(*)

= 2Vsu(X) + O(£%).
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Due toE,(x) = 0, we arrive at the identity 5,(x) = Corsy(X,y) \X:y which proves
the second claim. The boundary value problem (7) forsG s finally derived by
tensorizing (4) and taking the expectation. This complétegroof. O

Remark 1The relative error of the expectationdg £?) while the relative error of
the variance ig’(&). According to [8], the first order shape-Taylor expansiong2
nevertheless sufficient to compute also higher order mosyéiihe random solution
with relative accuracy/(¢€).

3 Variational formulation

We shall introduce the variational formulations of the bdarry value problems un-
der consideration. The approximate expectatienH*(D), satisfying (3), is deter-
mined by the variational formulation

seekt € H1(D) such thai(T,v) = ¢1(v) for all v e HY(D), (8)

where the bilinear forma: H1(D) x H(D) — R is given by
a(u,v) := /5Du(x)Dv(x) dx+/ﬁBa(x)u(x)v(x) do
and the linear fornf; : HY(D) — R by
l1(v) = /;f(x)v(x) dx + /7g(x)v(x) do.
D Jop

The shape derivativéu = du[k] € H(D) in a given directionk € C>1(9D)
satisfies the boundary value problem (4). The associatadtiearal formulation
involves the same bilinear form as (8), but a different linfeam on the right hand
side. Namely, we find

seekdu € H(D) such thai(du,v) = £,(v) for all ve HY(D), 9)

with the linear form¢, : H1(D) — R being defined by

la(v) = /d K00 {n() = 0ruGoDr Jv(x) dor

Note that we applied integration by parts in the definitiontloé linear form.
Moreover, the functiorh is defined (5). Thus, the two-point correlation function
Corg, € HY, (D x D), which is given by the tensor Robin boundary value problem
(7), satisfies the variational formulation

seek Cog, € HY, (D x D) such that

Lo (10)
A(Corgsy, V) = L(v) for all v € Hy,, (D x D).
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Here, the bilinear fornA: HY,(D x D) x H},(D x D) — R reads as

AW = [ (00 0y)ux y) (0 Oy Vi y) dy o
+ [ [ a)Dacy) Buvix.y) doy o
+AD/ X)Oyu(x,y)Byv(x,y) dy dox
+AD/ u(x,y)v(x,y) doy dox

and the linear forn : HY,. (D x D) — R is

= [+ | Conctxy) {9 - 0raOr 1}
-{h(y) — Ortu(y)Or y }v(x,y) doy dox.

Theorem 2. The variational problemg8), (9), and (10) are uniquely solvable pro-
vided thata (x) £ 0.

Proof. The standard theory of Robin boundary value problems yitld€xistence
of constants & cg < cg < « such that it holds

2
CE”u”Hl(ﬁ) < a(U, U), a(u V) < CSHUHHl HV”H:L
for all u,v € H(D). Thus, we conclude
Elulfs 5.5 ALY, ALY < Ul 5.0 Vg, ©.5)

forallu,ve Hr}“X(D x D) by a tensor product argument since the bilinear fém-)
is derived froma(-,-) via tensorization. The Lax-Milgram theorem implies finally
the assertion. O

Remark 2If a(x) = 0, then we arrive at the Neumann boundary value problem
and obtain thus the ellipticity dd(-,-) only in the spacé_il(D) =HYD)\R and
that of A(-,-) in the spacéi, (D x D) := H(D) ®@ H"(D). Consequently, unique
solvability of the variational problems (8), (9), and (18)btained in these energy
spaces.
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4 Solving tensor product boundary value problems

4.1 An abstract view on the linearization approach

The linearization of a linear second order elliptic bourydalue problem with re-
spect to a given input parametefw) involves the associated derivatide(w) €
2 (D). Itis generally given by a boundary value problem

o/du(w) = f(w) onD,

wheres? : (D) — (D) denotes a linear, second order elliptic partial differ-
ential operator which is defined on a dom&nc R". Typically one might think
of (D) being a Sobolev space with duat”’ (D). Moreover, the random input
parameter linearly enters the right hand sidev) € 7#”(D) since the mapping
K(w) — du(w) is linear.

The two-point correlation Cgy, € ##mix(D x D) := .2#(D) ® ¢ (D), which pops
up in the asymptotic expansions (6), is given by the tensodyet problem

(o @ o) Corg, = Cor; onD xD. (11)
Especially it holds Care %, (D x D) = ¢/ (D) @ (D).
In the following, we give an overview on the efficient solutiof partial differen-
tial equations with the tensor product operator <7 on the product of the physical

domainD x D such as (11). Various concepts are available to overcomaiise of
dimensionwhich is already observed in this moderate dimensionahsdn.

4.2 Sparse tensor product spaces

The starting point of the definition of sparse tensor prodpetces for the Sobolev
space/mix(D x D) are traditional and widely used multilevel hierarchies

VoCViCVoC - C (D), (12)
where dinfVj) ~ 2" Then, appropriate complement spaces
Wo := Vo, W =VjeVj_,, j>0
are chosen to derive the multiscale decomposition
Vi=WoEWL B -+ DW.

In general, such complement spaces are defined by hierarblages like e.g. wavelet
or multilevel bases, see [5] and the references therein.spaese tensor product
space/; C Jmix(D x D) is finally given via the complementary spaces according to
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J
Vi= @ WoW=QV,aW. ;. (13)
j+'<d j=0

The sparse tensor product spaGepossesses onlg(2’"3) degrees of freedom
which is much less than th€(22") degrees of freedom of the full tensor product
space/; ®Vj. However, the approximation power of the sparse tensonyatspace
and the full tensor product space are essentially (i.ee@Xor logarithmic factors)
identical if extra smoothness in terms of Sobolev spacels daminating mixed
derivative is given [5].

4.3 Sparse multilevel frames

In the meantime, the construction of wavelets on fairly gahgomains and surfaces
is well understood [26, 29, 42]. However, the constructisrexpensive and the
wavelets have large supports, particularly on complicageometries. Therefore,
other sparse tensor product approximations have beenageeblin [17, 28], the
sparse tensor product approximation has been performedulidevel frames. The
frame construction is based on the BPX-preconditioner ésge[4, 10, 35]) and
related generating systems (see e.g. [16, 17, 19, 20]).
By rewriting the sparse tensor product space (13) accotding

VJ: Z VJ®VJ/
j+)'<d

it is obvious that the collection of tensor products of thei®éunctions inv; can be
used to represent the functions\ip It has been shown in [28] that this collection
forms a frame for the sparse tensor product space provigdhé basis functions
are appropriate normalized.

The discretization of boundary value problems by framesthadolution of op-
erator equations in frame coordinates is well understoaticpite similar to the
basis case, cf. e.g. [7, 9, 41]. The algorithms develope88h fespecially the ap-
plications of tensor product operators, can be extendedittlevel frames. It turns
out that, in order to efficiently solve boundary value praofdeof the type (11), it
suffices to provide standard multigrid hierarchies and @ased finite elements to-
gether with prolongations and restrictions, see [22, 28].

4.4 Combination technique

Consider the tensor product boundary value problem (11th Wspect to the ansatz
spaces (12), we define the associated complement spaces by
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W, := (Pj —Pj_1)22(D) CV;

with Pj : 27(D) — V; being the Galerkin projection associated with the operator
<. Then, the Galerkin system decouples due to Galerkin oathaliy. Namely, it
holds

((d®d)viail’wjaj/)L2(DxD) =0 for a”Vi,i/ e W oW, Wi i ceW, ®\Nj/

provided thati # j ori’ # j’. As a consequence, the Galerkin solutﬁar(;w to
(11) in the sparse tensor product space (13) can be written as

J J
Corgy g = Z)(pj,aﬂ — Pja-j-1) EEPV W =V;
= i—o

wherep; ; denotes the Galerkin solution of (11) in the full (but smédf)sor prod-
uct spacev; @ Vj,, cf. [25]. If the differential operator has not the form (1f)en
the combination technique induces an approximation eRelated error estimates
have been derived in [21, 30, 36].

4.5 Low-rank approximation

A rank+ approximation of a given function Cpe L?(D x D) is defined by

r

Cort (x,y) =~ Cory r(X,y) 1= /Z ay(x)be(y)
=1

with certain functionsa, b, € L?(D). Inserting such a low-rank approximation in
the tensor product boundary value problem (11) leads todheesentation

r
Corgy = (@ /) Coty = (o @/ ) Corge = 5 (o 2@ (o *by),
=1

i.e., the tensor product boundary value problem is reducétl simple boundary
value problems on the domalh

This approach has firstly been proposed in [15]rfefold tensor product prob-
lems and right hand sides of tensor product type. In the cathe second moment
analysis in uncertainty quantification, we find the spedétabsion that Coy is sym-
metric and positive semi-definite. Thus, the pivoted CHolelecomposition can be
used to efficiently compute the low-rank approximation te tight hand side, see
[23, 24].
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5 Finite element discretization
5.1 Parametric finite elements

For the application of multilevel techniques, we shall defimnested sequence of
finite dimensional trial spaces

VoCViC---CVjC---cHYD). (14)

In general, due to our smoothness assumptions on the doweahmve to deal with
non-polygonal domains. To realize the multiresolutionlgsia (14) we will use
parametric finite elements.

Let A denote the reference simplex R'. We assume that the domalh is
partitioned into a finite number of patches

C|03(5):UTo,k, Toxk=W(4A), k=12,....M,
k

where eacly : A — 1ok defines a diffeomorphism @k onto g . The intersection
Tok N Tow, k# K/, of the patchesg and1qy is either 0, or a lower dimensional
face. The parametric representation is supposed to be llylammtinuous which
means that the diffeomorphismsandy: coincide at common patch interfaces ex-
cept for orientation. A mesh of levglon D is then induced by regular subdivisions
of depthj of A into 21" simplices. This generates th&'®I curved element$r; i }.

An illustration of such a triangulation is found in Fig. 1.

N
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Fig. 1 Construction of parametric finite elements

The ansatz function®; = {9« : k € A;} are finally defined via parameteriza-
tion, lifting continuous piecewise linear Lagrangian gnélements from\ to the

domainD by using the mappingg and gluing across patch boundaries. Setting
Vj = span®; yields (14), where dirdj ~ 2/".
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5.2 Galerkin discretization

We shall be concerned with Galerkin’s method for solvingwhgational problems
(8), (9), and (10). To this end, we define first the system matri

Aj = (0P}, 00)) 25 + (a D), Pj) 24D (15)
Then, the Galerkin solution

Uj = ; Uik@jk = Pjuj €V,
ke i

of the variational formulation (8) is derived from the limesystem of equations
Ajuj=fj, where fj:=(f,®)p)+ (9, Pj)24p)- (16)

The solution of this equation (16) by multigrid accelerdiade element methods is
straightforward and along the lines of the standard litemtsee e.g. [2, 3]. There-
fore, we will skip all the details here.

The shape derivativéu = dulk], given by (9), is approximated in a similar way:
we seek

duj = % Vik@jk = PjVj €V
ke j

such that
Ajvi=g0j, where gj:=(kh ®)2p)+ (KOr0,0r @) 25 (17

Likewise to the mean field equation, the solution of (17) iaightforward.
For the combination technique, we need to compute certdigrkda approxima-
tions

pj,j': % Z (Jk 23 (¢Jk®¢j'k’):(¢j®¢j')wj,j’
ke

jKED,

to the two-point correlation Cgy; (10) in the full tensor product spavgxV;.. They
are obtained from the following linear system of equations

Here, the right hand side is given by
:=(Corc(h@h),®; @ @ )B(ﬁﬁxﬁﬁ)

— (Cor (Oru®h),0r @ @ @

— (Cor (h@ Oru), ®; @ Or @ )LZ(aﬁxaE)
(Con(Dru® Oru), Or @) @ O @)

(19)
of

+

Ol L2(9Dx D)’
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The iterative solution of the tensor product problem (1&fieptimal complexity if
the tensor product of the BPX-preconditioner [4] is applied

5.3 Combination technique

According to Subsection 4.4, the combination techniquelartsoto solving all the
Galerkin systems (18) which are needed to determine thesgjon

— J A~
Corsy g = %(pj,ij —Pji—j-1) €Vi.
=

For the implementation of the combination technique, weetthus to explain how
to efficiently compute the right hand side (19) to the lingatam of equations (18).
To this end, we shall introduce some notation first.

Let the index seﬂfD C Aj denote the indices which belong to finite element

functions at the boundagD and sep?P 1= ¢; |5 for all k€ AP, Then, setting
08P := AgP and0; := A7P\ A?P, for j > 0, the hierarchical basis in the trace space
Vjlsp is given byUf:O{qbe}keD,j,g. We replace the two-point correlation function
Cory by its piecewise linear sparse grid interpolant

~r aD aD v
Coa= 3 3 3 Yk (97K ©ejik) < Valoprop
j+j/53keDf5k’eD@,5
]

which can be computed in optimal complexity (see [5]). Thihs,right hand side
h; y becomes

hj,j’ = Z (M il QM j/vé/)[V(E’k)ﬁ(el’k/)]kGD»aB‘k/ED‘?P (20)
1+0<] [ j
where the matriceM; j;, 0< j, |’ < J, are given by

D D M o
Mjj = [(¢j/,k’h’¢1=k)L2(aﬁ) + (¢j/,k/DFUa Or ¢j,k)L2(05)}k€A1‘k/€D:?l5'
' ]

The expression (20) can be evaluated in essentially optioraplexity by applying
the matrix-vector multiplication from [28]. In particuldsy using prolongations and
restrictions, the matriced ; j; are needed only in the situatige= j’. Thus, the over-
all computational complexity of the combination technidsi@ssentially linear in
the numbetA4;| of finite element functions ob.
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5.4 Low-rank approximation

The piecewise linear interpolant of the two-point corrielaiCory in the trace space
(Vi ©Vi)lspxsp is given by

Corcj= % CorK(xj,k,xj/,k/)(d;ﬁkD@¢fﬁ).
k,k'eAf5

Here X € dD denotes the node which belongs to the finite element basisifum
¢ﬁE € Vj| 5. We shall thus compute a low-rank approximation of the matri

r

C= [corK(x,-’k,xj,,k/)]k’k,@j,E ~Cr = ZKi K (21)
i=

by the pivoted Cholesky decomposition. Afterwards, we fusste to compute all
the local shape derivativeéal in the directionikemﬁ Ki,kcpﬁf via (17). Thus, hav-
ing the low-rank approximation (21) at hand, thJe completatycompute Cay |

is 0(r|4;|). Note here that, in accordance with [18, 39], the rariknges on the
smoothness of the underlying two-point correlation Cor

Algorithm 1: Pivoted Cholesky decomposition

Data: matrixC = [¢; j] € R™" and error tolerance > 0

Result low-rank approximatiorCy = M, 447 such that traceC — Crn) < €
begin

setm:=1;

setd := diag(C) anderror := ||d||1;

initialize m:= (1,2,...,n);

while error > € do

seti :=argmaxdy : j=mm+1,....n};

swapTty, andTg;

Setlm = /drgy;

form+1<i<ndo

m-1

computelm  := <cmnn — z Kj,mném)/émﬂn;
=1

updatedy; = dn — (%,
n
computeerror := % dp;
i=m+1
increasem:=m+1;

The pivoted Cholesky decomposition is a purely algebrajgr@gch which is
quite simple to implement, see Algorithm 1. It produces a-tawk approximation
of C for any given precisiom > 0 where the approximation error is rigorously con-
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trolled in the trace norm. A rankapproximation is computed if(r?n) operations,
wheren denotes the matrix dimensions, thahis: |AJ-‘7D|. Exponential convergence
rates inr are proven under the assumption that the eigenvalu€sexthibit a suf-
ficiently fast exponential decay, see [24]. Numerical expents given there show
that the pivoted Cholesky decomposition in general coreeogtimally in the sense
that the rank is bounded by the number of terms required for the spectaide
position ofC to get the errok.

6 Numerical results

6.1 Model verification

We present some numerical tests to demonstrate our theadrptiedictions. Let
D = {x € R?: ||x|| < 1} be the unit disk. We parametrize the bound@byby polar
coordinates

= = - cogs

y:10,2rm — dD, s—y(s):= [sin?s))] .
Correspondingly, the boundadD, (w) of the random domaiD,(w) can be ex-
pressed via the perturbed parametrization

sin(s)

V(5. 0)i=¥(9)+ ek(5.0) | S0

Herein, we assume that the random perturbation is given by

a1

K(S w) = kz ay(w) cogks) + by(w) sin(ks)
=0

with random coefficientsy(w) andby(w) which are equally distributed if-1,1]
and mutually stochastically independent. This resultdhattivo-point correlation

function
5

Cork(st) = % Z)cos(ks) cogkt) + sin(ks) sin(kt). (22)
K=
For our numerical experiments, we varyCe < 0.05. Even thouglz is small, the
perturbation is considerably large since the ndikiiw)||c21(025) Might become
large.

On the above defined random dom&p(w), we consider the Robin boundary
value problem (1) withf (x) = 1, a(x) = 1, andg(x) = 0. For a given value of
€, we determine first the expectation and the variance of théa solution by a
Monte Carlo method, usingl = 25000 samples. Note that the triangulation hast to
be constructed for each sample in order to resolve the rambonain. To evaluate
the sample mean and variance, we interpolate each solet@fited quadrangular
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grid on the diskk = {x € R?: ||x|| < 0.7} with radius 07 which lies always in
the interior of the random domai (w). The result of the Monte Carlo simulation
is then compared with the solution of our deterministic Motiere, we used the
pivoted Cholesky decomposition since the two-point catieh (22) is of finite rank
r=11.

Approximation error of the expectation X107 Approximation error of the variance

0.35

o
N o
G w

Absolute error
o
Ny
Absolute error
o
o

o
-
a

o
P

0.05-

0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05
Perturbation parameter € Perturbation parameter €

Fig. 2 Asymptotic behaviour with respect to the perturbation peetere in the case of the expec-
tation (left plot) and in the case of the variance (right plot

In Figure 2, one finds the absolute difference between thenrflett plot) and
variance (right plot) of the Monte Carlo simulation and tlegestministic approach.
To be on save ground, we repeated the comparison five timesanguted the
average of the differences. We observe that the differeelaes like7 (£?) for the
expectation (left plot) and like7(¢4) for the variance (right plot) as indicated by the
dashed lines. Hence, in this example, the asymptotic behaweif the expectation
with respect to the perturbation parametes as predicted by Theorem 1. But the
the asymptotic behaviour of the variance with respect t#réurbation parameter
€ is even one order better than predicted.

In Figure 3, we visualized the approximate moments comphbjethe Monte
Carlo simulation (first row of Figure 3) and by the determiigispproach (second
row of Figure 3) in the specific case= 0.025. The difference between both ap-
proaches are found in the last row of Figure 3. The relatifferdince in the mean
has the order of magnitude 1®while the relative difference in the variance has the
order of magnitude 1.

6.2 A correlation kernel of arbitrary smoothness

We shall next compare the low-rank approximation with thebmation technique
based sparse grid approach. To this end, we choose the spntelata as before
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sample variance
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0.68

0.66
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0.74

0.72

0.7

0.68

error of the variance

error of the expectation

Fig. 3 Sample mean and variance (first row) versus the deterndmstian and variance (second

0.025. The differences are found in the last row.

row) in the case o€
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but the Gaussian kernel
2

) =exp( -3 ). r=In9 -yl

instead of the kernel (22). The Gaussian kernel is of amyitemoothness for
any given correlation length > 0. In particular, the eigenvalues of the associated
Hilbert-Schmidt operator decay double-exponentially(geay. [39]). In our numer-
ical tests, we vary the correlation length accordingt01,1/2,1/4,1/8.

We compute a reference solution on a very fine level and coartparsolutions of
both approaches with respect to lower levels with this mfee solution. The results
are plotted in Figure 4, where the left plot shows the retasivror of the variance
versus the discretization level and the right plot shows#teged computing times
versus the discretization level. Note that on level 10,glege about 2 million finite
elements.

Relative error versus discretization level . Computing time versus discretization level
T T T T 10 T T T T T T T
—=— LRA with I=1 A
10° —A—LRA with 1=1/2
4 —e—LRA with I=1/4
——LRA with I=1/8 3
10° {{ —=—CT with I=1 1
A —a—CT with I=1/2
o ° —e—CT with I=1/4
8 E ——CT with I=1/8
$ 2 o
=10
g 10 g
e [~ LlRAwith =L 5
—&—LRA with I=1/2 v ©
—e— LRA with I=1/4 )
1079/ ¢ LRAwith 1=1/8 g 10
—&—CT with I=1
—aA—CT with I=1/2 3
—e—CT with I=1/4 ﬁ
|l ——=CT with I=1/8 .
10 : ; : : : : : : 10 : : : : : : : :
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Level Level

Fig. 4 Accuracy (left plot) and computing times (right plot) in tbase of the Gaussian kernel.

It is observed that both, the convergence rates (left pldtigfire 4) and the
computing times (right plot of Figure 4), scale identicdtly both approaches. The
relative errors of both approaches increase when the atioellength decreases.
The approximation errors of the low-rank approximatioreggr lines) are, however,
a certain factor lower than the related approximation erobthe sparse grid method
(blue lines). Also the computing times of the low-rank apqmation (green lines)
are a certain factor lower than the related computing tinfebe sparse grid ap-
proach (blue lines). Nevertheless, the computing timehk vaspect to the sparse
grid approach are essentially independent of the corogléingth? while the com-
puting times of the low-rank approximation increasé as the rank increases.
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6.3 A correlation kernel of finite smoothness

We finally compare the low-rank approximation with the conation technique in
case of the Matérn kernel

20) = (14 Y2 Yoo ). 1= yts) -y

which is of finite smoothness. The correlation lengtis again chosen to bé=
1,1/2,1/4,1/8. The computational set-up of our comparison is in comgletdogy
to that of Subsection 6.2.

Relative error versus discretization level Computing time versus discretization level

—&—LRA with I=1
—A—LRA with 1=0.5
—e—LRA with I=0.25
—e—LRA with =0.125
10% |{ ——CT with I=1
—A—CT with I=0.5
—e—CT with 1=0.25
—6—CT with 1=0.125

Relative error

[l —=—LRA with I=1
—4—LRA with I=-.5
—e—LRA with I=0.25
—e—LRA with 1=0.125
—a—CT with I=1
10°°H{ —+—CT with 1=0.5
—e—CT with 1=0.25

—e—CT with 1=0.125 .
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Level Level

Fig. 5 Accuracy (left plot) and computing times (right plot) in tbase of the Matérn kernel.

In the left plot of Figure 5, we plotted the relative error betvariance versus
the discretization level. Again, both approaches seemddyme the same conver-
gence rates but the relative errors of the the low-rank agpmation (green lines)
are again a certain factor lower than relative error of thespgrid approach (blue
lines). Moreover, for a fixed discretization level, the tea error increases as the
correlation length decreases.

In the right plot of Figure 5, the associated computing tiwesfound. The com-
puting times of the low-rank approximation (green linegacly depend on the cor-
relation length. Whereas, in the case of the sparse gridoappr the computing
times are independent of the correlation length. Additilgnane figures out of the
plot that the computing times of the low-rank approximatseem to grow with a
higher rate compared with the sparse grid approach. Thisgponds to the theoret-
ical predictions from [18]. Nevertheless, if one compa@sisacy versus computing
time, the low-rank approximation is still superior to thesge grid approach.
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7 Concluding remarks

In this paper, we modeled and solved Robin boundary valuklg@nts on random
domains. We derived deterministic equations for the exgtieet and variance of
the associated random solution. The variance can be cothputmeans of a low-
rank approximation or by the combination technique. By nrica¢ experiments,
we compare these two approaches. It turns out that for ouwifgpexamples the
low-rank approximation performs better than the comboratechnique. However,
the combination technique has the advantage that the memguyrements are in-
dependent on the given two-point correlation function. Wepkasize that, in the
present case of boundary value problems on random domlaéiewt-rank approx-
imation needs only to be computed for @m— 1)-dimensional function (cf. (21))
whereas the combination technique is rdimensional approach. Nevertheless,
we expect that, in the case of random coefficients (see [25]armdom loadings
(see [38]), the combination technique performs much betteomparison with the
low-rank approximation since there the low-rank approxioraof an-dimensional
function is required.
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