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Abstract

A nonlinear optimization method is proposed for inverse scattering problems in
the frequency domain, when the unknown medium is characterized by one or several
spatially varying parameters. The time-harmonic inverse medium problem is formu-
lated as a PDE-constrained optimization problem and solved by an inexact truncated
Newton-type method combined with frequency stepping. Instead of a grid-based dis-
crete representation, each parameter is projected to a separate finite-dimensional
subspace, which is iteratively adapted during the optimization. Each subspace is
spanned by the first few eigenfunctions of a linearized regularization penalty func-
tional chosen a priori. The (small and slowly increasing) finite number of eigen-
functions effectively introduces regularization into the inversion and thus avoids the
need for standard Tikhonov-type regularization. Numerical results illustrate the ac-
curacy and efficiency of the resulting adaptive eigenspace regularization for single
and multi-parameter problems, including the well-known Marmousi problem from
geophysics.

Keywords: Inverse medium problem, Helmholtz equation, full waveform inver-
sion, PDE constrained optimization, multi-parameter estimation.

1 Introduction

Inverse scattering problems occur in a wide range of applications such as radar and sonar
technology, non-destructive testing, geophysical exploration, and medical imaging. Given
boundary data of scattered waves from an unknown inclusion, the scatterer, one seeks
to determine its location, shape or physical properties. In general, the scatterer is a
penetrable, bounded inhomogeneity inside the medium, which is characterized by one or
several spatially varying physical parameters. The inverse scattering (or inverse medium)
problem then consists in estimating these parameters from boundary measurements of the
scattered wave field.

When qualitative information, such as the location or shape of the scatterer, is sought,
various effective methods permit to quickly determine the support of the scatterer [4].
However, when quantitative information about the scatterer’s physical properties, such as
the local sound speed, is also needed, the inverse problems is typically reformulated as a
PDE constrained optimization problem [34, 19, 31, 30, 20, 37, 24, 17], where the unknown
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physical parameters are determined iteratively by minimizing an objective functional that
measures the misfit between the simulated and the truly observed boundary data. While
much research has focused on reconstructing a single spatially varying parameter, there is
an increased interest in the solution of multi-parameter inverse problems, where at least
two spatially varying parameters determine the physical properties of the medium. In oil
and gas exploration, for instance, it is crucial to determine at least two parameters, such
as density and bulk modulus [28, 32], to identify the elastic medium.

The inverse scattering problem is severely ill-conditioned, even more so in the multi-
parameter case. Moreover, different parameters can influence each other thereby inducing
spurious artifacts or ”cross-talk” [29, 28]. To tackle the ill-posedness and ensure a stable
(approximate) solution, the inverse problem is typically regularized by adding a Tikhonov
penalty term to the misfit functional [35]. The choice for any particular norm used penalize
the control variables through Tikhonov regularization [38, 33, 11] implicitly encodes a priori
information about the scatterer’s regularity. Moreover, Tikhonov regularization is rather
sensitive to the size of the regularization parameter which controls the trade-off between
the data misfit and the added penalty term: too small, the regularization will have too
little effect; too large, the optimization will ignore the observations and simply minimize the
penalty term. When the penalty functional itself involves additional parameters, such as in
penalized total variation (TV) regularization [39, 12], determining appropriate parameter
values for the reconstruction of a wide range of geophysical profiles, for instance, can be
difficult [1].

Although Tikhonov regularization generally improves the stability of the inversion, it
also retains all the control variables. Hence, the spatial discretization of the control param-
eter on a standard finite difference or finite element mesh typically leads to a prohibitively
large number of (unknown) nodal values, in fact increasingly so as the mesh is further
refined. Alternatively, regularization by parametrization [5] reduces significantly the num-
ber of control variables but also greatly improves on the stability by representing the
unknown parameters themselves by a small number of basis functions. Without precise a
priori knowledge about the scatterer, however, finding such a low-dimensional yet accurate
representation for the unknown parameters is generally difficult.

For time-dependent scattering problems, an adaptive eigenspace (AE) representation
proposed in [9, 8] achieved a significant reduction in the number of control variables by
projecting the parameters to a finite-dimensional subspace spanned by the first eigenfunc-
tions of a particular differential operator, iteratively adapted during the nonlinear opti-
mization. By combining the AE representation with truncated inexact Newton-like meth-
ods [13, 10, 26, 24] and frequency stepping [6, 31], we proposeded the Adaptive Eigenspace
Inversion (AEI) method for single parameter inverse medium problems in the frequency
domain, when the scattered wave field is governed by the Helmholtz equation [18]. Re-
cently, de Buhan and Darbas developed an AEI method for electromagnetic inverse medium
problems at fixed frequency [7].

Here, we extend our AEI approach to multi-parameter inverse problems in the fre-
quency domain by building a separate basis of eigenfunctions for each parameter. More
specifically, in Section 2, we consider a two-parameter inverse scattering model problem
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and present in detail the AEI Algorithm in this multi-parameter setting. Next, in Section
3, we exhibit the fundamental connection between the AE representation and standard
Tikhonov regularization, which enables us to devise other AE bases, each corresponding
to a particular choice of Tikhonov penalty functional. Depending on the a priori available
information about the smoothness properties or the (anisotropic) spatial dependency of the
control parameters, we thus devise various AE bases for single and two-parameter inverse
scattering problems in the frequency domain. Finally, in Section 4, we present a series of
numerical experiments that illustrate the accuracy and efficiency of AE regularization for
the inversion of single and multi-parameter inverse scattering problems.

2 Adaptive Eigenspace Inversion (AEI)

In this section, we consider a two-parameter acoustic inverse scattering problem where
the scattered wave field is governed by the Helmholtz equation. We first formulate the
inverse problem for the two (unknown) spatially varying parameters u(x) and v(x) as a
PDE-constrained optimization problem. To regularize the ill-posed problem, u and v are
projected each to a separate subspace spanned by a finite number of orthogonal eigenfunc-
tions of a particular elliptic problem, the distinguishing feature of the AEI approach. We
then provide a detailed description of the entire AEI algorithm.

2.1 Inverse medium problem

We consider a time-harmonic scattering problem from a penetrable inhomohogeneity inside
an unbounded medium characterized by its compressibility, v(x) > 0, and its inverse
density, u(x) > 0. Hence the local sound speed, c(x) > 0, is given by

c(x) =

√
u(x)

v(x)
. (1)

The scatterer is located inside a bounded convex domain Ω ⊂ Rd, d = 1, 2, 3. Outside
Ω, both the compressibility, v∞(x), and its inverse density, u∞(x) are known and may
vary. Inside Ω, the scattered field y(x) satisfies the Helmholtz equation together with a
Sommerfeld-type radiation condition at the (artificial) boundary Γ = ∂Ω:





−ω2v(x)y(x)−∇ · (u(x)∇y(x)) = f(x) , in Ω,

∂y(x)

∂n
− ik(x)y(x) = 0 , on Γ.

(2)

Here ω > 0 denotes the time frequency, whereas k(x) = ω/c(x) > 0 corresponds to the
wave number.

Next, we perform Ns illuminations of the medium inside Ω with source terms f = f`,
` = 1, ..., Ns, and denote by y` the corresponding (unique) solutions of (2). Given the
measurements yobs` on Γ, or part of it, we seek to recover the (unknown) inverse density
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u(x) and compressibility v(x) inside Ω, such that every solution y` of (2) with f = f`
coincides at Γ with the measurements yobs` , ` = 1, ..., Ns. In doing so, we assume that both
u and v are known and equal to u∞(x) and v∞(x), respectively, on the boundary Γ.

To solve the inverse medium problem, we now formulate it as a PDE-constrained opti-
mization problem. Let

A[u, v]y = f

denote the forward Helmholtz operator in (2) for given u and v. Then we seek minimizers u
and v of the standard L2 data misfit functional,

min
u∈U ,v∈V

F(u, v) =
1

2

Ns∑

`=1

∥∥PA[u, v]−1f` − ŷ`
∥∥2

, (3)

where P denotes a projection operator onto the observational space.
To solve (3), we consider standard Newton or Quasi-Newton methods. Since the inverse

problem (3) is severly ill-posed, Tikhonov regularization terms are typically first added for
stability. In addition a third regularization operator may be added to prevent undesired
artifacts between the parameters (cross-talk) [15]. Instead, we shall incorporate regular-
ization by restricting u and v each to a separate finite-dimensional subspace, adaptively
determined during the optimization.

2.2 Adaptive eigenspace expansion

Instead of a standard (FD, FE grid-based discretization) nodal basis, we shall use a sep-
arate basis of (global) eigenfunctions {φm}m≥1 and {ϕm}m≥1 to represent u(x) and v(x),
respectively:

u(x) = u0(x) +
Ku∑

m=1

βm φm(x) v(x) = v0(x) +
Kv∑

l=1

γl ϕl(x). (4)

Following [18], we let the “background” u0(x) ∈ H1(Ω) solve the elliptic problem,

{ −∇ · (µ[u](x)∇u0(x)) = 0, ∀x ∈ Ω,

u0(x) = u∞(x), ∀x ∈ Γ,
(5)

and similarly for v0(x) with µ[u] replaced by µ[v] and u∞ replaced by v∞. Here, µ[u](x) is
defined by

µ[u](x) =
1√

|∇u(x)|2 + ε2
, ∀x ∈ Ω, ε > 0 . (6)

The parameter ε > 0, which ensures that the denominator of µ does not vanish, is typically
set to a very small value such as ε = 10−6. While the primary role of u0 and v0 is to ac-
commodate the (known) inhomogeneous boundary values of u and v, we shall demonstrate
in Section 3 that u0 and v0 also capture much of their behavior inside Ω.
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For the functions φm, we choose the orthonormal basis of eigenfunctions φm ∈ H1
0 (Ω)

of the elliptic operator,

{ −∇ · (µ[u](x)∇φm(x)) = λmφm(x), ∀x ∈ Ω,

φm(x) = 0, ∀x ∈ Γ,
(7)

with corresponding eigenvalues 0 < λm ≤ λm+1, m ≥ 1. Similarly, for the functions ϕm we
choose the orthonormal basis of eigenfunctions ϕm ∈ H1

0 (Ω) of the elliptic operator,

{
−∇ · (µ[v](x)∇ϕm(x)) = λ̃mϕm(x), ∀x ∈ Ω,

ϕm(x) = 0, ∀x ∈ Γ,
(8)

with corresponding eigenvalues 0 < λ̃m ≤ λ̃m+1, m ≥ 1. Clearly, at higher λm or λ̃m, the
corresponding eigenfunctions φm or ϕm will be increasingly oscillatory.

In [18], we provided analytical and numerical evidence which underpins the remarkable
accuracy of this basis for representing any given u(x). In our AEI approach, the eigen-
functions {φm}m≥1 and {ϕm}m≥1, together with the backgrounds u0 and v0, are repeatedly
recomputed as the underlying control variables u(x) and v(x) vary during the optimization.
Hence, we call {u0} ∪ {φm}m≥1 (and {v0} ∪ {ϕm}m≥1 ) an adapted eigenspace (AE) basis.

Since u(x) and v(x) are precisely the quantities we seek, and thus unknown, we always
use in (5)–(8) their current values from the previous optimization step. In the first step,
when no information about u or v inside Ω is available yet, we simply set µ[u](x) ≡
µ[v](x) ≡ 1. Then, u0 and v0 reduce to harmonic prolongations of u∞ and v∞ from Γ into Ω,
while the two bases {φm}m≥1 and {ϕm}m≥1 both simply correspond to the eigenfunctions
of the Laplacian operator in Ω. During subsequent steps, however, once u and v begin to
differ, the two bases will also differ from each other.

2.3 AEI Algorithm

To keep both the memory requirements and the computational effort low, it is imperative
to keep the numbers of eigenfunctions Ku and Kv in (4) minimal. Yet the truncation of the
eigenfunction expansion is also crucial for numerical stability, as it builds regularization
into the AEI approach.

At higher frequencies, waves detect and carry more detailed information about the
scatterer, though the number of local minima of L[u] may also increase. To minimize the
chance of landing in a (false) local minimum, we also apply a standard frequency continu-
ation procedure [6, 2]. First, we solve the inverse problem (3) at the lowest frequency ω1.
Then we progressively increase ω = ω2, . . . , ωn while re-initializing the optimization at
every ωj from the solution u of the previous lower frequency ωj−1. In doing so, we assume
that the measurements are available through a range of frequencies, for instance via Fourier
transform of a time-dependent signal.
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AEI Algorithm.
Input: initial guess u = 1, v = 1, observations yobs` . Output: u∗, v∗.

1. Choose Ku ≥ 1, Kv ≥ 1. Compute {φm}Ku
m=1, {ϕm}Kv

m=1 from (7), (8) and u0, v0

from (5) with µ[u] ≡ µ[v] ≡ 1

2. Expand u(x) = u0(x) +
∑Ku

m=1 βm φm(x) and v(x) = v0(x) +
∑Kv

l=1 γl ϕl(x)

3. For ω = ω1, . . . , ωn

(a) Compute F [u, v] and ∇F [u, v], set H to the (approx.) Hessian

(b) While ‖F [u, v]‖ ≥ tol

i. Solve Hp = −∇F [u, v] with truncated CG

ii. Determine step size α and update [u, v]← [u, v] + αp

iii. Update F [u, v], ∇F [u, v] and H

(c) Set µ[u] and µ[v] as in (6) using current u, v

(d) Update Ku, Kv, compute {φm}Km=1 and {ϕm}Kv
m=1 from (7), (8) and u0, v0

from (5)

(e) Expand u(x) = u0(x) +
∑Ku

m=1 βm φm(x), v(x) = v0(x) +
∑Kv

l=1 γl ϕl(x)

4. Set u∗ = u

The AEI approach applies regardless of the underlying optimization method used. Here
we consider truncated Newton-like methods [10, 26] and denote byH either the true Hessian
or some approximation of it, depending on the (Newton or Gauss-Newton) method used.
In all cases the linear system in Step 3(b) is solved by a truncated CG-iteration with the
Eisenstat-Walker criterion [13]. In Step 3(b)ii, the step size α of the search direction p is
determined through Armijo step-size control. In Steps 1 and 3(d) of the AEI Algorithm,
we compute the first Ku or Kv eigenfunctions in (7) or (8) by using a standard restarted
Lanczos iteration [22].

3 Adaptive eigenspace regularization

The AEI approach inherently builds regularization into the optimization by restricting the
search space to the span of finitely many eigenfunctions of the elliptic eigenvalue problems
(7), (8). In fact, the elliptic operator in (7) (or (8)) coincides with the gradient of the
penalized total variation (TV) regularization term [33, 39],

RTV [u] =
1

2

∫

Ω

√
|∇u|2 + ε2 dx, (9)
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since

∇RTV [u] = −∇ ·
(

1√
|∇u|2 + ε2

∇u
)

= −∇ · (µ[u](x)∇u) ,

(10)

with µ[u] as in (6). Equation (10) thus yields the fundamental connection between the AE
and Tikhonov regularization.

Hence, the AEI approach offers an alternative to standard Tikhonov regularization
[35, 16, 14], where a penalization term αR[u, v] is added to the objective functional in (3).
In Tikhonov regularization, the choice of the parameter α is critical: if α is too small, the
penalty term will provide too little regularization whereas if α is too large, the objective
functional will essentially ignore the data misfit. Striking the right balance between these
two competing effects is difficult a priori and usually involves some trial-and-error for any
particular problem [1].

Penalized TV-regularization is well-known in image processing because it achieves noise
removal while preserving sharp interfaces. Since the AEI approach projects u to the basis
of eigenfunctions determined by the gradient of the penalized TV-regularization functional,
the AE basis inherits similar properties. Not surprisingly, that choice proved judicious for
the solution of inverse Helmholtz problems in the presence of a discontinuous medium and
noisy data [18]. Still, many other penalty functionals R[u] can be used with Tikhonov
regularization [38], as each particular choice captures specific prior knowledge about the
unknown parameter u. Each particular penalty functional will also lead to a different
AE basis apt to efficiently represent the same class of functions as that determined by the
corresponding Tikhonov regularization term. For illustration, we now compute the spatially
varying coefficient µ[u](x) for the H1, Gaussian and Lorentzian penalty functionals – see
[25] for details.

First, we consider the H1-penalty functional,

R∇u(u) =
1

2
‖∇u‖L2(Ω) , (11)

which penalizes strong variations in u and hence is well adapted to smooth profiles. Its
gradient is given by

∇R∇u[u] = −∆u

= −∇ · (µ[u](x)∇u) ,

for µ[u] = 1 identically. Hence the corresponding elliptic eigenvalue problem reduces here
to { −∆φm(x) = λmφm(x), x ∈ Ω,

φm(x) = 0, x ∈ Γ.
(12)

The AE basis corresponding to the H1-penalty functional thus merely consists of the
standard eigenfunctions of the Laplacian, whose Fourier expansion is well-known to rapidly
converge for smooth profiles. Hence, it inherits its approximation properties from the H1-
penalty functional; in this special case, the eigenfunctions are actually independent of u.
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The H1-penalty functional can easily be generalized to more complex anisotropic media,
as in seismic imaging, by replacing the gradient in (11) by another more appropriate
differential operator [16] – see Section 4.2.

Second, we consider the (non-convex) Gaussian penalty term [12],

RGauss(u) =
1

2

∫

Ω

1− exp

(
−|∇u|

2

σ2

)
dx , σ > 0 . (13)

Its gradient is given by

∇uRGauss(u) = −∇ ·
( ∇u
σ2 exp (−|∇u|2/σ2)

)
, σ > 0 , (14)

and thus leads to the elliptic eigenvalue problem (7) with

µ[u](x) =
1

σ2 exp (|∇u|2/σ2)
, σ > 0 . (15)

Here µ truly depends on u, as it does for penalized TV-regularization (6), and therefore
the AE eigenspace will be adapted in each step of the AEI Algorithm.

Third, we consider the (non-convex) Lorentzian penalty term,

RLorentz(u) =
1

2

∫

Ω

γ|∇u|2
1 + γ|∇u|2 dx , γ > 0 , (16)

whose extra parameter γ permits strong variations in u. Its gradient is given by

∇uRLorentz(u) = −∇ ·
(

γ∇u
(1 + γ|∇u|2)2

)
, γ > 0 , (17)

and thus leads to the elliptic eigenvalue problem (7) with

µ[u](x) =
γ

(1 + γ|∇u|2)2 , γ > 0 . (18)

Remark: The standard Tikhonov L2-penalty functional,

RL2(u) =
1

2
‖u‖2

L2 , (19)

leads to the trivial eigenvalue problem for the identity operator. Therefore, it neither
defines a unique orthogonal set of eigenfunctions nor yields a useful basis for the AEI
approach.
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Figure 1: Two-dimensional medium u: piecewise constant (top), and smooth asymmetric
profile (bottom). Top view (left) and three-dimensional view (right).

3.1 Two-dimensional numerical examples

To illustrate not only the remarkable approximation properties of the AE basis but also the
effect of any particular choice of penalty functional, we now consider the two-dimensional
profiles u(x) shown in Fig. 1: The first, piecewise constant, mimics a layered background
material with local inclusions, whereas the second corresponds to a smooth asymmetric
profile. For each of the previously described penalty functionals, we now compute the
background u0 from (5) together with the first four eigenfunctions φ1, . . . , φ4 from (7)
using the corresponding coefficient µ[u]. Then we use this five-dimensional AE basis to
compute its best L2-approximation and compare it with u to evaluate its accuracy in
representing the given profile.

First, we consider the piecewise constant profile u shown at the top of Fig. 1 and
compute the AE basis corresponding to TV-regularization: Hence, we compute the back-
ground u0 from (5) together with the first four eigenfunctions φ1, . . . , φ4 from (7), both
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φ1 φ2 φ3 φ4 u0 reconstruction

Figure 2: Piecewise constant two-dimensional profile. From top to bottom: TV-
regularization, H1-regularization, Gaussian regularization and Lorentzian regularization.
From left to right: the first four AE eigenfunction φ1, φ2, φ3, φ4, the background u0, the
best L2-approximation of u using φ1, . . . , φ4 and u0.

with ε = 10−6 and µ as in (6). In Fig. 2, we observe how u0 matches with remarkable
accuracy the background medium but misses the different embedded obstacles. The first
four eigenfunctions φ1, . . . , φ4, however, ignore the background and capture precisely the
remaining obstacles. Using u0 and φ1, . . . , φ4, we now expand u as in (7) with Ku = 4 and
compute its best L2-approximation. Shown in Fig. 2, it is hardly distinguishable from the
true u in Fig. 1 with well-defined sharp contours and a relative L2-error below 1.9%. These
results demonstrate the accuracy even of but a few eigenfunctions of the TV-regularization
based AE basis for a piecewise constant layered medium with isolated obstacles.

In contrast, if we repeat the same experiment for H1-regularization using (11) with µ ≡
1, we observe in the second line of Fig. 2 how u0 indeed matches the boundary values
of u but otherwise fails to capture any additional features inside Ω. Moreover, the best
approximation of u with respect to these five basis functions hardly correlates with the
true medium and leads to a ninefold increase in the relative L2 error up to 16.2%. The
poor accuracy obtained with the eigenfunctions of the Laplacian is to be expected here,
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φ1 φ2 φ3 φ4 u0 reconstruction

Figure 3: Smooth asymmetric two-dimensional profile. From top to bottom: TV-
regularization, H1-regularization, Gaussian regularization and Lorentzian regularization.
From left to right: the first four AE eigenfunction φ1, φ2, φ3, φ4, the background u0, the
best L2-approximation of u using φ1, . . . , φ4 and u0.

since they correspond to H1-regularization which penalizes non-smooth profiles.
We now repeat the above experiment for Gaussian regularization (14) with σ = 70 and

Lorentzian regularization (16) with γ = 250 using the AE basis with µ[u](x) given by (15)
or (18), respectively. In both cases, the L2 best approximation matches only part of the
medium. The relative L2-error is 13% for the Gaussian and 3.3% for the Lorentzian best
AE approximation. Although the five-dimensional Lorentzian AE reconstruction captures
only three (from a total of four) embedded obstacles, it also captures the fourth when
further eigenfunctions are added.

Next, we consider the smooth asymmetric profile u shown at the bottom of Fig. 1 and
repeat the above numerical experiments. In contrast to the previous piecewise constant
case, the approximation using the H1 or the Gaussian adaptive eigenspaces are now the
most accurate with a relative L2-error of 0.002% for the H1 and of 0.036% for the Gaus-
sian AE best approximation. As shown in Fig. 3, the AE bases for TV or Lorentzian
regularization are now less accurate with relative L2-errors of 8.1% or 6.5%, respectively.
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In summary, these numerical results demonstrate how different penalty functions lead
to different AE bases which distinct approximation properties. While the TV based AE
representation is particularly efficient for piecewise constant media with isolated obstacles,
H1 based regularization is a judicious choice for smooth profiles. Hence, prior knowledge
about the medium can be included into the optimization through any particular choice of
the AE basis.

4 Numerical Results

We shall now illustrate the usefulness and versatility of the AEI method through a series
of numerical experiments. First we consider a single parameter inverse problem with
the inverse density u(x) from Section 3 and fixed compressibility v(x) ≡ 1. Clearly the
control u(x) is now unknown. We compare the AE representation to a standard grid-based
nodal representation of u(x) to demonstrate the resulting significant reduction in degrees
of freedom. Next, we consider the well-known Marmousi profile from geosciences which
models a typical layered medium from the Earth’s subsurface. By incorporating the a
priori knowledge about the medium’s anisotropy directly into the AE basis, we further
improve upon its accuracy. Finally, we consider a two-parameter inverse medium problem
to demonstrate the improvement in accuracy and, in particular, the significant reduction
in spurious ”cross-talk” between the control parameters u(x) and v(x) thanks to the AE
representation.

Unless specified otherwise, we illuminate the medium from equispaced Gaussian sources
located at a fixed distance from the top boundary, whereas the receivers are located on the
four lateral boundaries of Ω = (0, 1)× (0, 1). Inside Ω we use second-order staggered finite
difference on an regular Cartesian mesh for the discretization of (2) and (5)–(7). To avoid
any inverse crime, the reference solution is computed on a separate finer mesh, which does
not contain the computational mesh.

For the inversion, we always use the AEI Algorithm as described in Section 2.3, which
combines the AE representation with a standard inexact truncated Gauss-Newton method
[19, 27]. Hence the search direction is computed by a truncated CG iteration with the
Eisenstat-Walker stopping criterion [13, 24, 26, 10] with η0 = 0.7 and standard Armijo step-
size control. We recall that no extra Tikhonov-type regularization is added to the objective
functional. During frequency continuation, we progressively increase the frequency, ω,
always starting at the lowest frequency ω = 8. The number of AE eigenfunctions, K,
starts at K = 32 and increases linearly as K = 4ω. In the definition of µ[u](x) in (6), we
always set ε = 10−6 and keep all other parameters values fixed to underpin the robustness
of the AEI Algorithm.

4.1 Single parameter inversion: piecewise constant medium

Here we consider a single parameter inverse problem with v ≡ 1 fixed and shall attempt
to recover from boundary data the piecewise constant profile u shown in Fig. 1. Inside
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Figure 4: Recontruction of u: top, full boundary data. Bottom, partial boundary data.
The AE approach (left) and the nodal basis approach (right).

Ω, we discretize (2), (5)–(7) on a 300 × 300 Cartesian mesh and place nine equispaced
Gaussian sources along the upper boundary at (0.1, 0.8), . . . , (0.9, 0.8). With the initial
guess simply set to u(x) ≡ 1, we start at ω = 8 and progressively increase the frequency as
ω = 10, 20, 30, . . . , 120 together with K = Ku = 4ω. To underline the accuracy of the AE
representation, we also compare it to a standard grid-based nodal representation where we
add a TV-penalty [39] term with Tikhonov regularization parameter α proportional to the
misfit [36].

First, we include boundary data from all four boundaries. The corresponding two
reconstructed profiles are shown at the top of Fig. 4. Although both methods recove
the essential features of the medium, the AEI approach clearly yields not only sharper
boundaries but also more accurate values inside the different subregions, off by at most
10% from the true values. Moreover, the AEI Algorithm achieves the higher accuracy
with only K = 480 degrees of freedom versus about 180000 for the staggered grid nodal
representation.

Next, we repeat the same numerical experiment but omit all the receivers located at
the lower boundary of Ω. Hence much less information about the lower part of the medium
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is available in the data. Unlike the nodal approach, however, the AEI method is still able
to recover u(x) throughout Ω, as shown in the lower two frames of Fig. 4. In particular,
we observe how the small disk in the lower right corner is no longer visible with the nodal
approach. Despite the much smaller number of control variables used in the AEI Algorithm,
the reconstruction appears more accurate and more tolerant to missing data.

Figure 5: Marmousi profile: the initial guess (left) and the true profile (right).

4.2 Single parameter inversion: Marmousi profile

Next, we consider again a single parameter inverse problem with v ≡ 1 fixed and shall at-
tempt to recover from boundary data the well-known Marmousi profile u(x) [21] shown in
Fig. 5; it models a typical layered geophysical medium with regions of different wave speed
[21]. Due to the complexity of the medium, we now increase the amount of available data
by incorporating observations from 201 Gaussian sources located at (0.1, 0.9), (0.1045,0.9),
(0.109, 0.9) . . . , (0.9, 0.9) near the top boundary. Still, to avoid increasing the computa-
tional cost while taking into account all the available data, we use the sample average aprox-
imation (SAA) approach from [20] and replace the 201 sources by six random averages or
“super-shots”. The receivers are located on the north, east and west boundaries of Ω where
we again use a 300× 300 equispaced finite-difference mesh. For the initial guess we choose
the four-layered profile shown in Fig. 5 and progressively increase ω = 8, 12, 16, . . . , 200
during frequency continuation.

In Fig. 6, we display four reconstructions each obtained with the AEI Algorithm but
using a different AE basis determined by the choice of µ either as in (6), (12), (15) or (18).
Despite the poor initial guess, the AEI Algorithm is always able to recover the essential
features of the Marmousi profile. Nevertheless, the reconstructions are overly smooth,
indicating the need for an AE basis better adapted to the anisotropic layered nature of the
medium.

Subsurface models of the Earth are typically layered with rapid variations in the vertical
and smooth variations in the horizontal direction. To build an improved AE basis adapted
to layered media from seismic imaging, this prior information ought to be incorporated
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Figure 6: Marmousi profile: reconstructions using four different AE bases: TV-
regularization, L2 error = 6.42% (top left), H1-regularization, L2 error = 6.43% (top
right), Gaussian-regularization, L2 error = 7.12% (bottom left), Lorentzian-regularization
L2 error = 8.83% (bottom right).

into the optimization process. To do so, we shall now construct the AE basis from TV-
regularization applied only to variations in the vertical direction, x2, by replacing µ[u](x)
in (6) by

µ[u](x1, x2) =

[∣∣∣∣
∂u(x1, x2)

∂x2

∣∣∣∣
2

+ ε2

]−1/2

. (20)

Thus we obtain the corresponding eigenvalue problem:





−∇ ·




1√∣∣∣∂u(x)
∂x2

∣∣∣
2

+ ε2

∇φm(x)


 = λmφm(x), (x1, x2) = x ∈ Ω,

φm(x) = 0, x ∈ Γ .

(21)

The resulting eigenfunctions in (21) take into account the anisotropic TV-penalization in
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Figure 7: Marmousi profile: the reconstruction using the anisotropic AE basis from (21)
and the initial guess in Fig. 5 (left), the true profile (center), the reconstruction using a
standard grid-based nodal basis and the initial guess from the anisotropic AE reconstruc-
tion shown on the left (right).

the vertical direction. Moreover, in any subregion of Ω where ∂u/∂x2 vanishes, µ = 1/ε is
constant, and the eigenvalue problem (21) simplifies to

−∆φm(x) = (ελm)φm(x) .

Hence the eigenfunctions locally corresponds to those of the Laplacian, as in (12) for the
H1-penalty functional.

Starting from the same initial guess shown in Fig. 5, we now repeat the above numerical
experiment but use the anisotropic AE basis from (21) instead. As shown in the left frame
of Fig. 7, the solution respects the material discontinuities in the vertical directions quite
accurately, unlike the AEI solutions shown in Fig. (6) while appearing smooth in the
horizontal direction.

For even higher fidelity in the reconstruction of complex and detailed media, such as the
Marmousi profile, we now resort to a standard grid-based nodal representation of u. For
the latter, a sufficiently close initial guess, typically a smooth representation of the target,
is needed to ensure convergence [37, 3]. Hence, we now use a standard nodal basis (with
over a hundred times more degrees of freedom) for the optimization but use as initial guess
the (intermediate) AEI reconstruction in the left frame of Fig. 7. The resulting combined
AEI-nodal approach recovers even the finest details, as shown in the right frame of Fig. 7,
despite the original poor initial guess from Fig. 5.

4.3 Two-parameter inversion: piecewise constant medium

Finally, we consider the reconstruction of the piecewise constant medium characterized by
the two parameters, u(x) and v(x), shown in Fig. 8. Due to the strong coupling between u
and v through the scalar forward problem (2), changes in either parameter tend to influence
the other, thus leading to undesired ”cross-talk” artifacts [28, 23]. We now illustrate the
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Figure 8: Two-parameter piecewise constant medium: u (left) and v (right).

usefulness of the AEI approach in significantly reducing cross-talk by building a distinct
basis of eigenfunctions (4) for each parameter.

Again we use observations from 201 equispaced Gaussian sources located along the
upper boundary at (0.1, 0.8), . . . , (0.9, 0.8) but avoid increasing the computational cost
by combining the data into six ”super-shots” using the SAA approach [20]. Inside Ω, we
discretize (2), (5)-(7) on a 200×200 finite-difference mesh. Both initial profiles are set to a
uniform background u ≡ 1 and v ≡ 1. Starting from ω = 8 we again progressively increase
the frequency ω = 10, 20, 30, . . . , 90 together with the dimensions of the AE subspaces
Ku = Kv = 2ω.

In Fig. 9, we compare the reconstructions obtained with the AEI approach versus a stan-
dard grid-based nodal representation without added Tikhonov regularization, for simplicity.
Although both methods recover the locations of the essential features in the medium, the
AEI approach clearly achieves higher accuracy with minimal cross-talk between the two
parameters. In particular, we observe that the nodal approach fails to determine the true
values of u inside the various obstacles. It also leads to stronger cross-talk artifacts clearly
apparent inside the two smaller disk-shaped obstacles in v. In contrast, the reconstructions
obtained with the AEI approach display sharper boundaries, little cross-talk and rather
accurate values of u and v throughout Ω.

Next, we repeat the previous numerical experiment but now set the initial values for u
and v to {

u(x) = 1.4 x ∈ B ,

u(x) = 1 x ∈ Ω\B ,

{
v(x) = 1 x ∈ Ω ,

where B denotes the disk of radius 0.2 centered at (0.55, 0.4). The initial values for u and
v, shown at the top of Fig. 10, are intended to facilitate the recovery of the kite-shaped
obstacle inside u, in particular, whose value and location coincide with those inside the
disk B.

As shown in Fig. 10, the new initial value for u helps both the nodal and the AEI
based approach in recovering the kite-shaped obstacle more accurately. However, the new
starting value for u greatly perturbs the overall reconstruction using the nodal approach,
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Figure 9: Two-parameter piecewise constant medium u (left) and v (right): reconstructions
using a grid-based nodal approach (top) or the AEI approach (bottom).

as the initial condition not only remains clearly visible inside u but also appears inside v,
where it remains throughout the optimization process. Moreover, the quarter circle in u
located in the lower right corner of Ω is now barely visible while further cross-talk due to
the kite in u appears also inside v. Hence, a simple change in initial conditions strongly
influences the outcome of the optimizationusing the grid-based nodal approach which is,
at the least, unsatisfactory.

In contrast, the modified initial conditions have little effect on the reconstructions in
Figs. 9 and 10 using the AEI approach: the initial disk B no longer appears inside the final
reconstructions, shown at the bottom of Fig. 10, with slight perturbations near the kite,
though the value of the centered smaller disk-shaped obstacle inside v is somewhat higher
than in the true profile. In that sense, the AEI approach clearly appears more robust not
only to missing data – see Section 4.1 – but also to the particular choice of initial condition.
Moreover, it reduces the amount of cross-talk, if any, quite significantly.
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Figure 10: Two-parameter piecewise constant medium u (left) and v (right): initial guess
(top); reconstructions using a grid-based nodal basis (middle) or an AE basis (bottom).
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Figure 11: Two-parameter medium u (left) and v (right) with distinct regularity properties:
Two-dimensional view (top) and three-dimensional view (bottom).

4.4 Two-parameter inversion: distinct regularity properties

Finally, we consider a medium inside Ω again characterized by two parameters u(x) and
v(x), yet with distinct regularity properties: while u again corresponds to the previous
piecewise constant profile, the variations in v are now smooth, as shown in Fig. 11.

The distinct regularity properties of u and v, assumed to be known a priori, demand
distinct types of regularization for each parameter. To incorporate this prior information
into the optimization, we thus choose separate AE bases to represent u and v, each derived
from a distinct penalty functional. Hence, we expand u and v as in (4), where φm are the
eigenfunctions corresponding to the TV-penalization functional (7) with µ as in (6) and ε =
10−6, whereas ϕl are the (Laplacian) eigenfunctions corresponding to the H1-penalization
functional in (12). Similarly, for the nodal basis approach, we add here a Tikhonov-type
TV-penalty term for u and an H1-penalty term for v (3). All other parameter settings for
the numerical experiments remain identical to those in Section 4.3 except that we now use
a finer 500× 500 mesh.

In Fig. 12, we display the reconstructions for the standard grid-based nodal representa-
tion and for the AEI approach. Again, both methods recover the essential features present
in the medium. The grid-based nodal approach, however, fails to determine the true values
of u or v inside the various obstacles while the outline of the leftmost half disk in u appears
also in v cutting off the smaller disk in the lower left corner. In contrast, the AEI approach
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Figure 12: Two-parameter profile u (left) and v (right) with distinct regularity properties:
reconstructions using a grid-based nodal representation (top) or two distinct AE bases
(bottom).

clearly achieves much higher accuracy with little cross-talk between the two parameters.
Moreover, the boundaries of the various obstacles in u are clearly sharper than those in v,
where even the smooth variations inside the rightmost half-circle are visible. Hence select-
ing separate eigenspaces for individual parameters, possibly derived from distinct penalty
functionals, not only increases robustness by efficiently regularizing the inversion, but also
significantly reduces the presence of cross-talk between the various parameters.

5 Concluding remarks

We have presented a nonlinear optimization method for the solution of inverse scattering
problems in the frequency domain, when the unknown medium is characterized by one
or several parameters u(x), v(x), . . . The time-harmonic inverse medium problem is for-
mulated as a PDE-constrained optimization problem and solved by an inexact truncated
Newton or quasi-Newton iteration. Instead of a standard (FD or FE) grid-based nodal
representation, each unknown spatially varying parameter is represented as a linear combi-
nation of a “background” u0 which solves (5) and the first Ku (orthogonal) eigenfunctions
φm of the elliptic eigenvalue problem (7). During the optimization process, which may

21



include frequency continuation, the bases u0 ∪ {φ1, . . . , φKu}, v0 ∪ {ϕ1, . . . , ϕKv}, . . . and
their respective dimensions are repeatedly adapted to the current iterates. The full Adap-
tive Eigenspace Inversion (AEI) Algorithm for two spatially varying parameters u(x), v(x)
is given in Section 2.3; its generalization to three or more parameters is immediate.

The AEI Algorithm inherently builds regularization into the optimization by restrict-
ing the search for each parameter u(x) to an individual subspace, VK , spanned by u0 ∪
{φ1, . . . , φK}. As the governing wave length decreases during frequency continuation, we
increase the dimension of VK to accomodate the more detailed small-scale information
about the scatterer which is progressively revealed. The elliptic differential operator that
appears in the eigenvalue problem (7) with µ[u] as in (6) corresponds to the gradient of
the standard total variation penalty functional (9). By exhibiting the fundamental con-
nection between Tikhonov regularization and the AE basis, we have not only underpinned
the remarkable accuracy of the AE representation, but also opened up new possibilities
in devising AE bases. Thus whenever a priori information about the scatterer hints at a
judicious penalty functionalR(u) for Tikhonov regularization, the corresponding AE eigen-
function representation determined by ∇uR(u) may be used instead for a more efficient
and robust inversion.

Although the AEI method uses much fewer control variables for each parameter, the
reconstructions are remarkably accurate, usually more so than grid-based nodal representa-
tions, display less artifacts and prove more tolerant to missing data. For multi-parameter
inverse problems, in particular, the AEI approach significantly reduces spurious ”cross-
talk” between different parameters. The AEI Algorithm has also proved remarkably robust
with respect to the choice of parameters or initial conditions. Since the discrete version of
the eigenvalue problem (7) leads to a sparse, symmetric and positive definite matrix, the
first K eigenfunctions can be efficiently computed via a standard Lanczos iteration. If finite
element mesh adaptation is used for the numerical solution of (7), small-scale features and
interfaces are captured with even greater accuracy in the reconstruction, without increas-
ing the computational effort. Although the eigenfunctions are global, their information
content is highly localized in space so that most entries can in fact be neglected, as shown
in [18].

The AE basis depends only on the regularization and not on the underlying forward
problem considered. Therefore, it is likely that the AE representation will also prove
useful for single and multi-parameter inverse problems governed by other elliptic or time
dependent partial differential equations.
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