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Abstract

We consider Rayleigh-Bénard convection as modeled by the Boussinesq equations,
in case of infinite Prandtl number and with no-slip boundary condition. There is a
broad interest in bounds of the upwards heat flux, as given by the Nusselt number
Nu, in terms of the forcing via the imposed temperature di↵erence, as given by the
Rayleigh number in the turbulent regime Ra � 1. In several works, the background
field method applied to the temperature field has been used to provide upper bounds on
Nu in terms of Ra. In these applications, the background field method comes in form
of a variational problem where one optimizes a stratified temperature profile subject
to a certain stability condition; the method is believed to capture marginal stability
of the boundary layer. The best available upper bound via this method is Nu .
Ra

1
3 (lnRa)

1
15 ; it proceeds via the construction of a stable temperature background

profile that increases logarithmically in the bulk. In this paper, we show that the
background temperature field method cannot provide a tighter upper bound in terms
of the power of the logarithm. However, by another method one does obtain the tighter
upper bound Nu . Ra

1
3 (ln lnRa)

1
3 , so that the result of this paper implies that the

background temperature field method is unphysical in the sense that it cannot provide
the optimal bound.

Keywords. Rayleigh-Bénard convection, Stokes equations, no-slip boundary condi-
tion, infinite Prandtl number, Nusselt number, background field method, variational
methods.
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1 Introduction

In a d�dimensional container of height normalized to unity we consider Rayleigh-Bénard
convection as modeled by the Boussinesq equations, which we consider in their infinite-
Prandtl-number limit:

@tT + u ·rT = �T for 0 < z < 1 , (1a)

��u+rp = RaTez for 0 < z < 1 , (1b)

r · u = 0 for 0 < z < 1 , (1c)

u = 0 for z 2 {0, 1} , (1d)

T = 1 for z = 0 , (1e)

T = 0 for z = 1 . (1f)

Here u 2 Rd denotes the fluid velocity, T 2 R its temperature and p 2 R its pressure.
We denote with z the vertical component of the d�dimensional position vector x = (y, z)
and with ez the upward unit normal in the vertical direction. As a convenient proxy of
the side-wall e↵ect, the functions u, T and p, which depend on the spatial variable x and
the time variable t, are supposed to be periodic in the (d � 1)�horizontal directions y
with period L, where L is the horizontal period. In our treatment, the dimension d is
arbitrary and we think of L as being large. The first equation encodes the di↵usion of the
temperature, driven by the Dirichlet boundary conditions (1e)&(1f), and its advection by
the fluid velocity. The second equation, the Stokes equation, encodes the fact that the
fluid parcels move as a reaction to the buoyancy force RaTez (hotter parcels expand and
thus experience an upwards force under gravity) and are slowed down by viscosity (��u)
in conjunction with the no-slip boundary condition (1d). The last equation expresses
the incompressibility of the fluid and is balanced by the pressure term rp acting as a
Lagrangian multiplier in the previous equation. The parameter appearing in the Stokes
equation, the Rayleigh number Ra, expresses the relative strength of the buoyancy force
and is given by

Ra =
↵g(Tb � Tt)h3

⌫
, (2)

where ↵ is the thermal expansion coe�cient, ⌫ the kinematic viscosity,  the thermal
conductivity, (Tb � Tt) the temperature gap between the bottom and the top plate and h
the height of the container before the non-dimensionalization.

In (1), the inertia of the fluid has been neglected, which amounts to sending the
Prandtl number Pr = ⌫

 to infinity. Therefore Ra, next to L, is the only non-dimensional
parameter. The linear stability analysis identifies a critical value Rac, the Rayleigh number
at which the solution of (1) bifurcates from the linear conduction profile T = 1 � z, u =

0, p = z � z2

2 , see for instance [1]. When Ra > Rac, the buoyancy forces trigger the
formation of convection rolls. Eventually, when Ra � Rac, these convection rolls break
down. This regime features boundary layers at the top and bottom plates, with a high
vertical temperature gradient, from which small fluid parcels of di↵erent temperature than
the ambient fluid detach and deform, the so called plumes. In this paper we are interested
in this turbulent regime of

Ra� 1 ,

and in the experimentally observed enhancement of the heat transport over the pure
conduction state. An appropriate measure to quantify the vertical heat flux is the Nusselt
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number,

Nu =

Z 1

0
h(uT �rT ) · ezi dz ,

which represents the average heat flux uT � rT passing through an area element. The
bracket h·i denotes the time and horizontal space average

hfi := lim sup
t0"1

1

t0

Z t0

0

1

Ld�1

Z

[0,L)d�1
f(t, y)dydt , (3)

and might be thought as a statistical average.
In the fifties Malkus [2], considering fluids with very high viscosity, performed exper-

iments in which he noticed sharp transitions in the slope of the Nu � Ra relation and
suggested the scaling Nu ⇠ Ra

1
3 for very high Ra numbers based on the marginal stability

argument, which we reproduce now. Since the main temperature drop happens near the
boundary, we can assume that in a bottom boundary layer of thickness � (to be deter-
mined) the temperature drops from 1 to its average 1

2 . Thanks to the average h·i, we
may extract the Nusselt number from the boundary layer, where by the no-slip boundary
condition we have (uT �rT )ez ⇡ @zT so that Nu ⇠ 1

� . The boundary layer is assimilated
to the pure conduction state of height �. Marginal stability refers to the assumption that
this state is borderline stable, meaning that its Rayleigh number is critical, which in view
of (2) means

Rac =
g↵(Tb � Tt)(�h)3

⌫
,

from which, because of Rac ⇠ 1, we infer � ⇠ Ra�
1
3 . Inserting this in the scaling of Nusselt

number above one finds
Nu ⇠ Ra

1
3 .

The same conclusion can be achieved by rescaling equation (1) according to

x = Ra�
1
3 x̂, t = Ra�

2
3 t̂, u = Ra

1
3 û, p = Ra

2
3 p̂ and thus Nu = Ra

1
3 cNu . (4)

In this way we end up with the parameter-free system

@t̂T + û · r̂T = �̂T ,
��̂û+ r̂p̂ = Teẑ ,

r̂ · û = 0 ,

which naturally lives in the half space. Since for the latter system, it is natural to expect
that the heat flux is universal, i. e. cNu ⇠ 1, we also obtain Nu ⇠ Ra

1
3 .

The scaling Nu ⇠ Ra
1
3 has been been confirmed by experiments at (relatively) high

Prandtl numbers (cf. [3], p.30, for a list of experimental results). Rigorous analyses have
produced upper bounds that capture this scaling up to logarithms which we report now. In
the sixties Howard [4] obtained an upper bound that scales like Ra

1
2 , optimizing over a field

of test functions satisfying physical constraints coming from the Navier-Stokes equation
(cf. [4], Sec.3), while neglecting the incompressibility constraint. Later Busse [5] developed
the theoretical tool of multiple boundary layer solution (multi-↵ solution) in order to solve
Howard’s variational problem when the incompressibility constraint is taken into account
(cf. [5], Sec.2). The multi-↵ solution theory inspired Chan [6] in the seventies. He elegantly

applied it, deriving an upper bound on the Nusselt number that scales like Ra
1
3 when addi-

tional conditions in the asymptotic analysis are assumed. In the nineties, Constantin and
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Doering, inspired by the works of Malkus, Howard and Busse, introduced the background

field method in order to bound the average dissipation rate in plane Couette flow. This
method was already implicitly used by Hopf [7] in the forties in the construction of solu-
tions to the Navier-Stokes equations (in the sense of Leray) with inhomogeneous boundary
data. Later, Constantin and Doering applied it to the Rayleigh-Bénard convection in order
to derive rigorous upper bounds for the Nusselt number Nu. Although Howard’s prob-
lem and the background field method constitute dual variational problems [8], the second
method has the advantage to use simple test functions and functional estimates. Indeed
this method turned out to be very fruitful: It has been extensively used and it has pro-
duced meaningful bounds in the theory of turbulence. In the context of Rayleigh-Bénard
convection, this method consists of decomposing the temperature field T into a steady
background temperature field profile ⌧ = ⌧(z) with driving boundary conditions, ⌧ = 1 for
z = 0 and ⌧ = 0 for z = 1, and into temperature fluctuations ✓. As we will see in detail
in the next subsection, the advantage of the background field method is to transform the
problem of finding upper bounds for the Nusselt number into a purely variational problem:
Find profile (test) functions ⌧ which satisfies a certain stability condition and then select
the one with minimal Dirichlet energy. The solution of this variational method produces
a new number Nubf such that

Nu  Nubf. (5)

Experiments suggest to try a profile ⌧ that displays a drop by 1
2 in a boundary layer

and it is constant in the bulk. Such a profile satisfies the stability condition only if the
boundary layer size � is chosen artificially small and gives only suboptimal bounds (see
[9]). Replacing the constant bulk by a linearly increasing profile (at the expense of making
the drop in the boundary layers deeper) does not improve the situation. The idea that
the “bad” boundary layers can be more e�ciently compensated by a profile that increases
fast near the boundary and slowly (almost constant) away from them, brought Doering,
Rezniko↵ and the second author in 2006 [10] to investigate the stability of a background
profile that grows logarithmically in the bulk. This Ansatz indeed proved to be successful,
yielding the bound Nubf . Ra

1
3 (lnRa)

1
3 and therefore reproducing the scaling proposed by

Malkus up to a logarithmic correction. Seis and the second author [11] in 2011 improved
the last bound by reducing the logarithmic correction

Nubf . Ra
1
3 (lnRa)

1
15 . (6)

They used the same logarithmic construction as in [10] with a (logarithmically) larger
boundary layer thickness, which they could a↵ord using an additional estimate on the
vertical velocity component w = u · ez in terms of ✓.

In the context of the Rayleigh-Bénard convection, the background field method has
also been used to study the case of free-slip boundary condition for the velocity field [12],
of an imposed heat flux at the boundary [13] and in the bulk [14], of mixed thermal
boundary conditions [15], and of rough boundaries [16]. This method has been fruitfully
applied to a variety of other problems in fluid mechanics, namely plane Couette flow [17],
pipe flow, and arbitrary Prandtl number convection. Nicolaenko, Scheuer and Temam [18]
applied the background field method to derive an upper bound for the long-time limit of
the L2-norm of the solution of the Kuramoto-Sivashinsky equation.

In this paper, we address the question of the optimality of the background field method
in two ways:

• What is the optimal bound (in terms of the two scaling exponents in Raµ(lnRa)⌫)
in the background field method? The answer given in our main result is that the
construction in [10] and [11] leading to (6) is indeed optimal.
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• Does the background field method catch the optimal bound on Nu, in other words,
is (5) optimal (at least in terms of both scaling exponents)? The answer given by
our main result in conjunction with the bound in (9) obtained in [11] is no.

The main result of this paper is stated in the following

Theorem. For Ra� 1 we have

Nubf & Ra
1
3 (lnRa)

1
15 . (7)

We refer to Theorem 1 for the full formulation and the explanation of the notation & and
�. This lower bound on Nubf, together with the upper bound (6), implies

Nubf ⇠ Ra
1
3 (lnRa)

1
15 ,

and in particular shows that the background field method cannot produce any smaller
logarithmic correction than (lnRa)

1
15 . However, a combination of the background field

with another method improves the logarithmic correction in (6), as we shall explain now.
This other method, which we refer to as maximal principle method, was also introduced
by Constantin and Doering [19]. Indeed it is easy to verify that the temperature equation
satisfies the maximum principle, leading to

0  T  1 , (8)

possibly neglecting an initial layer. This L1 bound together with a maximal regularity
estimate for Stokes equation in L1 yields the bound

Nu . Ra
1
3 (lnRa)

2
3 ,

where, this time, the logarithm is an expression of the failure of the L1�norm to be a
Calderón-Zygmund norm. Recently, Seis and the second author [11] combined the maxi-
mum principle method with the background field method developed in [10], obtaining

Nu . Ra
1
3 (ln lnRa)

1
3 , (9)

which, to our knowledge, is the best rigorous upper bound. We observe that the combi-
nation of all the previous results yields

Nu  Nubf

(9)

. Ra
1
3 (ln lnRa)

1
3 ⌧ Ra

1
3 (lnRa)

1
15

(7)

. Nubf .

So indeed, the background field method is not able to capture the behavior of the Nusselt
number even in terms of the two scaling exponents. Therefore, the optimal background
temperature profile cannot carry much of a physical meaning.

In 2005 Plasting and Ierley [20] considerer piecewise linear profiles with ⌧ 0 � 0 in the

bulk and solved the variational problem numerically, finding Nu ⇠ Ra
7
20 . In 2006 inspired

by Chan’s multi�↵ solution treatment, Ierley, Kerswell and Plasting [21], with help of a
mixture of numerical and analytical methods, improved the previous result finding

Nu ⇠ c1Ra
µ(lnRa)⌫ ,

where µ = 0.33175 and ⌫ = 0.0325. Clearly, since 0.0325 < 0.06̄ = 1
15 , our result (although

slightly underestimated) has been anticipated ten years ago.
Incidentally, the background field method su↵ers a similar fate in the context of the

Kuramoto-Sivashinsky equation: Bronski and Gambill [22] identified the optimal scaling of
the upper bound that can be obtained by this method, and soon later, Giacomelli and the
second author [23] showed that a tighter upper bound can be obtained by an alternative
method, which has subsequently been further improved in [24] and [25].
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1.1 Temperature background field method and main result

We start by the rescaling (4) suggested by Malkus’ marginal stability argument, that is

x Ra
1
3x, t Ra

2
3 t, u Ra�

1
3u and p Ra�

2
3 p ,

and setting H := Ra
1
3 we rewrite (1) as

@tT + u ·rT = �T for 0 < z < H , (10a)

��u+rp = Tez for 0 < z < H , (10b)

r · u = 0 for 0 < z < H , (10c)

u = 0 for z 2 {0, H} , (10d)

T = 1 for z = 0 , (10e)

T = 0 for z = H. (10f)

Notice that in this non-dimensionalization of the equation, the only parameter appearing
is the height H of the container and Malkus’ scaling Nu ⇠ Ra

1
3 corresponds to Nu ⇠ 1.

We recall from the previous section that the Nusselt number is defined as

Nu =
1

H

Z H

0
h(uT �rT ) · ezi dz , (11)

and now derive some useful representations starting from the equation for the temperature
in (10a): Applying h·i to the equation (10a) and qualitatively using the bound (8) on T
given by the maximum principle it is easy to show that the upward heat flux is constant
in the vertical direction,

Nu = hTw � @zT i for z 2 (0, H) . (12)

Testing the equation with T , appealing to incompressibility (10c) and using (12) for z = 0,
we obtain (see [9]) the alternative representation

Nu =

Z H

0
h|rT |2idz . (13)

For the convenience of the reader we sketch the derivation of the background field
method, see [26] for more details. The background field method consists of decomposing
the temperature field T into a steady background temperature profile ⌧ which depends
only on the vertical variable z and satisfies the inhomogeneous (driving) boundary condi-
tions, ⌧ = 1 for z = 0 and ⌧ = 0 for z = H, and into temperature fluctuations ✓, with
homogeneous boundary conditions ✓ = 0 for z 2 {0, H}. Inserting this decomposition

T = ⌧ + ✓ (14)

in the equation for the temperature (10a) we find that the fluctuations ✓ evolve according
to

@t✓ + u ·r✓ ��✓ =
d2⌧

dz2
� w

d⌧

dz
.

From the incompressibility condition (10c) we obtain by testing with ✓

Z H

0
h|r✓|2i dz = �

Z H

0

d⌧

dz
h@z✓i dz �

Z H

0

d⌧

dz
h✓wi dz .

7



Together with (13) this yields the final representation

Nu =

Z H

0

✓
d⌧

dz

◆2

dz �
Z H

0

⌧
2
d⌧

dz
✓w + |r✓|2

�
dz . (15)

Applying the divergence to the Stokes equation (10b) we find that the pressure satisfies
�p = @zT . Inserting �p into the equation � (10b)·ez, we find the direct relationship
between ✓ and the vertical velocity component w := u · ez:

�2w = ��y✓ for 0 < z < H ,
w = @zw = 0 for z 2 {0, H} . (16)

The representation (15) shows: Any ⌧ = ⌧(z) that satisfies the driving boundary conditions
and is stable in the sense that the following quadratic form is non-negative

Z H

0

⌧
2
d⌧

dz
✓w + |r✓|2

�
dz � 0 , (17)

for every ✓ satisfying homogeneous boundary conditions (and w defined through (16)),
yields an upper bound for the Nusselt number:

Nu 
Z H

0

✓
d⌧

dz

◆2

dz .

Note that in (17), we may disregard the time variable, which is only a parameter in (16),
so that h·i in (17) reduces to the horizontal average. This motivates to define the Nusselt
number associated to the background field method as

Nubf := inf
⌧ :(0,H)!R,

⌧(0)=1,⌧(H)=0

(Z H

0

✓
d⌧

dz

◆2

dz| ⌧ satisfies (17)

)
, (18)

which in view of (15) satisfies
Nu  Nubf .

Our objective is to derive an Ansatz-free lower bound for Nubf, trying to extract local
information on ⌧ from the completely non-local stability condition (17). The full for-
mulation of the main result, already stated in the previous section, is contained in the
following

Theorem 1. Suppose that

⌧(0) = 1, ⌧(H) = 0 , (19)

and ⌧ satisfies (17) for all (✓, w) related by (16) in its Fourier transformed version (26).

Then for H � 1 Z H

0

✓
d⌧

dz

◆2

dz & (lnH)
1
15 .

In particular for the Nusselt number associated to the background field method we have the

lower bound

Nubf & (lnH)
1
15 . (20)
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Here and in the sequel, . stands for  C for some generic universal constant C < 1.
Likewise, H � 1 means that there exists a universal constant C < 1 such that the
statement holds for H � C.

Besides implying the non-optimality of the background field method, this theorem
o↵ers some insights. Indeed the proof is based on a characterization of profiles that satisfy
the stability condition (17) (see Section 2.2). This characterization is motivated by the
analysis of a reduced form of the stability condition (28) which indicates that long-wave
length stability implies (approximate) logarithmic growth of ⌧ in z, while short wave-length
stability implies (approximate) monotonicity (see Proposition 1 in the next section).

It is convenient to introduce the slope ⇠ := d⌧
dz of the background temperature profile.

With this convention the stability condition (17) can be rewritten explicitly as follows

2

Z H

0
⇠hw✓i dz +

Z H

0
h|ry✓|2i dz +

Z H

0
h|@z✓|2i dz � 0, (21)

for all functions ✓ (and w related to ✓ via the fourth-order boundary value problem (16))
that vanish at z 2 {0, H}. A major advantage of the background field method is that it is
amenable to (horizontal) Fourier transform: Indeed, denoting by k 2 2⇡

L Zd�1, k 6= 0, the
horizontal wavenumber, (16) turns into

⇣
|k|2 � d2

dz2

⌘2
Fw = |k|2F✓ for 0 < z < H ,

Fw = d
dzFw = 0 for z 2 {0, H} ,

(22)

whereas (21) assumes the form

2

Z H

0
⇠FwF✓ dz +

Z H

0
|k|2|F✓|2dz +

Z H

0

����
d

dz
F✓

����
2

dz � 0 , (23)

where the bar denotes complex conjugation. Using equation (22) we can eliminate ✓ from
the stability condition (23), obtaining

2

Z H

0
⇠Fw

✓
� d2

dz2
+ |k|2

◆2

Fw dz (24)

+

Z H

0
|k|�2

�����
d

dz

✓
� d2

dz2
+ |k|2

◆2

Fw

�����

2

dz +

Z H

0

�����

✓
� d2

dz2
+ |k|2

◆2

Fw

�����

2

dz � 0 ,

which has to be satisfied for all k 2 2⇡
L Zd�1\{0} and all (complex valued) functions Fw(z)

satisfying the three boundary conditions

Fw =
d

dz
Fw =

✓
� d2

dz2
+ |k|2

◆2

Fw = 0 for z 2 {0, H}. (25)

We now introduce a further simplification by letting L " 1 so that (24) has to hold for all
k 2 Rd. This strengthening of the stability condition has the additional advantage that
it becomes independent of the dimension d: We will henceforth say that ⇠ satisfies the
stability condition if

2

Z H

0
⇠w

✓
� d2

dz2
+ k2

◆2

w dz

+

Z H

0
k�2

�����
d

dz

✓
� d2

dz2
+ k2

◆2

w

�����

2

dz +

Z H

0

�����

✓
� d2

dz2
+ k2

◆2

w

�����

2

dz � 0 , (26)
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holds true for all k 2 R and all (complex valued) functions w(z) satisfying the three
boundary conditions (25) with Fw replaced by w. The analysis of the stability condition
(26) imposed for all values of k 2 R (which corresponds to assume L " 1) amounts to
consider profiles ⌧ that are stable even under perturbation that have horizontal wave-
length much larger than H. In [27] it is shown that at least Proposition 1 still holds true
if the lateral size L is of order H .

The rest of the paper is organized as follow: In Section 2.1 we study a reduced stability
condition (obtained by retaining only the indefinite term in the stability condition) and
show that in this case a stable profile must be increasing and logarithmically growing. This
result is obtained by exploring the limit for small and large wavelengths in the reduced
stability condition, respectively. In Section 2.2, when working with the original stability
condition we can no longer pass to the limit for small/large wavenumbers k to infer the
positivity for ⇠ = d⌧

dz and the logarithmic growth for ⌧ . Nevertheless, by subtle averaging
of the stability condition we construct a non-negative convolution kernel �0 with help of
which we can express the positivity on average approximately in the bulk (see Lemma 1).
Likewise we recover logarithmic growth, at least approximately in the bulk, on the level
of the construction of ⇠0, see Lemma 2. Finally in Lemma 3 we connect the bulk with the
boundary layers. The main result (Theorem 1) is proved in Section 3 and it consists of
combining all the results contained in the lemmas together with an estimate that connects
⇠0 to ⇠, and in particular to

R H
0 ⇠ dz = �1 (see Lemma 4, estimate (36)).

In the rest of the paper we omit the constant factor 2 in front of the indefinite term in
(26), which is legitimate since we are interested in the scaling of the Nusselt number.

2 Characterization of stable profiles

2.1 Reduced stability condition

We note that the stability condition (26)&(25) is invariant under the following transfor-
mation

z = Lẑ and thus k =
1

L
k̂, H = LĤ and ⇠ = L�4⇠̂. (27)

Hence in the bulk (z � 1 and H� z � 1) we expect that the first term in (26) dominates.
This motivates to consider the reduced stability condition

Z H

0
⇠w

✓
� d2

dz2
+ k2

◆2

w dz � 0, (28)

for all k 2 R and all (complex valued) functions w(z) satisfying the three boundary
conditions (25).

The following proposition is independent of the main result (Theorem 1) but it serves
as a preparation: The ideas developed in the proof (cf. Section 2.3) will be adapted to the
more challenging full stability condition (26).

Proposition 1. Let ⇠ = ⇠(z) be such that for all k 2 R and for all w(z) satisfying (25),

it satisfies the reduced stability condition (28) . Then

⇠ � 0 , and (29)

Z 1

1/e
⇠dz . 1

lnH

Z H

1
⇠ dz . (30)

10



We notice that while (29) means that ⌧ is an increasing functions, the second statement
(30) corresponds to a logarithmic growth of ⌧ (see Figure 1). Hence somewhat surprisingly,
monotonicity is not su�cient for stability.

z

⌧

1
e 1 H

Figure 1: Logarithmic growth of the background profile ⌧ as expressed in Proposition 1.

2.2 Original stability condition: statement of lemmas

In the following lemmas, we derive properties of those profiles ⌧ that, in terms of their
slope ⇠ = d⌧

dz , satisfy the original stability condition (26) and (for the last lemma) the
driving boundary conditions (19). These four lemmas are the (only) ingredients of the
main theorem. They all are formulated on the level of the logarithmic variables s = ln z
and ⇠̂ = z⇠ = d⌧

ds , cf. (40). Lemma 1 establishes approximate positivity of the slope ⇠̂ in the
bulk, and thus is the generalization of (29) in Proposition 1, replacing the stricter reduced
stability condition (28) there by the original stability condition (26) here. It does so in
terms of a suitable convolution ⇠̂0 of ⇠̂ in the logarithmic variable s. Lemma 2 establishes
approximate logarithmic growth of the profile in the bulk, again on the level of ⇠̂0, and
amounts to the generalization of (30) in Proposition 1. Lemma 3 is the most subtle and
shows that the convolved slope ⇠̂0 cannot be too negative in the boundary layer �s � 1
provided it is su�ciently small in the transition layer |s| . 1. Lemma 4 translates the

driving boundary conditions (19) on ⌧ in form of
R H
0 ⇠ dz = �1 from the slope ⇠ to its

logarithmic-variable convolution ⇠̂0.

Lemma 1.

There exists a �0, which will play the role of a convolution kernel, with the properties

�0(s) � 0,

Z 1

�1
�0(s) ds = 1, supp�0(z) ⇢

✓
1

4
,
3

4

◆
, �0

✓
1

2
� z

◆
= �0

✓
1

2
+ z

◆
,

(31)
such that, for all s0  lnH

⇠̂0(s
0) & � exp(�3s0) , (32)

where

⇠̂0(s
0) :=

Z 1

�1
⇠̂(s+ s0)�0(s) ds . (33)

Lemma 2.

For S1 � 1 we have Z 0

�1
⇠̂0ds .

1

S1

Z S1

0
⇠̂0 ds+ 1 . (34)

11



Lemma 3.

For all S2 � 1 and "  1 we have

Z �1

�S2

⇠̂0ds & �
✓
1

"

Z 0

�1
⇠̂0 ds+

1

"
+

Z �S2+1

�S2

|⇠̂0|ds+ " exp(5S2)

◆
. (35)

Lemma 4.

Suppose that the slope ⇠ of the profile ⌧ satisfies

R H
0 ⇠ dz = �1 and

R H
0 ⇠2 dz . (lnH)

1
15
.

Then Z lnH

�1
⇠̂0 ds . �1 . (36)

2.3 Proof of Proposition 1

Argument for (29):
Letting k " 1, (28) reduces to Z H

0
⇠|w|2 dz � 0

for all compactly supported w, from which we infer (29).
Argument for (30), heuristic version:
Letting k # 0, (28) reduces to Z H

0
⇠w

d4

dz4
wdz � 0 (37)

for all functions w(z) satisfying the three boundary conditions

w =
dw

dz
=

d4w

dz4
= 0 for z 2 {0, H} . (38)

In fact, besides Subsection 4.3, we will work with w compactly supported in z 2 (0, H),
so that the boundary condition (38) are trivially satisfied. Focusing on the lower half of
the container we make the following Ansatz

w = z2ŵ ,

where ŵ(z) is a real function with compact support in (0, H). The merit of this Ansatz
is that in the new variable ŵ, the multiplier in (37) can be written in the scale-invariant
form

� = w
d4

dz4
w̄ = ŵz2

d4

dz4
z2ŵ = ŵ

✓
z
d

dz
+ 2

◆✓
z
d

dz
+ 1

◆
z
d

dz

✓
z
d

dz
� 1

◆
ŵ . (39)

Note that the fourth-order polynomial in z d
dz appearing on the r. h. s. of (39) may be

inferred, without lengthy calculations, from the fact that z2 d4

dz4
z2 annihilates { 1

z2
, 1z , 1, z}.

This suggests to introduce the new variables

s = ln z and ⇠ = z�1⇠̂, (40)

for which the stability condition turns into

Z lnH

�1
⇠̂ � ds � 0 , (41)

12



where

� = ŵ

✓
d

ds
+ 2

◆✓
d

ds
+ 1

◆
d

ds

✓
d

ds
� 1

◆
ŵ ,

for all functions ŵ with compact support in z 2 (0, H). Here comes the heuristic argument
for (30): For H � 1, we may think of test functions ŵ that vary slowly in the logarithmic
variable s. For these ŵ we have

� = ŵ

✓
d

ds
+ 2

◆✓
d

ds
+ 1

◆
d

ds

✓
d

ds
� 1

◆
ŵ ⇡ �2ŵ d

ds
ŵ = � d

ds
ŵ2 , (42)

which in particular implies

0 
Z lnH

�1
⇠̂ � ds ⇡ �

Z lnH

�1
⇠̂
d

ds
ŵ2 ds =

Z lnH

�1

d⇠̂

ds
ŵ2 ds .

Since ŵ was arbitrary besides varying slowly in s, it follows

d⇠̂

ds
� 0 ,

approximately on large s�scales. We expect that this implies that for any 1⌧ S1  lnH:
Z 0

�1
⇠̂ds . 1

S1

Z S1

0
⇠̂ ds , (43)

which in the original variables (40), for S1 turns into (30). We now establish rigorously
that (37) and (29) imply (43).
Argument for (43), rigorous version:
We start by noticing that because of translation invariance in s, (41) can be reformulated
as follows: For any function ŵ(s) supported in s  0, and any s0  lnH we have

Z 1

�1
⇠̂(s00)�(s00 � s0) ds00 =

Z 1

�1
⇠̂(s+ s0)�(s) ds � 0, (44)

where the multiplier � is defined as in (41). We note that (43) follows from (44) once for
given S1 we construct

• a family F = {ws0}s0 of smooth functions ws0 parameterized by s0 2 R and compactly
supported in z 2 (0, 1) (i. e. s 2 (�1, 0]) and

• a measure ⇢(ds0) = ⇢(s0) ds0 supported in s0 2 (�1, lnH],

such that the corresponding convex combination of multipliers {�s0}s0 shifted by s0, i. e.

�1(s
00) :=

Z 1

�1
�s0(s

00 � s0) ⇢(s0)ds0 , (45)

satisfies

�1(s
00) 

8
<

:

�1 for � 1  s00  0
C
S1

for 0  s00  S1

0 else

9
=

; , (46)

for a (possibly large) universal constant C. Indeed, using (44), (45), and (46) in conjunction
with the positivity (29) of the profile ⇠̂ we have

0 
Z 1

�1
⇠̂�1ds

00  �
Z 0

�1
⇠̂ds00 +

C

S1

Z S1

0
⇠̂ds00,

13



which implies (43) .
We first address the form of the family F. The heuristic observation (42) motivates

the change of variables
s = �ŝ with � � 1, (47)

our “(logarithmic) length-scale”, to be chosen su�ciently large. We fix a smooth, real-
valued and compactly supported “mask” ŵ0(ŝ); it will be convenient to restrict its support
to ŝ 2 (�1, 0], say

ŵ2
0 > 0 in

✓
�1

2
, 0

◆
and ŵ0 = 0 else , (48)

and, in order to justify the language of “mollification by convolution” we impose the
normalization

R
ŵ2
0dŝ = 1. By mask we mean that in (41) we choose

ŵ(�ŝ) = ��1/2ŵ0(ŝ) (49)

(see Figure 2). With this change of variables, the multiplier can be rewritten as follows

�1
2

0
s

ŵ

Figure 2: Construction of the family of test functions starting from the mask ŵ0 (blue
line).

��
(42)
= ŵ

✓
d

ds
+ 2

◆✓
d

ds
+ 1

◆
d

ds

✓
d

ds
� 1

◆
ŵ

(47)&(49)
=

1

�
ŵ0

✓
1

�

d

dŝ
+ 2

◆✓
1

�

d

dŝ
+ 1

◆
1

�

d

dŝ

✓
1

�

d

dŝ
� 1

◆
ŵ0

= ŵ0

✓
1

�5

d4

dŝ4
+

2

�4

d3

dŝ3
� 1

�3

d2

dŝ2
� 2

�2

d

dŝ

◆
ŵ0 ,

and reordering the terms we have

�� = � 2

�2
ŵ0

d

dŝ
ŵ0 �

1

�3
ŵ0

d2

dŝ2
ŵ0 +

2

�4
ŵ0

d3

dŝ3
ŵ0 +

1

�5
ŵ0

d4

dŝ4
ŵ0 . (50)

Heuristically, for �� 1 the multiplier �� can be approximated by the first term on the r.
h. s.

��(s) ⇡ �
d

ds

✓
1

�
ŵ2
0

⇣ s
�

⌘◆
.

14



Inserting this approximation into the definition (45) of �1 we have

�1(s
00) =

Z 1

�1
�(s00 � s0)⇢(s0)ds0 =

Z 1

�1
�(s)⇢(s00 � s)ds

= �
Z 1

�1

d

ds

✓
1

�
ŵ2
0

⇣ s
�

⌘◆
⇢(s00 � s)ds ⇡ �

Z 1

�1

1

�
ŵ2
0

⇣ s
�

⌘ d⇢

ds0
(s00 � s)ds .(51)

For � smaller than the characteristic scale on which ⇢ varies, we may think of 1
� ŵ

2
0

�
s
�

�
⇡

�0(s), in view of our normalization. This yields

�1 ⇡ �
d⇢

ds0
, (52)

which in view of (46) suggests that ⇢ should have the form

⇢(s0) =

⇢
s0 + 1 for � 1  s0  0

1� s0

S1
for 0  s0  S1

�
, (53)

(see Figure 3). We will now argue that we have to modify the Ansatz for both �� and ⇢.
To this purpose, we go through the above heuristic argument (heuristically) assessing the

�1 0 S1

s0

⇢

Figure 3: The measure ⇢ suggested by the heuristic argument.

error terms. Expanding ⇢ in a Taylor series around s00

⇢(s00 � s) ⇡ ⇢(s00)� d⇢

ds0
(s00)s+

1

2

d2⇢

ds02
(s00)s2 ,

we may write

�1(s
00)

(45)
=

Z 1

�1
��(s)⇢(s

00 � s)ds

⇡ ⇢(s00)

Z 1

�1
�� ds�

d⇢

ds0
(s00)

Z 1

�1
s�� ds+

1

2

d2⇢

ds02
(s00)

Z 1

�1
s2�� ds .

We note that the first term in (50), i. e. � 2
�2 ŵ0

dŵ0
dŝ = � 1

�2
dŵ2

0
dŝ , gives the leading-order

contribution to the first and the second moment
Z 1

�1
s�� ds ⇡

Z 1

�1
s

✓
� 1

�2

dŵ2
0

dŝ

◆
ds

(47)
=

Z 1

�1
ŝ

✓
�dŵ2

0

dŝ

◆
dŝ =

Z 1

�1
ŵ2
0 dŝ = 1
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and
Z 1

�1
s2�� ds ⇡

Z 1

�1
s2
✓
� 1

�2

dŵ2
0

dŝ

◆
ds

(47)
= ��

Z 1

�1
ŝ2
✓
dŵ2

0

dŝ

◆
dŝ = �

Z 1

�1
2ŝŵ2

0 dŝ ,

while the second term in (50) gives the leading-order contribution to the zeroth moment
of the multiplier �:

Z 1

�1
�� ds ⇡

Z 1

�1

✓
� 1

�3
ŵ0

d2ŵ0

dŝ2

◆
ds

(47)
=

1

�2

Z 1

�1

✓
dŵ0

dŝ

◆2

dŝ .

Hence we obtain the following specification of (51)

�1(s
00) =

Z 1

�1
��(s)⇢(s

00 � s)ds

⇡ 1

�2
⇢(s00)

Z 1

�1

✓
dŵ0

dŝ

◆2

dŝ� d⇢

ds0
(s00) + �

d2⇢

ds02
(s00)

Z 1

�1
ŝŵ2

0 dŝ . (54)

Our goal is to specify the choice (53) of ⇢ such that (46) is satisfied. This shows a
dilemma: On the one hand, in the “plateau region” s00 ⇠ S1, we would need �2 � S1 so
that the first r. h. s. term in (54) does not destroy the desired 1

S1
�behavior. On the other

hand in the “foot region” s00 2 [0, 1], we would need � . 1 so that the last term does not
destroy the e↵ect of the middle term. This suggests that � should be chosen to be small
in the foot regions and large on the plateau region. Therefore it is natural to choose

� = s0 , (55)

so that �s0 in (45) indeed acquires a dependency on s0 besides the translation. For our
choice of (55), (50) assumes the form

�s0 = �
2

(s0)2
ŵ0

d

dŝ
ŵ0 �

1

(s0)3
ŵ0

d2

dŝ2
ŵ0 +

2

(s0)4
ŵ0

d3

dŝ3
ŵ0 +

1

(s0)5
ŵ0

d4

dŝ4
ŵ0 . (56)

Note that with the choice (55) and s = s00 � s0, (47) turns into the nonlinear change of
variables

ŝ =
s00 � s0

s0
=

s00

s0
� 1) s0 =

s00

1 + ŝ
. (57)

We consider this as a change of variables between s0 and ŝ (with s00 as a parameter); thanks
to the support restriction (48) on ŵ0, it is invertible in the relevant range ŝ 2 [�1

2 , 0]:
d
dŝ = � s00

(1+ŝ)2
d
ds0 = �

(s0)2

s00
d
ds0 and ds0 = s00

(1+ŝ)2dŝ. From (45) and (56) we thus get the first
representation

�1(s
00) = � 1

s00

Z 1

�1

dŵ2
0

dŝ
⇢ dŝ� 1

(s00)2

Z 1

�1
(1 + ŝ) ŵ0

d2ŵ0

dŝ2
⇢ dŝ

+
2

(s00)3

Z 1

�1
(1 + ŝ)2 ŵ0

d3ŵ0

dŝ3
⇢ dŝ+

1

(s00)4

Z 1

�1
(1 + ŝ)3 ŵ0

d4ŵ0

dŝ4
⇢ dŝ .

An approximation argument in ŵ0 below necessitates a second representation that involves
ŵ0 only up to second derivatives. For this purpose, we rewrite (56) in terms of the three
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quadratic quantities ŵ2
0, (

dŵ0
dŝ )2, and (d

2ŵ0
dŝ2

)2:

�s0 = � 1

(s0)2
dŵ2

0

dŝ
+

1

(s0)3

"✓
dŵ0

dŝ

◆2

� 1

2

d2ŵ2
0

dŝ2

#
+

1

(s0)4

"
�3 d

dŝ

✓
dŵ0

dŝ

◆2

+
d3ŵ2

0

dŝ3

#

+
1

(s0)5

"✓
d2ŵ0

dŝ2

◆2

� 2
d2

dŝ2

✓
dŵ0

dŝ

◆2

+
1

2

d4ŵ2
0

dŝ4

#

=

✓
� 1

(s0)2
d

dŝ
� 1

2

1

(s0)3
d2

dŝ2
+

1

(s0)4
d3

dŝ3
+

1

2

1

(s0)5
d4

dŝ4

◆
ŵ2
0

+

✓
1

(s0)3
� 3

1

(s0)4
d

dŝ
� 2

1

(s0)5
d2

dŝ2

◆✓
dŵ0

dŝ

◆2

+
1

(s0)5

✓
d2ŵ0

dŝ2

◆2

. (58)

Now in this formula, using the change of variables (57), we want to substitute the deriva-

tions 1
(s0)m

dn

dŝn by linear combinations of derivations of the form 1
(s00)m�k

dk

ds0k
(1 + ŝ)m�n�k

for k = 0, · · · , n. The reason why this can be done is explained in Appendix 5.1, where
also the linear combinations are explicitly computed. The formulas (200), (201) & (202)
allow to rewrite (58) as follows

�s0 =
1

s00

✓
d

ds0
� 1

2

d2

ds02
1

(1 + ŝ)
� d3

ds03
1

(1 + ŝ)2
+

1

2

d4

ds04
1

(1 + ŝ)3

◆
ŵ2
0

+

✓
1

(s00)3
+

6

(s00)4
� 12

(s00)5

◆
(1 + ŝ)3 +

✓
3

(s00)3
� 8

(s00)4

◆
d

ds0
(1 + ŝ)2

� 2

(s00)3
d2

ds02
(1 + ŝ)

�✓
dŵ0

dŝ

◆2

+
1

(s00)5
(1 + ŝ)5

✓
d2ŵ0

dŝ2

◆2

. (59)

The advantage of this form is that integrations by part in s0 become easy, so that we obtain

�1 =
1

s00

Z 1

�1
ŵ2
0

✓
� d⇢

ds0
� 1

2

1

1 + ŝ

d2⇢

ds02
+

1

(1 + ŝ)2
d3⇢

ds03
+

1

2

1

(1 + ŝ)3
d4⇢

ds04

◆
ds0

+

✓
1

(s00)3
+

6

(s00)4
� 12

(s00)5

◆Z 1

�1
(1 + ŝ)3

✓
dŵ0

dŝ

◆2

⇢ ds0

�
✓

3

(s00)3
� 8

(s00)4

◆Z 1

�1
(1 + ŝ)2

✓
dŵ0

dŝ

◆2 d⇢

ds0
ds0

� 2

(s00)3

Z 1

�1
(1 + ŝ)

✓
dŵ0

dŝ

◆2 d2⇢

ds02
ds0

+
1

(s00)5

Z 1

�1
(1 + ŝ)5

✓
d2ŵ0

dŝ2

◆2

⇢ ds0 .

Finally, using the substitution ds0

s00 = dŝ
(1+ŝ)2 , the last formula turns into the desired second
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representation

�1 =

Z 1

�1
ŵ2
0

✓
� 1

(1 + ŝ)2
d⇢

ds0
� 1

2

1

(1 + ŝ)3
d2⇢

ds02
+

1

(1 + ŝ)4
d3⇢

ds03
+

1

2

1

(1 + ŝ)5
d4⇢

ds04

◆
dŝ

+

✓
1

(s00)2
+

6

(s00)3
� 12

(s00)4

◆Z 1

�1
(1 + ŝ)

✓
dŵ0

dŝ

◆2

⇢ dŝ

�
✓

3

(s00)2
� 8

(s00)3

◆Z 1

�1

✓
dŵ0

dŝ

◆2 d⇢

ds0
dŝ

� 2

(s00)2

Z 1

�1

1

1 + ŝ

✓
dŵ0

dŝ

◆2 d2⇢

ds02
dŝ

+
1

(s00)4

Z 1

�1
(1 + ŝ)3

✓
d2ŵ0

dŝ2

◆2

⇢ dŝ . (60)

From this representation we learn the following: If we assume that ⇢(s0) varies on large

length-scales only, so that d⇢
ds0 ,

d2⇢
ds02 , · · · ⌧ ⇢ and d2⇢

ds02 ,
d3⇢
ds03 , · · · ⌧

d⇢
ds0 then for s00 � 1, we

obtain to leading order from the above

�1 ⇡ �
Z 1

�1

1

(1 + ŝ)2
ŵ2
0
d⇢

ds0
dŝ+

1

(s00)2

Z 1

�1
(1 + ŝ)

✓
dŵ0

dŝ

◆2

⇢ dŝ .

If ⇢(s0) varies slowly even on a logarithmic scale (so that e. g. s0 d⇢ds0 is negligible with respect
to ⇢), the above further reduces to

�1 ⇡ �
d⇢(s00)

ds0

Z 1

�1

1

(1 + ŝ)2
ŵ2
0 dŝ+

⇢(s00)

(s00)2

Z 1

�1
(1 + ŝ)

✓
dŵ0

dŝ

◆2

dŝ , (61)

which should be compared with (54). We see that the first, negative, right-hand-side term
of (61) dominates the second positive term provided

d⇢

ds0
� 1

(s0)2
.

This is satisfied if ⇢ is of the form ⇢(s0) = 1 � S0
s0�S0

for some S0 � 1 to be chosen later;

indeed d⇢
ds0 =

S0
(s0�S0)2

⇡ S0
(s0)2 �

1
(s0)2 for s0 � S0 � 1.

Disregarding for a couple of pages the fact that ⇢ needs to be supported in s0 2
(�1, lnH), which will be achieved by cutting o↵ at scales s0 ⇠ S1, we define as our
intermediate goal to construct a measure 0  e⇢(s0)  1 (with infinite support) such that

e�1(s
00) :=

Z
�s0(s

00 � s0)e⇢(s0) ds0
(

= 0 s00  S0
2

< 0 s00 > S0
2

)
, (62)

for some universal S0, to be chosen later. The above considerations motivate the following
Ansatz for e⇢: We fix a smooth mask e⇢0(ŝ0) such that

e⇢0 = 0 for ŝ0  0,
de⇢0
dŝ0

> 0 for 0 < ŝ0  2, e⇢0 = 1� 1

ŝ0
for 2  ŝ0 , (63)

and consider the rescaled version

e⇢(S0(ŝ
0 + 1)) = e⇢0(ŝ0), i. e. the change of variables s0 = S0(ŝ

0 + 1) (64)
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0 S0 3S0

1

s0

e⇢

Figure 4: The function ⇢̃ of the variable s0 = S0(ŝ0 + 1).

with S0 � 1 to be fixed later (see Figure 4). It is convenient to rescale s00 accordingly:

s00 = S0ŝ
00. (65)

With this new rescaling and the choice of the measure e⇢ (see (63) and (64)), (60) turns
into

e�1 = � 1

S0

Z 1

�1

ŵ2
0

(1 + ŝ)2
de⇢0
dŝ0

dŝ� 1

2S2
0

Z 1

�1

ŵ2
0

(1 + ŝ)3
d2e⇢0
dŝ02

dŝ

+
1

S3
0

Z 1

�1

ŵ2
0

(1 + ŝ)4
d3e⇢0
dŝ03

dŝ+
1

2S4
0

Z 1

�1

ŵ2
0

(1 + ŝ)5
d4e⇢0
dŝ04

dŝ

+

✓
1

S2
0

1

(ŝ00)2
+

1

S3
0

6

(ŝ00)3
� 1

S4
0

12

(ŝ00)4

◆Z 1

�1
(1 + ŝ)

✓
dŵ0

dŝ

◆2

e⇢0 dŝ

�
✓

1

S4
0

3

(ŝ00)3
� 1

S5
0

8

(ŝ00)4

◆Z 1

�1

✓
dŵ0

dŝ

◆2 de⇢0
dŝ0

dŝ

� 1

S5
0

2

(ŝ00)3

Z 1

�1

1

1 + ŝ

✓
dŵ0

dŝ

◆2 d2e⇢0
dŝ02

dŝ

+
1

S4
0

1

(ŝ00)4

Z 1

�1
(1 + ŝ)3

✓
d2ŵ0

dŝ2

◆2

e⇢0 dŝ . (66)

Since in the integrals in formula (60), the argument of e⇢ was given by s0 = s00

1+ŝ , cf. (57),
it follows from (64) and (65) that the argument of e⇢0 is given by

ŝ0 =
ŝ00

1 + ŝ
� 1 . (67)

Thus all the integrals in (66) just depend on ŝ00, not on S0. Hence (66) makes the depen-
dence of e�1 on S0 explicit. We are now ready to show that the construction of the family
ws0 (cf. (49) and (55)) and of the measure e⇢ (cf. (63) and (64)) yield the intermediate goal
(62) when S0 � 1. In order to establish (62) it is convenient to distinguish three regions
(note that if s00 2 (1, S0

2 ] all the integrals in (66) vanish because the supports of ŵ0 and
e⇢0 do not intersect, see below):

19



The range of large s00:

s00 � 3S0 or equivalently ŝ00 � 3. (68)

Note that because of our support condition (48) on ŵ0, all integrals in (66) are supported

in ŝ 2 [�1
2 , 0]. Together with our range (68), this yields for the argument ŝ0

(67)
= ŝ00

1+ŝ � 1

of e⇢0 and its derivatives that ŝ0 � 2. Because of de⇢0
dŝ0 = 1

(ŝ0)2 for ŝ0 � 2, cf. our Ansatz (63),

the first integral in (66) reduces to

Z 1

�1

ŵ2
0

(1 + ŝ)2
de⇢0
dŝ0

dŝ =

Z 1

�1

ŵ2
0

(1 + ŝ)2
1

( ŝ00
1+ŝ � 1)2

dŝ

=

Z 1

�1

ŵ2
0

(ŝ00 � (1 + ŝ))2
dŝ ⇡ 1

(ŝ00)2

Z 1

�1
ŵ2
0 dŝ , (69)

for ŝ00 � 1, whereas all the other integrals in (66) are O( 1
(ŝ00)2 ) or smaller in ŝ00 � 1

(because at least one derivation falls on e⇢0) or have pre-factors 1
(ŝ00)2 or smaller. Since only

the term in (66) coming from integral (69) has pre-factor 1
S0

while all the other terms have

pre-factors 1
S2
0
or smaller (for S0 � 1), the first term in (66) uniformly dominates all other

terms for S0 � 1:

e�1 ⇡ �
1

S0

Z 1

�1

ŵ2
0

(ŝ00 � (1 + ŝ))2
dŝ uniformly in ŝ00 � 3 for S0 � 1 . (70)

In conclusion we have

e�1 ⇠ �
1

S0

1

(ŝ00)2
< 0 in the range ŝ00 � 3 for S0 � 1 . (71)

The range of intermediate s00:

s00 2

3

4
S0, 3S0

�
or equivalently ŝ00 2


3

4
, 3

�
. (72)

Again, we consider the first integral in (66). Now we use that
ŵ2

0
(1+ŝ)2 � 0 is strictly positive

in ŝ 2
�
�1

2 , 0
�
, cf. (48), and that de⇢0

dŝ0 � 0 is strictly positive in ŝ0 > 0, cf. (63), that is, in
ŝ < ŝ00 � 1, cf. (67). We note that the two ŝ�intervals (�1

2 , 0) and (�1, ŝ00 � 1) intersect
for ŝ00 > 1

2 . Hence by continuity of the first integral in (66) in its parameter ŝ00, there exists
a universal constant C such that

Z 1

�1

ŵ2
0

(1 + ŝ)2
de⇢0
dŝ0

dŝ � 1

C
for ŝ00 2


3

4
, 3

�
.

Hence also in this range the first term in (66) dominates all other terms:

e�1 ⇡ �
1

S0

Z 1

�1

ŵ2
0

(1 + ŝ)2
de⇢0
dŝ0

dŝ uniformly in ŝ00 2

3

4
, 3

�
for S0 � 1 , (73)

and we may conclude that

e�1 ⇠ �
1

S0
< 0 in the range s00 2


3

4
S0, 3S0

�
for S0 � 1 . (74)
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Note that the above discussion on supports also yields that e�1 is supported in ŝ00 2
⇥
1
2 ,1

�
.

The range of small s00:

s00 2
✓
1

2
S0,

3

4
S0

◆
or equivalently ŝ00 2

✓
1

2
,
3

4

◆
. (75)

We would like e�1 to be strictly negative in this range for S0 � 1. Here, we encounter
the second di�culty: No matter how large � = s0 in (50) is, the behavior of �s0 near the
left edge �1

2 of its support
⇥
�1

2 , 0
⇤
(and also at its right edge 0, but there we don’t care),

is dominated by the 1
�5 ŵ0

d4ŵ0
dŝ4

-term and thus automatically is strictly positive. Taking
the e⇢(s0) ds0-average of the shifted �s0(s00 � s0) does not alter this behavior as long as e⇢ is
non-negative in [S0,1), cf. (63): e�1 is strictly positive near the left edge S0

2 of its support.
The way out of this problem is to give give up smoothness of ŵ0 near the left edge �1

2 of
its support

⇥
�1

2 , 0
⇤
. In fact, we shall first assume that ŵ0 satisfies in addition

ŵ0 =
1

2

✓
ŝ+

1

2

◆2

for ŝ 2

�1

2
,�1

4

�
. (76)

This means that ŵ0 has a bounded but discontinuous second derivative (i. e. ŵ0 2 H2,1).
This is the main reason why in (66) we expressed e�1 only in terms of up to second
derivatives of ŵ0. We argue that the so defined e�1 is, as desired, strictly negative on
s00 2 (12S0,

3
4S0] for all S0. Indeed, in view of (56), the form (76) implies, in terms of

s = s00 � s0,

�s0 = � 1

(s0)2

✓
s

s0
+

1

2

◆3

� 1

2

1

(s0)3

✓
s

s0
+

1

2

◆2

< 0 for s 2
✓
�s0

2
,�s0

4

�
. (77)

In view of (63) & (64), e⇢ � 0 is strictly positive for s0 2 (S0,1). On the other hand, it
follows from (77) that s0 7! �s0(s00� s0) is strictly negative for s00� s0 2 (� s0

2 ,�
s0

4 ], that is,

for s0 2 [43s
00, 2s00) (and supported in s0 2 [s00, 2s00]). Hence, by (45), e�1 is strictly negative

for S0 2 [43s
00, 2s00), that is, for s00 2 (12S0,

3
4S0], for any value of S0 > 0.

Now we approximate ŵ0 with a sequence of smooth functions ŵ⌫
0 in H2,2 and we call

e�⌫
1 the associated multiplier. Since e�1 involves ŵ0 only up to second derivatives (cf. (66))

then �⌫
1 converge uniformly in ŝ00 to e�1. We conclude that

e�1 < 0 for s00 2
✓
1

2
S0,

3

4
S0

◆
and S0 > 0 . (78)

Finally we fix a su�ciently large but universal S0, so that (78) together with (71) and (74)
imply our intermediate goal (62).

The choice (63)&(64) of e⇢ is not admissible, since ⇢ should be supported in (�1, lnH),
which will be achieved by cutting o↵ at scales s0 ⇠ S1. Only this cut-o↵ will ensure (46) in
the range s00 � S1. More precisely, in (45) we choose ⇢ to be e⇢(s0)⌘( s0

S1
) where e⇢ is defined

in (64), ⌘ is a mask for a smooth cut-o↵ function with

⌘(ˆ̂s0) =

(
1 ˆ̂s0  1

2

0 ˆ̂s0 � 1

)

(see Figure 5 for an illustration of ⇢). We argue that �1(s00) satisfies (46) for S1 � 1. This
will follow immediately from the three claims
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0 S0 S1
2

S1

0

1

⌘

s0

⇢

Figure 5: The measure ⇢ is constructed from e⇢ (see Figure 4) by cutting o↵ at scales
s0 ⇠ S1 .

1. �1(s00) = 0 for s00 � S1,

2. �1(s00) = e�1(s00) for s00  S1
4 ,

3. |�1 � e�1| . 1
S1

for S1
4  s00  S1.

Claims 1, 2 and 3 together with the bound (62) on e�1 imply

�1(s
00)

8
>>>>>>>><

>>>>>>>>:

= 0 for s00  S0
2

. �1 for S0
2 + 1  s00  S0

2 + 2

 0 for S0
2  s00  S1

4

. 1
S1

for S1
4  s00  S1

= 0 for s00 � S1

9
>>>>>>>>=

>>>>>>>>;

. (79)

Note that with help of the scale invariance (27), which turns into a shift invariance in the
logarithmic variables (40), we may shift �1 and its estimate (79) by S0

2 +1 to the left (and
redefine S1 � S0 noting that the universal constant S0 was fixed in the previous step)
recovering the desired form (46). Let us now establish the claims 1, 2, and 3. We start
by noting that by the change of variables (57) in conjunction with the support condition
(48) on ŝ we have the following relation between the argument s0 of ⇢ and the variable s00

of �1 in the representation (60)

8
<

:

s00  S1
4

S1
4  s00  S1

S1  s00

9
=

; )

8
<

:

s0  S1
2

S1
4  s0  2S1

S1  s0

9
=

; . (80)

Hence Claims 1 and 2 are immediate consequences of the defining properties of the cut-o↵
function ⌘. We now turn to Claim 3 and appeal to the representation (60) for �1, which
we also use for e�1 and thus obtain a representation of e�1��1 with e⇢ replaced by (1� ⌘)e⇢.
Clearly, all the terms bearing a pre-factor of 1

s002
or smaller are of higher order in the

range s00 � S1
4 . Likewise, all the terms where at least one of the derivative on the product
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(1� ⌘)e⇢ falls on the cut-o↵ 1� ⌘, thereby producing a factor 1
S1
, are of the desired order

or smaller. We are left with the terms
Z 1

�1
ŵ2
0(1� ⌘)

✓
� 1

(1 + ŝ)2
de⇢
ds0
� 1

2

1

(1 + ŝ)3
d2e⇢
ds02

+
1

(1 + ŝ)4
d3e⇢
ds03

+
1

2

1

(1 + ŝ)5
d2e⇢
ds04

◆
dŝ.

(81)

In our range S1
4  s00  S1 the integrand is supported in S1

4  s0  2S1, cf. (80). For these
arguments we have by choice (63) & (64) of the averaging function e⇢(s0) = 1 � 1

s0
S0

�1
⇡

1� S0
s0 . Hence also the terms (81) are at least of order 1

S2
1
and thus of higher order. This

establishes Claim 3 and thus (79).

3 Proof of the main theorem

Proof of Theorem 1.
We start by combining Lemmas 2 and 3. We first note that by rearranging (34) in Lemma
2 and then adding

R 0
�1 ⇠̂0 ds to both sides, while using S1 � 1, we obtain by rearranging

�
Z S1

�1
⇠̂0 ds  S1

✓
� 1

C1

Z 0

�1
⇠̂0 ds+ 1

◆
,

where we momentarily retain the value C1 of the universal constant. We now add this to
(35) in Lemma 3 in form of

�
Z �1

�S2

⇠̂0 ds  C2

✓
1

✏

Z 0

�1
⇠̂0 ds+

1

✏
+

Z �S2+1

�S2

|⇠̂0| ds+ ✏ exp(5S2)

◆

and adjust ✏ = C1C2
S1

so that the pre-factor of the transition term
R 0
�1 ⇠̂0 ds vanishes; this

choice of ✏ is consistent with ✏  1 because of S1 � 1. We end up with

�
Z S1

�S2

⇠̂0 ds . S1 +

Z �S2+1

�S2

|⇠̂0| ds+
1

S1
exp(5S2),

to which we add �
R �S2

�1 ⇠̂0 ds 
R �S2

�1 |⇠̂0| ds, obtaining

�
Z S1

�1
⇠̂0 ds .

Z �S2

�1
|⇠̂0| ds+ S1 +

1

S1
exp(5S2), (82)

where we replaced S2 by S2 + 1 (at the expense of changing the multiplicative constant
hidden in .).

In order to provide ourselves with an additional parameter S0 next to S1, S2 � 1 to
optimize in, we now appeal to a scaling argument: The change of variables (27) that leaves
the stability condition (26) invariant assumes the form of a shift

s = S0 + ŝ, ⇠̂ = exp(�3S0)
ˆ̂⇠ and thus ⇠̂0 = exp(�3S0)

ˆ̂⇠0.

on the level of the logarithmic variables (40). We apply (82), which only relied on the

stability condition, to the rescaled variables ŝ, ˆ̂⇠0 (with the upper integral boundaries Ŝ1

and �Ŝ2), and then revert to the original variables:

�
Z Ŝ1+S0

�1
⇠̂0 ds .

Z �Ŝ2+S0

�1
|⇠̂0| ds+ exp(�3S0)

✓
Ŝ1 +

1

Ŝ1

exp(5Ŝ2)

◆
.
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This estimate holds provided Ŝ1, Ŝ2 � 1. In terms of the original integral boundaries
S1 = Ŝ1 + S0 and �S2 = �Ŝ2 + S0 this reads

�
Z S1

�1
⇠̂0 ds .

Z �S2

�1
|⇠̂0| ds+ exp(�3S0)

✓
S1 � S0 +

1

S1 � S0
exp(5(S2 + S0))

◆
, (83)

which is valid provided S1 � S0 = Ŝ1 � 1, S2 + S0 = Ŝ2 � 1, and S1  lnH. Now is
the moment to optimize in S0 by choosing it such that the two last terms are balanced,
which is achieved by S1 � S0 = exp(52(S2 + S0)). In our regime S2 + S0 � 1 we have
exp(52(S2 + S0)) ⇡ exp(52(S2 + S0))� (S2 + S0) so that the above choice means S1 + S2 ⇡
exp(52(S2+S0)), which implies exp(�3S0) ⇡ exp(3S2)(S1+S2)

� 6
5 . Hence with our choice,

the entire second term in (83) is ⇡ exp(3S2)(S1 + S2)
� 1

5 :

�
Z S1

�1
⇠̂0 ds .

Z �S2

�1
|⇠̂0| ds+ exp(3S2)(S1 + S2)

� 1
5 . (84)

This estimate is valid provided S1  lnH and S1 + S2 � 1, since the latter by S1 + S2 ⇡
exp(52(S2+S0)) ensures S2+S0 � 1 and by S1�S0 = exp(52(S2+S0)) then also S1�S0 � 1.

We now make use of Lemma 1 and Lemma 4. Note that w. l. o. g. we may assume
that our background profile ⌧ satisfies on the level of its slope

R H
0 ⇠2 dz . (lnH)

1
15 next toR H

0 ⇠ dz = �1, since if such a profile would not exist, the statement of Theorem 1 would
be trivially true. Hence we are in the position to apply Lemma 4. By Lemma 1 we have
�
R lnH
S1

⇠̂0 ds . exp(�3S1). Adding this to (84), we obtain

�
Z lnH

�1
⇠̂0 ds .

Z �S2

�1
|⇠̂0| ds+ exp(3S2)(S1 + S2)

� 1
5 + exp(�3S1),

so that by (36) in Lemma 4 we get

1 .
Z �S2

�1
|⇠̂0| ds+ exp(3S2)(S1 + S2)

� 1
5 + exp(�3S1).

Clearly, the optimal choice of S1 is given by saturating the constraint in form of S1 = lnH,
which by H � 1 turns into

1 .
Z �S2

�1
|⇠̂0| ds+ exp(3S2)(lnH)�

1
5 (85)

and holds provided S2 � 0.
We finally connect this to the Nusselt number Nubf, which on the level of the slope ⇠

and the logarithmic variables turns into

Nubf �
Z H

0
(
d⌧

dz
)2 dz =

Z H

0
⇠2 dz =

Z lnH

�1
exp(�s)⇠̂2 ds. (86)

This allows us to estimate the first r. h. s. term in (85): By definition (33) of the convolution
⇠̂0 and the support property (31) of the kernel �0 we have

Z �S2

�1
|⇠̂0| ds .

Z �S2

�1
|⇠̂| ds . exp(�1

2
S2)

✓Z �S2

�1
exp(�s)⇠̂2 ds

◆ 1
2

, (87)
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where we used the Cauchy-Schwarz inequality in the last step. Inserting (86) into (87)
and then into (85), we obtain

1 . exp(�1

2
S2)Nu

1
2
bf + exp(3S2)(lnH)�

1
5 .

Finally choosing S2 � 0 such that exp(3S2) is a small multiple of (lnH)
1
5 so that the last

term can be absorbed into the l. h. s. and to the e↵ect of exp(�1
2S2) ⇠ (lnH)�

1
30 , the

above turns into the desired 1 . (lnH)�
1
30Nu

1
2
bf.

4 Proofs of lemmas

In this section we will give the proofs of the four lemmas stated in Subsection 2.2.

4.1 Approximate positivity in the bulk: proof of Lemma 1

Much of the e↵ort of this construction will consist in designing the kernel �0 in such a
way that it is both non-negative and compactly supported. Non-negativity of �0(s) and
its fast decay for s # �1 and support in s  0 will be crucial in Subsections 4.2 and 4.3,
where we will work with the convolution (33). In order to infer non-negativity, we can no
longer let k " 1 in (26) (as in the proof of Proposition 1), since the two last terms would
blow up. To quantify this qualitative observation, we restrict to k > 0 and introduce the
change of variable

z =
ẑ

k
, (88)

so that the stability condition (26) turns into

Z kH

0
⇠̂

✓
ẑ

k

◆
w

✓
� d2

dẑ2
+ 1

◆2

w̄
dẑ

ẑ

+ k3
Z kH

0

�����
d

dẑ

✓
� d2

dẑ2
+ 1

◆2

w

�����

2

dẑ + k3
Z kH

0

�����

✓
� d2

dẑ2
+ 1

◆2

w

�����

2

dẑ � 0 . (89)

We shall restrict ourselves to k with kH � 1 and real functions w(ẑ) compactly supported
in ẑ 2 (0, 1] so that the boundary conditions (25) are automatically satisfied. In particular,

an integration by parts (based on (� d2

dz2
+ 1)4 = d8

dz8
� 4 d6

dz6
+ 6 d4

dz4
� 4 d2

dz2
+ 1) in the two

last terms of (89), yielding

Z kH

0

�����
d

dẑ

✓
� d2

dẑ2
+ 1

◆2

w

�����

2

dẑ +

Z kH

0

�����

✓
� d2

dẑ2
+ 1

◆2

w

�����

2

dẑ

=

Z 1

0

"✓
d5w

dẑ5

◆2

+ 5

✓
d4w

dẑ4

◆2

+ 10

✓
d3w

dẑ3

◆2

+ 10

✓
d2w

dẑ2

◆2

+ 5

✓
dw

dẑ

◆2

+ w2

#
dẑ , (90)

shows that there are no fortuitous cancellations: Provided the multiplier � := w(� d2

dẑ2
+

1)2w of ⇠̂ is non-negligible in the sense of
R1
0 � dẑ

ẑ = O(1), the two last terms of (89) are
at least of O(k3). Hence we are forced to work with k ⌧ 1 and thus, as expected, the
conclusion is only e↵ective for z = ẑ

k � 1.
In anticipation of (33) we introduce the logarithmic variables

s = ln ẑ and s0 = � ln k , (91)
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so that the first term in the stability condition (89) can be rewritten as follows

Z kH

0
⇠̂

✓
ẑ

k

◆
w

✓
� d2

dẑ2
+ 1

◆2

w̄
dẑ

ẑ
=

Z 1

�1
⇠̂(s+ s0)w

✓
� d2

dẑ2
+ 1

◆2

w ds .

In view of this and (90), the stability condition (89) turns into: For all s0  lnH we have

Z 1

�1
⇠̂(s+ s0)w

✓
� d2

dẑ2
+ 1

◆2

w ds � � exp(�3s0)
Z 1

0

"✓
d5w

dẑ5

◆2

+ · · ·+ w2

#
dẑ . (92)

Let us consider the l. h. s. of (92) in more detail. In order to derive a result of the type
of (32), it would be convenient to have a smooth compactly supported w such that the

multiplier � = w(� d2

dẑ2
+ 1)2w is non-negative. Although we don’t have an argument, we

believe that such a w does not exist. Instead, we will construct

� a family F of smooth functions w supported in ẑ 2 (0, 1]

� and a probability measure ⇢(dw) on F which is invariant under the symmetry trans-
formation w ! ŵ defined through the change of variables ŵ(12 + z) = w(12 � z)

such that the convex combination of the multipliers

�0(ẑ) :=

Z

F
�(ẑ) ⇢(dw) , (93)

where

� := w

✓
� d2

dẑ2
+ 1

◆2

w ,

is non-negative, supported in [14 ,
3
4 ] (and non-trivial) — and thus satisfies (31) after nor-

malization. Roughly speaking, the reason why this can be achieved is the following: For
any (non-trivial) smooth, compactly supported w we have

• � = w
⇣
� d2

dẑ2
+ 1
⌘2

w is positive on average:

Z 1

0
� dẑ =

Z 1

0

"✓
d2w

dẑ2

◆2

+ 2

✓
dw

dẑ

◆2

+ w2

#
dẑ .

• � = w d4w
dz4

+ · · ·+ w2 is positive near the edge of the support of w (incidentally this

would not be true for the positive second order operator � d2

dẑ2
+ 1).

Before becoming much more specific let us address the error term stemming from the
r. h. s. of (92) for our construction, that is

Z

F

Z 1

0

"✓
d5w

dẑ5

◆2

+ · · ·+ w2

#
dẑ ⇢(dw) . (94)

The functions in our family F will be of the form

w`,ẑ0(ẑ) :=
⇣p

`
⌘3

w0

✓
ẑ � ẑ0

`

◆
, (95)
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that is, translations and rescalings of a “mask” w0. The mask w0 is some compactly
supported smooth function that we fix now, say

w0(ˆ̂z) :=

(
1p
C0

exp
⇣
� 1

(1�ˆ̂z2)2

⌘
for ˆ̂z 2 (�1, 1)

0 else

)
, (96)

and the normalization constant C0 chosen such that

Z ✓
dw0

dˆ̂z2

◆2

dˆ̂z = 1 . (97)

Provided

`  1

8
and ẑ0 2

✓
3

8
,
5

8

◆
, (98)

then w`,ẑ0 is, as desired, supported in ẑ 2 [14 ,
3
4 ]. If we choose the length-scale to be

bounded away from zero, i. e.

` � 1

C
, (99)

then the error term (94) is clearly finite, so that (32) follows from (92) via integration w.
r. t. ⇢(dw).

It thus remains to construct a probability measure ⇢ in ` and ẑ0 with (98) & (99) such
that (93) is non-negative (and non-trivial). Note that w`,ẑ0 in (95) is scaled such that the
corresponding multipliers satisfy

�`,ẑ0(ẑ) =

✓
1

`
w0

d4

dˆ̂z4
w0 � 2`w0

d2

dˆ̂z2
w0 + `3w2

0

◆✓
ẑ � ẑ0

`

◆
, (100)

and w0 is normalized in (97) in such a way that
R
w0

d4

dˆ̂z4
w0 dˆ̂z = 1. Hence for all ẑ0 we

have convergence as ` # 0

�`,ẑ0(ẑ) * �(ẑ0 � ẑ) when tested against smooth functions of ẑ0 . (101)

On the other hand we note the following: Writing w0 =
1p
C0

exp(I) with I = � 1
(1�ˆ̂z2)2

, we

have

d2w0

dˆ̂z2
=

1p
C0

"✓
dI

dˆ̂z

◆2

+
d2I

dˆ̂z2

#
exp(I),

d4w0

dˆ̂z4
=

1p
C0

"✓
dI

dˆ̂z

◆4

+ 6

✓
dI

dˆ̂z

◆2 d2I

dˆ̂z2
+ 3

✓
d2I

dˆ̂z2

◆2

+ 4
dI

dˆ̂z

d3I

dˆ̂z3
+

d4I

dˆ̂z4

#
exp(I) .

Since near the edges {�1, 1} of the support [�1, 1] of w0, i. e. for 1 � |ˆ̂z| ⌧ 1, the term⇣
dI
dˆ̂z

⌘4
� 1 dominates the other terms thanks to the quadratic blow up of I near the edges,

we have, according to (100)

�`,ẑ0(ẑ) =
1

`
w0

d4

dˆ̂z4
w0 � 2`w0

d2

dˆ̂z2
w0 + `3w2

0 ⇡
1

C0

1

`

"✓
dI

dˆ̂z

◆4

exp(2I)

#✓
z � ẑ0

l

◆
.

Hence in particular for ` = 1
8 and ẑ0 = 1

2 , w 1
8 ,

1
2
and thus � 1

8 ,
1
2
are supported in [38 ,

5
8 ],

� 1
8 ,

1
2
is positive near the edges of the support (and thus bounded away from zero at some
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small distance of the edges of the support), and trivially bounded away from �1 in the
support. The universal constants �0 > 0, �1 > 0, and 0 < C1 <1 are to quantify this:

� 1
8 ,

1
2

8
>>>>><

>>>>>:

= 0 for ẑ 62 (38 ,
5
8)

> 0 for ẑ 2 (38 ,
3
8 + �0] [ [58 � �0,

5
8)

> �1 for ẑ 2 [38 + �0,
3
8 + 3�0] [ [58 � 3�0,

5
8 � �0]

> �C1 for ẑ 2 [38 + 3�0,
5
8 � 3�0]

9
>>>>>=

>>>>>;

. (102)

We now choose a universal smooth ⇢0(ẑ0) such that

⇢0

8
><

>:

= 0 for ẑ0 62 (38 + 2�0,
5
8 � 2�0)

� 0 for ẑ0 2 [38 + 2�0,
5
8 � 2�0]

= 2C1 for ẑ0 2 [38 + 3�0,
5
8 � 3�0]

9
>=

>;
, (103)

and that is even w. r. t. ẑ0 = 1
2 . Since ⇢0 is smooth in ẑ0 we have according to (101)

Z 1

�1
�`,ẑ0(ẑ)⇢0(ẑ

0) dẑ0 ! ⇢0(ẑ) uniformly in ẑ as ` # 0 .

In view of the properties (103), there thus exists (a possibly small) `0 > 0 such that

Z 1

�1
�`0,ẑ0(ẑ)⇢0(ẑ

0) dẑ0

8
>><

>>:

= 0 for ẑ 62 (38 + �0,
5
8 � �0)

� ��1 for ẑ 2 [38 + �0,
5
8 � �0]

� C1 for ẑ 2 [38 + 3�0,
5
8 � 3�0]

9
>>=

>>;
. (104)

In view of (102), the properties (104) are made to ensure that

�0(ẑ) := � 1
8 ,

1
2
(ẑ) +

Z 1

�1
�`0,ẑ0(ẑ)⇢0(ẑ

0) dẑ0
(

= 0 for ẑ 62 (38 ,
5
8)

> 0 for ẑ 2 (38 ,
5
8)

)

defines a �0 that is strictly positive in its support and that is of the form (93) (after a
gratuitous normalization to obtain a probability measure).

An inspection of our construction shows that �0 satisfies the symmetry property in
(31).

4.2 Approximate logarithmic growth: proof of Lemma 2

In this subsection, we return to the approximate logarithmic growth of ⌧ worked out in
case of the reduced stability condition in Section 2.1. Compared to Section 2.1, we have
to work with the mollified version ⇠̂0 of ⇠̂, cf. (33) in Lemma 1, since only for the former
we have approximate positivity in the bulk according to Lemma 1. As stated in Lemma
2, we shall show that for S1 � 1 we have

Z 0

�1
⇠̂0 ds .

1

S1

Z S1

0
⇠̂0 ds+ 1. (105)

We start the proof recalling
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• The starting point for Subsection 4.1, that is (92), which we rewrite as

Z 1

�1
⇠̂(s+ s0 + s00)w

✓
� d2

dẑ2
+ 1

◆2

w ds

� � exp(�3s0 � 3s00)

Z 1

0

 ✓
d5w

dẑ5

◆2

+ · · ·+ w2

!
dẑ , (106)

for all s0  lnH, s00  0 and all smooth w compactly supported in ẑ 2 (0, 1].

• The outcome of Subsection 4.1, that is (32):

⇠̂0(s
0) =

Z 1

�1
⇠̂(s0 + s00)�0(s

00) ds00 & � exp(�3s0) (107)

for all s0  lnH.

Since the kernel �0(s00) is non-negative and compactly supported in s00 2 (�1, 0], we
obtain by testing the inequality in (106) with �0(s00) ds00:

Z 1

�1
⇠̂0(s

00)�(s00 � s0) ds00 =

Z 1

�1
⇠̂0(s+ s0)�(s) ds (108)

& � exp(�3s0)
Z 1

0

"✓
d5w

dẑ5

◆2

+ · · ·+ w2

#
dẑ ,

where we continue to use the abbreviation � for the multiplier corresponding to the generic

w: � = w
⇣
� d2

dẑ2
+ 1
⌘2

w .

We recall that in terms of w = ẑ2ŵ and s = ln ẑ, the multiplier assumes the form

� = ŵ
⇣

d4

dŝ4
+ 2 d3

ds3
� d2

ds2
� 2 d

ds

⌘
ŵ, cf. (41). The structure of the argument is similar to

the one for (30) in Section 2.1. We seek

• a family F = {ws0}s0 of smooth functions ws0 parametrized by s0 2 R and compactly
supported in ẑ 2 (0, 1], that is s = ln z 2 (�1, 0], and

• a probability measure ⇢(ds0) supported in s0 2 (�1, lnH],

such that the corresponding convex combination of multipliers shifted by s0, i. e.

�1(s
00) :=

Z 1

�1
�s0(s

00 � s0) ⇢(ds0), where �s0 := ŵs0

✓
d4

ds4
+ 2

d3

ds3
� d2

ds2
� 2

d

ds

◆
ŵs0 ,

(109)
is estimated by above as follows

�1(s
00) 

8
<

:

�1 for �1  s00  0
C1
S1

for 0  s00  S1

0 else

9
=

; , (110)

where C1( S1) is some universal constant, the value of which we want to remember
momentarily, and estimated by below

�1(s
00) & �

⇢
exp( s

00

S2
) for s00  0

1 for s00 � 0

�
, (111)
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where the exponential rate 1
S2
� 1 could be replaced by any rate larger than 3. Further-

more, we need that

Z 1

�1
exp(�3s0)

Z 1

0

"✓
d5ws0

dẑ5

◆2

+ · · ·+ w2
s0

#
dẑ ⇢(ds0) . 1 . (112)

For later use we note that in terms of ws0 = ẑ2ŵs0 , (112) turns into

Z 1

�1
exp(�3s0)

Z 1

0

"
ẑ4
✓
d5ŵs0

dẑ5

◆2

+ ẑ2
✓
d4ŵs0

dẑ4

◆2

+

✓
d3ŵs0

dẑ3

◆2

+ · · ·+ ŵ2
s0

#
dẑ⇢(ds0) . 1 .

In terms of s = ln ẑ, this means

Z 1

�1
exp(�3s0)

Z 1

0
exp(�5s)

"✓
d5ŵs0

dẑ5

◆2

+ · · ·+ ŵ2
s0

#
ds⇢(ds0) . 1 . (113)

It is almost obvious how (110), (111) & (112) allow to pass from (108) to (105) by sub-
stituting w with ws0 and integrating in ⇢(ds0). We just need to show how (110) & (111)
yield Z 1

�1
⇠̂0�1 ds

00  �
Z 0

�1
⇠̂0 ds

00 +
C1

S1

Z S1

0
⇠̂0 ds

00 + C .

Indeed, we write

Z 1

�1
⇠̂0�1 ds

00 +

Z 0

�1
⇠̂0 ds

00 � C1

S1

Z S1

0
⇠̂0 ds

00

=

Z 1

�1
(�⇠̂0)

0

@

8
<

:

�1 for �1  s00  0
C1
S1

for 0  s00  S1

0 else

9
=

;� �1

1

A ds00

(110),(107)

.
Z 1

�1
exp(�3s00)

0

@

8
<

:

�1 for �1  s00  0
C1
S1

for 0  s00  S1

0 else

9
=

;� �1

1

A ds00

(111)

.
Z 1

�1
exp(�3s00)

⇢
exp( s

00

S2
) for s00  0

1 for s00 � 0

�
ds00

S2<
1
3

. 1 .

The proof of (110) is the same as the one for (46) in Section 2.1 until the point where we
used an approximation argument to allow for the non-smooth choice (76) of ŵs0(s). This
approximation argument in H2,1 was su�cient for �1, which in view of the representation
(60) is continuous with respect to H2,2. In our situation this approximation argument is
not su�cient because we need to control the error term (113) which requires boundedness
in H5,2. We now summarize the main steps of the proof of (110), (111) and (113) leaving
out the details that can be found in Section 2.1.
Construction of the family {ws0}s0 :

• As in Section 2.1, we fix a smooth mask ŵ0 such that

ŵ0 is supported in ŝ 2

�1

2
, 0

�
and nonvanishing in

✓
�1

2
, 0

◆
, (114)

and normalize it by
R
ŵ2
0 dŝ = 1.
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• As in Section 2.1, we introduce the change of variables

s = �ŝ and ŵ� = �� 1
2 ŵ0 , (115)

and rewrite the corresponding multiplier as

�� = � 2

�2
ŵ0

dŵ0

dŝ
� 1

�3
ŵ0

d2ŵ0

dŝ2
+

2

�4
ŵ0

d3ŵ0

dŝ3
+

1

�5
ŵ0

d4ŵ0

dŝ4
, (116)

a form that highlights the desired dominance of the term � 2
�2 ŵ0

dŵ0
dŝ = � 1

�2
dŵ2

0
dŝ for

� � 1 and (heuristically) suggests the shape of the probability measure ⇢(s0) as
increasing over scales of order 1 and eventually decreasing over scales of order S1

(see (53)). We note for later reference that in these variables, (113) assumes the
form

Z 1

�1
exp(�3s0)

Z 0

�1
exp(�5�ŝ)

"
1

�10

✓
d5ŵ0

dŝ5

◆2

+ · · ·+ ŵ2
0

#
dŝ⇢(ds0) . 1 ,

and because of (114) for � � 1 follows from

Z 1

�1
exp

✓
�3s0 + 5

2
�

◆Z 1

�1

 ✓
d5ŵ0

dŝ5

◆2

+ · · ·+ ŵ2
0

!
dŝ⇢(ds0) . 1 . (117)

• In oder to obtain �1(s00) ⇠ �1 over an s00-interval of length of the order 1 followed
by �1(s00) . 1

S1
, we choose as in Section 2.1

� = s0, (118)

meaning that � is small in the foot regions and large in the plateau region (see
argument after (53), leading to this choice). Eventually we will need to modify (118)
for moderate and small s0, cf. (131). With the choice of (118), (116) turns into

�s0(s) = � 1

(s0)2

✓
dŵ2

0

dŝ

◆⇣ s

s0

⌘
� 1

(s0)3

✓
ŵ0

d2ŵ0

dŝ2

◆⇣ s

s0

⌘

+
2

(s0)4

✓
ŵ0

d3ŵ0

dŝ3

◆⇣ s

s0

⌘
+

1

(s0)5

✓
ŵ0

d4ŵ0

dŝ4

◆⇣ s

s0

⌘
. (119)

• As in Section 2.1, replacing in (109) the integration over s0 by the integration over
the argument ŝ = s

� of ŵ0 according to the nonlinear change of variable

ŝ
(115)
=

s00 � s0

�
=

s00 � s0

s0
=

s00

s0
� 1 () s0 =

s00

1 + ŝ
, (120)

�1 can be written as

�1(s
00) = �

Z 1

�1

1

(1 + ŝ)2
ŵ2
0
d⇢

ds0
dŝ� 1

(s00)2

Z 1

�1
(1 + ŝ) ŵ0

d2ŵ0

dŝ2
⇢ dŝ (121)

+
2

(s00)3

Z 1

�1
(1 + ŝ)2 ŵ0

d3ŵ0

dŝ3
⇢ dŝ+

1

(s00)4

Z 1

�1
(1 + ŝ)3 ŵ0

d4ŵ0

dŝ4
⇢ dŝ .

Construction of the probability measure ⇢(s0) ds0 supported in s0 2 (�1, lnH] :
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• As in Section 2.1, we formulate an intermediate goal: Find a measure 0  e⇢(s0)  1
but not supported in (�1, lnH) such that e�1(s00) =

R
�s0(s00 � s0)e⇢(s0) ds0 satisfies

� e�1(s
00) 2

8
<

:

[ 1C
1

(s00)2 , C
1

(s00)2 ] for S0  s00

(0, C] for 1
2S0 < s00  S0

{0} for s00  1
2S0

9
=

; . (122)

• From the representation (121) and the assumption that ⇢ varies slowly, we learn that
e�1 is negative if de⇢

ds0 �
1

(s0)2 . In Section 2.1 this motivated the following Ansatz for

e⇢ in the range 1⌧ s0 ⌧ S1: we fix a smooth mask e⇢0(ŝ0) such

e⇢0 = 0 for ŝ0  0,
de⇢0
dŝ0

> 0 for 0 < ŝ0  2, e⇢0 = 1� 1

ŝ0
for 2  ŝ0 . (123)

For S0 � 1, consider the rescaled version

e⇢(S0(ŝ
0 + 1)) = e⇢0(ŝ0) . (124)

Eventually, for (117) and departing from the argument in Section 2.1, we will have
to modify e⇢ for moderate and small s0, cf. (129).

• Finally, this e⇢ does not decrease to zero on the large scales s0 ⇠ S1, which has to
be done by cutting it o↵ as in Section 2.1, cf. (62). This allows to pass from the
intermediate goal (122) to its final version (110).

Exactly as in the proof of (62), we distinguish the regions of small, intermediate and
large s00 (note that for s00 2 (�1, S0

2 ] all the integrals in (121) vanish because the supports
of ŵ0 and ⇢ do not intersect). In Section 2.1 we established

e�1 ⇠ �
1

S0

1

(s00)2
uniformly in s00 � 3S0 for S0 � 1 (125)

and
e�1 ⇠ �

1

S0
uniformly in s00 2


3

4
S0, 3S0

�
for S0 � 1 . (126)

As we have seen in Section 2.1, in the range of small s00, i. e. s00 2
�
1
2S0,

3
4S0
�
, the

behavior of �s0 near the left edge �1
2 of is dominated by the 1

�5 ŵ0
d4ŵ0
dŝ4

-term and thus
automatically is strictly positive. In Section 2.1, we solved this problem by giving up

smoothness of ŵ0 near the left edge �1
2 of its support [�1

2 , 0] and eventually using an
approximation argument in H2,2. As discussed earlier, we cannot use this approximation
in the present situation, since we need to keep the error term (117) under control. The
remainder of this section is devoted to the way out to this dilemma and it consists of three
steps (the first one is the same as in (75) and we report it just for the sake of clarity).

• In the first stage, we give up smoothness of ŵ0 near the left edge �1
2 of its support

[�1
2 , 0]. In fact, as in Section 2.1, we shall first assume that ŵ0 is of the specific form

ŵ0 =
1

2

✓
ŝ+

1

2

◆2

for ŝ 2

�1

2
,�1

4

�
. (127)

This means that ŵ0 has a bounded but discontinuous second derivative. Our non-
smooth Ansatz together with (116) implies

�s0 = � 1

(s0)2

✓
s

s0
+

1

2

◆3

� 1

2

1

(s0)3

✓
s

s0
+

1

2

◆2

< 0 for s 2
✓
�s0

2
,�s0

4

�
. (128)
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As shown in Section 2.1, the corresponding e�1 is, as desired, strictly negative on
s00 2 (S0

2 , 34S0] for all S0 su�ciently large. We fix a su�ciently large but universal
S0 such that together with (125)& (126) we obtain

�e�1(s
00) 2

8
<

:

[ 1C
1

(s00)2 , C
1

(s00)2 ] for S0  s00

(0, C] for 1
2S0 < s00  S0

{0} for s00  1
2S0

9
=

; ,

for some generic universal constant C.

• In the second stage, we modify the definition (124) of e⇢(s0) by adding a small-
amplitude and fast-decaying (exponential) tail for s0 # �1. More precisely, we
make the Ansatz

⇡
⇢ = e⇢+ "�e⇢ with �e⇢ := exp

✓
s0

S2

◆
⌘0

✓
s0

S0

◆
, (129)

where ⌘0(ŝ0) is the mask of a smooth cut-o↵ function with

⌘0 = 1 for ŝ0  2 and ⌘0 = 0 for ŝ0 � 3 . (130)

Here 0 < S2 ⌧ 1 is some small length-scale and "⌧ 1 is some small amplitude to be
chosen below. Recall that S0 is the universal constant fixed in the first stage. Since
⇡
⇢ is no longer supported on s0 2 [S0,1) but is positive on the entire line, we need
to extend our definition of the function ŵs0 from s0 � S0 to all s0. In view of (115)
we just have to extend the definition (118) of the rescaling parameter �(s0) to

� =

⇢
s0 for s0 � S0

S0 for s0  S0

�
. (131)

We will show that we can first choose a universal 0 < S2 ⌧ 1 and then a universal

0 < "⌧ 1 such that we obtain for
⇡
�1(s00) :=

R1
�1 ��(s0)(s

00� s0)
⇡
⇢(s0) ds0 the following

estimates

�
⇡
�1(s

00) 2

8
><

>:

[ 1C
1

(s00)2 , C
1

(s00)2 ] for S0  s00

[ 1C , C] for 1
2S0 < s00  S0

[ 1C exp( s
00

S2
), C exp( s

00

S2
)] for s00  1

2S0

9
>=

>;
, (132)

for some generic universal constant C. The gain with respect to e�1 is that
⇡
�1 is

strictly negative also for s00  1
2S0 which will allow us to pass to the third stage.

• In a third stage, we smoothen out ŵ0: We define a sequence of smooth functions

{w̃↵
0 }↵#0 which approximate ŵ0 in such a way that the corresponding

⇡
�↵
1 still satisfies

(132). This takes care of (117): Since for fixed ↵ > 0 to be chosen later, (117) with
ŵ0 replaced by ŵ↵

0 reduces to

Z 1

�1
exp

✓
�3s0 + 5

2
�(s0)

◆
⇡
⇢(s0) ds0 . 1 .

For s0  S0 this follows from
⇡
⇢(s0)

(124)&(129)
= " exp

⇣
s0

S2

⌘
and �(s0)

(131)
= S0 because of

S2 ⌧ 1. For s0 � S0, this follows from
⇡
⇢ . 1 and �(s0)

(131)
= s0.
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We turn to the details for the second stage, i. e. the e↵ect of the modification
⇡
⇢(s0) of

e⇢(s0). Consider the perturbation �e�1 of the multiplier e�1:

�e�1(s
00) :=

Z 1

�1
��(s0)(s

00 � s0)�e⇢(s0) ds0 (131)
=

Z 1

�1
��(s0)(s

00 � s0) exp

✓
s0

S2

◆
⌘0

✓
s0

S0

◆
ds0 .

(133)
In order to show that the unperturbed (122) upgrades to (132), it is enough to establish

� �e�1(s
00) 2

8
>><

>>:

{0} for 3S0  s00

[�C,C] for S0  s00  3S0

[ 1C , C] for 1
2S0  s00  S0

[ 1C exp( s
00

S2
), C exp( s

00

S2
)] for s00  1

2S0

9
>>=

>>;
, (134)

for some su�ciently small but fixed S2, where C denotes a universal constant. Indeed,

choosing "⌧ 1, we see from
⇡
�1 = e�1 + "�e�1 that (134) upgrades (122) to (132).

We start the argument of (134) with the range of large s00, i. e. s00 � 3S0, and consider
the integral �e�1(s00) =

R1
�1 ��(s0)(s

00 � s0) exp(� s0

S2
)⌘0(

s0

S0
) ds0. Because of our choice (130)

of the cut-o↵ ⌘0, the second factor exp(� s0

S2
)⌘0(

s0

S0
) is supported in s0 2 (�1, 3S0]. We

note that in view of our choice (131) of the scaling factor �, ŵs0(s) and thus ��(s0)(s)

are supported in s 2 [�1
2S0, 0] for s0  S0 and in s 2 [�1

2s
0, 0] for s0 � S0. Hence

(s0, s00) 7! ��(s0)(s
00 � s0) is supported in s00 2 [s0 � 1

2S0, s0] for s0  S0 and in s00 2 [12s
0, s0]

for s0 � S0, or — equivalently — in s0 2 [s00, s00 + 1
2S0] for s00  S0

2 and in s0 2 [s00, 2s00] for

s00 � S0
2 . Since s00 � 3S0, we are in the latter case and ��(s0)(s

00 � s0) is supported in s0 2
[s00, 2s00] ⇢ [3S0,1). Hence both factors exp(� s0

S2
)⌘0(

s0

S0
) and ��(s0)(s

00 � s0) = �s0(s00 � s0)
have disjoint support in s0 and thus the integral (133) in s0 vanishes. This establishes the
first line in (134).

We now turn to the very small s00, i. e. s00  S0
2 in (134). By the above, s0 7! ��(s0)(s

00�
s0) is supported in s0 2 [s00, s00 + S0

2 ] ⇢ (�1, S0]; in this s0-range we have for the cut-o↵

function ⌘0(
s0

S0
) = 1, and ��(s0) = �S0 . Hence the definition (133) simplifies to

1

"
�e�1(s

00) =

Z 1

�1
�S0(s

00 � s0) exp

✓
s0

S2

◆
ds0 = exp

✓
s00

S2

◆Z 1

�1
�S0(s) exp

✓
� s

S2

◆
ds .

(135)
We note that by (128) we have

�S0 < 0 for s 2
✓
�S0

2
,�S0

4

◆
and supported in s 2


�S0

2
, 0

�
.
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This allows us to use Laplace’s method for S2 ⌧ 1 in the integral in (135),

�
Z 1

�1
�S0(s) exp

✓
� s

S2

◆
ds

⇡ �
Z �S0

4

�1
�S0(s) exp

✓
� s

S2

◆
ds

(128)
=

Z �S0
4

�S0
2

 
1

S2
0

✓
s

S0
+

1

2

◆3

+
1

2S3
0

✓
s

S0
+

1

2

◆2
!
exp

✓
� s

S2

◆
ds

⇡
Z 1

�S0
2

1

2S3
0

✓
s

S0
+

1

2

◆2

exp

✓
� s

S2

◆
ds

=
1

S2
0

Z 1

� 1
2

1

2

✓
ŝ+

1

2

◆2

exp

✓
�S0

S2
ŝ

◆
dŝ

=
S3
2

S5
0

exp

✓
1

2

S0

S2

◆
.

Plugging this into (135) yields as claimed in (134)

� �e�1(s
00) ⇡ S3

2

S5
0

exp

✓
1

2

S0

S2

◆
exp

✓
s00

S2

◆
uniformly in s00  S0

2
for S2 ⌧ 1 . (136)

We now treat the intermediary small values S0
2  s00  S0 in (134). This time, the function

s0 7! ��(s0)(s
00 � s0) is supported in s0 2 [s00, 2s00] ⇢ (�1, 2S0], so that also in this s0-range

we have for the cut-o↵ function ⌘0(
s0

S0
) = 1. Hence the representation simplifies to

�e�1(s
00) =

Z 1

�1
��(s0)(s

00 � s0) exp

✓
s0

S2

◆
ds0 .

On this integral, we can again use the Laplace’s method for S2 ⌧ 1: By (128) we have for
the continuous function (s0, s00) 7! ��(s0)(s

00 � s0)

��(s0)(s
00 � s0)

⇢
< 0 for s0 2 (32s

00, 2s00)
= 0 for s0 62 (s00, 2s00)

�
.

Hence we obtain as claimed in (134)

�e�1(s
00) < 0 uniformly in s00 2


S0

2
, S0

�
for S2 ⌧ 1 . (137)

We finally address the remaining intermediary range, that is, S0  s00  3S0. We clearly
have by continuity of (s0, s00) 7! ��(s0)(s

00 � s0) and ⌘0(ŝ0) that

�e�1(s
00) =

Z 1

�1
��(s0)(s

00 � s) exp

✓
s0

S2

◆
⌘0

✓
s0

S0

◆
ds0 (138)

is uniformly bounded for s00 2 [S0, 3S0]. Estimate (134) now follows from (136), (137) &
(138) for a choice of su�ciently small S2.

We now turn to the details for the third stage. We approximate ŵ0, which is non-
smooth at the left edge of its support, cf. (127), by a sequence of smooth ŵ↵

0 in such a
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way that the corresponding ��(s0) and �↵
�(s0) are close in L1. More precisely, we select a

smooth function F (w) with

F (w) = 0 for w  0 and F (w) = w for w � 1 .

For a small parameter 0 < ↵⌧ 1 we now define ŵ↵
0 (ŝ) via

ŵ↵
0 := ↵2F

✓
ŵ0

↵2

◆
(127)
= ↵2F

 
(ŝ+ 1

2)
2

2↵2

!
for ŝ 2


�1

2
,�1

4

�
;

for ŝ 62 [�1
2 ,�

1
4 ], ŵ

↵
0 is set equal to ŵ0. Clearly, the so defined ŵ↵

0 is smooth on the whole
line. We want to show that the convex combination of multipliers

⇡
�↵
1 (s

00) =

Z 1

�1
�↵
�(s0)(s

00 � s0)
⇡
⇢(s0) ds0 ,

still satisfies (132), that is

�
⇡
�↵
1 (s

00) 2

8
><

>:

[ 1C
1

(s00)2 , C
1

(s00)2 ] for S0  s00

[ 1C , C] for 1
2S0 < s00  S0

[ 1C exp( s
00

S2
), C exp( s

00

S2
)] for s00  1

2S0

9
>=

>;
, (139)

for some choice of 0 < ↵ ⌧ 1 and a generic universal constant C. For this purpose we

consider the di↵erence of the combination of multipliers, that is, �
⇡
�↵
1 :=

⇡
�↵
1 �

⇡
�1. In order

to pass from (132) to (139), it is su�cient to establish

|�
⇡
�↵
1 (s

00)| . ↵

8
><

>:

1
(s00)2 for 3S0  s00 ,

1 for 1
2S0  s00  3S0 ,

exp
⇣
s00

S2

⌘
for s00  1

2S0

9
>=

>;
. (140)

To this aim, we first observe that
����ŵ

↵
0
dkŵ↵

0

dŝk
� ŵ0

dkŵ0

dŝk

���� . ↵4�k with k = 0, · · · , 4 . (141)

which follows from the fact that

all these di↵erences are supported on the interval ŝ 2

�1

2
,�1

2
+
p
2↵

�
, (142)

and that on this interval, the two terms forming the di↵erence are by themselves of the
claimed size.

We first treat the case of large s00-values in (139), that is, of s00 � 3S0. In this case,
s0 7! ��(s0)(s

00 � s0) and s0 7! �↵
�(s0)(s

00 � s0) are supported in s0 2 [s00, 2s00]. In particular,

s0 � S0 so that �
(131)
= s0. Hence (121) takes the form

�
⇡
�↵
1 (s

00) = �
Z 1

�1

1

(1 + ŝ)2
((ŵ↵

0 )
2 � ŵ2

0)
d
⇡
⇢

ds0
dŝ

� 1

(s00)2

Z 1

�1
(1 + ŝ)

✓
ŵ↵
0
d2ŵ↵

0

dŝ2
� ŵ0

d2ŵ0

dŝ2

◆
⇡
⇢ dŝ

+
2

(s00)3

Z 1

�1
(1 + ŝ)2

✓
ŵ↵
0
d2ŵ↵

0

dŝ3
� ŵ0

d3ŵ0

dŝ3

◆
⇡
⇢ dŝ

+
1

(s00)4

Z 1

�1
(1 + ŝ)3

✓
ŵ↵
0
d2ŵ↵

0

dŝ4
� ŵ0

d4ŵ0

dŝ4

◆
⇡
⇢ dŝ .
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In particular, we also have s0 � 3S0 so that
⇡
⇢(s0)

(129)
= e⇢(s0) (123)

= 1� 1
s0
S0

�1
= 1� S0

s0�S0
 1,

and thus d⇢
ds0 =

S0
(s0�S0)2


�
3
2

�2
S0

1
(s00)2 since s0 � s00 � 3S0. Hence the above representation

yields

|�
⇡
�↵
1 (s

00)| . S0

(s00)2

Z 1

�1

��(ŵ↵
0 )

2 � ŵ2
0

�� dŝ

+
1

(s00)2

Z 1

�1
(1 + ŝ)

����ŵ
↵
0
d2ŵ↵

0

dŝ2
� ŵ0

d2ŵ0

dŝ2

���� dŝ

+
1

(s00)3

Z 1

�1
(1 + ŝ)2

����ŵ
↵
0
d3ŵ↵

0

dŝ3
� ŵ0

d3ŵ0

dŝ3

���� dŝ

+
1

(s00)4

Z 1

�1
(1 + ŝ)3

����ŵ
↵
0
d4ŵ↵

0

dŝ4
� ŵ0

d4ŵ0

dŝ4

���� dŝ .

Using (142) and inserting the estimate (141) for k = 0, 2, 3, 4 we obtain, as claimed in
(140),

|�
⇡
�↵
1 (s

00)|  C↵

✓
↵4

(s00)2
+

↵2

(s00)2
+

↵

(s00)3
+

1

(s00)4

◆
. C

↵

(s00)2
for s00 � 3S0. (143)

We now address the small s00-values, that is, s00  S0
2 . In this case, s0 7! ��(s0)(s

00 � s0)

and s0 7! �↵
�(s0)(s

00 � s0) are supported in s0 2 [s00, s00 + S0
2 ]. In particular, s0  S0 so that

�
(131)
= S0. Hence by (116) and (109) we obtain the representation

�
⇡
�↵
1 (s

00) = � 2

S2
0

Z 1

�1

✓
ŵ↵
0
dŵ↵

0

dŝ
� ŵ↵

0
dŵ↵

0

dŝ

◆
⇡
⇢ dŝ

� 1

S3
0

Z 1

�1

✓
ŵ↵
0
d2ŵ↵

0

dŝ2
� ŵ0

d2ŵ0

dŝ2

◆
⇡
⇢ dŝ

+
2

S4
0

Z 1

�1

✓
ŵ↵
0
d3ŵ↵

0

dŝ3
� ŵ0

d3ŵ0

dŝ3

◆
⇡
⇢ dŝ

+
1

S5
0

Z 1

�1

✓
ŵ↵
0
d4ŵ↵

0

dŝ4
� ŵ0

d4ŵ0

dŝ4

◆
⇡
⇢ dŝ .

Moreover, s0  S0 implies ⇢(s0) = 0 (cf. (123)&(124)), ⌘0(
s0

S0
) = 1 and (cf. (130)) thus

e⇢(s0) = " exp( s0

S2
). In terms of ŝ given by s0 = s00 � S0ŝ, this translates into e⇢(s0) =

" exp( s
00

S2
) exp(�S0

S2
ŝ). Hence the above representation specifies to

�
⇡
�↵
1 (s

00) = �"
2 exp( s

00

S2
)

S2
0

Z 1

�1

✓
ŵ↵
0
dŵ↵

0

dŝ
� ŵ0

dŵ0

dŝ

◆
exp

✓
�S0

S2
ŝ

◆
dŝ

�"
exp( s

00

S2
)

S3
0

Z 1

�1

✓
ŵ↵
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d2ŵ↵

0

dŝ2
� ŵ0

d2ŵ0

dŝ2

◆
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✓
�S0
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ŝ

◆
dŝ

+"
2 exp( s

00

S2
)

S4
0

Z 1

�1

✓
ŵ↵
0
d3ŵ↵

0

dŝ3
� ŵ0

d3ŵ0

dŝ3

◆
exp

✓
�S0

S2
ŝ

◆
dŝ

+"
exp( s

00

S2
)

S4
0

Z 1

�1

✓
ŵ↵
0
d4ŵ↵

0

dŝ4
� ŵ0

d4ŵ0

dŝ4

◆
exp

✓
�S0

S2
ŝ

◆
dŝ .
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Inserting the estimate (141) for k = 1, 2, 3, 4 and using (142) we obtain as claimed in (140)

|�
⇡
�↵
1 (s

00)| . ↵" exp

✓
s00

S2

◆
(↵3 + ↵2 + ↵1 + 1) . ↵ exp

✓
s00

S2

◆
for s00  S0

2
. (144)

We finally address the intermediate values of s00, that is, S0
2  s00  3S0. Splitting the

ds0-integrals into s0 2 [S0,1) and s0 2 (�1, S0] in order to treat �
(131)
= max{s0, S0}, we

obtain

�
⇡
�↵
1 (s

00) = � 2

s00

Z s00
S0

�1

�1

✓
ŵ↵
0
dŵ↵

0

dŝ
� ŵ0

dŵ0

dŝ

◆
⇡
⇢ dŝ

� 1
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Z s00
S0

�1

�1
(1 + ŝ)

✓
ŵ↵
0
d2ŵ↵

0

dŝ2
� ŵ0

d2ŵ0
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◆
⇡
⇢ dŝ

+
2

(s00)3

Z s00
S0

�1

�1
(1 + ŝ)2

✓
ŵ↵
0
d3ŵ↵

0

dŝ3
� ŵ0

d3ŵ0

dŝ3

◆
⇡
⇢ dŝ

+
1

(s00)4

Z s00
S0

�1

�1
(1 + ŝ)3

✓
ŵ↵
0
d4ŵ↵

0

dŝ4
� ŵ0

d4ŵ0

dŝ4

◆
⇡
⇢ dŝ

� 2

S2
0

Z 1

s00
S0

�1

✓
ŵ↵
0
dŵ↵

0

dŝ
� ŵ0

dŵ0

dŝ

◆
⇡
⇢ dŝ

� 1

S3
0

Z 1

s00
S0

�1

✓
ŵ↵
0
d2ŵ↵

0

dŝ2
� ŵ0

d2ŵ0

dŝ2

◆
⇡
⇢ dŝ

+
2

S4
0

Z 1

s00
S0

�1

✓
ŵ↵
0
d3ŵ↵

0

dŝ3
� ŵ0

d3ŵ0

dŝ3

◆
⇡
⇢ dŝ

+
1

S5
0

Z 1

s00
S0

�1

✓
ŵ↵
0
d4ŵ↵

0

dŝ4
� ŵ0

d4ŵ0

dŝ4

◆
⇡
⇢ dŝ .

Since |⇡⇢|  1 and since | 1
s00 | 

2
S0
, we obtain from using (142) and inserting the estimate

(141) for k = 1, 2, 3, 4:

|�
⇡
�↵
1 (s

00)| . ↵(↵3 + ↵2 + ↵1 + 1) . ↵ for s00 2

S0

2
, 2S0

�
. (145)

Now (143), (144) and (145) establish (140).
As in the proof of (110) in Section 2.1, in order to obtain (110) in the range s00 � S1,

we need to cut-o↵ the measure e⇢ (defined in (123)&(124) and modified in (129)) in the
range S1

2  s0  S1 so that

�1(s
00) =

Z 1

�1
�↵
�(s0)(s

00 � s0)e⇢(s0)⌘
✓

s0

S1

◆
ds0

satisfies (110). In this region (s0 � S1
2 or s00 � S1

4 ) the modification (129) of ⇢ and (131)
of �, are not e↵ective. So we may directly quote the argument of Section 2.1 for the
modification of e⇢ through ⌘. Note that this argument is una↵ected by having replaced ŵ0

by ŵ↵
0 . This concludes the proof of (110) and (111).
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4.3 Approximate positivity in the boundary layers: proof of Lemma 3

The approximate non-negativity of ⇠̂0, cf. (33), is lost in the boundary layer s ⌧ �1,
cf. (32). However, in this subsection we show that ⇠̂0 cannot be too negative in the
boundary layer provided ⇠̂0 is su�ciently small in the transition region |s| . 1. We recall
the statement of Lemma 3: For all S2 � 1 and "  1 we have

�
Z �1

�S2

⇠̂0ds .
1

"

Z 0

�1
⇠̂0ds+

1

"
+

Z �S2+1

�S2

|⇠̂0|ds+ " exp(5S2) .

With the standard rescaling (cf. proof of Theorem 1)

s  s+ S0, ⇠̂  exp(�3S0)⇠̂ and thus also ⇠̂0  exp(�3S0)⇠̂0 ,

the above turns into

�
Z �S0�1

�S2�S0

⇠̂0 ds .
1

"

Z �S0

�S0�1
⇠̂0 ds+

1

"
exp(3S0) +

Z �S2�S0+1

�S2�S0

|⇠̂0| ds+ " exp(5S2 + 3S0) .

(146)
Hence it is enough to establish the latter for some S0. In fact, we shall show that for all
S0 � 1 and S1 � S0

�
Z �S0�1

�S1

⇠̂0 ds .
1

"

Z �S0

�S0�1
⇠̂0 ds+

1

"
exp(5S0) +

Z �S1+1

�S1

|⇠̂0| ds+ " exp(5S1) , (147)

where we write S1 = S2 + S0 . Indeed, fixing an order-one S0 which is su�ciently large so
that (147) is valid, we obtain (146). Multiplying both sides of (92) by �0(s0) (see definition
(31)) and integrating in (�1,1), we deduce

Z 1

�1
⇠̂0 � ds � �C

8
<

:

Z 1

0

"
d

dẑ

✓
� d2

dẑ2
+ 1

◆2

w

#2
+

"✓
� d2

dẑ2
+ 1

◆2

w

#2
dẑ

9
=

; , (148)

for any smooth w, supported in ẑ 2 [0, 1] and satisfying the boundary conditions w =
dw
dẑ =

⇣
� d2

dẑ2
+ 1
⌘2

w = 0 at ẑ = 0, where as before we use the abbreviation

� := w

✓
� d2

dẑ2
+ 1

◆2

w

for the multiplier. This time, w will not be compactly supported in ẑ 2 (0, 1] (only in
[0, 1]) so that the boundary conditions matters. Using the fact that the function ẑ sinh ẑ
satisfies these boundary conditions, we enforce them for w by the Ansatz

w = (ẑ sinh ẑ)ŵ with ŵ = const for ẑ ⌧ 1 . (149)

As in the previous subsections, it is more telling to express (148) in terms of the s-variable
s = ln ẑ. Appealing to the representations

(�@2
ẑ + 1)2ẑ sinh ẑ

= ẑ�2
⇣
ẑ�1 sinh ẑ (@s � 2)(@s � 1) + 4 cosh ẑ(@s � 1) + 4ẑ sinh ẑ

⌘
(@s + 1)@s (150)
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and

@ẑ(�@2
ẑ + 1)2ẑ sinh ẑ

= ẑ�3
⇣
ẑ�1 sinh ẑ (@s � 3)(@s � 2)(@s � 1) + 5 cosh ẑ(@s � 2)(@s � 1)

+8ẑ sinh ẑ(@s � 1) + 4ẑ2 cosh ẑ
⌘
(@s + 1)@s (151)

(their proofs are reported in the Appendix to Section 4.3) we obtain

Z 1

�1
⇠̂0� ds � �C

Z 1

�1
exp(�5s)

"✓
d5ŵ

ds5

◆2

+ · · ·+
✓
dŵ

ds

◆2
#
ds , (152)

where according to the formula

ẑ sinh ẑ

✓
� d2

dẑ2
+ 1

◆2

ẑ sinh ẑ

=

✓
d

ds
+ 1

◆
d

ds

✓
sinh ẑ

ẑ

◆2✓ d

ds
+ 1

◆
d

ds
� 2

✓
d

ds
+ 1

◆
d

ds
,

(the argument for the formula above is given at the end of this section, see (173)), the
multiplier is given by

� = ŵ

✓
d

ds
+ 1

◆
d

ds

"✓
sinh ẑ

ẑ

◆2✓ d

ds
+ 1

◆
d

ds
� 2

#
ŵ . (153)

We now make the following Ansatz for ŵ:

ŵ =
1p
"
ŵ0 +

p
"ŵ1 , (154)

with the constraints

ŵ0 =

⇢
1 for s  �S0 � 1
0 for s � �S0

�
, ŵ1 =

⇢
const for s  �S1

0 for s � �S0 � 1

�
, (155)

so that (149) is satisfied. We don’t want to specify the value of the constant appearing in
the definition of w since it will not appear in the future estimates. The merit of the Ansatz
(154) is that, because dŵ0

ds and dŵ1
ds have disjoint support, the multiplier �, cf. (153), splits

into three parts

� =
1

"
�0 + �01 + "�1 , (156)

where

�0 := ŵ0

✓
d

ds
+ 1

◆
d

ds

"✓
sinh ẑ

ẑ

◆2✓ d

ds
+ 1

◆
d

ds
� 2

#
ŵ0,

�01 := ŵ0

✓
d

ds
+ 1

◆
d

ds

"✓
sinh ẑ

ẑ

◆2✓ d

ds
+ 1

◆
d

ds
� 2

#
ŵ1, (157)

�1 := ŵ1

✓
d

ds
+ 1

◆
d

ds

"✓
sinh ẑ

ẑ

◆2✓ d

ds
+ 1

◆
d

ds
� 2

#
ŵ1 .
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As a related side e↵ect of the disjoint support of the functions dŵ0
ds and dŵ1

ds , the error term
in (152) splits into two parts:

Z 1

�1
exp(�5s)

"✓
d5ŵ

ds5

◆2

+ · · ·+
✓
dŵ

ds

◆2
#
ds

=
1

"

Z 1

�1
exp(�5s)

"✓
d5ŵ0

ds5

◆2

+ · · ·+
✓
dŵ0

ds

◆2
#
ds (158)

+ "

Z 1

�1
exp(�5s)

"✓
d5ŵ1

ds5

◆2

+ · · ·+
✓
dŵ1

ds

◆2
#
ds . (159)

Hence in the sequel, we will have to consider five terms:

• three multiplier terms: 1
"

R1
�1 ⇠̂0�0 ds,

R1
�1 ⇠̂0�01 ds, and "

R1
�1 ⇠̂0�1 ds,

• two error terms: the ŵ0-error term (158) and the ŵ1-error term (159).

Below, we will construct ŵ1 such that the mixed expression �01, cf. (157), in the multiplier
� gives rise to the left-hand side of (147).

Before, we address the multiplier and the error term that only involve ŵ0. Clearly, ŵ0

can be chosen to satisfy S0-independent bounds: sups2R |ŵ0|, · · · , sups2R

���d
5ŵ0
ds5

��� . 1 .

Hence in view of (155), we obtain for the ŵ0-error term (158)

1

"

Z 1

�1
exp(�5s)

"✓
d5ŵ0

ds5

◆2

+ · · ·+
✓
dŵ0

ds

◆2
#
ds . 1

"
exp(5S0). (160)

Moreover, in view of (155), we obtain

|�0| 

8
<

:

0 for s  �S0 � 1
C0 for �S0 � 1  s  �S0

0 for �S0  s

9
=

; , (161)

where we momentarily want to remember the value of the universal constant C0. Since, by
(32) in Lemma 1, there exists a specific constant C1 such that

R �S0

�S0�1 ⇠̂0 ds+C1 exp(3S0) �
0, we obtain from (161)

Z �S0

�S0�1
⇠̂0(�0 � C0) ds =

Z �S0

�S0�1
(�⇠̂0)(��0 + C0) ds

(32)
 C1

Z �S0

�S0�1
exp(�3s)(��0 + C0) ds

(161)
 2C1C0

Z �S0

�S0�1
exp(�3s) ds

 C1C0 exp(3S0) , (162)

so that for the �0-multiplier term we obtain

1

"

Z 1

�1
⇠̂0�0 ds

(161)
=

1

"

Z �S0

�S0�1
⇠̂0�0 ds

 1

"

✓
C0

Z �S0

�S0�1
⇠̂0 ds+ C1C0 exp(3S0)

◆

. 1

"

✓Z �S0

�S0�1
⇠̂0 ds+ C1 exp(3S0)

◆
. (163)
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We now specify ŵ1 with the goal that �01, cf. (157), gives rise to the l. h. s. of (147).
This motivates the construction of a universal function ŵ2 with the property that

✓
d

ds
+ 1

◆
d

ds

"✓
sinh ẑ

ẑ

◆2✓ d

ds
+ 1

◆
d

ds
� 2

#
ŵ2 = 1 for s⌧ �1 , (164)

which will be carried out below in such a way that

|ŵ2|
|s|+ 1

,

����
dŵ2

ds

���� , · · ·
����
d5ŵ2

ds5

���� . 1 . (165)

Equipped with ŵ2, we now make the Ansatz of blending ŵ2 to ŵ2(�S1) for s < �S1 and
to zero for s < �S0 � 1:

ŵ1(s) = ⌘(s+ S1)⌘(�(s+ S0 + 1))ŵ2(s) + (1� ⌘(s+ S1))ŵ2(�S1) , (166)

where ⌘ is a universal cut-o↵ function with

⌘(s) =

⇢
0 for s  0
1 for s � 1

�
, (167)

so that (155) is satisfied. The main merit of Ansatz (166) & (167) is that it makes use of
(164) which by definition (157) yields

�01 =

8
<

:

0 for s  �S1

1 for � S1 + 1  s  �S0 � 2
0 for � S0 � 1  s

9
=

; . (168)

Furthermore, the estimates (165) turn into

|�01|,
|ŵ1|
S1

,

����
dŵ1

ds

���� , · · · ,
����
d5ŵ1

ds5

����  C0 . (169)

In particular, we obtain for the �01-multiplier term

C0

Z 1

�1
⇠̂0�01 ds

(168)
= C0

Z �S0�1

�S1

⇠̂0 ds+

Z �S1+1

�S1

⇠̂0(�01 � C0) ds+

Z �S0�1

�S0�2
⇠̂0(�01 � C0) ds

(169)
 C0

Z �S0�1

�S1

⇠̂0 ds+ 2C0

Z �S1+1

�S1

|⇠̂0| ds+ C1C0 exp(3(S0 + 1)) , (170)

where for
R �S0�1
�S0�2 ⇠̂0(�01 � 1) ds, we have used the same argument as in (162).

Because of �1 = ŵ1�01 another consequence of (169) and (168) is

|�1| .

8
<

:

0 for s  �S1

S1 for �S1  s  �S0 � 1
0 for �S0 � 1  s

9
=

; .

By the same argument that leads to (163), this implies for the �1-multiplier term

"

Z 1

�1
⇠̂0�1 ds . "S1

✓Z �S0�1

�S1

⇠̂0 ds+ C1 exp(3(S1 � 1))

◆
. (171)
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We finally address the ŵ1-error term (159): It follows from (155) and (169) that

"

Z 1

�1
exp(�5s)

"✓
d5ŵ1

ds5

◆2

+ · · ·+
✓
dŵ1

ds

◆2
#
ds  C" exp(5S1) . (172)

We now collect the five estimates (160), (163), (170), (171), and (172). Via (156) and
(159) we obtain from (152) that

�C0

Z �S0�1

�S1

⇠̂0 ds

. 1

"
exp(5S0) +

1

"

✓Z �S0

�S0�1
⇠̂0 ds+ C1 exp(3S0)

◆

+ C0

Z �S1+1

�S1

|⇠̂0| ds+ C0C1 exp(3S0)

+ "S1

✓Z �S0�1

�S1

⇠̂0 ds+ C1 exp(3S1)

◆
+ " exp(5S1) ,

where we recall that C1 was chosen such that the terms in the parentheses are non-negative.
Hence we may discard the term

R �S0�1
�S1

⇠̂0 ds on the r. h. s. : If it is negative we may omit
it; if it is positive, then the estimate comes for free. Dividing by C0 we thus obtain

�
Z �S0�1

�S1

⇠̂0 ds . 1

"
exp(5S0) +

1

"

✓Z �S0

�S0�1
⇠̂0 ds+ C1 exp(3S0)

◆

+

Z �S1+1

�S1

|⇠̂0| ds+ exp(3S0) + "S1 exp(3S1) + " exp(5S1) .

which implies (147) because "  1 and S1 � S0 � 1.
We derive now the operator-valued formula

ẑ sinh ẑ

✓
� d2

dẑ2
+ 1

◆2

ẑ sinh ẑ

=

✓
d

ds
+ 1

◆
d

ds

✓
sinh ẑ

ẑ

◆2✓ d

ds
+ 1

◆
d

ds
� 2

✓
d

ds
+ 1

◆
d

ds
, (173)

that is a non-homogeneous generalization of ẑ2 d4

dẑ4
ẑ2 = ( d

ds +2)( d
ds +1) d

ds(
d
ds�1) (cf. (39)).

The fairly simple structure of this formula is not a surprise: Since the functions sinh ẑ
and ẑ sinh ẑ are in the kernel of (� d2

dẑ2
+ 1)2, the functions 1 and ẑ�1 are in the kernel of

(� d2

dẑ2
+1)2ẑ sinh ẑ. In s coordinates, these functions are 1 and exp(�s), respectively. This

explains the right factor ( d
ds +1) d

ds on the r. h. s. of (173). On the other hand, the adjoint

of the l. h. s. of (173) w. r. t. to the measure

dẑ
ẑ = ds is given by ẑ2 sinh ẑ(� d2

dẑ2
+1)2 sinh ẑ

and thus has a kernel containing 1 and ẑ = exp(s). Hence the adjoint of the r. h. s. of
(173) w. r. t. ds has to contain the right factor ( d

ds � 1) d
ds , which means that the operator

itself should contain the left factor ( d
ds + 1) d

ds .
We claim that the formula (173) can be factorized into the two formulas

✓
d2

dẑ2
� 1

◆
ẑ sinh ẑ =

✓
sinh ẑ

ẑ

d

ds
+ 2 cosh ẑ

◆✓
d

ds
+ 1

◆
, (174)

ẑ sinh ẑ

✓
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dẑ2
� 1

◆
=

d

ds

✓
d

ds
+ 1

◆
sinh ẑ

ẑ
� 2 cosh ẑ

�
. (175)
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Indeed, the composition of (174) and (175) yields

ẑ sinh ẑ

✓
� d2

dẑ2
+ 1

◆2

ẑ sinh ẑ

=
d

ds

✓
d

ds
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ẑ

◆2 d

ds

✓
d
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◆

�2 d

ds
cosh ẑ
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ẑ

d

ds
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d

ds
+ 1

◆
+ 2

d

ds
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d

ds
+ 1

◆
cosh ẑ

sinh ẑ

ẑ

✓
d

ds
+ 1

◆

�4 d

ds
(cosh ẑ)2

✓
d

ds
+ 1

◆

=
d

ds

✓
d

ds
+ 1

◆✓
sinh ẑ

ẑ

◆2 d

ds
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d

ds
+ 1

◆

+2
d

ds

✓
d

ds
cosh ẑ

sinh ẑ

ẑ

◆✓
d

ds
+ 1

◆
+ 2

d

ds
cosh ẑ

sinh ẑ

ẑ
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d

ds
+ 1

◆

�4 d

ds
(cosh ẑ)2

✓
d

ds
+ 1

◆

=
d

ds

✓
d

ds
+ 1

◆✓
sinh ẑ

ẑ

◆2 d

ds

✓
d

ds
+ 1

◆

+2
d

ds

✓
d

ds
cosh ẑ

sinh ẑ

ẑ

◆
+ cosh ẑ

sinh ẑ

ẑ
� 2(cosh ẑ)2

�✓
d

ds
+ 1

◆
, (176)

where
�

d
ds cosh ẑ

sinh ẑ
ẑ

�
denotes the multiplication with the s-derivative of the function

cosh ẑ sinh ẑ
ẑ . This implies (173) since because of

✓
d

ds
cosh ẑ

sinh ẑ

ẑ

◆
= ẑ

✓
d

dẑ
cosh ẑ

sinh ẑ

ẑ

◆
= (sinh ẑ)2 + (cosh ẑ)2 � cosh ẑ

sinh ẑ

ẑ
,

the factor in the last term of (176) simplifies to

✓
d

ds
cosh ẑ

sinh ẑ

ẑ

◆
+ cosh ẑ

sinh ẑ

ẑ
� 2(cosh ẑ)2 = (sinh ẑ)2 � (cosh ẑ)2 = �1 .

We now turn to the argument for (174) and (175). We first note that (174) and (175)
reduce to

✓
d2

dẑ2
� 1

◆
ẑ exp ẑ =

✓
exp ẑ

ẑ

d

ds
+ 2 exp ẑ

◆✓
d

ds
+ 1

◆
(177)

=

✓
exp ẑ

d

dẑ
+ 2 exp ẑ

◆✓
ẑ
d

dẑ
+ 1

◆

= exp ẑ

✓
d

dẑ
+ 2

◆
d

dẑ
ẑ and (178)

ẑ exp ẑ

✓
d2

dẑ2
� 1

◆
=

d

ds

✓
d

ds
+ 1

◆
exp ẑ

ẑ
� 2 exp ẑ

�
(179)

= ẑ
d

dẑ

✓
ẑ
d

dẑ
+ 1

◆
exp ẑ

ẑ
� 2 exp ẑ

�

= ẑ
d

dẑ

✓
d

dẑ
� 2

◆
exp ẑ . (180)
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Indeed, replacing ẑ by �ẑ in (177), using the invariance of d
ds = ẑ d

dẑ under this change
of variables, and adding both identities yields (174). Likewise, (179) yields (175). The
identities (178) and (180) can easily be checked using the commutator relation d

dẑ exp ẑ =

exp ẑ
�

d
dẑ + 1

�
on their left hand sides:

✓
d2

dẑ2
� 1

◆
exp ẑ = exp ẑ

"✓
d

dẑ
+ 1

◆2

� 1

#
= exp ẑ

✓
d

dẑ
+ 2

◆
d

dẑ
and

exp ẑ

✓
d2

dẑ2
� 1

◆
=

"✓
d

dẑ
� 1

◆2

� 1

#
exp ẑ =

d

dẑ

✓
d

dẑ
� 2

◆
exp ẑ .

This concludes the argument for (173).
We turn now to the construction of the function ŵ2 with (164) and (165). We start by

reducing (164) to a second-order problem with bounded right-hand side: It is enough to
construct a universal smooth v̂2 with

"
d

ds

✓
sinh ẑ

ẑ

◆2✓ d

ds
+ 1

◆
� 2

#
v̂2 = 1 for s  �S0 (181)

and

|v̂2|,
����
dv̂2
ds

���� , · · · ,
����
d4v̂2
ds4

���� . 1 for all s . (182)

Indeed, consider the anti derivative ŵ2(s) :=
R s
0 v̂2ds0. Since

dŵ2
ds = v̂2, the estimates (182)

turn into the estimates (165). Likewise (181) turns into (164) because of

✓
d

ds
+ 1

◆"
d

ds

✓
sinh ẑ

ẑ

◆2✓ d

ds
+ 1

◆
� 2

#
d

ds
=

✓
d

ds
+ 1

◆
d

ds

"✓
sinh ẑ

ẑ

◆2✓ d

ds
+ 1

◆
d

ds
� 2

#
.

We now extend (181) to a problem on the entire line with nearly constant coe�cients.

Note that the coe�cient
�
sinh ẑ

ẑ

�2
is an entire, even function in ẑ with value 1 at ẑ = 0.

Hence for every S0 � 1, we may write

✓
sinh ẑ

ẑ

◆2

= 1� a for all s  �S0 ,

where

sup
s2R

|a|, sup
s2R

����
da

ds

���� , · · · , sup
s2R

����
d3a

ds3

���� . exp(�2S0) . (183)

Thus we construct a universal smooth v̂2(s) with


d

ds
(1� a)

✓
d

ds
+ 1

◆
� 2

�
v̂2 = 1 for all s (184)

and

sup
s2R

|v̂2|, sup
s2R

����
dv̂2
ds

���� , · · · , sup
s2R

����
d4v̂2
ds4

���� <1 . (185)

We finally reformulate (184) as a fixed point problem. Note that since d
ds(

d
ds + 1) � 2 =

( d
ds � 1)( d

ds + 2), the bounded solution of
⇥
d
ds(

d
ds + 1)� 2

⇤
v̂ = f̂ for some bounded
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continuous f̂ is given by

v̂(s) = �
Z s

�1
exp(2(s0 � s))

Z 1

s0
exp(s0 � s00)f̂(s00) ds00 ds0

= �1

3

Z 1

�1
exp(3min{s, s00}� 2s� s00)f̂(s00) ds00

= : (T f̂)(s) , (186)

defining an operator T . From its above representation with the bounded and Lipschitz-
continuous kernel exp(3min{s, s00} � 2s � s00) we read o↵ that T is a bounded operator
from C0 (the space of bounded continuous functions endowed with the sup norm) into C1

and by the solution property of T thus also into C2. Note that (184) can be reformulated
as


d

ds

✓
d

ds
+ 1

◆
� 2

�
v̂2

= 1 +
d

ds
a

✓
d

ds
+ 1

◆
v̂2

= 1 +

✓
d2

ds2
+

d

ds

◆
a� d

ds

da

ds

�
v̂2

= 1 +

✓
d

ds

✓
d

ds
+ 1

◆
� 2

◆
a� d

ds

da

ds
+ 2a

�
v̂2 . (187)

An application of the translation-invariant operator T (formally) yields

v̂2 = T 1 +

✓
a� d

ds
T
da

ds
+ 2T a

◆
v̂2 . (188)

We view this equation as a fixed-point equation for v̂2 in the Banach space C0. As
mentioned above, T and even the composition d

ds T are bounded operators (in C0). In

view of (183), the multiplication with a and with da
ds are operators with C0-operator norm

estimated by C exp(�2S0). Hence for su�ciently large S0, the operator a � d
ds T

da
ds +

2T a has norm strictly less than one. Thus the contraction mapping theorem ensures
the existence of a solution of (188), that is, a C2-solution v̂2 of (184) with sups2R |v̂2|,
sups2R |dv̂2ds |, sups2R |d2v̂2

ds2
| < 1. Finally, we obtain the rest of (185) from (183) by a

booth-strap argument.

4.4 Proof of Lemma 4

Here we give the argument for (36). We note that by definition (33) of the convolution
⇠̂0, the change of variables s = ln ẑ and s0 = � ln k already used in (88) & (91), and by
definition (40) of ⇠̂ we have
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Z lnH

�1
⇠̂0 ds

0 (33)
=

Z lnH

�1

Z 1

�1
⇠̂(s+ s0)�0(s) ds ds

0

(88)&(91)
=

Z 1

1
H

Z 1

0
⇠̂

✓
ẑ

k

◆
�0(ẑ)

dẑ

ẑ

dk

k

(40)
=

Z 1

0

Z 1

1
H

⇠

✓
ẑ

k

◆
dk

k2
�0(ẑ) dẑ

=

Z 1

0

Z Hẑ

0
⇠(z)

dz

ẑ
�0(ẑ) dẑ

=

Z H

0
⇠(z)

Z 1

z
H

1

ẑ
�0(ẑ) dẑ dz .

In view of this identity and the up-down symmetry (i. e. the symmetry of the problem

under z  H � z), (36) will follow if we show that
R H
0 ⇠ dz = �1 implies

Z H

0
⇠(z)

 Z 1

z
H

1

ẑ
�0(ẑ) dẑ +

Z 1

1� z
H

1

ẑ
�0(ẑ) dẑ

!
dz . �1 . (189)

With the normalization (31) and our assumption
R H
0 ⇠ dz = �1, (189) will follow once we

show Z H

0
⇠(z)

 
1�

Z 1

z
H

1

ẑ
�0(ẑ) dẑ �

Z

1� z
H

1

ẑ
�0(ẑ) dẑ

!
dz & �(lnH)

1
45

H
2
3

, (190)

for which we will use the second assumption on
R H
0 ⇠2 dz: Claim (190) clearly implies (189)

in the regime of H � 1. Let us reformulate (190) as

Z H

0
⇠(z)⇢(z) dz & �(lnH)

1
45

H
2
3

, (191)

where we introduced

⇢(z) := ⇢0
⇣ z

H

⌘
with ⇢0 (ẑ) := 1�

Z 1

ẑ

1

ẑ0
�0(ẑ

0) dẑ0 �
Z 1

1�ẑ

1

ẑ0
�0(ẑ

0) dẑ0 . (192)

The symmetry (31) of �0(ẑ) � 0 implies that

d⇢0
dẑ

(ẑ) =

✓
1

ẑ
� 1

1� ẑ

◆
�0(ẑ)

(
� 0 for ẑ  1

2 ,

 0 for ẑ � 1
2 ,

so that using the normalization (31) we have

⇢0 � 0 , (193)

and
⇢0  1 . (194)

Hence (191) is yet another way of expressing approximate non-negativity of ⇠, this time
in and up-down symmetric way in the bulk.

47



The strategy to establish (190) is now to construct an even (but not necessary non-
negative) mollification kernel �(z) of length-scale `⌧ H such that

(⇠ ⇤ �)(z) & � 1
`4

for z 2 (`, H � `), (195)
R H
0 (� ⇤ ⇢� ⇢)2 dz . `4

H3 for `⌧ H. (196)

We first argue how (195) and (196) imply (190). Indeed by the evenness of � we have the
representation Z 1

�1
⇠⇢ dz =

Z 1

�1
(⇠ ⇤ �)⇢ dz �

Z 1

�1
⇠(⇢ ⇤ �� ⇢) dz ,

from which, since ⇢ � 0 (cf. (193)), we get

Z 1

�1
⇠⇢ dz � inf

z2supp⇢
(⇠ ⇤ �)(z)

Z 1

�1
⇢ dz �

✓Z 1

�1
⇠2dz

Z 1

�1
(⇢ ⇤ �� ⇢)2 dz

◆ 1
2

.

We note that since �0(ẑ) is supported in [14 ,
3
4 ], cf. Lemma 1, ⇢0(ẑ) is supported in the

same interval. Hence ⇢ is supported in [14H, 34H]. Hence we may apply (195) as soon as

`  H
4 . Using (195) and (196) together with our assumption that

R
⇠2 dz . (lnH)

1
15 andR H

0 ⇢ dz  H (from (194)) we obtain the estimate

Z 1

�1
⇠⇢ dz & �H

`4
�
✓
(lnH)

1
15

`4

H3

◆ 1
2

.

The balancing choice of ` =

✓
H5

(lnH)
1
15

◆ 1
12

turns this estimate into (190).

We now turn to the construction of the mollification kernel �. We select a (nonva-
nishing) smooth and even w0(ẑ), compactly supported in ẑ 2 [�1, 1], and consider the
corresponding multiplier

�0 = w0

✓
� d2

dẑ2
+ 1

◆2

w0 .

Notice that
R H
0 �0 dẑ =

R1
�1

✓⇣
d2w0
dẑ2

⌘2
+
⇣
dw0
dẑ

⌘2
+ w2

0

◆
dẑ > 0 , so that by changing w0

by a multiplicative constant we may achieve
Z 1

�1
�0 dẑ = 1.

We change variables according to z = `ẑ and rescale the mask �0 by ` so as to preserve
its integral

`�(`ẑ) = �0(ẑ) , (197)

and note that also � is a multiplier in the sense of

� = w

✓
� d2

dẑ2
+

1

`2

◆2

w , (198)

provided w is the following rescaling of w0:

1

`
3
2

w(`ẑ) = w0(ẑ) . (199)
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For any translation z0 2 (`, H� `), the translated test function z 7! w(z� z0) is compactly
supported in z 2 (0, H) and we may thus apply the stability condition (26) with k = 1

` .
Because of (198), this yields (195):

Z H

0
⇠(z)�(z � z0) dz

� �
Z H

0

2

4`2
 

d

dz

✓
� d2

dz2
+

1

`2

◆2

w

!2

+

 ✓
� d2

dz2
+

1

`2

◆2

w

!2
3

5 (z � z0) dz

(199)
= � 1

`4

Z 1

�1

2

4
 

d

dẑ

✓
� d2

dẑ2
+ 1

◆2

w0

!2

+

 ✓
� d2

dẑ2
+ 1

◆2

w0

!2
3

5 dẑ ⇠ � 1

`4
.

We finally turn to (196). From the representation

(⇢ ⇤ �� ⇢)(z0) =

Z 1

�1
(⇢(z0 � z)� ⇢(z0))�(z) dz

� is even
=

1

2

Z 1

�1
(⇢(z0 + z) + ⇢(z0 � z)� 2⇢(z0))�(z) dz ,

we obtain the inequality

|(⇢ ⇤ �� ⇢)(z0)|  1

2
sup

����
d2⇢

dz2

����
Z 1

�1
z2|�(z)| dz

(192),(197)
=

1

H2
sup

����
d2⇢0
dẑ2

���� `
2
Z 1

�1
ẑ2|�0(ẑ)| dẑ ,

which yields (196) after integration in z0 2 [0, H].

5 Appendix

5.1 Appendix for Section 2.1

Here, we argue how to derive (59). Recall the change of variables (57) for s0  ! ŝ with
s00 as a fixed parameter. If p, p̃ denote generic polynomials of degree n, we have

1

(s0)m
dn

dŝn
(57)
=

1

(s00)n
1

(s0)m�n
(1 + ŝ)n

dn

dŝn

=
1

(s00)n
1

(s0)m�n
p((1 + ŝ)

d

dŝ
)

(57)
=

1

(s00)n
1

(s0)m�n
p(�s0 d

ds0
)

=
1

(s00)n
p̃(s0

d

ds0
)

1

(s0)m�n

=
1

(s00)n

nX

k=0

an
dk

ds0k
1

(s0)m�n�k

(57)
=

nX

k=0

an
1

(s00)m�k

dk

ds0k
(1 + ŝ)m�n�k.
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This shows that the desired relations exist in principle, it remains to determine the coe�-
cients a0, · · · , an. We start with the case m = n+1 (which yields the shortest formula). To
this purpose, we again use (1+ ŝ) d

dŝ = �s0 d
ds0 , which we rewrite as d

dŝ(1+ ŝ) = �(s0)2 d
ds0

1
s0 .

The latter yields

✓
d

dŝ
(1 + ŝ)

◆n

= (�1)ns0
✓
s0

d

ds0

◆n 1

s0
for every n 2 N ,

which implies inductively

dn

dŝn
(1 + ŝ)n = (�1)n(s0)1+n dn

ds0n
1

s0
for every n 2 N ,

and which we rewrite as (using again s00 = s0(1 + ŝ))

1

(s0)n+1

dn

dŝn
= (�1)n dn

ds0n
1

s0
1

(1 + ŝ)n
= (�1)n 1

s00
dn

ds0n
1

(1 + ŝ)n�1
. (200)

In view of the first line on the r. h. s. of (58), we need the latter transformation formula
for n = 1, 2, 3, 4. In view of the second line, we also need:

1

(s0)4
d

dŝ

(200)
= � 1

s00
1

(s0)2
d

ds0

= � 1

s00
(
d

ds0
+

2

s0
)

1

(s0)2

= � 1

(s00)3
d

ds0
(1 + ŝ)2 � 2

(s00)4
(1 + ŝ)3 , (201)

1

(s0)5
d2

dŝ2
(200)
=

1

s00
1

(s0)2
d2

ds02
1

1 + ŝ

=
1

s00

✓
d2

ds02
+ 4

d

ds0
1

s0
+ 6

1

(s0)2

◆
1

(s0)2
1

1 + ŝ

=
1

(s00)3
d2

ds02
(1 + ŝ) +

4

(s00)4
d

ds0
(1 + ŝ)2 +

6

(s00)5
(1 + ŝ)3 . (202)

5.2 Appendix for Subsection 4.3

In this subsection we derive the formulas (150) and (151). The main step is to establish

ẑ2(@4
ẑ � 2@2

ẑ + 1)ẑ sinh ẑ (203)

=
⇣
ẑ�1 sinh ẑ (@s � 2)(@s � 1) + 4 cosh ẑ(@s � 1) + 4ẑ sinh ẑ

⌘
(@s + 1)@s .

Let us give a motivation for formula (203): The factor (@s + 1)@s has to be there since
ẑ�1 = e�s and 1 are in the kernel of (@4

ẑ � 2@2
ẑ +1)ẑ sinh ẑ, which in turn follows from the

fact that sinh ẑ and ẑ sinh ẑ are in the kernel of @4
ẑ � 2@2

ẑ + 1. Note that for ẑ ⌧ 1,

ẑ�1 sinh ẑ = 1 +O(ẑ2), cosh ẑ = 1 +O(ẑ2), ẑ sinh ẑ = O(ẑ2) ,

so that for ẑ ⌧ 1, (203) collapses to the identity already used in (39)

ẑ2@4
ẑ ẑ

2 = (@s + 2)(@s + 1)@s(@s � 1) . (204)
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This identity is easily seen to be true because both di↵erential operators are of fourth
order and are homogeneous of degree zero in ẑ, because the four functions ẑ�2 = e�2s,
ẑ�1 = e�s, 1, and ẑ = es are in the kernel of both di↵erential operators, and because on
ẑ2 = e2s, both operators give 4!ẑ2 = 4!e2s.

Let us give the argument for (203). Because of the transformation properties under
ẑ  �ẑ, it su�ces to show

ẑ2(@4
ẑ � 2@2

ẑ + 1)ẑ exp(ẑ)

=
⇥
ẑ�1 exp(ẑ) (@s � 2)(@s � 1) + 4 exp(ẑ)(@s � 1) + 4ẑ exp(ẑ)

⇤
(@s + 1)@s ,

which we rearrange as

ẑ3(@4
ẑ � 2@2

ẑ + 1)ẑ exp(ẑ)

= exp(ẑ)
⇥
(@s � 2)(@s � 1) + 4ẑ(@s � 1) + 4ẑ2

⇤
(@s + 1)@s . (205)

We note that because of @ẑ exp(ẑ) = exp(ẑ)(@ẑ + 1), we have

(@4
ẑ � 2@2

ẑ + 1) exp(ẑ) = exp(ẑ)
⇥
(@ẑ + 1)4 � 2(@ẑ + 1)2 + 1

⇤

= exp(ẑ)(@4
ẑ + 4@3

ẑ + 4@2
ẑ ) ,

so that

ẑ2(@4
ẑ � 2@2

ẑ + 1)ẑ exp(ẑ) = exp(ẑ)
⇥
ẑ3@4

ẑ ẑ + 4ẑ(ẑ2@3
ẑ ẑ) + 4ẑ2(ẑ@2

ẑ ẑ)
⇤
.

Now (205) follows by inserting the formulas

ẑ@2
ẑ ẑ = (@s + 1)@s,

ẑ2@3
ẑ ẑ = (@s + 1)@s(@s � 1),

ẑ3@4
ẑ ẑ = (@s + 1)@s(@s � 1)(@s � 2) . (206)

These formulas can easily seen to be true; let us address (206): Both sides are di↵erential
operators of order 4 that are homogeneous of degree 0 in ẑ; the kernel of both operators
is spanned by the four functions ẑ�1 = e�s, 1, ẑ = es, and ẑ2 = e2s; On ẑ3 = e3s, both
operators yield 4!ẑ3 = 4!e3s.

Formulas (150) and (151) easily follow from (203). Formula (150) is an immediate
consequence of (203). Formula (151) follows from (150) using the identities @ẑ = ẑ�1@s
and

@ẑ
�
ẑ�3 sinh ẑ

�
= ẑ�3(cosh ẑ � 3ẑ�1 sinh ẑ),

@ẑ
�
4ẑ�2 cosh ẑ

�
= ẑ�3(4ẑ sinh ẑ � 8 cosh ẑ),

@ẑ
�
4ẑ�1 sinh ẑ

�
= ẑ�3(4ẑ2 cosh ẑ � 4ẑ sinh ẑ) ,

which lead as desired to

@ẑ(@
4
ẑ � 2@2

ẑ + 1)ẑ sinh ẑ

= ẑ�3
⇥
(ẑ�1 sinh ẑ ((@s � 2)(@s � 1)@s � 3(@s � 2)(@s � 1))

+ cosh ẑ (4(@s � 1)@s + (@s � 2)(@s � 1)� 8(@s � 1))

+ẑ sinh ẑ (4@s + 4(@s � 1)� 4) +ẑ2 cosh ẑ 4
⇤
⇥ (@s + 1)@s

= ẑ�3
⇣
ẑ�1 sinh ẑ (@s � 3)(@s � 2)(@s � 1) + 5 cosh ẑ(@s � 2)(@s � 1)

+8ẑ sinh ẑ(@s � 1) + 4ẑ2 cosh ẑ
⌘
(@s + 1)@s . (207)
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5.3 Notations

The spatial vector:

x = (y, z) 2 [0, L)d�1 ⇥ [0, H] ,

where H denotes the height of the container and L is the lateral horizontal cell-size.
Vertical velocity component:

w := u · ez where u = u(y, z, t) .

Background profile:

⌧ : [0, H]! R such that ⌧(0) = 1 and ⌧(H) = 1 ,

⌧ = ⌧(z) , ⇠ :=
d⌧

dz
.

Long-time and horizontal average:

hfi := lim sup
t0"1

1

t0

Z t0

0

1

Ld�1

Z

[0,L)d�1
f(t, y)dydt.

Gradient:

rf =

✓
ry

@z

◆
f .

Laplacian:

�f = �yf + @2
zf .

Horizontal Fourier transform:

Ff(k, z) =
1

Ld�1

Z

[0,L)d�1
e�ik·yf(y, z)dy ,

where k 2 2⇡
L Zd�1 is the dual variable of y.

Real part of an imaginary number : Re stands for the real part of a complex number.

Complex conjugate : Fw and F✓ are the complex conjugates of the (complex valued)
functions Fw and F✓.
Universal and specific constants: We call universal constant a constant C such that 0 <
C <1 and it only depends on d but not on H, on L and on the initial data. Throughout
the paper A . B means A  CB with C a universal constant. Likewise a condition
A⌧ B means that there exists a possibly large universal constant C such that A  1

CB.
We indicate specific constants with C0, C1, C2, · · · .
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