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A B S T R A C T

High resolution remotely sensed (RS) data products remain of interest in disease mapping studies. However,
previous usage of such satellite-derived products had been limited by high costs. There is also unprecedented
space activity characterized by prolific satellite launches for various purposes, the chief of which being land
cover observation. Therefore, there is need for information availability on the type of data products obtainable
from the captured satellite images in order to facilitate access and utilization. Clearly, the remote sensing
landscape is changing with the advent of Unmanned Aerial Vehicle/drones and spatially explicit images being
captured at relatively low costs. We conducted a review to find out which RS data products were accessible for
disease mapping and epidemiology. Our aim was to document RS data products for disease mapping and to
propose other such products that could be incorporated in disease mapping and epidemiology studies. In view of
the fact that RS data products are rapidly evolving, image data of higher spatial and temporal resolutions in near-
real time are already available to aid disease mapping. We presented a catalogue of indices from ecological
studies that could be used as variables in disease mapping and epidemiology. Remotely sensed data products
related to climate, meteorology, land use/cover, cartography and urban mapping are explored as potential in-
dices for disease mapping. There remains a substantial amount of work to be conducted on the evaluation and
validation of some of the indices presented in this study. Conversely, synergies between remote sensing experts
and epidemiologists could be useful in the uptake and testing of some of the proposed RS data products pre-
sented in this work.

1. Introduction

Remotely sensed (RS) data prolifically continue to be used in disease
mapping and epidemiology (Machault et al., 2014; Garni et al., 2014;
Ozdenerol, 2015). Remote sensing is the acquisition of information
about an object or phenomenon without making physical contact with
the object and it remains an operational tool for rapid observation,
assessment and monitoring of the global environment. Products of re-
mote sensing include various vegetation indices which are derived from
satellite images and used to elucidate land use and land cover changes.
Vegetation indices are mathematical combinations of different spectral
bands that are designed to numerically separate or stretch the pixel
value of different features in an image (Viña et al., 2011; Usage of
Indices for Extraction, 2018). RS products had been used in

epidemiological disease mapping studies such as in risk mapping of
malaria (Noor et al., 2014; Karagiannis-Voules et al., 2015a), soil-
transmitted helminths (Karagiannis-Voules et al., 2015b), schistoso-
miasis and prediction of high risk areas for leishmaniasis in Brazil.
Previous works include incorporation of RS data in human health stu-
dies and spatial targeting of trachoma control in Southern Sudan
(Clements et al., 2010) by developing a national risk map and mapping
tsetse fly habitat suitability among others (Robinson et al., 1997). In
addition identification of environmental risk factors for cholera using
satellite derived remotely sensed data products had been undertaken by
(Identifying Environmental Risk, 2018). Determination of population
living in a city using remotely sensed data products was carried out in a
study by (Karume et al., 2018) whereby a GeoEye satellite image at
50m resolution was used and population of the city was obtained by
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taking the number of houses times an average number of habitants per
house. Such type of population estimation could be useful in disease
mapping especially in the identification and quantification of at risk
populations.

One of the main advantages of using RS data products is its near-real
time availability for rapid assessment of at risk areas and prediction of
disease distribution especially in inaccessible areas that may also lack
baseline data (Yang et al., 2005). The increase in the launch of higher
resolution satellites and advances in processing techniques have en-
abled wider adoption of RS data (Kaptein et al., 2014). In economically-
disadvantaged areas with poor ground measurement meteorological
station networks, RS data maybe preferred and used as environmental
proxies in disease risk mapping and prediction. As new sensors with
better spatial and temporal resolutions become available, new oppor-
tunities are presented in the application of remote sensing products in
disease mapping (Correia et al., 2004).

From the first generation of ecological studies that demonstrated the
capability of RS products in disease mapping (Thomson et al., 1997;
Beck et al., 1994; Correia et al., 2004; Hay MJP, 1997), there had been
a sustained proliferation of such studies in disease mapping. The ap-
plication of geostatistical techniques to identify spatial heterogeneities
in disease distributions, patterns and trends as well as forecasting for
epidemic preparedness planning had been demonstrated in studies by
21 and 22 inter alia. The theory behind incorporation of RS data in
disease mapping was based on the established association between
environmental conditions and some of the disease causing vectors (Tran
et al., 2013; Hassan et al., 1998; Dlamini et al., 2015). For instance,
some studies have demonstrated the association between radiation re-
flectance as measured by satellites and certain land cover types which
have been used as environmental proxies for measurement of presence
of a disease and its vectors (Garni et al., 2014).

However, there had been very little effort made to document and
inventorize existing and potential RS data products that could be used
in disease mapping. An overview of products relevant to disease map-
ping and epidemiology and that are derived from MODIS and ASTER
sensors were provided by (Tatem et al., 2004). It had been mentioned
by (Weiss et al., 2015) that past remote sensing products selection
criteria had been biased and ad hoc rather than objective and quanti-
tative. This had been partly due to lack of RS data listing and thus an
inconvenience for epidemiologists as it is often hard for non-remote
sensing experts to locate and identify data that will be useful for their
analysis. An example of this is demonstrated by the high number of
studies that used temperature and rainfall as covariates in malaria
mapping in the study by (Weiss et al., 2015).

A compendium of civilian and commercial satellites that had been
launched with the aim of gathering global land cover observations was
prepared by (Belward and Skøien, 2015). However, the study docu-
mented satellite launches and not the type of RS data products that
could be obtained from the land cover images captured by those sa-
tellites. Although a number of environmental indices/proxies had been
derived from RS images by remote sensing experts (Dobbie and Dail,
2017), yet still little is known about potential environmental indices
relevant to disease mapping studies that could be derived from current
satellite-based products. Furthermore, present documentation of RS
data products from space satellites is ad hoc, incomplete and char-
acterized by duplication and redundancy between access websites. For
example, MODIS products were found across access sources such as
Sentinel Scientific Data Hub (Copernicus), USGS Earth Explorer, NASA
Earth Data among others.

Although numerous studies on derivation and application of various
vegetation indices exist, such indices had not yet been inventorized,
especially for disease mapping and epidemiological studies. Table 1
presents some of the links with free access to RS data direct download
from processing and supply agency websites.

Previously, a National Aeronautics and Space Administration
(NASA) monthly bulletin called Spacewarn was launched in 1991

(http://nssdc.gsfc.nasa.gov/spacewarn/) to raise awareness about
newly launched satellites and their missions to the general public.
Unfortunately, this bulletin was discontinued with the last issue avail-
able until July 2011. Recently, there was an initiative headed by the
European Commission (EC) in partnership with the European Space
Agency (ESA) - Sentinel Scientific Data Hub - a remote sensing website
project by Copernicus (http://www.copernicus.eu/) which had been
establishment and it promised to be a pool of all RS information
globally. The Copernicus Earth Data facility aims to serve both scientific
and commercial customers with RS data sets covering forests, crops,
water bodies and other environmental conditions of interest (Joppa
et al., 2016).

As resolution of imagery data is of primary concern, distributions of
sensors and RS products by spatial resolution (Remote sensing links,
2017) is shown in Fig. 1 where low resolution is above 100m, medium
resolution is between 10 and 100m and high resolution is less than
10m. Users of RS data products are often interested in the spatial re-
solution and the sampling frequency or temporal resolution at which
the data is available as seen in studies using remote sensing products
faithfully mentioning these characteristics (Weiss et al., 2015). Spatial
resolution is the maximum separating or discriminating power of a
sensor measurement usually referred to as pixel size (Spatial
Resolution, 2017). Temporal resolution refers to the revisit period or
length of time taken by a satellite to complete one orbit cycle (Théau,
2008). Equally interesting is the spectral resolution of the data which
refers to the ability to resolve spectral features and bands into their
separate components or to differentiate between two adjacent wave-
lengths (What is spectral resolution, 2018).

The list of sources of RS data found in (Remote sensing links, 2017)
is limited to sensors and does not include compilation of products that
could be derived from satellite images. To find out about products one
has to follow each link to check if there are any end user RS data
products available for download. Furthermore, most of the websites
provide data in a way that is not easily understood by epidemiologists
as often coding is used with little elaboration on type of products that
could be derived and their potential application (https://earthdata.
nasa.gov/user-resources/acronym-list). In 1978, (Carneggie, 1978) at-
tempted to identify and define RS data products in terms of their
characteristics and formats as these relates to the choice and selection
of data products for any analysis. Many years after this study was first
published, the characteristics and formats of RS data products as well as
availability of handling software for interoperability still determine
their usability by end users. These considerations are important to RS
data end users as they could assist them efficiently access and utilize
various RS products and justify their choice decisions (Schaeffer et al.,
2013).

This review provided a list of new and dated environmental proxies/
indices that have a potential to be incorporated in disease mapping and
epidemiology. Although most of the indices had been used in ecological
and air pollution studies, their uptake in disease mapping and epide-
miology had been notoriously slow yet remote sensing applications
remain useful in mapping infectious diseases (Tran et al., 2016). A
comprehensive catalogue of satellite sensors and specifications of their
data products and environmental proxies both those that are supplier
processed and those that could be derived by the end-user are presented
in this review.

2. Review, collation and inventorization of remotely sensed data
products

The main sources of information used in this review were online
remote sensing websites and hosting agencies. Firstly, we conducted an
online web based search using the search terms “remote sensing data
products” in Google search engine and had over 34 million hits in
0.66 s. The web links were then collated from internet websites in order
to filter duplicated remote sensing data sources after realizing that
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some hosting agencies were providing data from the same sensors. Both
free and commercial access remote sensing products were collated ac-
cording to the resolution of data variables and the sensors used to
capture them as well as a brief description of the RS products that could
be obtained. Two lists of satellites missions compiled by NASA (http://
www.nasa.gov/missions/past/index.html#.VkCoYUYposI) and ESA
(http://www.esa.int/ESA/Our_Missions) were used to find out which
satellites were orbiting the earth and what data products could be ob-
tained from those missions. The ESA missions comprised of 58 already
launched and about 18 planned launches from year 2018 to 2028 while
for the NASA missions we found about 200 missions alphabetically
listed by the name given to that mission upon its launch.

Following and opening the link to each of the satellites and the
responsible agencies led us to learn more about the RS data products,
especially the spatial and temporal resolutions. While navigating
through the different online links of remote sensing data products, we
found various inexhaustive data download file transfer protocol (ftp)
sites managed by both remote sensing agencies and private web blog-
gers who enthusiastically follow remote sensing issues (Belward and
Skøien, 2015). For instance, such websites included NASA Goddard
Space Flight Center found on https://www.nasa.gov/goddard, Co-
pernicus Open Access Hub (previously known as Sentinels Scientific

Data Hub) (https://scihub.copernicus.eu/), Observing Systems Cap-
ability Analysis and Review Tool (OSCAR), including NORAD Cata-
logue (http://satellitedebris.net/Database/), and Global Visualization
Viewer (GLOVIS) inter alia.

There were some technical details that were used during products
online search and profiling to identify the RS products. For example,
some studies have indicated that high resolution to very high resolution
RS data is the best for epidemiological mapping (Dlamini et al., 2015;
Franke et al., 2015) especially in identification of spatiotemporal het-
erogeneities (Coly et al., 2015). For some epidemiological applications,
however, the temporal resolution, (e.g. land cover and climate change),
is more important than the spatial resolution. It is also important to
know the level of data processing in order to understand the amount of
preprocessing and data preparation required from the end-user.

3. Satellites and products selection criteria

The priority of satellite-derived products was on those with global
or continental coverage scales and with data that had potential for
application in disease mapping and epidemiology. We considered pro-
ducts with continuous or sustained acquisition programme as opposed
to once-off project specific products, although some of them are pre-
sented as examples. We drew evidence from previously mentioned
studies that used RS variables in their disease mapping efforts to sup-
port the environmental indices presented in this work. Each in-
vestigated RS product led to identification of the hosting agency from
which the product could be obtained. This way we were able to find the
websites where RS data could be downloaded by end-users. The list of
products related to disease mapping was divided in the following three
categories:

• Meteorological and Climate data

• Land use/Land cover

• Cartography and urban mapping

Table 1
Some global remotely sensed data sources available for direct download.

Full name Acronym/alternate
name

Website Coverage

NASA’s Socioeconomic Data and Applications
Center

SEDAC http://sedac.ciesin.columbia.edu/ Worldwide

NASA Earth Observations NEO https://neo.sci.gsfc.nasa.gov/ Worldwide
USGS Global Visualization Viewer GloVis https://glovis.usgs.gov/ Worldwide
NASA Earth Observation NEO https://neo.sci.gsfc.nasa.gov/ Worldwide
Copernicus Open Access Hub Sentinels Scientific Data

Hub
https://scihub.copernicus.eu/ Worldwide

USGS Earth Explorer – https://earthexplorer.usgs.gov/ Worldwide
NASA Earth Data – https://reverb.echo.nasa.gov/reverb Worldwide
NOAA CLASS NOAA https://www.class.ngdc.noaa.gov/saa/products/ Worldwide
Earth Observation Link EOLi https://earth.esa.int/web/guest/eoli Worldwide
National Institute for Space Research INPE http://www.dgi.inpe.br/CDSR/ South America and Africa
Bhuvan Indian Geo Platform of ISRO – http://bhuvan.nrsc.gov.in/data/download/index.php India, Worldwide only for

NDVI
JAXA’s Global ALOS 3D World – http://www.eorc.jaxa.jp/ALOS/en/aw3d30/ Worldwide
Vito Vision – http://www.vito-eodata.be/PDF/portal/Application Worldwide
Global Land Cover Facility GLCF http://glcf.umd.edu/data/ Worldwide
DigitalGlobe – http://www.digitalglobe.com/resources Worldwide
Geo-Airbus http://www.intelligence-airbusds.com/en/23-sample-

imagery
Worldwide

UNAVCO – http://www.unavco.org/ Worldwide
IPPMUS Terra – https://www.terrapop.org/ Worldwide
Land, Atmosphere, Near-real time Capability for

EOS
LANCE https://earthdata.nasa.gov/earth-observation-data/near-real-

time/rapid-response
Worldwide

Natural Earth – http://www.naturalearthdata.com/downloads/ Worldwide
OpenStreetMap OSM https://planet.openstreetmap.org/ Worldwide
OpenTopography – https://opentopography.org/ Worldwide
United Nations Environmental Data Explorer UNEP http://geodata.grid.unep.ch/ Worldwide
Terra Populus TerraPop https://www.terrapop.org/ Worldwide
WorldPop – http://www.worldpop.org.uk/data/get_data/ Worldwide

55%
39%

6%

Low

Medium

High

Fig. 1. Distribution of spatial resolutions of remote sensing sensors and pro-
ducts.
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4. Processed vs. derived remotely sensed data products

The proposed RS products were further split into two groups com-
prising of processed and derived variables. In our case processed vari-
ables refer to the ones provided by the data supplying agency after all
the necessary preprocessing steps had been conducted (Richardson and
LeDrew, 2006). Those included RS data products that already ap-
proximated environmental proxies (Melesse et al., 2007) and that could
be directly used in disease mapping studies. Derived variables were
those that would still require the end-user to calculate them in order to
establish a link between the environmental variable and its remotely
sensed surrogate either using innovative or established mathematical
and physical derivation algorithms (Lu et al., 2013). Thus, we reviewed
ecological studies to find out environmental indices and proxies that
could be used in disease mapping. The environmental proxies were
organized according to the type of environmental variable measured
and whether they were ready for use or had to be first derived from
their surrogate indicators. The spatial and temporal resolutions of the
products as well as their period of availability were presented.

5. Remotely sensed data products used in disease mapping and
proposed new data products

From the review of ecological studies, we presented a library of
environmental proxies that have a potential application as variables in
disease mapping and epidemiology (Xue and Su, 2017). We found a
number of both new and old environmental proxies and vegetation
indices which were proposed by various ecologists and remote sensing
experts. Most of the experts also provided the algorithm and equations
for the index derivation to enable potential end-users to calculate the
index themselves. The experts also presented the strengths and weak-
nesses of each index in terms of measuring a specific environmental
condition in comparison to other known similar indices. A full reference
list to each of the environmental proxies presented in this review is
provided to aid end-users in learning more about each index listed in
the catalogue. The presented environmental proxies and indices esti-
mate environmental variables relevant to disease mapping and epide-
miological studies. We also highlighted the indices which had already
been used in epidemiology studies. Thus we created a catalogue of al-
ready utilized and potential RS data products that could be used with
the aim to bring to the attention of end-users potential variables for
consideration in disease mapping.

6. Remotely sensed data preprocessing steps

Remotely sensed data products varied according to the level of
processing expected from the end-user. Some processing of the data
were done by the supplier for most high demand products including
Normalized Difference Vegetation Index (NDVI), Land Surface
Temperature (LST) and rainfall estimates (RFE). Typical data proces-
sing levels ranged from zero (unprocessed raw data) to four which were
modeled outputs of data or variables derived from multiple measure-
ments (147_XXXIII-part2.pdf Internet, 2017). Data preparation and
processing included atmospheric noise cleaning, missing values im-
putation, alignment correction and rectification which maybe a con-
straint for non-remote sensing experts being unfamiliar with these is-
sues (Kelcey and Lucieer, 2012). Remote sensing agencies such as NASA
and ESA processed their data into different levels and provided ac-
companying documentation for each dataset accessed via their ftp sites,
which is useful for end-users to a priori evaluate the usability of the
data for their analysis. Most end-users prefer data that is processed up
to level 3 comprising of variables mapped on uniform space-time grid
with some completeness and level 4 (modeled outputs and results). The
first and second processing levels are basic processing levels and are
meant for end-users with advanced remote sensing data processing
skills and are capable of using geometric procedures to correct the

images themselves.

7. Remotely sensed image data sources

The Goddard Space Flight Center reported that there were about
2271 satellites currently in orbit (Garner, 2015) while the NORAD
Catalogue website reports approximately 7142 satellites deployed into
space including debris (http://www.satellitedebris.net/Database) since
October 1957. The satellites included those deployed for Earth Ob-
servation and environmental monitoring as well as global security sa-
tellites launched for private use. Previously an online profile of RS data
download websites was found in Exelis Visual Information Solutions
which had been incorporated into Harris Geospatial Solutions and
provides vendor information on RS products (http://harrisgeospatial.
com/ProductsandTechnology/DataServices/SatelliteAerialImagery.
aspx#vendors). Data access indicated that most RS data were available
either for free or commercially to end-users. Remotely sensed data
products show that those that were available for free have lower re-
solutions of about 250m to 1.5 km compared to very high resolution
products (from 5m to 10m) which were mostly available for sale. Ex-
amples of free products with lower resolutions included MODIS pro-
ducts such as NDVI, LST and Enhanced Vegetation Index (EVI) while
very high resolution products included those captured by IKONOS,
Orbview-3 and Quickbird satellites.

The most commonly used remotely sensed data products in epide-
miological applications included proxies of temperature and pre-
cipitation i.e LST and (RFE). Vegetation indices such as NDVI and a host
of land use/land cover (LULC) variables were also widely used. Some
new indices like the Temperature Suitability Index (TSI) which converts
observed land surface temperatures into predictions of ambient air
temperature for malaria distribution in Africa had also been used
(Weiss et al., 2014). Other indices were improvement from previous
versions, for example a 90m water resolution database had been re-
cently developed by (Yamazaki et al., 2015a), while a 15m water re-
solution database was developed by (Verpoorter et al., 2014). The new
potential RS data products were therefore important for epidemiology
as they provided more explicit spatial detail than previous coarser re-
solutions of same. This is important in disease mapping especially
identification of spatial heterogeneities and understating the underlying
courses of spatial variations of certain vector-borne diseases.

8. Processed RS data products for disease mapping

The literature on RS derived environmental indices showed a litany
of available remotely sensed supplier processed variables that could be
used for disease mapping. Most of them were found in ecological stu-
dies where an unlimited number of indices that could be derived from
satellite images were presented. Numerous vegetation indices that
could be used as an alternative to, for instance, NDVI were found. Some
of those indices were an improvement of the NDVI which is based on
the near infrared and visible spectral bands ((NIR-VIS)/(NIR+VIS)) and
could potentially provide better estimates in disease mapping models.
For example, the soil-adjusted vegetation index (SAVI) was developed
in order to improve NDVI estimation by correcting the influence of soil
brightness when vegetative cover is sparse by using the formula (1+L)
(NIR-RED)/(NIR+RED+L). The factor L adjusts for canopy back-
ground which eliminates the need for additional calibration for dif-
ferent soils, one of the limitations of the NDVI.

A majority of the indices (90%) were derived by remote sensing
experts and have been extensively used in ecological studies, while
many of them largely remained unknown to epidemiologist. The main
variables that were already processed by the suppliers included tem-
perature, rainfall, NDVI, and the EVI which were also extensively uti-
lized in disease mapping studies (Weiss et al., 2015).

A comparison of the extensively used RS data products in epide-
miology with other similar indices which had been proposed in
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ecological studies would be important in order to find out how they
could jointly be used in disease mapping. Variables that were processed
by the supplier were grouped and are presented in Table 2 which shows
data products that could be directly downloaded from remote sensing
websites and handled in mapping and display interfaces such as Geo-
graphic Information System (GIS). We provided both temporal and
spatial resolutions of the data as well as the period at which the data
were captured. The list comprised of environmental indices that have

applications to disease mapping and were therefore of epidemiological
importance.

9. Derived remotely sensed data products for disease mapping

Table 3 presents a list of satellite image derived indices mainly from
ecologists and remote sensing experts who also proposed the derivation
algorithms and formula for calculating them. A description of what

Table 2
Supplier processed remotely sensed data products.

Variable Source/sensor Temporal
resolution

Spatial
resolution

Period of data
availability

Description & data cost/availability

1) Meteorology and climate
Land Surface Temperature

(LST) day and night
MOD11L2 8 days -250m 1960–present Measure of how hot or cold the “surface” of the earth

is at a particular location. Data is free.MOD11(A1-A2) -500 m
MOD11B1 -1 km
MOD11 (C1-C3)

Rainfall Estimates (RFE) FEWS NET -daily 8 km 2008–present Measures the amount of accumulated rainfall from
recent rain episode. Data is free.-10 days

FAO-RFE -monthly
2) Landuse/landcover
Land Surface Water Index MOD09A1 8 days 500m 1981–2012 Measures the total amount of liquid water in

vegetation and its soil background (Chandrasekar
et al, 2010). Data is free.

Normalized Difference
Vegetation Index (NDVI)

MOD13Q1 16 days 250M 1999–present Indicator used to assess whether the target being
observed contains live green vegetation or not. Can
be a proxy for water availability. Data is free.

MYD13A2 500M
1 KM

Enhanced Vegetation Index
(EVI)

MOD13Q1 16 days 250M 1999–present Designed to enhance vegetation sensitivity in high
biomass regions and improved vegetation
monitoring by correcting for atmospheric influences.

MYD13A2 1 KM

Global 3 arc-second Water
Body Map (G3WBM)

Landsat Global Land Survey
(GLS) 1975, GLS1990, GLS2000,
GLS2005 and GLS2010

- +90m 2015 A high-resolution global water. body. map with
information on the frequency of water body
existence (Yamazaki et al., 2015).

Water Mask MOD44W 250m 2000 Measures surface water. Data is free.
Land/Water mask -Global Land Cover Facility

(GLCF)
- 250m Measures surface water as improvement from 1 km

MODIS mask data (Carroll et al., 2009). Data is free.
-MODIS

Global Land Cover Facility
Inland water (GIW)

-Landsat TM/ETM+ - 30m 2015 Provides an estimation of regional and global inland
water area (Feng et al., 2015). Data is publicly
available.

Global Lakes and Wetlands
Database (GLWD)

Digital Chart of the World
(DCW) of ESRI (1993)

- 1 km Identifies global lakes and wetlands (Lehner and
Döll, 2004). Available for free.

Soil moisture/Geology maps - WindSat 3 days
(archived)

-60″ 2009 Used for agriculture, ecology, wildlife, and public
health and is an important connection between the
hydrological cycle and life involving animal, plant,
and human (Lakshmi and Lakshmi, 2013). Data is
free.

- Tropical Rainfall Measuring
Mission (TRMM)

-1 km

Microwave Imager (TMI) -50 km

Landcover -MOD44W Yearly -500 m 1999–present Documents how much of a region is covered by
forests, wetlands, impervious surfaces, agriculture,
and other land and water types. Data is free but
could cost 105 Euro/km2 in some agancies.

-MCD12C1 -1 km
-MCD12Q1 -1 km, 8 km
-MCD12Q2 -10 km

Biodiversity/human impacts
maps

-World Atlas Biodiversity - - 2003–present Used for understanding the environmental impacts of
human populations. Data is free.-World Map of Human Impacts

Lights at night images -NOAA National centres for
environmental information

- -500 m Indicates location and extentof human settlements.
Cost about $ 43 per image (subject to scale &
shipping costs).

-48 km 1992–2013
-174 km-OLS, SSM/I, SSM/T, SSM/T2,

SSJ, SSIES, SSM
Population WorldPop, - 100m 2000–2020 Integrates GIS-linked database of census with official

population estimate data. Data is free.Terra Populus - - 1960–2011
3) Cartography and Urban Mapping
Altitude/Geomorphology -NASA - -30m 2011 Height above or below a fixed reference point as well

as their topographic characteristics. Data is free.-NOAA -1 km
-ASTER -10 km
-SRTM30 PLUS
-GTOPO30

Ecoregions/Biogeographic
regions

-Terrestrial Ecoregions Olson
et al. (2001)

- - 2007–present Geographical units with characteristic flora, fauna
and ecosystems. Data is free

Forest/wildlife resources -The world map of intact forest
landscapes

- - 2005–present Shows unbroken natural landscape of a forest
ecosystem and its habitat, plant community
components, in a current extant forest zone. Data is
free.

-World Wilderness Areas
-UNEP GEO Data Portal

-Details missing or not available
+Actual resolution coarser than the one stated
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each of the environmental indices estimated was presented to guide
end-users’ choices. In this list we did not include tassel cap indices as
most of them are rather a transformation of the spectral bands already
used in the original reflectance data. A number of vegetation indices
had been calibrated to measure specific plant characteristics in relation
to conditions such as moisture content and plant stress an important
indicator of wetness and dryness especially for vector-borne diseases
that depend on such conditions. The description provided can be used
by epidemiologist to decide which index is more suitable for the disease
being mapped. Therefore, it is entirely up to the end-user to decide
which indices need to be combined or to be used jointly in their map-
ping work.

10. Drones and new remotely sensed data potential for disease
mapping

Since the advent of drones for civilian and private use became ac-
cessible, some aspects of remote sensing capabilities are now available
for scientific applications. Unmanned Aerial Vehicles (UAV) or simple
drones are increasingly being used for a quick bird eye view in as-
sessment of various humanitarian situations (Sandvik and Lohne,
2014). However drone data can be cumbersomely heavy to store and to
process as it comprises of high resolution images at local scales. A single
drone flight can collect over 70 terabytes of data and this indicates that
a more sophisticated high processing and storage facility will be re-
quired to successfully manage drone data. Clearly drone data inevitably
fall under the category of big data and will require storage optimization
measures such as dumbing what is not necessary. Most companies that
use drones already manage these massive amounts of data by simple
taking and storing only what they need. A study by (Fornace et al.,
2014) had already looked at the potential of drones in mapping in-
fectious diseases. According to (Fornace et al., 2014) drones can pro-
vide spatially and temporally accurate data which is critical in under-
standing the linkages between disease transmission and environmental
factors. In this case drones are not meant to replace conventional re-
mote sensing methods but rather to augment existing ones by adding
another dimension in the usability and localized applications of re-
motely sensed products for mapping.

An exploratory study by (Patra, 2017) used a hypothetical model
fed with drone data to understand how germs could be mapped in the
atmosphere and how microbial traffic like flu is transferred within the
same species. In this study drones are considered because of their real-
time capability and for their inherent high spatial and temporal re-
solutions at local scales which is useful for epidemiological applica-
tions. Their application in collecting real time data at relatively low cost
had been explored and it is clear that drones could be useful for
emergency mapping of disease outbreaks. Clearly, drones provide
spatially and temporally explicit data (Using low-cost drones to map
malaria, 2017) which is critical in identifying environmental determi-
nants of infectious diseases especially because of their real time avail-
ability thus mapping changes as they occur. Current trends indicate that
drones have come to stay as new uses are being discovered and more
exploration of their full potential is ongoing.

11. Conclusions

This paper provided a review of some of the work that had been
done to advance remote sensing technology and its applications in
diseases mapping and epidemiology studies. From the review, it is clear
that the RS landscape is constantly changing as new and improved sa-
tellites for global environmental monitoring purposes are continuously
launched into space and new variable potential is presented. The recent
applications of drones in complex heath and humanitarian situations
has taken the remote sensing field to new heights and disease mapping
experts are yet to unravel the full potential of this new technology.
Resolutions for spatial details are constantly improving and so is theTa
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turnaround time from data collection to analysis and making of in-
formed evidence-based decisions.

This work compiled remote sensing information relevant to disease
mapping but we must allude to the fact that the RS area remains too
complex for non-experts yet the new innovations promise to bring on
board even laymen as the mapped images get more visible. There is
need however, to go beyond the complex RS coding and abbreviations
to more open RS data products that are accessible and easy to apply
even for non-experts. Furthermore, remote sensing agencies websites
showed that launches were escalating with each year, yet failed laun-
ches were not immediately known and consequently data availability
from those missions remained a speculation. Online websites doc-
umenting spacecraft launches and data hosting agencies uniform re-
source locator (url) links were ad hoc and marked by duplication and
redundancy and tended to present conflicting records as can be seen in
the conflicting lists of satellites in orbit as recorded by the Goddard
Space Flight Center (2271) and the NORAD Catalogue (7142) respec-
tively.

Despite the good resolutions commercial data have remained under-
utilized in disease mapping mainly because of the high purchase prices
associated with it even though its development is driven by consumer
demand and applications (Kaptein et al., 2014). For instance, high re-
solution data market represented 3% of the total data market in 2012
which signified a serious financial barrier. Conversely low resolution
remote sensing products with resolutions ranging from 250m to 1.5 km
were available for free, for example in some NASA download sites such
as Reverb Echo (https://reverb.echo.nasa.gov/reverb/). In addition, it
is important for epidemiologists to pay attention to the processing le-
vels of the remotely sensed data they use for analysis as this is the key to
understanding the amount of data preparation efforts needed before the
data is ready for use. For the processed data, time of availability from
hosting websites and spatial resolutions varied across the globe and
from region to region. As mentioned, some products had good resolu-
tions but were limited only to national level like the Water resources
which was available only for USA. In other cases descriptions of some of
the data products were well provided while at the same time direct
links to access those products were not provided. These were products
like the Global Interannual Water Extent and Variation from the Special
Sensor Microwave Imager; Global Inundation Extent from Multi-Sa-
tellites (GIEMS) and Shuttle Radar Topography Mission (SRTM) Water
Body.

There were many environmental proxies that were proposed by
ecologist which have however remained under-utilized partly because
they had not yet been applied in disease studies and partly because they
were time consuming to derive and interpret. For instance, a list of
vegetation indices was found with some of the proxies advanced as an
improvement to the commonly used NDVI such as the Atmospherically
Adjusted Resistant Vegetation Index (ARVI) and the Soil-Adjusted
Vegetation Index (SAVI). However the same indices remained under-
utilized in disease mapping and epidemiology presumably because they
were little known. Highly utilized proxies were those of NDVI, rainfall
and temperature partly because they were readily available and partly
because they had been extensively utilized in other studies. We pre-
sented a catalogue of potential and existing RS data products for end-
users like epidemiologists to compare remote sensing products used in
their analysis. Whereas some of these environmental proxies had been
extensively explored in both ecological and remote sensing studies,
their use in disease mapping had been limited to variables that are
archived and ready for download from suppliers of remotely sensed
data (Gómez et al., 2016).

New disease mapping potential was presented as high resolutions
products were being developed as can be seen in the work of Yamazaki
(2015) which showed an improved global water body map of up to
90m spatial resolution and the GLObal WAter BOdies database project
with 15m spatial resolution. While epidemiological studies have shown
that temperature and rainfall were important factors in the distribution

of disease vectors (McMichael et al., 2018), none have assessed how
modeling and mapping with such data could be affected by their re-
solutions. More research work aimed at addressing the above issues is
important especially in the advent of drones and the explicit resolution
scales presented to epidemiology and disease mapping studies. Some
vegetation indices could not be found from purported access website
links such as the humidity from MODIS Atmosphere and the Normal-
ized Difference Water Index (NDWI) another MODIS product.

Documenting satellite launches into space and providing complete
information on their mission and the anticipated data could be useful to
the remote sensing end-user community in order to know what data is
expected from those missions. A quick referral guide of remotely sensed
data that had been coded or abbreviated on the hosting website could
make searching for remote sensing products more efficient when end
users could quickly find out what type of data variables are available or
can be derived from the coded images listed. This review presented a
catalogue of potential environmental proxies for disease mapping. The
list may not be complete as new indices were being derived from new
satellite images but it would help as a guide for available data products
to those seeking to use such products in their analysis.

We also compiled a list of environmental proxies that had pre-
viously been derived by ecologists but have received very little atten-
tion from epidemiologists due to some of the reasons already mentioned
above. We noted that documentation of space activities was ad hoc and
uncoordinated with many sites duplicating and often providing con-
flicting statistics about space missions. This may make it hard for end-
users to fully take advantage of the many data sources and products
that space agencies could offer. There remains a substantial amount of
work on evaluation and comparison of some of the environmental in-
dices presented in this work against the conventionally and commonly
used ones in disease mapping. Consequently, synergies between remote
sensing experts and epidemiologists could be useful in the uptake and
testing of some of the novice environmental indices presented in this
work.
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