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Abstract

We consider the solution of elliptic problems on the tensor product
of two physical domains as e.g. present in the approximation of the so-
lution covariance of elliptic partial differential equations with random
input. Previous sparse approximation approaches used a geometrically
constructed multilevel hierarchy. Instead, we construct this hierarchy
for a given discretized problem by means of the algebraic multigrid
method (AMG). Thereby, we are able to apply the sparse grid com-
bination technique to problems given on complex geometries and for
discretizations arising from unstructured grids, which was not feasible
before. Numerical results show that our algebraic construction exhibits
the same convergence behaviour as the geometric construction, while
being applicable even in black-box type PDE solvers.

1 Introduction

The solution of elliptic problems on tensor products of a polygonally bounded
domain Q C R? with e.g. d = 2,3 given by

(A@Au=f onQxQ,
u=0 ond(Q2xN),

is an important high-dimensional problem. As an example, this problem
shows up in the estimation of the output covariance of an elliptic partial
differential equation with random input data that is given on a domain {2,
see [11, 13, 18, 19] for example. The problem becomes high-dimensional
since the dimensionality of the elliptic problem on {2 is doubled. In case of
real-world problems in d = 3, we end up solving a six-dimensional problem,
which might become prohibitively expensive.

Recently, there have been developments to overcome this strong limita-
tion. These developments are based on the introduction of a geometrically
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constructed multilevel frame, i.e. a hierarchy of discretizations of the elliptic
problem on 2. The multilevel frame gives rise to a sparse approximation
with respect to the interaction of the involved domains in §2 x  [14, 18, 19].
It has been shown that the sparse approximation allows to solve the ten-
sor product problem at a computational complexity that stays essentially
(i.e. up to a poly-logarithmic factor) proportional to the number of degrees of
freedom to discretize the domain ). In a more recent work by one of the au-
thors [13], it has been shown that the sparse approximation can equivalently
be replaced by the sparse grid combination technique [4, 8, 10, 15]. This
further reduces the computational work and facilitates the implementation.

However, the currently available geometric construction of the multilevel
hierarchy imposes limitations on the discretization in context of real-world
problems. First, the coarsest mesh in the hierarchy of discretizations has
to fully represent the boundary of the geometry 2. This either limits the
types of geometry to consider or the computational efficiency (in case even
the coarsest mesh has to be fine at the boundary). Second, the use of a
fully unstructured mesh becomes barely possible, since we are missing a
coarsening strategy for such a mesh.

This work introduces algebraically constructed multilevel hierarchies [7,
9, 23] for the solution of elliptic problems on tensor product domains. While
previous works [13, 14] first constructed the multilevel hierarchy of meshes
and then discretized the problem by finite elements, the new approach first
discretizes the problem on 2 on the finest (potentially unstructured) mesh
and then constructs coarser versions of the linear system resulting from
the fine discretization. The coarser problems are generated using algebraic
coarsening known from the classical Ruge-Stiben algebraic multigrid (AMG)
[17, 20]. The algebraic construction of multilevel hieararchies for frames has
been previously discussed in context of optimal complexity solvers for elliptic
problems in [23]. However, it has not been applied in the context of sparse
approximation yet. Note that, by construction, our new approach allows us
to overcome both the limitations in presence of complex geometries and the
requirements on the structure of the mesh. Moreover, it perfectly fits into
the context of black-box type PDE solvers.

As it is well-known, a full theory for algebraic multigrid methods, espe-
cially in the multilevel context and on unstructured grids, is still to be de-
veloped. Nevertheless, this technique is extremely popular as solver in real-
world applications and, usually, empirically shows the same performance as
geometric multigrid. This work follows the same spirit and focuses on the
formal construction and the empirical analysis of the resulting numerical
method. Thereby, we are able to match the convergence results available for
geometrically constructed sparse approximations, while being able to apply
this approach to complex geometries and unstructured grids in a black-box
fashion.

In Section 2, the algebraic multilevel construction is outlined. This con-



struction is introduced to the tensor product problem with sparse approx-
imation and the sparse grid combination technique in Section 3. Section 4
briefly discusses the implementation. In Section 5, we give a series of numer-
ical examples with empirical error analysis. Finally, Section 6 summarizes
this work.

2 Algebraic multilevel constructions

In our algebraic construction, we aim at replacing classical multilevel dis-
cretizations for elliptic partial differential equations by a purely matrix-based
construction. That is, we consider an elliptic partial differential equation

—Au=f on

B (1)
u=0 on 0

on a polygonally bounded domain @ C RY. This problem has been dis-

cretized by some method on a discretization level J, leading to a system of

linear equations

Ajuy=f;, (2)

where A; € RN7*NJ ig an M-matriz and uy, fr € RYi. In case of the
discretization by finite elements, A ; corresponds to the stiffness matrix and
f; is the load vector, obtained by, for example, using the mass matrix
M ; and interpolation. Moreover, we identify each variable u;; in u; =
(wy1...usn,)" by its index i and introduce the corresponding index set
Dy:={1,...,N;} for discretization level J.

2.1 Multilevel hierarchy of discretized problems

The objective is to construct from (2) a hierarchy of systems of linear equa-
tions

Ajuj:f jZO,...,J, (3)

IR
which are similar to discretizations on different geometric refinement levels.
Especially, we intend to do this in a purely matrix-based, i.e. algebraic, way
by using coarsening and transfer operators from algebraic multigrid (AMG)
[20]. To this end, we first introduce a construction method for a hierarchy
of variable sets

DoCcDyC...CDy (4)

of sizes



Algorithm 1 Standard coarsening algorithm [21]

Require: level j
1: function AMGSTANDARDCOARSENING
2: Fj = @,Dj,1 = @, Uj = Dj
3: for i € U; do
4 A (i) = ‘sj(i)TmUj) 42 ‘sj(i)Tij‘

5: while Ji s.th. \;(i) # 0 do

6: find imax = arg max; \;()

T Dj,1 = 'Djfl U {imax}

8: Uj = Uj \ {imax}

9: for j € (Sj(i)T NnU;) do

10: Fj = Fj U {j}

11 Uj = Uj \ {j}

12: for i € U; do

13: (i) = \sj(q;)TmUj( +2 ‘sj(i)Tij]
14: return D;_1, I}

In classical Ruge-Stiiben AMG [17, 21], this is achieved by recursively
splitting the set of variables D; on level j into a set of coarse and fine grid
variables

Dj = Dj—l Q) .7:] .
Each fine grid variable is supposed to be in the neighborhood of an appro-
priate amount of strongly coupled coarse grid variables, where we define the
neighborhood of a variable ¢ € D; by

Nj(i) = {i" € Dy ' #1, aju # 0},

where A; = (ajﬁ/)f.vﬂ?}:l. That is, we consider neighborhoods between vari-
ables by reinterpreting the system matrix A; as the adjacency matrix of a
graph with edges between nodes for each non-zero matrix entry. Moreover,
the set of neighboring strongly negatively coupled variables of a variable 7 is

Sj(i) == {i' € N;(i)| — ajiir > estr max \aj,ik\}

with a strength measure 0 < €4, < 1. The standard coarsening procedure,
cf. Algorithm 1 [21], builds an appropriate splitting D; = D;_1 U F; based
on these considerations. It also involves the sets S; (i)T, which are given by

S;()" :={i' €Dj:iecSi)}.

In order to define the hierarchy of linear systems (3), we further need a
means to transfer information between two consecutive levels j and j + 1.



This is done by prolongation operators P?H € RYNi+1XNj and restriction

operators Pg: 11 € RN *Nj+1 - Prolongation and restriction are done in a
purely algebraic way based on AMG. In standard interpolation [21], which
is one possible type of algebraic prolongation, data given on a fine grid node
i € F; are interpolated from the set of interpolatory variables

Zi(i) == (Dj-1 N S;(4)) N U @ans)
i€ F;NS;(4)

Thus, it is interpolated from strongly negatively coupled coarse grid points
and all coarse grid points that are strongly negatively coupled to strongly
negatively coupled fine grid points. The exact choice of prolongation /
interpolation weights is known from literature [21]. Restriction is given as
the transpose of the prolongation, i.e. P§+1 = P;HT.

Finally, we recursively define for j = J — 1,...,0 the matrices and the
right-hand sides involved in the hierarchy of linear systems (3) as

.. pJ 4 J+1 .— pJ

In order to achieve optimal complexity in AMG, coarser levels are con-
structed such that the operator complexity

Ca ::Z
J

where 7(A ) is the number of non-zeros in A, stays bounded by some con-
stant independent of J. If standard interpolation and standard coarsening
fail in achieving this, stronger or more aggressive versions such as eztended /
multi-pass interpolation and aggressive coarsening on some levels is applied
to keep this property [22]. Unfortunately, to the best of the authors’ knowl-
edge, there is for now no theory on the decay of the number of non-zeros in
the coarse grid matrices A; constructed by classical Ruge-Stiiben AMG on
multiple levels and for general M matrices A ;. The operator complexity is
therefore always used as empirical measure for coarsening quality.

n(A;)
n(As)’

2.2 Multilevel frames

Let us note here that the above algebraic construction naturally leads to
algebraic multilevel frames, cf. [23], for the elliptic problem on Q. That is,
we can replace our original system of linear equations in (2) by the system

Ajuy = f; (5)
with

Ay = oo , o ug = : e :
Ap - Ayy uy I



and set

Ajj, =Pl A;P?.
The diagonal matrices A;; are the system matrices A; from the previous
paragraph. Moreover, we have extended the prolongation / restriction to
arbitrary levels. This is possible by concatenating the corresponding opera-

tors. Above, we further introduce the multi-index j = (j1,j2) allowing the
abbreviated notation

Ay =[Ajljjllo<rs s = [uglj<s fi=1F]<s

As in multilevel frame discretizations based on geometric refinements /
coarsening, cf. [14], the above system of linear equations now encodes the
full information of the hierarchy of systems in (3). Especially, it is equiva-
lent to the the linear system of equations (2), if the BPX-preconditioner is
applied, cf. [2, 5, 6, 16].

The system matrix in (5) has a large kernel, which can be ignored by
using appropriate iterative linear solvers. Solutions uj can be projected
back to single-level solutions w; by applying the operator

Py =[P, P{,...,PJ].

In [23], it has been shown by numerical experiments that the applica-
tion of specific iterative solvers to (5) leads to problem-size independent
convergence rates also in case of algebraically constructed multilevel frames.

3 Sparse algebraic tensor product approach

Next, we like to consider elliptic problems on tensor products €2 x €2 of the
polygonally bounded domain 2. That is, we consider problems of the form

(AAu=f onQxQ,

u=0 ond(QxQ). (6)

As in Section 2, we assume to have a discretization (e.g. by finite elements)
for the problem on a level J resulting in the system of linear equations

(AJ®AJ)UJ:FJ. (7)

Here, A; € RV >N is the system matrix from (2). The operator ® is
the Kronecker product operator for matrices. For matrices S € R"*"2,
T € R™>*™2 it computes the Kronecker product

811T e 81n2T
ST = . : :

Spi1d ... Spne T



A5 A Ais)| Aws) A5 A1) Ais)| Ass) A3 Aqs)| Az Ass)

A2 Aa,z)| Aza)| As2) A0,2)| Aq2)| Ao Aso A0,2)| Aq2)| Ao Aso
Ao | Aay| A | As ) Aon| Aa | Ae | A Ao Aan| Aey| A
A.0)| A10)| Az0)| A0 Ao0)| A10)| Az0)| A0 A0.0)| A0 | A.0)| A,0)

Figure 1: For discretization level J = 3, multilevel frames on the full tensor
product space require a very densely populated system matrix E (left),
while sparse approximation leads to the system matrix Z; (center) with
smaller size due to fewer active (i.e. gray) matrix subblocks. The sparse grid
combination technique (right) leads to the most efficient approximation.

Consequently, (A; ® Ay) becomes a matrix of size N;% x N;2. Moreover,
U, FjcRN'NJ are the solution and the right-hand side, respectively.

By assuming an underlying d-dimensional finite element discretization
with mesh width h and a multigrid-type linear solver, solving the linear
system in (7) would require at least O (h_zd) operations, in contrast to
O(h~9) for the problem given by (2). This amount of computational work
is prohibitively large, especially for larger d. Therefore, we shall find a way
to reduce the amount of work to solve this problem. Before we do that, we
change the problem discretization to a multilevel discretization, which is the
basis for the subsequent sparse approaches.

3.1 Multilevel frames for tensor product constructions

As in Section 2.1, we can for j = (j,j’) introduce multiple levels of systems
of linear equations

(A; ® Aj)U; = F; (8)

with ‘ . §
A;=P)A;P] and F;=(P,@P))F,

by applying coarsening and the transfer operators of algebraic multigrid.
Thereby, we obtain

(Aj® Aj) € RNNi> NNy and U, Fj € RNV

P;/ is the prolongation / restriction matrix introduced in Section 2.1.

By extending the solution approach in Section 2.2 to tensor product
problems, we finally obtain the multilevel frame linear system for the tensor
product problem as .

A gUsj=Fjy. (9)



Here, we have

—

Ay =[A; @ Ajlji<s = [Ajl|jllwe<T s

and
Uj=[Ujljjlpo<ss Fa=1[Fjljjjmee<s-

Note that we indeed construct frames over the tensor product problems
instead of constructing a tensor product of frame discretizations, cf. [14].

In order to characterize the computational complexity for the solution
of (9), we recall that we assume to have a constant operator complexity
for the sequence of matrices Aj, ie. > n(A;) < c¢n(Ay). Moreover, by
definition of the Kronecker product, we have the number of non-zeros in
each block of E given by

n(A; ® Aj) =n(A;)n(A;).
From that, we can estimate the total number of non-zeros in Z; by

n(As) = > n(A)n(A;) < c*n(Aj)?.
Gg'<d

This means that the computational work to solve (9) is asymptotically iden-
tical to a solve of (7).

3.2 Sparse tensor product construction

Solving (7) or (9) would be prohibitively expensive, cf. Figure 1. As in the
geometric multilevel case, we assume that the solution of the elliptic problem
(1) on Q is H? regular. Therefore, the solution of the tensor product problem
(6) becomes H?  -regular, see [18]. This allows to follow, for example, the
lines of [14] to introduce a sparse, however now algebraically constructed,
version of the discretized problem. Instead of using all sub-problems for
multi-indices [|j|¢~ < J, the sparse approximation is reduced to multi-

indices ||7||;1 < J. Thereby, we obtain a new system of linear equations
AU =Fy
with
Ay = [le\j]njnglg, Us=Ujljjla<s, Fa=I[Fjljjj.<s-

Figure 1 compares both choices in the plots on the left-hand side and the
center.

As discussed before, there is not much theory on the size of the levels
in the algebraic multilevel construction. The only available information is
the assumed bound on the operator complexity. However, this does not give



enough information to discuss the expected improvement in performance
due to the sparse construction. Nevertheless, the bound implies a similar
scaling of the non-zeros with level j as in the geometric multilevel construc-
tion. Therefore, we here briefly discuss the number of non-zeros in Ay for
the geometric construction to give a hint towards the possible performance
improvement by the algebraic sparse construction.

With this in mind, we follow the previous example of (linear) finite el-
ements on a mesh with mesh width h. The number of non-zero entries for
matrix A; is proportional to the number of elements and therefore

n(A;) = 0(2%).

Moreover, we have J = O(|log h|). By evaluating

(&)= Y (d),

31l <J

one can easily verify that the number of non-zeros in the system matrix in
Ay is asymptotically

n(As) =0 (Jlogh|n~) .

That is, in case a BPX-type preconditioner [2, 5, 6, 16] and an optimal
approach for the construction of the sub-problem matrices ;1\3 [1, 3, 24] is
used, the computational complexity of the problem on the tensor product
domain 2 x © is (up to a logarithmic factor) reduced to the computational
complexity of the problem on domain 2.

3.3 Sparse grid combination technique

It has been shown [13] that the previous sparse approximation is equivalent
to the so-called sparse grid combination technique. The latter one requires
to solve a set of decoupled problems

A;U; =Fj, where ||jln € {J,J —1}. (10)

These are afterwards combined to a solution

Us;= Y (PlePhu; — Y (P/eP)HU;. (11)
Il =7 Il =71

On the right-hand side of Figure 1, the sub-matrices ;1\] used in this approxi-
mation have been marked gray. As before, one can easily verify that the total
number of non-zeros of the matrices in (10) is asymptotically O (|log h| h~%)
for the case of linear finite elements on a tetrahedral mesh with mesh width A



in d dimensions and a geometrically constructed multilevel structure. How-
ever, Figure (1) easily clarifies that the pre-asymptotic number of non-zeros
in the matrices involved in the combination technique is much smaller than
the non-zeros in the sparse approximation discussed before.

In terms of computational complexity of the combination technique, let
us remind that the (approximate) solution of each sub-problem in (10) can
be realized by an iterative linear solver with matrix-vector products. To
be more specific, tensor product versions of standard iterative solvers can
be constructed, by reshaping a given iterate Uj_(; ) € RN (and the
appropriate right-hand side) to a matrix of size N; x Nj. Then, the action
of one step of an iterative solver for matrix Z&; = A; ® Aj is done by first
applying the iterative solver step for A; to all Nj columns of the reshaped
matrix and by second applying the iterative solver step for Ay to all N;
rows of the reshaped matrix. Since we have all prolongation and restriction
operators from AMG at our disposal, we can construct, in the above way,
a tensor product version of algebraic multigrid. Given this solver, we ob-
tain roughly problem-size independent convergence for each sub-problem in
(10), i.e. we need O(N;Nj) operations for each sub-problem. In the geo-
metric setting, we would again have the relation N; = O(24) and thereby
02413 operations per sub-problem. Since it holds ||j||p € {J,J — 1}
and the number of sub-problems is O(J), we would finally end up with a
computational complexity of O(J2%) or O(N;log Ny).

4 Implementation

In our numerical results, we approximate solutions for tensor product fi-
nite element discretizations of elliptic problems based on the combination
technique. To this end, we assemble system matrices for a given problem,
construct the multilevel hierarchies, solve the decoupled, anisotropic prob-
lems in (10) and combine the solutions following the combination rule (11).

Assembly of system matrices. The discretization by the finite element
method is done with the Matlab PDE Toolbox of Matlab 2017a. We use linear
finite elements and construct meshes with maximum element size Hmax=
2=/, Furthermore, we use the option Jiggle to optimize the mesh in quality.
The stiffness matrix (incorporating boundary conditions) is constructed by
using the Matlab command assembleFEMatrices with option nullspace.
In a similar way, we extract the mass matrix. Afterwards, both matrices
and the mesh node coordinates are stored to files.

Construction of the multilevel hierarchy. From within Matlab we call
a newly implemented code that uses the parallel linear solver library hypre
in version 2.11.1. This library contains the implementation BoomerAMG

10



of classical Ruge-Stiiben AMG. The code reads the matrix from file and
creates the AMG multilevel hierarchy by using hypre. In addition to standard
coarsening with strength measure €5, = 0.25 and standard interpolation, we
use two passes of Jacobi interpolation [21] with a truncation of the Jacobi
interpolation with a threshold of 0.001 for the two-dimensional problems and
0.01 for the three-dimensional problem. All other parameters are kept as
the defaults of BoomerAMG. After having created the multigrid hierarchy,
the program stores the prolongation matrices of all created levels to files.
These are read by Matlab.

Solution of the anisotropic tensor product problems. Based on the
prolongation matrices and the system matrix Ay on the finest levels, the
decoupled problems in (10) can be set up. As discussed before, a tensor
product version of AMG is used to solve the systems of linear equations.
In our implementation, we construct the sub-problem operators in (10) by
individually multiplying the transfer operators between two consecutive lev-
els.
Our tensor product AMG is iterated until the convergence criterion

1R N2/ 1 Fjlle < etor

is fulfilled, where R;-t is the residual of the current iterate U ;’p in the solver.
Since the problems in (10) completely decouple, we can easily parallelize
their solution process by a parfor loop in Matlab. In case an individual prob-
lem becomes very expensive, we further implemented a distributed memory
parallelization for the tensor product AMG based on Matlab’s distributed
function. Thereby, we overcome the limitation of a non-existing multi-core
parallelization for sparse matrix-vector products in Matlab.

Combination of the solutions. In the combination phase, we avoid to
prolongate the full partial solutions to the finest level J. Instead, we ran-
domly chose N, nodes on the product of the finest meshes on 2 x 2. On
these points, we evaluate the combination formula (11) and compute the
empirical error measure

e(Uapprox) = HUapprom - Uref”EQ/HUTefHZ%

where U gppror is the approximated solution and U,.; is an appropriately
evaluated reference solution. Note that we do not multiply the tensor prod-
uct of the prolongation with the solution. However, we follow the ideas from
Section 3.3 for the construction of the tensor product AMG and apply the
prolongations direction-wise. The prolongation for each sub-problem is also
parallelized by a parfor loop.

11



5 Numerical results

In our empirical studies, we consider the numerical solution of the problem

(A Au=f onQxQ,

u=0 ond(QxQ). (12)

by means of the combination technique based on the algebraic multilevel
hierarchy. Different choices will be made for the domain €2 and the right-
hand side f.

5.1 Analytic example on a disk

The first study is done on a disk domain € with center (0,0)" and radius
0.5. We set

flx,y)=1.

The exact solution of the resulting problem is

u(z,y) = % (2% + 23 — 0.5%) (y] +y3 — 0.5%) .
To approximate the solution u by the combination technique, we follow the
methodology discussed in Section 4. As part of this, we triangulate the
geometry with a maximum element width of 277/, Figure 2 shows on the
left-hand side the resulting mesh for J = 5. It is obvious that the resulting
mesh is unstructured. Therefore, classical geometric constructions for the
sparse grid combination technique would not be feasible on that mesh. In
contrast, our new algebraic approach can solve this problem.

This is shown on the right-hand side of Figure 2, where we compare the
numerically approximated solution against the above exact solution. Con-
vergence results for the choices J = 3,...,8 are given. From literature,
compare e.g. [13], we know that the error of the geometrically constructed
sparse grid combination technique scales for the problem under consideration
like J4=7. As we can see from the convergence results in Figure 2, the al-
gebraically constructed combination technique shows the same convergence
behavior, while being applicable to unstructured grids.

Figure 3 shows on the left-hand side computing times for growing prob-
lem size Nj of the univariate discretization of 2. We compare the time
required for the solution of the combination technique sub-problems with
the time required to solve the full tensor-product problem (7) by our tensor-
product AMG implementation. Note that we use the coarse grid hieararchies
reported in Table 1 for both the combination technique and the full tensor-
product approach. All measurements were done on a compute server with
dual 20-core Intel Xeon E5-2698 v4 CPU at 2.2 GHz and 768 GB RAM. It
becomes evident that our algebraically constructed combination technique

12



\VAVAVAVAY
SORY

1

)
NA
A

7

45
N
%
V4
‘V

—e— CITOr

pYAV
7

S
AVAN
ALY
=
</
5
%
>t
<]
>
]
<
v
%
A\
ko
<1
/>
<
s
VA%
%
LAY

<
L
PO
i
;AA
7Y

va¥
o0
g

RS
SRS
VAV YAVAY
b
A

1071

X
5
J

12

V)
V%
%
RS
(A%
S
SR
/>
AR
LAY
<
XN $=
QN
X
Lo
KX
NP
[>T
1#1&
P
<]

\
A
X
AN
A
&
X
N
N
K]
ev
)
<l
X
K
'é
Y
‘P
=
b
X
%)

Y
A
V)
Y4}

<5
ol

avy
Vév
o
X
5
>4
Y
SR
K
N
K]
K
NN
RS
A
W
R

AR
Vava AV
ORI
bas
o

™

axy
Yava V4
“Vﬁ'ﬂvg‘h

.,
VAVA
2
W
g
W
<
Va
A
VAVAV
pVAVAY
0y
Yavay;
D
VK
N
<

I
4

2

4&4
A%

»gy;

Ya)
V4

o
2
AVaY
Vi
4
5
e
R
SR
<L
%
N
v,

A
Vs

%

S
Al
y
i
It
S
>
{7
%
X
QV
é
5
X
'}%
2
74V

vg
N
e
L
ATAY
%X
<[>t

X
O
P
Vé

S

1072

I
<
K
<
5
Y
&
kI
It
[>1
Vi
=
N
Vay
N
%
Sl
44}
'%v
X7
N

KL
o
oK)
N
I
)
11
Lt
X
LY
<]
%% 7aYA)
/>
XA
\VAVA
Lx
N
VA
Q)
A

K5
N
Kl
Y
&
o
EL
Zk
<
~
Ny
s
A
&
LR
OREA
Yav)
&
~

VAVAYY,
IEREE

s
i
0

Y
TAV)
V4
Vavdl
%
%
AV}
S
g
N
AVAY
\VAVA
Vi
Y
N
K/
%)
N
S8

7
5
5K
3

S
X
AWavay

N
YA
LK
Vv
%)

\
KK
Y
Ky
N
X
o

VAV
iVa
Ay

A'é'
"#’

A

Y

J
i

N
T
.

QX
V)
\/
S
KK
v
b
Y
4

AR A
%‘ 4"'
K]
i
2
v}
Pava,
X
YAV
%
y,
Xy
/N

AV,
X
YA
o0
Ve
\ K2 g‘v
<RI
v,

1073

relative £2 error e(U epact)

level J

Figure 2: The combination technique based on our algebraic multilevel hi-
erarchy and applied to the tensor product of a disk geometry with an un-
structured mesh (left, triangulated with J = 5) shows the same convergence
as the geometrically constructed combination technique (right).

approach beats the full tensor-product approach in both, computational
complexity and effective runtime. However, both results do not show the
predicted computational complexity of O(Nlog Ny) and O(N;?). There
are several reasons for this behavior.

e First, algebraic multigrid often shows a small, roughly logarithmic,
growth in the number of iterations for larger problem sizes, resulting
in a slow-down by a logarithmic factor.

e Second, we observe a certain fill-in in the system matrices for coarser
problems in the algebraic construction due to our choice of an ad-
ditional (truncated) Jacobi interpolation. However, this should be
pre-asymptotic behavior.

e Third, as can be seen in Table 1, the AMG coarsening approach chosen
in our implementation does not show the exact same decay rate in the
number of levels as we expect from the geometric construction. In
fact, this leads to a problem-size dependent growth of the coarsest
grid. While this growth does not affect the error decay, it shows up in
the computational complexity.

Meanwhile, as stated before, we are able to beat the solution approach based
on the full tensor-product approach in terms of computational complexity.
Even more, in terms of runtime, we are by more than two orders of magni-
tude faster.
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Figure 3: We compare the runtime of the new combination technique ap-
proach (CT) with the runtime of the traditional the full tensor-product
approach (full TP) for the solution of the tensor product elliptic problems
on the disk geometry (left) and the plate geometry (right).

# dofs on algebraically coarsened level j
Q JN\j 0 1 2 3 4 5 6 7 8 9
disk 3 3 11 28 71
4 8 21 52 119 320
5 12 31 84 207 495 1292
6 20 51 139 348 852 2009 5234
7 35 93 244 606 1473 3510 8415 22118
8 46 130 366 978 2469 5983 14480 34081 89097
plate 3 5 20 61
4 16 36 90 230
5 28 68 168 414 1072
6 46 116 297 745 1813 4703
7 63 184 515 1272 3117 7491 19611
8 103 302 815 2124 5301 12822 30639 80146
spanner 3 4 10 19 50 117 247
4 11 22 59 147 326 689 1454
5 40 114 300 689 1516 3216 6484 13939
6 210 548 1364 3123 6708 14109 29103 57438 125223
7 1386 3120 6627 14016 29533 61150 124921 253291 496614 1082581

Table 1: For a given problem on level J, the algebraic multilevel construction
on our example domains ) constructs coarser levels with a decrease of the
number of unknowns roughly similar to geometric multilevel constructions.
Above, only those levels j are reported that are used in the convergence

study.
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Figure 4: Even for a covariance load on a complex geometry (left, triangu-
lated for J = 5), the algebraic construction shows the appropriate conver-
gence rate after a short pre-asymptotic phase (right).

5.2 Example on complex geometry with covariance load

The next numerical study is concerned with the solution of the problem (12)

with the load )
fl@,y) = exp <_Hw i l )

that corresponds to an (unscaled) Gaussian covariance kernel with corre-
lation length ¢. This is a prototype version of the tensor product elliptic
problem on 2 x Q showing up in the computation of the output covariance
of an elliptic problem on Q with random input, cf. [14].

In addition to the more complicated right-hand side, we solve the prob-
lem for a rather complex geometry 2. We choose the geomery of a square
plate on [0, 1] with circular wholes of radius 0.15 which are centered at the
points

{(0.25,0.25), (0.25,0.75), (0.75,0.25), (0.75,0.75) } .

Figure 4 shows its triangulation for J = 5 on the left-hand side. Note
that it would be almost impossible to solve a problem on such a geometry
with the geometrical construction for the sparse grid combination technique.
However, with the algebraic construction, a coarsening to very few degrees
of freedom becomes easily possible, compare Table 1.

To be able to compare the above problem against a numerically com-
puted reference solution, we replace the (sampled) covariance kernel for £ = 1
by its low-rank approximation computed with the pivoted Cholesky factor-
ization [12], truncated for a trace norm of 1078. In this case, depending on
the problem size, the truncation results in roughly twenty low-rank terms.
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Figure 5: In our large-scale real world example, we solve an elliptic problem
on the tensor product of the three-dimensional geometry of a spanner. For a
discretization level of J = 7, the discretization of 2 has more than a million
unknowns. This would lead to 10'2, that is a trillion, unknowns in the full
tensor product discretization.

On the right-hand side of Figure 4, we show the convergence results with
errors computed against the numerically approximated exact solution by use
of the low-rank approximation. After a pre-asymptotic phase, we are able
to attain an error that scales like J4~/ as in the geometric construction.

The problem size dependent runtime to compute the subspace solutions
for the plate geometry is given in Figure 3 on the right-hand side. We
observe similar compuational complexities and similar runtimes as in the
previous example on the disk.

5.3 Large-scale real-world example

Our last numerical study treats a large-scale problem with a complex real-
world geometry Q. We again aim at solving (12) for f(x,y) = 1. However,
we choose the three-dimensional spanner geometry found in Figure 5. In
contrast to the previous examples, we set the maximum mesh width to 2°~7,
since the geometry is contained in the rather large bounding box [—5,5] X
[—12.2,112] x [-15.7,15.7]. Note that the triangulation of € results for level
J = 7 in a discretization with 1,082,581 unknowns. That is, if we would
want to solve the full tensor product problem on 2 x €2, cf. (6), then we would
have to solve a problem with about 10'2, that is a trilion, unknowns. This
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Figure 6: Our algebraic multilevel construction for the sparse grid com-
bination technique on the large-scale three-dimensional spanner geometry
gradually approaches the optimal convergence rate of J27%/.

would be clearly out of scope even for large parallel clusters. In contrast, the
combination technique allows to solve this problem. Nevertheless, we still
have to solve, e.g. for level J = 7 and the system matrix Z(Q\J) a problem
with 1,082,581 x 1,386 unknowns, compare Table 1.

In Figure 6, we show the convergence results for this large scale problem
relative to a numerical approximation of the solution. Due to the high
dimensionality and complexity of the domain 2, the convergence results
in Figure 6 are only gradually approaching the optimal scaling of J27¢/.
Nevertheless, we are able to solve this problem up to a certain accuracy.
This shows that even very complex problems of large scale can be solved by
the proposed approach.

6 Conclusions

In this work, we have introduced an algebraic construction method for the
sparse approximation of tensor product elliptic problems by means of the
combination technique. While previous approaches were tight to geometric
hierarchies of mesh refinements to build the underlying multilevel discretiza-
tion, we were able to solve the given type of problems on complex geometries
and for unstructured grids by an algebraic multilevel hieararchy based on
AMG. We could show that our approach has the same convergence rates as
the geometric construction. Measurements of the computational complexity
were in the linear range with poly-logarithmic factors. Overall, we are now
able to apply sparse approximation for elliptic tensor product problems in
a black-box fashion.
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