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Second moment analysis for Robin boundary
value problems on random domains

H. Harbrecht

Abstract We consider the numerical solution of Robin boundary value problems on
random domains. The proposed method computes the mean and the variance of the
random solution with leading order in the amplitude of the random boundary pertur-
bation relative to an unperturbed, nominal domain. The variance is computed as the
trace of the solution’s two-point correlation which satisfies a deterministic boundary
value problem on the tensor product of the nominal domain. Wesolve this moderate
high-dimensional problem by either a low-rank approximation by means of the piv-
oted Cholesky decomposition or the combination technique.Both approaches are
presented and compared by numerical experiments with respect to their efficiency.

1 Introduction

Many problems in physics and engineering sciences lead to boundary value prob-
lems for an unknown function. In general, the numerical simulation is well under-
stood provided that the input parameters are given exactly.Since, however, exact
input parameters are often not known in engineering, it is ofgrowing interest to
model such parameters as random variables.

A principal approach to solve boundary value problems with random input pa-
rameters is the Monte Carlo approach, see e.g. [37] and the references therein. How-
ever, it is hard and extremely expensive to generate a large number of suitable sam-
ples and to solve a deterministic boundary value problem on each sample. Particu-
larly in the present case of random domains, each new sample corresponds to a new
domain which needs to be discretized. Thus, we aim here at a direct, deterministic
method to compute the random solution.
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2 H. Harbrecht

Deterministic approaches to solve stochastic partial differential equations have
been proposed in e.g. [1, 11, 13, 14, 25, 32, 38]. Therein, loadings and coefficients
have been considered as random input parameters. Recently,in [6, 23, 27, 33, 34,
43], also the underlying domain has been modeled as a random input parameter
D(ω). For example, this enables the consideration of tolerancesin the shape of
products fabricated by line production. Other applications arise from blurred inter-
faces like cell membranes or molecular surfaces.

The present paper is dedicated to the numerical treatment ofRobin boundary
value problems on random domains which, to the best of our knowledge, is the first
time in the scientific literature. We assume small random perturbations around a
nominal domainD with known second order statistics. Then, following [27], we
can linearize to derive, with leading order in the amplitudeof the perturbation pa-
rameter, deterministic equations for the random solution’s expectation and two-point
correlation

Eu(x) =
∫

Ω
u(x,ω)dP(ω)

Coru(x,y) =
∫

Ω
u(x,ω)u(y,ω)dP(ω)





x,y ∈ D.

From these quantities the variance is derived by

Vu(x) = Coru(x,y)
∣∣
x=y −E

2
u(x), x ∈ D.

The solution’s two-point correlation is given by a partial differential equation
which lives on the tensor product domainD×D. We solve this moderate high-
dimensional problem by either a low-rank approximation viathe pivoted Cholesky
decomposition or the combination technique which is a special variant of a sparse
tensor product approximation. This way, we are able to compute both, the expecta-
tion and the variance by standard finite element techniques.

Besides the modeling and the derivation of the underlying equations, we discuss
in this paper the implementation of the proposed algorithms. In particular, we com-
pare the low-rank approximation and the tensor product approximation with respect
to their cost-complexities by numerical results.

The rest of the paper is organized as follows. In Section 2, wemodel the random
domain under consideration. Moreover, for the associated Robin boundary value
problem, we derive deterministic boundary value problems for the expectation and
two-point correlation of the random solution. In Section 3,we introduce the vari-
ational formulations of these deterministic boundary value problems. Section 4 is
dedicated to an abstract overview on the efficient solution of tensor product-type
boundary value problems which arise in the present context.The particular finite
element discretization of the problems under consideration are performed in Sec-
tion 5. In Section 6, numerical experiments are carried out to validate the theoretical
findings and to compare the low-rank approximation with the sparse grid approach.
Finally, in Section 7, we state concluding remarks.
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2 Robin boundary value problems on random domains

Let (Ω ,Σ ,P) be a suitable probability space. We consider the domainD(ω) as the
uncertain input parameter of an elliptic boundary value problem with Robin bound-
ary conditions, i.e.,

−∆u(x,ω) = f (x), x ∈ D(ω)

α(x)u(x,ω)+
∂u
∂n

(x,ω) = g(x), x ∈ ∂D(ω)



 ω ∈ Ω . (1)

Here,α(x) ≥ 0 is a nonnegative function, where the particular choiceα(x) ≡ 0
yields the Neumann boundary condition.

To model the random domainD(ω), letD denote a smooth reference domain and
consider random boundary variations in the direction of theouter normal

U(x,ω) = εκ(x,ω)n(x) : ∂D → R
n

with
κ(ω) ∈ L2

P

(
Ω ,C2,1(∂D)

)
such that ‖κ(ω)‖C2,1(∂D) ≤ 1

almost surely. Then, the random domainD(ω) will be described via perturbation of
identity

∂D(ω) =
{(

I + εU(ω)
)
(x) = x+ εκ(x,ω)n(x) : x ∈ ∂D

}
.

For what follows we assume that the expectationEκ and the two-point correlation
Corκ of the boundary perturbationκ are given. Without loss of generality (otherwise
we redefineD correspondingly) we assume that the perturbation fieldκ is centered,
i.e., thatEκ ≡ 0.

For a small perturbation amplitudeε > 0, one can linearize (1) by means of shape
calculus [12, 40]. This leads to the following stochastic shape-Taylor expansion

u(x,ω) = u(x)+ εδu[κ(ω)](x)+O(ε2), x ∈ K ⋐ D. (2)

Therein, the compact setK ⋐ D is assumed to satisfyK ⋐ D(ω) almost surely.
Moreover,u ∈ H1(D) denotes the solution to the deterministic Robin boundary
value problem

−∆u(x) = f (x), x ∈ D

α(x)u(x)+
∂u
∂n

(x) = g(x), x ∈ ∂D
(3)

and the shape derivativeδu= δu[κ ]∈H1(D) satisfies the following Robin boundary
value problem with random loading (cf. [31])

∆δu(x) = 0, x ∈ D

α(x)δu(x)+
∂δu
∂n

(x) = divΓ
(
κ(x)∇Γ u(x)

)
+κ(x)h(x), x ∈ ∂D.

(4)
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Here, we used the abbreviation

h(x) := f (x)+H (x)
(
g(x)−α(x)u(x)

)
+

∂ (g−αu)
∂n

(x), (5)

whereH = (n−1)H is the additive curvature andH is the mean curvature of the
surfaceΓ .

Theorem 1.Assume that the compact set K⋐ D satisfies K⋐ D(ω) almost surely.
Then, it holds that

Eu(x) = u(x)+O(ε2)

Vu(x) = ε2Corδu(x,y)
∣∣
x=y+O(ε3)

}
x ∈ K. (6)

Herein,u ∈ H1(D) andCorδu(x,y) ∈ H1
mix(D×D) := H1(D)×H1(D) satisfy the

deterministic boundary value problems(3) and

(∆x ⊗∆y)Corδu(x,y) = 0, x,y ∈ D,

∆x Corδu(x,y) = 0, x ∈ D, y ∈ ∂D,

∆y Corδu(x,y) = 0, x ∈ ∂D, y ∈ D,
[(

α(x)+
∂

∂nx

)
⊗
(

α(y)+
∂

∂ny

)]
Corδu(x,y) = Corκ(x,y)

[
h(x)⊗h(y)

]

+divΓ ,x
[
Corκ(x,y)

(
∇Γ u(x)⊗ f (y)

)]
+divΓ ,y

[
Corκ(x,y)

(
h(x)⊗∇Γ u(y)

)]

+(divΓ ,x⊗divΓ ,y)
[
Corκ(x,y)

(
∇Γ u(x)⊗∇Γ u(y)

)]
, x,y ∈ ∂D.

(7)

Proof. By using the shape-Taylor expansion (2), we obtain

Eu(x) = u(x)+ εE
(
δu[κ(ω)](x)

)
+O(ε2).

By the linearity of the expectation operatorE, taking the expectation on both sides
of (4), and observing thatEκ(x)≡ 0, we haveEδu(x) =E

(
δu[κ(ω)](x)

)
≡ 0, which

yields the first claim.
Observe the following estimate

V(a+bX+ cY) = b2
V(X)+2bcCov(X,Y)+ c2

V(Y)

≤ b2
V(X)+2bc

√
V(X)V(Y)+ c2

V(Y),

whereX andY are two random variables with finite second moments. By combining
this estimate with the shape-Taylor expansion (2), we conclude

Vu(x) = ε2
V
(
δu[κ(ω)](x)

)
+
√
V
(
δu[κ(ω)](x)

)
O(ε3)+O(ε4)

= ε2
Vδu(x)+O(ε3).
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Due toEδu(x)≡ 0, we arrive at the identityVδu(x) = Corδu(x,y)
∣∣
x=y which proves

the second claim. The boundary value problem (7) for Corδu is finally derived by
tensorizing (4) and taking the expectation. This completesthe proof. �

Remark 1.The relative error of the expectation isO(ε2) while the relative error of
the variance isO(ε). According to [8], the first order shape-Taylor expansion (2) is
nevertheless sufficient to compute also higher order moments of the random solution
with relative accuracyO(ε).

3 Variational formulation

We shall introduce the variational formulations of the boundary value problems un-
der consideration. The approximate expectationu∈ H1(D), satisfying (3), is deter-
mined by the variational formulation

seeku∈ H1(D) such thata(u,v) = ℓ1(v) for all v∈ H1(D), (8)

where the bilinear forma : H1(D)×H1(D)→R is given by

a(u,v) :=
∫

D
∇u(x)∇v(x)dx+

∫

∂D
α(x)u(x)v(x)dσ

and the linear formℓ1 : H1(D)→R by

ℓ1(v) :=
∫

D
f (x)v(x)dx+

∫

∂D
g(x)v(x)dσ .

The shape derivativeδu = δu[κ ] ∈ H1(D) in a given directionκ ∈ C2,1(∂D)
satisfies the boundary value problem (4). The associated variational formulation
involves the same bilinear form as (8), but a different linear form on the right hand
side. Namely, we find

seekδu∈ H1(D) such thata(δu,v) = ℓ2(v) for all v∈ H1(D), (9)

with the linear formℓ2 : H1(D)→ R being defined by

ℓ2(v) :=
∫

∂D
κ(x)

{
h(x)−∇Γ u(x)∇Γ

}
v(x)dσ .

Note that we applied integration by parts in the definition ofthe linear form.
Moreover, the functionh is defined (5). Thus, the two-point correlation function
Corδu ∈ H1

mix(D×D), which is given by the tensor Robin boundary value problem
(7), satisfies the variational formulation

seek Corδu ∈ H1
mix(D×D) such that

A(Corδu,v) = L(v) for all v∈ H1
mix(D×D).

(10)
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Here, the bilinear formA : H1
mix(D×D)×H1

mix(D×D)→R reads as

A(u,v) :=
∫

D

∫

D
(∇x ⊗∇y)u(x,y)(∇x ⊗∇y)v(x,y)dydx

+
∫

D

∫

∂D
α(y)∇xu(x,y)∇xv(x,y)dσy dx

+

∫

∂D

∫

D
α(x)∇yu(x,y)∇yv(x,y)dydσx

+
∫

∂D

∫

∂D
α(x)α(y)u(x,y)v(x,y)dσy dσx

and the linear formL : H1
mix(D×D)→ R is

L(v) :=
∫

∂D

∫

∂D
Corκ(x,y)

{
h(x)−∇Γ u(x)∇Γ ,x

}

·
{

h(y)−∇Γ u(y)∇Γ ,y
}

v(x,y)dσy dσx.

Theorem 2.The variational problems(8), (9), and(10) are uniquely solvable pro-
vided thatα(x) 6≡ 0.

Proof. The standard theory of Robin boundary value problems yieldsthe existence
of constants 0< cE ≤ cS< ∞ such that it holds

cE‖u‖2
H1(D)

≤ a(u,u), a(u,v)≤ cS‖u‖H1(D)‖v‖H1(D)

for all u,v∈ H1(D). Thus, we conclude

c2
E‖u‖2

H1
mix(D×D)

≤ A(u,u), A(u,v)≤ c2
S‖u‖H1

mix(D×D)‖v‖H1
mix(D×D)

for all u,v∈H1
mix(D×D) by a tensor product argument since the bilinear formA(·, ·)

is derived froma(·, ·) via tensorization. The Lax-Milgram theorem implies finally
the assertion. �

Remark 2.If α(x) ≡ 0, then we arrive at the Neumann boundary value problem

and obtain thus the ellipticity ofa(·, ·) only in the spaceH
1
(D) := H1(D) \R and

that ofA(·, ·) in the spaceH
1
mix(D×D) := H

1
(D)⊗H

1
(D). Consequently, unique

solvability of the variational problems (8), (9), and (10) is obtained in these energy
spaces.
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4 Solving tensor product boundary value problems

4.1 An abstract view on the linearization approach

The linearization of a linear second order elliptic boundary value problem with re-
spect to a given input parameterκ(ω) involves the associated derivativeδu(ω) ∈
H (D). It is generally given by a boundary value problem

A δu(ω) = f (ω) onD,

whereA : H (D) → H ′(D) denotes a linear, second order elliptic partial differ-
ential operator which is defined on a domainD ⊂ Rn. Typically one might think
of H (D) being a Sobolev space with dualH

′(D). Moreover, the random input
parameter linearly enters the right hand sidef (ω) ∈ H ′(D) since the mapping
κ(ω) 7→ δu(ω) is linear.

The two-point correlation Corδu ∈Hmix(D×D) :=H (D)⊗H (D), which pops
up in the asymptotic expansions (6), is given by the tensor product problem

(A ⊗A )Corδu = Corf onD×D. (11)

Especially it holds Corf ∈ H ′
mix(D×D) = H ′(D)⊗H ′(D).

In the following, we give an overview on the efficient solution of partial differen-
tial equations with the tensor product operatorA ⊗A on the product of the physical
domainD×D such as (11). Various concepts are available to overcome thecurse of
dimensionwhich is already observed in this moderate dimensional situation.

4.2 Sparse tensor product spaces

The starting point of the definition of sparse tensor productspaces for the Sobolev
spaceHmix(D×D) are traditional and widely used multilevel hierarchies

V0 ⊂V1 ⊂V2 ⊂ ·· · ⊂ H (D), (12)

where dim(Vj)∼ 2 jn. Then, appropriate complement spaces

W0 :=V0, Wj :=Vj ⊖Vj−1, j > 0

are chosen to derive the multiscale decomposition

VJ =W0⊕W1⊕·· ·⊕WJ.

In general, such complement spaces are defined by hierarchical bases like e.g. wavelet
or multilevel bases, see [5] and the references therein. Thesparse tensor product
spacêVJ ⊂Hmix(D×D) is finally given via the complementary spaces according to
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V̂J =
⊕

j+ j ′≤J

Wj ⊗Wj ′ =
J⊕

j=0

Vj ⊗WJ− j . (13)

The sparse tensor product spaceV̂J possesses onlyO(2JnJ) degrees of freedom
which is much less than theO(22Jn) degrees of freedom of the full tensor product
spaceVJ⊗VJ. However, the approximation power of the sparse tensor product space
and the full tensor product space are essentially (i.e., except for logarithmic factors)
identical if extra smoothness in terms of Sobolev spaces with dominating mixed
derivative is given [5].

4.3 Sparse multilevel frames

In the meantime, the construction of wavelets on fairly general domains and surfaces
is well understood [26, 29, 42]. However, the construction is expensive and the
wavelets have large supports, particularly on complicatedgeometries. Therefore,
other sparse tensor product approximations have been developed. In [17, 28], the
sparse tensor product approximation has been performed viamultilevel frames. The
frame construction is based on the BPX-preconditioner (seee.g. [4, 10, 35]) and
related generating systems (see e.g. [16, 17, 19, 20]).

By rewriting the sparse tensor product space (13) accordingto

V̂J = ∑
j+ j ′≤J

Vj ⊗Vj ′

it is obvious that the collection of tensor products of the basis functions inVj can be
used to represent the functions inV̂J. It has been shown in [28] that this collection
forms a frame for the sparse tensor product space provided that the basis functions
are appropriate normalized.

The discretization of boundary value problems by frames andthe solution of op-
erator equations in frame coordinates is well understood and quite similar to the
basis case, cf. e.g. [7, 9, 41]. The algorithms developed in [38], especially the ap-
plications of tensor product operators, can be extended to multilevel frames. It turns
out that, in order to efficiently solve boundary value problems of the type (11), it
suffices to provide standard multigrid hierarchies and associated finite elements to-
gether with prolongations and restrictions, see [22, 28].

4.4 Combination technique

Consider the tensor product boundary value problem (11). With respect to the ansatz
spaces (12), we define the associated complement spaces by
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Wj := (Pj −Pj−1)H (D)⊂Vj

with Pj : H (D) → Vj being the Galerkin projection associated with the operator
A . Then, the Galerkin system decouples due to Galerkin orthogonality. Namely, it
holds

(
(A ⊗A )vi,i′ ,wj , j ′

)
L2(D×D)

= 0 for all vi,i′ ∈Wi ⊗Wi′ , wj , j ′ ∈Wj ⊗Wj ′

provided thati 6= j or i′ 6= j ′. As a consequence, the Galerkin solution̂Corδu,J to
(11) in the sparse tensor product space (13) can be written as

Ĉorδu,J =
J

∑
j=0

(p j ,J− j − p j ,J− j−1) ∈
J⊕

j=0

Vj ⊗WJ− j = V̂J

wherep j , j ′ denotes the Galerkin solution of (11) in the full (but small)tensor prod-
uct spaceVj ⊗Vj ′ , cf. [25]. If the differential operator has not the form (11), then
the combination technique induces an approximation error.Related error estimates
have been derived in [21, 30, 36].

4.5 Low-rank approximation

A rank-r approximation of a given function Corf ∈ L2(D×D) is defined by

Corf (x,y)≈ Corf ,r(x,y) :=
r

∑
ℓ=1

aℓ(x)bℓ(y)

with certain functionsaℓ,bℓ ∈ L2(D). Inserting such a low-rank approximation in
the tensor product boundary value problem (11) leads to the representation

Corδu =
(
A

−1⊗A
−1)Corf ≈

(
A

−1⊗A
−1)Corf ,r =

r

∑
ℓ=1

(
A

−1aℓ
)
⊗
(
A

−1bℓ
)
,

i.e., the tensor product boundary value problem is reduced to 2r simple boundary
value problems on the domainD.

This approach has firstly been proposed in [15] form-fold tensor product prob-
lems and right hand sides of tensor product type. In the case of the second moment
analysis in uncertainty quantification, we find the special situation that Corf is sym-
metric and positive semi-definite. Thus, the pivoted Cholesky decomposition can be
used to efficiently compute the low-rank approximation to the right hand side, see
[23, 24].
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5 Finite element discretization

5.1 Parametric finite elements

For the application of multilevel techniques, we shall define a nested sequence of
finite dimensional trial spaces

V0 ⊂V1 ⊂ ·· · ⊂Vj ⊂ ·· · ⊂ H1(D). (14)

In general, due to our smoothness assumptions on the domain,we have to deal with
non-polygonal domains. To realize the multiresolution analysis (14) we will use
parametric finite elements.

Let △ denote the reference simplex inRn. We assume that the domainD is
partitioned into a finite number of patches

clos(D) =
⋃

k

τ0,k, τ0,k = γk(△), k= 1,2, . . . ,M,

where eachγk : △→ τ0,k defines a diffeomorphism of△ ontoτ0,k. The intersection
τ0,k ∩ τ0,k′ , k 6= k′, of the patchesτ0,k andτ0,k′ is either /0, or a lower dimensional
face. The parametric representation is supposed to be globally continuous which
means that the diffeomorphismsγi andγi′ coincide at common patch interfaces ex-
cept for orientation. A mesh of levelj onD is then induced by regular subdivisions
of depth j of △ into 2jn simplices. This generates the 2jnM curved elements{τ j ,k}.
An illustration of such a triangulation is found in Fig. 1.

γi
τ0,k

Fig. 1 Construction of parametric finite elements

The ansatz functionsΦ j = {ϕ j ,k : k ∈ ∆ j} are finally defined via parameteriza-
tion, lifting continuous piecewise linear Lagrangian finite elements from△ to the
domainD by using the mappingsγi and gluing across patch boundaries. Setting
Vj = spanΦ j yields (14), where dimVj ∼ 2 jn.
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5.2 Galerkin discretization

We shall be concerned with Galerkin’s method for solving thevariational problems
(8), (9), and (10). To this end, we define first the system matrix

A j := (∇Φ j ,∇Φ j )L2(D)+(αΦ j ,Φ j)L2(∂D). (15)

Then, the Galerkin solution

u j = ∑
k∈∆ j

u j ,kϕ j ,k = Φ j u j ∈Vj

of the variational formulation (8) is derived from the linear system of equations

A ju j = f j , where f j := ( f ,Φ j )L2(D)+(g,Φ j)L2(∂D). (16)

The solution of this equation (16) by multigrid acceleratedfinite element methods is
straightforward and along the lines of the standard literature, see e.g. [2, 3]. There-
fore, we will skip all the details here.

The shape derivativeδu= δu[κ ], given by (9), is approximated in a similar way:
we seek

δu j = ∑
k∈∆ j

v j ,kϕ j ,k = Φ jv j ∈Vj

such that

A jv j = g j , where g j := (κh,Φ j)L2(∂D)+(κ∇Γ u,∇Γ Φ j)L2(∂D). (17)

Likewise to the mean field equation, the solution of (17) is straightforward.
For the combination technique, we need to compute certain Galerkin approxima-

tions
p j , j ′ = ∑

k∈∆ j

∑
k′∈∆ j′

w( j ,k),( j ′,k′)(ϕ j ,k⊗ϕ j ′,k′) = (Φ j ⊗Φ j ′)w j , j ′

to the two-point correlation Corδu (10) in the full tensor product spaceVj ⊗Vj ′ . They
are obtained from the following linear system of equations

(A j ⊗A j ′)w j , j ′ = h j , j ′ . (18)

Here, the right hand side is given by

h j , j ′ :=
(

Corκ(h⊗h),Φ j ⊗Φ j ′
)

L2(∂D×∂D)

−
(

Corκ(∇Γ u⊗h),∇Γ Φ j ⊗Φ j ′
)

L2(∂D×∂D)

−
(

Corκ(h⊗∇Γ u),Φ j ⊗∇Γ Φ j ′
)

L2(∂D×∂D)

+
(

Corκ(∇Γ u⊗∇Γ u),∇Γ Φ j ⊗∇Γ Φ j ′
)

L2(∂D×∂D)
.

(19)
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The iterative solution of the tensor product problem (18) isof optimal complexity if
the tensor product of the BPX-preconditioner [4] is applied.

5.3 Combination technique

According to Subsection 4.4, the combination technique amounts to solving all the
Galerkin systems (18) which are needed to determine the expression

Ĉorδu,J =
J

∑
j=0

(p j ,J− j − p j ,J− j−1) ∈ V̂J.

For the implementation of the combination technique, we have thus to explain how
to efficiently compute the right hand side (19) to the linear system of equations (18).
To this end, we shall introduce some notation first.

Let the index set∆ ∂D
j ⊂ ∆ j denote the indices which belong to finite element

functions at the boundary∂D and setϕ∂D
j ,k := ϕ j ,k|∂D for all k∈ ∆ ∂D

j . Then, setting

∇∂D
0 := ∆ ∂D

0 and∇ j := ∆ ∂D
j \∆ ∂D

j−1 for j > 0, the hierarchical basis in the trace space

VJ|∂D is given by
⋃J

j=0{ϕ∂D
j ,k }k∈∇∂D

j
. We replace the two-point correlation function

Corκ by its piecewise linear sparse grid interpolant

Ĉorκ ,J = ∑
j+ j ′≤J

∑
k∈∇∂D

j

∑
k′∈∇∂D

j′

γ( j ,k),( j ′,k′)
(
ϕ∂D

j ,k ⊗ϕ∂D
j ′,k′

)
⊂ V̂J|∂D×∂D

which can be computed in optimal complexity (see [5]). Thus,the right hand side
h j , j ′ becomes

h j , j ′ = ∑
ℓ+ℓ′≤J

(M j ,ℓ⊗M j ′,ℓ′)[γ(ℓ,k),(ℓ′,k′)]k∈∇∂D
j ,k′∈∇∂D

j′
(20)

where the matricesM j , j ′ , 0≤ j, j ′ ≤ J, are given by

M j , j ′ =
[(

ϕ∂D
j ′,k′h,ϕ j ,k

)
L2(∂D)

+
(
ϕ∂D

j ′,k′∇Γ u,∇Γ ϕ j ,k
)

L2(∂D)

]
k∈∆ j ,k′∈∇∂D

j′
.

The expression (20) can be evaluated in essentially optimalcomplexity by applying
the matrix-vector multiplication from [28]. In particular, by using prolongations and
restrictions, the matricesM j , j ′ are needed only in the situationj = j ′. Thus, the over-
all computational complexity of the combination techniqueis essentially linear in
the number|∆J| of finite element functions onD.
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5.4 Low-rank approximation

The piecewise linear interpolant of the two-point correlation Corκ in the trace space
(Vj ⊗Vj)|∂D×∂D is given by

Corκ , j = ∑
k,k′∈∆ ∂D

j

Corκ(x j ,k,x j ′,k′)
(
ϕ∂D

j ,k ⊗ϕ∂D
j ,k′

)
.

Here,x j ,k ∈ ∂D denotes the node which belongs to the finite element basis function

ϕ∂D
j ,k ∈Vj |∂D. We shall thus compute a low-rank approximation of the matrix

C = [Corκ(x j ,k,x j ′,k′)]k,k′∈∆ ∂D
j

≈ Cr =
r

∑
i=1

κiκT
i (21)

by the pivoted Cholesky decomposition. Afterwards, we justhave to compute all
the local shape derivativesδu in the directions∑k∈∆ ∂D

j
κi,kϕ∂D

j ,k via (17). Thus, hav-

ing the low-rank approximation (21) at hand, the complexityto compute Corδu, j
is O(r|∆ j |). Note here that, in accordance with [18, 39], the rankr hinges on the
smoothness of the underlying two-point correlation Corκ .

Algorithm 1: Pivoted Cholesky decomposition
Data: matrix C = [ci, j ] ∈ Rn×n and error toleranceε > 0
Result: low-rank approximationCm = ∑m

i=1ℓiℓ
T
i such that trace(C−Cm)≤ ε

begin
setm := 1;
setd := diag(C) anderror := ‖d‖1;
initialize π := (1,2, . . . ,n);
while error > ε do

seti := argmax{dπ j : j = m,m+1, . . .,n};
swapπm andπi ;
setℓm,πm :=

√
dπm;

for m+1≤ i ≤ n do

computeℓm,πi :=

(
cπm,πi −

m−1

∑
j=1

ℓ j ,πmℓ j ,πi

)/
ℓm,πm;

updatedπi := dπi − ℓ2
m,πi

;

computeerror :=
n

∑
i=m+1

dπi ;

increasem := m+1;

The pivoted Cholesky decomposition is a purely algebraic approach which is
quite simple to implement, see Algorithm 1. It produces a low-rank approximation
of C for any given precisionε > 0 where the approximation error is rigorously con-
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trolled in the trace norm. A rank-r approximation is computed inO(r2n) operations,
wheren denotes the matrix dimensions, that isn= |∆ ∂D

j |. Exponential convergence
rates inr are proven under the assumption that the eigenvalues ofC exhibit a suf-
ficiently fast exponential decay, see [24]. Numerical experiments given there show
that the pivoted Cholesky decomposition in general converges optimally in the sense
that the rankr is bounded by the number of terms required for the spectral decom-
position ofC to get the errorε.

6 Numerical results

6.1 Model verification

We present some numerical tests to demonstrate our theoretical predictions. Let
D = {x ∈R2 : ‖x‖< 1} be the unit disk. We parametrize the boundary∂D by polar
coordinates

γ : [0,2π ]→ ∂D, s 7→ γ(s) :=

[
cos(s)
sin(s)

]
.

Correspondingly, the boundary∂Dε (ω) of the random domainDε(ω) can be ex-
pressed via the perturbed parametrization

γ(s,ω) := γ(s)+ εκ(s,ω)

[
cos(s)
sin(s)

]
.

Herein, we assume that the random perturbation is given by

κ(s,ω) :=
5

∑
k=0

ak(ω)cos(ks)+bk(ω)sin(ks)

with random coefficientsak(ω) andbk(ω) which are equally distributed in[−1,1]
and mutually stochastically independent. This results in the two-point correlation
function

Corκ(s, t) =
1
3

5

∑
k=0

cos(ks)cos(kt)+ sin(ks)sin(kt). (22)

For our numerical experiments, we vary 0≤ ε ≤ 0.05. Even thoughε is small, the
perturbation is considerably large since the norm‖κ(ω)‖C2,1([0,2π ]) might become
large.

On the above defined random domainDε(ω), we consider the Robin boundary
value problem (1) withf (x) ≡ 1, α(x) ≡ 1, andg(x) ≡ 0. For a given value of
ε, we determine first the expectation and the variance of the random solution by a
Monte Carlo method, usingM = 25000 samples. Note that the triangulation hast to
be constructed for each sample in order to resolve the randomdomain. To evaluate
the sample mean and variance, we interpolate each solution to a fixed quadrangular
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grid on the diskK = {x ∈ R2 : ‖x‖ ≤ 0.7} with radius 0.7 which lies always in
the interior of the random domainDε(ω). The result of the Monte Carlo simulation
is then compared with the solution of our deterministic model. Here, we used the
pivoted Cholesky decomposition since the two-point correlation (22) is of finite rank
r = 11.
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Fig. 2 Asymptotic behaviour with respect to the perturbation parameterε in the case of the expec-
tation (left plot) and in the case of the variance (right plot).

In Figure 2, one finds the absolute difference between the mean (left plot) and
variance (right plot) of the Monte Carlo simulation and the deterministic approach.
To be on save ground, we repeated the comparison five times andcomputed the
average of the differences. We observe that the difference behaves likeO(ε2) for the
expectation (left plot) and likeO(ε4) for the variance (right plot) as indicated by the
dashed lines. Hence, in this example, the asymptotic behaviour of the expectation
with respect to the perturbation parameterε is as predicted by Theorem 1. But the
the asymptotic behaviour of the variance with respect to theperturbation parameter
ε is even one order better than predicted.

In Figure 3, we visualized the approximate moments computedby the Monte
Carlo simulation (first row of Figure 3) and by the deterministic approach (second
row of Figure 3) in the specific caseε = 0.025. The difference between both ap-
proaches are found in the last row of Figure 3. The relative difference in the mean
has the order of magnitude 10−3 while the relative difference in the variance has the
order of magnitude 10−2.

6.2 A correlation kernel of arbitrary smoothness

We shall next compare the low-rank approximation with the combination technique
based sparse grid approach. To this end, we choose the same input data as before
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Fig. 3 Sample mean and variance (first row) versus the deterministic mean and variance (second
row) in the case ofε = 0.025. The differences are found in the last row.
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but the Gaussian kernel

k(r) = exp

(
− r2

ℓ2

)
, r = ‖γ(s)− γ(t)‖

instead of the kernel (22). The Gaussian kernel is of arbitrary smoothness for
any given correlation lengthℓ > 0. In particular, the eigenvalues of the associated
Hilbert-Schmidt operator decay double-exponentially (see e.g. [39]). In our numer-
ical tests, we vary the correlation length according toℓ= 1,1/2,1/4,1/8.

We compute a reference solution on a very fine level and compare the solutions of
both approaches with respect to lower levels with this reference solution. The results
are plotted in Figure 4, where the left plot shows the relative error of the variance
versus the discretization level and the right plot shows therelated computing times
versus the discretization level. Note that on level 10, there are about 2 million finite
elements.
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Fig. 4 Accuracy (left plot) and computing times (right plot) in thecase of the Gaussian kernel.

It is observed that both, the convergence rates (left plot ofFigure 4) and the
computing times (right plot of Figure 4), scale identicallyfor both approaches. The
relative errors of both approaches increase when the correlation length decreases.
The approximation errors of the low-rank approximation (green lines) are, however,
a certain factor lower than the related approximation errors of the sparse grid method
(blue lines). Also the computing times of the low-rank approximation (green lines)
are a certain factor lower than the related computing times of the sparse grid ap-
proach (blue lines). Nevertheless, the computing times with respect to the sparse
grid approach are essentially independent of the correlation lengthℓ while the com-
puting times of the low-rank approximation increase inℓ as the rank increases.
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6.3 A correlation kernel of finite smoothness

We finally compare the low-rank approximation with the combination technique in
case of the Matérn kernel

k3/2(r) =

(
1+

√
3r
ℓ

)
exp

(
−

√
3r
ℓ

)
, r = ‖γ(s)− γ(t)‖

which is of finite smoothness. The correlation lengthℓ is again chosen to beℓ =
1,1/2,1/4,1/8. The computational set-up of our comparison is in completeanalogy
to that of Subsection 6.2.
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Fig. 5 Accuracy (left plot) and computing times (right plot) in thecase of the Matérn kernel.

In the left plot of Figure 5, we plotted the relative error of the variance versus
the discretization level. Again, both approaches seem to produce the same conver-
gence rates but the relative errors of the the low-rank approximation (green lines)
are again a certain factor lower than relative error of the sparse grid approach (blue
lines). Moreover, for a fixed discretization level, the relative error increases as the
correlation length decreases.

In the right plot of Figure 5, the associated computing timesare found. The com-
puting times of the low-rank approximation (green lines) clearly depend on the cor-
relation length. Whereas, in the case of the sparse grid approach, the computing
times are independent of the correlation length. Additionally, one figures out of the
plot that the computing times of the low-rank approximationseem to grow with a
higher rate compared with the sparse grid approach. This corresponds to the theoret-
ical predictions from [18]. Nevertheless, if one compares accuracy versus computing
time, the low-rank approximation is still superior to the sparse grid approach.
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7 Concluding remarks

In this paper, we modeled and solved Robin boundary value problems on random
domains. We derived deterministic equations for the expectation and variance of
the associated random solution. The variance can be computed by means of a low-
rank approximation or by the combination technique. By numerical experiments,
we compare these two approaches. It turns out that for our specific examples the
low-rank approximation performs better than the combination technique. However,
the combination technique has the advantage that the memoryrequirements are in-
dependent on the given two-point correlation function. We emphasize that, in the
present case of boundary value problems on random domains, the low-rank approx-
imation needs only to be computed for an(n−1)-dimensional function (cf. (21))
whereas the combination technique is ann-dimensional approach. Nevertheless,
we expect that, in the case of random coefficients (see [25]) or random loadings
(see [38]), the combination technique performs much betterin comparison with the
low-rank approximation since there the low-rank approximation of an-dimensional
function is required.
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