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PREPERIODIC POINTS FOR RATIONAL FUNCTIONS DEFINED OVER A
GLOBAL FIELD IN TERMS OF GOOD REDUCTION

JUNG KYU CANCI AND LAURA PALADINO

Abstract. Let � be an endomorphism of the projective line defined over a global field
K. We prove a bound for the cardinality of the set of K–rational preperiodic points for �
in terms of the number of places of bad reduction. The result is completely new in the
function field case and it is an improvement of the number field case.

1. introduction

Let � : P1 ! P1 be a rational function defined over a field K. A point P is said to be
periodic for � if there exists an integer n > 0 such that �n(P) = P. We call minimal period
the minimal number n with the above property. We say that P is a preperiodic point for �
if its (forward) orbit O�(P) = {�n(P) | n 2 N} contains a periodic point, that is equivalent
to say that the orbit O�(P) is finite. The orbit of a periodic point is called a cycle and its
size is called the length of the cycle.

Let K be a global field, i.e. K is either a finite extension of the field Q or a finite exten-
sion of the field Fp(t), where p is a prime number and Fp is the field with p elements. Let
PrePer(�,K) be the set of K–rational preperiodic points for �. By considering the notion
of height, one can verify that the set PrePer(�,K) is finite for any rational map � : P1 ! P1
defined over K (see for example [33] or [13]). The finiteness of the set PrePer( f ,K) fol-
lows by applying [13, Theorem B.2.5, p.179] and [13, Theorem B.2.3, p.177] (these last
theorems are stated in the case of number fields, but with similar proofs one verifies the
analogous statements in the function field case). Anyway, from the above two theorems
one can deduce a bound that depends strictly on the coe�cients of the map � (see also [33,
Exercise 3.26 p.99]). In this context there is the so-called Uniform Boundedness Conjec-
ture formulated in [21] by Morton and Silverman. It says that for any number field K, the
cardinality of the set PrePer(�,K) of a morphism � : PN ! PN of degree d � 2, defined
over K, is bounded by a number depending only on the integers d,N and on the degree
D of the extension K/Q. It seems very hard to solve this conjecture. An example to give
an evidence of the di�culties is provided by the polynomial case, where it is conjectured
that a polynomial of degree 2, defined over Q, admits no rational periodic points of order
n > 3, see [12, Conjecture 2]. This last conjecture is proved only for n = 4 [20, Theorem
4] and n = 5 [12, Theorem 1]. Some evidence for n = 6 is given in [12, Section 10], [31]
and [14]. Furthermore, by considering the Lattès map associated to the multiplication by
two map [2] over an elliptic curve E, it is possible to see that the Uniform Boundedness
Conjeture for N = 1 and d = 4 implies Merel’s Theorem on torsion points of elliptic curves
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(see [19]). The Lattès map has degree 4 and its preperiodic points are in one-to-one cor-
respondence with the torsion points of E/{±1} (see [29]). The aim of our work is to prove
a weaker form of the Uniform Boundedness Conjecture, over all global field, where the
constant depends on one more parameter, that is the number of primes of bad reduction.

The notion of good (and bad) reduction considered in the present article is the following
one: let K be a global field, R its ring of algebraic integers, p a non zero prime ideal of R
and Rp the local ring at p; we say that an endomorphism � of P1 has good reduction at p
if � can be written in the form �([x : y]) = [F(x, y),G(x, y)], where F(x, y) and G(x, y) are
homogeneous polynomial of the same degree, with coe�cients in Rp and such that their
resultant Res(F,G) is a p–unit. This notion of good reduction was introduced by Morton
and Silverman in [22].

The first author already studied some problems linked to the Uniform Boundedness
Conjecture. In particular, he studied the case when N = 1 in the number field case and he
took in consideration families of rational functions characterized in terms of good reduction
too. In [6, Theorem 1] he proved the following fact: let K be a number field and S be a
finite set of places of K containing all the archimedean ones. Let � : P1 ! P1 be an
endomorphism defined over K with good reduction outside S (i.e. good reduction at each
p < S ). Then the orbit of a preperiodic point P 2 P1(K) has cardinality bounded by a
number c(|S |) which depends only on the number |S | of elements in S . The main aim of
our work was to prove a similar result in the function field case. But the techniques that
we found work also in the number field case and in that case we obtain a better bound than
the one proved in [6]. We resume those results in the following theorem.

Theorem 1. Let K be a global field. Let S be a finite set of places of K, containing
all the archimedean ones, with cardinality |S | � 1. Let p be the characteristic of K.
Let D = [K : Fp(t)] when p > 0, or D = [K : Q] when p = 0. Then there exists a
number ⌘(p,D, |S |), depending only on p, D and |S |, such that if P 2 P1(K) is a preperiodic
point for an endomorphism � of P1 defined over K with good reduction outside S , then
|O�(P)|  ⌘(p,D, |S |). We can choose

⌘(0,D, |S |) = max
n

(216|S |�8 + 3)
⇥

12|S | log(5|S |)
⇤D
,
⇥

12(|S | + 2) log(5|S | + 5)
⇤4D

o

in zero characteristic and

(1) ⌘(p,D, |S |) = (p|S |)4D max
�

(p|S |)2D , p4|S |�2 .

in positive characteristic.

Note that the bound does not depend on the degree of the endomorphism �. The condi-
tion |S | � 1 is only a technical one. In the case of number fields, we require that S contains
all archimedean places, then it is clear that the cardinality of S is not zero. In the case of
function fields the situation is quite di↵erent from the case of number fields. For example,
all places are non archimedean. The condition that S is not empty is important in order to
have that the ring of S –integers RS is di↵erent from its field of constants. Also the fact that
the class number of RS is finite will play an important role (see Lemma 5.6 ind Proposition
14.1 in [28] Proposition 14.1).

The result stated in Theorem 1 extends to all global fields and to preperiodic points
the result proved by Morton and Silverman in [21, Corollary B]. They proved the bound
12(r + 2) log(5(r + 2))4[K:Q] for the length of a cycle of a K–rational periodic point for an
endomorphism � : P1 ! P1, defined over a number field K, with at most r primes of bad
reduction. Their bound reposes on the result proved in [22, Proposition 3.2(b)]. To pro-
duce that bound they considered the reduction modulo two suitable primes in K, i.e. they
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considered the reduction to two reduced fields having two di↵erent characteristics. Their
technique does not work in the function field case. Our proof uses an S -unit equation The-
orem in positive characteristic. More precisely, we use a theorem in two S -units (see The-
orem 4), that is essentially [32, Theorem 1] where we consider also the case of inseparable
extensions. With function fields, a di�culty is that there could be infinitely many solutions
in S –units even for an equation in two variables. For example, if we take K = Fp(t) and
S = ht, 1 � ti, then the equation x + y = 1 admits the solutions (x, y) = (tpn

, (1 � t)pn )
for each integer n > 0 (see [16] and [17] for a complete description of the solutions of
x + y = 1 with the above S ). For some results in a more general setting see [8]. We shall
use some ideas already contained in [5] and [6], but the original idea of using S –unit the-
orems in Arithemitc of Dynamical System is due to Narkiewicz [23]. As an application of
our Theorem 1 we have the following result.

Corollary 1.1. Let K be a global field. Let S be a finite set of places of K of cardinality
|S | � 1, containing all the archimedean ones. Let p be the characteristic of K. Let D = [K :
Fp(t)] when p > 0, or D = [K : Q] when p = 0. For any integer d � 2, let Ratd,S (K) be the
set of the endomorphisms of P1 of degree d, defined over K and with good reduction outside
S . Then there exists a number C = C(p,D, d, |S |), depending only on p, D, d and |S |, such
that for any endomorphism � 2 Ratd,S (K), we have #PrePer(�,P1(K))  C(p,D, d, |S |).
Our Corollary 1.1 is a sort of generalization of the result proved by Benedetto in [2]. He
studied dynamics given by the maps induced by polynomials �(z) 2 K[z]. Benedetto’s
bound is quite sharp, it is of the form O(|S | log |S |) where the constant in the big O depends
only on the degree d of the polynomial � and the degree D of the extension. His proof
involves the study of the filled Julia set associated to a polynomial �. We use a completely
di↵erent approach. Our techniques of proof could give only a very big estimation for the
number C(p,D, d, |S |) (for this reason we decided not to give an explicit estimation for
C(p,D, d, |S |)), but our result holds for any rational map in K(z).

The techniques that we use to prove Theorem 1 can be used to prove small bounds in
some particular situations, as in the case of the next corollary.

Corollary 1.2. Let � : P1 ! P1 be an endomorphism defined over Q, with good reduction
at every non-archimedean place.

• If P 2 P1(Q) is a periodic point for � with minimal period n, then n  3.
• If P 2 P1(Q) is a preperiodic point for �, then |O�(P)|  12.

E↵ective bounds as in Theorem 1 can be also useful to solve problems concerning
torsion points of elliptic curves. For instance, in some previous papers, the second author
was faced with the local-global divisibility problem on elliptic curves (for example see
[25], [26] and see also [9]). If E is an elliptic curves defined on a number field K that does
not contain Q(⇣p + ⇣�1

p ) (where ⇣p is a p-root of unity) and there exist no K-rational torsion
points with exact order a prime p, then the local-global divisibility by pn holds for every
positive integer n [26]. Therefore Theorem 1 gives a bound C(D, |S |) := ⌘(0,D, 4, |S |) to
the number of primes p for which the local-global divisibility may fail. One knows already
some bounds that depend only on the degree D of the extension (e.g. the ones provided by
Merel [19, Proposition 2], by Oesterlé [24] and by Parent [27, Corollary 1.8]). Our result
provides just another point of view to the above problem and in some particular cases could
provide some small bounds.

It could be interesting to study the same problem about preperiodic points of a rational
map of P1(K) in the situation when K is a function field in zero characteristic. In this case
one could apply the Evertse and Zannier’s result contained in [11].
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Here there is a short overview of the contents of the paper. In section 2 we present
the tools that we shall use in our proofs. In section 3, we prove a bound for the minimal
periodicity of periodic points in the case of function fields. Section 4 contains the proof of
Theorem 1, Corollary 1.1 and Corollary 1.2.

Acknowledgements. We thank Dominik Leitner and David Masser for useful discus-
sions. We thank Sebastian Troncoso for pointing out an inaccuracy in Lemma 3.2. The
article was written when the second author was at the University of Basel; in particular she
thanks the Department of Mathematics. We would like also to thank an anonymous referee
that suggested to use the content of Lemma 3.2 that gave a significant improvement of the
bounds in our Theorem 1.

2. Preliminaries

Throughout the whole paper we shall use the following notation: let K be a global field
and K̄ its algebraic closure; let vp be the normalized valuation on K associated to a non
archimedean place p such that vp(K) = Z. Let Rp be the local ring {x 2 K | vp(x) � 1}. As
usual, we still denote by p the maximal ideal in Rp. Let k(p) be the residue field and p its
characteristic. Since Rp is a principal ideal domain, then there exists a canonical reduction
map P1(K) ! P1(k(p)), that maps a point P to a point P̃ 2 P1(k(p)) called the reduction of
P modulo p.

When K = Fp(t) all places are exactly the ones associated either to a monic irreducible
polynomial in Fp[t] or to the place at infinity given by the valuation v1( f (x)/g(x)) =
deg(g(x)) � deg( f (x)), that is the valuation associated to 1/x. All these places are non-
archimean, i.e. vp(x + y) � min{vp(x), vp(y)} for each x, y 2 K. In an arbitrary finite
extension K of Fp(t), each valuation of K extends one of Fp(t). We have a similar situation
in the number field case. The non archimedean places in Q are the ones associated to the
valuations at any prime p of Z. But there is also a place that is not non–archimedean. It is
the one associated to the usual absolute value on Q. With an arbitrary number field K the
archimedean places are the ones that extend the usual absolute value on Q.

For every finite set S of places of K, containing all the archimedean ones, we shall
denote by RS B {x 2 K | vp(x) � 0 for every prime p < S } the ring of S -integers and by
R⇤S B {x 2 K⇤ | vp(x) = 0 for every prime p < S } the group of S -units.

2.1. Reduction of cycles. We shall use the notion of good reduction already given in the
introduction. In other words we say that a morphism � : P1 ! P1 has good reduction
at p if there exist F,G 2 Rp[X,Y] homogeneous polynomials of the same degree, such
that �[X : Y] = [F(X,Y) : G(X,Y)] and the reduced map �p, obtained by reducing the
coe�cients of F and G modulo p, has the same degree of �. Otherwise we say that it has
bad reduction. Given a set S of places of K containing all the archimedean ones, we say
that � has good reduction outside S if it has good reduction at any place p < S .

If an endomorphism of P1 has good reduction, then we have some important information
on the length of a cycle. In this direction an important tool in our proof is the next result,
proved by Morton and Silverman in and [21], or independently by Zieve in his PhD thesis
[34] (here we state a version adapted to our setting).

Theorem 2 (Morton and Silverman [21], Zieve [34]). Let K, p, p be as above. Let � be
an endomorphism of P1 of degree at least two defined over K with good reduction at p.
Let P 2 P1(K) be a periodic point for � with minimal period n. Let eP be the reduction of
P modulo p, m the minimal period of eP for the map �p and r the multiplicative period of
(�m)0(P) in k(p) \ {0}. Then one of the following three conditions holds
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(i) n = m;
(ii) n = mr;

(iii) n = pemr, for some e � 1.

In the notation of Theorem 2, if (�m)0(P) = 0 modulo p, then we set r = 1. If P is a
periodic point, then (ii) and (iii) are not possible with r = 1. The above theorem will be
useful to bound the length of a cycle in terms of primes of bad reduction. In particular, it
will be useful to apply some divisibility arguments contained in the following subsection.

2.2. Divisibility arguments. First of all we fix some notation.
Let P1 =

⇥

x1 : y1
⇤

, P2 =
⇥

x2 : y2
⇤

be two distinct points in P1(K). By using the notation
of [22] we shall denote by

�p (P1, P2) = vp (x1y2 � x2y1) �min{vp(x1), vp(y1)} �min{vp(x2), vp(y2)}
the p-adic logarithmic distance; �p (P1, P2) is independent of the choice of the homoge-
neous coordinates, i.e. it is well defined. The logarithmic distance is always non negative
and �p(P1, P2) > 0 if and only if P1 and P2 have the same reduction modulo p.

The divisibility arguments, that we shall use to produce the S –unit equations useful to
prove our bounds, are obtained starting from the following two facts:

Proposition 2.1. [22, Proposition 5.1] For all P1, P2, P3 2 P1(K), we have

�p(P1, P3) � min{�p(P1, P2), �p(P2, P3)}.
Proposition 2.2. [22, Proposition 5.2] Let � : P1 ! P1 be a morphism defined over K with
good reduction at p. Then for any P,Q 2 P(K) we have �p(�(P), �(Q)) � �p(P,Q).

As a direct application of the previous propositions we have the next proposition.

Proposition 2.3. [22, Proposition 6.1] Let � : P1 ! P1 be a morphism defined over K with
good reduction at p. Let P 2 P(K) be a periodic point for � with minimal period n. Then

• �p(�i(P), � j(P)) = �p(�i+k(P), � j+k(P)) for every i, j, k 2 N.
• Let i, j 2 N be such that gcd(i � j, n) = 1. Then �p(�i(P), � j(P)) = �p(�(P), P).

2.3.
p

RS –coprime coordinates. Let P 2 P1(K) where K is an arbitrary global field. Let
S be a finite non empty set of places containing all the archimedean ones. There exist
a, b 2 RS such that P = [a : b]. We say that [a : b] are S –coprime coordinates for P
if min{vp(a), vp(b)} = 0 for each p < S . If the ring RS is not a principal ideal domain,
there exist points in P1(K) that does not have S –coprime coordinates. We could avoid that
problem by taking an enlarged set S of places of K containing S , such that the ring RS is
a principal ideal domain. Indeed the class number of RS (i.e. the order of the fractional
ideal class group) is finite (see Corollary in Chapter 5 in [18] for number fields and both
Lemma 5.6 and Proposition 14.1 in [28] for function fields). We denote by h the class
number of RS . By a simple inductive argument, we can choose S such that |S|  s + h � 1.
But working with S, we will obtain a bound in Theorem 1 depending also on h. We use
the same argument as in [6] to avoid the presence on h in our bounds. For the reader
convenience we write below this argument.

Let a1, . . . , ah be ideals of RS that form a full system of representatives for the ideal
classes of RS . For each i 2 {1, . . . , h} there is an S -integer ↵i 2 RS such that ah

i = ↵iRS .
Let L = K(⇣, h

p
↵1, . . . , h

p
↵h), where ⇣ is a primitive h–th root of unity and h

p
↵1 is a chosen

h–th root of ↵i.
Let Ŝ be the set of places of L lying above the places in S . Let RŜ and R⇤Ŝ be respectively

the ring of Ŝ –integers and the group of Ŝ –units in L. We denote by
p

R⇤S ,
p

RS and
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p
K the radical in L⇤ of the groups R⇤S , the ring RS and K respectively. It turns out that

p

R⇤S = R⇤Ŝ \
p

K⇤ and
p

RS = RŜ \
p

K; furthermore
p

R⇤S is a subgroup of L⇤ of rank
|S | � 1 in the case of number field (see [6]). In the case of function field we have that the
group R⇤S /

�

K⇤ \ Fp
�

has finite rank equal to |S |�1 (e.g. see [28, Proposition 14.2 p. 243]).
Thus, since K\Fp is a finite field, we have that R⇤S has rank |S | and then also the group

p

R⇤S
has rank |S |. For each P 2 P1(K), there exist two x, y 2 RS such that P = [x : y]. Let ai be
the representatives in the same ideal class of xRs+yRS . Let ↵i 2 RS be such that ai

h = ↵iRS .
Hence there exists �i 2 K such that (xRS + yRS )h = �h

i ↵iRS . Let x0 = x/(�i
hp↵i) and

y0 = y/(�i
hp↵i). Then x0RŜ +y0RŜ = RŜ and so x0, y0 2

p
K⇤\RŜ =

p
RS . More precisely, it

is possible to see that there exist two elements a, b 2 pRS such that x0a+y0b = 1. Of course
P = [x0 : y0]. In this case we say that P is written in

p
RS –coprime integral coordinates.

We shall use the divisibility arguments contained in Subsection 2.2 for points in P1(K)
written in

p
RS –coprime coordinates, instead of S -coprime coordinates. Therefore the

results contained in Subsection 2.2 will be applied with L instead of K and Ŝ instead of
S . We will always assume that the points in P1(K) are written in

p
RS –coprime integral

coordinates.

2.4. On the equation ax + by = 1 in function fields. Let K be a global function field.
Let S be a finite fixed set of places of K. Let L,

p
RS ,

p

R⇤S be defined as in the previous
Subsection 2.3. We use the classical notation Fp for the algebraic closure of Fp. The case
when S = ; is trivial, because the ring of S –integers is already finite; more precisely
RS = R⇤S = K⇤ \ Fp. Then in what follows we assume S , ;.
Definition 3. An equation ax + by = 1, with a, b 2 L⇤, is called S-trivial if there exists an
integer n, coprime with p, such that an, bn 2 R⇤S (see [32]).

Recall that if L is a separable extension of Fp(t), then the standard derivation of Fp(t) ex-
tends uniquely to K (see e.g. [30]). If L is not a separable extension of Fp(t), we could have
some technical problems; for example it is not clear how to extend the standard derivation
of Fp(t) on L. Anyway, a field extension L/Fp(t) splits in the composition of two extensions
L/Ls and Ls/Fp(t), where Ls/Fp(t) is separable and L/Ls is purely inseparable (see for ex-
ample [30, §3.10 and App. A] or see [16] and [17] for a summary of these arguments).
This composition of extensions will be useful in the proof of the following statement.

Theorem 4. Let K be a finite extension of the field Fp(t). Let S be a finite set of places
of K with cardinality |S | � 1. Let L and

p

R⇤S as defined in Subsection 2.3. For any fixed
a, b 2 L⇤, if the equation

(2) ax + by = 1

is not S -trivial, then it has at most r(p, |S |) = p2|S |�2(p2|S |�2 + p � 2)/(p � 1) solutions
(x, y) 2 (

p

R⇤S )2.

Proof. Case L separable over Fp(t). In this case Theorem 4 is just [32, Theorem 1] adapted
to our situation. Note that

p

R⇤S = R⇤S and |(R⇤S )2/H| = p2|S |�2, where H = {(x, y) 2 (R⇤S )2 |
Dx = Dy = 0}.

Case L inseparable over Fp(t). Let Ls be the subfield of L such that L/Fp(t) splits in the
composition of two extensions L/Ls and Ls/Fp(t) where Ls/Fp(t) is separable and L/Ls is
purely inseparable. Recall that every prime in Ls extends to a unique prime in L (see [30]).
Thus the group ]

p

R⇤S :=
p

R⇤S \ Ks has rank |S |. Let k be the integer such that [K : Ks] =
pk. The existence of such a number k follows from the structure of the purely inseparable
extensions; e. g. see [15, Corollary 6.8 p.250]. If we take the pk–power of both sides in (2),
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we get 1 = (ax+ by)pk
= apk xpk

+ bpk ypk
. Therefore if (x, y) 2

�

p

R⇤S
�2 is a solution of (2),

then (X,Y) = (xpk
, ypk ) 2

⇣

]pR⇤S
⌘2

is a solution of AX + BY = 1, where A = apk
, B = bpk

belong to Ks. Hence the problem reduces to the study of the solutions of AX + BY = 1,

with (X,Y) 2
⇣

]pR⇤S
⌘2

, in the separable case. Indeed any solution (x, y) 2
�

p

R⇤S
�2 for

the equation (2) corresponds to a solution (X,Y) = (xpk
, ypk ) 2

⇣

]pR⇤S
⌘2

for AX + BY = 1.

Note that the correspondence (x, y)! (xpk
, ypk ) is injective. ⇤

2.5. On the equation ax + by = 1 in number fields. Let K be a number field and let S
be a finite fixed set of places of K, containing all the archimedean ones.

Theorem 5 ([4]). Let L be a number field and let � be a subgroup of (L⇤)2 of rank r. Then
the equation x + y = 1 has at most 28(r+1) solutions with (x, y) 2 �.

In the following we shall use Theorem 5 with � =
�

p

R⇤S
�2.

3. Bound for the length of a cycle

The aim of this section is to prove a result, in positive characteristic, similar to the
following one, proved by Morton and Silverman for number fields. Here we present the
statement of [21, Corollary B] adapted to our notation.

Theorem 6. ([21, Corollary B]) Let K be a number field. Let S be a finite set of places of
K. Let � be an endomorphisms of P1 of degree d � 2 defined over K with good reduction
outside S . Let P 2 P1(K) be a periodic point for � with minimal period n, then

(3) n 
⇥

12(|S | + 1) log(5(|S | + 1))
⇤4[K:Q]

.

Because of Theorem 6, in what follows we assume that K is a global function field with
degree D over Fp(t). As usual S is a finite non empty set of places of K. Let L, Ŝ ,

p
RS and

p

R⇤S be as defined in Subsection 2.3.
If we take two points P1 = [x1 : y1] and P2 = [x2 : y2] written in

p
RS –coprime integral

coordinates, we have that �p(P1, P2) = vp(x1y2 � x2y1) for each p < Ŝ .

To bound the length of the cycle of a preperiodic point of a rational map of P1 in terms
of p,D and |S |, we first need to prove the existence of a prime p < S such that |k(p)| is
bounded in terms of p,D and |S |.
Lemma 3.1. Let K, p,D be as above. There exists a number i(p,D, |S |), that depends only
on p,D and |S |, and a prime p < S such that the corresponding residue field k(p) has
cardinality bounded by i(p,D, |S |). We can take i(p,D, |S |) = (p|S |)2D � 1.

Proof. Suppose that D = 1 (i.e. K = Fp(t)). We claim that there is a prime p < S such that

(4) |k(p)| < (p|S |)2.

Recall that the number of monic irreducible polynomials in Fp[t] of degree n is given by
I(n) = 1

n

P

d|n µ(n/d)pd, where µ denotes the Möbius function (e.g. see [28, Corollary at
p.13]). Let N be such that

(5)
P

nN I(n) > |S |.
Thus there is a finite prime p < S , whose associated monic irreducible polynomial is ⇡,
with deg ⇡  N. Hence |k(p)|  pN .



8 JUNG KYU CANCI AND LAURA PALADINO

Note that for n  3 we easily see that I(n) � pn

2n . We want to show that the inequality
holds for any n. Indeed for n � 4

(6) I(n) � 1
n

�

pn �Pdn/2 pd
�

� 1
n

⇣

pn � pn/2+1�1
p�1

⌘

� 1
n

�

pn � 2pn/2
�

� pn

2n .

Suppose that S and p are such that |S | > 1 and p|S |�1

2(|S |�1) > |S |. We are excluding the
three cases when i) |S | = 1; ii) p = 2 and |S |  7; iii) p = 3 and |S |  3. Let N be the
smallest integral number such that pN

2N > |S | > N. Such a number N exists because of our
assumption on |S | and p. By (6) and pN

2N > |S |, there exists p < S of degree N such that
(5) holds. Indeed, if pN � (p|S |)2 we would have pN�1 > 2(N � 1)|S |, that contradicts
the minimality of N. If |S | = 1, it is clear that there is a prime p < S such that (4) holds.
Let p = 2 and |S | = 2. We have that there exists a monic irreducible polynomial p < S
of degree 2. Thus we have 4 = |k(p)| < 8 = (p|S |)2. When p = 2 and 3  |S |  7, take
N = 4. The sum in (5) is 8, then there is a monic polynomial p < S of degree 4. So
|k(p)| = 16 < 36  (2|S |)2. Similar arguments work when p = 3 and |S |  3.

For arbitrary finite extension of Fp(t) of degree D � 1, it su�ces to remark that p\Fp(t)
is generated by a monic irreducible polynomial ⇡ in Fp[t], for each prime ideal p of R. The
prime p is said a prime above ⇡ or equivalently that ⇡ is below p. The cardinality of the set
of primes ⇡ that are below the primes in S is bounded by |S |. Thus, there exists a prime
p < S above a prime ⇡ in Fp[t], such that |k(p)|  |Fp(t)(⇡)|D. By applying the inequality (4),
we have |k(p)|  |Fp(t)(⇡)|D < (p|S |)2D. Hence we can take i(p,D, |S |) = (p|S |)2D � 1. ⇤

The following lemma is an elementary application of the previous result, that will be
useful in the rest of the paper.

Lemma 3.2. Let K be a function field of degree D over Fp(t) and S a non empty finite set
of places of K. Let Pi 2 P1(K) with i 2 {0, . . . n � 1} be n distinct points such that

(7) �p(P0, P1) = �p(Pi, Pj), for each distinct 0  i, j  n � 1 and for each p < S ,

then n  (p|S |)2D.

Proof. Let p < S such that the residue field at p has cardinality bounded by i(p,D, |S |) =
(p|S |)2D � 1. We know that such a p exists by Lemma 3.1. We may assume that for each
i 2 {0, . . . , n � 1}, the point Pi = [xi : yi] is written in p–coprime integral coordinates, i.e.
min{vp(xi), vp(yi)} = 0 . Let x0i , y0i 2 K such that

✓

y0 �x0
y1 �x1

◆✓

xi
yi

◆

=

✓

x0i
y0i

◆

,

for each i 2 {0, 1, . . . , n � 1}. Let us denote by P0i the point [x0i : y0i]. For all distinct
i, j 2 {0, 1, . . . , n � 1}, we have

�p([x0i : y0i], [x0j : y0j]) = vp((x0y1 � x0y1)�1(xiy j � x jyi)) = 0

Thus P00, . . . , P
0
n�1 are n points whose reductions in P1(k(p)) are pairwise distinct for each

p < S . Then n  |k(p)| + 1  (p|S |)2D. ⇤

Suppose that � is an endomorphism of P1 with good reduction outside S . Let P 2 P1(K)
be a periodic point for �. According to Lemma 3.1 we can take p < S such that |k(p)| 
i(p,D, |S |). By Theorem 2, there exists a number a  i(p,D, |S |)2 � 1 such that P is a
periodic point for the a–th iterate �a with minimal period pe, where e is a non negative
integer. The point P admits

p
RS –coprime coordinates. Then there is an automorphism
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↵ 2 PGL2(K), with coe�cients in
p

RS and inverse having elements in
p

RS , such that
↵(P) = [0 : 1] is a periodic point for the map ↵���↵�1, which has good reduction outside
Ŝ too. Then we may assume that P is the zero point [0 : 1] and the cycle is the following

(8) [0 : 1] 7! P1 7! P2 7! . . . 7! Pi 7! . . . 7! Ppe�1 7! [0 : 1].

and we may suppose that Pi = [xi : yi] is written in
p

RS –coprime integral coordinates, for
each i 2 {1, . . . , pe � 1}. As a direct application of Proposition 2.1 and Proposition 2.3, we
have
(9)

�p(�i(P), P) � min{�p(�i(P), �i�1(P)), . . . , �p(�(P), P)} = �p(�(P), P), for all p < Ŝ .

Thus, for each positive integer i, there exists Ai 2
p

RS such that Pi = [Aix1 : yi]. Further-
more, by Proposition 2.3, for every k coprime with p, we have that Ak 2

p

R⇤S and it can
be taken equal to 1. So Pk = [x1 : yk] is still written in

p
RS –coprime integral coordinates.

The next lemma is a trivial application of Proposition 2.3 to an iterate of shape �pk .

Lemma 3.3. Let K and S be as above. Suppose that � is an endomorphism of P1 defined
over K with good reduction outside S . Let P0 2 P1(K) be a periodic point of minimal
period pe and Pi = �i(P0). Then, for any integer of the form pk · n, with n not divisible by
p and smaller then pe�k, we have �p(P0, Ppk ) = �p(P0, Ppk ·n), for every p < S .

We are ready to prove our main result about periodic points.

Theorem 7. Let K be a global function field. Let S be non empty finite set of places of
K of cardinality |S |. Let p be the characteristic of K. Let D = [K : Fp(t)]. Then there
exists a number n(p,D, |S |), which depends only on D, p and |S |, such that if P 2 P1(K) is
a periodic point for an endomorphism � of P1 defined over K with good reduction outside
S , then the minimal period of P is bounded by n(p,D, |S |). We can take

(10) n(p,D, |S |) =
⇥

(p|S |)4D � 1
⇤

max
�

(p|S |)2D, p4|S |�2 .

Proof. At first let � : P1 ! P1 be as in the statement and with degree d = 1 (i.e. it is
an automorphism). If a point of P1(K) is periodic for � with period n � 3, then �n is the
identity map of P1(K). Hence � is given by a matrix in PGL2(RS ), with two eigenvalues
whose quotient is a primitive n-th root of unity ⇣. The degree of the n–cyclotomic polyno-
mial '(n) is such that '(n)2 � n � 2, for each positive integer n. That inequality follows
from some elementary computations involving the Euler totient function (e.g. see [1] for
definition and properties of this function). Since ⇣ has degree at most 2[K : Fp(t)], then
n  2 + 4[K : Fp(t)]2 and the last value is smaller than the one in (10).

We now assume that � : P1 ! P1 is an endomorphism as in the statement, that has
degree d � 2. Let P 2 P1(K) be a periodic point for �. Let L, Ŝ ,

p
RS ,

p

R⇤S be the ones
defined in Subsection 2.3. We denote by Pi the point Pi = �i(P). As already remarked (see
a few lines before (8)), we may assume that the minimal period of P is of the shape pe,
up to taking a suitable iterate �a of �, and that P = [0 : 1]. By applying the divisibility
arguments contained in Subsection 2.2, with L and Ŝ instead of respectively K and S ,
we may assume that the cycle has the form as in (8), with Pi = [Ai · x1 : yi] written inp

RS –coprime integral coordinates, where Ai, x1, yi 2
p

RS and A1 = 1. Furthermore, by
Proposition 2.3, for any integer k coprime with p, we may take Ak = 1.

If vp(Ak) = 0 for each k 2 {2, . . . pe � 2} and p < Ŝ , by Proposition 2.3 and Lemma 3.2
we have pe  (p|S |)2D. Recall that the number a, providing the above iterate �a, is such
that n = a · pe and a  i(p,D, |S |)2�1  (p|S |))4D�1 (this last inequality is not the sharpest



10 JUNG KYU CANCI AND LAURA PALADINO

one, but it will be useful to get some nice form for our bounds in what follows). Hence
n = a · pe 

⇥

(p|S |)4D � 1
⇤

(p|S |)2D.
Otherwise there exists an index ↵ with 0 < ↵ < e such that the Ap↵ 2

p
RS \

p

R⇤S . We
consider two cases.

Case p = 2. Assume that ↵ is the smallest integer k such that A2k is not an Ŝ –unit. Let
i ⌘ 3 mod 4. If ↵ > 1, by Lemma 3.3 we have �p(P1, Pi) = �p(P0, P1) = �p(P1, P2↵ ), for
all p < Ŝ . Then there exist ui, u2↵ 2

p

R⇤S such that Pi = [x1 : y1 + ui] and P2↵ = [A2↵ :
A2↵y1 + u2↵ ]. Furthermore, by �p(P0, P1) = �p(Pi, P2↵ ), there exists ui,↵ 2

p

R⇤S such that
A2↵

ui
u2↵
� ui,↵

u2↵
= 1. By Theorem 4 there are at most r(p, |S |) di↵erent possible values for ui.

If ↵ = 1, we have �p(P1, Pi) = �p(P0, P2) and �p(P0, P1) = �p(P1, P2). Then there exist
two S –units ui, u2 such that Pi = [x1 : y1 + A2ui] and P2 = [A2 : A2y1 + u2]. As before, we
have �p(P0, P1) = �p(Pi, P2). Hence there exists an ui,2 2

p

R⇤S such that A2
2

ui
u2
� ui,2

u2
= 1.

Again, by Theorem 4, there exist at most r(p, |S |) di↵erent possible values for ui. Note that
the positive odd integer i such that i � 1 < 2e and 4 - i � 1 is equal to 2e�2. Therefore
2e  4r(p, |S |), i. e. pe  p2r(p, |S |) with p = 2. Since r(p, |S |)  p4|S |�4, then it is enough
to take n(p,D, |S |, d)  (i(p,D, |S |)2 � 1)(p2 · r(p, |S |)) 

⇥

(p|S |)4D � 1
⇤

p4|S |�2.
Case p > 2. Let b be of the shape b = k · p + i with k 2 {0, 1, . . . pe�2} and i 2

{2, 3, . . . , p�1}. Because of our assumption on p and Proposition 2.3, we have �p(P0, Pb) =
�p(P1, Pb) = vp(x1) , for any p < Ŝ . Then there exists an element ub 2

p

R⇤S such that

(11) Pb = [x1 : y1 + ub].

By �p(P1, Pp↵ ) = vp(x1), we deduce that there exist up↵ 2
p

R⇤S such that Pp↵ = [Ap↵ x1 :
Ap↵y1 + up↵ ]. Again by Proposition 2.3 we have �p(Pp↵ , Pb) = vp(x1), for every p < Ŝ . By
identity (11), there exists u↵,b 2

p

R⇤S such that Ap↵ub � up↵ = u↵,b. Observe that there
are exactly (pe�2 + 1)(p � 2) of such integers b. We have that the pair (ub/up↵ , u↵,b/up↵ ) 2
(
p

R⇤S )2 is a solution of Ap↵X � Y = 1, where Ap↵ <
p

R⇤S . By Theorem 4, there are
only r(p, |S |) possible values for ub/up↵ . Hence (pe�2 + 1)(p � 2)  r(p, |S |), i. e. pe 
p2
⇣

r(p,|S |)
p�2 � 1

⌘

. Thus n 
⇥

(p|S |)4D � 1
⇤

p4|S |�2, since r(p, |S |)  p4|S |�4. ⇤

4. Bound for the cardinality of a finite orbit

We start by giving some general results that hold for each global field K.
The following lemma is a direct application of Proposition 2.1 and Proposition 2.2.

Lemma 4.1. Let

(12) P = P�m+1 7! P�m+2 7! . . . 7! P�1 7! P0 = [0 : 1] 7! [0 : 1]

be an orbit for an endomorphism � defined over K, with good reduction outside S . For any
a, b integers such that 0 < a < b  m � 1 and p < S , we have

(13) �p(P�b, P�a) = �p(P�b, P0)  �p(P�a, P0).

Proof. The inequality in (13) follows directly from Proposition 2.2. By Proposition 2.1 and
the inequality in (13) we have �p(P�b, P�a) � min{�p(P�b, P0), �p(P�a, P0)} = �p(P�b, P0).
Let r be the largest positive integer such that �b + r(b � a) < 0. Then
�p(P�b, P0) � min{�p(P�b, P�a), �p(P�a, Pb�2a), . . . , �p(P�b+r(b�a), P0)} = �p(P�b, P�a). ⇤

We are going to recall some well-known results in the general setting of non–archimedean
dynamics, first the notion of multiplier. To ease notation, we use the a�ne model for en-
domorphisms of P1(K), that we consider as the set K [ {1}. To any endomorphism � of
P1(K) we associate the usual rational function defined by � on K [ {1}, that, with abuse of
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notation, we denote with the same symbol. Let �0 be the usual derivative of �. We assume
that the non-archimedean valuation vp is extended to the whole algebraic closure K.

Definition 8. Let P 2 P1(K) be a periodic point with minimal periodicity n for the rational
function �. We define �P(�) the multiplier of P as

�P(�) =

(

(�n)0(P) if P 2 K
limz!1

z2(�n)0(z�1)
(�n(z�1))2 if P = 1 .

We say that P is attracting if vp(�P(�)) > 0, indi↵erent if vp(�P(�)) = 0 and repelling if
vp(�P(�)) < 0.

The limit in the above defintion exists in K (see [29, Exercise 1.13]).
When � has good reduction at vp, we have the following lemma, that is a trivial appli-

cation of [3, Lemma 2.1] to a suitable iterate of �.

Lemma 4.2. Let � be an endomorphism of P1 define over K with good reduction at p. Let
P 2 P1(K) be a periodic point. Then P is attracting or indi↵erent.

The next lemma contains some trivial generalizations of [3, Lemma 2.2] and [3, Lemma
2.3]. Roughly speaking, [3, Lemma 2.2] says that if P 2 P1(K) is an attracting fixed point
for a rational function with good reduction at p, then for any other fixed point Q 2 P1(K)
the reductions of P and Q are distinct in the reduced field k(p). If P is an indi↵erent fixed
point, then by [3, Lemma 2.3], for each preperiodic point Q 2 P1(K) \ {P} whose orbit
contains P, we have that P and Q have distinct reductions P̃ and Q̃ in P1(k(p)).

Let us call strictly preperiodic a point that is preperiodic and not periodic. Furthermore,
for any periodic point P 2 P1, we say that two points Q1,Q2 2 P1 are in a same tail of P if
Q1 and Q2 belong to a same orbit containing P and are strictly preperiodic.

Lemma 4.3. Let � be an endomorphism of P1 defined over K with good reduction at p.
a) Let P 2 P1(K) be an attracting periodic point. Then for every Q di↵erent from P

in the cycle of P for �, the reductions P̃ and Q̃ in P1(k(p)) are distinct.
b) Let P 2 P1(K) be an indi↵erent periodic point. Let Q1,Q2 2 P1(K) be in the same

tail of P. Then the reductions Q̃1 and Q̃2 in P1(k(p)) are distinct.

Proof. a) It is su�cient to apply [3, Lemma 2.2] to a suitable iterate of �.
b) As above, for each Q 2 P1(K) we denote by Q̃ its reduction in k(p). Since � has good
reduction at p, then �p(Q̃) = g�(Q) (e.g. see Theorem 2.18 in [29] p.59). Suppose Q̃1 = Q̃2,
then Q̃1 is a periodic point for the reduced map �p and the orbit of Q̃1 for �p coincides
with the cycle of P̃. This contradicts [3, Lemma 2.3], by considering a suitable iterate of �
instead of �. ⇤

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let L, Ŝ ,
p

RS ,
p

R⇤S the ones defined in Subsection 2.3.
Case K function field Let d denote the degree of an endomorphism � as in the statement
of Theorem 1. First suppose d = 1. So � is bijective. Thus, every preperiodic point is
periodic; so it su�ces to apply Theorem 7.

Now assume d � 2. Let P 2 P1(K) be a preperiodic point for �. We take a fixed p0 < S
such that the cardinality |k(p0)| is minimal among the prime not in S . By Lemma 3.1, we
have |k(p0)|  (p|S |)2D � 1. By Lemma 4.2, each periodic point for � is either indi↵erent
or attracting with respect to the valuation vp. Let P0 be such that �m(P) = P0 is periodic,
where m is the minimum integer such that the point �m(P) is periodic.
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If P0 is indi↵erent with respect p0, by Lemma 4.3, the reductions modulo p of the strictly
preperiodic points in the orbit of P are pairwise distinct and all di↵erent from the reduction
of P0. Therefore we have that

(14) |O�(P)|  |k(p0)| + n(p,D, |S |)  (p|S |)4D max
�

(p|S |)2D, p4|S |�2,
 

where the number n(p,D, |S |) is the one in Theorem 7.
If P0 is attracting with respect p0, then by Lemma 4.3 we have that the cycle of P0

contains at most (p|S |)2D points. Then, up to taking a suitable conjugate of an N–th iterate
of �, by an automorphism of P1 associated to a matrix A 2 SL(

p
RS ), we can assume that

the finite orbit of P is the one in (12), with N  (p|S |)2D and each point P�r = [xr : yr] is
written in

p
RS –coprime coordinates. By Lemma 4.1, for every 1  i < j  m � 1 there

exists Ti, j 2
p

RS such that xi = Ti, j x j. Consider the p–adic distance between the points
P�1 and P� j. Again by Lemma 4.1, we have

(15) �p(P�1, P� j) = vp(x1y j � x1y1/T1, j) = vp(x1/T1, j),

for all p < Ŝ . Then, there exists u j 2
p

R⇤S such that

(16) y j =
�

y1 + u j
�

/T1, j.

Note that by Lemma 4.1 and Lemma 3.2, the number of consecutive points P�i (i � 0)
in (12), such that �p(P0, P�i) = �p(P0, P�1) for each p < Ŝ , is bounded by the number
given in Lemma 3.2, because the conjugation of � considered before was made with an
automorphism of P1 associated to a matrix A 2 SL(

p
RS ).

Suppose that there exists a point P�a of the orbit in (12) such that vp(xa) < vp(x1)
for a p < Ŝ . By the previous argument that involves Lemma 3.2, we can assume that
a  (p|S |)2D � 1.

Consider the p–adic distance between the points P�a and P�b for any b > a. By Lemma
4.1 and (16) with j = b, we have: �p(P�a, P�b) = vp

�

xa((y1 + ub)/T1,b) � (x1/T1,b)ya
�

=

vp(x1/T1,b), for all p < Ŝ . Then there exists vb 2
p

R⇤S such that

(17)
x1

xay1 � x1ya
vb �

xa

xay1 � x1ya
ub = 1.

For our assumption on xa, we have that the above equation (17) is not S –trivial. Therefore,
by Theorem 4, there are only r(p, |S |) possible values for ub. So we have that the number
m of points as in (12) verifies m  a+ 1+ r(p, |S |)  (p|S |)2D + r(p, |S |). As before we can
take r(p, |S |)  p4|S |�4, then

|O�(P)| = N · m  (p|S |)2D �(p|S |)2D + p4|S |�4�

and so it is bounded by the number in (1).
Case K number field. The proof of Theorem 1 with K a number field is almost the same
as the one in the case of function fields. We take a fixed p0 < S such that the cardinality
|k(p0)| is minimal among the prime not in S . Let p0 be the charachteristic of k(p0). By
taking the bound in [1, Theorem 4.7] we have that p0 < 12

�

|S | log |S | + |S | log(12/e)
�

<
12|S | log(5|S |), because S contains at most |S | � 1 non archimedean valuations. Then

(18) |k(p0)| + 1 
�

12|S | log(5|S |)
�D
.

As in the case of function field, we first assume that P0 is an indi↵erent periodic point with
respect to p0. By applying Theorem 6 and Lemma 4.3, we have

|O�(P)|  |k(p0)| +
�

12(|S | + 1) log(5(|S | + 1))
�4D 

�

12(|S | + 2) log(5(|S | + 1))
�4D
.
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Assume that P0 is attractive, with respect to the prime p0. The proof uses the same ar-
guments as in the case of function fields. But here it is enough to take a = 2 and apply
Theorem 4 with � =

�

p

R⇤S
�2 for the equation (17). Since � has rank 2|S | � 2, then the

units u j assume at most 216|S |�8 values. Therefore m  216|S |�8+3 and by applying Theorem
6 we obtain |O�(P)| 

�

216|S |�8 + 3
� �

12|S | log(5|S |)
�D. ⇤

4.1. Proof of Corollary 1.1. Let C be an upperbound for the minimal periodicity of a
point in P1(K) for an endomorphism � defined over K of degree d � 2. More gener-
ally, let B be an upper bound for the cardinality of a finite orbit in P1(K) for �. One can
prove a bound b(B,C, d), that depends only on B,C and d, for the cardinality of the set
PrePer(�,K). For example, take P the set of all primes in Z and

n =
Q

p2P pmp(C)

where mp(C) = max{ordp(z) | z 2 N, z  C}. Each periodic point is either a solution of
�n(P)�P = 0 or the point at infinity. Then � has at most dn+1 finite orbits in P1(K) (this is
a very rude upperbound). Thus a bound for the cardinality of PrePer(�,K) is dB · (dn + 1).

4.2. Proof of Corollary 1.2. Since S contains only the archimedean place, then R⇤S =
{1,�1}. Let P be a periodic point for � of minimal period n. As usual we may assume that
P = [0 : 1]. Let p be a prime dividing n. Then n = pem, for some positive integers e and
m, where m is coprime with p. Thus, the iterate �m has the following cycle of length pe

(19) [0 : 1] 7! P1 7! ... 7! Ppe�1 7! [0 : 1].

We may assume that the point Pi = [xi : yi] is written in integral coprime coordinates for
each index i. By Proposition 2.3, for each 2  i  p � 1, there exists ui 2 R⇤S such that
[xi : yi] = [x1 : y1 + ui]. If p < {2, 3}, then the beginning of the cycle (19) is

[0 : 1] 7! [x1 : y1] 7! [x1 : y1 + u2] 7! [x1 : y1 + u3] 7! [x1 : y1 + u4] 7! ...
for some u2, u3, u4 2 R⇤S . Since R⇤S = {1,�1}, we have |{P2, P3, P4}|  2. Then n = 2↵3� for
some integers ↵ and �. Up to taking a suitable iterate of the map �, we may treat separately
the cases when n = 2↵ and when n = 3�. Assume that n = 2↵. We are going to prove that
↵  1. Suppose that ↵ � 2. By considering the p–adic distances �p(P1, Pi) with 2  i  4,
by Proposition 2.3, we get that the beginning of the cycle is

[0 : 1] 7! [x1 : y1] 7! [A1x1 : A1y1 + u2] 7! [x1 : y1 + A1u3] 7! . . .
where A1 2 RS , u2, u3 2 R⇤S and everything is written in coprime integral coordinates.

Again by Proposition 2.3 we have �p(P2, P3) = �p(P0, P1) for every prime p; then there
exists an S –unit u2,3 such that A2

1u3 = u2+u2,3. Since R⇤S = {1,�1}, we have A2
1 2 {0, 2,�2},

then A1 = 0, that contradicts ↵ � 2. Then ↵  1.
Assume that n = 3�. We are going to prove that �  1. Assume that � � 2. As before, by

the divisibility properties listed in Proposition 2.3 and by considering the p–adic distances
�p(P1, Pi) with 2  i  4, we have that the beginning of the cycle is

[0 : 1] 7! [x1 : y1] 7! [x1 : y1 + u2] 7! [A1x1 : A1y1 + u3] 7! [x1 : y1 + A1u4] 7! . . .
where A1 2 RS and u2, u3, u4 2 R⇤S and everything is written in coprime integral coordi-
nates. By the second part of Proposition 2.3, we have �p(P4, P3) = �p(P0, P1) for every
prime p. Then there exists an S –unit u3,4 such that A2

1u4 = u3 + u3,4. Since R⇤S = {1,�1},
we have A2

1 2 {0, 2,�2}, that contradicts � � 2; so �  1.
Thus we have proved that n 2 {1, 2, 3, 6}. If n = 6, with few calculations we see that the

cycle has the form
[0 : 1] 7! [x1 : y1] 7! [A2x1 : y2] 7! [A3x1 : y3] 7! [A2x1 : y4] 7! [x1 : y5] 7! [0 : 1]
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where A2, A3 2 RS and everything is written in coprime integral coordinates. We may
apply Proposition 2.3. Then, by considering the p–adic distances �p(P1, Pi) for all indexes
2  i  5 for every prime p, we get that there exists an S –units ui such that

(20) y2 = A2y1 + u2; y3 = A3y1 + A2u3; y4 = A2y1 + A3u4; y5 = y1 + A2u5.

Furthermore �p(P2, P4) = �p(P0, P2) for every prime p. Thus there exists u2,4 2 R⇤S such
that y4 = y2 + u2,4 and by (20) one sees that A2y1 + A3u4 = A2y1 + u2 + u2,4. Since R⇤S =
{1,�1}, then the equality A3u4 = u2+u2,4 implies A3 2 {2,�2}. By �p(P2, P5) = �p(P0, P3),
we have that there exists u2,5 2 R⇤S such that A2y5 = y2 + A3u2,5. By substituting in the
last equality the expressions of y2 and y5 appearing in (20), we have A2

2u5 = u2 + A3u2,5.
Since A2

2 is a square and A3 2 {�2, 2}, then the only possibility is A2
2 = 1. Without loss of

generality we may assume A2 = 1. In particular, we have y3 = A3y1+u3 and y4 = y1+A3u4.
By considering �p(P3, P4) = �p(P0, P1), we obtain that there exists u3,4 2 R⇤S such that
A2

3u4 = u3 + u3,4. As above we have a contradiction with n = 6, so we conclude that n  3.
Suppose now that P 2 P1(Q) is a preperiodic point for �. Let k be the cardinality of

the cycle in the orbit of P, so k  3. At first we assume that the orbit of P contains an
indi↵erent periodic point P0 with respect the prime 2. By Lemma 4.3 we have that the
strictly preperiodic points in the orbit of P are at most 2. Hence |O�(P)|  5. Assume now
that the orbit of P contains only attractive periodic points. Let m be the minimum integer
such that �m·k(P) is a fixed point for �k and denote it with P0. Without loss of generality,
we can assume P0 = [0 : 1]. Furthermore, we may assume that the orbit is as in (12), with
P� j = [x j : y j], written in coprime integral coordinates, for all integer j with m > j > 0.
By using the same arguments as in the proof of Theorem 1, we see that also in this case
the identities as in (16) hold. Then, for each j with m > j > 0, there exists an integer T1, j
such that x1 = T1, j x j and (16) holds. We have P� j = [x j : y j] = [x1 : y1 + u j], for a suitable
S –unit u j. Since |R⇤S | = 2, we conclude m  4. Thus, there are at most 4 preperiodic points
in the orbit of P for �k. Since k  3, we have |O�(P)|  3 · 4 = 12.
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