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In Rn, n > 2, we study the constructive and numerical solution of minimizing the energy relative to the Riesz
kernel |x − y|α−n, where1 < α < n, for the Gauss variational problem, considered for finitelymany com-
pact, mutually disjoint, boundaryless(n−1)-dimensionalCk−1,1-manifoldsΓℓ, ℓ ∈ L, wherek > (α−1)/2,
eachΓℓ being charged with Borel measures with the signαℓ := ±1 prescribed. We show that the Gauss
variational problem over a cone of Borel measures can alternatively be formulated as a minimum problem over
the corresponding cone of surface distributions belongingto the Sobolev–Slobodetski spaceH−ε/2(Γ), where
ε := α−1 andΓ :=

⋃
ℓ∈L Γℓ. An equivalent formulation leads in the case of two manifolds to a nonlinear sys-

tem of boundary integral equations involving simple layer potential operators onΓ. A corresponding numerical
method is based on the Galerkin–Bubnov discretization withpiecewise constant boundary elements. Wavelet
matrix compression is applied to sparsify the system matrix. Numerical results are presented to illustrate the
approach.
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1 Introduction

Carl Friedrich Gauss investigated in [12] the variational problem of minimizing the Newtonian energy evaluated
in the presence of an external field, nowadays called the Gauss functional (or, in constructive function theory,
the weighted energy), over nonnegative chargesϕds on the boundary surface of a given domain. For this prob-
lem, later on the sign condition was given up in connection with boundary integral equation methods where
distributional boundary charges had been introduced for solving boundary value problems. (For the history, see
Costabel’s article [8].) A different generalization of theoriginal Gauss variational problem, maintaining the sign
restriction but employing Borel or Radon measuresµ as charges and replacing the Newtonian kernel by a much
more general one (e.g., by the Riesz or Green kernel) has independently grown into an eminent branch of modern
potential theory (see, e.g., [24] and the extensive works [28]–[32] and [34]; for two dimensions, see [25]).

In this paper, we consider the Gauss variational problem with the Riesz kernel|x − y|α−n, 1 < α < n, on
Γ :=

⋃
ℓ∈L Γℓ, whereΓℓ, ℓ ∈ L, are finitely many compact, connected, mutually disjoint, boundaryless(n− 1)-

dimensional orientable manifolds, immersed intoRn, n > 2, which are assumed to be at least Lipschitz, andΓ is
loaded by chargesµ =

∑
ℓ∈L αℓµ

ℓ, whereαℓ is a function ofℓ taking the value+1 or−1 andµℓ is a nonnegative
Borel measure supported byΓℓ. We first show that, if eachΓℓ is aCk−1,1-manifold (see, e.g., [13, 21]), where
k ∈ N andk > (α − 1)/2, then every Borel measureν on Γ with finite Riesz energy can be identified with
an element of the Sobolev–Slobodetski spaceH−ε/2(Γ), whereε := α − 1, in the sense that the functionalν
onC∞(Γ) can be extended by continuity to the whole spaceHε/2(Γ) and, moreover, the Riesz energy norm ofν
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2 H. Harbrecht, W.L. Wendland, and N. Zorii: Riesz minimal energy problems onCk−1,1-manifolds

and the corresponding one inH−ε/2(Γ) are equivalent.1 Therefore, under proper assumptions on the external
field, for theseΓℓ, the Gauss problem over Borel measures is equivalent to the problem of minimizing the Gauss
functional over the corresponding affine cone inH−ε/2(Γ), and then the Gauss functional can be expressed in
terms of a simple layer boundary integral operator onΓ. This allows us to approximate the Gauss problem by
employing the boundary element method. The latter corresponds to a nonlinear variational problem on the convex
cone of allϕ =

∑
ℓ∈L αℓϕ

ℓ whereϕℓ ∈ H−ε/2(Γℓ) andϕℓ > 0.
In [15, 23], under the assumptions admitted therein, we useda penalty formulation of the above-mentioned

nonlinear variational problem, whose discrete version allowed us the application of the gradient projection
method; corresponding convergence and error analysis has also been provided. The convergence of the gra-
dient projection method depends on the degrees of freedom and the penalty parameter, and it becomes extremely
slow for higher accuracy; whereas with an active set strategy the solution can be obtained significantly faster.
As to the (much more general) case investigated in the present paper, corresponding work applying an active set
strategy is in progress.

In this paper, numerical experiments are given in the case oftwo oppositely signed manifoldsΓ1 andΓ2,
immersed intoR3, and they are based on an alternative approach to the Gauss problem, provided in [32]. This
refers to distributionsϕ =

∑
ℓ∈L αℓϕ

ℓ whose weighted potentials satisfy certain boundary conditions, involving
the minimum weighted energy, but now withϕℓ ∈ H−ε/2(Γℓ) not necessarily positive. In the special case
where the equilibrium weighted potential takes constant values on each ofΓi, i = 1, 2, we are led to a system of
nonlinear boundary integral equations onΓ. The corresponding numerical solution is found with a few steps of
Newton’s iteration employing wavelet matrix compression [10, 14].

In applications, the numerical solution of the Gauss variational problem is of great interest if for practical
reasons in electrical engineering on some of theΓℓ only nonnegative while on the others only nonpositive charges
are allowed (see ”capacitors” in [18]). It also has applications in approximation theory and the development of
efficient numerical integration (see [16]).

2 Gauss variational problem

We consider the problem of minimizing the energy relative tothe Riesz kernel|x − y|α−n of orderα ∈ (1, n)
for signed Borel measures on a given(n− 1)-dimensional (in general, non-connected) manifoldΓ in Rn, n > 2,
in the presence of an external field. The corresponding admissible measures (or charges) are associated with a
(generalized) condenser, which is meant here as an ordered collectionA = (Ai)i∈I of finitely many mutually
disjoint platesAi, i ∈ I, and eachAi is the finite union of compact, nonintersecting, boundaryless, connected
Lipschitz(n− 1)-dimensional orientable manifoldsΓℓ, ℓ ∈ Li, immersed intoRn. That is,Γ =

⋃
i∈I Ai, where

Ai =
⋃
ℓ∈Li

Γℓ. Each plateAi, i ∈ I, is treated with the signαi prescribed, whereαi takes the value+1 for
i ∈ I+ and−1 for i ∈ I−. Here,I = I+ ∪ I−, I+ ∩ I− = ∅, andI− is allowed to be empty.

Changing notations if necessary, we assume the index setsLi, i ∈ I, to be mutually disjoint. WriteL :=⋃
i∈I Li, L

+ :=
⋃
i∈I+ Li, L

− :=
⋃
i∈I− Li and defineαℓ := +1 for ℓ ∈ L+ andαℓ := −1 for ℓ ∈ L−.

To introduce notations and preliminary results, we consider the Riesz kernel of arbitrary order0 < α < n.
Let M = M(Rn) stand for theσ-algebra of all Borel measuresν onRn, equipped with thevaguetopology, i.e.,
that of pointwise convergence on the classC0(R

n) of all real-valued continuous functions onRn with compact
support (see, e.g., [3]). Forν, ν1 ∈ M, the mutual Riesz energy and the Riesz potential are given by

Iα(ν, ν1) :=

∫

Rn×Rn

|x− y|α−n d(ν ⊗ ν1)(x,y) and Uνα(x) :=

∫

Rn

|x− y|α−n dν(y),

respectively, provided the corresponding integral on the right is well defined (as a finite number or±∞). For
ν = ν1, we get the Riesz energyIα(ν) := Iα(ν, ν) of ν.

Let Eα = Eα(R
n) consist of allν ∈ M with finite energy. Since the Riesz kernel is strictly positive definite

(see, e.g., [19]), the bilinear formIα(ν1, ν2) defines onEα a scalar product and, hence, the norm

‖ν‖Eα :=
√
Iα(ν).

1 In the case where two elements of two different topological spaces, respectively, can be identified in some sense, evident from the
context, they are denoted by the same symbol.
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The topology onEα defined by the norm‖ · ‖Eα is calledstrong.
As has been shown by H. Cartan [6],Eα is, in general, strongly incomplete2 (and, hence, it is a pre-Hilbert

space), while, by J. Deny [11] (see also [19]),Eα can be isometrically imbedded into its completion, the spaceS∗
α

of slowly increasing distributionsT ∈ S∗ with finite energy

‖T ‖2S∗

α
= C(n, α)

∫

Rn

|T̂ (ξ)|2

|ξ|α
dξ. (2.1)

Here,

C(n, α) := 2απ n/2
Γ(α/2)

Γ((n− α)/2)
, (2.2)

Γ(·) being the Gamma function, and̂T (ξ), ξ ∈ Rn, is the Fourier transform ofT ∈ S∗, i.e.

T̂ (ξ) := (2π)−n/2
∫

Rn

e−ix·ξ dT (x).

Observe that the constantC(n, α), appeared in (2.1), differs from that in [19, (6.1.3)] because of the different
normalizing factors used in the definitions of the Riesz kernel and the Fourier transform.

Given a Borel setB ⊂ Rn, letM(B) consist of allν ∈ M concentrated inB, and letM+(B) be the convex
cone of all nonnegativeν ∈ M(B). Also write Eα(B) := M(B) ∩ Eα, E+

α (B) := M
+(B) ∩ Eα and equip

M(B) andEα(B) with the vague and strong topologies inherited fromM andEα, respectively. ThenEα(B) is a
pre-Hilbert (in general, strongly incomplete) space as well.

The condenserA = (Ai)i∈I , defined above, is supposed to be loaded by charges

µ =
∑

i∈I

αiµ
i, where µi ∈ E+

α (Ai).

The set of all thoseµwill be denoted byEα(A); it is a convex cone in the pre-Hilbert spaceEα(Γ) = Eα
(⋃

i∈I Ai
)
.

Further, letg be a given continuous, positive function onΓ and leta = (ai)i∈I be a given vector withai > 0,
i ∈ I. Then the set of admissible charges for the Gauss problem is defined by

Eα(A, a, g) :=
{
µ ∈ Eα(A) :

∫

Ai

g dµi = ai for all i ∈ I
}
.

Note thatEα(A, a, g) is an affine, convex cone inEα(Γ).
In addition, letf be a given continuous function onΓ, characterizing an exterior source of energy. Then

Gf(µ) := Iα(µ) + 2

∫

Γ

f dµ

defines the value of theGauss functionalatµ ∈ Eα(A). The Gauss problem now reads as follows:

Problem 2.1 Letα ∈ (1, n). Findλ that minimizesGf(µ) in Eα(A, a, g), i.e.,λ ∈ Eα(A, a, g) with

Gf(λ) = inf
µ∈Eα(A,a,g)

Gf (µ) =: Gf (A, a, g). (2.3)

A minimizerλ is unique (if exists). This follows from the strict positivedefiniteness of the Riesz kernel and
the convexity of the class of admissible measures; see [29].But what about the existence ofλ?

Assume for a moment that at least one of theAi is noncompact. Then it is not clear at all whether the
equilibrium state in the Gauss variational problem can be attained. Moreover, it has been shown by the third
author that, in this case, a minimizing measureλ in general does not exist; necessary and sufficient conditions for
λ to exist were given in [28, 30, 31]. See also Section 10 below for some related numerical experiments.

2 At least, this is the case forα > 1 (see [19, Theorem 1.19]).
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4 H. Harbrecht, W.L. Wendland, and N. Zorii: Riesz minimal energy problems onCk−1,1-manifolds

However, in the case under consideration, where all theAi are assumed to be compact, the Gauss variational
problem has a (unique) solutionλ. Indeed, this follows from the vague compactness ofEα(A, a, g) when com-
bined with the fact that the Gauss functionalGf is vaguely lower semicontinuous onEα(A); cf. [24].

If eachΓℓ is aCk−1,1-manifold withk > (α − 1)/2 then, under proper additional restrictions ong andf , in
Section 6 we give an equivalent formulation of the Gauss variational problem (2.3), now based on distributions
concentrated onΓ with densities from the Sobolev–Slobodetski spaceH−ε/2(Γ), whereε := α − 1.3 This
becomes possible due to the fact that, for theseΓℓ, everyν ∈ Eα(Γ) can be interpreted as an element ofH−ε/2(Γ)
in the sense that the functionalν on C∞(Γ) can be extended by continuity to the whole spaceHε/2(Γ) and,
moreover, its norm inEα(Γ) and the one inH−ε/2(Γ) are equivalent; see Theorem 5.1.

3 Riesz potentials in Rn

LetD ⊂ Rn be a given bounded domain. For anys > 0, let H̃−s(D) denote the Sobolev space of order−s inD.
Recall thatH̃−s(D) consists of allϕ ∈ H−s(Rn) supported byD (see, e.g., [17, (4.1.17)]), whereH−s(Rn) is
the Sobolev space of order−s in Rn (see, e.g., [1]). It also can be obtained as the closure ofC∞

0 (D) with respect
to the Sobolev norm‖ · ‖H−s(Rn). Below, we shall also use the fact (see, e.g., [17, (4.1.28)]) that the Sobolev
spaceH−s(Rn) consists of all slowly increasing distributionsϕ ∈ S∗ with

‖ϕ‖H−s(Rn) :=
{∫

Rn

(
1 + |ξ|2

)−s
|ϕ̂(ξ)|2 dξ

}1/2

<∞. (3.1)

For the Riesz potentials of orderα ∈ (0, n) in Rn, n > 2, we have the following

Lemma 3.1 The operatorV−α, given by the formula

V−αϕ(x) :=

∫

Rn

|x− y|α−nϕ(y) dy, where ϕ ∈ C∞
0 (D) and x ∈ Rn,

is a strongly elliptic classical pseudodifferential operator of order−α. Moreover, there exist positive constantsc1
andc2 depending onD only such that

c1‖ϕ‖
2
H̃−α/2(D)

6
(
V−αϕ, ϕ

)
L2(D)

6 c2‖ϕ‖
2
H̃−α/2(D)

for all ϕ ∈ H̃−α/2(D). (3.2)

P r o o f. Observe that the Schwartz kernel of the integral operatorV−α is homogeneous of degreeα− n < 0
and, by Seeley [26], the homogeneous symbol ofV−α can be given by

a−α(x, ξ) = C(n, α)|ξ|−α, ξ ∈ Rn,

whereC(n, α) is defined by (2.2). Since for|ξ| = 1, a−α(x, ξ) is a positive constant,V−α is strongly elliptic
and, as a pseudodifferential operator on the (bounded) domain D, it is continuous. This yields the inequality on
the right in (3.2) with a constantc2 depending onD only. The one on the left follows with the Fourier transform
and Parseval’s equality (see [17, Section 7.1.1]); actually, c1 does not depend onD.

Let S∗
α(D) be the topological subspace ofS∗

α consisting of allT ∈ S∗
α with suppT ⊂ D. We next establish

relationships between the pre-Hilbert spaceEα(D), the Sobolev spacẽH−α/2(D), and the spaceS∗
α(D).

Lemma 3.2 The spaces̃H−α/2(D) andS∗
α(D) are topologically equivalent.

P r o o f. For anyT ∈ S∗
α(D) we get, by (2.1) and (3.1),

‖T ‖2H−α/2(Rn) =

∫

Rn

(
1 + |ξ|2

)−α/2
|T̂ (ξ)|2 dξ 6 C(n, α)−1‖T ‖2S∗

α
,

3 These distributions define bounded linear functionals onHε/2(Γ), whereas Borel measuresµ ∈ M(Γ) define bounded linear func-
tionals onC(Γ); however,C(Γ) 6⊂ Hε/2(Γ) 6⊂ C(Γ) (for more details, see Section 3 below).
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so thatT ∈ H̃−α/2(D). Conversely, for anyϕ ∈ H̃−α/2(D), we haveϕ ∈ S∗
α(D) since, by the Parseval–

Plancherel formula and relation (2.1),

(
V−αϕ, ϕ

)
L2(Rn)

= C(n, α)

∫

Rn

|ϕ̂(ξ)|2

|ξ|α
dξ = ‖ϕ‖2S∗

α
.

When combined with (3.2), the last relation also shows that the norms‖ ·‖H̃−α/2(D) and‖ ·‖S∗

α(D) are equivalent
as claimed.

Corollary 3.3 The pre-Hilbert spaceEα(D) is topologically equivalent to a certain subspace ofH̃−α/2(D).
That is, eachν ∈ Eα(D) can be interpreted as an element ofH̃−α/2(D) (we denote it byν as well) and

c1‖ν‖H̃−α/2(D) 6 ‖ν‖Eα 6 c2‖ν‖H̃−α/2(D), (3.3)

wherec1 and c2 are positive and independent ofν. Moreover,H̃−α/2(D) is the completion ofEα(D) with
respect to the norm‖ · ‖H̃−α/2(D). The same holds true forS∗

α(D) instead ofH̃−α/2(D).

P r o o f. Indeed, this is an immediate consequence of Deny’s theorem (cf. Section 2 above), Lemma 3.2 and
the fact thatC∞

0 (D) is dense inH̃−α/2(D).

4 Riesz potentials in Rn and on C
k−1,1-manifolds

From now on, we shall always assumeα, the order of the Riesz kernel, to satisfy the requirement1 < α < n,
and we writeε := ε(α) := α− 1. Then0 < ε < n− 1.

Also, we shall always tacitly assume thatΓℓ, ℓ ∈ L, are compact, connected, mutually disjoint, boundaryless,
(n− 1)-dimensional orientableCk−1,1-manifolds withk > (α− 1)/2, immersed intoRn, andΓ =

⋃
ℓ∈L Γℓ.

Let Ω ⊂ Rn be the domain (bounded or unbounded) with the boundary∂RnΩ = Γ and letHε/2(Γ) be the
space of traces of elements from the Sobolev spaceHα/2(Ω) onΓ (see [1, 13]). LetC∞(Γ) be the trace space
of C∞

0 (Rn) onΓ, and define forϕ ∈ C∞(Γ)

‖ϕ‖Hε/2(Γ) := inf
{
‖ϕ̃‖Hα/2(Ω), where ϕ̃ ∈ C∞

0 (Rn) and ϕ̃|Γ = ϕ
}
. (4.1)

SinceΓ is Lipschitz,C∞(Γ) is dense in the trace spaceHε/2(Γ), its closure with respect to the norm given
by (4.1) (see [1]).

Moreover, the surface measureds onΓ is well defined and generates onC∞(Γ) theL2-scalar product,

(ϕ, ψ) := (ϕ, ψ)L2(Γ) :=

∫

Γ

ϕψ ds, where ϕ, ψ ∈ C∞(Γ). (4.2)

In fact,Hε/2(Γ) is a Hilbert space equipped with the scalar product

((ϕ, ψ))Hε/2(Γ) := (ϕ, ψ)L2(Γ) +

∫

Γ

∫

Γ

(
ϕ(x) − ϕ(y)

)(
ψ(x)− ψ(y)

)

|x− y|n−1+ε
ds(x) ds(y)

and the norms given by (4.1) and by
√
((ϕ, ϕ))Hε/2(Γ) are equivalent (see [1, Th. 7.48]).

TheL2-scalar product (4.2) continuously extends to the duality betweenHε/2(Γ) and its dual spaceH−ε/2(Γ),
which is equipped with the norm

‖ϕ‖H−ε/2(Γ) := sup
{
|(ϕ, ψ)|, where ψ ∈ Hε/2(Γ) and ‖ψ‖Hε/2(Γ) 6 1

}
.

We denote that extension by the same symbol(·, ·) = (·, ·)L2(Γ). Note that the function spaceC∞(Γ) is also
dense in each of the spacesL2(Γ) andH−ε/2(Γ).
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6 H. Harbrecht, W.L. Wendland, and N. Zorii: Riesz minimal energy problems onCk−1,1-manifolds

We shall show below that, under proper additional restrictions ong andf , the solution to the Gauss prob-
lem (2.3) can be obtained with the help of the simple layer potential

V−αψ(x) :=

∫

Γ

|x− y|α−nψ(y) ds(y), where x ∈ Rn and ψ ∈ H−ε/2(Γ).

In our analysis, the operatorV defined by

V := γ0V−α, (4.3)

whereγ0 is the Gagliardo trace operator ontoΓ (see [13]), will play a decisive role. The operatorγ0 is character-
ized by the following slightly extended version of the tracetheorem (compare with [9, 21, 22]).

Theorem 4.1 GivenΓ of the classCk−1,1, let 1/2 < s < k+1/2. Then, for the Gagliardo trace operatorγ0
and its adjointγ∗0 ,

γ0 : Hs(Rn) → Hs− 1
2 (Γ) and γ∗0 : H

1
2−s(Γ) → H−s(Rn),

there exist positive constantsc, c′ andc′′ depending ons, n, andΓ only such that

‖γ0Φ‖
Hs− 1

2 (Γ)
6 c ‖Φ‖Hs(Rn) for all Φ ∈ C∞

0 (Rn),

c′‖ψ‖
H

1
2
−s(Γ)

6 ‖γ∗0ψ‖H−s(Rn) 6 c′′‖ψ‖
H

1
2
−s(Γ)

for all ψ ∈ H
1
2−s(Γ), (4.4)

and soγ0 andγ∗0 are continuous.

Here, the adjoint operatorγ∗0 is defined by

(γ∗0ψ,Φ)L2(Rn) = (ψ, γ0Φ)L2(Γ), where Φ ∈ C∞
0 (Rn) and ψ ∈ H

1
2−s(Γ). (4.5)

Observe that thensupp (γ∗0ψ) ⊂ Γ for all ψ ∈ H
1
2−s(Γ).

Remark 4.2 If in Theorem 4.1,Γ is replaced byRn−1, then its assertion holds true for alls > 1/2 (see [20]).

The proof of Theorem 4.1 will be given in the Appendix.

Theorem 4.3 Under the stated assumptions onα andΓ, the operatorV , defined by(4.3), is a linear, contin-
uous, invertible mapping

V : H−ε/2(Γ) → Hε/2(Γ).

Moreover, it isH−ε/2(Γ)-elliptic; i.e., there exist positive constantscc and cV depending onn, Γ, andε only
such that

cV ‖ψ‖
2
H−ε/2(Γ) 6 ‖ψ‖2V 6 cc‖ψ‖

2
H−ε/2(Γ) for all ψ ∈ H−ε/2(Γ), (4.6)

where

‖ψ‖2V := (ψ, V ψ)L2(Γ).

P r o o f. Fixψ ∈ H−ε/2(Γ) and chooser such thatΓ ⊂ Br, whereBr is an open ball of radiusr. Having
observed that1/2 < α/2 < k+1/2, from Theorem 4.1 withs = α/2 we getγ∗0ψ ∈ H− ε

2−
1
2 (Rn) = H−α

2 (Rn).
Actually,

γ∗0ψ ∈ H̃−α
2 (Br) (4.7)

because ofsupp (γ∗0ψ) ⊂ Γ. Therefore, in consequence of Lemma 3.1 withD = Br,

V−αγ
∗
0ψ ∈ Hα/2(Br). (4.8)
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Repeated application of Theorem 4.1 withs = α/2 then shows that the trace ofV−αγ
∗
0ψ onΓ exists and, due

to (3.2), (4.4) and (4.5),

(V ψ, ψ)L2(Γ) = (γ0V−αγ
∗
0ψ, ψ)L2(Γ) = (V−αγ

∗
0ψ, γ

∗
0ψ)L2(Br) > c1‖γ

∗
0ψ‖

2
H̃−α/2(Br)

> c1c
′2‖ψ‖2H−ε/2(Γ)

and also

(V ψ, ψ)L2(Γ) 6 c2‖γ
∗
0ψ‖

2
H̃−α/2(Br)

6 c2c
′′2‖ψ‖2H−ε/2(Γ),

which is (4.6). Here,c1, c2 andc′, c′′ are taken from (3.2) and (4.4), respectively.
The invertibility ofV then follows with the Lax–Milgram lemma. This completes theproof.

Remark 4.4 If n = 2 or n = 3, then Theorem 4.3 is valid for anyα ∈ (1, n) providedΓ is just Lipschitz.
See [9, Th. 3.6] and [21, pp. 98–102].

5 Relations between Eα(Γ) and H
−ε/2(Γ)

The main purpose of this section is to characterize the Borelmeasures onΓ with finite Riesz energy, namely
ν ∈ Eα(Γ) where1 < α < n, via distributions inH−ε/2(Γ) with ε = α− 1. Recall thatΓ is aCk−1,1-manifold
with k > (α − 1)/2. The characterization obtained is given by the following principal result (cf. Corollary 3.3).

Theorem 5.1 Under the stated assumptions onα andΓ, Eα(Γ) is topologically equivalent to a certain sub-
space ofH−ε/2(Γ). That is, eachν ∈ Eα(Γ) can be interpreted as an element ofH−ε/2(Γ) in the sense that the
functionalν onC∞(Γ) can be extended by continuity to the whole spaceHε/2(Γ) and

c1‖ν‖H−ε/2(Γ) 6 ‖ν‖Eα 6 c2‖ν‖H−ε/2(Γ), (5.1)

where the constantsc1 andc2 are positive and independent ofν. Moreover,H−ε/2(Γ) is the completion of the
pre-Hilbert spaceEα(Γ) with respect to the norm‖ · ‖H−ε/2(Γ).

P r o o f. The proof is based on Theorem 4.3 and Corollary 3.3.
Chooser so thatΓ ⊂ Br. SinceV is invertible, for a givenϕ ∈ C∞(Γ) there existsψ ∈ H−ε/2(Γ) such that

V ψ = ϕ.

Hence, for anyν ∈ Eα(Γ),

ν(ϕ) =

∫

Γ

(V ψ) dν =

∫

Γ

γ0(V−αγ
∗
0ψ) dν =

(
V−αγ

∗
0ψ, ν

)
L2(Br)

, (5.2)

the last equality being obtained with exploiting the fact that ν can be treated as an element ofH̃−α/2(Br) (see
Corollary 3.3). Taking (4.7) and (4.8) into account, with the help of Lemma 3.1, relations (3.3) and (4.4), and
Theorem 4.3, from (5.2) we get

|ν(ϕ)| 6 ‖V−αγ
∗
0ψ‖Hα/2(Br)‖ν‖H̃−α/2(Br)

6 c‖γ∗0ψ‖H̃−α/2(Br)
‖ν‖Eα

6 c′‖ν‖Eα‖ψ‖H−ε/2(Γ) 6 c′′‖ν‖Eα‖ϕ‖Hε/2(Γ),

which proves that, actually,ν can be identified with a distribution inH−ε/2(Γ). Therefore, applying Theorem 4.3
to ν ∈ Eα(Γ), treated now as an element ofH−ε/2(Γ), we have

‖ν‖2Eα
= (V ν, ν)L2(Γ) = ‖ν‖2V

∼= ‖ν‖2H−ε/2(Γ) (5.3)

which proves (5.1). Finally, combining (5.1) with the fact thatC∞(Γ) is dense inH−ε/2(Γ), we see that, indeed,
H−ε/2(Γ) is the completion ofEα(Γ) with respect to the norm‖ · ‖H−ε/2(Γ) as claimed.
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Corollary 5.2 Under the stated assumptions onα andΓ, for everyν ∈ Eα(Γ) there exist absolutely continu-
ous measuresνk ∈ Eα(Γ), k ∈ N, with densitiesϕk ∈ C∞(Γ)

(
i.e.,dνk(x) = ϕk(x) ds(x)

)
such thatνk → ν

vaguely and strongly, i.e.4

νk(ϕ) → ν(ϕ) for all ϕ ∈ C(Γ) and lim
k→∞

‖νk − ν‖Eα = 0.

P r o o f. Without loss of generality, we can assumeν ∈ Eα(Γ) to be nonnegative, i.e.ν ∈ E+
α (Γ). We consider

it to be an element ofH−ε/2(Γ), which is possible due to Theorem 5.1. SinceC∞(Γ) is dense inH−ε/2(Γ),
there exists a sequenceϕk ∈ C∞(Γ), k ∈ N, converging toν in H−ε/2(Γ) and, because of (5.1), also inEα.
Since for the Riesz kernel the strong convergence of nonnegative measures implies the vague convergence to the
same limit (see, e.g., Lemma 1.2 in [19]), the corollary follows.

6 Variational formulation in the space H−ε/2(Γ)

From now on, for the given functionsg andf we require thatf, g ∈ C(Γ) ∩Hε/2(Γ). Define

Vf (ϕ) := ‖ϕ‖2V + 2(f, ϕ)L2(Γ), where ϕ ∈ H−ε/2(Γ).

The following theorem shows that the Gauss problem (2.3) onEα(A, a, g) (for the Riesz kernel|x − y|α−n of
orderα ∈ (1, n)) can alternatively be formulated as the problem of minimizing the functionalVf over the affine
coneK(A, a, g) in H−ε/2(Γ), where

K(A, a, g) :=
{
ϕ =

∑

ℓ∈L

αℓϕ
ℓ : ϕℓ ∈ H−ε/2(Γℓ), ϕ

ℓ
> 0 and

∑

ℓ∈Li

(g, ϕℓ)L2(Γℓ) = ai for all i ∈ I
}
.

Theorem 6.1 Under the stated assumptions onα, g, f , andΓ, the solutionλ ∈ Eα(A, a, g) of the Gauss
problem(2.3), treated as an element ofH−ε/2(Γ), belongs toK(A, a, g) and satisfies the relation

Vf (λ) = Gf(λ) = Gf (A, a, g). (6.1)

Thisλ is the unique minimizer of the functionalVf overK(A, a, g), i.e.,

Vf (λ) = min
ϕ∈K(A,a,g)

Vf (ϕ) =: Vf (A, a, g). (6.2)

P r o o f. By Theorem 5.1, any Borel measureµ =
∑

ℓ∈L αℓµ
ℓ ∈ Eα(A, a, g) can be treated as an element

of H−ε/2(Γ), while all theµℓ, ℓ ∈ L, as elements ofH−ε/2(Γℓ), correspondingly. The latter implies that,
actually,Eα(A, a, g) ⊂ K(A, a, g). Furthermore, applying (5.3), one also gets

Vf (µ) = ‖µ‖2V + 2(µ, f)L2(Γ) = ‖µ‖2Eα
+ 2µ(f) = Gf(µ) for all µ ∈ Eα(A, a, g), (6.3)

which yields that the solutionλ of the Gauss problem (2.3) satisfies (6.1). To establish (6.2), we observe that one
can construct a sequenceϕk ∈ C∞(Γ) ∩ K(A, a, g) converging toλ in H−ε/2(Γ). Hence, by (6.1),

Vf (ϕk) → Vf (λ) = Gf (A, a, g).

Moreover,ϕds ∈ Eα(A, a, g) for all ϕ ∈ C∞(Γ) ∩K(A, a, g) and so, by (6.3),

Gf (A, a, g) 6 inf
ϕ∈K(A,a,g)∩C∞(Γ)

Vf (ϕ) 6 Vf (ϕk) for all k ∈ N,

which implies withk → ∞

inf
ϕ∈K(A,a,g)∩C∞(Γ)

Vf (ϕ) = Vf (λ) = Gf (A, a, g).

Repeated application of the fact thatC∞(Γ) is a dense subspace ofH−ε/2(Γ) yields (6.2) as required.

4 Compare with Lemma 1.2 and Corollary 2 in [19, Chapt. 1], where Cartan’s approximating measures have, in fact,n-dimensional
supports inRn.
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7 Alternative approach to the Gauss problem

For anyϕ ∈ H−ε/2(Γ), write

ϕi := αiϕ|Ai , i ∈ I;

then

ϕ =
∑

i∈I

αiϕ
i.

Note thatϕi belongs toH−ε/2(Ai), but it is no longer necessarily positive — in contrast to what we have had
for elements fromK(A, a, g). Givenϕ ∈ H−ε/2(Γ) andi ∈ I, define

Ψi(x, ϕ) := ai
V−αϕ(x) + f(x)

g(x)
+ (f, ϕi)L2(Γ), x ∈ Rn.

Observe that, ifϕ = µ ∈ Eα(Γ), thenV−αµ(x) = Uµα (x) and, hence,Ψi(x, µ) is well defined and finite nearly
everywhere (n.e.) inRn (see, e.g., [19]), i.e., excepting at most a subset ofRn with the Riesz capacity zero.

We denote byGα(A, a, g) the cone of allϕ ∈ Eα(Γ) for which there existηi(ϕ) ∈ R, i ∈ I, such that

αiΨ
i(x, ϕ) > αiηi(ϕ) n.e. in Ai, (7.1)

∑

i∈I

αiηi(ϕ) = Vf (A, a, g). (7.2)

Then there holds the following assertion (cf. [32, Th. 2] and[33, Corollary 8.4]).

Theorem 7.1 The solutionλ to the Gauss problem is also the unique minimizer ofVf (ϕ) overGα(A, a, g),
i.e.

λ ∈ Gα(A, a, g), (7.3)

inf
ϕ∈Gα(A,a,g)

Vf (ϕ) = Vf (λ) = Vf (A, a, g). (7.4)

P r o o f. For brevity, writeSν := supp ν. According to [29, Th. 1], for everyi ∈ I,

αiΨ
i(x, λ) > αiηi(λ) n.e. in Ai, (7.5)

αiΨ
i(x, λ) 6 αiηi(λ) for all x ∈ Sλi , (7.6)

where

ηi(λ) = Iα(λ
i, λ) + 2

∫
f dλi = (V λ, λi)L2(Γ) + 2(f, λi)L2(Γ), (7.7)

the latter equality in (7.7) is obtained with the application of Theorems 4.3 and 5.1.
Hence, by (7.7) and Theorem 6.1,

∑

i∈I

αiηi(λ) = Vf (λ) = Vf (A, a, g), (7.8)

which together with (7.5) proves inclusion (7.3). In turn, this yields

Vf (λ) > inf
ϕ∈Gα(A,a,g)

Vf (ϕ). (7.9)

To show that this inequality is, in fact, an equality, for anygivenϕ ∈ Gα(A, a, g) andi ∈ I we multiply (7.1)
by g(x) and then we integrate the inequality obtained with respect toλi, having used the fact that a set of capacity
zero is necessarily of exteriorν-measure zero providedν has finite energy (see, e.g., [19]). This gives

αi
[
(V ϕ, λi)L2(Γ) + (f, λi)L2(Γ) + (f, ϕi)L2(Γ)

]
> αiηi(ϕ), i ∈ I.
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Summing up these inequalities over alli ∈ I and then substituting (7.2) into the result obtained, aftersimple
transformations we get

Vf (ϕ) > ‖ϕ− λ‖2V + Vf (λ) > Vf (λ) for all ϕ ∈ Gα(A, a, g),

which together with (7.9) establishes (7.4). The proof is complete.

Corollary 7.2 Let H(A, a, g) consist of allϕ ∈ H−ε/2(Γ) for which there existηi(ϕ) ∈ R, i ∈ I, satisfy-
ing (7.2)and, as well,

Ψi(x, ϕ) = ηi(ϕ) for all x ∈ Ai, where i ∈ I,

and letA, a, g, and f be such that, instead of(7.5), λ satisfies this very last relation.5 Thenλ can also be
obtained as the(unique) minimizer ofVf (ϕ) over the coneH(A, a, g).

8 Two manifolds problem

If L+ = {1} andL− = {2}, thenH(A, a, g) consists of allϕ ∈ H−ε/2(Γ) for which there existsc(ϕ) ∈ R such
that

Ψ1(x, ϕ) = c(ϕ) + 1
2Vf (A, a, g) on Γ1, (8.1)

Ψ2(x, ϕ) = c(ϕ)− 1
2Vf (A, a, g) on Γ2. (8.2)

Due to Corollary 7.2, we are led to the following theorem.

Theorem 8.1 LetL+ = {1}, L− = {2}, g = 1, and letΓ1, Γ2, a1, a2 andf be such thatλ, the solution of
the corresponding Gauss problem, satisfies relations(8.1)and(8.2)withC := c(λ). Then, equivalently,

V λ1 − V λ2 =

{
a−1
1

[
C + 1

2Vf (A, a, g)− (f, λ1)L2(Γ1)

]
− f on Γ1,

a−1
2

[
C − 1

2Vf (A, a, g)− (f, λ2)L2(Γ2)

]
− f on Γ2.

(8.3)

If, moreover,

d0 := a2(λ̇
1, 1)L2(Γ1) − a1(λ̇

2, 1)L2(Γ2) 6= 0, (8.4)

then the constantC can be written in the form

C = d−1
0

{
a2(λ̇

1, 1)L2(Γ1)

[
(f, λ1)L2(Γ1)−

1
2Vf (A, a, g)

]
− a1(λ̇

2, 1)L2(Γ2)

[
(f, λ2)L2(Γ2)+

1
2Vf (A, a, g)

]}

(8.5)

whereλ̇i ∈ H−ε/2(Γi), i = 1, 2, solve the system of boundary integral equations

V λ̇1 − V λ̇2 =

{
a−1
1

[
1− (f, λ̇1)L2(Γ1)

]
on Γ1,

a−1
2

[
1− (f, λ̇2)L2(Γ2)

]
on Γ2.

(8.6)

P r o o f. Observe that for anyc ∈ R there existϕic ∈ H−ε/2(Γi), i = 1, 2, satisfying (8.3) withλi andC
replaced byϕic andc, respectively, i.e.

V ϕ1
c − V ϕ2

c =

{
a−1
1

[
c+ 1

2Vf (A, a, g)− (f, ϕ1
c)L2(Γ1)

]
− f on Γ1,

a−1
2

[
c− 1

2Vf (A, a, g)− (f, ϕ2
c)L2(Γ2)

]
− f on Γ2,

(8.7)

and theseϕic, i = 1, 2, are determined uniquely. Thenϕc := ϕ1
c − ϕ2

c ∈ H(A, a, g), and therefore the cone
H(A, a, g) can be considered as a one-dimensional family with the parameterc ∈ R.

5 In the general case of arbitraryA, a, g andf , this is not so.
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Sinceλ is the minimizer ofVf (ϕc) = (ϕc, V ϕc)L2(Γ) + 2(f, ϕc)L2(Γ) overc ∈ R and bothϕc andVf (ϕc)
are continuously differentiable with respect toc, we conclude that

d

dc
Vf (ϕc)

∣∣∣∣
c=C

= 0 =
{
(ϕ̇c, V ϕc)L2(Γ) + (ϕc, V ϕ̇c)L2(Γ) + 2(f, ϕ̇c)L2(Γ)

}∣∣∣∣
c=C

,

whereϕ̇c := dϕc/dc. Having denoted

λ̇i := ϕ̇ic
∣∣
c=C

for i = 1, 2, (8.8)

we therefore get

0 = + (λ̇1, V λ1 − V λ2)L2(Γ1) − (λ̇2, V λ1 − V λ2)L2(Γ2)

+ (λ1, V λ̇1 − V λ̇2)L2(Γ1) − (λ2, V λ̇1 − V λ̇2)L2(Γ2) + 2(f, λ̇1)L2(Γ1) − 2(f, λ̇2)L2(Γ2). (8.9)

Differentiating (8.7) with respect toc, in view of (8.8) we find the system of equations (8.6). Now, insert-
ing (8.3) and (8.6) into (8.9) results in

0 = +
(
λ̇1, a−1

1 [C + 1
2Vf (A, a, g)− (f, λ1)L2(Γ1)]

)
L2(Γ1)

− (λ̇1, f)L2(Γ1)

−
(
λ̇2, a−1

2 [C − 1
2Vf (A, a, g)− (f, λ2)L2(Γ2)]

)
L2(Γ2)

+ (λ̇2, f)L2(Γ2)

+
(
λ1, a−1

1 [1− (f, λ̇1)L2(Γ1)]
)
L2(Γ1)

−
(
λ2, a−1

2 [1− (f, λ̇2)L2(Γ2)]
)
L2(Γ2)

+ 2(f, λ̇1)L2(Γ1) − 2(f, λ̇2)L2(Γ2).

Employing here the fact that(λi, 1)L2(Γi) = ai for i = 1, 2 and then multiplying the relation obtained bya1a2,
one getsC in the form (8.5) as was to be proved.

Remark 8.2 In the casef = 0, assumption (8.4) does hold automatically since thend0 = a1a2(V λ̇, λ̇) > 0.

In the remainder of this section we shall tacitly require allthe assumptions of Theorem 8.1 to be satisfied.

Lemma 8.3 If Vf (A, a, g) is given, then the systems of equations(8.3)and(8.6)are both uniquely solvable.

P r o o f. Indeed, since (8.3) and (8.6) are the gradient equations to the minimization of a strictly convex,
quadratic functional overH(A, a, g), which has a unique solution due to Corollary 7.2, the corresponding linear
gradient equations are uniquely solvable.

The solution of the linear equations (8.6) can be obtained with the Sherman–Morrison formula [27].

Lemma 8.4 The following procedure provides us with the solution of(8.3)and (8.6):

i) Determineσ = σ1 − σ2, whereσi ∈ H−ε/2(Γi) for i = 1, 2, as the solution of

V σ =

{
1/a1 on Γ1,

1/a2 on Γ2,

and letχ = χ1 − χ2, whereχi ∈ H−ε/2(Γi) for i = 1, 2, be the solution of

V χ = 1 on Γ.

ii) Then the solution of(8.6) is given by

λ̇ = σ + d1kχ on Γ, (8.10)

where

d1 := (σ1, a−1
1 f)L2(Γ1) + (σ2, a−1

2 f)L2(Γ2),

−k−1 := 1 + (χ1, a−1
1 )L2(Γ1) + (χ2, a−1

2 )L2(Γ2).
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12 H. Harbrecht, W.L. Wendland, and N. Zorii: Riesz minimal energy problems onCk−1,1-manifolds

iii) For solving(8.3)determineC from (8.5)by the use oḟλ, the solution of(8.6), and also findη = η1 − η2,
whereηi ∈ H−ε/2(Γi) for i = 1, 2, by solving

V η =

{
a−1
1

[
C + 1

2Vf (A, a, g)
]
− f on Γ1,

a−1
2

[
C − 1

2Vf (A, a, g)
]
− f on Γ2.

Then

λ = η + kd2χ

whered2 := (η1, a−1
1 f)L2(Γ1) + (η2, a−1

2 f)L2(Γ2).

P r o o f. With

f̃ :=

{
a−1
1 f on Γ1,

−a−1
2 f on Γ2,

the equation (8.6) can be written as

Mλ̇ := V λ̇+ (f̃ , λ̇)L2(Γ) = h :=

{
1/a1 on Γ1,

1/a2 on Γ2.

HereM : H−ε/2(Γ) → Hε/2(Γ) is a linear Fredholm operator of index zero sinceV is invertible and(f̃ , ·)L2(Γ)

is compact. Insertinġλ as given by (8.10) and taking the definition ofk into account, we obtain

Mλ̇ = V σ + k(f̃ , σ)L2(Γ)V χ+
(
f̃ , σ + k(f̃ , σ)L2(Γ)χ

)
L2(Γ)

= h,

which justifies ii).
Since the proof of iii) can be given in exactly the same manner, we omit the details.

In Theorem 8.1 and Lemmata 8.3 and 8.4, it is supposed thatVf (A, a, g) is known. However, if the equa-
tion (8.5) for the constantC is inserted into (8.3) andVf (A, a, g) is replaced by

Vf (λ) = (λ, V λ)L2(Γ) + 2(f, λ)L2(Γ),

then we obtain the nonlinear system of boundary integral equations forλ.
For brevity, define the nonlinear operator

C(λ, λ̇, f) := d−1
0

{
a2(λ̇

1, 1)L2(Γ1)

[
(f, λ1)L2(Γ1)−

1
2Vf (λ)

]
−a1(λ̇

2, 1)L2(Γ2)

[
(f, λ2)L2(Γ2)+

1
2Vf (λ)

]}
.

The nonlinear system of boundary integral equations forλ now reads as follows:

V λ1 − V λ2 =

{
a−1
1

[
C(λ, λ̇, f)− (f, λ1)L2(Γ1) +

1
2Vf (λ)

]
− f on Γ1,

a−1
2

[
C(λ, λ̇, f)− (f, λ2)L2(Γ2) −

1
2Vf (λ)

]
− f on Γ2.

(8.11)

Note thatλ̇ in (8.11) is already determined by means of (8.6), and (8.11)can be solved via Newton’s iteration for
λ ∈ H−ε/2(Γ).

9 Example

The aim of this section is to provide an example where, in Theorem 8.1, both the requirements (8.1) and (8.2) for
λ do hold. To this end, we restrict ourselves to the case whereα ∈ (1, 2], α < n; then the following concepts of
Riesz equilibrium and balayage measures are well known (see, e.g., [19]).
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Given a compact setK ⊂ Rn, let Cα(K) denote the Riesz capacity ofK andγK ∈ E+
α (K) its (Riesz)

equilibrium measure, uniquely determined by the followingrelations:

γK(Rn) = Cα(K), (9.1)

UγKα (x) = 1 n.e. in K. (9.2)

If ν ∈ Eα(R
n) is also given, then there existsβαKν ∈ Eα(K), called the (Riesz) balayage, uniquely determined

by

U
βα
Kν

α (x) = Uνα(x) n.e. in K. (9.3)

Furthermore, one can see from [19], Sections 3 and 5 in Chapters II and IV, respectively, that

SγK = Sβα
Kν

= K (9.4)

providedK is a connected(n−1)-dimensional orientable manifold. If, moreover, this manifold does not contain
anyα-irregular points (which is the case if it is Lipschitz; see [2, Lemma 10] or [7, Th. 2.2]), then, by [19], the
equalities in (9.2) and (9.3) hold everywhere inK.

Example 9.1 Let n > 2, L+ = {1},L− = {2}, g(x) = 1 for all x ∈ Rn, Γ1 = Sr :=
{
x ∈ Rn : |x| = r

}
,

f(x) = V−αθ(x) = Uθα(x) for all x ∈ Rn,

θ being a nonnegative measure of total massθ(Rn) = q > 0 that coincides up to a constant factor with the
(n− 1)-dimensional Lebesgue surface measure ofSr1 , and letΓ2 be a compact, connected(n− 1)-dimensional
orientableCk−1,1-manifold inRn \BR, wherek > (α− 1)/2 andR > r1 > r > 0.

Under these requirements, there holds the following assertion (cf. [33, Corollary 10.1]).

Theorem 9.2 If, moreover,1 < α 6 2, α < n, and

a1
(
Rr−1 − 1

)n−α
> a2 > a1 + q, (9.5)

thenλ, the solution of the corresponding Gauss problem, satisfiesboth(8.1)and(8.2). Furthermore, then

Sλi = Γi, i = 1, 2. (9.6)

P r o o f. Letηi(λ), i = 1, 2, be determined by (7.7); then (7.5), (7.6), and (7.8) hold true.
Since, under the assumptions made, there existsp > 0 such that

f(x) = p for all x ∈ Γ1, (9.7)

relations (7.5) and (7.6) yield

a1U
λ
α(x) > c∗1 n.e. in Γ1, (9.8)

a1U
λ
α(x) = c∗1 n.e. in Sλ1 , (9.9)

wherec∗1 := η1(λ) − 2pa1. The measureλ1 is nonzero and has finite energy; therefore,Cα(Sλ1) > 0 and,
by (9.1),γ1 := γSλ1 6= 0. In view of (9.2), relation (9.9) can be rewritten in the form

a1U
λ1

α (x)− c∗1U
γ1

α (x) = a1U
λ2

α (x) n.e. in Sλ1 ,

which means that, actually,a1λ1 − c∗1γ
1 = a1β

α
Sλ1

λ2. This implies

c∗1 =
a1
[
a1 −

(
βαSλ1

λ2
)
(Rn)

]

γ1(Rn)
. (9.10)
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14 H. Harbrecht, W.L. Wendland, and N. Zorii: Riesz minimal energy problems onCk−1,1-manifolds

Since, due to (9.1)–(9.3),

(
βαSλ1

λ2
)
(Rn) =

∫
1 dβαSλ1

λ2 = Iα(γ
1, βαSλ1

λ2) = Iα(γ
1, λ2)

6
λ2(Rn)γ1(Rn)

dist (Sγ1 , Sλ2)n−α
6

a2Cα(Γ1)

dist (Γ1,Γ2)n−α
=

a2r
n−α

(R − r)n−α
,

we conclude from (9.10) and the left-hand side of (9.5) thatc∗1 > 0.

Consequently,c∗1+a1U
λ2

α (x) is anα-superharmonic function (see, e.g., [19, Chapter I, Section 6]). Therefore,
applying [19, Th. 1.29], we conclude from (9.9) thata1Uλα(x) 6 c∗1 for all x ∈ Rn. Combined with (9.8), this
gives

a1U
λ
α(x) = c∗1 n.e. in Γ1, (9.11)

and so

a1λ
1 − c∗1γΓ1 = a1β

α
Γ1
λ2. (9.12)

SinceΓ1 contains noα-irregular points, (9.12) yields that (9.11) holds, in fact, everywhere inΓ1, which together
with (9.7) proves (8.1). Furthermore, due to (9.4), (9.12) impliesSλ1 = Γ1, i.e. (9.6) fori = 1.

Further, by (7.5) and (7.6),

a2U
λ+θ
α (x) 6 c∗2 n.e. in Γ2, (9.13)

a2U
λ+θ
α (x) = c∗2 n.e. in Sλ2 , (9.14)

wherec∗2 := η2(λ) − Iα(θ, λ
2). Hence, by (9.14),

a2U
λ1+θ
α (x) = a2U

λ2

α (x) + c∗2U
γ2

α (x) n.e. in Sλ2 ,

whereγ2 := γSλ2 , so that

a2λ
2 + c∗2γ

2 = a2β
α
Sλ2

(λ1 + θ),

and consequently

c∗2 =
a2
[
βαSλ2

(λ1 + θ)(Rn)− a2
]

γ2(Rn)
.

In view of the right-hand side of (9.5) and the fact thatβαKν(R
n) 6 ν(Rn) for any compactK andν ∈ E+(Rn)

(see, e.g., [19]), we therefore getc∗2 6 0. Hence,a2Uλ
1+θ

α (x) − c∗2 is α-superharmonic, which due to [19,
Th. 1.29] enables us to conclude from (9.14) thata2U

λ+θ
α (x) > c∗2 for all x ∈ Rn. When combined with (9.13),

this gives

a2U
λ+θ
α (x) = c∗2 n.e. in Γ2, (9.15)

and so

a2λ
2 + c∗2γΓ2 = a2β

α
Γ2
(λ1 + θ). (9.16)

SinceΓ2 is Lipschitz, (9.16) implies that (9.15) holds, in fact, everywhere inΓ2, which proves (8.2). Furthermore,
due to (9.4), (9.16) yieldsSλ2 = Γ2, which is (9.6) fori = 2.
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10 Numerical results

We consider Example 9.1 forn = 3 with Γ1 being the unit sphere (i.e.,r = 1) andΓ2 being a rotational body of
lengthX , namely

Γ2 =
{
x = (x, y, z) ∈ R3 : y2 + z2 6 1 for x = 3,

y2 + z2 = r2(x) for 3 6 x 6 3 +X, y2 + z2 6 r2(3 +X) for x = 3 +X
}
.

In particular, for different lengthsX , we focus on the rational functionr(x) = 1/(1 + x) and the exponential
function r(x) = exp(−x). The distance of the bodiesΓ1 andΓ2 is 2 (i.e.,R = 3). Thus, choosinga1 = 1,
a2 = 2, andq = a2 − a1 = 1 (in fact, we use the choicer1 = 1.5), the inequality (9.5) is satisfied for all
α ∈ (1, 2]. Theorem 9.2 implies that both (8.1) and (8.2) hold, and therefore Theorem 8.1 applies. LetλX denote
the solution of the corresponding Gauss problem.

We discretize the given manifoldsΓ1 andΓ2 by a quadrangulation with maximal mesh widthh. On the
quadrangulation we use the characteristic functions as piecewise constant boundary elements and define a corre-
sponding basis of vectorsΦi ⊂ L2(Γi), i = 1, 2. Set

f ih := (f,Φi)L2(Γi), gih :=
1

ai
(1,Φi)L2(Γi), V

i,j
h := (V Φj ,Φi)L2(Γi), i, j = 1, 2.

Then, the Galerkin formulation of the nonlinear equation (8.11) reads as follows. Findλh,k = Φ1λ
1
h,k−Φ2λ

2
h,k ∈

L2(Γ) ⊂ H−ε/2(Γ) such that

F (λh) :=

[
V

1,1
h + g1

h(f
1
h)
T −V

1,2
h

−V
2,1
h V

2,2
h − g2

h(f
2
h)
T

][
λ1
h

λ2
h

]
−

[{
1
2Vf (λh) + Ch(λh, λ̇h, f)

}
g1
h{

1
2Vf (λh)− Ch(λh, λ̇h, f)

}
g2
h

]
+

[
f1h

−f2h

]
= 0,

(10.1)

whereVf (λh), the discrete version of the Gauss functional, is expressedas

Vf (λh) =

[
λ1
h

λ2
h

]T ([
V

1,1
h −V

1,2
h

−V
2,1
h V

2,2
h

][
λ1
h

λ2
h

]
+ 2

[
f1h

−f2h

])

and

Ch(λh, λ̇h, f) :=
{
(g1
h)
T λ̇1

h − (g2
h)
T λ̇2

h

}−1

×
{
(g1
h)
T λ̇1

h

[
(f1h)

Tλ1
h −

1
2Vf (λh)

]
− (g2

h)
T λ̇2

h

[
(f2h)

Tλ2
h +

1
2Vf (λh)

]}
.

In particular, the derivativėλh = Φ1λ̇
1
h − Φ2λ̇

2
h of the solutionλh satisfies the linear system of equations

[
V

1,1
h + g1

h(f
1
h)
T −V

1,2
h

−V
2,1
h V

2,2
h − g2

h(f
2
h)
T

][
λ̇1
h

λ̇2
h

]
=

[
g1
h

−g2
h

]
. (10.2)

In order to solve the nonlinear system of equations (10.1) weuse the Newton scheme. To this end, we note
that the derivativeF ′(λh) of F (λh) in the directionψh = Φ1ψ

1
h − Φ2ψ

2
h is given by

F ′(λh) ·ψh =

[
V

1,1
h + g1

h(f
1
h)
T −V

1,2
h

−V
2,1
h V

2,2
h − g2

h(f
2
h)
T

][
ψ1
h

ψ2
h

]
−

[{
1
2V

′
f (λh) · ψh + C

′
h(λh, λ̇h, f) · ψh

}
g1
h{

1
2V

′
f (λh) · ψh − C

′
h(λh, λ̇h, f) · ψh

}
g2
h

]

where the real numbers involved in the last term are computedas

V′
f (λh) · ψh = 2

[
ψ1
h

ψ2
h

]T ([
V

1,1
h −V

1,2
h

−V
2,1
h V

2,2
h

] [
λ1
h

λ2
h

]
+

[
f1h

−f2h

])
,
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16 H. Harbrecht, W.L. Wendland, and N. Zorii: Riesz minimal energy problems onCk−1,1-manifolds

Fig. 1 Charge distribution in the case ofr(x) = 1/(1 + x) andα = 2.

Fig. 2 Charge distribution in the case ofr(x) = 1/(1 + x) andα = 1.5.

C
′
h(λh, λ̇h, f) · ψh =

{
(g1
h)
T λ̇1

h − (g2
h)
T λ̇2

h

}−1

×
{
(g1
h)
T λ̇1

h

[
(f1h)

Tψ1
h −

1
2V

′
f (λh) · ψh

]
− (g2

h)
T λ̇2

h

[
(f2h)

Tψ2
h +

1
2V

′
f (λh) · ψh

]}
.

Then, the Newton scheme to solve (10.1) consists of the following steps:

1. Choose the initial approximationλ(0)h := a1
|Γ1|

Φ11− a2
|Γ2|

Φ21.

2. Fork = 0, 1, . . ., repeat

(a) compute the derivativėλ(k)h by solving (10.2) with the GMRES method with initial guessλ̇(k)h = 0;

(b) solve the equationF ′(λ
(k)
h ) · ψh = −F (λ

(k)
h ) by the GMRES method with initial guessψh = 0;

(c) updateλ(k+1)
h = λ

(k)
h + ψh.

Note that we have used that density as initial approximationwhich is constant on both manifolds and satisfies
there the constraints(1, λh,0)L2(Γ1) = a1 and (1, λh,0)L2(Γ2) = −a2. To our experience, with this initial
approximation, the Newton scheme converges within a rathersmall number of iteration steps. For example,
in all our numerical examples, we needed at most 5 iteration steps to solve (10.1) up to an accuracy of10−6,
independently ofα.

In Figures 1, 2, and 3, we have plotted the computed charge distributions forα = 2, α = 1.5, andα = 1.1,
respectively, where we considerr(x) = 1/(1 + x) andX = 4. These computations have been carried out
with piecewise constant boundary elements on a quadrangulation by about 50000 elements. It is observed that
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Fig. 3 Charge distribution in the case ofr(x) = 1/(1 + x) andα = 1.1.
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Fig. 4 Asymptotics forX → ∞ in the case ofr(x) = exp(−x).

α = 2.0 α = 1.9 α = 1.1
X area charge density charge density charge density
1 4.2 · 10−1 9.4 · 10−2 2.2 · 10−1 1.1 · 10−1 2.6 · 10−1 1.1 · 10−1 2.7 · 10−1

2 5.8 · 10−2 3.4 · 10−2 5.8 · 10−1 3.0 · 10−2 5.2 · 10−1 1.2 · 10−2 2.1 · 10−1

3 7.8 · 10−3 1.2 · 102 1.5 9.5 · 10−3 1.2 1.7 · 10−3 2.2 · 10−1

4 1.1 · 10−3 3.9 · 10−3 3.7 3.3 · 10−3 3.1 2.6 · 10−4 2.5 · 10−1

5 1.4 · 10−4 1.6 · 10−3 1.1 · 101 1.2 · 10−3 8.7 4.0 · 10−5 2.8 · 10−1

6 1.9 · 10−5 6.6 · 10−4 3.4 · 101 5.3 · 10−4 2.7 · 101 6.9 · 10−6 3.6 · 10−1

7 2.6 · 10−6 3.2 · 10−4 1.2 · 102 2.4 · 10−4 9.3 · 101 1.2 · 10−6 4.5 · 10−1

8 3.5 · 10−7 (1.7 · 10−4 4.7 · 102) 1.0 · 10−4 2.9 · 102 1.9 · 10−7 5.3 · 10−1

9 4.8 · 10−8 (8.3 · 10−5 1.7 · 103) (4.3 · 10−5 8.9 · 102) 2.8 · 10−8 5.9 · 10−1

Table 1 Asymptotics forX → ∞ in the case ofr(x) = exp(−x).

for α → 1 the charge distribution becomes constant on each sub-manifold. Vice versa, it becomes the more
inhomogeneous the moreα increases. It is also seen from Figures 1, 2, and 3 that the supports of the charges we
have computed coincide with the whole surfacesΓ1 andΓ2, which is in agreement with the theoretical result (9.6).

Copyright line will be provided by the publisher
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Fig. 5 Asymptotics forX → ∞ in the case ofr(x) = 1/(1 + x).

We next study the asymptotic behaviour ofλX if the lengthX of the rotational body tends to infinity. We
compute the module of the total charge at the tip ofΓ2, i.e.,

ΛX :=

∫

ΣX

λ2X ds, where ΣX :=
{
x ∈ R3 : y2 + x2 = r2(X + 3)

}
,

as well as the densityΛX/|ΣX |, where|ΣX | :=
∫
ΣX

1 ds. We are interested in their behaviours asX → ∞ since,
as has been shown in [28, 30, 31, 34], the Gauss variational problem for the noncompact condenserA = (Γ1,Γ2)
can in general be nonsolvable, and then the infimumGf (A, a, g) is attained atγ ∈ Eα(A) with

∫
Γ2
g dγ2 < a2,

whereasλX → γ vaguely and strongly asX → ∞.
According to [30, Theorems 4, 8], under our particular assumptions, such a phenomenon of nonsolvability

occurs forA = (Γ1,Γ2) with Γ2 being infinitely long, if and only ifCα(Γ2) = ∞ while Γ2 is α-thin at∞R3 ,
the latter by [4, 5] means that the inverse ofΓ2 relative to the unit sphere isα-irregular at the originx = 0. In the
caser(x) = exp(−x), both these conditions hold true forα = 2 (hence, also forα close to2), so that then

lim
X→∞

ΛX > 0, (10.3)

while in the caser(x) = 1/(1 + x), Γ2 is notα-thin at∞R3 for anyα ∈ (1, 2], so that for this geometry

lim
X→∞

ΛX = 0. (10.4)

In Figure 4, in the case ofr(x) = exp(−x), we have plotted the densitiesΛX/|ΣX | for α = 2.0 (blue graph),
α = 1.9 (red graph),α = 1.7 (green graph),α = 1.5 (black graph),α = 1.3 (cyan graph), andα = 1.1 (magenta
graph) in the range1 6 X 6 9. In the case ofα = 2.0, we were able to compute the charge distribution only for
X 6 7 and thus we have extrapolated the total charge forX > 7. Likewise, in the case ofα = 1.9, we had to
extrapolate the total charge up toX = 9.

The area of the tip|ΣX |, the module of the corresponding total chargeΛX , and the densityΛX/|ΣX | are also
tabulated in Table 1 forα = 2.0, α = 1.9, andα = 1.1. One can see that the density forα = 2 is unbounded
in X , as has been predicted by (10.3). The behaviour is quite similar for α = 1.9, whereas forα = 1.1 it seems
to be bounded inX .

We have performed the same asymptotic study also in the case of r(x) = 1/(1+x) (see Figure 5 and Table 2).
Here, we were able to compute the total charges for a much larger range ofX . The densityΛX/|ΣX | is now
always bounded, which is in agreement with the theoretical result (10.4). Also observe that the corresponding
upper bound is the smaller the smaller theα is.
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α = 2.0 α = 1.9 α = 1.1
X area charge density charge density charge density
8 3.9 · 10−2 1.6 · 10−2 4.2 · 10−1 1.4 · 10−2 3.7 · 10−1 4.6 · 10−3 1.2 · 10−1

16 1.1 · 10−2 5.7 · 10−3 5.2 · 10−1 4.8 · 10−3 4.1 · 10−1 2.0 · 10−3 1.1 · 10−1

24 5.0 · 10−3 3.0 · 10−3 5.9 · 10−1 2.5 · 10−3 4.7 · 10−1 6.9 · 10−4 9.7 · 10−2

32 2.9 · 10−3 1.9 · 10−3 6.5 · 10−1 1.5 · 10−3 5.3 · 10−1 3.4 · 10−4 9.2 · 10−2

40 1.9 · 10−3 1.3 · 10−3 7.0 · 10−1 1.0 · 10−3 5.6 · 10−1 2.0 · 10−4 8.8 · 10−2

48 1.3 · 10−3 9.6 · 10−4 7.4 · 10−1 7.7 · 10−4 5.9 · 10−1 1.1 · 10−4 8.5 · 10−2

56 9.7 · 10−4 7.5 · 10−4 7.7 · 10−1 6.0 · 10−4 6.2 · 10−1 8.1 · 10−5 8.4 · 10−2

Table 2 Asymptotics forX → ∞ in case of the rational functionr(x) = 1/(1 + x).
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A Proof of Theorem 4.1

For 1/2 < s 6 k, the proof can be found in [13, Theorem 1.5.2] and for1/2 < s < 3/2 see [9, Lemma 3.6].
Hence, it remains to consider the case1 < s < k + 1/2; thenk > 2.

We follow closely the proof by Costabel in [9]. SinceΓ is compact, by a partition of the unity the statement
of Theorem 4.1 is in fact local. Therefore, without any loss of generality, one can assumeΓ to be of the form

Γ =
{
(x′, xn) : x′ ∈ Rn−1, xn = ψ(x′)

}
,

whereψ is a function ofCk−1(Rn−1) whose derivatives∂k−1ψ are uniformly Lipschitz, i.e.,

‖∂kψ‖L∞(Rn−1) <∞.

For anyf ∈ C∞
0 (Rn) define

fψ(x
′, xn) := f

(
x′, xn + ψ(x′)

)
.

Then the trace off onΓ can be written as

(γ0f)(x
′, xn) = fψ(x

′, 0) = f
(
x′, ψ(x′)

)
.

Denote∂p := ∂/∂x′
p, p = 1, . . . , n− 1, and∂n := ∂/∂xn. Then with the chain and product rules we get

∂pfψ = (∂pf)ψ + (∂nf)ψ ∂pψ,

∂p∂jfψ = (∂p∂jf)ψ + (∂p∂nf)ψ ∂jψ + (∂j∂nf)ψ ∂pψ + (∂nf)ψ ∂p∂jψ + (∂2nf)ψ ∂jψ ∂pψ

for all p, j = 1, . . . , n− 1, and, for the higher order derivatives,

∂αx′fψ = (∂αx′f)ψ + (∂nf)ψ ∂
α
x′ψ +

|α|∑

ℓ=1

∑

06|βℓ|6|α|−ℓ

(∂ℓn∂
βℓ

x′ f)ψ Pβℓ

(
∂γ
x′ψ
)
, (A.1)

where the multi-indexβℓ is obtained fromα by deleting some of its components, whilePβℓ
(∂γ

x′ψ) are certain
products (depending onβℓ) of at mostℓ derivatives∂γ

x′ψ with |γ| < |α|, andPβℓ
(∂γ

x′ψ) is to be zero if so is the
number of all its factors.
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By f̃(x′, ξn) we denote the Fourier transform off with respect to the last variablexn, i.e.,

f̃(x′, ξn) :=
1

2π

∫ ∞

−∞

f(x′, xn)e
−iξnxn dxn.

Then

f̃ψ(x
′, ξn) = eiψ(x

′)ξn f̃(x′, ξn) and ‖f̃ψ(·, ξn)‖L2(Rn−1) = ‖f̃(·, ξn)‖L2(Rn−1). (A.2)

Hence, the Fourier transform of∂α
x′fψ, where|α| > 1, with respect to the last variable has the form

∂̃α
x′fψ(x

′, ξn) = eiψ(x
′)ξn

{
∂α
x′ f̃(x′, ξn) + iξnf̃(x

′, ξn)∂
αψ(x′)

+

|α|∑

ℓ=1

(iξn)
ℓ

∑

0≤|βℓ|6|α|−ℓ

∂βℓ

x′ f̃(x
′, ξn)Pβℓ

(∂γ
x′ψ)

}
.

Fix r, 1 6 |α| 6 r 6 k. Then for everyξn ∈ R we have the estimates

‖∂̃α
x′fψ(·, ξn)‖

2
L2(Rn−1) 6 c1‖∂

α
x′ f̃(·, ξn)‖

2
L2(Rn−1) + c2ξ

2
n‖f̃(·, ξn)‖

2
L2(Rn−1)‖∂

αψ‖2L∞(Rn−1)

+

r∑

ℓ=1

ξ2ℓn c
′
ℓ

∑

06|βℓ|6r−ℓ

‖∂βℓ

x′ f̃(·, ξn)‖
2
L2(Rn−1)

where the constantsc1, c2, c′ℓ depend only onk, ψ and do not depend onξn. Multiplying the last inequality by
(1 + |ξn|)

2t, wheret ∈ R, and then integrating the result obtained with respect toξn, in view of (A.2) we get

‖fψ‖Ht(R,Hr(Rn−1)) 6 C
r∑

ℓ=0

‖f‖Ht+ℓ(R,Hr−ℓ(Rn−1)) for all t ∈ R and 0 6 r 6 k, (A.3)

whereC depends only ont, r, k andψ. Here, for any givenf ∈ C∞
0 (Rn) we use the notation (see [9])

‖f‖2Hj(R,Hd(Rn−1)) :=

∫ ∞

−∞

(1 + |ξn|)
2j ‖f̃(·, ξn)‖

2
Hd(Rn−1) dξn.

For a givens, 1 < s < k + 1/2, define

m(ξ′, ξn) :=

k∑

ℓ=0

(1 + |ξn|)
2(s−ℓ)(1 + |ξ′|)2ℓ, where ξ′ ∈ Rn−1.

Then ∫ ∞

−∞

(1 + |ξ′|)2s−1m(ξ′, ξn)
−1 dξn 6 2

∫ ∞

0

{ k∑

ℓ=0

τ2(s−ℓ)
}−1

dτ = cks <∞.

In view of the definition ofHs− 1
2 (Γ) (see [21, pp. 98–99]), we have

c1‖fψ(·, 0)‖
2

Hs− 1
2 (Rn−1)

6 ‖γ0f‖
2

Hs− 1
2 (Γ)

6 c2‖fψ(·, 0)‖
2

Hs− 1
2 (Rn−1)

, (A.4)

where the constantsc1 andc2 are positive and independent off . Having observed that

fψ(·, 0) =
1

2π

∫ ∞

−∞

f̃ψ(·, ξn) dξn,
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with the help of the Cauchy–Schwarz inequality we thereforeget

‖γ0f‖
2
Hs−1/2(Γ) 6 c′

∫

Rn−1

(1 + |ξ′|)2s−1
∣∣∣
∫ ∞

−∞

f̂ψ(ξ
′, ξn) dξn

∣∣∣
2

dξ′

6 c′
∫

Rn−1

{∫ ∞

−∞

(1 + |ξ′|)2s−1m(ξ′, ξn)
−1 dξn

∫ ∞

−∞

m(ξ′, ξn) |f̂ψ(ξ
′, ξn)|

2 dξn

}
dξ′

≤ c′cks

∫

Rn−1

∫

R

k∑

ℓ=0

(1 + |ξn|)
2(s−ℓ)(1 + |ξ′|)2ℓ |f̂ψ(ξ

′, ξn)|
2 dξn dξ

′

= c′ks

k∑

ℓ=0

‖fψ‖
2
Hs−ℓ(R,Hℓ(Rn−1)),

wheref̂ψ is now then-dimensional Fourier transform offψ. Hence, with (A.3) we obtain the desired result

‖γ0f‖
2

Hs− 1
2 (Γ)

6 c

k∑

ℓ=0

‖f‖2Hs−ℓ(R,Hℓ(Rn−1))

= c

k∑

ℓ=0

∫

R

∫

Rn−1

(1 + |ξn|)
2(s−ℓ)(1 + |ξ′|)2ℓ |f̂(ξ′, ξn)|

2 dξ′ dξn

6 c′
∫

R

∫

Rn−1

(
1 + |(ξ′, ξn)|

)2s
|f̂(ξ′, ξn)|

2 dξ′ dξn = c′‖f‖2Hs(Rn).

Finally, using the definition ofγ∗0 (see (4.5)), we obtain

‖γ∗0ϕ‖H−s(Rn) = sup
‖Φ‖Hs(Rn)61

|(γ∗0ϕ,Φ)| 6 ‖ϕ‖
H

1
2
−s(Γ)

‖γ0Φ‖
Hs− 1

2 (Γ)
6 c′′‖ϕ‖

H
1
2
−s(Γ)

,

which proves the right-hand side inequality in (4.4).
To establish its left-hand side, we observe that, accordingto [22, (2.7)],

‖γ∗0ϕ‖
2
H−s(Rn) =

∫

Rn−1

∫

R

dξn
(1 + |ξ′|2 + ξ2n)

s
(2π)−1/2|ϕ̂(ξ′)|2 dξ′

= cs

∫

Rn−1

(1 + |ξ′|2)−s+
1
2 |ϕ̂(ξ′)|2 dξ′

= cs‖ϕ‖
2

H
1
2
−s(Rn−1)

> c′
2
‖ϕ‖2

H
1
2
−s(Γ)

,

where in the very last inequality the equivalence (A.4) has been applied. Here,cs := 2(2s− 1)−1(2π)−1/2. �
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