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Abstract

Let K be a number field and v a non archimedean valuation on
K. We say that an endomorphism � : P1 ! P1 has good reduction
at v if there exists a model  for � such that deg v, the degree of
the reduction of  modulo v, equals deg and  v is separable. We
prove a criterion for good reduction that is the natural generalization
of a result due to Zannier in [Z3]. Our result is in connection with
other two notions of good reduction, the simple and the critically
good reduction. The last part of our article is dedicated to prove
a characterization of the maps whose iterates, in a certain sense,
preserve the critically good reduction.

1 Introduction

LetK be a number field and v a non archimedean valuation onK. Denote by

K0 the residue field at v and p its characteristic. Any rational map � : P1 !
P1 defined over K can be written with algebraic integral coe�cients in K

whose reduction modulo v defines a reduced map �v : P1 ! P1, thus with

coe�cients in K0. We say that two endomorphisms �, : P1 ! P1 over K

are equivalent if there exists an automorphism A 2 PGL2(K) such that

� =  � A. We shall take in consideration the following definition of good

reduction for endomorphism of P1:

Definition 1.1. We say that an endomorphism � : P1 ! P1 defined over K

has good reduction at v if there exists a map  , equivalent to �, such that
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2 J.K. Canci

the reduction  v satisfies deg = deg v and  v /2 K0(xp). We say that

a map � defined over K has potential good reduction at v, if � has good

reduction over a finite extension of K.

The condition  v /2 K0(xp) is equivalent to say that  v is separable. As

usual, for any field F , let us denote by F its algebraic closure. We shall

denote by R� the set in P1(K) of ramification points of a map �. Suppose

that v is extended in some way to the whole K. With abuse of notation,

we shall denote with v also the extended valuation. Let (�(R�))v be the

subset of P1(K0) obtained from �(R�) by reduction of its points modulo v.

In the present article, it will be crucial the following condition

(1.1) #�(R�) = #(�(R�))v,

which is equivalent to say that for any pair of distinct points P,Q 2 �(R�)

their reduction modulo v remain distinct. As already remarked in [SzT], the

condition (1.1) does not depend on the particular choice of the extension of

v toK. Indeed for any finite extension of F ofK the Galois group Gal(F/K)

acts transitively on the valuations over F that extend the valuation v over

K.

Recall that giving an endomorphism of P1(K) is the same of giving an

element of K(x) (i.e. rational functions).

An aim of this article is to give a proof of the following result.

Theorem 1.2. Let K, v, K0 and p be as above. Let � be a rational function

in K(x) of degree d � 2. Suppose that condition (1.1) holds and � does

not have potential good reduction at v. Then the characteristic p divides

the order of the monodromy group and some nonzero integers of the form�P
P2A e�(P )�PP2B e�(P )

�
, where A ⇢ ��1(�) and B ⇢ ��1(µ), for

each pair of two di↵erent branch values �, µ 2 �(R�).

The statement of the above theorem is a generalization of [Z3, Theorem 1]

where Zannier considered some endomorphisms � : P1 ! P1, with � = F/G

where F,G 2 K[x] and deg(F �G) is as small as possible, as predicted by

Mason’s abc inequality. Those above covers are unramified outside {0, 1,1}
(this remark is contained in [Z1]) and as showed in [Z2] the ramification over

1 is all concentrated at the point at infinity. An important tool to treat these

type of problems is the Riemann’s Existence Theorem. It can be used in

the more general setting of coverings between general curves, where one

establishes a connection between the topological data of a covering and its

field of definition. For example see in [Schn] the article by Birch where he
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gave an introduction in this topic and some references to earlier works due

to Groethendieck and Fulton and later by Beckmann. The methods used by

Fulton in [Fu] and by Beckmann in [Bk] concern covers of general curves,

but in our situation apply for primes that do not divide the order of the

monodromy group. The Zannier’s method, that we are going to generalize,

uses completely new arguments and provides new su�cient conditions to

have good reduction. The above cited results are not only for the case when

K is a number field. Also our arguments work in a more general setting,

where essentially K is a generic field equipped with a discrete valuation v

that could be extended to K and condition (1.1) does not depend on the

chosen extension of v. We have chosen to state our results in the case when

K is a number field, because it is the most important case for applications

and to put our arguments in the setting used in some previous works, e.g.

[CPT] and [SzT].

The proof of Theorem 1.2 is divided in two parts. We shall take a

map � defined over K satisfying condition (1.1). We shall assume that

the characteristic p does not divide the order of monodromy group or there

exist two di↵erent branch values �, µ 2 �(R�) such that p does not di-

vide each nonzero integers of the form
�P

P2A e�(P )�PP2B e�(P )
�
where

A ⇢ ��1(�), B ⇢ ��1(µ). We shall prove that � has potential good reduc-

tion at v. The first part of our proof contains a generalization of Zannier’s

techniques used in [Z3] in order to see that for each rational function �

described as above, there exists a map  equivalent to �, such that the

points in the ramification fibers of  are v–integers and the reduction  v is

separable. The second part is essentially the new part of our proof. In this

part we use the characterization of the Gauss norm on K(x), with respect v

and x. This characterization a�rms that the (Gauss) valuation associated

to the Gauss norm is the unique one that extends v to K(x) such that the

reduction x̄, of x modulo the Gauss valuation, is transcendental over K0.

More concretely, the residue field ofK(x), with respect the Gauss valuation,

is K0(x̄) that is the field of fraction of the polynomials in K0[x̄], where x̄

is the representative of x and is transcendental over K0. Furthermore, it

is crucial the characterization of the good reduction for a map � defined

over K: � has good reduction at v if and only if the Gauss norm on K(�)

with respect v and � extends in a unique way to K(x) and the extension

given by the reduced fields is separable; see [Z3, p.99] for a proof of the

equivalence. This characterization combined with some arguments in which

we apply the Riemann Hurwitz Formula will produce the second part of
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the proof of Theorem 1.2. The hypothesis of Theorem 1.2 about the divis-

ibility concerning the characteristic p of the residue field is essentially the

same as in Zannier’s hypothesis. Indeed in [Z3, Theorem 1] the divisibility

condition is given with the unique pair {�, µ} = {0,1}. In the setting of

Theorem1.2, since the condition (1.1) holds for �, for two branch values

�, µ, we can assume that {�, µ} = {0,1}. Indeed it is enough to replace �

with A � �, where A is associated to a v–invertible matrix (a matrix with

v–integral coe�cients whose determinant is a v–unit), that sends � and µ

to 0 and 1, respectively. Note that � has good reduction at v if and only

if A � � has good reduction at v.

In the literature there are several notions of good reduction for endomor-

phisms of P1. In this article we shall take in consideration two other ones in

addition to the above Definition 1.1:

Definition 1.3 (Simple good reduction). We say that an endomorphism �

of P1, defined over K, has simple good reduction at v if the reduced map �v

has the same degree of �.

The definition of simple good reduction is almost the same as the one in

Definition 1.1 but in the simple good reduction we do not allow to change

the model of �. Note that in Definition 1.3 we are not asking that �v has

to be separable. The notion of simple good reduction was introduced by

Morton and Silverman in [MS].

Definition 1.4 (Critically good reduction). We say that an endomorphism

� of P1, defined over K, has critically good reduction at v if condition (1.1)

is verified and the same holds for the set R� of ramification points; that

is #R� = #(R�)v, where as above the set (R�)v is the subset of P1(K0)

obtained from R� by reduction of its points modulo v.

According to the autor’s knowledge this last notion of good reduction

was introduced by Szpiro and Tucker in [SzT].

In [CPT] the authors investigate the connections between the simple and

the critically good reduction. They proved that given a rational function �

defined over K such that condition (1.1) holds and �v is separable, then �

has critically good reduction at v if and only if � has simple good reduction

at v. Theorem 1.2 provides under condition (1.1) a connection between these

three notions of good reduction.

After the preparation of the article [CPT], in a private communication

Szpiro asked for which rational maps the critically good reduction is pre-
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served under iteration. Therefore we studied the maps having the property

given in the following definition:

Definition 1.5. We say that an endomorphism � of the projective line,

defined over K, is finitely critical if there exists a finite set S of valuations

of K, containing all the archimedean ones, such that all the iterates �n,

with n � 1, have critically good reduction at each valuation outside S.

Note that the condition to be finitely critical is stable under conjuga-

tion by elements of PGL2(K). Indeed let � be a finitely critical map with

associated finite set S of non archimedean valuations of critically bad re-

duction of all its iterates and the archimedean ones. For each f 2 PGL2(K)

let �f = f�1 � � � f . Let T be the set of valuations of K that are of

simple bad reduction for f ; then each iterate of �f (which is of the form

(�f )n = f�1 � �n � f) has critically good reduction at each prime outside

S [T . This elementary observation is quite important, because we are con-

sidering a map with all its iterates. Hence we are, in a sense, studying the

dynamic associated to a map. Therefore it is important to know that the

notion of finitely critical map is a good dynamical condition; indeed the

conjugation by elements of PGL2(K) preserves the dynamics.

In [CPT] we presented the map �(x) = x2 � x as an example of non

finitely critical map. In fact 1/2 is a critical point of � and 1/2 is not

a preperiodic point for �, therefore its orbit O�(1/2) is an infinite set of

rational points. Thus, the set of primes of bad reduction for some iterate of

� can not be finite. This example and studies about some particular families

of rational maps (which we will present in Section 6 as examples) suggested

to us that the condition

(1.2) R� ⇢ PrePer(�, K)

is a necessary and su�cient condition for an endomorphism of P1 to be

finitely critical, where PrePer(�, K) denotes the set of preperiodic points

for � defined over the algebraic closure of K. Our second result is the

following one:

Theorem 1.6. Let � be an endomorphism of P1 of degree � 2 defined over

a number field K. The map � is finitely critical if and only if the condition

(1.2) holds.

In literature there exists already a name for the maps satisfying condition

(1.2) that is post–critically finite maps. We decide to conserve the name
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finitely critical because a priori the set of post–critically finite maps contains

the set of finitely critical maps, but a priori is not clear that also the other

inclusion holds. Our Theorem 1.6 a�rms that the two sets are equal. The

request on the degree to be � 2 is due only to have critical points, otherwise

the notion of finitely critical map has no meaning. The proof of Theorem

1.6, that we will presente here, is an application of [CPT, Theorem 1.6].

The present article is organized in several sections: In Section 2 we set

the notation that we shall use throughout the paper; Section 3 is dedicated

to Gauss norm and we shall present some remarks and results that we shall

use in the proof of Theorem 1.2; Section 4 contains the generalization of

Zannier’s techniques as described before. In the last two sections we give

the proofs of Theorem 1.2 and Theorem 1.6 respectively.
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2 Notation

Throughout all the paper K will be a number field and v a non archimedean

valuation on K. We shall denote by O its ring of v-integers, that is O =

{P 2 K | v(P ) � 0} and O⇤ = {P 2 K | v(P ) = 0} its group of v–units.

Sometime we shall need to extend the valuation v to some finite extension

of K. Therefore we assume that v is extended to the whole K. Every notion

of good reduction considered in this article does not depend on the chosen

extension of v.

Any endomorphism � of P1 defined over K admits a v–normalized form,

i.e. an expression of the form �(x) = F (x)/G(x) where F,G 2 O[x] are

polynomials with no common factors and at least one coe�cient of F and G

is a v–unit. Such a v–normalized form always exists because O is a principal
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ideal domain. If � is written in v–normalized form, it is well defined its

reduction modulo v, that we denote by �v, obtained by reducing modulo

v of the coe�cients of F and G. The expression �v for a endomorphisms

� of P1 will always denote its reduction modulo v, whereas we will use the

overline to denote the reduction modulo v for polynomials and for elements

in K. The condition for a map � to have simple good reduction at v is

equivalent to saying that the homogeneous resultant of F,G is a v–unit.

We use the adjective homogeneous because we consider the resultant of the

homogeneous polynomials associated to F and G. Indeed otherwise, if we

consider the resultant of the (non homogeneous) polynomials F and G we

can have some problems when the degrees of the polynomials F and G are

di↵erent and the leading coe�cient of the maximal degree polynomial is not

v–invertible. For example, with �(x) = (2x2+1)/x where v is the valuation

on Q associated to 2, we have that the homogeneous resultant is 2 and the

resultant of 2x2+1 and x is 1. See [La] for more details about the resultant

of two polynomials.

Recall that the Gauss valuation on the ring O[x] (with respect to x and

v) is the function O[x] ! Z

anxn + an�1x
n�1 + . . .+ a0 7! min{v(an), v(an�1), . . . , v(a0)}.

We extend in the usual way the Gauss valuation on the field K(x). The

Gauss valuation on K(x) is discrete and the residue field is K0(x̄), where

as explained in the introduction x̄ denotes the reduction modulo v of x.

3 Covers associated to extensions of Gauss
norm

In the proof of Theorem 1.2, it will be crucial the characterization of good

reduction given in the introduction. We restate it in the following remark

in order to have a precise reference in what follows:

Remark 3.1. � has good reduction at v if and only if the Gauss valuation

onK(�) (with respect � and the valuation v) admits precisely one extension

w on K(x), unramified and the extension of residue fields is separable and

regular over K0.

Zannier gave the proof of the statement in Remark 3.1 in [Z3, Page 99].

In his proof we see that in the above statement the valuation w is the Gauss
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valuation on K(x), with respect a suitable transcendental element y 2 K(x)

such that K(x) = K(y).

The next two results about extensions of norms will be quite important

in our proof of Theorem 1.2.

THEOREM 9.14 in [J]. Let | · | be an absolute value on the field F . Let F̂

be the corresponding completion of F , and let E = F (u), where u is algebraic

over F with minimum polynomial f(T ) over F . Let f1(T ), . . . , fh(T ) be the

distinct monic irreducible factors of f(T ) in F̂ [T ]. Then there are exactly

h extensions of | · | to absolute values on E. The corresponding completions

are isomorphic to the fields F̂ [T ]/(fj(T )), 1  j  h, and the local degree

are ni = deg fi(T ).

THEOREM 9.15. in [J]. Let F be a field with a non-archimedean absolute

value | · |, E an extension field of F such that [E : F ] = n < 1, and let

| · |1, . . . , | · |h be the extensions of | · | to absolute values on E. Let ei and fi be

the ramification index and residue degree of E/F relative to | · |i respectively.
Then

Ph
i=1 eifi  n and

Ph
i=1 eifi = n if |·| is discrete and E/F is separable.

Here we shall use the previous two results with F = K(�(x)) with

�(x) 2 K(x) and u = x. If we denote �(x) = F (x)/G(x) with F (x), G(x) 2
K[x], then x is a zero of the irreducible polynomial f(T ) 2 K(�) defined by

f(T ) = F (T )� �G(T ). Therefore n is equal to the degree of �. The norm

| · | over F will be the Gauss norm (with respect � and v).

We shall use the following lemma which is a sort of generalization of

Lemma 3.1 in [Z3].

Lemma 3.2. Let �(x) 2 K(x) be a non constant rational function. Suppose

that w1, . . . , wh are all the extensions of v to K(x) such that they induce

the Gauss valuation on K(�) with respect to �. Then there exists a finite

extension L of K, such that for each index i 2 {1, . . . h} the valuation wi

extends to a valuation over L(x), that we still denote by wi, and there is

an yi 2 L(x) such that L(x) = L(yi) and wi is the Gauss valuation with

respect yi and v. Furthermore the yi’s can be chosen such that there exist

an element a 2 L and an integer m � 0 such that for each i 2 {1, . . . , h},
there exist an integer mi 2 N and an integer ci 2 O such that either ci = 0

or v(ci) < mi and

(3.1) amx = amiyi + ci.

Proof. By [Z3, Lemma 3.1], for each index i 2 {1, . . . , h} there exist a finite

extension Ki of K, an extension of wi to Ki(x) and an element ŷi 2 Ki(x)
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such that Ki(ŷi) = Ki(x) and wi is the Gauss norm on Ki(ŷi) with respect

to ŷi and v. Choose as L a finite extension of K containing each field Ki

for all i 2 {1, . . . , h}. For each index i we take the extension of wi over

L(x), that with abuse of notation we still denote by wi. Therefore, for all

i 2 {1, . . . , h}, wi is the Gauss valuation of L(x) with respect ŷi and v. Let

a 2 L be a uniformizer of v over L. Let m = max{�mini2{1,...,h} wi(x), 0}.
By using the same Zannier’s argument in [Z3, Remark 3.5] we can choose

the ŷi’s such that

(3.2) amx = aiŷi + bi,

with ai, bi 2 L. But the fact that wi(amx) � 0 (by our choice of m) implies

that ai, bi are v–integers, since wi is the Gauss valuation with respect the

element ŷi. For each i 2 {1, . . . , h}, there exists mi � 0 such that v(ai) =

v(a)mi . Hence there exists an ui 2 O⇤ such that ai = uiami . Suppose v(bi) �
mi, then take yi such that ŷi = u�1

i yi � u�1a�mibi. Hence amx = amiyi. If

v(bi) < mi take just ŷi = u�1
i yi and so we have that the ci in the statement

of the lemma is equal to bi.

Remark 3.3. According with the notation used in Lemma 3.2 we have

that wi is the Gauss norm on L(yi) with respect yi. We consider the field

extension L(yi)/L(�i(yi)) where �i(yi) = �(x) = �(amiyi + ci), so �i is

again the morphisms � but viewed with respect the variable yi. Hence, if

� is written as �(x) = F (x)/G(x) with F (x), G(x) 2 O[x] coprime poly-

nomials, we have that �i(yi) = F (amiyi + ci)/G(amiyi + ci). Let �i,v(yi) be

the reduction modulo v of �i (so we are taking the reduction modulo v of

the v–normalized form of �i with respect yi). Let us denote L0 the reduced

field of L with respect the valuation v. For each i 2 {1, . . . , h}, the reduced
fields of L(yi) and L(�(yi)) with respect wi are L0(yi) and L0(�i,v(yi) re-

spectively. Therefore the extension of reduced fields are L0(yi)/L0(�i,v(yi))

of degree [L0(yi) : L0(�i,v(yi))], which is equal to the degree of the reduced

map �i,v(yi). In order to apply Theorem 9.14 and Theorem 9.15 in [J], we

consider the same setting give before Lemma 3.2. Let f1, . . . , fh be the irre-

ducible factors of f(T ) = F (T )��G(T ) in [L(�)[T ], where [L(�) denotes the
completion of L(�) with respect the Gauss norm. Let us denote [L(x)i the
completion of L(x) with respect the Gauss norm wi, for each i 2 {1, . . . , h}.
Theorem 9.14 a�rms that [L(x)i is isomorphic to [L(�)[T ]/fi(T ) and the

local degree is the degree of fi that we denote by ni. Note that we are in

the case where the ramification index is one. Recall that the residue degree

and the ramification index do not change passing to the completion. Thus
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we may compute the residue degree by considering the reduced fields. Since

wi is the Gauss valuation with respect yi we have to write the elements in

L(x) as rational function in the variable yi, for example as did before by

rewriting �(x) as �i(yi). The residue field of [L(x)i is L0(yi) and the residue

filed of [L(�) is L0(�i,v). Therefore the residue degree is equal to deg(�i,v).

By Proposition 9.3 in [J] we have ni = deg�i,v.

4 Special integral form for a morphism

Let � be an endomorphism of P1 of degree n � 2 defined over K verifying

condition 1.1. We assume that p does not divide the order of the mondromy

group or that there exist two distinct ramification values � and µ such that p

does not divide any nonzero integer of the form
�P

P2A e�(P )�PP2B e�(P )
�
,

where A ⇢ ��1(�), B ⇢ ��1(µ). Let n be the degree of �. Our aim is to

apply the Riemann-Hurwitz formula to the map � and the reduced maps

�i,v, defined as in Remark 3.3. We will show that it is possible to choose a

particular model for �(x) = F (x)/G(x) such that the point at infinity is a

ramification point in the fiber of the branch value 1, each other point in a

ramification fiber is a v–integers and the reduced modulo v map �v = F/G

is not in K0(xp), i.e. �v is separable. Note that the existence of a model

for � whose points in the ramification fibers are all v–integers is trivial; it

is enough to take the polynomials ↵nF (↵�1x) and ↵nG(↵�1x) instead of

F (x) and G(x) for an ↵ 2 K such that v(↵) is big enough. The di�cult

part is to prove the existence of such an ↵ for which the condition on sep-

arability holds. The fact that the points in the ramification fibers of � are

v–integers will imply that the polynomials that we will take in considera-

tion are monic with v–integral coe�cients that is important because we will

work with their reduction modulo v. But there is also another reason: The

aim is to prove that the reduction modulo v of the map �, written as in the

above form, has simple good reduction. Hence by [CPT, Theorem 1.6] we

know that it has critically good reduction at v. Therefore, by [CPT, Lemma

2.6], the condition �v separable will imply that each point in the ramifica-

tion fibers of � is a v–integer, because the point at infinity is a ramification

point; furthermore the separability will imply also that there is only tame

ramification. Note that an argument as the one contained in the proof of

[Z3, Lemma 3.6] proves that p does not divide any ni, thus the reduced field

extension associated to any valuation wi is separable.

This section contains the adaptations to our setting of Zannier’s ideas
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contained in the proof in section 5 of [Z3]. For the reader’s convenience we

present in a short way those ideas but we omit some details.

We consider K enlarged so that it contains all points of the ramification

fibers of �. Furthermore, we can assume that K is so enlarged such that it

has the same properties of the field L described in the statement of Lemma

3.2. As already remarked by Zannier in [Z3, Section 2], in testing good

reduction we can replace K with its completion. Let us denote by PGL2(O)

the subgroup of PGL2(K) of the automorphisms associated to a matrix

in GL2(O), that is the group of invertible matrices with coe�cients in O,

whose inverse still has coe�cients inO. Recall that the action of PGL2(O) is

transitive on the set of triple of points in P1 that remain (pairwise) distinct

after reduction modulo v. Therefore, by condition (1.1), we can suppose that

� and µ in the hypothesis of Theorem 1.2 are equal to 0 and1, respectively.

Indeed it is enough to consider A � � for a suitable A 2 PGL2(O). If R�

has only two elements, then Theorem 1.2 is trivially true, because � would

be equivalent to the map xn that has bad reduction if and only if p divides

n. Therefore we may assume that the branch locus �(R�) contains at least

the three points {0,1, 1}. Note that by our assumption on �, any other

branch point is a v–unit. This fact will be useful in the proof of a lemma

that is the generalization of [Z3, Lemma 5.2]. Furthermore, without loss of

generality, we can assume that 1 7! 1 and 1 is a ramification point (it is

su�cient to take an element A 2 PGL2(O) that sends 1 to a ramification

point in the fiber of 1 and consider the map � � A). In this way we have

that deg(F ) = deg(G) and the leading coe�cients of F and G are equal.

We are going to apply [Z3, Proposition 4.1] that is an improvement of a

result by Dwork and Robba about p–adic analytic continuations of Puiseux

series (see [DR]). As remarked before the field extensions associated to the

valuations wi’s are separable. This is important for the application of [Z3,

Proposition 4.1].

Up to a translation of x we may assume that one of the root of F and

G is 0. Let ↵ 2 K be such that

v(↵) = �min
�
v(�) | � 2 F�1(0) [G�1(0)

 
,

where we assume v(1) = +1. By replacing the polynomials F (x), G(x)

with ↵nF (x/↵),↵nG(x/↵) respectively, we may assume that the roots of

F,G are v–integers and at least one is a v–unit. In particular F,G are

monic in O[x]. Since 0 2 F�1(0) [ G�1(0), we have that not all roots of F

and G reduces modulo v to the same point in K0. This assumption will be

crucial in the last part of this section.
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We will see that this new model of � has the property that the fiber of a

branch value contains only points in O except the fiber over 1 that contains

1 and v–integers. In order to prove this, for an arbitrary branch value �,

di↵erent from 0 and 1, we consider the polynomial

(4.1) F (t)� �G(t) = c�H�(t),

where c� 2 O, H� 2 O[x] and at least one coe�cient of H� is a v–unit. As

in [Z3] we are going to apply [Z3, Proposition 4.1] to the polynomial

f�(X,�) := �F (X)� c�H�(X).

The assumptions concerning the field extensions in [Z3, Proposition 4.1]

are verified also for the polynomial f�(X,�), because f�(X,�) = (� �
1)F (X)+�G(X). Therefore, we are considering the map �/(1��) instead
of �. That is the same of taking A � �, with A 2 PGL2(K) given by the

matrix ✓
0 �
�1 1

◆
,

which has determinant equal to �, that is a v–unit.

In order to apply [Z3, Proposition 4.1] it remains to prove that f�(X,�)

does not have multiple roots in X at z0, for each non zero element z0 with

v(z0) < 1.

Lemma 4.1. Let z0 in K⇤ such that the polynomial f�(X, z0) in the variable

X has a multiple root; then v(z0) = 1.

Proof. Let x0 be a multiple root of f�(X, z0) = z0F (X)�H�(X). Since F (X)

and H�(X) are coprime, we have that F (x0) 6= 0. Then z0 = H�(x0)/F (x0)

and z0 is a branch point of the map  �(x) = �/(1 � �(x)). Therefore we

have that

z0 2  �(R �
) =

⇢
�

1� µ
| µ 2 �(R�)

�
.

Recall that 0 and 1 are branch values of � and that two di↵erent branch

values have di↵erent reduction modulo v. Then 1 � µ is a v–unit for each

µ 2 �(R�), which implies that �
1�µ

is a v–unit. So v(z0) = 1.

We consider the above polynomial with � = 1 and we apply below a

slightly modification of the Zannier techniques in order to prove that v(c1) =

0.

We consider the Puiseux expansions ✓(z) of the algebraic function solu-

tions of f1(✓, z) around z = 0. The point 1 is in the fiber of 1; denoting by
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e the ramification degree of 1 we have the same first family as defined in

[Z3, p. 107]:

✓i(z) = a�1⇣
i
ez

�1/e + a0 + a1⇣
�i
e z1/e + . . . , i = 0, 1, . . . , e� 1

where ⇣e is a primitive e–th root of 1 and where ae�1 is the leading coe�cient

of H1.

Furthermore, for any other root b of H1 with ramification degree eb, we

have the family of solutions

✓b,i(z) = b+ b1⇣ebz
1/eb + . . . , i = 0, 1, . . . , eb � 1

where ⇣eb is a primitive eb–th root of the unity. Therefore all coe�cients

in the series ✓i’s and ✓b,i are contained in a finite extension L of K. With

the same arguments used in [Z3, p. 108], that use [Z3, Prop. 4.1] and [DGS,

Prop .1.1, p.115], one proves that the above series ✓i and ✓b,i have v–integral

coe�cients. In particular this proves that the roots of H are v–integers.

We consider the factorization in L[[z]] of the polynomial zmF (X)�H(X)

, where m is the lowest common multiple of e and the eb’s, exactly as done

in [Z3, from p. 108] with e instead of m

(4.2)

zmF (X)�H(X) =
eY

i=1

(zm/eX � zm/e✓i(z
m))

Y

b2H�1(0)

 
ebY

i=1

(X � ✓i,b(z
m)

!
.

The proof goes on exactly as in [Z3] where if we assume that v(c1) > 0

we obtain that all the roots of F,G,H must be congruent to a given one

of them, that contradicts our assumption on F and G. Therefore we have

v(c1) = 0 and as explained in [Z3, p. 109], we deduce that the reductions F

and G are linearly independent over K(xp), thus �v = F/G is separable.

With the same above arguments given before, by considering a generic

ramification value �, we prove that each point in the fiber of � is v–integral.

5 Proof of Theorem 1.2

Let � be an endomorphism of P1 of degree n � 2 defined overK verifying the

properties as described in Section 4. Therefore we are assuming that p does

not divide the order of the mondromy group or does not divide any nonzero

integer of the form
�P

P2A e�(P )�PP2B e�(P )
�
, where A ⇢ ��1(0) and

B ⇢ ��1(1). As remarked in the previous section, this assumption on p

implies that each residue field extension K0(yi)/K(�i,v(yi)) is separable.



14 J.K. Canci

This will be useful because we are going to apply the Riemann–Hurwitz

formula to each cover associated to the extension K0(yi)/K(�i,v(yi)).

Let the field L and the extensions wi as defined in Lemma 3.2. As did

in Section 4, we assume that K is so enlarged so that K = L.

By Lemma 3.2 we have that the valuation wi’s over K(x) are unramified

as extensions of the Gauss valuation over K(�). Indeed, wi is the Gauss

norm on K(yi) with respect yi. Moreover the residue fields are regular over

K0. Therefore in order to prove that � has good reduction at v it is enough

to prove that h = 1. Indeed by the arguments in Section 4 we have that the

extension of the residue fields is separable (see the characterization of good

reduction given in Remark 3.1).

As already seen in Remark 3.3, for each i 2 {1, . . . , h}, the residue degree
associated to wi is the degree of the reduced map �i,v and it is equal to the

local degree ni. Since the extension are unramified, Theorem 9.15 in [J]

implies

(5.1)
hX

i=1

ni = n.

The next statement represents a technical lemma, whose content is not

so deep but it is useful to fix some notations that we will use in the rest of

the proof.

Lemma 5.1. We use the same notation as in Lemma 3.2. Let i, j 2 {1, . . . , h}.
Let a,m,mi,mj, ci, cj be as in Lemma 3.2, that is amx = amiyi + ci =

amjyj + cj. Suppose mi  mj. Then the following are equivalent:

i) there exists ↵ 2 P1(K) such that v(ci � ↵) � mi and v(cj � ↵) � mj;

ii) there exist an integer ni,j > 0 and an element si,j 2 O such that

yi = ani,jyj + si,j;

iii) there exists � 2 ��1({0,1}) such that v(ci � am�) � mi and v(cj �
am�) � mj;

Furthermore, if mi = mj and i), ii) and iii) hold, then i = j.

Proof. At first we prove i) ) ii). The condition i) implies that v(cj � ci) �
mi. We have

yi = amj�miyj +
cj � ci
ami

.

Therefore it is su�cient to take ni,j = mj �mi and si,j = (cj � ci)/ami .
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Now we prove that ii) ) iii). Because of our assumption on �, we have

that the map � has the shape

�(x) =

Qn
l=1(x� ↵l)Qn
k=1(x� �k)

where ↵l, �k 2 O for any indexes l and k (where in the numerator or in the

denominator we could have some repeated factors).

The reduction of the v–normal form with respect the variable yi of the

map

�(x) = �(amjyj + cj) =

Qn
l=1(a

mjyj + cj � am↵l)Qn
k=1(a

mjyj + cj � am�k)

must be transcendental over K0, because wj is an extension of the Gauss

norm of K(�). Note that if v(cj �am↵) = r < mj, then amjyj + cj �am↵ =

ar(amj�ryj + (cj � am↵)a�r), where (amj�ryj + (cj � am↵)a�r) 2 O[yj] and

its reduction is in K0. Then there exists � 2 {↵1, . . . ,↵n, �1, . . . , �n} such

that v(cj � am�) � mj. From condition ii) we deduce cj = amisi,j + ci.

Therefore the above argument prove that v(amisi,j+ci�am�) � mj implying

v(ci � am�) � mi, because of our assumption mi  mj.

The implication iii) ) i) is completely trivial.

Now suppose thatmi = mj. If ii) holds, then ni,j = 0. Hence yi = yj+si,j
and this is absurd because of the characterization of the Gauss norm, indeed

if yi = yj + si,j, then wi and wj would be two di↵erent extensions of v to

K(yi) whose reduction of yi is transcendent.

Lemma 5.1 allows us to define a partial order  on the set {w1, . . . , wh}.
Let yi, mi and ci be defined as in Lemma 3.2 for all indexes i. For all i, j

we say that wi  wj (or equivalently yi  yj) if mi  mj and condition

i), or the equivalent conditions ii) and iii), of Lemma 5.1 holds. Actually

condition ii) implies easily that  is transitive and the case mi = mj of

Lemma 5.1 assures that  is antisymmetric; the reflexivity is trivially true.

Therefore we can define a directed graph by using the above partial order

in the canonical way. As usual we say that wj is a successor of wi if wi < wj

and there exists no wk with wi < wk < wj. In the graph notation we say

that the ordered pair (wi, wj) is a directed edge or arrow of the graph.

Next lemma a�rms that the above order admits a minimum. In graph

theory notation we say that the graph is an arborescence.

Lemma 5.2. Let � and K be assumed as at the beginning of the present

section. Let w1, . . . , wh be the extensions over K(x) of the Gauss valuation
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over K(�). The order described as above admit a minimum, i.e. there exists

i0 2 {1, . . . , h} such that wi0  wi for all i 2 {1, . . . , h}. Furthermore wi0 is

the Gauss valuation with respect to x and more precisely yi0 = x.

Proof. Let the yi’s, mi’s and the ci’s be as given in Lemma 3.2Let w be the

Gauss valuation on K(x). Since �(x) is written in the integral normal form

as described in Section 4, in particular the fact that the reduction �v is

not in K0, we have that w is an extension of the Gauss valuation on K(�).

Therefore there exists an index k 2 {1, . . . , h} such that w = wk. We are

going to prove that if there are three indexes i1, i2, i3 such that

(5.2) wi1 < wi3 , wi2 < wi3 ,

then we have either wi1  wi2 or wi2  wi1 . We use the same notation as in

Lemma 3.2. By the above definition of ordering, according to Lemma 5.1,

we have that the condition (5.2) implies that mi1 < mi3 , mi2 < mi3 and

there exists �1, �2 2 P1(K) such that

(5.3)

v(ci1 � �1) � mi1 , v(ci3 � �1) � mi3 , v(ci2 � �2) � mi2 , v(ci3 � �2) � mi3 .

Without loss of generality we may assume that mi1  mi2 . Thus we have

to prove that there exists a � 2 P1(K) such that v(ci1 � �) � mi1 and

v(ci2 � �) � mi2 . We claim that �2 = � has the previous property. From

(5.3) we have

(5.4) v(ci1�ci2) = v(ci1��1+�1�ci3+ci3��2+�2�ci2) � v(ci1��1) = mi1

Since v(ci2 � �2) � mi2 , it is enough to prove that v(ci1 � �2) � mi1 . Let us

suppose that v(ci1 � �2) < mi1 , then by (5.4)

mi1  v(ci1 � ci2) = min{v(ci1 � �2), v(�2 � ci2)} = v(ci1 � �2) < mi1

which is an absurd.

Since wk = w is the Gauss valuation with respect x and also with respect

to yk, we have that x = uyk+ t with some suitable v–unit u and a v–integer

t. Indeed, by Lemma 3.2 we have that x = amk

am
yk +

t
am

. Hence if m > mk or

v(t) < m we have that x reduces to the point [1 : 0]; ifmk > m and v(t) � m,

then x reduces to a point inK0. In both cases w is not the Gauss valuation on

K(yk), with respect x. Therefore we have amx = amuyk+amt = amkyk+ ck,

where recall that either ck = 0 or v(ck) < mk. Since yk is a transcendental

element over K, we have that m = mk, u = 1 and ck = amt; but for our

choice of ck we have that ck = 0, i.e. x = yk.
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From our choice of the v–integral form we have that every point in the

ramification fibers are v–integers (see last part in Section 4), in particular

over 0 and 1. Therefore, since ck = 0, we have that v(ck�am�) = v(am�) �
m = mk for each � 2 ��1({0,1}). Since wj is the extension of the Gauss

norm on K(�) for all j 2 {1, . . . , h}, there exists a �j 2 ��1({0,1}) such
that v(cj � am�j) � mj. So we have proven that either wj � wk or wk �
wj for all j 2 {1, . . . , h}. This proves that the graph given by the wi’s is

connected. Therefore, we deduce that there exists i0 2 {1, . . . , h} so that

wi0 is the minimum of the order. Note that if the above order is not a total

one, we see easily that i0 = k. But this holds in general, even if the order

is total, indeed suppose that wi0 < wk. Thus v(ci0) < mi0 < mk. We have

v
⇣

ci0�amk �

a
mi0

⌘
< 0 for each v–integer �. Since every element of ��1({0,1})

is a v–integer, the inequality wi0 < wk would imply that �i0,v 2 K0, that

contradicts the choice of yi0 .

By Lemma 5.2, up to renumbering the indexes, we may assume that w1

is the minimum of the above order, so we have x = y1. Let m be the integer

as in Lemma 3.2, by Lemma 5.1 we can assume that m = m1 = 0.

For any index i 2 {1, 2, . . . , h} let us denote Ui the subgraph of the

vertices wj such that wj � wi. We shall call lenght of Ui the maximal number

l such that there exists a chain wi = wi0 < wi1 < . . . < wil . These objects

are useful in the following application of the Riemann–Hurwitz Formula.

Indeed, we want to evaluate the sum

(5.5)
hX

i=1

X

P2P1

�
ni �#{��1

i,v (P )}� ,

where recall that ni = deg�i,v.

As already remarked, our assumption about the characteristic p implies

that the extensions associated to the reduced maps �i,v are separable. Thus,

the Riemann–Hurwitz formula tells us that
P

P2P1
ni�#{��1

i,v (P )}  2ni�
2. Therefore the sum in (5.5) should be  2n�2h. We are going to evaluate

the sum in (5.5), by evaluating each single #��1
i,v (P ). We shall prove that

the sum in (5.5) is  2n� 2h if and only if h = 1, the map � does not have

wild ramification and each ramification value of �v is the reduction modulo

v of a ramification value of �.

In the next lines we shall define some technical objects useful in the

remaining part of the present proof. For each branch point � (including 1),
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we have

��1
i,v (�) ⇢

(✓
ci � �

ami

◆
| � 2 ��1(�) \ {1}, v(ci � �) � mi

)
[ {1},

where mi and ci are the ones defined in Lemma 3.2. When � 2 {0,1}, the
above inclusion is completely clear because of

(5.6) �i,v(yi) =

Qn
l=1(a

miyi + ci � ↵l)Qn
k=1(a

miyi + ci � �k)
=

A
Q

k2D(yi + (ci � ↵l)/ami)

B
Q

k2M(yi + (ci � �r)/ami)
,

where D = {l | v(ci � am↵l) � mi}, M = {k | v(ci � am�k) � mi}
and A and B are the products of the reduction of the other factors after

transformation of �i(yi) in a v–normalized form. Note that in the above

fraction, some factors of the numerator and denominator of the non reduced

map can simplify after reduction modulo v. Furthermore1 can be contained

in ��1
i,v (�), e.g. if the degree of the two reduced polynomials of the numerator

and denominator in (5.6) are di↵erent. For � /2 {0,1}, it is enough to

consider some composition on the left for some automorphism in PGL2(O)

that sends � to 0 and repeat the above arguments.

For each index i 2 {1, . . . , h}, we denote by Ri the set

Ri = {� 2 ��1(�(R�)) | � 6= 1, v(ci � �) � mi} [ {1}.

We shall give a technical definition (of counted point) that is useful in

order to count the points in the fibers of the �i,v. More precisely it is useful to

know, in a certain sense, for how many indexes i 2 {1, . . . , h} the reduction

modulo v of an element in a fiber of � of a branch point is counted as a

point in a fiber of the maps �i,v’s.

Let ↵ 2 K0. For each µ 2 �(R�) consider the set

Aµ,↵,i = {� 2 ��1(µ) \Ri | � 6= 1, (ci � �)/ami = ↵}.

For a fixed � 2 �(R�), consider the fiber ��1(�) and choose a labelling of

its elements of the shape {↵�,1, . . . ,↵�,t}. In this way we have fixed an order

on this set, where ↵�,i  ↵�,j if i  j. Moreover for an element � 2 Ri, let

us denote by li(�) the number of indexes k 2 {1, . . . , h} such that wi  wk

and � 2 Rk. With this notation we give the following definition.

Definition 5.3. Let � 2 �(R�) and ↵�,k 2 {↵�,1, . . . ,↵�,t} = ��1(�).

Suppose that ↵�,k 2 Ri and denote by ↵ the reduction modulo v of the

v–integer (ci � ↵�,k)/ami , that is ↵�,k 2 A�,↵,i. We say that ↵�,k is counted

in the fiber ��1
i,v (�) if the following conditions are verified:
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1. #A�,↵,i > #Aµ,↵,i for all µ 2 �(R�) with µ 6= �;

2. li(↵�,k) = min1jt{lj(↵�,j)};
3. k is the minimum index such that the above condition 2. is verified.

Let us point out some remarks about this last definition. We show that

the condition 1. in the above definition is necessary. Indeed, suppose that

there exists a � di↵erent from µ such that #A�,↵,i  #Aµ,↵,i. Up to taking

A � � instead of �, with A a v–invertible automorphism in PGL2(O) that

send � to 0 and µ to infinity, we have

(5.7) �i(yi) =
fi(yi)

Q
P2A�,↵,i

�
yi � ci�P

ami

�

gi(yi)
Q

Q2Aµ,↵,i

�
yi � ci�Q

ami

� ,

where the polynomials fi and gi are not divisible by any linear factors ap-

pearing in the products. Hence in the reduction �i,v the product in the

numerator in (5.7) disappears in the reduction modulo v, because there is

cancellation with the product in the denominator (or a part of it). There-

fore in this sense we can not say that an element in A�,↵,i is counted in the

preimage of � for the reduced map �i,v.

Note that for each ↵ 2 ��1
i,v (�), there exists a unique ↵�,k 2 A�,↵,i counted

in the fiber ��1
i,v (�). Indeed Definition 5.3 defines a correspondence from the

set of the pairs (↵,�i,v) to the set ��1(�(R�)). The condition 2. is given in

order to obtain a correspondence, maybe not injective, but that looks like

a injective correspondence as much as possible. Indeed first of all note that

Rj ⇢ Ri for each index j such that wi < wj. Furthermore if ↵, � 2 Rj, then

(5.8) v

✓
ci � ↵

ami
� ci � �

ami

◆
= v

✓
cj � ↵

ami
� cj � �

ami

◆
� mj �mi > 0,

since mi < mj. Thus all points of Rj reduce to the same point if they are

considered as points in Ri. More concretely, we have that there exists an

↵ 2 K0 such that cj��
ami

= ↵ holds for all elements � 2 Rj. For example the

conditions 2. says that if there exist a unique � 2 Ri\Rj such that cj��
ami

= ↵

and condition 1. is verified, then in the Riemann–Hurwitz formula for the

map �i,v we choose � as a representative of the class ↵ in the fiber of �i,v

over �, instead of taking one of the elements in Rj. Each other � in Rj such

that cj��
ami

= ↵ could be counted by considering one of the maps �k,v with

wk � wj. Actually, the condition 3. is given only because we could have

more than one index k verifying the first two conditions.

Now we are ready to state a technical lemma useful in evaluating the

sum in (5.5).
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Lemma 5.4. Let �, K, and the Ri’s be as above. For an arbitrary fixed i 2
{1, . . . , h}, let i1, . . . , im 2 {1, . . . , h} be the set of indexes of all extensions

wis such that wis > wi. Let us set i = i0. Then

(5.9)
mX

s=0

X

�2�(R�)

#{��1
is
(�)}  |Ri0 |+ 2m.

Furthermore if the above inequality is an equality, then all the following

properties are verified:

i) for each � 2 Ri0 there exists an index is 2 {i0, i1, . . . , im} such that

� is counted in a fiber of the shape ��1
is,v

(�) for a ramification value �

for �;

ii) up to a permutation of the indexes, we can suppose that {i1, . . . , it} is

the full set of successors of i0. For each ik 2 {i1, . . . , it} there exists

a (unique) � 2 Ri0 \ {1} such that � is counted in ��1
i0,v

(�) and in

��1
ik,v

(�) for a ramification value � for �;

iii) for each s 2 {0, . . . ,m}, the point at infinity is in a fiber of the shape

��1
is,v

(�) for a ramification value � for �.

Proof. We prove the lemma by induction on the length l of Ui0 .

Suppose l = 0, that means that wi0 is a maximal element in the graph.

Therefore
P

P2�(R�)
#{��1

i0,v
(P̄ )}  |Ri0 | and the equality is verified if and

only if i) and iii) hold, since ii) is trivially verified.

Now we suppose the statement true when the length is < l and we shall

prove that it is true for Ui of length l. Up to renumbering the indexes, we can

suppose that {wi1 , . . . , wit} is the set of all successors of wi0 . By induction

we have

(5.10)
mX

k=0

X

�2�(R�)

#{��1
ik,v

(�)} 
X

�2�(R�)

#{��1
i0,v

(�)}+2(m�t)+
tX

k=1

|Rik |.

Let us set Si0 = Ri0 \ (Ri1 [ . . . [ Rit). Therefore the following union is

disjoint:

(5.11) Ri0 = {1} [ (Ri1 \ {1}) [ . . . [ (Rit \ {1}) [ Si0 .

Then

(5.12) |Ri0 | = 1 +
tX

k=1

|Rik |� t+ |Si0 |.
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Note that by applying the inequality in (5.8) we see that by (5.11) we have

(5.13)
X

�2�(R�)

#{��1
i0,v

(�)}  |Si0 |+ 1 + t.

Putting this last inequality in (5.10) we obtain (5.9), since (5.12) holds.

Suppose now that the inequality in (5.9) is an equality, then (5.10) and

(5.13) are equalities. Condition i) is verified, indeed if � 2 Si0[{1} consider
the equality in (5.13). If � 2 Ri0 \ Si0 consider (5.10) and the inductive

hypothesis. Condition ii) holds by equality (5.13). Condition iii) is verified

by (5.13) for s = 0 and by (5.10) and the inductive hypothesis for any other

s 6= 0.

Lemma 5.5. Let �, K, and the Ri’s be as above. For an arbitrary fixed i 2
{1, . . . , h}, let i1, . . . , im 2 {1, . . . , h} be the set of indexes of all extensions

wis such that wis > wi. Let us set i = i0. Let Ai := Ri \ ��1(0) \ {1}
and Bi := Ri \ ��1(1) \ {1}. Let ai :=

P
↵2Ai

e�(↵) and similarly bi :=P
�2Bi

e�(�). Suppose that in (5.9) the equality holds, then

(5.14)
mX

k=0

deg(�ik,v) � max{ai0 , bi0}.

If at least one element �, of the type as described in ii) of the Lemma 5.4,

is in Ai0 [Bi0, then (5.14) is a strict inequality.

Proof. We prove the inequality (5.14) by induction on the length of Ui0 .

Since the equality in (5.9) holds, then the properties i), ii) and iii) of Lemma

5.4 are verified. Suppose that the length of Ui0 is zero. Therefore each ele-

ment of Ri0 is counted in �i,v. That implies that any two di↵erent elements

�1, �2 2 Ri0 reduce to two di↵erent elements ci��1
ami

, ci��1
ami

in K0. Therefore

we have that

�i,v(yi) =

Q
↵2Ai

⇣
yi � ci�↵

ami

⌘e�(↵)

Q
�2Bi

⇣
yi � ci��

ami

⌘e�(�) ,

where there is no cancellation between the numerator and the denominator.

Therefore (5.14) holds, more precisely it is an equality.

We suppose the inequality (5.14) is true when the length of a Ui0 is < m

and we shall prove that it is true for Ui0 of length m. Up to renumbering

the indexes, we can suppose that {wi1 , . . . , wit} is the set of all successors

of wi. Note that if the equality in (5.9) holds, then similar equalities hold

for each successor wik of wi0 .
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By the inductive hypothesis we have

mX

k=0

deg(�ik,v) = deg(�i0,v) +
tX

k=1

X

wj�wik

deg(�j,v)

� deg(�i0,v) +
tX

k=1

max{aik , bik}.

Therefore it is enough to prove the following inequality

(5.15) deg(�i0,v) +
tX

k=1

max{aik , bik} � max{ai0 , bi0},

that is implied by the equality

(5.16) deg(�i0,v) +
tX

k=1

min{aik , bik} = max{ai0 , bi0}.

Hence, in order to prove (5.14) it is su�cient to prove the equality (5.16).

Since in (5.9) we have the equality, then every element in Ai0 \ (Ai1 [ . . . [
Ait) and Bi0 \ (Bi1 [ . . . [ Bit) is counted. Therefore deg(�i0,v) is equal

to max{ai0 , bi0} minus the number of cancellations in the numerator and

denominator of the elements in Aik and Bik for each k 2 {1, . . . , h}. Recall
that for each fixed index j such that wj > wi0 , all points of the shape

ci0��
a
mi0

with � 2 Rj collide to the same point modulo v. Thus we have

deg(�i0,v) = max{ai0 , bi0}�
tX

k=1

min{aik , bik},

that proves (5.16).

Now suppose that there exists one element � as described in ii) of the

Lemma 5.4 that belongs to Ai0 [Bi0 . Thus, � is counted in ��1
i0,v

(�) and in

��1
ik,v

(�) for a suitable successor wik of wi0 and � 2 {0,1}. In particular, this

means that � is in Rik and is counted in �ik,v
�1(�). Therefore max{aik , bik}�

min{aik , bik} > 0. Hence the inequality in (5.15) is strict and the one in

(5.14) too.

The final part of the proof is an application of Lemma 5.4 and Lemma
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5.5 with i0 = 1. Note that R1 = ��1(�(R�)). We have

2n� 2h �
hX

k=1

X

�2P1(K0)

�
ni �#{��1

ik,v
(�)}�(5.17)

�
hX

k=1

X

P2�(R�)

�
ni �#{��1

ik,v
(P̄ )}�(5.18)

=
X

P2�(R�)

hX

k=1

�
ni �#{��1

ik,v
(P̄ )}�

=
X

P2�(R�)

n�
X

P2�(R�)

hX

k=1

#{��1
ik,v

(P̄ )}

� n|�(R�)|� |R1|� 2(h� 1)(5.19)

=
X

P2P1(K)

�
n�#{��1(P )}�� 2(h� 1)

= 2n� 2h.

In (5.19) we have applied Lemma 5.4. It is clear that the inequality in

(5.17), (5.18) and (5.19) have to be identities. Therefore, we have that the

properties i), ii) and iii) of Lemma 5.4 hold. Suppose h > 1; up to considering

a change A�� for a suitable A 2 PGL2(O), we can suppose that � 2 A1[B1

for one of the � as in ii). Therefore by Lemma 5.5 we have that

hX

k=1

deg(�ik,v) =
hX

k=1

nk > max{a1, b1} = n,

that contradicts (5.1). This proves h = 1.

6 Critically good reduction

The proof of the Theorem 1.6 in an application of the following two results.

Theorem 6.1 ([Sil1]). Let K be a number field and v a non archimedean

valuation. Let � and  be two endomorphisms of P1 with simply good re-

duction at v. Denote by �v and  v the reductions modulo v of � and  

respectively. Then the composition � �  has good reduction at v and its

reduction (� � )v is such that

(� � )v = �v � v.
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This theorem implies that if � and  are as in Theorem 6.1 and �v and

 v are separable maps, then also the reduction of the composition (� � )v
is separable. The second tool for the proof of Theorem 1.6 is the following

theorem.

Theorem 6.2 ([CPT]). Let � : P1 ! P1 be a morphism defined over a

number field K. Let v be a finite place of K. Let �v be the reduction modulo

v of �. Let us suppose that �v is separable. Then the following are equivalent:

a) � is C.G.R. at v;

b) � is S.G.R. at v and #�(R�) = #(�(R�))v.

Proof of Theorem 1.6. Recall that the notions of simple good reduction and

critically good reduction are preserved by taking finite extensions of K.

Thus, we may assume that P1(K) contains all ramification points of �.

Suppose that � is a finitely critical map. Let �n be the n–th iterated map

of �. Denote by Bn the branch locus of �n, that is

Bn = �n(R�n) =
n[

i=1

�i(R�).

IfR� contains aK–rational point not inPrePer(�, K), then the cardinality

of Bn(K) tends to 1 with n ! 1. Thus, the set of valuations of K of bad

critically reduction of �n grows up with n ! 1, in contradiction with the

hypothesis that � is finitely critical.

Now we prove that the condition (1.2) implies that � is finitely critical.

Thus we assume that (1.2) holds. Then it follows that the set of postcritically

points

PostCrit� =
[

n�1

Bn

is a finite set. Therefore, there exists a finite set S of valuations of K con-

taining all the ones of bad simple reduction of �, all the valuations w such

that at least two di↵erent points of PostCrit� collide modulo w and all the

valuations of K that are over a prime number less or equal the degree of �.

In this way we have that � has simple and critically good reduction at any

valuation v /2 S and the reduction map �v is separable.

From Theorem 6.1 we deduce that, for any n � 1, the n–th iterate �n has

simple good reduction and the reduction (�n)v is separable at any v /2 S.

Furthermore by

�n(R�n) =
n[

i=1

�i(R�) ✓ PostCrit�,
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we have that #�n(R�n) = #(�n(R�n))v for any v /2 S. Thus, by Theorem

6.2, we have that �n has critical good reduction at any v /2 S for all n 2
N.

As an application of Theorem 1.6 we present the following two families

of remarkable examples of rational maps.

6.1 Quadratic polynomials

Let K be a field that does not have characteristic 2. We are considering

endomorphisms of P1 associated to quadratic polynomials of the form

(6.1) �(x) = Ax2 +Bx+ C

with A,B,C 2 K. As remarked by Silverman in [Sil1, Section 4.2.1 p.156]

each polynomial as in (6.1) is conjugate via an element of PGL2(K) to a

polynomial of the form x2 + c with c 2 K.

Now we study the case K = Q. As a corollary of Theorem 1.6 we have

the following result.

Corollary 6.3. The unique quadratic polynomials in Q[x] that are finitely

critical maps are those conjugated to one of the following polynomials:

x2, x2 � 1, x2 � 2.

Proof. As remarked before, any quadratic polynomial in Q[x] is conjugated

to a polynomial of the type �c(x) = x2 + c with c 2 Q. For any c 2 Q
the map �c(x) ramifies at points 1 and 0. The point 1 is clearly a fixed

point. Hence, by Theorem 1.6 we have to verify whether 0 is a preperiodic

point for �c. Note that 0 is a preperiodic point for �c if and only if c is a

preperiodic point for �c too. Note that since �c is a monic polynomial, then

for any n,m 2 N and n > 0, we have that if �n+m
c (c) = �m

c (c), then c is a

zero of a monic polynomial with integral coe�cients. Hence c 2 Z. Now it

is clear that for any positive integer c, the point 0 is not preperiodic for �c;

the same holds for any integer c < �2. On the contrary 0 is a preperiodic

point for all c 2 {0,�1,�2}.

6.2 Lattès Maps

Recall the definition of Lattès map:

Definition 6.4. A Lattès Map is a map � : P1 ! P1 of degree > 1 that fits

into a commutative diagram
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(6.2)

E E

P1 P1

- 

?

⇡

?

⇡

-�

in which E is an elliptic curve, the map  is an endomorphism of E, and ⇡

is a finite separable covering. The endomorphism � is called Flexible Lattès

Map, if the maps  and ⇡ have the following extra conditions:  (P ) =

[m](P )+T for some m 2 Z and some T 2 E and ⇡ satisfies deg(⇡) = 2 and

⇡(P ) = ⇡(�P ) for all P 2 E.

With some very insignificant modifications of Szpiro and Tucker’s argu-

ments in [SzT] it is possible to see that any flexible lattès map is finitely

critical. We resume briefly the Szpiro Tucker’s argument.

Let K be a fixed number field. Let m � 2 be an integer. Let E be an

elliptic curve defined over K. Let S be a finite set of valuations of K that

includes at least each prime lying over each prime dividing 2m and all primes

of bad reduction for E. Take S enlarged so that the ring of S–integers of K

is a P.I.D.. Take a planar model y2 = F (x) where F is a polynomial defined

by S–integral coe�cients with leading coe�cient an S–unit (such a model

exists as noted by Serre in [Ser]). Let T be a K–rational element in E[2] (as

usual E[n] denotes the set of n–torsion points of E defined over Q for every

positive integer n). Let  : E ! E defined by  (P ) = mP + T . Denote by

� the endomorphism of P1 which makes the diagram (6.2) commutative,

where ⇡ in the diagram denotes the double cover E ! P1 which sends

(x, y) 7! x. Following the Szpiro and Tucker’s arguments in [SzT, pages 719

and 720] it is possible to see that � and all its iterates have critically good

reduction at any valuation outside S: for each positive integer n, since  n is

an endomorphism of a curves of genus 1, it is étale. From this it is possible to

see thatR�n and �n(R�n) are contained in the set of the x–coordinate of the

points of E[2mn]. From the choice of S, we know that the reduction modulo

v of the points in E[2mn] is injective (we mean that P,Q 2 E[2mn] P 6= Q

if and only if Pv 6= Qv, where Pv and Qv denotes the reduction modulo v

of the points P and Q respectively). To see this injectivity it is su�cient to

apply [Sil2, Proposition VII.3.1]. From the planar model y2 = F (x), we see

that the map �n has critical good reduction for all v /2 S. To extend these

above arguments to the entire family of Flexible Lattès maps it is su�cient

to apply [Sil1, Proposition 6.51].
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As an application of Theorem 1.6 we have the following more general

result.

Corollary 6.5. Lattès maps are finitely critical.

Proof. Let � be a Lattès map associated to an elliptic curve E and a finite

cover ⇡ as in Definition 6.4. From Proposition 6.45 in [Sil1] we have that

the set of postcritically points PostCrit� is exactly the set ⇡(R⇡). Hence

PostCrit� is a finite set and so condition (1.2) holds.
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