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ABSTRACT: Inspired by Pople diagrams popular in quantum chem-
istry, we introduce a hierarchical scheme, based on the multilevel com-
bination (C) technique, to combine various levels of approximations
made when molecular energies are calculated. When combined with
quantum machine learning (QML) models, the resulting CQML model
is a generalized unified recursive kernel ridge regression that exploits
correlations implicitly encoded in training data composed of multiple
levels in multiple dimensions. Here, we have investigated up to three
dimensions: chemical space, basis set, and electron correlation treat-
ment. Numerical results have been obtained for atomization energies
of a set of ∼7000 organic molecules with up to 7 atoms (not counting
hydrogens) containing CHONFClS, as well as for ∼6000 constitutional
isomers of C7H10O2. CQML learning curves for atomization energies
suggest a dramatic reduction in necessary training samples calculated with the most accurate and costly method. In order
to generate millisecond estimates of CCSD(T)/cc-pvdz atomization energies with prediction errors reaching chemical
accuracy (∼1 kcal/mol), the CQML model requires only ∼100 training instances at CCSD(T)/cc-pvdz level, rather than
thousands within conventional QML, while more training molecules are required at lower levels. Our results suggest a possibly
favorable trade-off between various hierarchical approximations whose computational cost scales differently with electron
number.

1. INTRODUCTION

Chemical compound space, the property space spanned by all
possible chemical compounds, is unfathomably large due to its
combinatorial nature.1,2 Exploring chemical space from first-
principles is desirable in the context of computational materials
design3−5 as well as to fundamentally deepen our understanding
of chemistry.6 Over the last couple of years, overwhelming
evidence has been collected indicating that quantum machine
learning (QML) models, trained throughout chemical space,
hold great promise to dramatically reduce the cost for predicting
quantum properties, such as atomization energies of molecules,
for arbitrary out-of-sample molecules.7−20 The core idea of
QML is to learn the implicit mapping from geometrical and
compositional information encoded in nuclear charges and
positions to corresponding electronic properties from a set of
training molecules with precomputed properties at a specific
level of theory. The knowledge thus obtained from training is
then applied to molecules out-of-sample, i.e., molecules not in
the training set. Nowadays, QML is a well-established technique
and has several supervised learning variants, including mainly
neural network10,11,21 and kernel ridge regression.7,22,23

Currently, most of the efforts toward QML in literature are
devoted to developing more efficient molecular representa-
tions16,20,24 and adapting machine learning models to a growing

number of applications.11,25,26 Recent overviews on the field
were published in refs 27−29 and an entire issue in J. Chem. Phys.
was recently devoted to the theme of “data-enabled theoretical
chemistry”.30

This progress was made possible due to the advent of modern
computers, which enabled routine calculations of electronic
properties such as ground state energies for large training sets of
medium-sized organic molecules31−33 using common density
functional approximations.34,35 While QML prediction errors
have converged to values smaller than DFT accuracy,15 the
predictive power of any QML model inherently hinges on the
accuracy of the employed reference data used for training.
However, while the latest machine learning models are now able
to make rather accurate and yet efficient predictions, the time
required to compute training samples for large data sets with
chemical accuracy is still prohibitive. More specifically, in order
to routinely match the experimental uncertainty of thermo-
chemistry, the highly coveted “chemical accuracy” of∼1 kcal/mol,
typical approximationsmade within density functional theory do
not suffice, and computationally expensive theories, e.g.,
CCSD(T) in a large basis, have to be used even when dealing
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just with closed-shell molecules in relaxed geometries.
Unfortunately, due to its substantially larger computational
complexity, the routine generation of CCSD(T) numbers in
large basis sets for thousands of training molecules remains
prohibitive.
The hierarchies encoded in model chemistries, well estab-

lished in quantum chemistry, can be used to exploit systematic
trends in cancellation of errors among different levels of theory,
as proposed and demonstrated by Pople and co-workers.36,37

Composite methods are based on these ideas38 and include,
among many others, Gaussian-n theories,39−41 the Weizmann-n
methods,42,43 and complete basis set (CBS) methods.44−46

They can reach chemical accuracy at the computational cost of
combinations of more efficient models. When it comes to
chemical space, the Pople diagram is a two-dimensional display
of the relationship of the size of any molecule and level of
theory.47 Pople diagrams can easily be extended to accom-
modate additional or other dimensions such as relativistic
effects48 or accuracy.49 In this study, we apply the idea of a Pople
diagram to combine varying levels of theory in the training set
of QML models (see Figure 1 for the general idea). More
specifically, we apply the sparse-grid combination (C) technique
to estimate the optimal balance among (i) electron correlation
(HF, MP2, CCSD(T)), (ii) basis set size (sto-3g, 6-31g,
cc-pvdz), and (iii) number of organic molecules. We find that

the resulting CQML models require substantially fewer training
instances at the computationally most demanding target level of
theory.
To showcase our new developments, we will discuss a series of

multilevel and multispace machine learning models, as well as
results for molecules from the QM7b data set.50 Using several
levels in the space of electron correlation approximations already
leads to a very strong improvement in the learning results, with
respect to the amount of necessary training data at target
accuracy. Further improvement is found by adding different
levels of basis sets.
This paper is structured as follows: Section 3 briefly

introduces the CQML model, as well as the data sets used for
training and testing. In section 4, results of the CQMLmodel are
presented and discussed for 2D and 3D CQMLmodels. Finally,
section 5 summarizes the main findings, draws general con-
clusions, and presents an outlook. The Appendix provides
detailed methodological information to facilitate reproducibility
of our findings.

2. COMPUTATIONAL DETAILS

2.1. Data Sets. Two data sets were used for proof of
principle: QM7b50 and 6k constitutional isomers51 (dubbed
“CI9”); both are subsets of the GDB-17 universe.52,53 QM7b is
composed of molecules with up to seven heavy atoms, including

Figure 1.Adaptation of a Pople diagram involving various levels of theory (abscissa) andmolecular spaces (ordinate). The wide arrow indicates how to
best approximate highly accurate solutions (solid black circle) of Schrödinger’s equation by combining ever improving levels of theory with an
exponentially decreasing number of molecules used for training of machine learning models. Qualitative estimates of constant cost-benefit ratios (bold
diagonals) correspond to Pareto-optimal solutions which can be sampled by using the CQML approach presented herewithin. For example, training
data consisting of 1 CCSD(T)/cc-pvqz, 4 MP2/6-31g(d), and 16 HF/sto-3g calculation results can be cheaper and more valuable than three
CCSD(T)/cc-pvqz results. Two-sided arrows indicate bridges in chemical and method space.
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C, N, O, S, and Cl (H not counted), totaling 7211 molecules.
Molecules in CI9 correspond to 6095 constitutional isomers of
C7H10O2.
For QM7b molecules, geometries were first optimized at the

level of B3LYP/6-31g(d) with Gaussian 09,54 then single-point
calculations were calculated by using three levels of theory
(HF, MP2, CCSD(T)) and three basis sets (sto-3g, 6-31g, and
cc-pvdz) with Molpro,55 resulting in nine single-point energies
per molecule.
For the CI9 molecules, three different methods were used:

PM7, B3LYP/6-31g(2df,p), and G4MP2. Relaxed geometries
and energies were retrieved directly from ref 51 for the last two
methods, while PM7 relaxed geometries and energies were
obtained by using MOPAC2016.56

2.2. QML Details. We used both the sorted Coulomb
matrix57,58 and SLATM16 for modeling the CI9 data set, while
SLATM16 only was used for QM7b. Though slightly better
performing representations have been published previously,
such as SOAP,59,60 aSLATM,16 or FCHL,20 comparison
between CM and SLATM results indicates that trends are
stable and that the conclusions drawn are independent of choice
of representation. As kernel functions, we have always chosen
the Laplace kernel σ−∥ − ∥e R R /q i 1 with σ being a hyper-parameter.
The hyper-parameter σ was optimized manually and converged
to σ = 400. Furthermore, we use a Lavrentiev regularization of
size 10−10. All presented errors are mean absolute error (MAE)
comparing the prediction by the CQML method with the true
solution of the target theory level. TheMAE is computed as out-
of-sample error over 200 randomly chosen molecules that are
not part of the training data set. These results are averaged over
20 training runs. Note that we randomly choose the =N 0M

training molecules on the lowest level, while randomly selecting
subsets of them on higher levels. This sequence of drawing
ensures the nestedness of all the training samples.

3. THEORY
In this section, we start by reviewing systematic error
cancellation, composite methods, the CQML approach, and
kernel ridge regression based QML andΔ-ML,61 as well as two-
and d-dimensional CQML.
3.1. From Pople Diagrams to CQML. Telescoping series,

as a means to systematic convergence of error cancellation, is a
well established mathematical tool. In short, if an is a sequence of
numbers, then

∑ − = −
=

−a a a a( )
N

N
1

1 0
(1)

and if we define Δ = −− −a a1 1 and a0 = 0, one has

∑= + Δ
=

−a aN

N

0
1

1
(2)

Error cancellation is also at the root of many common
practices in theoretical chemistry. Most notable are composite
methods,39−46,62−64 recently reviewed in ref 65, which
correspond to computational protocols that combine various
quantum chemical approximations such that high accuracy
(frequently chemical accuracy, i.e., ∼1 kcal/mol) is achieved for
thermodynamic quantities (e.g., atomization enthalpies).
Typically, they combine the results of a high level of theory
with a small basis set with methods that employ lower levels of

theory with larger basis sets. Importantly, they impose a
computationally much reduced burden in comparison to brute-
force convergence in basis set size and electron correlations.
For example, an extensively used composite method called
Gaussian-2 (G2)66 approximates the energy as (starting from a
geometry optimized at MP2/6-31g(d) level)

≈ ≔ + Δ + Δ + Δ‐E E Etrue
G2

QCISD(T)/6 311g(d) 1 2 3 (3)

where further correction terms have been neglected. Note that,
here and throughout, we denote approximations and reference
results by upper and lower indices, respectively. The individual
terms read

Δ = −

Δ = −

Δ = +
− −

‐ ‐

‐ + ‐

‐ + ‐

− − +

E E

E E

E E
E E

1 MP4/6 311g(2df,p) MP4/6 311g(d)

2 MP4/6 311 g(d,p) MP4/6 311g(d)

3 MP2/6 311 g(3df,2p) MP2/6 311g(d)

MP2/6 311g(2df,p) MP2/6 311g (d,p) (4)

with Δ1 accounting for the effect of adding the polarization
functions, Δ2 correcting for the diffuse functions, and Δ3
correcting for the larger basis set as well as preventing con-
tributions from being counted twice in Δ1 and Δ2, respectively.
Note that the formalism of the composite method

corresponds to a sophisticated extension of the telescoping
series in eq 2. One could also simply rewrite (2) as

= + Δ + ΔE ECCSD(T) HF HF
MP2

MP2
CCSD(T)

(5)

with all terms obtained for some large basis set. The problem
then reduces to define efficient yet accurate estimates of theΔ’s.
Here, we introduce the methodology to solve this problem
through generalization of the Δ-ML approach61 in the form of
CQML.

3.2. CQML Approach. To exploit varying levels of theory in
order to improve prediction accuracy, and thereby reduce the
number of necessary costly training instances, some of us
previously introduced the Δ-ML approach.61 It uses reference
data calculated from a computationally efficient but inaccurate
method as a baseline and estimates the difference to a more
expensive but accurate target level of theory. Numerical results
for organic molecules indicated that given an appropriately
chosen baseline method, it is possible to achieve orders of
magnitude reduction in training set size when compared to
results from traditional QML approaches. Many other studies
have already shown the usefulness and applicability of theΔ-ML
approach.59,67−74 Alternatively, efforts have been made toward
training set size reduction based on training set optimiza-
tion16,68,75,76 or improvements in the representations.17,20,24,77

To the best of our knowledge, no conceptual improvements or
generalizations of theΔ-ML approach have been proposed so far.
In this work, we generalize the core ideas ofΔ-ML61 to arrive

at a multilevel combination technique QML (CQML)
approach. CQML is a unified kernel ridge regression machine
learning model incorporating training data from several spaces
and levels of information. As proposed by, e.g., John Pople,36,47

we distinguish between

1. the space of electron correlation (e.g., MP2) and
2. the space of basis set (e.g., 6-31g), and we also add
3. the space of training molecules (e.g., some training set

drawn from QM931) as third degree of freedom that can
easily be exploited through machine learning models.
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We call a specific choice of training information, e.g.,
Hartree−Fock calculations on a 6-31g basis set done for 256
molecules, a subspace. Within each space, we assume a multilevel
hierarchy of growing accuracy and computational complexity.
For example, in electron correlation and basis set space, one
commonly expects that the degree of approximative nature
decays systematically as one goes from HF to MP2 to CCSD(T),
or from sto-3g to 6-31g to cc-pvdz, respectively. In chemical
space, it is less obvious how to establish a hierarchy of accuracy.
For the purpose of our approach, we rely on the well established
tenet in statistical learning that the predictive accuracy for out-
of-sample molecules increases systematically with training set
size,78 which is applicable to chemical space and quantum
chemistry as demonstrated first in 2012.57 This finding has by
now been confirmed and reproduced within multiple studies for
various quantum properties and system classes.27,28 As such, and
when drawing training molecules at random, we can consider
their number made available to training (e.g., N = 16, 32, 64, ...)
as the chemical space equivalent to the space of theory (e.g., HF/
MP2/CCSD(T)) or basis set (e.g., sto-3g/6-31g/cc-pvdz).
Generally speaking, a CQML model built on low levels of
theories/basis sets/small number of training molecules, will
result in a model with low accuracy and easily accessible training
data. Conversely, including more levels in each dimension, the
resulting CQMLmodel will become increasingly more accurate,
requiring, however, also access to ever more costly training data.
Figure 1 exemplifies these ideas for various levels of electron
correlation, basis sets, and molecular training set sizes.
The sparse grid combination technique known for high-

dimensional approximation79−89 and quadrature/uncertainty
quantification90,91 in numerical analysis corresponds to a rigorous
means to generate QML models constructed on a combination
of sets of different subspaces. The general idea is to combine the
subspaces such that only very few expensive training samples are
needed at target accuracy (e.g., CCSD(T) for cc-pvdz at high
sample count), some less expensive subspaces with higher training
sample count are needed, and so on. Figure 2 outlines a choice of

subspaces by amodified sparse grid combination technique. Here,
each subspace is represented by a colored cube.
In this work, we will first generalize the aforementionedΔ-ML

approach to a multilevel approach that incorporates the space

of theories, basis sets, and training molecules. The CQML
approach differs from existing multifidelity machine learning
models92 in that it is (a) generalized to multiple dimensions and
(b) does not unite the various spaces within one kernel matrix,
but rather through a series of independently trained kernels.
While the CQML approach accounts for an arbitrary number of
information spaces, for the sake of brevity and without any loss
of generality, we restrict ourselves only to the three spaces
discussed above.

3.3. Kernel Ridge Regression and theΔ-ML Approach.
In order to properly discuss CQML, we first need to briefly recall
the principal idea of the established kernel ridge regression based
QML models. With R (some) representation of a molecule, we
denote by E R( ) the ML based approximation of the electronic
ground state property of that molecule at a certain level of theory l.
We train the ML model by using N training molecules Ri with
i = 1, ..., N with corresponding reference energies at the
corresponding specified level, El

ref(R). The objective is to predict
energy El

ref for an out-of-sample query molecule Rq, part of
neither training nor validation sets.
The ML model E within kernel ridge regression is then given

by α≈ ≔ ∑ =E E kR R R R( ) ( ) ( , )q q i
N

i q i
ref

1
( ) , where k is an

appropriate unitless kernel function. For this study, we always
choose the radial basis kernel function, exp[−∥Rq − Ri∥1/σ]
(Laplace) with length scale σ. Optimization of kernel function
space could represent yet another potentially interesting dimen-
sion for future investigations. As described in detail else-
where,27,78 the coefficients αi are obtained by solving the kernel
matrix inversion problem α λ= + −K I e( ) 1 for given regular-
izer λ and reference energy vector e . Here, we use matrix
notation with capital and small case letters for matrices and
vectors, respectively.
The Δ-ML approach61 models the difference between a

baseline and target level of theory, e.g., HF and MP2,
respectively. Note that we here have decided to adapt a slightly
different notation in contrast to ref 61 in order to facilitate
the generalization of the Δ-ML to the CQML approach. Here,
P(b)(R) and P(t)(R) represent the properties of interest
computed at baseline and target level of theory, respectively.
Note that within Δ-ML, for P(b) and P(t), it is not mandatory to
estimate the same property; e.g., it could be the ground state
energy in the baseline theory and the enthalpy in the target
theory. Hence, the Δ-ML model prediction is given by

≔ + ΔP PR R R( ) ( ) ( )t q b q b
t

q( ) ( ) (6)

where αΔ = ∑ = kR R R( ) ( , )b
t

q i
N

i q i1 . We emphasize that within
the Δ-ML model a potentially costly baseline evaluation of the
query compound is still necessary when making a prediction.
This differs from the CQML approach that recovers the original
speed of QML by modeling even the baseline through a
machine.

3.4. Two-Dimensional Multilevel Learning. The CQML
approach generalizes the Δ-ML model to several spaces and
levels. This is illustrated in Figure 2 for three dimensions and
levels that we have also considered in this study (vide inf ra).
To facilitate the discussion, we first discuss the adaptation of the
Pople diagram in order to exemplify the general idea of the
CQML approach for the simple case of only two dimensions.
More specifically, we now consider the space of theory and
training molecules. Thereafter, we will also discuss the

Figure 2. 3D CQML approach combining multiple levels in the spaces
of electron correlation, basis sets, and training molecules. Subspaces
with + + = 4C B M (seemain text for definition of ’s) are colored in
red, subspaces with + + = 3C B M are colored in yellow, and
subspaces with + + = 2C B M are colored in blue. They are given in
layers, which are indicated by the colored connecting lines.
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generalization to three-dimensional, as well as d-dimensional
cases, in section 3.5.
We assume L levels of theory with running index

= −L0, 1, ..., 1, for which the calculated energy increases
in accuracy a (with respect to an experimentally yet unknown
truth) and computational cost with growing theoretical
complexity, > < −+a a L, for all 11 . Multilevel learning in
two dimensions is performed as follows

(1) On level = 0 compute reference energies =E 0
ref for =N 0

molecules and train the standard QML kernel ridge
regression model =E 0.

(2) On level = 1 compute reference energies =E 1
ref for

<= =N N1 0 training molecules.
(3) Still on level = 1, train amodel of the difference between

E0 and E1
ref for the N1 molecules.

(4) Repeat recursively until target level = −L 1 is reached.
Note that while N and +N 1 molecules do not have to be

mutual subsets, in this study all +N 1 molecules are also part of
the N molecules out of convenience.
Formally, one can recursively define the intermediate

multilevel 2D model E for = −L0, 1, ..., 1 and build on
the lowest level baseline ( = 0) as

∑ α≔ +−
−E E kR R R R( ) ( ) ( , )q q

i

N

i q i1
( 1, )

(7)

where we set E−1 ≡ 0. For example, the CQML model that
combines PM7 ( = 0), DFT ( = 1), and G4MP2 ( = 2)
reads

∑ α= +E E
N

kR R R R( ) ( ) ( , )q q
i

i q i2 1

2
(1,2)

(8)

where

∑ α= +E E
N

kR R R R( ) ( ) ( , )q q
j

j q j1 0

1
(0,1)

(9)

where

∑ α=E
N

kR R R( ) ( , )q
k

k q k0

0
(0)

(10)

where the last term corresponds to the conventional direct QML
model of the PM7 energy. For numerical results obtained from
this model, and their discussion, vide inf ra. To compute the

coefficients αi
l( ), we solve the previously mentioned kernel ridge

regression problem.
Let us briefly compare this approach to the conventional

Δ-ML models discussed before in section 3.3. In the single-level
case, the resulting model E0 is the direct conventional QML
kernel ridge regressionmodel. In the two-level case, the resulting
model E1 bears similarity with the Δ-ML model, the major
difference being that also the baseline is a machine. Thereby,
it becomes possible to use different amounts of training
information (N0, N1) on both levels. Nevertheless, if we chose
the training molecules on the first and the second level to be
identical and skipped regularization in the regression problem,
E1 and conventional direct QML would be identical. And if we
chose the training molecules on the first and the second level to
be identical and built only one ML model (namely of the

difference), E1
ref and Δ-ML would be identical. E2 and higher

order approximations have, to the best of our knowledge, not yet
been discussed in the literature.
Using above definition, we did not fix yet how to choose the

amount of training samples on each level. This choice is based on
the sparse grid combination technique.79−91 Qualitatively, the
combination technique implies using many training samples on
the lower levels of theory and reducing the number of samples to
fewer and fewer samples on higher and higher levels of theory.
As we will see, the balance between the amount of training
samples per level can be a point of optimization within our
method. In section 4, we discuss our choices of level balancing
on the basis of the sparse grid combination technique. These
choices have been evaluated for different training data, and with
respect to two possible optimality measures. Future work will
deal with a more systematic assessment of how to tailor and
optimize the relative ratios of training molecules at each level
and in each dimension.

3.5. Three- and d-Dimensional Multilevel Learning.
Extending eq 7 to more than two dimensions results in
dimension-dependent levels. Table 1 provides an exemplifying

overview for three dimensions involving basis set (B), electron
correlation (C), and molecular training set (M), with their
corresponding levels B, C, and M.
Thus, any given combination of levels can be specified as

the ordered triplet of respective level indices, = ( , , )C B M .
For example, the combination CCSD(T)/cc-pvdz, N1 is
encoded by the triplet = = = = =( 2, 2, 1) (2,2,1)C B M .
In order to extend this principle to even more dimensions, we

now generalize this approach following the lines of the sparse
grid combination technique; cf. Appendix A. We introduce for
d dimensions with corresponding levels , ..., d1 , which we
collect together in the d-dimensional multi-index = ( , ..., )d1 .
Above, d = 3 and 1 correspond to C, 2 corresponds to B, and

3 corresponds to M. Following the notation that the last level
index refers to molecular training set size, i.e., =d M, we define

the energy E( )
ref given on a subspace , and the QMLmodel E for

each subspace,

∑ α≔
=

E kR R R( ) ( , )q
i

N

i q i
1

( )
d

(11)

Computing the coefficients αi
( ) for a fixed subspace is done by

solving the regression problem

∑ α≈
=

E kR R R( ) ( , )j
i

N

i j i( )
ref

1

( )
d

(12)

for all =j N1, ...,
d
.

The generalized CQML machine learning model is then
given as

Table 1. Exemplifying Overview of Levels in Three
Dimensional Multilevel Learning for Basis Sets (B), Electron
Correlation (C), and Molecular Training Set (M)

level 0 1 2

lC HF MP2 CCSD(T)

B sto-3g 6-31g cc-pvdz

M N0 N1 N2
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∑ ∑β α≔
∈ =

E kR R R( ) ( , )q
i

N

i q i
1

( )
d

(13)

In fact, it is the combination of the machine learning models
from eq 11 for different subspaces that are collected in the index
set . The classical sparse grid combination technique proposes
to use the index set

≔ { ∈ = − − ∈ { − }} L i i d( 1) , 0, ... , 1d
1 (14)

with ≔ ∑ =s
d

s1 1 . In the following, the coefficients β can
always be evaluated as89

∑β χ≔ − +
∈{ }

z( 1) ( )
z

z

0,1 d

1

(15)

Here, the sum is to be understood in the sense that vector z
of size d takes all possible combinations of zeros and ones. More-
over, we define the characteristic function χ of index set by

χ + ≔
+ ∈l

moo
noo

z
z

( )
1 if ( )

0 else (16)

It is well-known that the above choice of the index set and
coefficients β in d = 2 is equivalent to the multilevel learning
approach from section 3.4.
For d = 3 the above choice of index set would lead to the

CQML model E(2,2,2) with

= − +

+ − +

− + +

+

E E E E

E E E

E E E

E

R R R R

R R R

R R R

R

( ) ( ) 2 ( ) ( )

( ) 2 ( ) ( )

2 ( ) ( ) ( )

( )

q q q q

q q q

q q q

q

(2,2,2) (0,2,0) (0,1,0) (1,1,0)

(0,1,1) (1,0,0) (0,0,0)

(0,0,1) (2,0,0) (1,0,1)

(0,0,2) (17)

and =, , 0, ..., 2C B M , exemplified with the spaces discussed
in section 1. Note, however, that this choice does not use any
training data from the target subspace, here CCSD(T)
calculations with a cc-pvdz basis set. In practice, it is preferable
to include the corresponding subspaces with this accuracy to the
training set, at least with a small training set size, in order to
include the physics of the corresponding target subspace. To this
end, in d = 3, we shift the index set such that the subspace
choice from Figure 2 is achieved. The resulting index set becomes

≔ { | ∈ [ ] ∈ [ ]

+ + ∈ { }}

( , , ) , 0, 2 , 0, 4 ,

2, 3, 4
shifted C B M C B M

C B M (18)

The corresponding CQML model then becomes E(2,2,2)
shifted

(cf. Appendix A) and reads

= − + −
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q q q q

q q q

q q q

q q q

q q q

q q q

q q q

q q

(2,2,2)
shifted

(1,2,0) (0,2,0) (0,2,1)

(2,2,0) (1,2,1) (0,2,2)

(2,1,0) (1,1,0) (1,1,1)

(0,1,1) (0,1,2) (2,1,1)

(1,1,2) (0,1,3) (2,0,0)

(2,0,1) (1,0,1) (1,0,2)

(0,0,2) (0,0,3) (2,0,2)

(1,0,3) (0,0,4) (19)

with =, , 0, ..., 2C B M . The reader is referred to Appendix A
for more details of the CQML derivation.

4. RESULTS AND DISCUSSION
Before entering the detailed discussion of our results, we now
briefly discuss the use of learning curves as a measure of machine
learning model quality. Clearly, reporting a single out-of-sample
error for any machine learning model is hardly meaningful: It is
the very point of machine learning that models should improve
with training set size. Vapnik and co-workers93,95 discussed
already in the nineties that prediction errors, i.e., out-of-sample
estimates of statistically estimated functions, decay inversely
with training set size N. More specifically, for kernel ridge
regression models (used throughout this study), the leading
prediction error term was shown to be proportional to a/Nb,
where a and b are proportionality constant and power law exponent,
respectively.93−95 In order to facilitate comparison amongmodels, it
is therefore recommended practice28 to discuss the performance
in terms of learning curves on log−log scales, i.e., for prediction
errors decaying linearly with training set size, i.e., log(Error) =
log(a) − b log(N). Saturation of errors indicates failure to learn,
and small offsets and steep slopes indicate preferable models.

4.1. Data. For all the ∼7000 QM7b molecules,9 we have
calculated total energies for all combinations among the various
levels of correlation energies (HF, MP2, CCSD(T)) and basis
set sizes (sto-3g, 6-31g, cc-pvdz). Resulting effective atomization
energies (see the Supporting Information for the entire data set),
are shown within scatter plots in Figure 3. Depending on
stoichiometry and size, the molecules spread out over the
various levels and dimensions.
More specifically, molecules can be divided into two clusters:

the one dominating the distribution is almost sulfur-free and the
other cluster of molecules, clearly separated from the majority,
containing sulfur atoms (see bottom row in Figure 3). This
pattern indicates that sto-3g and 6-31g are too small basis sets
and should not be used to describe S containing molecules.
By comparing the three figures in each column of the first three
rows in Figure 3, one can see that the shape of distribution
changes significantly upon introduction of electron correlation
(going from HF treatment to the MP2). From MP2 to
CCSD(T), however, the change in the distribution is barely
noticeable.
Considering the right-hand panel in the third row in Figure 3,

the color code corresponds exactly to the correlation energy
contribution to the atomization energy, as estimated by
CCSD(T)-HF within cc-pvdz basis. As one would expect, the
larger the molecule, the more electron correlation energy is
being contributed. The 200 molecules with the largest and
smallest correlation energy contribution to the atomization
energy are on display in Figure 4. We note that molecules with
high degrees of saturation exhibit the largest amount of elec-
tron correlation in their atomization energy, while atomization
energies of molecules with multiple double bonds, triple bonds,
and aromatic moieties contain the least electron correlation
energy. This trend is to be expected because the electrons in
unsaturated bonding patterns can contribute less to binding
than in saturated species, thereby also decreasing their electron
correlation energy contribution to binding.
The reason for developing the CQML model is based on the

hypothesis that it will systematically exploit all these underlying
implicit correlations that are on display in these figures.

4.2. 2D Results for QM7b. As a first test, we have inves-
tigated our QM7b derived data set for the two-dimensional
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(d = 2) case of atomization energies at a fixed basis set (cc-pvdz)
for three levels of electron correlation, i.e., HF ( = 0C ), MP2
( = 1C ), and CCSD(T) ( = 2C ). The second dimension
corresponds to three variable molecular training data set sizes
( = 0, 1, 2M ). Their relative extent is fixed at ratios independent
of absolute training set size. In this study, we considered two
such sets of ratios (s = 1 and s = 2) that reflect different sample
size increases for higher levels. These ratios are summarized in
Table 2. The number of training molecules N

M
on each level of

the CQML with d = 2 as a function of training set size at the
highest level =N 2M

is thus given by = × =N r N 2M M M
, where r

M

is the ratio as displayed in Table 2. Recall that all ML model
results presented in this section have been obtained by using
kernel ridge regression, a Laplacian kernel, and the SLATM16

representation.
In Figure 5, various learning curves for atomization energies,

estimated according to eq 7, are shown. First of all, we note the
rapid and systematic lowering for all CQML models as training

set size increases. The models exhibit differing offsets, and
similar slopes, in line with previous results for training-set opti-
mization experiments using ensembles of training sets within
genetic optimization protocols.68 The learning curves of conven-
tional QML pass the chemical accuracy threshold (∼1 kcal/mol)
at∼4000 training molecules calculated at target level, CCSD(T)/
cc-pvdz. This learning curve has a slightly larger offset with respect
to the original SLATM benchmark results (see the Supporting
Information in ref 96) due to the use of (i) the Laplacian instead
of a Gaussian kernel function, (ii) B3LYP rather than PBE0
geometries, and (iii) CCSD(T) rather than PBE0 energies.
Addition of MP2 reference energies of further molecules

affords a systematic decrease in the learning offset resulting in
∼2000 and ∼1000 CCSD(T) training molecules necessary to
reach chemical accuracy for s = 1 and s = 2, respectively. The
corresponding necessary MP2 training set sizes (not shown in
the figure) amount to 4000 molecules for both s-values (see
Table 2). Slightly worse results are obtained by replacing MP2
reference energies with HF energies. This result may seem

Figure 3. Scatter plots for QM7b. Size in chemical space as measured by 1-norm of Coulomb matrix [au] (i.e., ||CM||1) vs energy differences
[kcal/mol] due to various basis set size differences for HF (first row), MP2 (second row), and CCSD(T) (third row). The color code corresponds to
the atomization energy difference Δ [kcal/mol] between electron correlation models at cc-pvdz for MP2 vs CCSD(T) (left), HF vs MP2 (mid), and
HF vs CCSD(T). In the upper leftmost panel, the brackets enclosing N indicate that nitrogen atoms may or may not be present. The bottom row
corresponds to the 2D projection of the third row.
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puzzling but is in full agreement with what we have found in
Figure 3; i.e., the values of ΔMP2

CCSD(T) and ΔHF
MP2 are of the same

magnitude. This result also implies the possibility to optimize
the levels of theory by minimizing the computational cost,
meanwhile retaining the accuracy.
Adding Hartree−Fock treatment for additional training

molecules, we observe even further improvement, reaching
chemical accuracy already at ∼1000 and ∼300 CCSD(T) train-
ing molecules for s = 1 and s = 2, respectively. According to the
ratios in Table 2, the corresponding necessary MP2 and HF
training set sizes (not shown in the figure) amount respectively
to 2000 and 4000 for s = 1, and to 1200 and 2400 for s = 2.
These results are very encouraging; they suggest that

reductions by an order of magnitude are possible with respect
to high-level reference numbers (from expensive computation or
experiment) necessary to reach chemical accuracy. Effectively,
the CQMLmodel appears to exploit correlations inherent among
the various approximation levels that live within hierarchical
spaces of theories.
4.3. 3D Results for QM7b. We have also studied the

extension of the 2D-CQMLmodel by a third dimension (d = 3),
which explicitly introduces the effect of basis set size on
atomization energies. More specifically, we have considered
sto-3g ( = 0B ) as our lowest level, 6-31g ( = 1B ) as an
intermediate size, and cc-pvdz ( = 2B ) as the largest set.
Obviously, larger basis set choices as well as additional levels
with more subtle differences could have been included as well.

Here, we assume that the general trend and the conclusions
drawn are not affected by the relatively modest size of the basis
sets employed.
In Figure 5, we show corresponding learning curves of

2D-CQMLmodels that connect the different basis sets according
to eq 7 with just one correlation energy model, CCSD(T). In line
with the behavior encountered above for the fixed basis set
CQML models, a systematic improvement is found for MAE as
well as RMSE (root mean square error). The error approaches
chemical accuracy already with ∼1000 training examples with
the largest basis used (cc-pvdz). Again, increasing the ratios
between levels by going from s = 1 to s = 2 (see Table 2) leads to
systematic lowering of the learning curve.
Finally, when multiple basis set and electron correlation

levels are combined into a single 3D-CQML model, obtained
according to eq 19, the most favorable learning curves are
obtained for MAE as well as for RMSE (see Figure 5). For s = 1
and s = 2, extrapolation indicates that chemical accuracy can
be reached with just 500 and 100 training instances at the
CCSD(T)/cc-pvdz level, respectively. Note that the learning
curves end already for relatively small training set sizes because
the necessary number of molecules required at lower levels of
theory rapidly reaches the maximal number of available mole-
cules in QM7b. For example, for the s = 2 case, 100 training
molecules at the highest level combination would have required
100 × 44 = 25 600 training molecules at the lowest level com-
bination. However, QM7b is composed of only 7211 molecules.
As such, this is an artifact of the finite size of QM7b, and we
expect these learning curves to further decay linearly when larger
data sets are used in the future.
Overall, these results amount to numerical evidence that it is

beneficial to include not only multiple levels but also multiple
dimensions. The obvious consequence is that an additional
substantial reduction in need for high-level reference numbers
(from expensive computation or experiment) is possible

Figure 4. Two hundred QM7b molecules with largest (left) and smallest (right) electron correlation energy contributions to the atomization energy
(CCSD(T)-HF within cc-pvdz basis [kcal/mol]), respectively. See the Supporting Information for the complete data set. Color key: white, H; gray, C;
yellow, S; red, O; blue, N; green, Cl.

Table 2. Level-Dependent Ratios between Training Set Sizes
for the Two Sample Size Increases s Considereda

s = −r L 1M = −r L 2M = −r L 3M

1 1 2 4

2 1 4 16
aL is the total number of levels.
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through the use of CQML based exploitation of training data
obtained for smaller basis sets and more approximate electron
correlation models. We believe that this is possible because of
inherent error-cancellation between various levels and dimen-
sions.
Furthermore, the success of CQML indicates that we can

push the efforts further so as to achieve an absolute prediction
error on par with experiments by taking advantage of even higher
level theory of reference data, such as CCSD(T)-F12/cc-pvqz or
quantum Monte Carlo (QMC). More specifically, the highest
level of theory adopted in this study is CCSD(T)/cc-pvdz, to
which the prediction errors are referenced. As a result, the

predictive power of CQML can match at best CCSD(T)/
cc-pvdz. Considering that we need very few training instances at
the highest level, we are optimistic that at a very low cost (cf.
brute force high-level-of-theory calculation), we can eventually
achieve chemical accuracy for energy predictions of arbitrary
out-of-sample molecules. This will be explored in future work.

4.4. 2D Results for CI9. For the stoichiometrical isomers
C7H10O2, data set CI9, we have also investigated the 2D-CQML
model corresponding to eq 7. The resulting models differ from
the previous 2D-CQML models in that they unite energy
approximation effects and basis sets into a single dimension
(PM7, B3LYP/6-31g(D), G4MP2). Furthermore, and in

Figure 5. Learning curves for CCSD(T) atomization energies of QM7bmolecules for various CQMLmodels. Level ratios considered include s = 1 and
s = 2 (Table 2). Upper left: 2D-CQML at fixed basis set (cc-pvdz) including two (MP2, CCSD(T))/(HF,CCSD(T)) and three levels of electron
correlation treatment (HF, MP2, CCSD(T)). Upper right: 2D-CQML (green) at fixed electron correlation treatment (CCSD(T)) for three basis sets
(sto-3g, 6-31g, cc-pvdz). 3D-CQML (red) exploiting basis set size (sto-3g, 6-31g, cc-pvdz) and electron correlation treatment (HF, MP2, CCSD(T)).
Bottom: learning curves for RMSE and MAE for the machines in the upper right panel with s = 2. Note that the horizontal axis in all three figures may
also be chosen to represent the number of training samples from other levels, which can be obtained by rescaling the current axis with a ratio of s, as
shown in Table 2.
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analogy to the originalΔ-MLmodel,61,69,97−100 all small changes
in geometry due to use of different levels of theory are also being
accounted for through theMLmodel. As such, only PM7-quality
input geometries are required for the 2D-CQML models
discussed in this section. Resulting learning curves are shown
in Figure 6 for two different representations, the Coulomb

matrix,57,58 and SLATM,96 as well as for two different number of
levels (L = 2 and L = 3).
Again, when comparing to conventional QML, we note

systematic and improved (through lower offsets) learning as
the number of different levels increases from two to three. The
relative performance for Coulombmatrix and SLATMmeets the
expected trend,20 SLATM systematically leading to a substan-
tially lower offset. These results suggest a certain independence
of the CQML methodology from other salient features of QML
models, such as training set selection68,96 or choice of repre-
sentation.20,24 In this case, the best 2D-CQML SLATM based
model reaches chemical accuracy with respect to G4MP2 based
on a training set consisting of∼1000, 2000, and 4000 at G4MP2,
B3LYP/6-31g(d), and PM7 level reference results, respectively.

5. CONCLUSIONS
Wehave extended the ideas manifested in Pople diagrams within
the systematic framework of the multilevel sparse grid
combination technique and machine learning. A generalized
CQML model has been presented, and we have demonstrated
its performance for various 2D variants and for one 3D appli-
cation using atomization energies of organic molecules as
property of interest. Using learning curves to compare models,
we have found for all cases investigated that the addition of levels
and spaces enables a systematic and substantial reduction in
necessary training data at the highest level of theory. As such,
we have shown how to construct QML models for which an
expensive training molecule can be replaced by multiple cheaper
training molecules. Due to the unfavorable polynomial scaling
and large prefactors of the more expensive quantum approxi-
mations, such trade-offs can deliver significantly more accurate
QML models at constant training data compute budget. In con-
clusion, our numerical findings support the idea that there is an

additional “knob” one can use to improve QML models:
In addition to improved representations20,24 or training set
selection,68,96 one can also exploit the intrinsic correlations
among the various hierarchies that exist among different levels of
approximations.
For future work, we will consider the inclusion of more

intermediate levels, e.g., the various rungs on Jacob’s ladder, or
MP4, CCSD, CCSDT(Q), etc., or continuous changes in basis
set size through plane waves. Other dimensions, such as rela-
tivistic effects, spin−orbit coupling, or nuclear quantum effects,
can be envisioned. While we have focused on atomization
energies only for this study, we will consider CQML models of
other quantum properties within subsequent studies. Technical
settings can also be investigated, e.g., the relative amount of training
data obtained at different levels (currently set globally through
parameter s), could still be adapted in a locally optimal manner.
Finally, we plan to include this implementation in qmlcode.101

■ DERIVATION OF THE COMBINATION TECHNIQUE
FOR QUANTUM MACHINE LEARNING

In applied mathematics, the sparse grid combination technique
is a means to approximate, e.g., high-dimensional functions. Lets
assume that such a function f is in some (function) space V ≔
V(1) ⊗ V(2) ⊗ ···⊗ V(d). That is, it is in the tensor product of d
spaces. Then, we introduce for each of the Lm-dimensional
function spaces V(m) a series of subspaces of lower dimension

⊂ ⊂ ⊂ ⊂V V V V...m m
j
m

L
m

0
( )

1
( ) ( ) ( )

m (20)

(indicated by the lower index). Classic (full tensor product)
approximation would now approximate this function f on a level
j in the space Vj ≔ Vj

(1) ⊗ Vj
(2) ⊗ ···⊗ Vj

(d). However, this leads
to the so-called curse of dimensionality, i.e., the exponential
growth in computational work with growing dimension d.
In many cases, the sparse grid combination technique allows

us to approximate f in a much cheaper way. This is done by
recursively introducing the sparse approximation space V̂j with

∑̂ ≔ − ⊗ ̂
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where V̂k
(d−1) is the sparse approximation space
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(22)

That is, it is recursively built from the first d − 1 spaces in the
same way.
In this work, we transfer this approach to the field of quantum

machine learning. To this end, we provide a derivation for the
combination technique for quantum machine learning in two
and three dimensions/spaces. Let us first briefly introduce a
general machine learning model for a given subspace( , , )C B M .
Note that we assume here that ∈ { }L, , 0, ...,C B M . The
general ML model for a given subspace reads as

∑ α≔
=

E
N

kR R R( ) ( , )q
i

i q i( , , )
1

( , , )
C B M

M
C B M

(23)

We identify this model with some subspace ⊗ ⊗V V V(1) (2) (3)
C B M

.
Following eq 21, the two-dimensional combination technique for
QML on level j2 for the spaces of theory and training set size and a
fixed basis set level B can be introduced as

Figure 6. Prediction errors of atomization energies in the CI9 data set
(consitutional isomers of C7H10O2) vs number of training molecules
with G4MP2 energies for various 2D-CQML models. Results differ by
representation (SLATM vs CM) and number of levels included.
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∑≔ −
=

− − −E
j

E ER R R( ) ( ) ( )j j q
k
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Note that, whenever a level index becomes negative, we assume
the machine learning model to be exactly zero, i.e.

≡ ≡ ≡− · · · − · · · −E E E 0( 1, , ) ( , 1, ) ( , , 1) (25)

For the choice of j2 = 2 and = 2B , we can explicitly derive
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Note that we have the equalities
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with the notation from section 3.4. That is, model E(2,2,2), as
derived here, is exactly the model discussed in section 3.4.
On the basis of the two-dimensional combination technique

model, we can now recursively build a three-dimensional
combination technique further integrating the space of basis set
size and with the global three-dimensional level j3 as follows

∑≔ −
=

− − −E
j

E ER R R( ) ( ) ( )j j j q
k

k j k k q k j k k q( , , )
0

3

( , , ) ( , 1 , )3 3 3
3

3 3 3 3 3 3 3 3
(28)

This construction uses the definition of the two-dimensional
combination technique in a recursive fashion.
We finally exemplify the three-dimensional combination

technique for j3 = 2. That is, we first expand the recursive
model for the three-dimensional combination technique by

= −

+ −

+ −

= −

+ −

+ −

= −

+ − +

− − −

− − −

− − −

−

E E E

E E

E E

E E

E E

E E

E E

E E E

R R R

R R

R R

R R

R R

R R

R R

R R R

( ) ( ( ) ( ))

( ( ) ( ))

( ( ) ( ))

( ( ) ( ))

( ( ) ( ))

( ( ) ( ))

( ( ) ( ))

( ( ) ( )) ( )

q q q

q q

q q

q q

q q

q q

q q

q q q

(2,2,2) (0,2 0,0) (0,2 1 0,0)

(1,2 1,1) (1,2 1 1,1)

(2,2 2,2) (2,2 1 2,2)

(0,2,0) (0,1,0)

(1,1,1) (1,0,1)

(2,0,2) (2, 1,2)

(0,2,0) (0,1,0)

(1,1,1) (1,0,1) (2,0,2)

(29)

Then, we expand each of the term by means of the two-
dimensional combination technique. Thus, we compute
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(1,0,1) (0,0,1) (0,0,2)

(34)

Finally, we combine these results with the previous calculations
for E(2,2,2) and obtain

= − +

− +

= − + ]

− [ − + ]

+ [ −

+ − + ]

= − +

+ − +

− + +

+

E E E E

E E

E E E

E E E

E E

E E E

E E E

E E E

E E E

E

R R R R

R R

R R R

R R R

R R

R R R

R R R

R R R

R R R

R

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ( ) ( ))

( ( ) ( )) ( )

( ) 2 ( ) ( )

( ) 2 ( ) ( )

2 ( ) ( ) ( )

( )

q q q q

q q

q q q

q q q

q q

q q q

q q q

q q q

q q q

q

(2,2,2) (0,2,0) (0,1,0) (1,1,1)

(1,0,1) (2,0,2)

(0,2,0) (0,1,0) (0,1,1)

(1,0,0) (0,0,0) (0,0,1)

(2,0,0) (1,0,0)

(1,0,1) (0,0,1) (0,0,2)

(0,2,0) (0,1,0) (1,1,0)

(0,1,1) (1,0,0) (0,0,0)

(0,0,1) (2,0,0) (1,0,1)

(0,0,2) (35)

This is exactly the spelled out version of eq 17 for E(2,2,2).
As discussed in section 3.5, practical considerations motivate

us to modify the machine learning model E(2,2,2) to further
include the training data from subspace (2,2,0), i.e., data from
the most expensive subspace with CCSD(T) calculations on a
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cc-pvdz basis set. Therefore, we introduced the shif ted machine
learning model E(2,2,2)

shifted in section 3.5. In principle, it can be
computed by using the modified index set shifted together with
eqs 15 and 16. However, we can also recursively derive the
shifted model by first computing the machine learning model
E(4,4,4), which, derived similarly to E(2,2,2), becomes

= + +

+ + +

+ + +

+ + +
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(4,4,4) (0,4,0) (0,3,1) (1,3,0)

(0,2,2) (1,2,1) (2,2,0)

(0,1,3) (1,1,2) (2,1,1)

(3,1,0) (0,0,4) (1,0,3)

(2,0,2) (3,0,1) (4,0,0)

(0,3,0) (0,2,1) (1,2,0)
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(3,0,0) (0,2,0) (0,1,1)

(1,1,0) (0,0,2) (1,0,1)

(2,0,0) (36)

In a second step, we exclude those subspaces that are not
contained in shifted, i.e., the subspaces for the multi-indices

(0, 4, 0), (0, 3, 1), (1, 3, 0), (3, 1, 0)

(3, 0, 1), (4, 0, 0), (0, 3, 0), (3, 0, 0) (37)

For symmetry reasons and to keep a valid combination
technique rule for arbitrary index sets, we also have to exclude
one contribution of the subspaces with multi-indices

(2, 0, 0), (2, 1, 0), (2, 0, 1) (38)

The resulting shifted machine learning model E(2,2,2)
shifted is given in

eq 19.
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