
 
 

 
 
 
 
 
 
 
 
 

 

Rapid Solution of Minimal  

Riesz Energy Problems 
 

H. Harbrecht, W.L. Wendland, And N. Zorii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Institute of Mathematics      Preprint No. 2014-09 

University of Basel June, 2014 

Rheinsprung 21 

CH - 4051 Basel 

Switzerland      www.math.unibas.ch 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/211690956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


RAPID SOLUTION OF MINIMAL RIESZ ENERGY PROBLEMS

H. HARBRECHT, W.L. WENDLAND, AND N. ZORII

Abstract. In Rn, n � 2, we obtain the numerical solution to both the un-

constrained and constrained Gauss variational problems, considered for the Riesz

kernel kx�yk↵�n of order 1 < ↵ < n and a couple of compact, disjoint, boundary-

less (n� 1)-dimensional Ck�1,1-manifolds �i, i = 1, 2, where k > (↵� 1)/2, each

�i being charged with Borel measures with the sign ↵i := ±1 prescribed. Using

the fact that such problems over a cone of Borel measures can alternatively be

formulated as minimum problems over the corresponding cone of surface distribu-

tions belonging to the Sobolev–Slobodetski space H�"/2(�), where " := ↵� 1 and

� := �1 [ �2 (see [17]), we approximate the sought density by piecewise constant

boundary elements and apply the primal-dual active set strategy to impose the

desired inequality constraints. The boundary integral operator which is defined by

the Riesz kernel under consideration is e�ciently approximated by means of an

H-matrix approximation. This particularly enables the application of a precon-

ditioner for the iterative solution of the first order optimality system. Numerical

results in R3 are given to demonstrate our approach.

1. Introduction

The present article is devoted to the numerical solution of minimal Riesz energy

problems in Rn, n � 2. These kinds of problems go back to Carl Friedrich Gauss

who investigated in [9] the variational problem of minimizing the Newtonian energy

evaluated in the presence of an external field, nowadays called the Gauss func-

tional, over non-negative charges ' ds on the boundary surface of a given bounded

domain. We minimize the Gauss functional for both the unconstrained and con-

strained problems (see Section 2 for the strict definitions), considered for the Riesz

kernel kx � yk↵�n of order 1 < ↵ < n and a couple of compact, disjoint, bound-

aryless (n� 1)-dimensional Ck�1,1-manifolds �i, i = 1, 2, where k > (↵� 1)/2, each

of which being charged with Borel measures with the sign +1 and �1, respectively.

Notice that �2 = ? is explicitly allowed.

In applications, the numerical solution of both the unconstrained and constrained

Gauss variational problems is of great interest if for practical reasons in electrical

Key words and phrases. Gauss variational problem, Riesz kernel, boundary element

method, active set strategy.
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engineering on some of the �i, i = 1, 2, only non-negative charges are allowed while,

on the other, only nonpositive charges are allowed (see ”capacitors” in [23]). The

discrete counterpart of the Gauss problem is related to the classical Thomson prob-

lem where the optimal ordering of N particles on a sphere is sought to find the

ground state of the particles with a Coulomb potential (see [33] and [1] for gener-

alizations to arbitrary surfaces). The Gauss variational problem has also impact on

approximation theory and the development of e�cient quadrature rules (see [18]).

The unconstrained Gauss variational problem is that of minimizing the Gauss func-

tional over an a�ne cone of all (signed) Borel measures ⌫ = ⌫1 � ⌫2 of finite Riesz

energy, where ⌫i, i = 1, 2, are non-negative, supported by �i, i = 1, 2, respectively,

and satisfy some normalizing assumptions. As has been proved in [17, Theorems

5.1, 7.1], under some additional assumptions it can alternatively be formulated as

a minimum problem over the corresponding cone of surface distributions belonging

to the Sobolev–Slobodetski space H�"/2(�), where " := ↵ � 1 and � := �1 [ �2.

It is clear that a corresponding equivalent formulation is also valid if, in addition

to the above-mentioned requirements, the admissible measures on �1 and �2 are

constrained from above as in [36, 37, 39, 40] (exactly such a problem is called the

constrained one). Then, both the problems can be solved numerically by employing

fast boundary integral equation methods in combination with a projected gradient

method to compute the solution. This approach has been proposed and studied in

a series of articles [16, 17, 27] which are concerned with the development of e�cient

solution techniques for the unconstrained Gauss variational problem relative to the

Riesz (in particular, Newtonian) kernel.

Unfortunately, as observed in [16, 27], the convergence of the projected gradient

method is extremely slow. Indeed, it constitutes the bottleneck of the existing nu-

merical method. In the present article, we therefore employ the primal-dual active

set strategy for the solution of the above-mentioned minimization problems. It can

be reinterpreted as a semi-smooth Newton method and converges thus superlinearly,

see [6, 19, 21, 25] and the references therein. In particular, this enables us to treat

the constrained problem as well, i.e. with the density not only non-negative, but

also less than a given upper threshold (compare with [16, 17, 27]). By numerical

examples we demonstrate that the active set strategy indeed drastically reduces the

number of iterations which are required to compute the minimizing density.

The rest of this article is organized as follows. In Section 2 we precisely state the un-

constrained and constrained Gauss variational problems relative to the Riesz kernel.

Then, in Section 3, the sought density is discretized by piecewise constant ansatz



RAPID SOLUTION OF MINIMAL RIESZ ENERGY PROBLEMS 3

functions. The particular active set strategy for the iterative solution of the op-

timization problem is introduced in Section 4. Numerical results are presented in

Section 5 for a single boundary manifold, as well as for two boundary manifolds

immersed into R3. Finally, in Section 6, we state concluding remarks.

2. Unconstrained and constrained Gauss variational problems

In Rn, n � 2, consider the Riesz kernel kx � yk↵�n of order 0 < ↵ < n and an

ordered pair A of nonempty, compact, disjoint sets A1 and A2 with nonzero Riesz

capacity (see, e.g., [26]). Having fixed a numerical vector a := (a1, a2) with ai > 0,

i = 1, 2, and a positive, continuous function g on A := A1[A2, we define E↵(A, a, g)

as the class of all (signed) Borel measures ⌫ = ⌫1 � ⌫2 with finite Riesz energy

I↵(⌫) :=

Z
kx� yk↵�n d(⌫ ⌦ ⌫)(x,y)

such that ⌫i, i = 1, 2, are non-negative, supported by Ai, i = 1, 2, respectively,

and satisfy the normalizing assumptions
R
g d⌫i = ai, i = 1, 2. If, moreover, f is

a continuous external field, then the (unconstrained) Gauss variational problem is

that on minimizing the Gauss functional

Gf (⌫) := I↵(⌫) + 2

Z
f d⌫,

where ⌫ ranges over the class E↵(A, a, g).

For more theoretical background to the unconstrained Gauss variational problem,

we refer the reader to [28, 34, 35, 36, 38, 41].1 In particular, it has been shown

therein that, in the case under consideration, a solution to such a problem exists,

which follows easily from the fact that, for compact and disjoint Ai, i = 1, 2, and

continuous g and f , the class E↵(A, a, g) is weakly compact, while the Gauss func-

tional Gf (⌫) is weakly lower semicontinuous. However, in general, this is no longer

true if any of the Ai would be noncompact (see, e.g., [34, Theorem 2]). Necessary and

su�cient conditions for the Gauss variational problem to be, nevertheless, solvable,

though some of the conductors are noncompact, can be found in [38], where a finer

approach based on the pre-Hilbert structure in the space of all (signed) measures

with finite Riesz energy and some completeness results has been developed and ef-

ficiently employed. Besides, a solution to the Gauss variational problem is unique

(provided exists), which follows from the convexity of the class E↵(A, a, g) and the

strict positive definiteness of the Riesz kernel (see, e.g., [36, Lemma 6]).

1For the logarithmic kernel in the plane, see also [31] and the references given therein.
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Fix, in addition, a measure ! = !1 � !2 with finite Riesz energy such that !i,

i = 1, 2, are non-negative and supported by Ai, i = 1, 2, respectively, and define

E!
↵ (A, a, g) :=

�
⌫ 2 E↵(A, a, g) : ⌫i 6 !i for all i = 1, 2

 
,

where ⌫i 6 !i means that !i � ⌫i � 0. The problem of minimizing the Gauss

functional Gf (⌫), where ⌫ ranges over the class E!
↵ (A, a, g), is called the constrained

Gauss variational problem (see, e.g., [36, 37, 39, 40]; see also [8, 30] where the case

of the logarithmic kernel in the plane has been investigated).

Similar as in the unconstrained Gauss variational problem, in the case under con-

sideration, a solution to the constrained problem exists, for the class E!
↵ (A, a, g)

remains to be weakly compact. Again, in general, this is no longer true if any of

the Ai would be noncompact (see, e.g., [37, Theorem 2]). Necessary and su�cient

conditions for the constrained problem to be, nevertheless, solvable, though some

of the conductors are noncompact, are given in [37, Theorem 3]. Besides, a solu-

tion to the constrained problem is unique (provided that it exists), which is shown

by the same arguments as in the case of the unconstrained problem (see, e.g., [36,

Lemma 6]).

In all that follows, 1 < ↵ < n and Ai = �i, i = 1, 2, where �i is a compact,

boundaryless (n � 1)-dimensional Ck�1,1-manifold with k > (↵ � 1)/2. Write � :=

�1 [ �2 and " := ↵� 1. Then, one can define the boundary integral operator

(2.1) (V �)(x) =

Z

�

�(y)

kx� ykn�↵
d�(y), where x 2 � and � 2 H�"/2(�),

which maps H�"/2(�) bijectively onto H"/2(�) (see [17, Theorem 4.3]). Notice that,

for our purposes, it is enough to assume �i, i = 1, 2, to be Lipschitz, provided that

n = 2 or n = 3. But, if n � 4, the case ↵ � 3 may appear and then more regularity

than Lipschitz is required.

In accordance with [16, 17, 27], in the case where f, g 2 H"/2(�), the Gauss varia-

tional problem on � can be equivalently formulated as follows. Given a continuous ex-

ternal field f 2 H"/2(�) and a continuous non-negative weight function g 2 H"/2(�),

find the minimizer of the quadratic functional

(2.2) E(�) = (V �,�)L2(�) + 2(f,�)L2(�) ! min,

where � ranges over the subset of H�"/2(�) with the additional properties that

(2.3)
�|�1 � 0, (�, g)L2(�1) = a1 > 0,

�|�2  0, �(�, g)L2(�2) = a2 > 0.
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(Recall that a1 and a2 are the weighted total charges on �1 and �2, respectively.)

Observe that, under the stated assumptions on ↵, g, f , and �, such a problem is

uniquely solvable (see [17, Theorem 6.1]).

Besides this unconstrained Gauss variational problem, we will also consider the

constrained problem which is obtained by additionally imposing the upper constraint

(2.4) |�|  h on �.

Here, h 2 H�"/2(�) is a non-negative function such that (h, g)L2(�i) � ai, i = 1, 2.

Notice that, under the stated assumptions on ↵, g, f , h, and �, such a problem is

uniquely solvable. This follows from the above-mentioned results from [36, 37, 39, 40]

with the help of the same arguments as in [17] (see Theorems 5.1 and 6.1 therein).

3. Galerkin discretization

3.1. Surface representation. In the following, it is focussed on the particular

situation that � = �1 [ �2 is a Lipschitz two-dimensional manifold immersed into

Rn, n = 3. Nevertheless, all definitions and algorithms can straightforwardly be

generalized to n = 2, as well as to n � 4 provided that �i, i = 1, 2, are Ck�1,1-

manifolds, where k > (↵� 1)/2.

We shall numerically solve the constrained Gauss variational problem (2.2)–(2.4) by

means of the Galerkin scheme. To this end, we shall assume that the manifold � is

given as a parametric surface consisting of smooth four-sided patches. Let⇤ := [0, 1]2

denote the unit square. We subdivide the given manifold into several patches

� =
M[

k=1

�(k), �(k) = �(k)(⇤), k = 1, 2, . . . ,M,

such that each �(k) : ⇤ ! �(k) defines a di↵eomorphism of ⇤ onto �(k). The inter-

section �(k)\�(`), k 6= `, of the patches �(k) and �(`) is supposed to be either empty,

a common edge, or a common vertex.

With the surface representation at hand, it is easily possible to generate a nested

sequence of meshes on the surface �. A mesh Tj on level j for � is induced by

dyadic subdivisions of depth j of the unit square into 4j congruent squares, each

of which is lifted to � by the associated parameterization �(k) (see Figure 3.1 for a

visualization). We will refer to the particular elements as �(k,j,`) where k is the index

of the applied parameterization �(k), j is the level of the element and ` is the index

of the element. Notice that the meshes Tj = {�(k,j,`)}k,` form regular meshes of �

provided that the parametric representation is globally continuous.
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0 1

1 �(k)

�(k)

Figure 3.1. Surface representation and mesh generation.

The surface representation is in contrast to the common approximation of surfaces

by panels but has the advantage that we intrinsically arrive at a multilevel discretiza-

tion. Technical surfaces generated by tools from Computer Aided Design (CAD) are

often represented in the present form. There are several representations of the param-

eterizations including B-splines, NURBS (nonuniform rational B-Splines), surfaces

of revolution, and tabulated cylinders [20].

3.2. Boundary elements. Given the mesh Tj, we shall consider the space Sj(�) =

Sj(�1) � Sj(�2) of piecewise constant functions as the trial space and as the test

space. By construction, these ansatz spaces are nested, that is

(3.5) S0(�) ⇢ S1(�) ⇢ · · · ⇢ Sj(�) ⇢ · · · ⇢ H�"/2(�).

The number of degrees of freedom of the space Sj(�1) on �1 is denoted by m1, i.e.,

dimSj(�1) = m1, the number of degrees of freedom of the space on �2 is denoted

by m2, i.e., dimSj(�2) = m2. Notice that it holds m1 ⇠ m2 ⇠ 4j by construction.

Moreover, we call the (row) vector of the related L2-normalized piecewise constant

basis functions by �1 and �2, respectively. This means that any piecewise constant

function �i 2 Sj(�i) can be written as �i = �i�i with a certain coe�cient (column)

vector �i = (�i,k)k 2 Rmi .

3.3. Discrete minimization problem. Define the data vectors

fi := (f,�i)L2(�i), gi :=
1

ai
(g,�i)L2(�i), hi := (h,�i)L2(�i), i = 1, 2,

and the system matrices

Vi,j := (V �j,�i)L2(�i), i, j = 1, 2.
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Then, the Galerkin formulation of the constrained minimization problem (2.2)–(2.4)

reads as follows. Find � = �1�1 � �2�2 2 Sj(�) ⇢ H�"/2(�) such that

(3.6) E(�1 � �2) =

"
�1

�2

#> "
V1,1 �V1,2

�V2,1 V2,2

#"
�1

�2

#
+ 2

"
f1
f2

#> "
�1

�2

#
! min

subject to

(3.7) g>
i �i = 1, 0  �i  hi, i = 1, 2.

This approximation is a conforming method where the trial and test spaces belong

to the energy space H�"/2(�). It is conceptionally di↵erent from the method in

[2] which is a nonconforming method based on spatial Dirac distributions �
x

(y). If

x 2 �, then �
x

(y) does not have a finite Riesz energy, cf. [26, Chapter II, § 3]. On

the discrete level with a finite number of Dirac distributions �
xi(y), xi 2 �, however,

the discrete energy becomes finite if the diagonal terms are neglected.

Problem (3.6) is a quadratic minimization problem with linear equality and inequal-

ity constraints (3.7). In particular, it is a convex problem since the system matrix

V =
⇥

V1,1 �V1,2

�V2,1 V2,2

⇤
is positive definite. Note, moreover, that the inequality constraints

in (3.7) are standard box constraints.

In [16, 17, 27], we solved the unconstrained Gauss variational problem, i.e., problem

(3.6) and (3.7) without the upper constraints �i  hi, i = 1, 2, by imposing the

equality constraint in (3.7) by a penalty term for the defect and then applying a

projected gradient scheme. That is, we minimized the energy functional

E⇢(�1 � �2) := E(�1 � �2) +
⇢

2
(g>

1 �1 � 1)2 +
⇢

2
(g>

2 �2 � 1)2 ! min

subject to the constraints 0  �i, i = 1, 2. The linear speed of convergence of this

iterative method has been proven in [16, 27], which, however, depends strongly on

the degrees of freedom and turned out to be extremely slow. Therefore, we shall

propose an alternative numerical approach in Section 4.

3.4. First order optimality conditions. For i = 1, 2, we shall introduce Lagrange

multipliers i 2 R and µi = [µi,j], ⌫i = [⌫i,j] 2 Rmi . Then, the Lagrangian to

discrete minimization problem (3.6), (3.7) reads as follows:

F (�1,�2,1,2,µ1,µ2,⌫1,⌫2) :=

"
�1

�2

#> "
V1,1 �V1,2

�V2,1 V2,2

#"
�1

�2

#

+

"
1

2

#> "
g>
1 �1 � 1

g>
2 �2 � 1

#
�
"
µ1

µ2

#> "
�1

�2

#
+

"
⌫1

⌫2

#> "
�1 � h1

�2 � h2

#
.
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Hence, according to the Karush-Kuhn-Tucker (KKT) theorem, see [22, 24], the first

order necessary conditions for the optimal solution (�?
1,�

?
2) of the discrete minimiza-

tion problem read as follows: There exist Lagrange multipliers (?
1,

?
2,µ

?
1,µ

?
2, ⌫

?
1 ,⌫

?
2)

such that it holds

(3.8)

"
V1,1 �V1,2

�V2,1 V2,2

#"
�?

1

�?
2

#
+

"
?
1g1

?
2g2

#
�
"
µ?

1

µ?
2

#
+

"
⌫?
1

⌫?
2

#
= 0,

?
1(g

>
1 �

?
1 � 1) = 0, ?

2(g
>
2 �

?
2 � 1) = 0,

µ>
1 �

?
1 = 0, µ>

2 �
?
2 = 0,

µ>
1 (�

?
1 � h1) = 0, µ>

2 (�
?
2 � h2) = 0,

together with the primal feasibility

g>
1 �

?
1 = 1, g>

2 �
?
2 = 1, 0  �?

1  h1, 0  �?
2  h2

and the dual feasibility

µ?
1 � 0, µ?

2 � 0, ⌫?
1 � 0, ⌫?

2 � 0.

Notice that the relation “�” in connection with vectors has to be understood com-

ponent by component.

4. Iterative solution

4.1. Primal-dual active set strategy. For the numerical solution of the con-

strained discrete optimization problem (3.6) and (3.7), we apply the primal-dual

active set strategy. This is an iterative method to deal minimization problems with

inequality constraints and has been introduced in [6]. It replaces successively the

inequality constraints by the related equality constraints for all the indices where

the constraint becomes active.

Given an iterate (�(`�1)
1 ,�(`�1)

2 ,
(`�1)
1 ,

(`�1)
2 ,µ(`�1)

1 ,µ(`�1)
2 ,⌫(`�1)

1 ,⌫(`�1)
2 ), we stop the

algorithm if it holds

�����

"
V1,1 �V1,2

�V2,1 V2,2

#"
�(`)

1

�(`�1)
2

#
+

"

(`)
1 g1


(`�1)
2 g2

#
�
"

µ(`)
1

µ(`�1)
2

#
+

"
⌫(`)
1

⌫(`�1)
2

#�����
2

 "

|g>
i �

(`)
i � 1|  ", kmin{0,�(`)

i }k2  ", kmax{0, (�(`)
i � hi)}k2  ", i = 1, 2.



RAPID SOLUTION OF MINIMAL RIESZ ENERGY PROBLEMS 9

Otherwise, for i = 1, 2, we define the sets I(`)i and I(`)i of active indices and J(`)
i

and

J(`)i of inactive indices in accordance with

I(`)i :=
�
k = {1, 2, . . . ,mi} : µ(`)

i,k � c�
(`)
i,k < 0

 
,

I(`)i :=
�
k = {1, 2, . . . ,mi} : ⌫(`)

i,k + c(�(`)
i,k � hi,k) > 0

 
,

J(`)
i

:= {1, 2, . . . ,mi} \ I(`)i , J(`)i := {1, 2, . . . ,mi} \ I
(`)
i

where c > 0 is an appropriately chosen parameter (we choose c = 10�4 in our

experiments). The sets I(`)i contain the indices of all boundary elements related with

the manifold �i where the lower box constraint becomes active. The sets I(`)i contain

the indices of all boundary elements related with the manifold �i where the upper

box constraint becomes active. This means, in accordance with (3.8), we have to

solve the saddle point problem

(4.9)

2

6666666666666664

V1,1 �V1,2 g1 0 �II(k)1
0 II(k)1

0

�V2,1 V2,2 0 g2 0 �II(k)2
0 II(k)2

g>
1 0 0 0 0 0 0 0

0 g>
2 0 0 0 0 0 0

�I>
I(`)1

0 0 0 0 0 0 0

0 �I>
I(`)2

0 0 0 0 0 0

I>
I(`)1

0 0 0 0 0 0 0

0 I>
I(`)2

0 0 0 0 0 0

3

7777777777777775

2

6666666666666664

�(`)+1
1

�(`+1)
2


(`+1)
1


(`+1)
2

µ(`+1)

1,I(`)1

µ(`+1)

2,I(`)2

⌫(`+1)

1,I(`)1

⌫(`+1)

2,I(`)2

3

7777777777777775

=

2

66666666666664

f1
f2

1

1

0

0

h
1,I(`)1

h
2,I(`)2

3

77777777777775

.

Here, the matrices II(`)i
2 Rmi⇥|I(`)i | and II(`)i

2 Rmi⇥|I(`)i | are obtained from the identity

matrix in Rmi by removing those columns whose indices are not contained in the

index sets I(`)i and I(`)i , respectively. Likewise, the vectors µ(`)

i,I(`)i

2 R|I(`)i | and ⌫(`)

i,I(`)i

2

R|I(`)i | consist only of those components of µ(`)
i and ⌫(`)

i which are contained in the

index sets I(`)i and I(`)i , respectively. The same holds finally true for h
i,I(`)i

2 R|I(`)i |.

For all inactive indices, the box constraints will be ignored and the associated com-

ponents of the Lagrange multipliers set to 0:

(4.10) µ
(`+1)
i,k = 0 for all k 2 J(`)

i
, ⌫

(`+1)
i,k = 0 for all k 2 J(`)i , i = 1, 2.

Finally, the iteration index is increased ` 7! `+ 1 and the loop restarted.

According to [19], the primal-dual active set strategy is equivalent to the semi-

smooth Newton method which leads to the following result on its rate of convergence:
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Theorem 4.1. The iterates (�(`)
1 ,�(`)

2 ) of the primal-dual active set strategy converge

superlinearly to the optimal solution (�?
1,�

?
2) as ` ! 1 provided that the initial guess

is appropriately chosen.

4.2. Multilevel iteration. The determination of the final active sets I?i and I?i can
be very costly. Hence, to enhance convergence, we suggest to exploit the fact that

the trial spaces form a multilevel sequence, i.e., we suggest to exploit the fact that

(3.5) holds.

Having determined the sets of active lower constraints and of active upper con-

straints on level j� 1, the initial sets of active lower constraints and of active upper

constraints on level j are determined as follows. A coarse grid element whose index

belongs to the set of active lower constraints on the coarse grid has four son elements

on the fine grid. We add the respective indices to the set of active lower constraints

I(0)i . Likewise, we proceed with the sets of active upper constraints I(0)i . This results

in good initial guesses of the sets I(0)i and I(0)i of active indices on level j and thus is a

good initial guess (�(0)
1 ,�(0)

2 ,
(0)
1 ,

(0)
2 ,µ(0)

1 ,µ(0)
2 ,⌫(0)

1 ,⌫(0)
2 ) for the primal-dual active

set strategy by (4.9) and (4.10).

4.3. Rapid computation of the nonlocal operator. Since integral operators

are nonlocal operators, the system matrix V is densely populated. This feature

poses serious obstructions to the e�cient numerical treatment of Riesz minimal

energy problems. Fortunately, the system matrix is compressible in terms of an H-

matrix which drastically reduces the computational complexity, cf. [12]. To that

end, we shall refer to the element �(k0,j0,`0) also as a cluster. This means that we

think of �(k0,j0,`0) as the union {�(k,j,`) : �(k,j,`) ⇢ �(k0,j0,`0)}, i.e., the set of all tree

leafs appended to �(k0,j0,`0) or its sons. The mesh Tj induces therefore a collection

of clusters which are ordered by a father-son relation, called the cluster tree, see

Figure 4.2 for an illustration.

�(k,0,0)

level 0

�(k,1,3)

�(k,1,0)

�(k,1,2)

�(k,1,1)

level 1 level 2

�(k,2,6)

�(k,2,5)

�(k,2,4)

�(k,2,7)

Figure 4.2. Visualization of the cluster tree.
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Definition 4.2. Two clusters �(k,j0,`)
and �(k0,j0,`0)

of the same level j0  j are called

admissible if

(4.11) max
�
diam(�(k,j0,`)), diam(�(k0,j0,`0))

 
 ⌘ dist(�(k,j0,`),�(k0,j0,`0))

holds for some fixed ⌘ 2 (0, 1). The collection of admissible blocks �(k,j0,`) ⇥ �(k0,j0,`0)

forms the far-field of the operator. The remaining non-admissible blocks correspond

to the near-field of the operator.

By employing the admissibility condition, the quad-tree structure of the cluster

tree Tj yields a block partitioning of the system matrix with quadratic blocks. In

particular, each block on a particular level contains exactly the same number of

element-element interactions, see also Figure 4.3 for a visualization of this special

block partitioning of an H-matrix. We refer the reader to [15] for further details.
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Figure 4.3. The block partitioning of the H-matrix together with

the approximation ranks.

The near-field operator has to be assembled in the traditional way while the far-

field operator can be compressed as follows. To compress the admissible matrix

blocks, two di↵erent approaches can be used, namely the Adaptive Cross Approx-

imation (ACA) [3, 4] or the Fast Multipole Method (FMM) [11]. We use here the

first approach which approximates an admissible block bV = (vi,j)ni,j=1 2 Rn⇥n by a

truncated, partially pivoted Gaussian elimination. More precisely, we define vectors
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`m,um 2 Rn by the following iterative scheme:

for m = 1, 2, . . . set um = bum/bum,jm with

bum = (vim,j)
n
j=1 �

m�1X

j=1

`j,imuj and `m = (vi,jm)
n
i=1 �

m�1X

i=1

ui,jm`i.

A criterion for guaranteeing the convergence of the algorithm is to choose the pivot

element located in (im, jm)-position as the maximum element in modulus of the

remainder bV � Lm�1Um�1, where we set Lm�1 := [`1, . . . , `m�1] and Um�1 :=

[u1, . . . ,um�1]>. Since this would require assembling the whole matrix block bV,

which is not feasible in practice, jm is chosen such that bum,jm is the largest ele-

ment in modulus of the row bum. Afterwards, the next index im+1 is chosen as the

maximum element in modulus in the vector `m. We finally stop the iteration if the

criterion

k`m+1kkum+1k  "kLmUmkF

holds for some desired accuracy " > 0 where k · kF denotes the Frobenius norm.

The Riesz kernel under consideration is an asymptotically smooth kernel for all

↵ < n. Hence, as proven in [3], see also [15] for the current realization on parametric

surfaces, we have the following theorem for the adaptive cross approximation:

Theorem 4.3. Let V be the uncompressed system matrix and V" be the system

matrix which is compressed by the adaptive cross approximation. Then, if the relative

error per block with respect to the Frobenius norm is bounded by ", there holds the

error estimate

kV �V"kF  "kVkF .

The cost-complexity to compute this approximation is of the order O(4jj log2 ").

4.4. Preconditioning. The boundary integral operator (2.1) acts between di↵erent

Sobolev spaces which means that it acts on di↵erent length scales in a di↵erent

way. This is well known to entail the linear systems to become more and more

ill-conditioned when the level of resolution increases. Thus, preconditioning of the

saddle-point problem (4.9) becomes an important issue when it is solved by an

iterative solver (we use the MINRES method in our realization, cf. [10]). Following

e.g. [5, 29, 32, 42], we apply the following symmetric and positive definite four-block
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preconditioner 2

6666664

W

1

1

I>I(`)VII(`)

I>
I(`)

VII(`)

3

7777775

where I(`) = I(`)1 [ I(`)2 , I(`) = I(`)1 [ I(`)2 , and W is an approximation to the inverse

V�1 of the system matrix V. Since V is represented by an H-matrix, we shall

make use of the H-matrix arithmetic (see [12, 13, 14]) to construct an appropriate

approximation W to V�1. Namely, the H-matrix W is computed with the help of

the recursive block Gaussian elimination, as proposed in [13]. Recall that, in the

present discretization based on a parametric surface, the underlying cluster tree is

a balanced quad-tree which simplifies and speed-ups the H-matrix arithmetic, see

[7] for details.

5. Numerical results

5.1. First example. In our first numerical example, we consider only one single

manifold in R3, i.e., n = 3 and � = �1. We choose �1 as the surface of the torus

which is obtained by rotating the two-dimensional circle B1(3, 0) = {x 2 R2 :

kx� (3, 0)k  1} around the origin 0 of the space R3. This surface is represented by

9 four-sided patches. We apply moreover no external field, that is, f ⌘ 0, and set

g ⌘ 1, h ⌘ 1, and a1 = 100. For the numerical computations, we choose the level

j = 5 which yields a quadrangulation by about 37 000 elements for the numerical

approximation, i.e., the density � is approximated as a piecewise constant function

with about 37 000 degrees of freedom.

In case of ↵ = 2.9, we observe that the charges are located at the outer most

boundary of the torus. This holds for the unconstrained Gauss variational problem

(left plot of Figure 5.4) as well as for the constrained Gauss variational problem

(right plot of Figure 5.4). The maximum of the density is nearly 2 in case of the

unconstrained Gauss variational problem. The constraint (2.4) enforces that this

maximum is reduced to 1 in case of the constrained Gauss variational problem. For

both problems, there is a rapid transition between the zero and the nonzero charges.

Next, we consider the case ↵ = 2. Then, the boundary integral operator V coincides

with the traditional single layer operator for the Laplacian in R3. The numerical re-

sults are seen in Figure 5.5 where the left plot shows the solution of the unconstrained

Gauss variational problem and the right plot shows the solution of the constrained

Gauss variational problem. We observe a similar situation as for ↵ = 2.9, that is,
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Figure 5.4. The results with respect to the torus in case of ↵ = 2.9.

Figure 5.5. The results with respect to the torus in case of ↵ = 2.

the charges prefer to sit at the outer most boundary of the torus. Nevertheless, this

e↵ect is now not so extreme, in particular, the density is now everywhere positive.

The maximum of the density is about 1.17 in case of the unconstrained Gauss varia-

tional problem and 1 in case of the constrained Gauss variational problem. Note that

there is no rapid transition any more in case of the unconstrained Gauss variational

problem.

Finally we choose ↵ = 1.1. In this case, the solution of the unconstrained Gauss

variational problem is nearly equally distributed over the whole torus, cf. Figure 5.6.

In particular, the non-negativity constraint never becomes active since the minimum

of the charges is about 0.77. Since also the maximum of the density is about 0.88 and

thus less than 1, the solution of the unconstrained and constrained Gauss variational

problem coincide.
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Figure 5.6. The result with respect to the torus in case of ↵ = 1.1.

multilevel iteration single-level

level j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 iteration

↵ = 1.1
unconstrained

1 1 1 1 1 1 1
constrained

↵ = 2.0
unconstrained 1 1 1 1 1 1 1

constrained 2 1 2 1 2 1 7

↵ = 2.9
unconstrained 2 1 2 1 2 1 25

constrained 4 7 4 7 3 19 59

Table 5.1. The number of iterations which are required for solving

the Gauss variational problem on the torus.

We finally shall comment on the iterative solution of the discretized optimization

problem by the primal-dual active set strategy. It is seen in Table 5.1 how many

iterations per level are needed by the active set strategy when using the multilevel

strategy which is proposed in Subsection 4.2. Since all inequality constraints are

inactive if ↵ = 1.1 for the unconstrained and the constrained Gauss variational

problem and if ↵ = 2.0 for the unconstrained Gauss variational problem, the solution

is always found in the first iteration since the active sets are empty. This of course

holds also true if no multilevel iteration is used, see the last row of Table 5.1.

However, if ↵ = 2.0 for the unconstrained Gauss variational problem and if ↵ =

2.9 for the unconstrained and the constrained Gauss variational problem, a lot of

iterations are saved by employing the multilevel iteration.
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5.2. Second example. In our second example, we consider �1 to be the surface of

the drilled cube

⌦1 =

⇢
(x1, x2, x3) 2 (�1, 1)3 : x2

1 + x2
2 >

1

4
^ x2

2 + x2
3 >

1

4
^ x2

3 + x2
1 >

1

4

�

which is is represented by 48 four-sided patches. The manifold �2 is the surface of

the domain ⌦2 which is given as the union of the three barbells

⌦2 =

⇢
(x1, x2, x3) 2

✓
� 5

2
,
5

2

◆3

: x2
1 + x2

2 <
1

16
_ x2

2 + x2
3 <

1

16

2

_ x2
3 + x2

1 <
1

16

�

[
⇢
B1(m1,m2,m3) : m1,m2,m3 = ±5

2

�
.

It is represented by 54 four-sided patches. Both domains ⌦1 and ⌦2 are entangled

as seen in the subsequent figures of this subsection. Likewise to the first example,

we apply no external field, i.e. f ⌘ 0, and choose gi ⌘ 1, hi ⌘ 10, and ai = 100 for

i = 1, 2. The densities �1 and �2 are approximated on level 5 which corresponds to

about 105 000 piecewise constants boundary elements.

Figure 5.7. Solution for the second example in case of the uncon-

strained Gauss variational problem and ↵ = 2.9.

For the unconstrained Gauss variational problem in case of ↵ = 2.9, we obtain the

density which is presented in Figure 5.7. To improve the visualization this figure

and all the subsequent figures show the modulus of the charges even though they

are of opposite sign on the drilled cube and the three barbells. The maximum of the

densities is about 80 and admitted on the drilled cube. It is clearly seen in the clip

on the right hand side of Figure 5.7 that the charges are located at the edges of the

drilled cube and the poles of the barbells. This e↵ect is enhanced if we constrain

the charges to be less than 10, as seen in Figure 5.8. Like in the first example, we

observe a rapid transition between the zero and the nonzero charges.
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Figure 5.8. Solution for the second example in case of the con-

strained Gauss variational problem and ↵ = 2.9.

Figure 5.9. Solution for the second example in case of the uncon-

strained Gauss variational problem and ↵ = 2.

If the kernel parameter ↵ is set to ↵ = 2, the density of the unconstrained Gauss

variational problem is everywhere positive as seen in Figure 5.9. The maximum of

the densities is about 13 and admitted at the vertices and the interior edges of the

drilled cube, as seen in the clip on the right hand side of Figure 5.7. The maximum

charges of the three barbells are again located on the poles of the barbells. If we

constrain the charges to be less than 10, we get the densities found in Figure 5.8

where the mentioned e↵ects are again enhanced.

Finally, for ↵ = 1.1, we make nearly the same observations as in the related first

example. All charges are positive everywhere and nearly equally distributed relative

to the surfaces �1 and �2. The minimum charge on the three barbells is about 0.85

and the maximum charge 2.5. The minimum charge on the drilled cube is about
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Figure 5.10. Solution for the second example in case of the con-

strained Gauss variational problem and ↵ = 2.

Figure 5.11. Solution for the second example in case of the Gauss

variational problem and ↵ = 1.1.

3.0 and the maximum charge 4.0. Hence, neither the lower constraint 0 nor the

upper constrain 10 are ever active. In particular, the solutions of the constrained

and unconstrained Gauss variational problems coincide.

The iterations per level which are needed by the multilevel version of the primal-

dual active set strategy are found in Table 5.2. In comparison with the single-level

iterations, we save some of the iterations on the finest level. Nevertheless, the e↵ect is

not so strong as in case of the torus example since there are not very many iterations

needed at all.
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multilevel iteration single-level

level j = 1 j = 2 j = 3 j = 4 j = 5 iteration

↵ = 1.1
unconstrained

1 1 1 1 1 1
constrained

↵ = 2.0
unconstrained 1 1 1 1 1 1

constrained 1 1 1 2 2 2

↵ = 2.9
unconstrained 2 4 4 5 7 11

constrained 2 5 7 6 10 17

Table 5.2. The number of iterations which are required for solving

the Gauss variational problem on the drilled cube and the three bar-

bells.

6. Conclusion

In the present article, we have demonstrated that the primal-dual active set strategy

provides in combination with an H-matrix based fast boundary element method an

e�cient approach to computationally solve constrained and unconstrained Riesz

minimal energy problems. We followed hereby the paradigm “first discretize then

optimize”.

Another approach to solve Riesz minimal energy problems would be “first opti-

mize then discretize”. This would mean to introduce Lagrange multipliers for the

inequality constraints of the continuous optimization problem. Since the densities

lie in H�"/2(�1[�2), the Lagrange multipliers need to belong to H"/2(�1[�2). This,

in case of " = ↵ � 1 > 1, implies that the latter cannot be discontinuous functions.

Hence, globally continuous piecewise linear boundary elements would be necessary

to discretize the Lagrange multipliers of this optimization problem.
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