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Abstract We consider the solution of elliptic problems on the tensor product of
two physical domains as e.g. present in the approximation of the solution covari-
ance of elliptic partial differential equations with random input. Previous sparse
approximation approaches used a geometrically constructed multilevel hierarchy.
Instead, we construct this hierarchy for a given discretized problem by means
of the algebraic multigrid method (AMG). Thereby, we are able to apply the
sparse grid combination technique to problems given on complex geometries and
for discretizations arising from unstructured grids, which was not feasible before.
Numerical results show that our algebraic construction exhibits the same con-
vergence behaviour as the geometric construction, while being applicable even in
black-box type PDE solvers.
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1 Introduction

The solution of elliptic problems on tensor products of a polygonally bounded
domain Ω ⊂ Rd with e.g. d = 2, 3 given by

(∆⊗∆)u = f on Ω ×Ω ,

u = 0 on ∂(Ω ×Ω) ,
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is an important high-dimensional problem. As an example, this problem shows
up in the estimation of the output covariance of an elliptic partial differential
equation with random input data that is given on a domain Ω, see [13,15,20,21]
for example. The problem becomes high-dimensional since the dimensionality of
the elliptic problem on Ω is doubled. In case of real-world problems in d = 3,
we end up solving a six-dimensional problem, which might become prohibitively
expensive.

Recently, there have been developments to overcome this strong limitation.
These developments are based on the introduction of a geometrically constructed

multilevel frame to solve the elliptic problem on Ω. Standard Galerkin discretiza-
tions of this problem approximate the solution with respect to a basis of a finite-
dimensional trial and test space VJ associated to a triangulation TJ of the domain
Ω. A multi-level frame discretization uses more functions to construct the trial and
test space. In fact, it uses all basis functions of a (nested) hierarchy of subspaces
V0 ⊂ V1 ⊂ . . . ⊂ VJ , which are associated to a (nested) geometric hierarchy of trian-
gulations T0, T1, . . . , TJ with an increasing number of nodes |T0| < |T1| < . . . < |TJ |.
This set with many redundant basis functions is no longer a basis for VJ , but a
frame.

The multilevel frame gives rise to a sparse approximation with respect to the
interaction of the involved domains in Ω × Ω [16,20,21]. It has been shown that
the sparse approximation, i.e. using the trial and test space

⋃
0≤j+j′≤J Vj ⊗ Vj′

instead of VJ ⊗VJ , allows to solve the tensor product problem at a computational
complexity that stays essentially (i.e. up to a poly-logarithmic factor) proportional
to the number of degrees of freedom to discretize a function on the single domain
Ω with respect to the trial space VJ . In a more recent work by one of the au-
thors [15], it has been shown that the sparse approximation can equivalently be
replaced by the sparse grid combination technique [4,10,12,17], which combines
cheap anisotropic full-grid solutions of the tensor-product elliptic problem. This
further reduces the computational work and facilitates the implementation.

However, the currently available geometric construction of the multilevel hier-
archy imposes limitations on the discretization for real-world problems. First, the
coarsest triangulation T0 in the geometrical hierarchy of triangulations has to fully
represent the boundary of the geometry Ω. This either limits the types of geometry
to consider or the computational efficiency (in case even the coarsest mesh has to
be fine at the boundary). Second, the use of a fully unstructured mesh TJ becomes
barely possible, since we are missing a coarsening strategy for such a mesh.

This work introduces algebraically constructed multilevel hierarchies [8,11,25]
for the solution of elliptic problems on tensor product domains. While previous
works [15,16] first constructed the multilevel hierarchy of meshes or triangulations
and then discretized the problem by finite elements, the new approach first dis-
cretizes the problem on Ω on the finest (potentially unstructured) mesh TJ and
then constructs coarser versions of the linear system resulting from the fine dis-
cretization. The coarser problems are generated using algebraic coarsening known
from the classical Ruge-Stüben algebraic multigrid (AMG) [19,22]. The algebraic
construction of multilevel hierarchies for frames has been previously discussed in
context of optimal complexity solvers for elliptic problems in [25]. However, it
has not been applied in the context of sparse approximation yet. Note that, by
construction, our new approach allows us to overcome both the limitations in pres-
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ence of complex geometries and the requirements on the structure of the mesh.
Moreover, it perfectly fits into the context of black-box type PDE solvers.

As it is well-known, a full theory for algebraic multigrid methods, especially
in the multilevel context and on unstructured grids, is still to be developed. Nev-
ertheless, this technique is extremely popular as solver in real-world applications
and, usually, empirically shows the same performance as geometric multigrid. This
work follows the same spirit and focuses on the formal construction and the empir-
ical analysis of the resulting numerical method. Thereby, we are able to match the
convergence results available for geometrically constructed sparse approximations,
while being able to apply this approach to complex geometries and unstructured
grids in a black-box fashion.

In Section 2, the algebraic multilevel construction is outlined. This construction
is introduced to the tensor product problem with sparse approximation and the
sparse grid combination technique in Section 3. Section 4 briefly discusses the
implementation. In Section 5, we give a series of numerical examples with empirical
error analysis. Finally, Section 6 summarizes this work.

2 Algebraic multilevel constructions

In our algebraic construction, we aim at replacing classical multilevel discretiza-
tions for elliptic partial differential equations by a purely matrix-based construc-
tion. That is, we consider an elliptic partial differential equation

−∆u = f on Ω

u = 0 on ∂Ω
(1)

on a polygonally bounded domain Ω ⊂ Rd. This problem has been discretized by
some method on a discretization level J , leading to a system of linear equations

AJuJ = fJ , (2)

where AJ ∈ RNJ×NJ is an M-matrix and uJ ,fJ ∈ RNJ . Note that an M-matrix
has positive diagonal entries, non-positive non-diagonal entries, is non-singular
and the entries of its inverse are non-negative. In case of the discretization by
finite elements, AJ corresponds to the stiffness matrix and fJ is the load vector,
obtained by, for example, using the mass matrix MJ and interpolation. Moreover,
we identify each variable uJ,i in uJ = (uJ,1 . . . uJ,NJ

)> by its index i and introduce
the corresponding index set DJ := {1, . . . , NJ} for discretization level J .

2.1 Multilevel hierarchy of discretized problems

The objective is to construct from (2) a hierarchy of systems of linear equations

Ajuj = f j , j = 0, . . . , J , (3)

which are similar to discretizations on different geometric refinement levels. Espe-
cially, we intend to do this in a purely matrix-based, i.e. algebraic, way by using
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Algorithm 1 Standard coarsening algorithm [23]

Require: level j
1: function AMGstandardCoarsening
2: Fj := ∅,Dj−1 := ∅,Uj := Dj

3: for i ∈ Uj do

4: λj(i) :=
∣∣∣Sj(i)> ∩ Uj

∣∣∣+ 2
∣∣∣Sj(i)> ∩ Fj

∣∣∣
5: while ∃i s.th. λj(i) 6= 0 do
6: find imax := arg maxi λj(i)
7: Dj−1 := Dj−1 ∪ {imax}
8: Uj := Uj \ {imax}
9: for k ∈ (Sj(imax)> ∩ Uj) do

10: Fj := Fj ∪ {k}
11: Uj := Uj \ {k}
12: for i ∈ Uj do

13: λj(i) :=
∣∣∣Sj(i)> ∩ Uj

∣∣∣+ 2
∣∣∣Sj(i)> ∩ Fj

∣∣∣
14: return Dj−1,Fj

coarsening and transfer operators from algebraic multigrid (AMG) [22]. To this
end, we first introduce a construction method for a hierarchy of variable sets

D0 ⊂ D1 ⊂ . . . ⊂ DJ (4)

of sizes
N0 ≤ N1 ≤ . . . ≤ NJ .

In classical Ruge-Stüben AMG [19,23], this is achieved by recursively splitting
the set of variables Dj on level j into a set of coarse and fine grid variables

Dj = Dj−1 ·∪ Fj ,

where “ ·∪” is the union of two disjoint sets. Each fine grid variable is supposed to
be in the neighborhood of an appropriate amount of strongly negatively coupled
coarse grid variables, where we define the neighborhood of a variable i ∈ Dj by

Nj(i) := {i′ ∈ Dj : i′ 6= i, aj,ii′ 6= 0} ,

where Aj = (aj,ii′)
Nj

i,i′=1. That is, we consider neighborhoods between variables by
reinterpreting the system matrix Aj as the adjacency matrix of a graph with edges
between nodes for each non-zero matrix entry. Moreover, the set of neighboring
strongly negatively coupled variables of a variable i is

Sj(i) :=
{
i′ ∈ Nj(i) : −aj,ii′ ≥ εstr max

k
|aj,ik|

}
with a strength measure 0 < εstr < 1. The standard coarsening procedure, cf. Al-
gorithm 1 [23], builds an appropriate splitting Dj = Dj−1 ·∪ Fj based on these

considerations. It also involves the sets Sj(i)
>, which are given by

Sj(i)> := {i′ ∈ Dj : i ∈ Sj(i′)} .

Algorithm 1 uses the notation | · | to express the cardinality of a set.
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In order to define the hierarchy of linear systems (3), we further need a means
to transfer information between two consecutive levels j and j + 1. This is done
by prolongation operators P j+1

j ∈ RNj+1×Nj and restriction operators P j
j+1 ∈

RNj×Nj+1 . Prolongation and restriction are done in a purely algebraic way based
on AMG. In standard interpolation [23], which is one possible type of algebraic
prolongation, data given on a fine grid node i ∈ Fj is interpolated from the set of
interpolatory variables

Ij(i) := (Dj−1 ∩ Sj(i)) ∩

 ⋃
i′∈Fj∩Sj(i)

(
Dj−1 ∩ Sj(i′)

) .

Thus, it is interpolated from strongly negatively coupled coarse grid points and
all coarse grid points that are strongly negatively coupled to strongly negatively
coupled fine grid points. The exact choice of prolongation / interpolation weights
is known from literature [23]. If the quality of the resulting algebraic interpolation
is not good enough, one might also apply one or several steps of Jacobi interpolation
[23]. This, roughly speaking, extends the whole set of interpolatory variables Ij(i)
of a node i by one layer of additional neighboring nodes. Truncation allows to drop
some interpolatory variables based on a threshold [23]. Restriction is given as the

transpose of the prolongation, i.e. P j
j+1 = P j+1

j

>
.

Finally, we recursively define for j = J−1, . . . , 0 the matrices and the right-hand
sides involved in the hierarchy of linear systems (3) as

Aj := P j
j+1Aj+1P

j+1
j , f j := P j

j+1f j+1 ,

which can also be directly expressed in terms of prolongations and restrictions
from AJ and fJ as

Aj := P j
j+1 · · ·P

J−1
J AJP

J
J−1 · · ·P

j+1
j , f j := P j

j+1 · · ·P
J−1
J fJ .

Later on, we will also use the abbreviations

P j
J := P j

j+1 · · ·P
J−1
J , P J

j = P J
J−1 · · ·P

j+1
j . (5)

Optimal complexity in AMG can be achieved, if coarser levels are constructed
such that the operator complexity

CA :=
∑
j

η(Aj)

η(AJ )
,

where η(AJ ) is the number of non-zeros in AJ , stays bounded by some constant
independent of J . Standard coarsening together with standard interpolation em-
pirically fulfill this property for model problems discretized on simple geometries.
However, in more complex situations, it might happen that standard interpolation
and standard coarsening fail in achieving this. Then, stronger or more aggressive
versions such as extended / multi-pass interpolation and aggressive coarsening on
some levels are applied to keep this empirical property [24]. In fact, it might be-
come necessary to use the operator complexity as indicator function in a manual
optimization process in which several combinations of coarsenings and interpola-
tion schemes are tried until an acceptable operator complexity is reached. Unfor-
tunately, to the best of the authors’ knowledge, there is for now no theory on the
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Algorithm 2 V-cycle in a multigrid scheme

Require: A0, . . . ,AJ ,P
1
0, . . . ,P

J
J−1,P

J−1
J , . . . ,P 0

1

1: function VCycle(uj , bj , j)
2: if j=0 then
3: return A−1

j bj . direct solve on coarsest level

4: else
5: uj = smoother(uj , bj) . pre-smoothing

6: rj−1 = P j−1
j (b−Ajuj) . restriction

7: uj−1 = VCycle(0,rj−1,j − 1) . coarse grid correction

8: uj = uj + P j
j−1uj−1 . prolongation

9: uj = smoother(uj , bj) . post-smoothing
10: return uj

decay of the number of non-zeros in the coarse grid matrices Aj constructed by
classical Ruge-Stüben AMG on multiple levels and for general M matrices AJ ,
which could simplify this process.

In classical literature on algebraic multigrid, the hierarchy of system matrices,
prolongation operators, and restriction operators

A0, . . . ,AJ , P 1
0, . . . ,P

J
J−1, P J−1

J , . . . ,P 0
1 ,

are used in an iterative method with, e.g., a V-cycle, cf. Algorithm 2.1, in order
to solve the linear system (2) with optimal constant or logarithmically growing
number of iterations. Instead, we will use it for the construction of a multi-level
hierarchy of problems as required by sparse multilevel approximations.

2.2 Multilevel frames

Let us note here that the above algebraic construction naturally leads to alge-

braic multilevel frames, cf. [25], for the elliptic problem on Ω. That is, we formally
introduce the system of linear equations

AJuJ = fJ (6)

with

AJ :=

A11 · · · A1J

...
. . .

...
AJ1 · · · AJJ

 , uJ :=

 u0

...
uJ

 , fJ :=

 f0
...

fJ


and set

Aj1j2 = P J
j1AJP

j2
J .

The diagonal matrices Ajj are the system matrices Aj from the previous section.
Moreover, we use (5) to extend prolongation / restriction to arbitrary levels. We
further introduce the multi-index j = (j1, j2) allowing the abbreviated notation

AJ = [Aj ]‖j‖`∞≤J , uJ = [uj ]|j|≤J , fJ = [f j ]|j|≤J .

Note that matrix AJ has a large kernel. However, it can be ignored when solving
(6) by using appropriate iterative linear solvers. The projection matrix

PJ =
[
P J

0 ,P
J
1 , . . . ,P

J
J

]
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can be used to transfer the right-hand side fJ from (2) to the multi-level represen-
tation fJ and to project back solutions uJ to the single-level solutions uJ . This
is done by

uJ = PJuJ =
J∑

j=0

P J
j uj , fJ = P>J fJ =

[
P 0

JfJ , . . . ,P
J
JfJ

]>
. (7)

Using the linear system (6) together with the transfer operations from (7)
instead of using linear system (2) conceptually corresponds to replacing a single-
level discretization by a multi-level frame discretization. As in multilevel frame
discretizations based on geometric refinements / coarsening, cf. [16], the above
system of linear equations is much larger, since it encodes the full information
of the hierarchy of systems in (3). However, it has the big advantage that the
application of standard iterative solvers such as Jacobi, Gauss-Seidel or CG to
(6) immediately leads to the same convergence behavior (in terms of the number
of iterations) as if these solvers were applied with a BPX-preconditioner to (2).
A Gauss-Seidel method applied to (6) could e.g. converge as fast as a multigrid
method with Gauss-Seidel smoother applied to (2).

From a theoretical point of view, it has been formally shown for geometric

multi-level constructions, that (6) is equivalent to the linear system of equations
(2), if the BPX-preconditioner is applied in the solution process, cf. [2,5,7,18].
In [25], it has been further shown by numerical experiments that the application
of specific iterative solvers to (6) leads to problem-size independent convergence
rates for the here discussed case of algebraically constructed multilevel frames.

3 Sparse algebraic tensor product approach

Next, we like to consider elliptic problems on tensor products Ω×Ω of the polyg-
onally bounded domain Ω. That is, we consider problems of the form

(∆⊗∆)u = f on Ω ×Ω ,

u = 0 on ∂(Ω ×Ω) .
(8)

As in Section 2, we assume to have a discretization (e.g. by finite elements) for
the problem on a level J resulting in the system of linear equations

(AJ ⊗AJ )UJ = F J . (9)

Here, AJ ∈ RNJ×NJ is the system matrix from (2). The operator ⊗ is the Kro-
necker product operator for matrices. For matrices S ∈ Rn1×n2 , T ∈ Rm1×m2 , it
computes the Kronecker product

S ⊗ T :=

 s11T . . . s1n2T
...

. . .
...

sn11T . . . sn1n2T

 .

Consequently, AJ ⊗AJ becomes a matrix of size NJ
2×NJ

2. Moreover, UJ ,F J ∈
RNJ ·NJ are the solution and the right-hand side, respectively.
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Â(0,3)
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Fig. 1 For discretization level J = 3, multilevel frames on the full tensor product space require

a very densely populated system matrix ÂJ (left), while sparse approximation leads to the

system matrix ÃJ (center) with smaller size due to fewer active (i.e. gray) matrix subblocks.
The sparse grid combination technique (right) leads to the most efficient approximation.

By assuming an underlying d-dimensional finite element discretization with
mesh width h and a multigrid-type linear solver, solving the linear system in (9)

would require at least O
(
h−2d

)
operations, in contrast to O

(
h−d

)
for the problem

given by (2). This amount of computational work is prohibitively large, especially
for larger d. Therefore, we shall find a way to reduce the amount of work to
solve this problem. Before we do that, we change the problem discretization to a
multilevel discretization, which is the basis for the subsequent sparse approaches.

3.1 Multilevel frames for tensor product constructions

To extend the solution approach from Section 2.2 to tensor product problems, we
first recall that we had in the univariate multilevel frame case matrix blocks of the
form

Aj = Aj1j2 := P J
j1AJP

j2
J ,

with P j
J , P J

j as defined in (5) by applying coarsening and the transfer operators
of algebraic multigrid. In the univariate case, the multilevel frame linear system
of equations was

AJuJ = fJ ,

AJ = [Aj ]‖j‖`∞≤J , uJ = [uj ]|j|≤J , fJ = [f j ]|j|≤J .

By tensorizing this problem, we naturally get the tensor-product frame linear
system of equations

ÂJUJ = F J , (10)

with

ÂJ = [Aj1j2 ⊗Aj′1j
′
2
]‖(j1,j′1)‖`∞ ,‖(j2,j′2)‖`∞≤J ,

and

UJ = [Uj ]‖j‖`∞≤J , F J = [F j ]‖j‖`∞≤J .

For a given right-hand side F J , we can construct the corresponding blocks F j by

F j = F j1j2 :=
(
P j1

J ⊗ P j2
J

)
F J .
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The corresponding vectors and matrices are (using j = (j1, j2)) of the dimension-
alities

Aj ⊗Aj′ ∈ RNj1Nj′1
×Nj2Nj′2 and Uj ,F j ∈ RNj1Nj2 .

In order to characterize the computational complexity for the solution of (10),
we recall that we assume to have a constant operator complexity for the sequence
of matrices Ajj = Aj , i.e.

∑
η(Aj) ≤ c η(AJ ). Moreover, by definition of the

Kronecker product, we have the number of non-zeros in each block of ÂJ given by

η(Aj ⊗Aj′) = η(Aj)η(Aj′) ,

from which it is easy to verify that we have

η(ÂJ ) = η(AJ )η(AJ ) ,

with AJ from Section 2.2. It remains to find an upper bound to the number of
non-zeros of the univariate multilevel frame system matrix. Here, we compute

η(AJ ) = η
(

[Aj ]‖j‖`∞≤J

)
=

J∑
j1=1

J∑
j2=1

η(Aj1j2) ≤
J∑

j1=1

J∑
j2=1

η(Amax(j1,j2),max(j1,j2))

= J
∑
j

η(Ajj) ≤ CAJη(AJ ) .

In the last equality, we used that we have η(Aj1j2) = η(Aj2j1). The last inequal-
ity corresponds to our assumption on the operator complexity. Since we have
J ∼ O(| log h|), we finally get

η(ÂJ ) ≤ cCA
2| log h|2η(AJ )2 .

This means that the computational work to solve (10) is asymptotically identical
to a solve of (9), up to a logarithmic term. Moreover, by using recursive techniques
known from the BPX-preconditioner [2], we could even avoid the logarithmic term.

Figure 1 displays the matrix blocks Â(j,j′) := Amax(j1,j2),max(j′1,j
′
2)

that are
used by the tensor product multi-level frame system. We limit ourselves to this
subset of matrices for the ease of visualization. However, following [16], we in

fact only need these matrices to construct ÂJ , if appropriate prolongation and
restriction operators are considered.

3.2 Sparse tensor product construction

Solving (9) or (10) would be prohibitively expensive, cf. Figure 1. As in the ge-
ometric multilevel case, we now assume that the solution of the elliptic problem
(1) on Ω is Hs regular. Therefore, the solution of the tensor product problem (8)
becomes Hs

mix-regular, see [20]. This allows to follow, for example, the lines of [16]
to introduce a sparse, however now algebraically constructed, version of the dis-
cretized problem. Instead of using all sub-problems for multi-indices ‖j‖`∞ ≤ J ,
the sparse approximation is reduced to multi-indices ‖j‖`1 ≤ J . Thereby, we obtain
a new system of linear equations

ÃJ ŨJ = F̃ J
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with
ÃJ := [Aj1j2 ⊗Aj′1j

′
2
]‖(j1,j′1)‖`1 ,‖(j2,j′2)‖`1≤J ,

ŨJ = [Uj ]‖j‖`1≤J , F̃ J = [F j ]‖j‖`1≤J .

Figure 1 compares both choices in the plots on the left-hand side and the center,
recalling that we use only matrices Â(j,j′) := Amax(j1,j2),max(j′1,j

′
2)

in this figure,
see last section. It is easy to see, that this choice should be much more efficient.

To show that it is actually more efficient, we now discuss the number of non-
zeros in ÃJ . Similar to the extimate of the number of non-zeros in the univariate

multi-level system matrix, we now compute

η(ÃJ ) =
∑

0≤j1+j′1≤J

∑
0≤j2+j′2≤J

η(Aj1j2 ⊗Aj′1j
′
2
)

=
J∑

j1=0

J−j1∑
j′1=0

J∑
j2=0

J−j2∑
j′2=0

η(Aj1j2)η(Aj′1j
′
2
)

≤
J∑

j1=0

J−j1∑
j′1=0

J∑
j2=0

J−j2∑
j′2=0

η(Amax(j1,j2),max(j1,j2))η(Amax(j′1,j
′
2),max(j′1,j

′
2)

)

= J2
J∑

j=0

J−j∑
j′=0

η(Ajj)η(Aj′j′)

As discussed before, there is not much theory on the size of the levels in the
algebraic multilevel construction. The only available information is the assumed
bound on the operator complexity. However, this does not give enough information
to finish the above estimate. Nevertheless, the bound on the operator complexity
implies a similar scaling of the non-zeros with level j as in the geometric multilevel
construction. Therefore, we here assume to have the same number of non-zeros for
each matrix Ajj as in the geometric construction, to give a hint towards the
possible performance improvement by the algebraic sparse construction.

With this in mind, we follow the previous example of (linear) finite elements
on a mesh with mesh width h. The number of non-zero entries for matrix Aj is
proportional to the number of elements and therefore

η(Ajj) = O(2d j) .

By extending the above estimate, we get

η(ÃJ ) = J2
J∑

j=0

J−j∑
j′=0

η(Ajj)η(Aj′j′) = c J2
J∑

j=0

J−j∑
j′=0

2d j2d j′

= c J2
J∑

j=0

J∑
k=j

2d j2d (k−j) = c J2
J∑

j=0

J∑
k=j

2d k = O
(
J32d J

)
Moreover, we have J = O(| log h|). That is, the number of non-zeros in the system

matrix in ÃJ is asymptotically

η
(
ÃJ

)
= O

(
| log h|3 h−d

)
.
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That is, in case a BPX-type preconditioner [2,5,7,18] is used, the computational
complexity of the problem on the tensor product domain Ω×Ω is (up to a logarith-
mic factor) reduced to the computational complexity of the problem on domain
Ω. Moreover, by applying an optimal approach for the construction of the sub-
problem matrices Aj ⊗Aj′ [1,3,26], the remaining logarithmic factors might eben
be dropped.

3.3 Sparse grid combination technique

It has been shown in [15] that the previous sparse approximation is equivalent
to the so-called sparse grid combination technique. The latter one starts approx-
imating tensor product problems from a sequence of finite dimensional function
spaces

V
(i)
0 ⊂ V (i)

1 ⊂ . . . ⊂ V (i)
J ⊂ . . . ⊂ V (i)

of increasing accuracy, where i indicates the domain to which the function space is
associated. Since we operate on Ω×Ω, we have i = 1, 2. As next step, hierarchical

increment spaces W
(i)
j are considered such that

V
(i)
j := W

(i)
j ⊕ V (i)

j−1 ,

where W
(i)
0 := V

(i)
0 . As usual in sparse (grid) approximation, the (two-dimensional)

sparse approximation space V̂J is then, cf. [9], defined as

V̂J :=
J⊕

j′=0

W
(1)
J−j′ ⊗ V

(2)
j′ =

J⊕
j′=0

(
V

(1)
J−j′ 	 V

(1)
J−1−j′

)
⊗ V (2)

j′

=
J⊕

j′=0

[(
V

(1)
J−j′ ⊗ V

(2)
j′

)
	
(
V

(1)
J−1−j′ ⊗ V

(2)
j′

)]
. (11)

The combination technique computes (anisotropic) full-grid solutions on the sub-
spaces involved in equation (11) and combines them using appropriate projection.
Translated to our problem setting, this approximation is given as

ÛJ =
J∑

j′=0

[(
P J

J−j′ ⊗ P J
j′

)
UJ−j′,j′ −

(
P J

J−1−j′ ⊗ P J
j′

)
UJ−1−j′,j′

]
=

∑
‖j‖`1=J

(P J
j ⊗ P J

j′)Uj −
∑

‖j‖`1=J−1

(P J
j ⊗ P J

j′)Uj . (12)

To compute it, we have to solve the decoupled problems

ÂjUj = (Aj1j1 ⊗Aj2j2)Uj = F j , where ‖j‖`1 ∈ {J, J − 1} . (13)

On the right-hand side of Figure 1, the sub-matrices Âj used in this approx-
imation have been marked gray. As before, one can easily verify that the total

number of non-zeros of the matrices in (13) is asymptotically O
(
| log h|h−d

)
for

the case of linear finite elements on a tetrahedral mesh with mesh width h in
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d dimensions and a geometrically constructed multilevel structure. However, Fig-
ure (1) easily clarifies that the pre-asymptotic number of non-zeros in the matrices
involved in the combination technique is much smaller than the non-zeros in the
sparse approximation discussed before.

In terms of computational complexity of the combination technique, let us re-
mind that the (approximate) solution of each sub-problem in (13) can be realized
by an iterative linear solver with matrix-vector products. To be more specific,
tensor product versions of standard iterative solvers can be constructed, by re-

shaping a given iterate Uj=(j,j′) ∈ RNj ·N ′j (and the appropriate right-hand side)
to a matrix of size Nj ×Nj′ . Then, the action of one step of an iterative solver for

matrix Âj = Aj ⊗ Aj′ is done by first applying the iterative solver step for Aj

to all Nj′ columns of the reshaped matrix and by second applying the iterative
solver step for Aj′ to all Nj rows of the reshaped matrix. One easily verifies that
the Kronecker product of two matrices Aj , Aj′ with O(Nj), O(Nj′) non-zeros has
O(NjNj′) non-zeros. This leads to a computational complexity of O(NjNj′) for a
single matrix-vector product.

Next, we observe that we actually need only a problem-size independent con-
stant number of iterations, if we choose an appropriate solver. Since we have all
prolongation and restriction operators from AMG at our disposal, we can actually
build a tensor product version of algebraic multigrid. The construction of a tensor-
product AMG follows the idea outlined above, i.e. we apply univariate versions of
AMG to the columns and rows of a reshaped iterate Uj=(j,j′) of size Nj × Nj′ .
The tensor-product AMG gives us the property of problem-size independent con-
vergence for each sub-problem in (13), i.e. we need O(NjNj′) operations for each
sub-problem.

While we have no theory on the number of unknowns on each level of our al-
gebraically constructed combination technique, we can still give an analogy from
the geometric setting, in order to predict the overall complexity of the method.
In case our algebraical construction would behave exactly as a geometrically con-
structed multilevel hierarchy, we would have the relation Nj = O(2dj). Thereby,

the solution of each sub-problem would require O(2d(j+j′)) operations. Since it
holds ‖j‖`1 ∈ {J, J − 1}, we can compute∑

‖j‖`1∈{J,J−1}

2d(j+j′) =
∑

‖j‖`1=J

2d(j+j′) +
∑

‖j‖`1=J−1

2d(j+j′)

= (J + 1)2dJ + J2d(J−1) .

Hence, we would finally end up with a computational complexity of O(J2dJ ) or
O(NJ logNJ ).

4 Implementation

In our numerical results, we approximate solutions for tensor product finite element
discretizations of elliptic problems based on the combination technique with Ω ⊂
R2,3. To this end, we assemble system matrices for a given problem, construct
the multilevel hierarchies, solve the decoupled, anisotropic problems in (13) and
combine the solutions following the combination rule (12).
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Assembly of system matrices. The discretization by the finite element method is
done with the Matlab PDE Toolbox of Matlab 2017a. We use linear finite elements
and construct meshes with maximum element size Hmax= 2−J . Furthermore, we
use the option Jiggle to optimize the mesh in quality. The stiffness matrix (in-
corporating boundary conditions) is constructed by using the Matlab command
assembleFEMatrices with option nullspace. In a similar way, we extract the mass
matrix. Afterwards, both matrices and the mesh node coordinates are stored to
files.

Construction of the multilevel hierarchy. From within Matlab we call an in-house
ad-hoc code that uses the parallel linear solver library hypre [6] in version 2.11.1.
This library contains the implementation BoomerAMG of classical Ruge-Stüben
AMG. The code reads the stiffness matrix from file and creates the AMG mul-
tilevel hierarchy by using hypre. In addition to standard coarsening with strength
measure εstr = 0.25 and standard interpolation, we use two passes of Jacobi interpo-
lation with a truncation of the Jacobi interpolation with a threshold of 0.001 for
the two-dimensional problems and 0.01 for the three-dimensional problem (being
treated in Section 5). All other parameters are kept as the defaults of BoomerAMG.
After having created the multigrid hierarchy, the program stores the prolongation
matrices of all created levels to files. These are read by Matlab.

Solution of the anisotropic tensor product problems. Based on the prolongation ma-
trices and the system matrix AJ on the finest levels, the decoupled problems in
(13) can be set up. As discussed before, a tensor product version of AMG is used
to solve the systems of linear equations. In our implementation, we construct the
sub-problem operators in (13) by individually multiplying the transfer operators
between two consecutive levels.

Our tensor product AMG is iterated until the convergence criterion

‖Rit
j ‖`2/‖F j‖`2 ≤ εtol

is fulfilled, where Rit
j is the residual of the current iterate U it

j in the solver. Since
the problems in (13) completely decouple, we can easily parallelize their solution
process by a parfor loop in Matlab. In case an individual problem becomes very ex-
pensive, we further implemented a distributed memory parallelization for the ten-
sor product AMG based on Matlab’s distributed function. Thereby, we overcome
the limitation of a non-existing multi-core parallelization for sparse matrix-vector
products in Matlab.

Combination of the solutions. In the combination phase, we avoid to prolongate the
full partial solutions to the finest level J . Instead, we randomly chose Neval nodes
on the product of the finest meshes on Ω × Ω. On these points, we evaluate the
combination formula (12) and compute the empirical error measure

e(Uapprox) = ‖Uapprox −Uref‖`2/‖Uref‖`2 ,

where Uapprox is the approximated solution and Uref is an appropriately evalu-
ated reference solution. Note that we do not multiply the tensor product of the
prolongation with the solution. Instead, we follow the ideas from Section 3.3 for the
construction of the tensor product AMG and apply the prolongations direction-
wise. The prolongation for each sub-problem is also parallelized by a parfor loop.
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Fig. 2 The combination technique based on our algebraic multilevel hierarchy and applied
to the tensor product of a disk geometry with an unstructured mesh (left, triangulated with
J = 5) shows the same convergence as the geometrically constructed combination technique
(right).

5 Numerical results

In our empirical studies, we consider the numerical solution of the problem

(∆⊗∆)u = f on Ω ×Ω ,

u = 0 on ∂(Ω ×Ω) .
(14)

by means of the combination technique based on the algebraic multilevel hierarchy.
Different choices will be made for the domain Ω and the right-hand side f .

5.1 Analytic example on a disk

The first study is done on a disk domain Ω with center (0, 0)> and radius 0.5. We
set

f(x,y) = 1 .

The exact solution of the resulting problem is

u(x,y) =
1

16

(
x21 + x22 − 0.52

)(
y21 + y22 − 0.52

)
.

To approximate the solution u by the combination technique, we follow the method-
ology discussed in Section 4. As part of this, we triangulate the geometry with a
maximum element width of 2−J . Figure 2 shows on the left-hand side the resulting
mesh for J = 5. It is obvious that the resulting mesh is unstructured. Therefore,
classical geometric constructions for the sparse grid combination technique would
not be feasible on that mesh. In contrast, our new algebraic approach can solve
this problem.

This is shown on the right-hand side of Figure 2, where we compare the nu-
merically approximated solution against the above exact solution. Convergence
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Fig. 3 We compare the runtime of the new combination technique approach (CT) with the
runtime of the traditional the full tensor-product approach (full TP) for the solution of the
tensor product elliptic problems on the disk geometry (left) and the plate geometry (right).

# dofs on algebraically coarsened level j
Ω J \ j 0 1 2 3 4 5 6 7 8 9

disk 3 3 11 28 71
4 8 21 52 119 320
5 12 31 84 207 495 1292
6 20 51 139 348 852 2009 5234
7 35 93 244 606 1473 3510 8415 22118
8 46 130 366 978 2469 5983 14480 34081 89097

O(2dj) 1 5 22 87 348 1392 5569 22274 89097
plate 3 5 20 61

4 16 36 90 230
5 28 68 168 414 1072
6 46 116 297 745 1813 4703
7 63 184 515 1272 3117 7491 19611
8 103 302 815 2124 5301 12822 30639 80146

spanner 3 4 10 19 50 117 247
4 11 22 59 147 326 689 1454
5 40 114 300 689 1516 3216 6484 13939
6 210 548 1364 3123 6708 14109 29103 57438 125223
7 1386 3120 6627 14016 29533 61150 124921 253291 496614 1082581

Table 1 For a given problem on level J , the algebraic multilevel construction on our example
domains Ω constructs coarser levels with a decrease of the number of unknowns roughly similar
to geometric multilevel constructions e.g. in the disk test case. Above, only those levels j are
reported that are used in the convergence study.

results for the choices J = 3, . . . , 8 are given. From literature, compare e.g. [15],
we know that the error of the geometrically constructed sparse grid combination
technique scales for the problem under consideration like J4−J . As we can see
from the convergence results in Figure 2, the algebraically constructed combina-
tion technique shows the same convergence behavior, while being applicable to
unstructured grids.

Figure 3 shows on the left-hand side computing times for growing problem size
NJ of the univariate discretization of Ω. We compare the time required for the
solution of the combination technique sub-problems with the time required to solve
the full tensor-product problem (9) by our tensor-product AMG implementation.
Note that we use the coarse grid hierarchies reported in Table 1 for both the
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Fig. 4 Even for a covariance load on a complex geometry (left, triangulated for J = 5), the
algebraic construction shows the appropriate convergence rate after a short pre-asymptotic
phase (right).

combination technique and the full tensor-product approach. All measurements
were done on a compute server with dual 20-core Intel Xeon E5-2698 v4 CPU at
2.2 GHz and 768 GB RAM. It becomes evident that our algebraically constructed
combination technique approach beats the full tensor-product approach in both,
computational complexity and effective runtime. However, both results do not
show the predicted computational complexity of O(NJ logNJ ) and O(NJ

2). There
are several reasons for this behavior.

– First, algebraic multigrid often shows a small, roughly logarithmic, growth in
the number of iterations for larger problem sizes, resulting in a slow-down by
a logarithmic factor.

– Second, we observe a certain fill-in in the system matrices for coarser problems
in the algebraic construction due to our choice of an additional (truncated)
Jacobi interpolation. However, this should be pre-asymptotic behavior.

– Third, as can be seen in Table 1, the AMG coarsening approach chosen in our
implementation does not show the exact same (asymptotic) decay rate O(2dj)
in the number of levels as we expect it from the geometric construction. In
fact, this leads to a problem-size dependent growth of the coarsest grid. While
this growth does not affect the error decay, it shows up in the computational
complexity.

Meanwhile, as stated before, we are able to beat the solution approach based on
the full tensor-product approach in terms of computational complexity. Even more,
if we would use AMG as solver for the anisotropic sub-problems in the geometric

construction, we would see similar results, anyway. Finally, in terms of runtime,
we are by more than two orders of magnitude faster.
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5.2 Example on complex geometry with covariance load

The next numerical study is concerned with the solution of the problem (14) with
the load

f(x,y) = exp

(
−‖x− y‖2

`

)
that corresponds to an (unscaled) Gaussian covariance kernel with correlation
length `. This is a prototype version of the tensor product elliptic problem on
Ω × Ω showing up in the computation of the output covariance of an elliptic
problem on Ω with random input, cf. [16].

In addition to the more complicated right-hand side, we solve the problem for
a rather complex geometry Ω. We choose the geomery of a square plate on [0, 1]2

with circular wholes of radius 0.15 which are centered at the points

{(0.25, 0.25), (0.25, 0.75), (0.75, 0.25), (0.75, 0.75)} .

Figure 4 shows its triangulation for J = 5 on the left-hand side. Note that it would
be almost impossible to solve a problem on such a geometry with the geometrical
construction for the sparse grid combination technique. However, with the alge-
braic construction, a coarsening to very few degrees of freedom becomes easily
possible, compare Table 1.

To be able to compare the above problem against a numerically computed
reference solution, we replace the (sampled) covariance kernel for ` = 1 by its
low-rank approximation computed with the pivoted Cholesky factorization [14],
truncated for a trace norm of 10−8. In this case, depending on the problem size,
the truncation results in roughly twenty low-rank terms.

On the right-hand side of Figure 4, we show the convergence results with errors
computed against the numerically approximated exact solution by use of the low-
rank approximation. After a pre-asymptotic phase, we are able to attain an error
that scales like J4−J as in the geometric construction.

The problem size dependent runtime to compute the subspace solutions for
the plate geometry is given in Figure 3 on the right-hand side. We observe similar
compuational complexities and similar runtimes as in the previous example on the
disk.

5.3 Large-scale real-world example

Our last numerical study treats a large-scale problem with a complex real-world
geometry Ω. We again aim at solving (14) for f(x,y) = 1. However, we choose
the three-dimensional spanner geometry found in Figure 5. In contrast to the pre-
vious examples, we set the maximum mesh width to 25−J , since the geometry is
contained in the rather large bounding box [−5, 5] × [−12.2, 112] × [−15.7, 15.7].
Note that the triangulation of Ω results for level J = 7 in a discretization with
1, 082, 581 unknowns. That is, if we would want to solve the full tensor product
problem on Ω×Ω, cf. (8), then we would have to solve a problem with about 1012,
that is a trilion, unknowns. This would be clearly out of scope even for large par-
allel clusters. In contrast, the combination technique allows to solve this problem.
Nevertheless, we still have to solve, e.g. for level J = 7 and the system matrix
Â(0,J) a problem with 1, 082, 581× 1, 386 unknowns, compare Table 1.
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Fig. 5 In our large-scale real world example, we solve an elliptic problem on the tensor
product of the three-dimensional geometry of a spanner. For a discretization level of J = 7,
the discretization of Ω has more than a million unknowns. This would lead to 1012, that is a
trillion, unknowns in the full tensor product discretization.
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Fig. 6 Our algebraic multilevel construction for the sparse grid combination technique on the
large-scale three-dimensional spanner geometry gradually approaches the optimal convergence
rate of J2−dJ .

In Figure 6, we show the convergence results for this large scale problem relative
to a numerical approximation of the solution. Due to the high dimensionality and
complexity of the domain Ω, the convergence results in Figure 6 are only gradually
approaching the optimal scaling of J2−dJ . Nevertheless, we are able to solve this
problem up to a certain accuracy. This shows that even very complex problems of
large scale can be solved by the proposed approach.
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6 Conclusions

In this work, we have introduced an algebraic construction method for the sparse
approximation of tensor product elliptic problems by means of the combination
technique. While previous approaches were tight to geometric hierarchies of mesh
refinements to build the underlying multilevel discretization, we were able to solve
the given type of problems on complex geometries and for unstructured grids by an
algebraic multilevel hierarchy based on AMG. We could show that our approach
has the same convergence rates as the geometric construction. Measurements of the
computational complexity were in the linear range with poly-logarithmic factors.
Overall, we are now able to apply sparse approximation for elliptic tensor product
problems in a black-box fashion.
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