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Ensemble Kalman filters for reliability estimation in perfusion inference ˚

Peter Zaspel:

Abstract. We consider the solution of inverse problems in dynamic contrast–enhanced imaging by means of
Ensemble Kalman filters. Our quantity of interest is blood perfusion, i.e. blood flow rates in tissue.
While existing approaches to compute blood perfusion parameters for given time series of radiological
measurements mainly rely on deterministic, deconvolution–based methods, we aim at recovering
probabilistic solution information for given noisy measurements. To this end, we model radiological
image capturing as sequential data assimilation process and solve it by an Ensemble Kalman filter.
Thereby, we recover deterministic results as ensemble–based mean and are able to compute reliability
information such as probabilities for the perfusion to be in a given range. Our target application is
the inference of blood perfusion parameters in the human brain. A numerical study shows promising
results for artificial measurements generated by a Digital Perfusion Phantom.
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1. Introduction. Medical imaging by x-rays, magnetic resonance imaging (MRI) and
computed tomography (CT) has considerably changed medical diagnosis throughout the last
decades. Often, contrast agents, i.e. specific liquid chemicals, are injected into the patients
blood circulation during the imaging process. This leads to contrast–enhanced images of
higher contrast in some regions of the human body. In this work, we study inverse problems
for a specific MRI or CT imaging task. That is, we aim at recovering a quantity of interest
in medical imaging, which is derived by dynamic contrast–enhanced (DCE) imaging. In dy-
namic contrast–enhanced imaging, a time-dependent series of radiological images of a part of
the patients body (e.g. the brain) is taken immediately after injecting a contrast agent into
the patient’s blood circulation. By observing the time-dependent concentration evolution of
the contrast agent inside the patient’s tissue, it is possible to recover information about the
blood flow rates, i.e. the perfusion.

The image acquisition process delivers a time-discrete series of tree-dimensional (space-
discrete) concentration images c of a part of the patient body. The actual perfusion evalua-
tion is a post-processing step, being preceded by image de-noising and motion compensation.
Currently, blood perfusion is computed independently per discrete tissue volume element,
i.e. voxel, thus spatial information is mostly neglected. Variants of the indicator-dilution the-
ory [3, 6, 18] describe the concentration of a contrast agent in tissue at a given point in time
as the result of a convolution in time of the (known) time-dependent arterial or blood circu-
lation inflow concentration c

art

with an unknown tissue-dependent kernel function k. Blood
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perfusion is computed as a weighted maximum or point evaluation of the unknown kernel
function.

Current state of the art methods aim at recovering the unknown time-dependent kernel
function for given discrete measurements of the contrast agent in tissue. The kernel function is
either modeled as a parametrized analytic function [21, 12, 6] or discretized as a fully unknown
function [3, 11, 6]. Then, most approaches rely on a deterministic reconstruction of the kernel
function, involving the solution of a deconvolution problem with regularization.

One drawback of the use of motion compensation, de-noising and deterministic deconvolu-
tion lies in the loss of information on the quality of a computed solution. That is, probabilistic
information about the measurement accuracy and errors in space and time with their influence
on the exactness on the computed quantity of interest are neglected or even lost.

In this work, we propose an approach to infer perfusion in the discussed application
case while keeping the probabilistic information on the solution. Thereby, we overcome the
discussed drawback of knowledge loss. To achieve this, we model the inference problem as
a sequential data assimilation problem: First, the unknown kernel function k is described
as an unknown system state, for which a predictive time-discrete stochastic system state
model is introduced. In this model, the kernel function is represented as a random variable.
Then, a time-discrete stochastic observation model describes the relationship of the current
approximation of k and the noisy measurements delivered by medical imaging. Finally, the
well-known Ensemble Kalman filter (EnKF) [5, 19, 7, 4] is used to compute an ensemble–based
approximation of the posterior probability density function (PDF) of k given the system state
model and the (noisy) measurements. Based on this PDF, means, cumulative distribution
functions, etc. can be computed. The whole methodology is applied to (noisy) artificial
measurement data generated by a Digital Perfusion Phantom [17, 13, 9], i.e. a forward model
describing the mapping of perfusion information to medical images.

While the use of the Ensemble Kalman filter is wide-spread, its predictive quality is some-
times in question [15] and many extensions and alternatives have been developed [1, 2, 20,
22, 14, 16]. On the one hand, it relies on having a linear observation model. This will be the
case for a major part of our application. On the other hand, all random fields are required to
be Gaussian guaranteeing that the posterior PDF is Gaussian, too. We will make sure that
this requirement is fulfilled in our artificial test cases. However, in real world, this might not
be the case. Therefore, the use of e.g. ensemble particle filters, overcoming this limitation, is
future work.

To the best of our knowledge, we consider the discussed work to be a new contribution to
the field. Nevertheless, there has been previous work on the use of Ensemble Kalman filters in
the application scenario. In [10], the authors concentrate on the introduction of a tissue model
that includes space-dependent information. To achieve this, a blood flow model is combined
with an EnKF. Preliminary results for this approach are given. In contrast, we focus here
directly on the mathematical setting based on the indicator-dilution theory that is well-known
and, therefore, well accepted by radiologist. Hence, our methodology is considered as an ex-
tension to the existing standard methodology introducing the opportunity to derive statistical
information on the computed solution. In addition to the di↵erent objective compared to [10],
we also perform a large number of parameter studies and convergence tests, which are crucial
to understand the properties of the method.
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This article is organized as follows. In Section 2, we give a mathematical model for the
radiological imaging and perfusion extraction mechanism. Section 3 outlines our numerical
approach based on sequential data assimilation using EnKF. Numerical results are given in
Section 4 while Section 5 summarizes the discussed work.

2. Modeling radiological imaging and perfusion extraction. In the following, we start
by giving an abstract model for the transport of contrast agent. Then, measurements by
e.g. MRI are abstractly modeled. A concrete model for the contrast agent distribution is
given by the indicator-dilution theory. Finally, our quantity of interest, i.e. blood perfusion,
is introduced and the deterministic inference problem is summarized.

2.1. Abstract model for contrast agent transport. Shall D
tiss

Ä R3 be the tissue domain
in the human body for which we want to derive information by dynamic contrast–enhanced
imaging. We study contrast agent transport / concentrations in a time interval r0, T s Ä R
with T being the final time. The inflow concentration of the contrast agent (at some arterial
inlet) is a function

c
art

: r0, T s Ñ R•0 .

The time-continuous contrast agent concentration in tissue can be modeled as a function

c

tiss

: D
tiss

ˆ r0, T s Ñ R•0 .

Both are related to each other by an (unknown) operator B, with

(1) c

tiss

p¨, tq “ Brc
art

sptq

that models the function of the human body with respect to contrast agent transport.

2.2. Measuring contrast agent concentration in tissue. Appropriate measurement de-
vices (CT, MRI, . . . ) usually have a cuboidal measurement domain. Therefore, we start by
limiting D

tiss

to

D
meas

“

3°

d“1

r0, a
d

s

with a “ pa1, a2, a3q

J
P R3 describing the size of the measurement domain. For simplicity, we

assume the measurement domain and the area of interest to match exactly, i.e. D
meas

“ D
tiss

,
excluding cases in which some part of the measurement domain does not contain valid tissue.
Moreover, D

meas

is simplified as being stationary in time, i.e. the measurement device (or the
patient) does not move or movements are considered as measurement error.

The finite spatial resolution ND P N3 of the measurement device leads to a decomposition

of D
meas

into N
voxel

“

±3
d“1N

pdq
D volume elements or voxels of volume V

voxel

“

±3
d“1 ad{N

pdq
D

for which we obtain averaged (constant) measurements. We introduce a measurement operator
 that gives for a given exact contrast agent concentration c

tiss

and a chosen point in time
t P r0, T s a measurement vector c P RN

voxel

•0 as

c “  rc

tiss

sptq :“ ⇥rc

tiss

sptq ` Erc

tiss

sptq .
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Here, ⇥ is a noise-free measurement-operator and is usually a volumetric average over each
voxel being equivalent to a piece-wise constant approximation in space. E abstractly models
a (potentially non-linear) additive error (noise, movements, technical problems, . . . ).

To reflect time-discrete measurements, we introduce N
obs

ordered, pair-wise di↵erent dis-
crete observation times tobs

i

P r0, T s, i P t1, . . . , N
obs

u, at which measurements or observations

are done, giving observation vectors cobs
i

“

´
cobs
i,1 , . . . , c

obs

i,N

voxel

¯J
with

(2) c

obs

i

“  rc

tiss

sptobs
i

q :“ ⇥rc

tiss

sptobs
i

q ` Erc

tiss

sptobs
i

q .

2.3. Contrast agent transport model following the indicator-dilution theory. The indi-
cator-dilution theory (IDT) [3] provides a model for the time evolution of the contrast agent
concentration in a reference voxel D

voxel

Ä D
tiss

with volume V
voxel

, given the arterial inflow
c
art

. While in this standard model, the contrast agent’s concentrations are assumed to be
constant in each voxel, we first want to formulate the IDT as a space-continuous model and
then move over to a discrete description as consequence of a measurement process. Our
continuous version of the indicator-dilution theory–based transport model replaces B in (1)
with the model operator B

IDT

given via

(3) c

tiss

px, tq “ B
IDT

rc
art

,k
tiss

sptq :“

ª
T

0
c
art

p⌧qk

tiss

px, t ´ ⌧qd⌧ , px, tq P D
tiss

ˆ r0, T s .

Kernel k
tiss

: D
tiss

ˆ r0, T s Ñ R fully characterizes the properties of the tissue at point x.
In order to have an well-defined integrand, we assume k

tiss

p¨, tq “ 0 for t † 0. Note that the
model operator B

IDT

actually is independent of the spatial position.
We now apply the measurement operator  to (3) obtaining

 rc

tiss

sptq “ ⇥ rB
IDT

rc
art

,k
tiss

ss ptq ` E rB
IDT

rc
art

,k
tiss

ss ptq

“

ª
T

0
c
art

p⌧qkpt ´ ⌧qd⌧ ` E rB
IDT

rc
art

,k
tiss

ss ptq ,

where k “ pk1, . . . , kN
voxel

q

J is a vector of univariate kernel functions k
j

: r0, T s Ñ R. Since
we are interested in time-discrete observations, we limit our discussion to observation times
tobs
i

yielding

c

obs

i

“  rc

tiss

sptobs
i

q “

ª
T

0
c
art

p⌧qkptobs
i

´ ⌧qd⌧ ` "

obs

i

,

with the abbreviation "

obs

i

:“ E rB
IDT

rc
art

,k
tiss

ss ptobs
i

q. For a single voxel
j P t1, . . . , N

voxel

u, we obtain

cobs
i,j

“

ª
T

0
c
art

p⌧qk
j

ptobs
i

´ ⌧qd⌧ ` "obs
i,j

.

In case of "obs
i,j

“ 0, this boils down to the classical indicator-dilution-theory model given on a
reference voxel j. Obviously, this model is independent of the spatial position of the voxel j.
The classical theory further introduces a mean density ⇢

j

P R•0 in a voxel j, which becomes
of interest in the following subsection.
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2.4. Perfusion. The inference task discussed in this article is to compute a time-stationary
perfusion (blood flow) information p P RN

voxel given the (assumed to be exactly known) inflow
concentration c

art

and the observations cobs
i

. Formally, the blood perfusion in a given voxel j
can be evaluated as quantity of interest of the computed response function k

j

as

p
j

:“ ppk
j

q :“
1

⇢
j

k
j

p0q .

From a mathematical point of view, this quantity has nice properties, since it is just a point
evaluation of the response function. In practice [3], perfusion is however often evaluated as

p̃
j

:“ p̃pk
j

q :“
1

⇢
j

max
tPr0,T s

kptq .

For simplicity and since we use just artificial input data, we stick to the first version of this
quantity of interest.

2.5. Deterministic inference problem. To summarize this section, we can now formulate
the deterministic problem, which we aim to solve for: For given measurement time T P R,
arterial inflow c

art

: r0, T s Ñ R, measurement/observation times tobs1 † tobs2 † . . . † tobs
N

obs

and observation vectors cobs
i

P RN

voxel , i P t1, . . . , N
obs

u, we aim at computing a vector k “

pk1, . . . , kN
voxel

q

T of kernel functions k
j

: r0, T s Ñ R and the derived quantity of interest p

such that

(4) cobs
i,j

«

ª
T

0
c
art

p⌧qk
j

ptobs
i

´ ⌧qd⌧ ` "obs
i,j

, i P t1, . . . , N
obs

u, j P t1, . . . , N
voxel

u .

Clearly, this problem is underdetermined with the given requirements. Furthermore, we have
not specified the nature of the error term, yet. This is why we used the notion “«”. A much
clearer idea of the concept of a solution to this problem is given in the next section, where we
reformulate the problem as Bayesian sequential data assimilation problem.

3. Numerical approach by sequential data assimilation. In this section, we first intro-
duce a discretization for the model discussed in the last section. This is necessary, since we
will use its discretized version in context of sequential data assimilation, afterwards. An ap-
proximation to the solution of the assimilation problem is derived by the Ensemble Kalman
filter that is briefly introduced as final part of this section.

3.1. Discretized observation model. We start by discretizing (4) for fixed
i P t1, . . . , N

obs

u and fixed j P t1, . . . , N
voxel

u. Numerical quadrature using a rectangular
rule gives

cobs
i,j

« �⌧

N

q

´1ÿ

q“0

c
art

p⌧
q

qk
j

ptobs
i

´ ⌧
q

q ` "obs
i,j

.

Here, we have introduced N
q

equidistant abscissas ⌧
q

:“ q ¨ �⌧ with �⌧ :“ T

N

q

. In the

original problem setting, the observation times tobs
i

can be chosen arbitrarily. However, we
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here introduce a simplification, in which we assume the observation times to be given for a
fixed time step size �t

obs

. Moreover, this time step size shall be a multiple of �⌧ , i.e.

tobs
i

:“ i�t
obs

, �t
obs

:“ s ¨�⌧ , s P N .

Thereby, we obtain

cobs
i,j

« �⌧

N

q

´1ÿ

q“0

c
art

p⌧
q

qk
j

ptobs
i

´ ⌧
q

q ` "obs
i,j

“ �⌧

N

q

´1ÿ

q“0

c
art

pq�⌧qk
j

ppi s ´ qq�⌧q ` "obs
i,j

.

Since we now only need c
art

and k
j

being evaluated at multiples of �⌧ , we can replace them

by vectors cart “

`
c
art,0, . . . , cart,N

q

´1

˘J
, kj “

`
k
j,0, . . . , kj,N

q

´1

˘J
, with c

art,q

:“ c
art

pq�⌧q

and k
j,q

:“ k
j

pq�⌧q giving

cobs
i,j

« �⌧

N

q

´1ÿ

q“0

c
art,q

k
j,pi s´qq ` "obs

i,j

.

With the extension of k
j

ptq “ 0 for t † 0 and some index substitutions, we can finally find
(for each j, i) vectors hi,j P RN

q such that

(5) cobs
i,j

« xhi,j ,kjy ` "obs
i,j

.

Following the nomenclature of [15], we next reformulate the deterministic inference prob-
lem from Subsection 2.5 as a sequential data assimilation problem. To this end, we first
translate the involved quantities into random variables as in a Bayesian inference problem.
Thereafter, we introduce the basic concepts of sequential data assimilation.

Since the problem decouples for all voxels j P t1, . . . N
voxel

u, we keep j fixed for the rest
of this section.

3.2. Probabilistic view of inference. Let be p⌦,F ,Pq a probability space. In Bayesian
inference we want to gain information on a system state variable for given observation(s). In
our context, the state variable is the time-continuous kernel function k

j

. However, since we
want to avoid the technical di�culties of Bayesian inference in infinite-dimensional (function)
spaces, we infer the discrete kj P RN

q , instead. Therefore, we introduce a new random variable

(6) Kj : ⌦ Ñ RN

q ,

replacing the time-discrete deterministic solution vector kj . Moreover, we introduce a random
variable

Eobs

i,j

: ⌦ Ñ R ,

replacing the error term used before. Note that we assume Kj and Eobs

i,j

to be independent

random variables. Finally, we also consider each observation cobs
i,j

as random variable

Cobs

i,j

: ⌦ Ñ R ,
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which is usually called observed variable. Using (5), Cobs

i,j

is defined as

(7) Cobs

i,j

“ H
i,j

Kj ` Eobs

i,j

,

with H
i,j

P R1ˆN

q such that H
i,j

Kj :“ xhi,j ,Kjy is the (linear) forward map

H
i,j

: RN

q

Ñ R .

The aim of inference is to find a reference trajectory k

ref

j , being a realization of Kj such that
the (measured) observations fit to the observed variable.

3.3. Sequential data assimilation. Sequential data assimilation relies on an evolution
model and a forward model to obtain k

ref

j . The models run on di↵erent time scales. The
evolution model is a stochastic di↵erence equation implying a certain predicted evolution of
the system state variable over many small time steps. The forward model defines a relation-
ship between the reference trajectory (which is to be found) and the observed data at the
observation times.

3.3.1. Evolution model. The choice of an appropriate evolution model is crucial for the
quality of the solution generated by the sequential data assimilation problem. We take the
evolution model

(8) K

pn`1q
j “ K

pnq
j `

?

�⌧⌅pnq , n P t0, . . . , N
q

´ 1u

for our application, implying a time-constant evolution of the kernel-function with some noise.

In (8),
´
K

p0q
j , . . . ,K

pN
q

´1q
j

¯
is a sequence of random variables of the type given in (6) for

time steps n�⌧ . We assume K

p0q
j „ N p0,�02⌃⌅q, corresponding to a zero initial guess for

the kernel function with Gaussian noise with a covariance matrix ⌃⌅. �0 P R is a scaling
coe�cient. The ⌅pnqs are a sequence of independent identically distributed random variables
with ⌅pnq : ⌦ Ñ RN

q drawn as ⌅pnq
„ N p0,⌃⌅q. ⌃⌅ P RN

q

ˆN

q is the same covariance matrix
as before. We define ⌃⌅ by a Gaussian covariance kernel as

⌃⌅ :“
`
�
n,n

1
˘
N

q

´1
n,n

1“0
, �

n,n

1 :“ ↵e´ }⌧
n

´⌧

n

1 }22
2`2

with a parametrization in the scale ↵ P R and the correlation length ` P R. Parameters �0, ↵
and ` will be discussed in Section 4.

Note, that our evolution model can be understood as Euler-Maruyama-based discretization
of the system of stochastic ordinary di↵erential equations

(9) dKj “ dWt ,

where Wt is a vector of correlated univariate Wiener processes.
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3.3.2. Forward model. We choose (7) as our forward model, i.e. we get the forward model

(10) Cobs

i,j

“ H
i,j

kref
j,i s

` Eobs

i,j

, i P t1, . . . , N
obs

u .

The Eobs

i,j

are sequences of i.i.d. random variables for growing observation time index i following

Eobs

i,j

„ N p0,⌃Eq , i P t1, . . . , N
obs

u

with ⌃E P R the observation error variance. Due to �t
obs

“ s�⌧ , kref
j,i s

is the unknown

reference trajectory evaluated at observation time tobs
i

.

3.3.3. Assimilation task. To be concise, we here only briefly summarize the general idea
of the actual assimilation task. Further details can be found e.g. in [15].

Let ⇡
Kpi sq

j

pkjq be the probability density function of the random variable K

pi sq
j at time

tobs
i

for i P t1, . . . , N
obs

u. Then, sequential data assimilation computes posterior PDFs

⇡
Kpi sq

j

pkj |cobs1:i,jq , i P t1, . . . , N
obs

u ,

i.e. probability density functions of the random variablesKpi sq
j conditioned to the observations

cobs1,j , . . . , c
obs

i,j

. This is done using an iterative approach. It is started with ⇡K
j

pkj |cobs1:0,jq being

the PDF of Kp0q
j . Then, for a given PDF ⇡

K

ppi´1q sq
j

pkj |cobs1:i´1,jq, it iteratively

1. computes the density ⇡
Kpi sq

j

pkj |cobs1:i´1,jq and thereby solves a prediction problem for

the given evolution model (8),
2. applies Bayes theorem

⇡
Kpi sq

j

pkj |cobs1:i,jq “

⇡
C

obs

i,j

pcobs
i,j

|kjq⇡
Kpi sq

j

pkj |cobs1:i´1,jq

≥
RN

q

⇡
C

obs

i,j

pcobs
i,j

|kjq⇡
Kpi sq

j

pkj |cobs1:i´1,jqdkj

in an update step to compute ⇡
Kpi sq

j

pkj |cobs1:i,jq.

In other words, the idea is to start from knowledge (encoded in ⇡
K

ppi´1q sq
j

pkj |cobs1:i´1,jq) at

an observation time step tobs
i´1. Then, knowledge for a new observation time step is forecasted

/ predicted using only the evolution model (8). This forecast is finally corrected using the
information given by observation c

i,j

. The unknown reference trajectory is ultimately given

as mean of the marginal PDF ⇡
Kpi sq

j

pkj |cobs1:N
obs

,j

q.

3.4. Ensemble Kalman filter. The EnKF is a Monte-Carlo–type implementation of the
above discussed iterative data assimilation task. Instead of explicitly computing the posterior
PDFs ⇡

Kpi sq
j

pkj |cobs1:i´1,jq and ⇡
Kpi sq

j

pkj |cobs1:i,jq, the EnKF constructs an ensemble of realiza-

tions of random variables representing these PDFs in an empirical sense. In that context,
forecast and analysis ensembles are distinguished. As we will see, the computation of the
forecast ensemble corresponds to approximating ⇡

Kpi sq
j

pkj |cobs1:i´1,jq, while the computation of

the analysis ensemble corresponds to the approximation of ⇡
Kpi sq

j

pkj |cobs1:i,jq.
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Shall N
e

be the size of the ensembles. Then, the EnKF algorithm starts by drawing N
e

samples k

p0q,1
j , . . . ,k

p0q,N
e

j of the (initial) system state according to the PDF of Kp0q
j . The

algorithm consists of two main steps which are iteratively done for i P t1, . . . , N
obs

u.

3.4.1. Forecast step. In the forecast step, the ensemble is propagated over s steps of the
evolution model in (8) to reach the next observation time step tobs

i

“ i s�⌧ . To achieve this
realizations ⇠

m,n

for m P t1, . . . , N
e

u are drawn i.i.d. from ⌅pnq in each of the s steps. Then
the propagation equation reads for n “ 1, . . . , s as

k

pips´1q`nq,m
j “ k

pips´1q`pn´1qq,m
j `

?

�⌧⇠
m,n

, m P t1, . . . , N
e

u .

The newly generated ensemble is the forecast ensemble
´
k

f,m

j

¯
N

e

m“1
with k

f,m

j :“ k

i s,m

j .

We further compute the empirical forecast mean

(11) k̄

f

j :“
1

N
e

N

eÿ

m“1

k

f,m

j P RN

q

and the empirical forecast covariance (matrix)

(12) ⌃f

k
j

:“
1

N
e

´ 1

N

eÿ

m“1

´
k

f,m

j ´ k̄

f

j

¯ ´
k

f,m

j ´ k̄

f

j

¯J
P RN

q

ˆN

q .

3.4.2. Analysis step. In the analysis step, the Kalman filter [8, 15] is applied to the fore-

cast ensemble to compute an analysis ensemble
´
k

a,m

j

¯
N

e

m“1
representing the PDF

⇡
Kpi sq

j

pkj |cobs1:i,jq, which is conditioned to the new observation cobs
i,j

. As part of he Kalman

filter, the forward model (10) with kref
j,i s

being replaced by K

pi sq
j is evaluated. The standard

construction of the Kalman filter assumes to have a linear forward map H
i,j

. Moreover all
involved random variables shall be Gaussian. If these requirements are fulfilled, it can be
shown that the analysis ensemble follows a Gaussian distribution, too. Therefore, it can be
fully characterized by the empirical analysis mean k̄

a

j and the empirical analysis covariance
⌃a

k
j

(defined analogously to equations (11) and (12)).
Based on this observation, the core idea of the Kalman filter is to compute the empirical

analysis mean as minimization problem

k̄

a

j “ argmin
k
j

PRN

q

1

2

˜›››kj ´ k̄

f

j

›››
2
ˆ
⌃f

k

j

˙´1
`

›››H
i,j

kj ´ cobs
i,j

›››
2

⌃´1
E

¸
.

Given the linearity of H
i,j

, the minimum can be exactly computed as

k̄

a

j “ k̄

f

j ´ U
i,j

pH
i,j

kj ´ cobs
i,j

q ,

where U
i,j

is the the Kalman (update) matrix

U
i,j

“ ⌃
kf

j

HJ
i,j

pH
i,j

⌃f

k
j

HJ
i,j

` ⌃Eq

´1 .
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Instead of explicitly computing the empirical analysis mean and covariance (the latter by an
analogous update idea), the analysis part of the Ensemble Kalman Filter (with perturbed
observations) [15, Chapter 7] directly updates the forecast ensemble by

k

a,m

j “ k

f,m

j ´ U
i,j

pH
i,j

k

f,m

j ` "
i,j,m

´ cobs
i,j

q , m P t1, . . . , N
e

u ,

where t"
i,j,m

u

N

e

m“1 are realizations of Eobs

i,j

. If required, empirical versions of the analysis mean
and analysis covariance can be computed analogously to (11) and (12). Finally, the next

forecast step is initialized with k

pi sq,m
j “ k

a,m

j , that is, the analysis ensemble replaces the

system state for tobs
i

.

3.4.3. Result. For i “ N
obs

the algorithm terminates with an analysis ensemble, rep-
resenting the posterior PDF ⇡

K
pN

obs

¨sq
j

pkj |cobs1:N
obs

,j

q. The reference trajectory is extracted

as empirical mean kj :“ 1
N

e

∞
N

e

m“1 k
pN

obs

sq,m
j . The (mean) perfusion p

j

can be derived as

p
j

“

1
⇢

j

kj |

t“0. Empirical covariances are extracted as discussed before. Moreover, in case

cumulative distribution functions or other probabilistic quantities shall be extracted, a kernel-
density estimator (such as ksdensity in Matlab) is applied to the generated ensemble.

4. Numerical results. In this section, we demonstrate the beforehand introduced numer-
ical method for artificial test data. To this end, we first introduce the source of this test data,
which is a Digital Perfusion Phantom. Then, we study the numerical properties of our method
in terms of convergence, parameter dependence and input dependence in a single-voxel sce-
nario. Finally we solve the perfusion inference problem for a slice of a full (artificial) DCE
imaging brain data set.

Figure 1. The source of our artificial measurements is the Digital Brain Perfusion Phantom package [9].
A Matlab implementation of this work is available. It allows to mark brain regions with reduced and severely
reduced perfusion, here shown with the colors yellow and red. Given this data, artificial DCE imaging data is
are created.
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4.1. Digital Perfusion Phantom. Digital Perfusion Phantoms (DPP) [17, 13, 9] allow to
artificially generate DCE image data for perfusion analysis. Thereby new algorithms can be
tested on such data without the additional constraints of true patient data. Perfusion Phan-
toms basically solve the forward problem, which involves to transform perfusion information
into contrast agent concentrations. In our work, we use the Digital Brain Perfusion Phantom
package [9], which is a Matlab implementation of the model introduced in [17]. The software
provides a radiological image of a brain. A user interface, see Figure 1, allows to mark regions
of reduced and strongly reduced perfusion. It is possible to control the observation snapshot
time step size (i.e. �t

obs

) of the artificial radiological imaging process. The measurement time
is T “ 49. The resolution of the artificially generated data is ND “ p256, 256, 256q. The
arterial input function is provided as discrete evaluations c

art

ptinput
i

q with tinput
i

“ 2 i. The
Perfusion Phantom package uses a piecewise cubic spline interpolant through this data as exact
c
art

, see Figure 2a. During the artificial imaging process, each snapshot (i.e. cobs
i

) is written
in a separate file. A baseline for the radiological images is written, too. It contains the mea-
surement data without contrast agent concentrations. In our examples, we always subtract
this baseline data from the artificial measurements to obtain just the necessary concentration
information.

(a) arterial input function (b) concentration measurement in single voxel

Figure 2. We use idealized concentration functions for one tissue voxel in order to test the implemented
numerical method.

We perform a major part of our numerical tests on a single reference voxel which has been
chosen arbitrarily as p100, 130, 150q. The observation data for that single voxel is stored with
a time step size of �t

obs

“ 0.25. This data is interpolated by a piecewise cubic spline to obtain
measurement data at arbitrary points in time for our initial tests, cf. Figure 2b. Towards the
end of this section, results for a full slice p¨, ¨, 150q of the full data set are discussed.

We start by showing a series of numerical results obtained for given artificial input without
noise. These results will give an insight into the choice of the di↵erent parameters of the
method and into the convergence properties of the method. Noisy data is discussed afterwards.
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4.2. Data assimilation process. Let us first have a look at the evolution of the analysis
ensemble during the sequential data assimilation process. We have chosen an observation time
step size of �t

obs

“ 0.25, a quadrature step size of �⌧ “ 0.0625 (i.e. s “ 4) and an ensemble
size of N

e

“ 5000. For a meaningful definition of the (co-)variances, we have to account for
the scales of the involved quantities. By experiments, we found out that the kernel function k

j

has a magnitude of about 10´3. Therefore, the scaling ↵ of the covariance matrix ⌃⌅ should
be relative to a standard deviation of 10´3. With this in mind, we set ↵ “ p10´3

q

2 0.001. This
corresponds to a relative variance of 0.001. The correlation length is set to ` “ 2. For the

covariance of the initial state K

p0q
j , we impose an additional scaling of �0 “ 100, accounting

for a much larger uncertainty in the initial state. The observation error variance also needs
a problem-adapted scaling. Since the concentration measurements are in the range of 10, we
shift the (co-)variance by a standard deviation of 10. Using a relative variance of 0.0001, we
obtain ⌃E “ 102 0.0001.

Figure 3. During the sequential data assimilation process, the analysis ensemble and thereby the empirical
mean of the kernel function gets continuously updated, here shown for di↵erent update time steps.

In Figure 3, we show the evolution of the empirical mean k

a

j , i.e. the prediction for the
unknown kernel function, for di↵erent observation times during the operation of the EnKF.
Note that a scaled evolution of k

a

j at t “ 0 corresponds to the (scaled) unknown perfusion

p̄. Therefore, discussing numerical results for k

a

j is equivalent to discussing results for p̄.
The major information gain for the predicted result is in time interval r10, 20s. This is the
time interval in which the concentration at the arterial inlet grows. Afterwards, the data
assimilation process only gains very little more information and converges towards the final
result.

4.3. Convergence in the ensemble size. Next, we discuss the convergence of the empirical
mean of kj with respect to the ensemble size N

e

. In the following, we will always concentrate
on the last analysis ensemble obtained after assimilating the observation for t

obs

“ 49. To
shorten notation, we skip additional indices, indicating this and call the empirical mean of
this analysis ensemble k̄j .

Our convergence study with respect to the ensemble size uses the same parameters as in the
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(a) ensemble estimates for k̄
j

(b) convergence wrt. overkill solution

Figure 4. With growing ensemble size, the empirical estimate for the mean of the response / kernel function
gets more accurate (left) and converges with order 1

2 (right).

previous paragraph. However, this time, we change the size of the ensemble. In Figure 4a, we
show the empirical mean kj for ensemble sizes N

e

P t64, 512, 4096, 16384u. The convergence
in the error of the empirical mean is shown in Figure 4b. Here, we define the solution for

N
e

“ 16384 as overkill solution and show convergence in the relative `2 error
}k

j

´koverkill

j

}
`2

}koverkill

j

}
`2

towards this solution. The results indicate a convergence order of approximately 1
2 . This is

the expected order of convergence, since we use a Monte Carlo-type estimator.

4.4. Convergence in the time sub-steps �⌧ . In the following, we have a look at conver-
gence with respect to the quadrature and evolution model step size �⌧ . Here, we try to avoid
the use of an overkill solution. To achieve this, we (discretely) fold the empirical mean k̄j

againts the arterial input function c
art

, i.e. we transfer the prediction for kj into observation
space. In observation space, we have the analytically given artificial measurement result c

tiss

,
which we use to compare c

art

˚ k̄j against. In our numerical study, we vary the sub-step
number s, i.e. change �⌧ , while keeping all other parameters as in Subsection 4.2.

In Figure 5a, we visually compare the results obtained for an increasing number of sub-
steps s (i.e. decreasing �⌧). The convergence plot in Figure 5b further shows the error
reduction in the relative `2 norm for decreasing �⌧ if we compare the convolved mean es-
timate k̄j with the real observation data. The results indicate approximately first order
convergence. In fact, parameter �⌧ influences the Euler-Maruyama approximation of the
continuous stochastic di↵erential equation (9) and the quadrature of the convolution integral.
While the Euler-Maruyama method is known to have halve order convergence, the rectangular
rule is convergent of second order for su�ciently smooth integrands. The observed conver-
gence behavior strongly depends on the dominance of one of the errors (time-integration,
quadrature). The observed first order seems to indicate that the quadrature error for the
convolution integral is the dominant one. Nevertheless, full second order convergence is not
achieved. This observation is clearly a pre-asymptotic and strongly problem-dependent result.
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(a) k̄j in observation space (b) convergence

Figure 5. A smaller time step size for the quadrature / system state model leads to convergence of k̄
j

in
observation space towards the measurement concentration c

tiss

.

4.5. Influence of the correlation length in the system state noise. Our next study shall
give an insight into the influence of the system state model, more specifically the influence
of the correlation length ` of the random variable ⌅ on the inferred solution. To study the
influence of the correlation length, we keep the parameters as in Subsection 4.2 and apply
di↵erent correlation lengths ` P t0.125, 0.5, 2u. The results of this numerical study are given
in Figure 6. Here, the infered kernel function k̄j is shown for di↵erent correlation lengths. For
growing correlation length the result gets less noisy. Hence, a larger correlation lengths has a
smoothing e↵ect on the solution. Since, in general, we seek for smooth solutions, we always
choose ` “ 2.

Figure 6. Longer correlation lengths ` impose a higher smoothness on the ensemble estimate.

4.6. Influence of the number of observations. Our final test with noise-free model data
on a single voxel highlights the influence of a change of the observation time step size �t

obs

,
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Figure 7. The more observation samples are taken, the more reliable the estimate of the solution. Hence,
the estimated PDF for k|

t“0 shows a smaller variance for smaller observation time steps �
t

obs

.

i.e. a change in the number of observations that are made during the imaging process. To test
this, we take the same parameters as in Subsection 4.2, but change the observation time step
size as �t

obs

P t0.125, 0.25, 0.5, 1.0u while keeping �⌧ constant. The quantity that we study
is the computed probability density function for k|

t“0, hence a scaled version of p̄. We use
the kernel density estimator ksdensity in Matlab to reconstruct a continuous PDF for the
ensemble data.

The results of this study can be seen in Figure 7. Here, we make two observations. First,
the mean of the PDF still changes for growing number of measurements, converging towards
a true solution. Second, and more important, we observe a variance reduction if we increase
the number of measurements. Clearly, this is the kind of information that we are interested
in, since we thereby obtain confidence information for our solution.

4.7. Inference from noisy data. Until now, we considered noise-free input data. Instead,
we now discuss the same one-voxel input as before, but add artificial noise as

cnoisy
i,j

“ cobs
i,j

` �
i,j

, i P t1, . . . , N
obs

u ,

where the �
i,j

are realizations of i.i.d. random variables ⇤
i,j

: ⌦ Ñ R, ⇤
i,j

„ N p0,⌃⇤q with
⌃⇤ P R the variance of the noise.

We use a series of test cases with ⌃⇤ “ 102↵
rel

and ↵
rel

P t2´10, 2´8, 2´6, 2´4, 2´2
u. Hence,

↵
rel

corresponds to the relative variance with respect to the magnitude of the measurements.
We keep a major part of the parameters from Subsection 4.2. However, we change the fixed
observation error variance ⌃E , to a problem-adapted one, namely, i.e. ⌃E “ ⌃⇤. Note that
in practice, one would empirically estimate the noise in the measurement data and would
set ⌃E accordingly. Another change concerns the number of samples N

e

in the EnKF. As
our experiments showed, the size of the ensemble has to be increased for higher variances.
This is well covered by classical Monte-Carlo theory. Therefore, we set N

e

“ 10000 for
↵
rel

P t2´10, 2´8, 2´6
u while we use N

e

“ 60000 and N
e

“ 100000 for ↵
rel

“ 2´4 and
↵
rel

“ 2´2, respectively.
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(a) (b)

Figure 8. Even for stronger noise on the input data the inference of k̄
j

is acceptable, as long as the
measurement variance ⌃E is chosen appropriately. Here, we compare the noisy input cnoisy

j

k̄
j

in observation

space for ↵2
rel

“ 0.015625 (left) and ↵2
rel

“ 0.0625 (right).

Figure 9. The proposed method is pretty robust with respect to noise. This can be seen, if we study the
estimated probability density functions for k|

t“0. With growing noise variance, the empirical PDF estimate still
recovers the mean appropriately. Extreme noise variances degenerate the result, as expected.

In Figure 8, we give two examples of noisy inputs for ↵2
rel

“ 0.015625 and ↵2
rel

“ 0.0625. In
the latter case, the original input signal is already severely degenerated. The predicted mean
solutions in observation space c

art

˚ k̄j are also given in Figure 8. In fact, the reconstructed
solution is almost not influenced for ↵2

rel

“ 0.015625 and gets a little distorted for stronger
noise. In Figure 9, we compare estimates of the PDF for k|

t“0 for growing noise in the data.
Since we appropriately account for the noise in the input, the mean is almost identical up
to ↵2

rel

“ 0.015625. For higher relative noise variances, the probability density functions
still cover the general tendency of the results. Note that the variance in the solutions grows
for larger noise in the input. This e↵ect is not primarily caused by the noisy input, but by
the imposed observation error E

i,j

, which acts here as a regularization for the noisy input.
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Nonetheless, as long as the observation error variance is set in the range of the input noise
variance, the variance in the solution correctly represents the variance coming from the noise
in the input.

4.8. Application problem. We finally apply the beforehand studied method to a full ap-
plication problem given by the Digital Brain Perfusion Phantom introduced in Subsection 4.1.
We use the slice p¨, ¨, 150q with the choice of regions with reduced and severely reduced per-
fusion as in Figure 1. We discuss a result for a large observation time-step size �t

obs

“ 1.0,
a highly resolved quadrature with �⌧ “ 0.0625 and a noise with variance ⌃⇤ “ 102 0.015625.
The observation error variance is adapted as ⌃E “ ⌃⇤. All other parameters are kept as in
Subsection 4.2.

4.8.1. Storage and performance considerations. Storing and computing the ensembles
for the discussed test cases is a rather challenging task. Just considering the analysis ensemble
for a single slice, we need to store for each of the 256ˆ 256 voxels 5000 realizations of discrete
kernel functions kj given via N

q

“ 785 double precision values leading to a total storage
requirement of

256 ˆ 256 ˆ 5000 ˆ 785 ˆ 8 Bytes « 1834 GBytes .

All our calculations are done in Matlab. We always compute 8 rows of the final 256ˆ 256
slice at the same time and reuse the random input for each voxel in order to reduce the
runtime. Note that especially sampling from ⌅pnq is very computationally demanding. In
order to do the calculations, we need constant access to way more than 64 GBytes of RAM.
Due to storage und memory requirements, we to use nodes of the cluster Rhea at Oak Ridge
National Lab to compute the full problem. Each node has 128 GBytes of RAM and a dual
Intel R� Xeon R� E5-2650 CPU with 16 cores. To compute 8 lines, i.e. results for 8ˆ256 “ 2048
voxels, we need about 3 hours and 15 minutes, noting that Matlab uses approximately 14 cores
of the full machine. The total computing time (with respect to one node of Rhea) is thereby
roughly 104 hours or about 4.3 days on a single machine.

Even though this amount of computing time seems to be rather prohibitive for the specific
application case, it is clear that the discussed algorithm is extremely easy to parallelize.
Especially, it seems to be very well suited to a parallelization on graphics processing units
(GPUs) or other many-core hardware, as long as the results of the calculation are constantly
streamed out to CPU memory. An appropriate parallel implementation is future work.

4.8.2. Quantities of interest. In our application examples, we consider the approximation
of probabilistic quantities of interest in connection with the perfusion p

j

:“ ppk
j

q “

1
⇢

j

kp0q.

Besides of the mean p
j

we are especially interested in probabilities for p
j

to be in a given
range. To be more specific, we compute the probabilities

Ppp
j

† 10q , Pp20 § p
j

† 40q , Ppp
j

• 50q ,

noting that p
j

P r0, 70s in the case of the Digital Brain Perfusion Phantom data that we
consider. These quantities give probabilities for low, medium and high perfusion in some
region of the brain. Given the final analysis ensemble for k

j

, it is easy to compute the above
quantities by using the kernel density estimator ksdensity. The latter one can compute a
cumulative distribution function (CDF) for each voxel, which is finally evaluated appropriately.
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(a) Approximated perfusion p̄ (b) Noise-free reference perfusion given by the DPP

Figure 10. Our approximation method recovers the reference perfusion result (right) as mean of the ensem-
ble in the Ensemble Kalman Filter. Both results match well, even though we introduced a considerable amount
of artificial noise.

Figure 11. The advantage of the proposed method is that we are now also able to compute probabilistic
information for the solution, here shown by plotting the probability Ppp

j

† 10q. Hence, the depicted results give
the space-dependent probability for low († 10) perfusion.

4.8.3. Discussion of results. An important advantage of the use of a Digital Perfusion
Phantom is the existence of a reference solution to compare with. The DPP software that we
use stores the reference solution together with the other generated data. In Figure 10b, we
show the reference solution for our full application test case. The approximated result of our
application example study, i.e. p̄, is shown in Figure 10a. As expected from our single-voxel
study, the inferred perfusion matches the exact perfusion result well. Note that this is the
case even though we add a considerable amount of noise on the measurements.

As discussed before, we can use the ensemble-based estimate of the posterior probability
density function to extract a wide range of probabilistic information on the inferred solution.
This is the main result of this work. To exemplify this, we compute space-dependent prob-
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(a) Pp20 § p
j

† 40q (b) Ppp
j

• 50q

Figure 12. Based on the results of the EnKF, it is easily possible to identify regions of high probability to
have medium (left) and high (right) perfusion.

abilities for low (Figure 11), medium (Figure 12a) and high (Figure 12b) perfusion ranges,
cf. Subsection 4.8.2. In case of Figure 11, we e.g. can now easily identify ranges of low perfusion
and even can give a probability for this result.

In general, we claim that this probability information or derived probabilistic quantities
(variance, percentiles, etc.) can give domain-experts in radiology a much clearer information
on the reliability of the inferred estimates.

5. Summary. In this work, we have discussed the use of Ensemble Kalman filters for se-
quential data assimilation in order to infer probabilistic information on (blood) perfusion in
tissue for given measurements from dynamic contrast–enhanced imaging. The deterministic
inference of perfusion is well-known in the field of radiological imaging. However, to the best
of the author’s knowledge, the new contribution is the approximation of PDFs for the perfu-
sion given (noisy) measurements. EnKF are well-known in inference for dynamical systems
and partial di↵erential equations with stochastic coe�cients. Hence, modeling the dynamic
contrast–enhanced imaging process as sequential data assimilation in a Bayesian context was
the main contribution of the work. Given the ensemble-based approximation of the PDF, we
could compute probabilistic quantities such as probabilities for perfusion parameter ranges.

The new approach was first investigated for a single-voxel example with respect to con-
vergence and parameter influence. Afterwards, it was applied to artificial application data
generated by a Digital Perfusion Phantom, i.e. a model for deriving DCE image data for given
perfusion data. Overall, the e↵ectiveness of the method could be demonstrated, showing em-
pirical convergence results and appropriate approximations of probabilistic information. The
use of advanced filtering techniques and an e�cient parallel implementation are future work.
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