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Abstract. This article is dedicated to multilevel quadrature methods for the rapid solution of
stochastic partial differential equations with a log-normal distributed diffusion coefficient. The key
idea of these approaches is a sparse grid approximation of the occurring product space between the
stochastic and the spatial variable. We develop the mathematical theory and present error estimates
for the computation of the solution’s statistical moments with focus on the mean and variance.
Especially, the present framework covers the multilevel Monte Carlo method and the multilevel
quasi Monte Carlo method as special cases. The theoretical findings are supplemented by numerical
experiments.
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1. Introduction. This article is dedicated to multilevel quadrature methods for
the fast solution of stochastic, elliptic partial differential equations with log-normal
distributed diffusion coefficient. The basic idea of the multilevel quadrature is a
sparse-grid-like discretization of the underlying Bochner space L2

P
(
Ω, H1

0 (D)
)
. The

spatial variable is discretized by a classical finite element method and the stochastic
variable is treated by an appropriately chosen quadrature rule. Since the problem’s
solution provides the necessary mixed Sobolev regularity, the approximation errors
on the different levels of resolution can be equilibrated in a sparse-grid-like fashion,
cf. [5, 14, 31]. This idea has already been proposed in case of uniformly elliptic
diffusion coefficients in [17] for different quadrature strategies. On the one hand, the
Multilevel Monte Carlo Method (MLMC), as introduced in [3, 11, 12, 18, 19], yields
only stochastic error estimates in the mean-square sense. On the other hand, to
avoid this drawback, two completely deterministic methods have been introduced in
[17], namely the Multilevel Quasi Monte Carlo Method (MLQMC) and the Multilevel
Polynomial Chaos Method (MLPC).

The treatment of the log-normal case is much more involved for the deterministic
methods due to the unboundedness of the domain of integration, i.e. Rm for some
m ∈ N. This makes the analysis of the quadrature error difficult. In particular,
special regularity results are required which extend those of [2, 7, 21]. Furthermore,
a log-normal distributed diffusion coefficient depends non-linearly on the stochastics.
Thus, MLPC is no longer feasible since a polynomial chaos expansion, cf. [9, 10], would
yield a fully coupled system of partial differential equations. Instead, one has to apply
stochastic collocation to overcome this obstruction, cf. [2, 25]. If output functionals
of the solution, like the mean or the variance, are desired rather than the solution
itself, the stochastic collocation coincides with a quadrature rule based on polynomial
interpolation. Especially, for the log-normal case, quadrature formulae based on the
Hermite polynomials are convenient. This yields the Multilevel Gaussian Quadrature
Method (MLGQ) which we also analyze in this article.
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Although it seems quite encouraging that the techniques for stochastic, elliptic
partial differential equations with uniformly elliptic diffusion coefficients can mostly
be transferred to the log-normal situation in theory, it is not quite clear, how the
transfer is performed numerically. The reason for the difficulties is that, in the log-
normal situation, the diffusion coefficient is no more affine in the stochastic variable.
As it turns out, the numerical treatment of the diffusion coefficient is thus much more
involved and yields, by use of an h-refined quadrature, an unfavourable complexity
which is caused by the non-linearity. The implementation and the connected problems
will also be addressed in this article.

The rest of this article is organized as follows. Section 2 specifies the diffusion
problem and the corresponding framework. In particular, the parametric reformu-
lation as a high dimensional deterministic problem is performed here. In Section 3,
we derive the crucial regularity estimates of the solution to the stochastic diffusion
problem under consideration. Section 4 provides the theoretical background for the
Gaussian quadrature in the stochastic variable. Here, the regularity estimates from
the preceding section are employed to determine the degree of quadrature for each
stochastic dimension which is required to guarantee the convergence of the quadrature.
Section 5 is concerned with the Monte Carlo and the quasi Monte Carlo quadrature.
In case of the quasi Monte Carlo quadrature, we restrict ourselves to a finite dimen-
sional domain of integration and introduce an auxiliary density to get the error of
quadrature bounded. Section 6 gives a brief outline of the multilevel finite element
method which we will employ for the spatial discretization later on. Especially, the
important regularity and convergence results are stated. In Section 7, the previously
specified spatial and stochastic discretizations are combined by menas of the multi-
level quadrature idea. Furthermore, convergence results for the solution’s moments,
especially its mean and variance, are presented. Finally, in Section 8, the theoret-
ical findings are validated by numerical examples. Here, also the difficulties in the
treatment of the diffusion coefficient are addressed.

In the following, in order to avoid the repeated use of generic but unspecified
constants, by C . D we mean that C can be bounded by a multiple of D, indepen-
dently of parameters which C and D may depend on. Obviously, C & D is defined as
D . C, and C h D as C . D and C & D.

2. Problem setting. In the following, let D ⊂ Rn for n = 2, 3 be a polygonal
or polyhedral domain and let (Ω,F ,P) be a probability space with σ-field F ⊂ 2Ω

and a complete probability measure P, i.e. for all A ⊂ B and B ∈ F with P[B] = 0
it follows A ∈ F . We intend to compute the random function u(ω) ∈ H1

0 (D) which
solves for almost every ω ∈ Ω the stochastic diffusion problem

(2.1) −div
(
a(ω)∇u(ω)

)
= f in D.

Throughout this paper, we shall assume that the load f is purely deterministic and
belongs to L2(D). Furthermore, we assume that the logarithm of the diffusion co-
efficient is a centered Gaussian field which can be represented by a Karhunen-Loève
expansion, cf. [22],

(2.2) b(x, ω) := log
(
a(x, ω)

)
=

∞∑
k=1

√
λkϕk(x)ψk(ω).

Here, {ϕk}k ⊂ L∞(D) are pairwise orthonormal functions and {ψk}k are indepen-
dent, standard normally distributed random variables, i.e. ψk(ω) ∼ N (0, 1). For the
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convergence of the series in (2.2) we assume that the sequence

(2.3) γk :=
√
λk‖ϕk‖L∞(D)

satisfies {γk}k ∈ `1(N).
In practice, one has of course to compute the expansion (2.2) from the given

covariance kernel

Covb(x,y) :=

∫
Ω

b(x, ω)b(y, ω) dP(ω).

Thus, the Karhunen-Loève expansion is either finite of length m or needs to be ap-
propriately truncated after m terms. We will assume this in the following. Note that
the truncation which arises in the case of the truncation has been discussed in [7].

The assumption that the random variables {ψk(ω)}k are stochastically indepen-
dent implies that the pushforward measure Pψ := P◦ψ with respect to the measurable
mapping

ψ : Ω→ Rm, ω 7→ ψ(ω) :=
(
ψ1(ω), . . . , ψm(ω)

)
.

is given by the joint density function with respect to the Lebesgue measure

(2.4) ρ(y) :=

m∏
k=1

ρ(yk), where ρ(y) :=
1√
2π

exp

(
− y2

2

)
.

With this representation at hand, we can reformulate the stochastic problem (2.1)
as a parametric deterministic problem. To that end, we replace the space L2

P(Ω) by
L2
ρ(Rm) and substitute the random variables ψk by the coordinates yk ∈ R. Now, we

define the parameterized and truncated diffusion coefficient b : D × Rm → R via

(2.5) b(x,y) :=

m∑
k=1

√
λkϕk(x)yk and a(x,y) := exp

(
b(x,y)

)
for all x ∈ D and y = (y1, y2, . . . , ym) ∈ Rm. Thus, we arrive at a variational
formulation for the parametric diffusion problem:

(2.6)
find u ∈ L2

ρ(Rm;H1
0 (D)) such that

− div
(
a(x,y)∇u(x,y)

)
= f(x) in D for all y ∈ Rm.

Here and in the sequel, for a given Banach spaceX, the Bochner space Lpρ(Rm;X),
1 ≤ p ≤ ∞, consists of all functions v : Rm → X whose norm

‖v‖Lpρ(Rm;X) :=


(∫

Rm
‖v(·,y)‖pXρ(y) dy

)1/p

, p <∞

ess sup
y∈Rm

‖v(·,y)ρ(y)‖X , p =∞

is finite. If p = 2 and X is a Hilbert space, then the Bochner space is isomorphic to
the tensor product space L2

ρ(Rm)⊗X. Note that, for notational convenience, we will

always write v(x,y) instead of
(
v(y)

)
(x) if v ∈ Lpρ(Rm;X).

The stochastic diffusion coefficient a(x,y) is neither uniformly bounded away from
zero nor uniformly bounded from above for all y ∈ Rm. Consequently, it is impossible
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to show unique solvability in the classical way for elliptic boundary value problems.
Especially the Lax-Milgram theorem does not directly apply to the problem (2.1).
Nevertheless, in [28], it is shown that the set

Γ :=

{
y ∈ Rm :

m∑
k=1

γk|yk| <∞
}

is of measure Pψ(Γ) = 1 for all m ≤ ∞. Moreover, for all y ∈ Γ, the diffusion
coefficient satisfies

(2.7) 0 < amin(y) := ess inf
x∈D

a(x,y) ≤ ess sup
x∈D

a(x,y) =: amax(y) <∞.

Remark 2.1. In the framework of [28], the general case of m → ∞ is con-
sidered. Then, the restriction (2.3) of the parameter domain ensures for all y ∈ Γ
that |b(x,y)| < ∞ holds uniformly in x ∈ D. Obviously, we have Γ = Rm for all
m < ∞. In the following, we may tacitly assume that condition (2.7) is satisfied for
all y ∈ Rm. The case of an infinite dimensional stochastics, i.e. m = ∞, is easily
obtained by straightforward modifications of the presented arguments.

Due to (2.7), for every fixed y ∈ Rm, the problem

(2.8) −div
(
a(x,y)∇u(x,y)

)
= f(x) in D

is elliptic and admits a unique solution u(·,y) ∈ H1
0 (D) which satisfies

(2.9) ‖u(·,y)‖H1(D) .
1

amin(y)
‖f‖L2(D).

We refer the reader to e.g. [28] for a proof of this result.
Throughout this article, we intend to the compute the momentsMpu := E[u(·,y)p]

of the solution to (2.8). Especially, the solution’s expectation

(2.10) Eu(x) =

∫
Rm

u(x,y)ρ(y) dy ∈ H1
0 (D)

and its variance

(2.11) Vu(x) = Eu2(x)− E2
u(x) =

∫
Rm

u2(x,y)ρ(y) dy − E2
u(x) ∈W 1,1

0 (D)

are of interest to us. They correspond to the first and the second (centered) moment
of the solution u. Notice that the knowledge of all moments is sufficient to determine
the solution’s distribution.

3. Regularity of the solution. We are mainly interested in computing the
mean and the variance of the solution of (2.6). To establish error bounds for the
application of Gaussian quadrature rules, we consider in this section the regularity
of the solution u and its square u2. Under certain regularity assumptions it is also
possible to obtain error bounds for arbitrary powers of the solution, i.e., up for p ∈ N.
Although this topic has already been addressed in a rather abstract way in [2, 7, 21,
28], the available results are not satisfactory for us. Thus, we will compile and augment
here some of the results which originate from those articles for our framework.

Remark 3.1. In the following, the Sobolev space H1
0 (D) is considered to be

equipped with the norm ‖ · ‖H1(D) := ‖∇ · ‖L2(D). Likewise, we use corresponding
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norms for the Sobolev spaces W 1,p
0 (D), i.e., ‖ · ‖W 1,p(D) := ‖∇ · ‖Lp(D). Since we

only consider homogenous Dirichlet problems, by Sobolev’s norm equivalence theorem,
cf. [1], they all induce equivalent norms for these spaces. Of course, all results are
straightforwardly extendable to the case of non-homogenous Dirichlet problems.

Since the diffusion coefficient a(x,y) is not uniformly elliptic with respect to y,
we cannot expect the solution to be uniformly bounded in y. Thus, the solution u to
(2.6) may not be contained in the Bochner space Ck

(
Rm;H1

0 (D)
)
, which consists of

the functions providing k-fold differentiability with respect to y. Nonetheless, we can
multiply u by an auxiliary weight and end up with a bounded product.

Definition 3.2. For γ := (γ1, . . . , γm), cf. (2.3), let β = (β1, . . . , βm) ∈ Rm be
such that β ≥ γ, that is βk ≥ γk for all k = 1, . . . ,m. Then, we define the auxiliary
weight

σ(y) :=

m∏
k=1

σk(yk), where σk(yk) := exp(−βk|yk|).

For the special case β = γ, the auxiliary weight is denoted by σmin(y).
Now letX denote some Banach space of functions which are defined on the domain

D, for example X = H1
0 (D) or X = W 1,1

0 (D). For X and a weight w : Rm → R, we
define the weighted space, cf. [2],

C0
w(Rm;X) :=

{
v : Rm → X : v is continuous and max

y∈Rm
‖w(y)v(·,y)‖X <∞

}
equipped with the norm

‖v‖C0
w(Rm;X) := max

y∈Rm
‖w(y)v(·,y)‖X .

In the case w = σ, this space satisfies C0
σ(Rm;X) ⊂ Lpρ(Rm;X) for all p ∈ N. This

comes from

‖v‖Lpρ(Rm;X) ≤ ‖v‖C0
σ(Rm;X)

(∫
Rm

(
σ(y)

)−p
ρ(y) dy

) 1
p

<∞

because of pβkyk = O(y2
k) for yk →∞ and the integrability of the normal distribution’s

tails. Typically, the value of the integral depends exponentially onm, since the domain
of integration is Rm. In particular, if we integrate σmin or even the p-th power of
σmin with respect to the Gaussian measure, we get, cf. [13],(∫

Rm

(
σmin(y)

)−p
ρ(y) dy

) 1
p

≤ exp

(
p2

m∑
k=1

γ2
k + p

√
2

π

m∑
k=1

γk

)
.

This expression depends only on the decay of the γk and is bounded independently
of the dimension m due to (2.3).

Proposition 3.3. The solution u of (2.6) is contained in C0
σ

(
Rm;H1

0 (D)
)

and
it holds

‖u‖C0
σ(Rm;H1(D)) . ‖f‖L2(D).

Furthermore, we get u2 ∈ C0
σ2

(
Rm;W 1,1

0 (D)
)

and

‖u2‖C0
σ2 (Rm;W 1,1(D)) . ‖f‖2L2(D).
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Proof. In view of inequality (2.9) and since 1/amin(y) ≤ exp
(∑m

k=1 γk|yk|
)
, we

conclude the first estimate

σ(y)‖u(·,y)‖H1(D) . exp

( m∑
k=1

(γk − βk)|yk|
)
‖f‖L2(D) ≤ ‖f‖L2(D).

The second estimate follows from

σ2(y)‖u2(·,y)‖W 1,1(D) ≤ σ2(y)‖2u(·,y)∇u(·,y)‖L1(D)

.
(
σ(y)‖u(·,y)‖H1(D)

)2
. ‖f‖2L2(D).

The differentiability of u follows straightforwardly from the differentiability of the
diffusion coefficient α, cf. [21]. Therefore, we use a lemma from [21] which is adjusted
for our purposes.

Lemma 3.4. For every y ∈ Rm, the following estimate holds

∥∥∂jyku(·,y)
∥∥
H1(D)

≤ j!
(

γk
log 2

)j√
amax(y)

amin(y)
‖u(·,y)‖H1(D).

With this lemma at hand, we are able to show the following result.
Proposition 3.5. For all weights σ with β ≥ 2γ, the partial derivatives of the

solution u to (2.6) satisfy

(3.1)
∥∥∂jyku∥∥C0

σ(Rm;H1(D))
. j!

(
γk

log 2

)j
‖f‖L2(D).

Especially, it holds ∂jyku ∈ C
0
σ

(
Rm;H1

0 (D)
)
.

Proof. From Lemma 3.4, we obtain∥∥∂jyku∥∥C0
σ(Rm;H1(D))

= max
y∈Rm

∥∥σ(y)∂jyku(·,y)
∥∥
H1(D)

≤ j!
(

γk
log 2

)j
max
y∈Rm

√
amax(y)

amin(y)
σ(y)‖u(·,y)‖H1(D).

According to [7, 28], in view of (2.5) and (2.3), we can bound the ellipticity constant
by √

amax(y)

amin(y)
≤ exp

( m∑
k=1

γk|yk|
)
,

which yields the desired estimate according to∥∥∂jyku∥∥C0
σ(Rm,H1(D))

≤ j!
(

γk
log 2

)j
max
y∈Rm

exp

( m∑
k=1

(γk − βk)|yk|
)
‖u(·,y)‖H1(D)

≤ j!
(

γk
log 2

)j
max
y∈Rm

exp

( m∑
k=1

−γk|yk|
)
‖u(·,y)‖H1(D)

. j!

(
γk

log 2

)j
‖f‖L2(D).
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The previous result shows the regularity of the solution u. In the following propo-
sition, we consider the regularity of u2.

Proposition 3.6. The partial derivatives of u2, where u is the solution of (2.6),
satisfy ∂jyku

2 ∈ C0
σ2

(
Rm;W 1,1

0 (D)
)

for all σ with β ≥ 2γ. Especially, it holds

(3.2)
∥∥∂jyku2

∥∥
C0

σ2 (Rm;W 1,1(D))
. (j + 1)!

(
γk

log 2

)j
‖f‖2L2(D).

Proof. By the Leibniz rule, we obtain

(3.3)
∥∥∂jyku2(·,y)

∥∥
W 1,1(D)

≤
j∑
`=0

(
j

`

)∥∥∂`yku(·,y)∂j−`yk
u(·,y)

∥∥
W 1,1(D)

.

Each summand can be estimated as follows∥∥∂`yku(·,y)∂j−`yk
u(·,y)

∥∥
W 1,1(D)

=
∥∥∇∂`yku(·,y)∂j−`yk

u(·,y) + ∂`yku(·,y)∇∂j−`yk
u(·,y)

∥∥
L1(D)

≤
∥∥∇∂`yku(·,y)

∥∥
L2(D)

∥∥∂j−`yk
u(·,y)

∥∥
L2(D)

+
∥∥∂`yku(·,y)

∥∥
L2(D)

∥∥∇∂j−`yk
u(·,y)

∥∥
L2(D)

.
∥∥∂`yku(·,y)

∥∥
H1(D)

∥∥∂j−`yk
u(·,y)

∥∥
H1(D)

+
∥∥∂`u(·,y)

∥∥
H1(D)

∥∥∂j−`yk
u(·,y)

∥∥
H1(D)

.

Application of Lemma 3.4 yields

∥∥∂`yku(·,y)∂j−`yk
u(·,y)

∥∥
W 1,1(D)

. 2`!(j − `)!
(

γk
log 2

)j
amax(y)

amin(y)
‖u(·,y)‖2H1(D).

Inserting this inequality into (3.3) results in

∥∥∂jyku2(·,y)
∥∥
W 1,1(D)

. 2

j∑
l=0

j!

(
γk

log 2

)j
amax(y)

amin(y)
‖u(·,y)‖2H1(D)

≤ 2(j + 1)!

(
γk

log 2

)j
amax(y)

amin(y)
‖u(·,y)‖2H1(D).

The estimate (3.2) is now obtained analogously to estimate (3.1) in Lemma 3.5.
Remark 3.7. Given that the load satisfies f ∈ Lp(D) and that the solution u

satisfies the stronger regularity condition

∥∥∂jyku∥∥C0
σ(Rm;W 1,p(D))

. j!

(
γk

log 2

)j
‖f‖Lp(D)

for p ∈ N, we obtain a similar regularity result for up, i.e.

∥∥∂jykup∥∥C0
σp

(Rm;W 1,1(D))
. j!

(
c(p)γk
log 2

)j
‖f‖pLp(D),

with a constant 1 < c(p) ≤ p which depends on p. This constant results from the
application of Faà di Bruno’s formula, cf. [8], for the higher order derivatives.
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Lemma 3.4 provides only a bound on the derivatives of ∂jyku when the spatial
regularity is measured in H1

0 (D). We shall thus complete this section by a result from
[21] which establishes estimates on ∂jyku when the spatial regularity is measured in the
space W := H2(D) ∩ H1

0 (D). This result guarantees us the mixed regularity which
is necessary for the sparse grid construction between the spatial and the stochastic
variable. To establish this result we shall assume that the corresponding eigenfunc-
tions of the Karhunen-Loève decomposition belong to W 1,∞(D), which is for example
fulfilled in case of a Gaussian covariance. If we then replace γk by

γ̃k :=
√
λk
(
‖ϕk‖L∞(D) + ‖∇ϕk‖L∞(D)

)
.

in the definition of the set Γ, cf. (2.3), we still have the parameter domain Rm for
each finite m ∈ N. Hence, this sharpened condition induces no further restriction to
the parameter domain. For convex or sufficiently smooth curved domains, a norm on
W is given by

‖u‖W := ‖∇u‖L2(D) + ‖∆u‖L2(D),

cf. [21]. Along the lines of [21], we have the following

Proposition 3.8. For all y ∈ Rm, the solution to problem (2.8) satisfies∥∥√a(·,y)∆∂jyku(·,y)
∥∥
L2(D)

. j!

(
2γ̃k
log 2

)j(∥∥√a(·,y)−1f
∥∥
L2(D)

+ 2g(y)
∥∥√a(·,y)u(·,y)

∥∥
H1

0 (D)

)
with g(y) = 1 + 2

∑m
k=1 |yk|‖∇ϕk‖L∞(D) <∞.

This proposition implies the estimate

∥∥∆∂jyku(·,y)
∥∥
L2(D)

.

√
amax(y)

amin(y)
j!

(
2γ̃k
log 2

)j(
‖f‖L2(D) + 2g(y)‖u(·,y)‖H1

0 (D)

)
.

It follows together with Lemma 3.4 and with g(y) .
(
amax(y)/amin(y)

)δ
for all δ > 0

that

(3.4)
∥∥∂jyku(·,y)

∥∥
H2(D)

.
∥∥∂jyku(·,y)

∥∥
W .

(
amax(y)

amin(y)

)1+δ

j!

(
2γ̃k
log 2

)j
‖f‖L2(D).

This establishes u(·,y) ∈ W for all y ∈ Rm. Moreover, we get also u ∈ C0
σ

(
Rm, H2(D)

)
since there holds

(3.5)
∥∥∂jyku∥∥C0

σ(Rm,H2(D))
. j!

(
2γ̃k
log 2

)j
‖f‖L2(D)

for all σ with β > 2γ.

Remark 3.9. All estimates in this section are given for one-dimensional deriva-
tives of the solution u to (2.6). Nevertheless, they can easily be extended for multidi-
mensional derivatives.
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4. Gauss-Hermite quadrature for the stochastic variable. For given sets
of points

(4.1)
{
η

(k)
0 , . . . , η

(k)
Nk

}
⊂ R, Nk ∈ N, k = 1, . . . ,m,

we define the Lagrangian basis polynomials L
(k)
0 , . . . , L

(k)
Nk

of degree Nk by the prop-

erty L
(k)
i (η

(k)
j ) = δi,j . Then, for a multiindex α = (α1, . . . , αm) ∈ J with J :=

×m

k=1
{0, . . . , Nk}, we define the corresponding tensor product Lagrangian basis poly-

nomial

Lα(y) :=

m∏
k=1

L(k)
αk

(yk) with Lα(ηα′) = δα,α′ for ηα :=
(
η(1)
α1
, . . . , η(m)

αm

)
.

For continuous functions v : Rm → R, we can thus introduce the associated interpo-
lation operator by (

ΠJ v
)
(y) :=

∑
α∈J

v(ηα)Lα(y).

If we choose for each k the sets (4.1) to be the roots of the Hermite polynomials of
respective degree Nk + 1 which are known to be orthogonal with respect to the inner
product

(q, r)L2
ρ(R) =

∫
R
q(y)r(y)ρ(y) dy, q, r ∈ L2

ρ(R),

we can straightforwardly derive Gaussian quadrature from the interpolation operator,
which are taylored to our problem setting. The resulting quadrature rules are known
to be exact of degree 2Nk + 1. The associated quadrature weights are given by

ω
(k)
i =

∫
R
L

(k)
i (y)ρ(y) dy.

Further, one easily verifies∫
R
L

(k)
i (y)L

(k)
j (y)ρ(y) dy = ω

(k)
i δi,j .

By tensor product construction we get the multivariate weights

ωα :=

m∏
k=1

ω(k)
αk

with
∑
α∈J

ωα = 1.

Then, for the α,α′ ∈ J , we have the corresponding multivariate relations

ωα =

∫
Rm

Lα(y)ρ(y) dy and

∫
Rm

Lα(y)Lα′(y)ρ(y) dy = ωαδα,α′ .

Now, we can interpolate the solution u ∈ L2
ρ

(
Rm;H1

0 (D)
)

of (2.6) in the stochastic
variable

(4.2) u(x,y) ≈ (Id⊗ΠJ u)(x,y) =
∑
α∈J

u(x,ηα)Lα(y).
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The occurring interpolation error is estimated in e.g. [2].
We intend to compute output functionals of the solution, like the solution’s mo-

ments. Especially, with (4.2) at hand, we can approximate the solution’s expectation
(2.10) and its variance (2.11) by

Eu(x) ≈
∑
α∈J

u(x,ηα)ωα and Vu(x) ≈
∑
α∈J

u(x,ηα)2ωα −
( ∑
α∈J

u(x,ηα)ωα

)2

.

Therefore, we rather have to consider the quadrature error than the interpolation
error. Hence, the remainder of this section is dedicated to the analysis of the occur-
ring quadrature error for the Gauss-Hermite quadrature. To that end, we define the
quadrature operator

QJ : C0
σ(Rm;X)→ X, (QJ v)(x) :=

∑
α∈J

ωαv(x,ηα).

Of course, it is possible to consider quadrature operators with respect to other weighted
spaces C0

ν (Rm;X) analogously.
In the following, we adopt the analysis and the notation presented in [2], where the

polynomial approximation error in case of stochastic collocation for uniformly elliptic
equations is analyzed. In [7], this analysis has been extended to the case of log-normal
and thus no more uniformly elliptic diffusion coefficients. According to [2], we shall
introduce the one-dimensional Gaussian auxiliary measure

√
ρ(y) h exp(−y2/4) and

the corresponding space C0√
ρ(R;X). This norm is weaker than the norm of C0

σ(R;X)

from the previous section, that is C0
σ(R;X) ⊂ C0√

ρ(R;X). On C0√
ρ(R;X), we can

now define the one-dimensional quadrature operator of degree N ∈ N by

QN : C0√
ρ(R;X)→ X, (QNv)(x) :=

N∑
i=0

ωiv(x, ηi),

where η0, . . . , ηN are again the N+1 roots of the Hermite polynomial of degree N+1.
The following two lemmata imply that the quadrature error in one dimension can

be bounded by the polynomial approximation error. They are modifications of the
corresponding lemmata in [2] for the polynomial interpolation.

Lemma 4.1. The quadrature operator QN : C0√
ρ(R;X)→ X is continuous.

Proof. Consider v ∈ C0√
ρ(R;X). By using the triangle inequality and exploiting

the positivity of the weights wk of the Gauss-Hermite quadrature we have

‖QNv‖X =

∥∥∥∥ N∑
i=0

ωiv(·, ηi)
∥∥∥∥
X

≤
N∑
i=0

ωi‖v(·, ηi)‖X =

N∑
i=0

ωi√
ρ(ηi)

∥∥√ρ(ηi)v(·, ηk)
∥∥
X

≤ max
i=0,...,N

∥∥√ρ(ηi)v(·, ηi)
∥∥
X

N∑
i=0

ωi√
ρ(ηi)

. ‖v‖C0√
ρ
(R;X).

The last inequality follows from [30], where the convergence

N∑
i=0

ωi√
ρ(ηi)

N→∞−→
∫
R

ρ(y)√
ρ(y)

dy <∞

is shown.
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The next lemma relates the quadrature error to the best approximation error in
C0
σ(R;X). We denote by Pd(R) the space of polynomials of degree at most d.

Lemma 4.2. For every v ∈ C0√
ρ(R;X), the quadrature error of the (N + 1)-point

Gauss-Hermite quadrature is bounded by

‖Ev −QNv‖X . inf
w∈P2N+1(R)⊗X

‖v − w‖C0√
ρ
(R;X).

Proof. Since the (N + 1)-point Gauss-Hermite quadrature has degree of precision
2N + 1, it holds QNw = Ew for all w ∈ P2N+1(R) ⊗ X. Thus, for arbitrary w ∈
P2N+1(R)⊗X, we have

‖Ev −QNv‖X ≤ ‖Ev−w‖X + ‖QN (v − w)‖X . ‖v − w‖L1
ρ(R;X) + ‖v − w‖C0√

ρ
(R;X)

. ‖v − w‖C0√
ρ
(R;X).

In the next step, we show that functions v ∈ C0
σ(Rm;X) admit an analytic

extension under certain decay properties of their derivatives. This is crucial to bound
error of the best approximation in the polynomial space. Following the notation in
[2], we introduce

ρ?k(y?k) :=

m∏
i=1
i6=k

ρ(yi) and y?k := (y1, . . . , yk−1, yk+1, . . . , ym) ∈ Rm−1

to continue with the one-dimensional analysis.
Lemma 4.3. Let (yk,y

?
k) ∈ Rm, v ∈ C0

σ(Rm;X), and assume that there holds∥∥∂jykv∥∥C0
σ(Rm;X)

. j!µjk

with some constant µk ∈ (0,∞). Then, for τk ∈ (0, 1/µk), the function

v : R→ C0
σ?k

(Rm−1;X), yk 7→ v(x, yk,y
?
k)

admits an analytic extension v(x, z,y?k) for z ∈ Σ(τk) := {z ∈ C, dist(z,R) ≤ τk}.
Proof. For given yk ∈ R, we define a formal Taylor expansion in z ∈ C:

v(x, z,y?k) =

∞∑
j=0

(z − yk)j

j!
∂jykv(x, yk,y

?
k).

Thus, given an arbitrary yk ∈ R, we can estimate

σk(yk)‖v(·, z, ·)‖C0
σ?
k

(Rm−1;X) ≤
∞∑
j=0

|z − yk|j

j!
σk(yk)

∥∥∂jykv(·, yk, ·)
∥∥
C0

σ?
k

(Rm−1;X)

≤
∞∑
j=0

|z − yk|j

j!

∥∥∂jykv∥∥C0
σ(Rm;X)

.
∞∑
j=0

(
|z − yk|µk

)j
.
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The last expression converges for all |z − yk| ≤ τk < 1/µk. Hence, since we can cover
Σ(τk) by the union of balls |z − yk| ≤ τk, the function v can be extended analytically
to the whole region Σ(τk).

Finally, we have to bound the approximation error of a function v which admits
an analytic extension. This was done in [2], where the next lemma was proven.

Lemma 4.4. Suppose that v ∈ C0
σ(R;X) admits an analytic extension in Σ(τ)

for some τ > 0. Then, there exists a function Θ(N) = O(
√
N) such that

min
w∈PN⊗X

max
y∈R

∣∣∣√ρ(y)‖v(y)− w(y)‖X
∣∣∣ . Θ(N) exp(−τ

√
N) max

z=y+iw∈Σ(τ)
σ(y)‖v(z)‖X .

We are now able to estimate the error of the tensor product Gaussian quadrature
for functions v ∈ C0

σ(Rm;X) which fulfill the condition of Lemma 4.3. Therefore, we
define the following tensor product integral operator:

I :=

m⊗
k=1

Ik with Ikv =

∫
R
v(yk)ρ(yk) dyk.

Note that Iv coincides with Ev due to the product structure of the measure ρ.
Theorem 4.5. Let v ∈ C0

σ(Rm;X) satisfy the conditions of Lemma 4.3 in every
direction, i.e. for all k = 1, . . . ,m there exists a τk ∈ (0,∞) such that v(x, yk,y

?
k)

as a function of yk admits an analytic extension in Σ(τk). Furthermore, let ε > 0
and choose ε1, . . . , εm > 0 such that

∑m
k=1 εk = ε. If we determine the number of

quadrature points Nk such that

Nk ≥
| log εk|2

2τ2
k (1− δ)2

− 1

2

for some δ > 0, we get the quadrature error bounded by

‖(I−QJ )u‖H1(D) .
m∑
k=1

εk

{
max

y?k∈Rm−1
σ?k(y?k)

}{
max

z∈Σ(τk)
σ(Re(z))‖v(·, z,y?k)‖X

}
.

Hence, the quadrature error is then bounded by O(ε) due to the choice of εk.
Proof. Let v ∈ C0

σ(Rm;X) be a function which fulfills the conditions of Lemma
4.3 for all directions yk, k = 1, . . . ,m. We estimate the tensor product quadrature
error by

‖(I−QJ )v‖X = ‖(I1 ⊗ . . .⊗ Im −QN1 ⊗ . . .⊗QNm)v‖X
≤
∥∥((I1 −QN1)⊗ I2 ⊗ . . .⊗ Im

)
v
∥∥
X

+
∥∥(QN1

⊗ (I2 ⊗ . . .⊗ Im −QN2
⊗ . . .⊗QNm)

)
v
∥∥
X
.

Repeating this procedure m-times yields

‖(I−QJ )v‖X ≤
m∑
k=1

∥∥(QN1 ⊗ . . .⊗QNk−1
⊗ (Ik −QNk)⊗ Ik+1 ⊗ . . .⊗ Im

)
v
∥∥
X
.

To achieve an over-all error of order O(ε) we have to bound the k-th summand by
εk. Since the one-dimensional Gaussian quadrature operator QN` and the integral
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operator I` are continuous mappings from C0
σ`

(R;X) to X for all ` = 1, . . . ,m, we get∥∥(QN1
⊗ . . .⊗QNk−1

⊗ (Ik −QNk)⊗ Ik+1 ⊗ . . .⊗ Im
)
v
∥∥
X

≤max
y1∈R

σ1(y1)
∥∥(QN2

⊗ . . .⊗QNk−1
⊗ (Ik −QNk)⊗ Ik+1 ⊗ . . .⊗ Im

)
v(·, y1)

∥∥
X

≤ max
y?k∈Rm−1

σ?k(y?k)‖(Ik −QNk)v(·,y?k)‖X .

By the Lemmata 4.2, 4.3 and 4.4, we conclude∥∥(QN1
⊗ . . .⊗QNk−1

⊗ (Ik −QNk)⊗ Ik+1 ⊗ . . .⊗ Im
)
v
∥∥
X

. max
y?k∈Rm−1

σ?k(y?k) min
w∈P2Nk+1⊗X

‖v(·, ·,y?k)− w‖C0√
ρ
(R;X)

.
√

2Nk + 1 exp
(
− τk

√
2Nk + 1

){
max

y?k∈Rm−1
σ?k(y?k)

}{
max

z∈Σ(τk)
σ(Re(z))‖v(·, z,y?k)‖X

}
. exp

(
− τk

√
2Nk + 1(1− δ)

){
max

y?k∈Rm−1
σ?k(y?k)

}{
max

z∈Σ(τk)
σ(Re(z))‖v(·, z,y?k)‖X

}
.

Here, the last step holds for arbitrary δ > 0. Thus, we can determine the polynomial
degree to ensure an exactness of εk by

exp
(
− τk

√
2Nk + 1(1− δ)

)
≤ εk =⇒ Nk ≥ 0.5

(
| log εk|2

τ2
k (1− δ)2

− 1

)
.

Remark 4.6. The constants hidden in the error estimate obviously depend on
the choice of τk and tend to infinity if τk comes close to the boundary of the analyticity
region by means of τk → log 2/γk. The solution u of (2.6), the second moment u2,
and, under the conditions of Remark 3.7, even the higher order moments up satisfy
the conditions of Lemma 4.3 and, therefore ,of Theorem 4.5.

5. (Quasi) Monte Carlo quadrature for the stochastic variable. In this
section, we discuss the use of Monte Carlo and quasi Monte Carlo quadrature rules.
These quadrature rules are classically of the form

Q(Q)MCv =
1

N

N∑
i=1

v(·, ξi),

where N denotes the number of samples and ξi ∈ Rm is one sample point. In case of
the Monte Carlo quadrature the sample points are chosen randomly. Therefore, we
need a (pseudo-) random number generator, which produces m-dimensional normal
distributed random vectors. There are two main advantages of the Monte Carlo
quadrature. The method does not suffer from the curse of dimensionality and requires
very weak regularity assumptions on the integrand. The drawback of this method is
that it produces only stochastical error estimates, also known as root mean square
error, cf. [6], and converges only with a rate of O(N−1/2), i.e. we have to increase the
number of samples by a factor 100 to get a further digit of exactness. More precisely,
one has

‖(I−QMC)v‖L2
ρ(Rm;X) . N−

1
2 ‖v‖L2

ρ(Rm;X).

For the error estimation of the quasi Monte Carlo method, it is required that
the integrand has integrable, mixed first order derivatives. Then, the error of the
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standard quasi Monte Carlo method over the unit cube [0, 1]m is bounded by means
of the L∞-star discrepancy

D?∞(Ξ) := sup
t∈[0,1]m

∣∣∣∣Vol
(
[0, t)

)
− 1

N

N∑
i=1

1[0,t)(ξi)

∣∣∣∣
of the set of sample points Ξ = {ξ1, . . . , ξN} ⊂ [0, 1]m, where Vol

(
[0, t)

)
denotes the

Lebesgue measure of the cuboid [0, t), cf. [24]. In case of certain point sequences, this
discrepancy is typically estimated to be of the order O

(
N−1(logN)m

)
.

To obtain a quasi Monte Carlo method for the domain of integration Rm, the
sample points have to be mapped to Rm by the inverse distribution function. Nu-
merically, this can be done very efficiently by employing a rational interpolant of the
inverse distribution function, cf. [23]. It has been shown in e.g. [20] that the error
can again be bounded by D?∞(Ξ) for a certain set of functions. To specify this, we
define the Bochner space W 1,1

mix(Rm;X) which consists of all functions v : Rm → X
with finite norm

(5.1) ‖v‖W 1,1
mix(Rm;X) :=

∑
‖q‖∞≤1

∫
Rm

∥∥∂qyv(y)
∥∥
X

dy <∞,

where

∂qyv(y) :=
∂|q|

∂yq11 ∂y
q2
2 · · · ∂y

qm
m
v(y).

Then, the error of the quasi Monte Carlo method is typically estimated by

‖(I−QQMC)v‖X . D?∞(Ξ)‖v‖W 1,1
mix(Rm;X),

cf. [20], which is an extension of the Koksma-Hlawka inequality, cf. [24], to unbounded
domains. The condition that the norm ‖v‖W 1,1

mix(Rm;X) is bounded, is in general very

restrictive and is not necessarily fulfilled in our application. Hence, we follow a sug-
gestion of [20] and rewrite the integral under consideration as∫

Rm
v(x,y)ρ(y) dy = ρ

∫
Rm

v(x,y)
√
ρ(y)

√
ρ(y)

ρ
dy,

with the scaling factor ρ being defined by

ρ :=

∫
Rm

√
ρ(y) dy.

We now employ a quasi Monte Carlo method with respect to the auxiliary density
function

√
ρ(y)/ρ and obtain the error estimate

‖(I−QQMC)v‖X . D?∞(Ξ)‖v√ρ‖W 1,1
mix(Rm;X).

Herein, the last norm is bounded (with a constant which depends on m but not on
N) in case of the moment computation as it is proven in the next theorem.

Theorem 5.1. For the solution u to (2.6), the following bound is valid

‖v√ρ‖W 1,1
mix(Rm;H1(D) .

( ∑
‖q‖∞≤1

1

2|q|

∑
α≤q

(
2γ

log 2

)α
|α|!

)
‖f‖L2(D) <∞, p = 1.
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Furthermore, under the condition of 3.7, it holds for the p-th power v = up of u

‖v√ρ‖W 1,1
mix(Rm;W 1,1(D)) .

( ∑
‖q‖∞≤1

1

2|q|

∑
α≤q

(
2c(p)γ

log 2

)α
|α|!

)
‖f‖pLp(D) <∞, p ≥ 2.

Proof. Each summand in the expression

‖v√ρ‖W 1,1
mix(Rm;X) =

∑
‖q‖∞≤1

∫
Rm

∥∥∂qy(v(y)
√
ρ(y)

)∥∥
X

dy

can be estimated by∫
Rm

∥∥∂qy(v(y)
√
ρ(y)

)∥∥
X

dy =
∑
α≤q

q!

α!(q−α)!

∫
Rm

∥∥∂αy v(y)∂q−αy

√
ρ(y)

∥∥
X

dy.

We find

∂q−αy

√
ρ(y) =

yq−α

2|q−α|

√
ρ(y)

and

q! = 1, α! = 1, (q−α)! = 1,

since the entries of these vectors are always either 1 or 0. Hence, we arrive at∫
Rm

∥∥∂qy(v(y)
√
ρ(y)

)∥∥
X

dy =
∑
α≤q

1

2|q−α|

∫
Rm

∥∥∂αy v(y)
∥∥
X

yq−α
√
ρ(y) dy.

Thus, for all functions v whose mixed first order derivatives grow at most exponentially
in ‖y‖, the norm

∥∥v√ρ∥∥
W 1,1

mix(Rm;X)
is bounded.

For the solution u, the multivariate version of (3.1) is

∥∥∂αy u∥∥C0
σ(Rm;H1(D))

. |α|!
(
γ

log 2

)α
‖f‖L2(D).

Therefore, we obtain∫
Rm

∥∥∂qy(u(y)
√
ρ(y)

)∥∥
H1(D)

dy .
∑
α≤q

|α|!
2|q−α|

(
γ

log 2

)α
‖f‖L2(D)

∫
Rm
σ−1(y)yq−α

√
ρ(y) dy

.
∑
α≤q

|α|!
2|q−α|

(
γ

log 2

)α
‖f‖L2(D).

Note that the last step holds since
∫
Rm σ

−`(y)yq−α
√
ρ(y) dy <∞ for all ` ∈ N.

For the p-th power v = up of the solution, the multivariate version of 3.7 reads

∥∥∂αy up∥∥C0
σp

(Rm;W 1,1(D))
. j!

(
c(p)γ

log 2

)α
‖f‖pLp(D)
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and we arrive at∫
Rm

∥∥∂qy(up(y)
√
ρ(y)

)∥∥
W 1,1(D)

dy

.
∑
α≤q

|α|!
2|q−α|

(
c(p)γ

log 2

)α
‖f‖pLp(D)

∫
Rm
σ−p(y)yq−α

√
ρ(y) dy

.
∑
α≤q

|α|!
2|q−α|

(
c(p)γ

log 2

)α
‖f‖pLp(D).

Putting all together, yields the desired result.
Remark 5.2. The estimation of the discrepancy of a set Ξ ⊂ [0, 1]m, especially

for high dimensions m, has been the topic of many publications in the past fifteen
years. The aim is to avoid the factor (logN)m in the estimation of the discrepancy
which grows exponentially in the dimension m. This exponential dependence is called
intractability in the literature, cf. [26, 29]. To avoid intractability, further regularity
assumptions on the integrand are necessary. These assumptions are allowed to be
violated in the analysis presented above. Furthermore, if we do not take into account
the decay of the sequence {γk}k, the constant occurring in the previous theorem can
only be bounded by ∑

‖q‖∞≤1

1

2|q|

∑
α≤q

(
2c(p)γ

log 2

)α
|α|! . exp(cm logm)

with some constant c > 0. Thus, for larger values of m, one has to consider another
approach for the analysis of QMC. This can be done by extending the ideas in [27]
and additionally taking into account the decay of the sequence {γk}k, see [16].

6. Finite element approximation in the spatial variable. For the spatial
discretization of the diffusion problem under consideration, we will employ multilevel
finite elements. This constitutes the key ingredient for the multilevel quadrature idea.
To this end, we consider a coarse grid triangulation T0 = {τ0,k} of the domain D.
Then, for ` ≥ 1, a uniform and shape regular triangulation T` = {τ`,k} is recursively
obtained by uniformly refining each simplex τ`−1,k into 2n simplices with diameter
h` ∼ 2−`. For some d ≥ 1, we define the finite element spaces on level ` by

Sd` (D) := {v ∈ C(D) : v|∂D = 0 and v|τ ∈ Pd for all τ ∈ T`} ⊂ H1
0 (D),

where Pd denotes the space of all polynomials of total degree d. Then, for given
y ∈ Rm, the Galerkin solution u`(·,y) ∈ Sd` (D) to the solution u(·,y) ∈ H1

0 (D) of
the diffusion problem (2.6) with respect to the finite element space Sd` (D) is known
to fulfill the following error estimate.∗

Lemma 6.1. Let the domain D be convex, f ∈ L2(D) and a(·,y) ∈ C1(D). Then,
the finite element solution u`(y) ∈ Sd` (D) of the diffusion problem (2.6) satisfies the
error estimates

(6.1) ‖u(·,y)− u`(·,y)‖H1(D) . 2−`

√
amax(y)

amin(y)
‖u(·,y)‖H2(D).

∗Error estimates in respectively L2(D) and L1(D) are derived by straightforward modifications,
yielding the convergence rate 4−`. Then, the error analysis of the multilevel quadrature can be
performed with respect to these norms, provided that the precision of the underlying quadrature
rule is also chosen as ε` = 4−`.
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Moreover if f ∈ Lp(D), for given p > 1, it holds up` (·,y) ∈ Spd` (D) with

(6.2) ‖up(·,y)− up` (·,y)‖W 1,1(D) . 2−`p

(
amax(y)

amin(y)

) p
2

‖u(·,y)‖pW 2,p(D).

Here, the constants hidden in (6.1) and (6.2) do not depend on y ∈ Rm.
Proof. The parametric diffusion problem (2.6) is H2-regular since D is convex

and f ∈ L2(D). Hence, the first error estimate immediately follows from the standard
finite element theory. We further find

‖up(·,y)− up` (·,y)‖W 1,1(D)

=

∥∥∥∥(u(·,y)− u`(·,y)
) p−1∑
i=0

ui(·,y)up−1−i
` (·,y)

∥∥∥∥
W 1,1(D)

≤
∥∥∥∥|u(·,y)− u`(·,y)|

p−1∑
i=0

(
p− 1

i

)∣∣u(·,y)
∣∣i∣∣u`(·,y)

∣∣p−1−i
∥∥∥∥
W 1,1(D)

=
∥∥|u(·,y)− u`(·,y)|

(
|u(·,y)|+ |u`(·,y)|

)p−1∥∥
W 1,1(D)

.

Then, by the generalized Hölder inequality and the Leibniz rule for derivatives, we
obtain ∥∥|u(·,y)− u`(·,y)|

(
|u(·,y)|+ |u`(·,y)|

)p−1∥∥
W 1,1(D)

. p
∥∥u(·,y)− u`(·,y)

∥∥
W 1,p(D)

∥∥|u(·,y)|+ |u`(·,y)|
∥∥p−1

W 1,p(D)
.

By using the estimate

∥∥u(·,y)− u`(·,y)
∥∥
W 1,p(D)

. 2−`

√
amax(y)

amin(y)
‖u(·,y)‖W 2,p(D),

cf. [4], it follows

‖u`(·,y)‖W 1,p(D) ≤ ‖u(·,y)‖W 1,p(D) + ‖u(·,y)− u`(·,y)‖W 1,p(D)

.

√
amax(y)

amin(y)
(1 + 2−`)‖u(·,y)‖W 2,p(D),

and we finally arrive at

‖up(·,y)− up` (·,y)‖W 1,1(D) . p

(
amax(y)

amin(y)

) p
2

2−`‖u(·,y)‖pW 2,p(D).

7. Multilevel quadrature. We now want to use the previous results to approx-
imate the expectation and the moments of the solution by a multilevel quadrature
method. The crucial idea of the multilevel quadrature is a finite dimensional approx-
imation of the mapping

E : C0
σ(Rm;X)→ X, v 7→ Ev.
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Therefore, we have to combine an appropriate quadrature rule for the stochastic
variable with the multilevel finite element discretization in the spatial variable. More
precisely, for a function v ∈ C0

σ(Rm;X), we perform a multilevel splitting of Ev in
X and approximate each level with a level dependent quadrature accuracy. This
accuracy is chosen antipodal to the approximation power of the finite element spaces
in the spatial domain.

For given discretization level j ∈ N and y ∈ Rm, we shall introduce the Galerkin
projection

Gj(y) : H1
0 (D)→ Sdj (D), v 7→ vj

to discretize in the spatial variable. It is defined via the Galerkin orthogonality∫
D

a(x,y)∇
(
v(x)− vj(x)

)
∇wj(x) dx = 0 for all wj ∈ Sdj (D).

Moreover, we set G−1(y) := 0 for all y ∈ Rm.
For the approximation in the stochastic variable y, we shall provide a sequence

of quadrature formulae {Q`} for the Bochner integral

Iv =

∫
Rm

v(·,y)ρ(y) dy

of the form

Q` : C0
σ(Rm;X)→ X, Q`v =

N∑̀
i=1

ω`,iv(·, ξ`,i).

For our purpose, we assume that the number of points N` of the quadrature formula
Q` is chosen such that the corresponding accuracy is

(7.1) ε` = 2−`.

The multilevel quadrature of the expectation of a function v ∈ C0
σ(Rm;X) is

defined by

Ev(x) ≈
j∑
`=0

Qj−`
(
G`(y)v(x,y)−G`−1(y)v(x,y)

)
(7.2)

=

j∑
`=0

Nj−`∑
i=0

ωj−`,i
(
G`(ξj−`,i)v(x, ξj−`,i)−G`−1(ξj−`,i)v(x, ξj−`,i)

)
.

The higher order moments are approximated in complete analogy by

Mpv(x) ≈
j∑
`=0

Qj−`

((
G`(y)v(x,y)

)p − (G`−1(y)v(x,y)
)p)(7.3)

=

j∑
`=0

Nj−`∑
i=0

ωj−`,i

((
G`(ξj−`,i)v(x, ξj−`,i)

)p − (G`−1(ξj−`,i)v(x, ξj−`,i)
)p)

.
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To analyze the errors of these multilevel quadratures for each type of quadrature
formulae in case of the solution to (2.6), we will need in Theorem 7.4 an estimate of
the form

(7.4)
∥∥∥(I−Qj−`)

((
G`(y)u(·,y)

)p − (G`−1(y)u(·,y)
)p)∥∥∥

X
. pεj−`2

−`‖f‖pLp+e(D),

where X = H1(D) and e = 1 if p = 1 and X = W 1,1(D) and e = 0 if p ≥ 2,
respectively.

For the Monte Carlo quadrature, we get the error (7.4) simply bounded in the
mean square sense:∥∥∥(I−Qj−`)

((
G`(y)u(·,y)

)p − (G`−1(y)u(·,y)
)p)∥∥∥

L2
ρ(Rm;X)

. εj−`‖
(
G`(y)u(·,y)

)p − (G`−1(y)u(·,y)
)p∥∥

L2
ρ(Rm;X)

. pεj−`2
−`‖f‖pLp+e(D).

The last inequality is obtained by using the estimate (6.1) if p = 1 and by using the
estimate (6.2) if p ≥ 2.

As we have seen, the error analysis in case of the Gaussian or the quasi Monte
Carlo quadrature is based on the derivatives of the integrand. Hence, in the following,
we shall show that the derivatives of the term

(
G`(y)u(·,y)

)p − (G`−1(y)u(·,y)
)p

exhibit a behaviour similar to the derivatives of u(·,y)p up to an additional factor
2−`. This will then lead to the estimate (7.4) for the Gaussian and the quasi Monte
Carlo quadrature.

Lemma 7.1. For the error δ`(·,y) := G`(y)u(·,y) − u(·,y) of the Galerkin pro-
jection, there holds the estimate
(7.5)∥∥∂αδ`(·,y)

∥∥
H1(D)

. 2−`|α|!
(
amax(y)

amin(y)

)2+δ(
2γ̃

log 2

)α
‖f‖L2(D) for all |α| ≥ 0.

Proof. Since the Galerkin projection satisfies∫
D

a(x,y)∇xδ`(x,y)∇xv`(x) dx = 0 for all v` ∈ Sd` (D),

it follows by differentiation that

−
∫
D

a(x,y)∇x∂
i
yk
δ`(x,y)∇xv`(x) dx =

i∑
s=1

(
i

s

)∫
D

∂syka(x,y)∂i−syk
δ`(x,y)∇xv`(x) dx

for all v` ∈ Sd` (D). For an arbitrary function v` ∈ Sd` (D), we therefore obtain:∥∥√a(·,y)∇∂ykδ`(·,y)
∥∥2

L2(D)
=

∫
D

a(x,y)
∣∣∇x∂ykδ`(x,y)

∣∣2 dx

=

∫
D

a(x,y)∇x∂ykδ`(x,y)
[
∇x∂ykδ`(x,y)−∇xv`(x)

]
dx

+

∫
D

∂yka(x,y)∇xδ`(x,y)
[
∇x∂ykδ`(x,y)−∇xv`(x)

]
dx

−
∫
D

∂yka(x,y)∇xδ`(x,y)∇x∂ykδ`(x,y) dx.
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From (2.5), we derive ‖∂yka(·,y)/a(·,y)‖L∞(D) ≤ γk. Hence, we can further estimate∥∥√a(·,y)∇∂ykδ`(·,y)
∥∥2

L2(D)
≤
∫
D

a(x,y)∇x∂ykδ`(x,y)
[
∇x∂ykδ`(x,y)−∇xv`(x)

]
dx

+ γk

∫
D

a(x,y)
∣∣∇xδ`(x,y)

[
∇x∂ykδ`(x,y)−∇xv`(x)

]∣∣dx

+ γk

∫
D

a(x,y)
∣∣∇xδ`(x,y)∇x∂ykδ`(x,y)

∣∣ dx.

The Cauchy-Schwarz inequality yields∥∥√a(·,y)∇∂ykδ`(·,y)
∥∥2

L2(D)

≤
∥∥√a(·,y)∇∂ykδ`(·,y)

∥∥
L2(D)

∥∥√a(·,y)
[
∇∂ykδ`(·,y)−∇v`

]∥∥
L2(D)

+ γk
∥∥√a(·,y)∇δ`(·,y)

∥∥
L2(D)

∥∥√a(·,y)
[
∇∂ykδ`(·,y)−∇v`

]∥∥
L2(D)

+ γk‖
√
a(·,y)∇δ`(·,y)‖L2(D)

∥∥√a(·,y)∇∂ykδ`(·,y)
∥∥
L2(D)

.

Since v` ∈ Sd` (D) can be chosen arbitrarily, we get on the one hand

inf
v`∈Sd` (D)

∥∥√a(·,y)
[
∇∂ykδ`(·,y)−∇v`

]∥∥
L2(D)

. 2−`
√
amax(y)‖∂yku(·,y)‖H2(D).

On the other hand, due to 0 ∈ Sd` (D), we find

inf
v`∈Sd` (D)

∥∥√a(·,y)
[
∇∂ykδ`(·,y)−∇v`

]∥∥
L2(D)

≤
∥∥√a(·,y)∇∂ykδ`(·,y)

∥∥
L2(D)

.

By combining these two estimates with

∥∥√a(·,y)∇δ`(·,y)
∥∥
L2(D)

. 2−`
√
amax(y)

√
amin(y)

amax(y)
‖u(·,y)‖H2(D),

we arrive at∥∥√a(·,y)∇∂ykδ`(·,y)
∥∥2

L2(D)
. 2−`

√
amax(y)

∥∥√a(·,y)∇∂ykδ`(·,y)
∥∥
L2(D)

·
[
‖∂yku(·,y)‖H2(D) + 2γk

√
amin(y)

amax(y)
‖u(·,y)‖H2(D)

]
.

Division by
∥∥√a(·,y)∇∂ykδ`(·,y)

∥∥
L2(D)

results in

∥∥∂ykδ`(·,y)
∥∥
H1(D)

. 2−`

√
amax(y)

amin(y)

(
‖∂yku(·,y)‖H2(D) +

√
amax(y)

amin(y)

γk
log 2

‖u(·,y)‖H2(D)

)
.

In view of (3.4), this yields

∥∥∂ykδ`(·,y)
∥∥
H1(D)

. 2−`
(
amax(y)

amin(y)

)2+δ(
2γ̃k
log 2

)
‖f‖L2(D)

which establishes the estimate (7.5) for |α| = 1. From this, the desired estimate (7.5)
for |α| > 1 follows finally by induction.
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To prove the convergence of the multilevel quadrature in case of the higher order
moments, we need the following result.

Lemma 7.2. Let f ∈ Lp(D) and assume that

‖∂αy u(·,y)‖W 2,p .

(
amax(y)

amin(y)

)1+δ

|α|!
(

2γ̃

log 2

)α
‖f‖Lp(D)

for all δ > 0.† Then, with the constant c(p) from 3.7, it holds∥∥∥∂αy ((G`(y)u(·,y)
)p − u(·,y)p

)∥∥∥
W 1,1(D)

(7.6)

. 2−`|α|!
(
c(p)2γ̃

log 2

)α(
amax(y)

amin(y)

)p+1+δ

‖f‖pLp(D).

Proof. For sake of convenience, we demonstrate the proof only in case of p = 2.
The case of a general p can be treated in a similar way. It holds∥∥∥∂iyk((G`(y)u(·,y)

)2 − u(·,y)2
)∥∥∥

W 1,1(D)

.
i∑

s=0

(
i

s

)∥∥∂sykδ`(·,y)∂i−syk

(
G`(y)u(·,y) + u(·,y)

)∥∥
W 1,1(D)

.
i∑

s=0

(
i

s

)∥∥∂sykδ`(·,y)
∥∥
H1(D)

∥∥∂i−syk

(
G`(y)u(·,y) + u(·,y)

)∥∥
H1(D)

.

Using the estimate (7.5), the fact that the Galerkin projection G`(y)u(·,y) has the
same regularity with respect to the parametric variable as the solution itself, and the
Lemma 3.4, we obtain∥∥∂iyk((G`(y)u(·,y))2 − u(·,y)2

)∥∥
W 1,1(D)

.
i∑

s=0

(
i

s

)
2−`s!

(
amax(y)

amin(y)

)2+δ(
2γ̃k
log 2

)s
‖f‖L2(D)(i− s)!

(
2γk
log 2

)i−s
amax(y)

amin(y)
‖f‖L2(D)

. 2−`(i+ 1)i!

(
2γ̃k
log 2

)i(
amax(y)

amin(y)

)3+δ

‖f‖2L2(D)

. 2−`i!

(
2c(2)γ̃k

log 2

)i(
amax(y)

amin(y)

)3+δ

‖f‖2L2(D).

A similar result for multidimensional derivatives is obtained by induction.
Employing Lemma 7.1 and Lemma 7.2, we immediately get (7.4):
Lemma 7.3. In case of MLQMC and MLGQ, the estimate (7.4) holds for all

p ≥ 1, where X = H1(D) if p = 1 and X = W 1,1(D) if p ≥ 2.
Proof. The results of Lemma 7.1 and Lemma 7.2 imply

‖∂αy δ`‖C0
σ(Rm;H1(D)) . 2−`|α|!

(
2γ̃

log 2

)α
‖f‖L2(D)

†In case p = 2, this is estimate (3.4).
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for all α ≥ 0 provided that the weight σ from Definition 3.2 satisfies β > 4γ and∥∥∥∂αy ((G`(y)u(·,y)
)p − u(·,y)p

)∥∥∥
C0

σ(Rm,W 1,1(D)
. 2−`|α|!

(
2γ̃

log 2

)α
‖f‖L2(D)

for all α ≥ 0 provided that the weight satisfies β > (2p + 2)γ. We thus obtain the
estimate (7.4) by replacing γ by 2γ̃ in the analysis of Sections 4 and 5, respectively.

Theorem 7.4. Let {Q`} be a sequence of quadrature rules which satisfy (7.1)
and let u ∈ C0

σ

(
Rm, H1

0 (D)
)

be the solution to (2.6) which satisfies (6.1) and (6.2).
Assume that for p ≥ 2 the weight σ is chosen such that

(7.7) max
y∈Rm

σ(y)

(
amax(y)

amin(y)

) p
2

‖u(·,y)‖pW 2,p(D) . ‖f‖
p
Lp(D).

Then, there holds the error estimate∥∥∥∥Eup(x)−
j∑
`=0

Qj−`

((
G`(y)u(·,y)

)p − (G`−1(y)u(·,y)
)p)∥∥∥∥

X

. 2−jjp‖f‖pLp+e(D)

where e = 1 if p = 1 and e = 0 if p ≥ 2. Here, in case of MLMC, the error is
measured in the Bochner space X = L2

ρ

(
Rm, H1(D)

)
if p = 1 and in the Bochner

space X = L2
ρ

(
Rm,W 1,1(D)

)
if p ≥ 2. In case of MLGQ or MLQMC, the error is

measured in the Sobolev space X = H1(D) if p = 1 and X = W 1,1(D) if p ≥ 2.
Proof. We shall apply the following multilevel splitting of the error∥∥∥∥Eup − j∑

`=0

Qj−`
(
G`(y)up(·,y)−G`−1(y)up(·,y)

)∥∥∥∥
X

≤
∥∥Eup − I

(
Gj(y)up(·,y)

)∥∥
X

+

j∑
`=0

∥∥(I−Qj−`)
(
G`(y)up(·,y)−G`−1(y)up(·,y)

)∥∥
X
.

The second term is estimated by (7.4). The first term does not depend on the par-
ticular quadrature method since Eup − I

(
Gj(y)u(·,y)

)p
is a function of x which is

independent of y. Thus, it holds∥∥Eup − I
(
Gj(y)u(·,y)

)p∥∥
L2

ρ(Rm;X)
=
∥∥Eup − I

(
Gj(y)u(·,y)

)p∥∥
X

with X = H1(D) or X = W 1,1(D). For p = 1, due to (6.1) and the continuity of I,
there holds∥∥Eu − I

(
Gj(y)u(·,y)

)∥∥
H1(D)

. 2−` max
y∈Rm

σ(y)

(
amax(y)

amin(y)

)1/2

‖u(·,y)‖H2(D)

. 2−`‖f‖L2(D),

where the weight σ is chosen such that β > 3γ. For p ≥ 2, we use (6.1), the
assumption (7.7), and again the continuity of I to obtain∥∥∥Eup − I

((
Gj(y)u(·,y)

)p)∥∥∥
H1(D)

. 2−` max
y∈Rm

σ(y)

(
amax(y)

amin(y)

)p/2
‖u(·,y)‖pW 2,p(D)

. 2−`‖f‖pLp(D).
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This completes the proof.
Remark 7.5. The solution u of (2.6) belongs to C0

σ

(
Rm, H1

0 (D)
)

for all weight σ
which satisfy β ≥ γ. Therefore, the assumption in Theorem 7.4 is not very restrictive
provided that the diffusion coefficient a(·,y) belongs at least to C(D) for all y ∈ Rm.

8. Numerical results. In this section, we present numerical examples to quan-
tify and verify the presented methods by studying the convergence for the mean and
the variance of the solution to (2.1). To that end, we consider two different settings.
On the one hand, we consider a diffusion coefficient that can be represented exactly
by a Karhunen-Loève expansion of finite rank. On the other hand, we consider a
diffusion coefficient given by a Gaussian correlation function. In this case, we have to
truncate the Karhunen-Loève expansion appropriately, where the truncation rank m
has to tend to∞ as the over-all accuracy increases. The domain of the spatial variable
is always given by unit square. For the approximation of the Karhunen-Loève expan-
sion, we employ the pivoted Cholesky decomposition as described in [15, 17] together
with a piecewise constant finite element discretization of the two-point correlation.

The finite element method we use is based on piecewise linear ansatz and test
functions. Therefore, we have to provide a quadratic prolongation for the solution’s
second moment to perform the inter-grid transfer. Since no reference solution is
analytically known, we have to compute it numerically. Although it is tempting to
employ a multilevel quadrature solution on a finer grid for this purpose, we employ
here a single-level method, which is of much more computational effort. By this choice,
we rule out occurring convergence effects, caused by the decay of the hierarchical
surpluses, i.e.

‖G`u−G`−1u‖C0
σ(Rm;H1

0 (D)) . 2−`
∥∥∥∥√amax

amin
u

∥∥∥∥
C0

σ(Rm;H2(D))

.

The reference solution is obtained by a quasi Monte Carlo method on a finer grid with
a fairly large number of samples (h 106) based on a Halton sequence, as described in
Section 5.

8.1. Treatment of the diffusion coefficient. According to the multigrid idea,
the diffusion coeffcient has to be approximated with the full precision 2−j on each
grid. In the case of a diffusion coefficient which is affine in the stochastic variable, it
is possible to compute the Karhunen-Loève expansion on the finest level j and restrict
it by means of L2-projections to the coarser grids, cf. [17]. This coincides with an
h-refined quadrature, which provides the desired precision of 2−j on each level.

Unfortunately, this approach is now longer valid in case of a log-normal diffusion
coefficient since it is non-linear in the stochastic variable. Thus, in the general situa-
tion of a diffusion coefficient which cannot be resolved on the coarsest grid, we have
to approximate it for each sample on the finest grid. This becomes unfortunately
very costly. Nevertheless, we are of the opinion that this is a crucial point in the
implementation of a multilevel quadrature method. Therefore, we provide here some
example to validate this obstruction.

We consider the one-dimensional diffusion problem

−∂x
(
a(x,y)∂xu(x,y)

)
= 1 in D = (0, 1)

with homogenous boundary conditions, i.e. u(0,y) = u(1,y) = 0. The two-point
correlation is given by

Covb(x, y) = exp
(
− 100(x− y)2

)
.
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Fig. 8.1. The left picture shows the correct solution’s mean, the right picture the wrong solu-
tion’s mean.
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Fig. 8.2. Corresponding error functions to the plots in Figure 8.1.

The MLMC with j = 6 is chosen as quadrature method since it involves the lowest
regularity assumptions to the solution. To obtain reasonable solutions, we averaged
five MLMC solutions for each plot. A reference solution is computed by a single-
level QMC method with about (h 106) samples on level 16. The Karhunen-Loève
expansion is truncated after m = 36 terms.

An adequate approximation of the diffusion coefficient in the MLMC is computed
by assembling it on the finest grid, that is on level 6, and restricting it to the actual
grid by means of an L2-projection. Alternatively, as a cheap but wrong approximation,
the L2-projection of the Karhunen-Loève expansion is restricted from the finest grid
to the actual grid and then the exponential function is applied to get the diffusion
coefficient. Although, the latter approach provides an approximation order of 2−` on
the grid of level `, it is not sufficient to sustain the over-all approximation order of
2−j .

In the left picture of Figure 8.1, we find the solution’s mean obtained by assem-
bling the diffusion coefficient on the finest grid and then restricting it to the actual
grid. As can be seen, the multilevel approximation (red) perfectly coincides with the
reference solution (blue). Furthermore, the corresponding error function on the left
of Figure 8.2 shows only the highly oscillatory parts of the solution’s mean, as one
would expect of a multilevel approximation.

The right picture of Figure 8.1 contains the solution’s mean (red) in case of the
wrong approach. Again, the reference solution is indicated in blue. For this approach,
the error function on the right of Figure 8.2 is dominated by the smooth contributions
from the coarser grids which indicates that there the related approximation error is
large.

Similar observations can be made for the approximation of the second moment.
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Fig. 8.3. The left picture shows the correct solution’s second moment, the right picture the
wrong solution’s second moment.
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Fig. 8.4. Corresponding error functions to the plots in Figure 8.1.

The left picture in Figure 8.3 shows the solution’s second moment obtained by the
correct approach (red) and the reference solution (blue). Here, the wrong approach
produces wrong results, too. This can be seen in the right picture of Figure 8.3 where
the multilevel solution is again indicated in red and the reference solution is indicated
in blue. The corresponding error functions in Figure 8.4 show the same behavior as
in case of the mean.

Possibly, the obstruction of approximating the diffusion coefficient on each level
with sufficient precision can be overcome by means of a p-refined quadrature, which
would yield only a logarithmic increase of the computational complexity. Although,
it is not quite clear yet how a p-refined quadrature performs with respect to the
oscillations of the covariance’s eigenfunctions. Therefore, we will simply employ the
proposed h-approximation for all subsequent computations.

8.2. An example with finite dimensional stochastics. In our first numeri-
cal example, we focus on the covariance function

Covb(x,y) = 2
(
1B1

(x)1B1
(y) + 1B2

(x)1B2
(y) + 1B3

(x)1B3
(y) + 1B4

(x)1B4
(y)
)
,

where the sets B1, . . . , B4 are discs of diameter 0.3 equispaced in D = (0, 1)2. A visu-
alization of the associated triangulation can be seen in the left picture of Figure 8.5.
We consider f ≡ 1 as load vector. A reference solution is obtained by a single-level
QMC computation with 6 mesh refinements which results in 262144 triangles. Fig-
ure 8.6 shows the solution’s mean (on the left) and the solution’s variance (on the
right).

The error plots in Figure 8.7 indicate that the three methods, i.e. MLGC, MLMC,
MLQMC, provide the desired order of convergence of 2−j of the approximate mean
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Fig. 8.5. Computational domains with inscribed coarse grids.

Fig. 8.6. Solution’s mean (left) and solution’s variance in the case of finite dimensional stochas-
tics.

with respect to the H1-norm (picture on the left). The approximation of the second
moment (picture on the right) even seems to provide a better rate of convergence with
respect to the W 1,1-norm. Note that, for the MLMC, we averaged five solutions in
order to obtain smooth error plots.

8.3. An example with infinite dimensional stochastics. For our second
example, we consider the covariance function

Covb(x,y) = exp

(
− 1

2
‖x− y‖22

)
.

Here, the computational domain is given by D = (0, 1)2, as can be seen in the right
picture of Figure 8.5. The load vector is again f ≡ 1. The reference solution is
computed by a single-level QMC with eight mesh refinements which results in 262144
triangles. Figure 8.8 shows the solution’s mean (on the left) and the solution’s variance
(on the right). Notice that the QMC approach with auxiliary density is no longer
feasible as m tends to infinity, cf. Section 5. Therefore, we apply the QMC approach
without auxiliary density. According to [16], convergence can then be shown if that
the sequence {γk}k decays fast enough. Nevertheless, we emphasize that in case of
a finite and relatively small dimensional stochastics like in the previous example, the
QMC approach with auxiliary density performs better.

The approximation order of 2−j suggests to truncate the Karhunen-Loève ex-
pansion for this example at m = 22 terms. The error plots in Figure 8.9 show the
behavior of the three methods, i.e. MLGC, MLMC, MLQMC, for this example. As
can be seen, the MLGC now exhibits an offset before it starts to converge with the
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Fig. 8.7. Error of the mean (left) and error of the second moment (right) in the finite dimen-
sional stochastics case.

Fig. 8.8. Solution’s mean (left) and solution’s variance in the case of infinite dimensional
stochastics.

desired rates. This yields approximation errors, which are up to a constant factor, as
good as that of the sample methods, i.e. MLMC and MLQMC. Both sample methods
perfectly produce the order of convergence 2−j of the approximate mean with respect
to the H1-norm (picture on the left) and a slightly better rate of the approximate
second moment with respect to the W 1,1-norm (picture on the right).
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[22] M. Loève, Probability theory. I+II, vol. 45 of Graduate Texts in Mathematics, Springer-Verlag,
New York, 4th ed., 1977.

[23] B. Moro, The full monte, Risk Magazine, 8 (1995), pp. 57–58.
[24] H. Niederreiter, Random number generation and quasi-Monte Carlo methods, Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992.
[25] F. Nobile, R. Tempone, and C. G. Webster, An anisotropic sparse grid stochastic collocation

method for partial differential equations with random input data, SIAM J. Numer. Anal.,
46 (2008), pp. 2411–2442.

[26] E. Novak and H. Wozniakowski, Tractability of Multivariate Problems: Linear Information,
Ems Tracts in Mathematics, European Mathematical Society, 2008.

[27] A. B. Owen, Halton sequences avoid the origin, SIAM Rev., 48 (2006), pp. 487–503.
[28] C. Schwab and C. J. Gittelson, Sparse tensor discretizations of high-dimensional parametric

and stochastic PDEs, Acta Numer., 20 (2011), pp. 291–467.
[29] I. H. Sloan and H. Wozniakowski, When are quasi-Monte Carlo algorithms efficient for high

dimensional integrals?, J. Complexity, 14 (1997), pp. 1–33.
[30] J. V. Uspensky, On the convergence of quadrature formulas related to an infinite interval,

Transactions of the American Mathematical Society, 30 (1928), pp. 542–559.
[31] C. Zenger, Sparse grids, in Parallel Algorithms for Partial Differential Equations, W. Hack-

busch, ed., vol. 31 of Notes on Numerical Fluid Mechanics, Braunschweig/Wiesbaden, 1991,
Vieweg-Verlag, pp. 241–251.



 

              _______________________________________________________________________   

 

Preprints are available under http://math.unibas.ch/research/publications/ 
 

    LATEST PREPRINTS 

 
     No.  Author:  Title 

 

2013-01 H. Harbrecht, M. Peters 

Comparison of Fast Boundary Element Methods on Parametric Surfaces 

 

2013-02 V. Bosser, A. Surroca 

Elliptic logarithms, diophantine approximation and the Birch and 

Swinnerton-Dyer conjecture 

 

2013-03 A. Surroca Ortiz 

Unpublished Talk: On some conjectures on the Mordell-Weil and the Tate-

Shafarevich groups of an abelian variety 

 

2013-04 V. Bosser, A. Surroca 

Upper bound for the height of S-integral points on elliptic curves 

 

2013-05 Jérémy Blanc, Jean-Philippe Furter, Pierre-Marie Poloni 

Extension of Automorphisms of Rational Smooth Affine Curves 

 

2013-06 Rupert L. Frank, Enno Lenzmann, Luis Silvestre 

Uniqueness of Radial Solutions for the Fractional Laplacian 

 

2013-07 Michael Griebel, Helmut Harbrecht 

On the convergence of the combination technique 

 

2013-08 Gianluca Crippa, Carlotta Donadello, Laura V. Spinolo 

Initial-Boundary Value Problems for Continuity Equations with BV 

Coefficients 

 

2013-09 Gianluca Crippa, Carlotta Donadello, Laura V. Spinolo 

A Note on the Initial-Boundary Value Problem for Continuity Equations 

with Rough Coefficients 

 

2013-10 Gianluca Crippa 

Ordinary Differential Equations and Singular Integrals 

 

2013-11 G. Crippa, M. C. Lopes Filho, E. Miot, H. J. Nussenzveig Lopes 

Flows of Vector Fields with Point Singularities and the Vortex-Wave System 

 

2013-12 L. Graff, J. Fender, H. Harbrecht, M. Zimmermann 

Key Parameters in High-Dimensional Systems with Uncertainty 

 

2013-13 Jérémy Blanc, Immanuel Stampfli 

Automorphisms of the Plane Preserving a Curve 

 



    LATEST PREPRINTS 

 
     No.  Author:  Title 

 

 

    Preprints are available under http://www.math.unibas.ch/preprints 

2013-14 Jérémy Blanc, Jung Kyu Canci 

Moduli Spaces of Quadratic Rational Maps with a Marked Periodic Point of 

Small Order 

 

2013-15 Marcus J. Grote, Johannes Huber, Drosos Kourounis, Olaf Schenk 

Inexact Interior-Point Method for Pde-Constrained Nonlinear Optimization 

 

2013-16 Helmut Harbrecht, Florian Loos  

Optimization of Current Carrying Multicables 

 

2013-17 Daniel Alm, Helmut Harbrecht, Ulf Krämer 

The H
2
-Wavelet Method 

 

2013-18 Helmut Harbrecht, Michael Peters, Markus Siebenmorgen 

Multilevel Accelerated Quadrature for PDEs With Log-Normal Distributed 

Random Coefficient* 

 


