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QUADRATIC MAPS WITH A PERIODIC CRITICAL POINT
OF PERIOD 2

JUNG KYU CANCI AND SOLOMON VISHKAUTSAN

Abstract. We provide a complete classification of possible graphs of rational preperiodic
points of endomorphisms of the projective line of degree 2 defined over the rationals with
a rational periodic critical point of period 2, under the assumption that these maps have no
periodic points of period at least 5. We explain how this extends results of Poonen on quadratic
polynomials. We show that there are 13 possible graphs, and that such maps have at most 9
rational preperiodic points. We provide data related to the analogous classification of graphs
of endomorphisms of degree 2 with a rational periodic critical point of period 3 or 4.

1. Introduction

Let � : P1 ! P1 be an endomorphism defined over a field K. A point P 2 P1 is periodic

for � if �n(P ) = P for some n � 1 and the minimal such n is called the period of P . A point
P 2 P1 is called preperiodic if some iterate of P is periodic, i.e. there exists an m � 0 such that
�

m(P ) is periodic. We denote by PrePer(�, K) the set of preperiodic points for � in P1(K)
(similarly Per(�, K) is the set of K-periodic points and Pern(�, K) is the set of K-periodic
points of period n). By a classical theorem of Northcott [16], the set PrePer(�, K) is finite for
a number field K; it can therefore be given a finite directed graph structure, the preperiodicity
graph of �, denoted by G�, by drawing an arrow from P to �(P ) for each P 2 PrePer(�, K). It
is a natural question to ask which types of graphs (up to graph isomorphism) can be obtained
from such maps. It is not known whether the list of possible graphs is finite; this is equivalent
to the (1-dimensional) Uniform Boundedness Conjecture of Morton and Silverman [14] that
says #PrePer(�, K) is bounded by a bound depending only on the degrees of K/Q and �.

The simplest case of the graph classification question is for quadratic polynomials defined over
Q. Flynn, Poonen and Schaefer [6] conjectured that for any integer N > 3 there is no quadratic
polynomial with coe�cients in Q with a Q-periodic point of period N . Assuming this conjecture
is true, Poonen [17] provided a complete classification of 12 possible preperiodicity graphs for
quadratic polynomials defined over Q. Another consequence of Poonen’s classification is that
the number of Q-preperiodic points of a quadratic polynomial is at most 9. The Flynn, Poonen
and Schaefer conjecture was proved for the special cases of a periodic point of period N = 4
(Morton [13]), N = 5 (Flynn, Poonen and Schaefer [6]) and N = 6 (Stoll [20], depending on
the Birch and Swinnerton-Dyer conjecture); experimental results by Hutz and Ingram [8] and
Benedetto et al. [1] provide further evidence for it.

In this paper we study a natural generalization of quadratic polynomials, which are endo-
morphisms of P1 of degree 2 (henceforth called a quadratic map) having a periodic critical

point (i.e., a periodic point that is a ramification point of the endomorphism). This is indeed
a generalization of a quadratic polynomial, since if the periodic critical point is fixed (i.e., of
period 1) then the map is exactly a quadratic polynomial (up to a conjugation by a projective
automorphism of P1).

For a quadratic map defined over Q with a Q-rational periodic critical point of period 2, we
have a complete classification of possible preperiodicity graphs, assuming a conjecture similar
to that of Flynn, Poonen and Schaefer [6].

Conjecture 1. Let � be a quadratic map defined over Q with a Q-rational periodic critical
point of period 2, then � has no Q-periodic point of period greater or equal to 3.

The second author is supported by the ERC-Grant “Diophantine Problems,” No. 267273.
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Theorem 1. Assuming Conjecture 1, there are exactly 13 possible preperiodicity graphs for

quadratic maps defined over Q with a Q-rational periodic critical point of period 2; these are

listed in Tables 5.1 and 5.2. Moreover, the number of preperiodic points of such maps is at

most 9 (as in the quadratic polynomial case).

We provide evidence for Conjecture 1 in the next theorem.

Theorem 2. Let � be a quadratic map defined over Q with a Q-rational periodic critical point

of period 2, then � has no Q-periodic point of period 3 and 4.

Following Faber [5], we say that a finite directed graph G is admissible (by quadratic maps
defined over Q) if there exists a quadratic map � defined over Q such that PrePer(�,Q) ◆ G

(where by ◆ we mean contains an isomorphic subgraph; we will also say � admits G). Similarly,
a graph G is inadmissible if no such quadratic map exists. We say that a graph G is realizable
(by quadratic maps defined over Q) if PrePer(�,Q) = G for some quadratic map � defined over
Q (and that � realizes G). The endomorphisms in Tables 5.2, 5.3 and 5.4 were verified to realize
the corresponding graphs by using an algorithm of Hutz [7] that determines all Q-preperiodic
points of a given endomorphism of Pn.

An endomorphism of P1 is called post-critically finite (PCF ) if all of its critical points are
preperiodic. Lukas, Manes and Yap [10] provided a complete classification (over Q) of the
possible graphs realized by PCF-quadratic maps defined over Q. We list all the preperiodicity
graphs of PCF-quadratic maps defined over Q with a periodic critical point of period 2 in
Table 5.1. The examples in the table are taken directly from [10]. Therefore we are left with
the task of classifying the graphs realizable by non-PCF endomorphisms with a Q-rational
periodic critical point of period 2.

We prove Theorems 1 and 2 by showing that the graphs in Table 5.5 are inadmissible. This
su�ces to prove that no other graph other than those in Tables 5.1 and 5.2 is realizable by a
quadratic map defined over Q with a Q-rational periodic critical point of period 2. The idea
is to construct an a�ne curve C(G) for each graph G in Table 5.5, whose points parametrize
(up to conjugation by a projective automorphism of P1) quadratic maps that admit G and
showing that these curves have no Q-rational points. In order to obtain the lists of graphs in
the tables, we used a recursive algorithm described in Lemma 3.2 to generate a list of potentially
realizable graphs (roughly eighty) having up to 14 vertices (we first assumed Benedetto et al.’s
conjecture [1] that a quadratic map defined over Q has at most 14 Q-preperiodic points, however
we do not rely on this conjecture in the proofs). This produces a Hasse diagram of graphs (the
graphs are partially ordered by the isomorphic subgraph relation, see Proposition 4.2 below); we
go up the diagram constructing the curves C(G) until we reach graphs which are inadmissible
(one can visualize this as trimming an infinite tree until we are left with a finite tree).

We say that two rational functions �, : P1 ! P1 are linearly conjugate if there exists
an f 2 PGL2 acting as a projective automorphism of P1 such that  = �

f = f

�1
�f . Two

conjugate rational functions have the same dynamical behavior, since if P is periodic for � of
period n, then f

�1(P ) is  -periodic of period n (similarly for preperiodic points). When  ,�
and f are all defined over the same number field K, then it is clear from this that G� = G .
Therefore when classifying realizable graphs we are actually interested in the conjugacy classes
of quadratic rational functions rather than in the individual functions.

Question 2. Except for graph R2P4 in Table 5.2 which has a unique class realizing it (see
Proposition 3.7 below), are there infinitely many conjugacy classes realizing each of the graphs
in Table 5.2?

Assuming Conjecture 1, it is clear that the graphs R2P5, R2P6, R2P7 in Table 5.2 have
infinitely many classes realizing them, since the relevant curves C(G) have infinitely many
rational points (since they have genus 0 and a rational point, see Corollary 3.11 below) and
these graphs are maximal with respect to the isomorphic subgraph relation among the realizable
graphs (see the Hasse diagram in Proposition 4.2 below). However, one can hope to prove that
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all the graphs (except for R2P4) are realizable by infinitely many classes without relying on
this conjecture by adapting the technique of Faber [5] who proved a similar result for quadratic
polynomials.

The cases of quadratic maps defined over Q with a Q-rational periodic critical point of period
3 or 4 are more complicated, as many of the curves parametrizing quadratic maps with a given
preperiodicity graph have a large genus. The 11 graphs which we know to be realizable by such
quadratic maps (R3P0 is the only one that is PCF) are listed in Tables 5.3 and 5.4.

Question 3. Are the Tables 5.3 and 5.4 complete? That is, are the graphs listen in these
tables the only possible preperiodicity graphs of quadratic maps defined over Q with a Q-
rational periodic critical point of period 3 or 4?

Let P be a periodic point of exact period n for an endomorphism � : P1 ! P1. The multiplier

of � at P is �P (�) = (�n)0(P ) (we are assuming none of the iterates of P are 1; we can always
make sure this is true by a linear conjugation). We say that a periodic point P belongs to
critical cycle if its multiplier is 0; this is equivalent to some iteration of P being a critical point.
In the preperiodicity graph of a non-PCF quadratic map, the sequence of iterations of P is a
simple cycle, all of whose vertices but one have indegree 2 (indegree is the number of arrows
leading into a vertex, denoted by deg�), and exactly one vertex with indegree 1. The vertex
in the critical cycle with indegree 1 is the image of the critical point in the cycle, and is called
the critical image of the critical point. Using these definitions, we now expand the scope of
Conjecture 1.

Question 4. Let � be a quadratic map defined over Q with a Q-rational periodic critical point
of period 2, 3 or 4. Is it true that � has no Q-periodic point of period greater or equal to 3 that
does not belong to a critical cycle?

We expect that providing a complete classification of the cases of a Q-rational periodic critical
point of period 3 or 4 will in e↵ect provide a complete classification of quadratic maps defined
over Q with a Q-rational periodic critical point.

Question 5. Let � be a endomorphism of P1 of degree 2 defined over Q. Is it true that � has
no Q-rational periodic critical point of period greater or equal to 5?

So far, we have only been able to prove this for the case of a Q-periodic critical point of
period 5 (see Proposition 4.3 below).

We would like to mention similar types of classifications that have appeared in the literature.
Manes [11] gave a full classification of preperiodicity graphs of quadratic rational maps defined
over Q having an automorphism by assuming that such maps have no Q-periodic points of
period greater than 4; she used similar techniques as Poonen [17] and in turn inspired the style
of proofs appearing this paper. The families of quadratic maps having a marked periodic point
of period  6 has been studied by Blanc, Canci and Elkies [2]. Benedetto et al. [1] gave an
explicit equation for the surface parametrizing quadratic maps having a marked preperiodic
whose fifth iterate is a periodic point of period 2. They proved that this surface is an elliptic
surface of positive rank over Q(t). They proposed the conjecture that #PrePer(�,Q)  14 for
� a quadratic map of degree 2 defined over Q based on experimental data. The classification
of quadratic polynomials over quadratic number fields has been studied by Doyle, Faber and
Krumm [4]. In a recent preprint, Krumm [9] proved a local-global dynamical criterion for
quadratic polynomials.

Finally, we remark that one can generalize the scope of the one-dimensional families of
quadratic maps studied even further. Instead of looking at quadratic maps with a periodic
critical point, one can take quadratic maps with a marked periodic point with a fixed multiplier
�. This gives the curves Pern(�) parametrizing conjugacy classes of quadratic maps with a
marked periodic of period n with multiplier � (cf. Milnor [12]). In this context, Poonen’s
classification of quadratic polynomials over Q is classification of preperiodicity structures in
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Per1(0) and our classification of quadratic maps defined over Q with a Q-rational periodic
critical point is classification of preperiodicity structures in Per2(0).

Acknowledgments. We would like to thank Joseph H. Silverman for suggesting to the first
author to look at the curves Pern(�). We also thank Fabrizio Barroero, Laura Capuano, Xander
Faber, Patrick Ingram, Vincenzo Mantova, Olaf Merkert, Michael Stoll and Umberto Zannier
for their comments and suggestions.

2. Background

A point P 2 P1(C) is a critical point of an endomorphism � : P1 ! P1 defined over C if
�

0(P ) = 0 (If P = 1 or �(P ) = 1 we first need to conjugate � by a projective automorphism in
order to move P and �(P ) away from infinity). It is not di�cult to check that an endomorphism
of degree d has 2d�2 critical points, counted with multiplicity (see Silverman [19, §1.2, Theorem
1.1]). This means that a quadratic map has exactly 2 critical points (a critical point of a
quadratic map can have no multiplicity greater than 1) and is post-critically finite (PCF) if
both of these points are preperiodic.

A quadratic map defined over K has a representation as a rational function

(2.1) �(z) =
a2z

2 + a1z + a0

b2z
2 + b1z + b0

= F (z)/G(z)

with coe�cients ai, bi 2 K, 0  i  2. To be a proper degree 2 map, the resultant Res(F,G)
must be nonzero. The endomorphism can also be presented in homogeneous coordinates as

� : [u : v] 7! [a2u
2 + a1uv + a0v

2 : b2u
2 + b1uv + b0v

2] = [F1(u, v) : G1(u, v)].

For each quadratic map � there exists a sequence of polynomials
�
�⇤

i,�(z)
�1
i=1

called the
dynatomic polynomials of � (see Silverman [19, §4.2]). These polynomials have the property
that every P 2 Per(�, K̄) of period N is a root of �⇤

N,�(z). The other implication is not
always true; the roots of �⇤

N,�(z) are called formal periodic points of period N . Formal periodic
points that are not periodic of period N are periodic points of period dividing N that have
a “multiplicity”. This multiplicity is not directly related to the multiplicity of the roots of
�⇤

N,�(z). For example, for the map

�(z) =
z

2 + 5 z + 3

z

2

the point �1 is a double root of �⇤
1,�(z), but is not a root of �⇤

2,�(z). On the other hand, for
the map

�(z) =
z

2 � z + 1

z

2

the point 1 is a simple root of �⇤
1,�(z) and a double root of �⇤

2,�(z).
We briefly recall the definition of �⇤

n,�. Let �n(u : v) = [Fn(u, v), Gn(u, v)] be the n-th
iteration of � and define

�n,�(u, v) = vFn(u, v)� uGn(u, v).

We then define the dynatomic polynomials by

�⇤
n,�(u, v) =

Y

k|n

(�k,�(u, v))
µ(n/k)

,

where µ is the Moebius mu function (the fact that these are actually polynomials was proved
by Morton and Silverman [15]). We will drop the � subscript in the notation, since it is usually
clear which map we are referring to, and just denote the dynatomic polynomials by �⇤

n.
The degrees of the dynatomic polynomials provide bounds on the number of periodic points

of period N � 1. We collect some of this information in the next lemma.

Lemma 2.1. Let � be a quadratic map defined over a field K. Then #Per1(�, K)  3 and

#Per2(�, K)  2.
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Proof. This is immediate from deg�⇤
1 = 3 and deg�⇤

2 = 2. ⇤
Remark 2.2. Suppose the three roots of �⇤

1 are distinct. If there are two fixed points defined

over Q then the third fixed point is also defined over Q. Therefore the only way a graph G�

(over Q) has exactly two fixed points, is if �⇤
1 has a multiple root.

3. Normal forms for realizable graphs

Proposition 3.1. A graph realizing a non-PCF quadratic map defined over a number field K

with a K-rational periodic critical point has an odd number of vertices (i.e., there is an odd

number of preperiodic points defined over K).

Proof. Let G� be a graph realizing a non-PCF quadratic map � with a rational periodic critical
point. For each vertex P in the graph G� we have deg+(P ) = 1 (the notation deg+ is for the
outdegree of a vertex of a directed graph, i.e. the number of arrows leading out of this vertex)
since P corresponds to a preperiodic point which has only one image under �. For each such
P we also have deg�(P )  2 and we can only have deg�(P ) = 1 if P is a critical value. Since
there is only one critical preperiodic point, we have deg�(P ) = 1 for exactly one vertex P .
Therefore we have

#PrePer(�, K) =
X

P2G

1 =
X

P2G

deg+(P ) =
X

P2G

deg�(P ) = 2k + 1

where k is the number of vertices with deg�(P ) = 2. ⇤
We denote the following recursively defined (infinite) set of finite directed graphs by G:

• Base step: If G is a finite directed graph consisting of cycle C of length N , such that
for all but one vertices P 2 C there exists a vertex Q with an arrow from Q to P (i.e.,
there are 2N � 1 vertices in the graph), then G 2 G. In other words, by the base step
of the recursion the set G contains the graphs

• • •// 44tt
,

• •

••

•**

vv

VV66

rr
,

• •

••

•

••

((

⌥⌥
gg

GG
''

gg77

, . . .

• Recursive step 1: If G 2 G, let G

0 be a graph defined by adding to G a new cycle C0

and for each P

0 2 C0 adding a vertex Q

0 with an arrow from Q

0 to P

0; then G

0 2 G.
• Recursive step 2: Let G 2 G and let P

00 be a point not on a cycle and such that
deg�(P 00) = 0; let G00 be the graph constructed from G by adding two vertices Q1, Q2

and arrows from Q1 and Q2 to P

00. Then G

00 2 G.
Lemma 3.2. If G� is the preperiodicity graph of a non-PCF quadratic map � defined over a

number field K with a K-rational periodic critical point then G 2 G.
Proof. Let G 0 be the subset of G of graphs G such that G ✓ G�. The set G 0 is nonempty,
since G� must contain a critical cycle, and this critical cycle together with the preimages of
non-critical values on this cycle is an element of G by the base step of the definition of G. The
set G 0 is partially ordered by isomorphic subgraph partial ordering, and it is finite because the
set of subgraphs of any finite directed graph is finite. Therefore there exists a maximal element
G

0 2 G 0. We prove that G0 = G�:

• There cannot exist a vertex P 2 G

0 with in-degree 0 in G

0 that has in-degree 2 in G�,
since otherwise we can add the two preimages of P to G

0 and construct a graph in G
(using recursion step 2) that strictly contains G0, contradicting the maximality of G0.

• There cannot exist a vertex P 2 G

0 with in-degree 0 in G

0 that has in-degree 1 in G,
since the only vertex with in-degree 1 in G� is on the critical cycle, and its preimage is
in G

0.
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• There is no path from a vertex of G� that is not in G

0 that ends in a vertex of G0. This
is true from the last two items, since the first vertex of G0 in the path will have to satisfy
one of the conditions described in the two items, an impossibility.

• Since the out-degree of each vertex in G� is 1, if we start from any vertex P of G� not
in G

0, any maximal path starting from P must contain a cycle. Adding the cycle and
its direct preimages to G

0 creates a subgraph of G� that strictly contains G0 and is in G
by recursion step 1 in the definition of G, contradicting the maximality of G0.

We have thus proved that there is no vertex of G� that is not in G

0. However, from this we
know that G0 and G� must be equal, since both have the property that the outdegree of each
vertex is 1. ⇤

We now present some normal forms for a quadratic map with a marked periodic critical
point that will help us in the sequel. By normal form corresponding to a graph G, we mean a
parametrization t 7! �t (parameter name may vary) such that for all but finitely many values
of parameter t the quadratic map �t admits the graph G. Moreover, for each conjugacy class
of a quadratic map admitting the graph G there exists a unique value of t such that �t is in
the conjugacy class.

Lemma 3.3. A quadratic map with a periodic critical point of period 2 is linearly conjugate to

a map of the form

(3.1) �(z) =
a1z + 1

b2z
2

,

having 0 as a periodic critical point of period 2 and 1 as the critical value of 0. The graph G�

contains the graph

•�1/a1 •0 •1// 33
tt

Proof. By the well known properties of the automorphisms in PGL2, we can replace any three
points P,Q,R in the preperiodicity graph of � with the points 0,1, 1 by conjugating by the
appropriate element of PGL2(Q). So we can replace the periodic critical point by 0 and its
image by 1. Since �(0) = 1 we get that b0 = 0 in the presentation (2.1) of �, and �(1) = 0
implies a2 = 0. For 0 to be a critical point we must have b1 = 0, so that the only preimage
of 1 is 0. Finally, we know a0 6= 0, since otherwise the map � degenerates, and since we can
always scale the coe�cients by a constant, we can scale them so that a0 = 1. Checking that
the second preimage of 0 is �1/a1 is done by solving the equation �(↵) = 0. ⇤

Any quadratic map with a periodic critical point of period 2 has infinitely many representa-
tives of the form (3.1) since we have only chosen the images of 0 and 1. Therefore this “normal
form” is not canonical, but the extra freedom of choice gives flexibility in the inadmissibility
proofs (see Section 4) of some of the graphs in Table 5.5. We can remove this ambiguity by
replacing the point �1/a1 with 1, as in the following lemma.

Lemma 3.4. A normal form for a quadratic map with a periodic critical point of period 2 (i.e.

admitting graph R2P1) is

(3.2) �(z) =
�z + 1

b2z
2

,

having 0 as the periodic critical point of period 2, 1 as the critical value of 0 and 1 as the

second preimage of 0. The graph G� contains the graph

•1 •0 •1// 33
tt

Lemma 3.5. A normal form of a quadratic map having a periodic critical point of period 2
and a fixed point (i.e. admitting graph R2P2) is

(3.3) �(z) =
a1z + 1

(a1 + 1)z2
,
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having 0 as a periodic critical point of period 2, 1 as the critical value of 0 and 1 as a fixed

point. The graph G� contains the graph

•�1/a1 •0 •1 •�1/(a1+1) •1// 33
tt //

⌫⌫

Proof. This is proved by using Lemma 3.3, replacing the fixed point with 1 and finding its other
preimage by solving �(↵) = 1. ⇤
Proposition 3.6. A normal form of a quadratic map admitting graph R2P3 in Table 5.2 is

�(z) = � a1z + 1

a1(a1 + 1)z2
.

Proof. We start with the normal form (3.1) in Lemma 3.3 and add the constraint �(1) = �1/a1.
From this we get the condition a

2
1 + a1 + b2 = 0, or b2 = �(a1 + 1)a1. ⇤

Proposition 3.7. There is a unique conjugacy class of quadratic maps defined over Q with a

Q-rational periodic critical point of period 2 that realizes graph R2P4.

Proof. We mentioned in Remark 2.2 that �⇤
1 must have a double root. We start with the normal

form (3.3) in Lemma 3.5. We add the constraint that 1 is a double root of �⇤
1. This is done by

constraining 1 to be a root of the derivative of �⇤
1. This condition gives 2a1+3 = 0 or a1 = �3

2 .
This provides the example in Table 5.2 for graph R2P4. ⇤
Proposition 3.8. A normal form of a quadratic map admitting graph R2P5 in Table 5.2 is

�(z) = � a1(a1z + 1)

(a31 + 2a21 + 2a1 + 1)z2
.

Proof. We start with the normal form (3.1) in Lemma 3.3 and add the constraint �2(1) = �1/a1.

From this we get the condition a

3
1 + 2a21 + b2a1 + 2a1 + 1 = 0, or b2 = �a31+2a21+2a1+1

a1
. ⇤

Proposition 3.9. A normal form of a quadratic map admitting graph R2P6 in Table 5.2 is

�(z) =
(w2 + 1)z � w

(w2 � w + 1)z2
.

Proof. We start with the normal form (3.3) in Lemma 3.5 and add the constraint �(w) =
�1/(a1 + 1); this makes w a preimage of �1/(a1 + 1), which is in turn a preimage of the fixed
point 1. From this we get the condition a1w + 1 + w

2, or a1 = �1+w2

w . Substituting this back
into equation (3.3) gives us the required result. ⇤
Proposition 3.10. A normal form of a quadratic map admitting graph R2P7 in Table 5.2 is

�(z) =
(w2 + w + 1)z � w(w + 1)

z

2
.

Proof. We construct a normal form for graph R2P4; this is the normal form in the statement of
the Proposition. By Proposition 3.7 there is a unique parameter w for which this normal form
realizes graph R2P4. By Remark 2.2 any other parameter w for which the normal form does
not degenerate, must admit graph R2P7. We start with the normal form (3.3) in Lemma 3.5.
We know the first dynatomic polynomial �⇤

1 is divisible by (z � 1), since 1 is a fixed point.
To constrain the existence of another fixed point, we add the condition that w is a root of the
polynomial �⇤

1(z)
z�1 . This gives us a1w2 + w

2 + a1w + w + 1 = 0 or a1 = �w2+w+1
w(w+1) , and from this

we obtain the required normal form. ⇤
From Lemmas 3.4 and 3.5 and Propositions 3.6, 3.7, 3.8, 3.9 and 3.10 we immediately get

the following corollary.

Corollary 3.11. The curves parametrizing (conjugacy classes of) quadratic maps admitting

the graphs in Table 5.2 are rational over Q, i.e. of genus 0.
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4. Inadmissibility results

Proposition 4.1. The graphs N2E1–N2E7 in Table 5.5 are inadmissible by non-PCF quadratic

maps defined over Q with a Q-rational periodic critical point of period 2 defined over Q.

Proof.

N2E1: We start with normal form (3.3) in Lemma 3.5, and add the constraint �(z) = � 1
a1
.

This gives the equation

(4.1) a

2
1z + a1 + z

2
a1 + z

2 = 0.

Each � realizing graph N2E1 provides two solutions on the a�ne curve defined by (4.1), one
for each preimage of � 1

a1
. A birational transformation defined by

x = � 1

a1
, y = �1� 1

a1z

brings equation (4.1) to the form

(4.2) y

2 + y = x

3 � x

2
.

This is elliptic curve 11a3 in Cremona’s tables [3], with rank 0 and torsion subgroup Z/5Z with
rational points

{O, (0, 0), (0,�1), (1,�1), (1, 0)}.
Since both equations (4.1) and (4.2) correspond to smooth projective curves, the map between
the two curves is in fact an isomorphism, and the five rational points of (4.2) are mapped to
the five unique solutions of (4.1):

[0 : 0 : 1], [�1 : 1 : 1], [�1 : 1 : 0], [0 : 1 : 0], [1 : 0 : 0].

The first point has z = 0, which is not a preimage of � 1
a1
, the next two points correspond to

degenerate maps, i.e. with resultant 0, and the final two points are at infinity. Thus we see that
there are no quadratic maps defined over Q realizing graph N2E1.
N2E2: We start with normal form (3.1) in Lemma 3.3, and add the constraint that 1 is a root
of the dynatomic polynomial �⇤

3(z). We get the equation

(4.3) b

2
2 + (2a21 + 3a1 + 1)b2 + a

4
1 + 3a31 + 4a21 + 3a1 + 1 = 0.

This equation is reducible over Q(
p�3); we get:

b2 = �(a21 +
3

2
a1 +

1

2
)±

p�3

2
(a1 + 1).

For any a1 6= �1 rational b2 is irrational, so that the only rational point of these two conics
not at infinity is (a1, b2) = (�1, 0) (this is the point of intersection of the two conics). There
is another rational point at infinity. These two points are the only Q-rational solutions to
equation 4.3. The point (�1, 0) corresponds to a map with resultant 0. Thus we see that there
are no quadratic maps defined over Q realizing graph N2E2.
N2E3: We start with normal form (3.1) in Lemma 3.3, and add the constraint �3(1) = � 1

a1
.

This gives us the equation of our curve C:

(4.4) C : a61 + 4a51 + 7a41 + 7a31 + 2a41b2 + 4a31b2 + 2a21b2 + 4a21 + a1 + 2a21b
2
2 + 2a1b

2
2 + b32 = 0.

Using Magma we find that this is a genus 1 curve, and a quick search provides us with three
rational points:

[0 : 1 : 0], [0 : 0 : 1], [�1 : 0 : 1].

The point [0 : 0 : 1] is nonsingular, so we may perform a Weierstrass transformation and find
the minimal model E of the Elliptic curve obtained by choosing [0 : 0 : 1] as the identity
element of the curve defined by (4.4). Using Magma we find that the minimal model is

(4.5) E : y2 + y = x

3 + x

2 + x,
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with projective closure

Ē : �X

3 �X

2
Z + Y

2
Z �XZ

2 + Y Z

2 = 0

in the projective plane P2
[X:Y :Z]. The projective closure C̄ of C (using the same homogeneous

coordinates [X : Y : Z]) is given by

X6 + 4X5Z + 2X4Y Z + 7X4Z2 + 4X3Y Z2 + 2X2Y 2Z2 + 7X3Z3 + 2X2Y Z3 + 2XY 2Z3 + Y 3Z3 + 4X2Z4 +XZ5 = 0.

The birational map from C̄ to Ē is defined by:
' = [X4Y + 3X3Y Z + 2X2Y 2Z + 4X2Y Z2 + 2XY 2Z2 + Y 3Z2 + 3XY Z3 + Y Z4 :

X5 + 4X4Z + 2X3Y Z + 7X3Z2 + 4X2Y Z2 + 2XY 2Z2 � Y 3Z2 + 7X2Z3 + 2XY Z3 + 2Y 2Z3 + 4XZ4 + Z5 :

Y 3Z2].

The inverse is given by:
 = [X3Y 2 +X3Y Z +X2Y 2Z � Y 4Z +X2Y Z2 +XY 2Z2 � 2Y 3Z2 +XY Z3 � Y 2Z3 � Y Z4 � Z5 :

XY Z3 + Y Z4 :

Y 2Z3 + 2Y Z4 + Z5]

The elliptic curve E is Cremona 19a3, with Mordell–Weil rank 0, and torsion subgroup Z/3Z,
easily found to consist of the three rational points

[0 : 0 : 1], [0 : �1 : 1],O = [0 : 1 : 0].

One can check that outside the sets

S = {[0 : 0 : 1], [�1 : 0 : 1], [0 : 1 : 0], [�
1

2
±

1

2
i
p
3 : 0 : 1]} ⇢ C(C),

T = {[0 : 1 : 0], [0 : �1 : 1], [0 : 0 : 1], [�
1

2
±

1

2
i
p
3 : 0 : 1], [�

1

2
±

1

2
i
p
3 : �1 : 1], [�1 : �

1

2
±

1

2
i
p
3 : 1]} ⇢ E(C)

the maps � and  are isomorphisms. The elliptic curve E has no Q-rational points outside of
T , so that C has no Q-rational points outside of S, meaning that the three Q-rational points
in S are the only ones on C. One of these is at infinity, and the two others correspond to
degenerate maps with resultant 0.
N2E4: We start with normal form (3.3) in Lemma 3.5, and add the constraint �2(z) = � 1

a1+1 .
This gives an equation for a plane curve C:

(4.6) C : z3a31 + z

3
a

2
1 + 2z2a21 + z

2
a1 + z

4
a

2
1 + 2z4a1 + z

4 + 2a1z + 1 = 0.

Searching for Q-rational points on the curve C gives us five points:

(4.7) [2 : 1 : 1], [�1 : 1 : 1], [0 : 1 : 0], [�1 : 1 : 0], [1 : 0 : 0].

Magma tells us this curve is of genus 1. The point [�2 : 1 : 1] is nonsingular, and choosing it
as the identity element of the curve, we can bring the curve to minimal Weierstrass form:

(4.8) E : y2 + y = x

3 + x

2 + x.

Surprisingly, we get the same elliptic curve 19a3 from graph N2E3! We quickly repeat the
calculations showing that the five points in (4.7) are the only rational points of the curve C.
The birational map from C̄ to Ē (where C̄ and Ē are the projective closures of C and E in
P2
[X:Y :Z], respectively) is

' = [X2Y 3 +XY 4 �X2Y 2Z �XY 3Z + Y 4Z +XY 2Z2 � 2Y 3Z2 �XY Z3 + 2Y 2Z3 � Y Z4 :

X2Y 2Z +XY 3Z �XY 2Z2 + 2XY Z3 + 2Y 2Z3 � 3Y Z4 + 2Z5 :

Y 3Z2 � 3Y 2Z3 + 3Y Z4 � Z5]

with inverse
 = [� 256X4 + 256X3Y � 512X3Z + 768X2Y Z � 256XY 2Z � 256Y 3Z � 256X2Z2 + 512XY Z2 � 512Y 2Z2 :

256X4 + 512X3Z + 256X2Z2 :

256X4 + 512X3Z � 256X2Y Z + 256X2Z2 � 256XY Z2].

Outside the sets
S = {[�2 : 1 : 1], [�1 : 1 : 1], [0 : 1 : 0], [�1 : 1 : 0], [1 : 0 : 0]} ⇢ C(C),

T = {[0 : 1 : 0], [0 : �1 : 1], [0 : 0 : 1], [�
1

2
±

1

2
i
p
3 : 0 : 1], [�

1

2
±

1

2
i
p
3 : �1 : 1], [�1 : �

1

2
±

1

2
i
p
3 : 1]} ⇢ E(C)
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the birational maps ' and  are isomorphisms. The elliptic curve E has no Q-rational points
outside of T , so that C has no Q-rational points outside of S, meaning that the five Q-rational
points in S are the only ones on C. These five points do not correspond to maps realizing graph
N2E4, since they are either at infinity or have z = 1, clearly impossible, since 1 is periodic,
while z should be strictly preperiodic.
N2E5: We start with normal form (3.3) in Lemma 3.5, and add two constraints: First, we

require a Q-rational root for �⇤
1(z)
z�1 (by Proposition 3.7 one of these must be di↵erent from 1).

Second, we add the constraint �(w) = � 1
a1+1 . We get the system:

(
z

2
a1 + z

2 + a1z + z + 1 = 0,

w

2 + a1w + 1 = 0.

Eliminating the variable a1 we get a curve C defined by the equation

(4.9) C : �z

2 � z

2
w

2 + z

2
w � z � zw

2 + zw + w = 0.

The curve C is nonsingular of genus 1, and a search provides us with four Q-rational points:

[0 : 1 : 0], [0 : 0 : 1], [�1 : 0 : 1], [1 : 0 : 0].

Choosing [0 : 0 : 1] as the identity element, and bringing to minimal Weierstrass form gives us
the elliptic curve

E : y2 + xy + y = x

3 + x

2
.

This is curve 15a8 in Cremona’s database, which has Mordell–Weil rank 0 and torsion subgroup
Z/4Z, where the four torsion points are:

[0 : 0 : 1], [0 : �1 : 1], [�1 : 0 : 1],O = [0 : 1 : 0].

The curves C and E are isomorphic by the map

x = z � z

w

+
z

w

2
+ w

�2
, y = �z � 1� z

w

3
� w

�2 � w

�3

with inverse

z =
y (y + 1)2

y

3 + y

2 + yx+ y � x

2
, w =

(y + 1) (�yx� y + x

2)

y

3 + y

2 + yx+ y � x

2
.

Since the curves are isomorphic, we see that the four Q-rational points we found on C are the
only Q-rational points. None of these points correspond to maps realizing graph N2E5, since
they are either at infinity, or have either z = 0 or w = 0, which is clearly impossible.
N2E6: We start with normal form (3.1) in Lemma 3.3, and add the constraint that 1 is a root
of the dynatomic polynomial �⇤

4(z). We get the equation

b

4
2 + (4a21 + 1 + 5a1)b

3
2+

(18a31 + 6a1 + 16a21 + 1 + 7a41)b
2
2+

(25a21 + 25a51 + 43a31 + 1 + 8a1 + 44a41 + 6a61)b2+

1 + 7a1 + 2a81 + 12a71 + 55a51+

61a41 + 33a61 + 46a31 + 23a21 = 0.

(4.10)

After resolution of singularities, we find that the curve C defined by equation (4.10) is birational
to

C

0 : X2 + Y

2 + Z

2 = 0,

embedded in the projective space P2
[X:Y :Z]. The curve C

0 has no Q-rational points, and so C

cannot have any nonsingular Q-rational points. The singular points of C are

[�1 : 0 : 1], [0 : 1 : 0],

one of which is at infinity, and the other one corresponds to a map with 0 resultant. Therefore
there is no quadratic map realizing graph N2E6 (In fact, the proof also rules out the case of
having a point of formal period 4).
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N2E7: We start with normal form (3.1) in Lemma 3.3, and add the constraint that 1 is a
preimage of � 1

a1
. We get

b2 = �a1(1 + a1).

The other preimage of � 1
a1

has to be

� 1

a1 + 1
,

so we add two constraints, that �(z) = 1 and �(y) = � 1
a1+1 . These give the following two

equations:

�a1z � 1� z

2
a

2
1 � z

2
a1 = 0,

�a1y � 1 + y

2
a1 = 0.

Using the second equation, we eliminate a1 and get a single equation:

C : (�1 + y � y

2)z2 + (�y

2 + y)z � y

4 � y

2 + 2y3 = 0.

As in the case of N2E6, one can check that the curve C is birational to

C

0 : X2 + Y

2 + Z

2 = 0,

and therefore C can only have singular rational points. These are:

[0 : 0 : 1], [1 : 0 : 1], [0 : 1 : 0].

None of these points correspond to quadratic maps realizing N2E7: one of the points is at
infinity, and the others either have y = 0 or z = 0, and this is impossible, since 0 is periodic,
while y and z should be strictly preperiodic.

⇤
Note that the inadmissibility of graphs N2E2 and N2E6 proves Theorem 2, and the next

proposition implies Theorem 1.

Proposition 4.2. Assume Conjecture 1. Any non-PCF quadratic map with a periodic critical

point of period 2 that does not realize one of the graphs in Table 5.2 must admit one of the

graphs in Table 5.5.

Proof. We can represent the graphs in Tables 5.5 and 5.2 in a Hasse diagram (a graph repre-
sentation of a partially ordered set, see for instance K. Rosen [18, §1.4.3]) with respect to the
partial order of subgraph isomorphism:

R2P1

R2P2 R2P3

R2P4 R2P6 R2P5N2E1

R2P7 N2E5 N2E4 N2E3N2E7

This Hasse diagram is complete with respect to the recursively defined set G introduced in
Section 3 in the sense that for any graph G in the diagram, if we use recursion step 1 or 2 (in the
definition of the set G in Section 3) to produce a new graph G

0 from G then G

0 is either already
in the list, or contains one of the graphs N2E1, ..., N2E7. Note that according to Conjecture 1
and Lemma 2.1, we can only add 1-cycles (recursion step 1) to a graph, and we can only add
at most three of these (by Lemma 2.1).

We show this explicitly for the graph R2P7: If we use step 2 to add two preimages to the
preimage of 0, then we get a graph containing graph N2E1. If we use step 2 to add two
preimages to the preimage of one of the fixed points, we get a graph containing graph N2E5.
We cannot use step 1 since there are already three fixed points.
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Now suppose � is a non-PCF quadratic map defined over Q with a Q-rational periodic critical
point of period 2 such that G� is not on the list. By Lemma 3.2 we know that G� is in G, and
therefore can be obtained from R2P1 by a finite number of recursion steps, and therefore must
admit one of the graphs N2E1,...,N2E7. But these graphs are inadmissible, so that the graph
G� is also inadmissible, contradiction. ⇤
Proposition 4.3. Let � be a quadratic map defined over Q, then � has no Q-rational periodic

critical point of period 5.

Proof. Suppose that P 2 P1(Q) is periodic critical point of period 5 of �. We can always
conjugate � so that the critical point P is 0, and that �(0) = 1 and �(1) = 1. We get that �
is of the form

�(z) =
a2z

2 + a1z + a0

a2z
2

= F (z)/G(z).

For 0 to be periodic of period 5 we must have �3(1) = 0. For this to happen we must have

a

5
2 + 2a51 + a

5
0 + 33a32a1a0 + 53a22a

2
1a0 + 44a22a1a

2
0+

35a2a
3
1a0 + 42a2a

2
1a

2
0 + 23a2a1a

3
0 + 8a41a0 + 13a31a

2
0+

11a21a
3
0 + 11a2a

4
1 + 5a2a

4
0 + 7a42a1 + 7a42a0 + 18a32a

2
1+

15a32a
2
0 + 21a22a

3
1 + 12a30a

2
2 + 5a1a

4
0 = 0.

This equation defines a curve C in P2
[a0:a1:a2]

. Using Magma, one can check that this curve has
genus 1. A quick search yields three Q-rational points:

[0 : �1 : 1], [�1 : 1 : 0], [0 : �1

2
: 1].

The point [0 : �1
2 : 1] is nonsingular, and we can transform this curve to the elliptic curve

E : y2 + xy + y = x

3 � x

2 � x

sending [0 : �1
2 : 1] to O = [0 : 1 : 0], the unit element of E. The elliptic curve E is curve 17a4

in Cremona’s database. It has Mordell–Weil rank of 0, and a torsion subgroup isomorphic to
Z/4Z. The four rational points on the curve are

O = [0 : 1 : 0], [0 : 0 : 1], [0 : �1 : 1], [1 : �1 : 1].

We denote by ' the birational map mapping C to E, and by  its inverse. These maps can
be calculated using Magma and are too lengthy to reproduce here. We denote S = Ind(�)
and T = Ind( ), the indeterminacy sets of � and  . Then outside ��1(T ) [ S ⇢ C and
 

�1(S)[T ⇢ E we have � and  are isomorphisms. One can check (using Magma for example)
that the only Q-rational points in these two subsets are the seven points listed previously. Thus
C contains no other Q-rational points, since otherwise E would as well. We can thus conclude
that there are no quadratic maps � defined Q having a periodic critical point of period 5, since
the three points [0 : �1 : 1], [�1 : 1 : 0], [0 : �1

2 : 1] correspond to degenerate maps. ⇤

5. Graph tables
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Table 5.1. Realizable PCF quadratic maps with Q-rational periodic critical
point of period 2 (taken from Lukas, Manes and Yap [10])

ID �(z) Preperiodicity graph

P2P1 z

2 � 1 •1 •1 •0 •�1
⌥⌥

// tt
33

P2P2
�1

4z2 � 4z
•1/2 •1 •1 •0// // 44

ss

P2P3
�4

9z2 � 12z •2/3 •1 •4/3 •1 •0

•1/3
// // //

✏✏
44

ss

P2P4
3z2 � 4z + 1

1� 4z

•1/2 •1/4 •1

•�2 •�1•1/3

// //
⌫⌫

33

//

ss//

P2P5 2/z2 •0 •133tt

P2P6 1/z2 •1•�1 •0 •1
⌫⌫
// 33

tt

Table 5.2. Realizable non-PCF quadratic maps withQ-rational periodic critical
point of period 2

ID �(z) Preperiodicity graph

R2P1
z + 1

z

2 •�1 •0 •1// 33
tt

R2P2
�z + 2

z

2 •2 •0 •1 •�2 •1// 33
tt //

⌫⌫

R2P3
6z � 4

3z2

•1

•2
•2/3 •0 •177
''

// 33
tt

R2P4
3z � 2

z

2 •2/3 •0 •1

•2

•1
•1/2

•�2// 33
tt

??

⌫⌫

??

��

R2P5
�z � 1

6z2

•�1/2

•1
•�1/3

•1/2

•�1 •0 •177

''
//
??

// 33
tt

R2P6
5z � 2

3z2
•2/5 •0 •1

•1/2

•2
•2/3 •1// 33

tt
77
''

//
⌫⌫

R2P7
7z � 6

z

2 •6/7 •0 •1

•6

•1

•2/3

•�3

•3/2

•2
// 33
tt

GG

⌫⌫

GG

��

GG

⌫⌫
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Table 5.3. Realizable quadratic maps with Q-rational periodic critical point of
period 3

ID �(z) Preperiodicity graph

R3P0
1

(z � 1)2

•1

•0
•1•2 ��cc

00

//

R3P1
2z2 � z � 1

2z2
•0 •1

•1•�1/2

•�1
++

ww

VV77

rr

R3P2
z

2 + 5z � 6

z

2 •0 •1

•1•�6

•6/5

•3

•2++

ww

VV77

rr

77
⌫⌫

R3P3
5z2 � 7z + 2

5z2
•0 •1

•1•2/5

•2/7

•2

•1/3

++

ww

VV??

rr
$$
//

R3P4
3z2 � 5z + 2

3z2
•0 •1

•1•2/3

•2/5

•�2 •2 •1/3 •1/2

++

ww

VV77

rr

// ++
jj oo

R3P5
5z2 � 11z + 6

5z2
•0 •1

•1•6/5

•6/11

•2/3 •2/5 •3 •�3/2

•6

•3/5

++

ww

VV77

rr

// **
kk oo

''
77
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Table 5.4. Realizable quadratic maps with Q-rational periodic critical point of
period 4

ID �(z) Preperiodicity graph

R4P1
12z2 � 11z + 2

12z2
•0 •1

•1•1/4

•2/3

•2/11•2/9

++

��
kk

HH

##

kk33

R4P2
7z2 + 29z � 30

7z2
•0 •1

•1•6/7

•�5

•30/29•�30

•15/7 •2
++

��
ll

HH

##

ll33

//
⌫⌫

R4P3
3z2 + z � 2

3z2
•0

•1

•1
•2/3

•�1 •2

•�2

•1/2

•�2/3

88

��

yy

VV
// oo

oo

''
77

R4P4
15z2 � 11z + 2

15z2
•0

•1

•1
•2/5

•1/3 •2/11

•2/9

•2 •2/3 •1/5 •1/4

88

��

yy

VV
// oo

oo

// ++
kk oo

R4P5
35z2 � 31z + 6

35z2
•0

•1

•1
•2/7

•3/5 •6/31

•6/25

•2

•3/14

•6 •6/7 •1/5 •1/4

88

��

yy

VV
// oo

oo

''
77

// ++
kk oo
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Table 5.5. Inadmissible quadratic maps with Q-rational periodic critical point
of period 2

ID Preperiodicity graph genus

N2E1 • • •

•

•

• •// 44tt��
??

//
⌫⌫

1

N2E2 • • • • •

•• •

•

// 44tt ((

}}

OODD

hh

✏✏
0

N2E3

•

•

•

•

• •0 •

•

• 77
'' //

??
// 44
tt

//
??

1

N2E4 • • • ••

•

•

•

•// 66
vv ⌫⌫

//
��
//

//
??

1

N2E5 • • •

•

•

•

•

• •

// 44tt

GG

⌫⌫

GG

⌫⌫

?? __

1

N2E6 • • • • •

••

• •

••

// 44tt ((

��
hh

HH

⇢⇢ ⌅⌅

gg77

0

N2E7 •

•

•

•

• • •

•

•

//'' //77 // 44tt

//77

0
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